ΛονληSix

December 21, 2022

Kassahun Sellassie, Ph.D., P.E. Director, Air Management Services Philadelphia Air Management Services 321 University Avenue, 2nd floor Philadelphia, PA 19104

Re: Notification of RACT III Applicability [25 Pa. Code §129.115(a)] and Alternative RACT Compliance Analysis [25 Pa. Code §129.114(i)] Title V Operating Permit No. V95-047 AdvanSix Resins & Chemicals LLC, Frankford Plant – Philadelphia, PA

Dear Dr. Sellassie:

AdvanSix Resins & Chemicals LLC (AdvanSix) is providing this summary of Reasonably Available Control Technology (RACT) applicability and compliance plans for the Frankford Plant (Plant) located in Philadelphia, Philadelphia County, Pennsylvania in accordance with the recently promulgated provisions of 25 Pa. Code §§129.111-129.115. This document represents the required notification of applicability and compliance proposal under 25 Pa. Code §129.115(a). In addition, this document includes the analysis of alternative RACT compliance required under 25 Pa. Code §129.114(i) for those sources at the Plant subject to alternative RACT determinations that were previously approved by Philadelphia Air Management Services (AMS) under 25 Pa. Code §129.99.

Plant Background and RACT III Rule Applicability

The Plant manufactures chemical intermediates including phenol, acetone and alphamethylstyrene. The Plant currently operates under Title V Operating Permit Number V95-047 (TVOP No. V95-047), issued by AMS.

On November 12, 2022, the Pennsylvania Department of Environmental Protection (PADEP) published 25 Pa. Code §§129.111-129.115, "Additional RACT Requirements for Major Sources of NO_X and VOCs for the 2015 Ozone NAAQS" also known as the RACT III Rule. The RACT III requirements or emissions limitations supersede the requirements or emissions limitations of a RACT permit previously issued in accordance with 25 Pa. Code §§129.91-129.95 and 129.96-129.100 (RACT II), except in cases where an existing RACT permit specifies more stringent requirements and/or emissions limitations. Compliance with applicable RACT III Rule requirements or emissions limitations must be demonstrated no later than January 1, 2023.

The RACT III Rule applies to major nitrogen oxides (NO_X) and/or major volatile organic compound (VOC) emitting facilities. 25 Pa. Code 2121.1 defines major NO_X and VOC emitting facilities as follows:

- Major NO_X emitting facility a facility-wide NO_X potential to emit (PTE) greater than 100 tons per year (TPY).
- Major VOC emitting facility a facility-wide VOC PTE greater than 50 TPY.

The Facility-wide NO_X PTE is greater than 100 TPY and the Facility-wide VOC PTE is greater than 50 TPY, therefore, AdvanSix is considered a major NO_X and VOC emitting facility subject to the provisions of RACT III per 25 Pa. Code §129.111(a). The major source NO_X and VOC thresholds for sources located in Philadelphia County (i.e., 25 tpy for NO_X and 25 tpy for VOC) do not apply to 25 Pa. Code §§129.111 – 129.115 as defined in the RACT III Rule. Therefore, 100 tpy of NO_X and 50 tpy of VOC are the major source thresholds in Philadelphia County that are applicable to the RACT III Rule. This submittal is being made per the requirements of the RACT III Rule for the Plant's NO_X and VOC emitting sources.

Notification of Applicability and Compliance Proposal [25 Pa. Code §129.115(a)]

The following subsections provide the notification of applicability and compliance proposal required under 25 Pa. Code §129.115(a).

25 Pa. Code §129.115(a)(1) – Submission Deadline

Because the Plant was a major NO_X and VOC emitting facility prior to August 3, 2018, this submittal is being made on or before December 31, 2022, per 25 Pa. Code §129.115(a)(1)(i).

<u>25 Pa. Code §129.115(a)(2) – Identification of Air Contamination Sources That Commenced</u> <u>Operation on or Before August 3, 2018</u>

Tables A-1 through A-5 of Attachment A provide the RACT III Rule Applicability Summary, which identifies the following:

- Air contamination sources that are exempt from the RACT III Rule for NO_X and/or VOC on the basis that they emit less than 1 TPY of NO_X and/or VOC (Table A-1).
- Air contamination sources exempted from 25 Pa. Code §§129.112-129.114 because they are already subject to certain Chapter 129 RACT requirements [i.e., §129.56 and §129.57] (Table A-1).
- Air contamination sources subject to a presumptive RACT requirement or RACT emissions limitation under 25 Pa. Code §129.112 (Tables A-2 and A-3).
- Air contamination sources subject to an alternative RACT requirement or RACT emissions limitation under 25 Pa. Code §129.114 (Table A-4).
- Air contamination sources subject to the requirements of AMS' Air Management Regulation V (AMR V), Section XVI (Synthetic Organic Manufacturing Industry [SOCMI] Air Oxidation, Distillation, and Reactor Processes) (Table A-5).

<u>25 Pa. Code §129.115(a)(3) – Identification of Air Contamination Sources That Commenced</u> <u>Operation After August 3, 2018</u>

A list of air contamination sources that were installed, modified, or experienced a change in the method of operation after August 3, 2018, are listed below in Table 1. These sources do not affect the Facility's status as a major NO_X and VOC emitting facility prior to August 3, 2018.

Table 1
Sources That Were Installed, Modified, or Experienced a Change
in the Method of Operation After August 3, 2018

Source ID	Source Description	Action	Date	Modification
BL-001	Barge Dock Boiler	Installation Permit	6/30/2022	Replaced in-kind
EG-707	Emergency Generator	Installation Permit	10/14/2022	Permitted
VT-633	Effluent Oil Storage Tank	General Plan Approval	7/22/2021	Replaced in-kind

<u>25 Pa. Code §129.115(a)(4) – Identification of Air Contamination Sources That Emit Less</u> <u>Than 1 TPY</u>

The air contamination sources at the Plant that are exempt from the RACT III Rule for NO_X and/or VOC on the basis that they emit less than 1 TPY of NO_X and/or VOC are shown in Table A-1 of Attachment A.

<u>25 Pa. Code §129.115(a)(5) – Air Contamination Source Information (Commenced Operation on or Before August 3, 2018)</u>

Table A-6 of Attachment A provides a Source Inventory, including exempt sources, which lists the description, make, model, and location (as available) of each air contamination source subject to the RACT III Rule. The applicable RACT requirement or RACT emissions limitation for each source is provided in the RACT III Rule Applicability Summary as Tables A-1 through A-5 of Attachment A. There have been no changes to the applicable presumptive RACT requirements or RACT emissions limitations for any other sources since the promulgation of RACT II.

For Phenol Tank Car Loading (Source ID PTC 1), which requires an alternative RACT determination for VOC emissions, AdvanSix has determined that the alternative RACT requirements and/or RACT emissions limitations that were previously approved by AMS under 25 Pa. Code §129.99(e) continue to represent RACT. An analysis is presented below to certify that the alternative RACT determinations approved by AMS under 25 Pa. Code §129.99(e) remain valid. AdvanSix proposes to comply with the RACT III Rule through the use of good operating practices and continued compliance with Condition H of Plan Approval No. IP16-000276 dated March 5, 2020.

An alternative RACT proposal will be submitted separately from this notification to address the RACT requirements and/or emissions limitations applicable to the sources that require new alternative evaluations under 25 Pa. Code §129.114(d). AdvanSix will meet the January 1, 2023, compliance deadline of the RACT III Rule through continued compliance with these conditions.

. ./

<u>25 Pa. Code §129.115(a)(6) – Air Contamination Source Information (Commenced Operation</u> <u>After August 3, 2018)</u>

N/A - 25 Pa. Code §129.115(a)(3) does not apply.

<u>25 Pa. Code §129.115(a)(7) – Air Contamination Source Information (Sources That Emit Less</u> <u>Than 1 TPY)</u>

Table A-6 of Attachment A provides a Source Inventory that includes a description, make, model, and location (as available) of each air contamination source subject to the RACT III Rule. Table A-1 of Attachment A lists the sources that are exempt from the RACT III Rule for NO_X and/or VOC on the basis that they emit less than 1 TPY of NO_X and/or VOC.

<u>25 Pa. Code §129.115(b) – Demonstration of Compliance by Monitoring or Testing</u> <u>Procedures</u>

25 Pa. Code \$129.115(b)(1) through (b)(5) are not applicable to sources at the Plant subject to presumptive RACT III limits for emissions of NO_X and/or VOC because these sources are only subject to work practice standards and/or operating hours under 25 Pa. Code \$129.112(c) and (d). There are no applicable NO_X or VOC emissions limitations that require testing to demonstrate compliance for the sources shown in Tables A-2 and A-3 of Attachment A.

25 Pa. Code §129.115 (b)(1) through (b)(5) are not applicable to Steam Boiler No. 1, Steam Boiler No. 2, or Steam Boiler No. 3 (Source IDs BL-701, BL-702, and BL-703, respectively) because the Facility is proposing an alternative NO_X RACT requirement under 25 Pa. Code §129.114(a). The Facility operates a continuous emissions monitoring system (CEMS) to monitor NO_X emissions from Source IDs BL-701, BL-702, and BL-703. The Facility will demonstrate compliance with the alternative RACT proposal by calculating a respective 30-day rolling average emissions rate for each of these sources for each applicable RACT emissions limitation for each consecutive operating day, excluding emissions from periods of startup, shutdown, and malfunction. The Facility has conducted statistical analysis to determine that it can comply with the applicable alternative NO_X emissions limit.

Alternative RACT Compliance [25 Pa. Code §129.114(a)]

For Source IDs BL-701 and BL-702, alternative RACT determinations were previously proposed by AdvanSix under 25 Pa Code §129.99(d) and approved by AMS under 25 Pa Code §129.99(e) because the combustion sources were not subject to a unit-specific presumptive RACT II limit under 25 Pa Code §129.97 and NO_X emissions were greater than five tons per year each. New alternative RACT analyses are required under RACT III because the sources cannot meet the new presumptive limit for units firing multiple fuels under 25 Pa Code §129.112(g)(4).

For Source ID BL-703, the presumptive RACT NO_X emissions requirement has been updated since the promulgation of 25 Pa. Code \$129.96-129.100. AdvanSix proposes to limit the firing

of No. 2 fuel oil to less than 2% of Source ID BL-703's annual fuel consumption on a heat input basis to comply with the presumptive limit under 25 Pa. Code \$129.112(g)(4)(i)(B).

AdvanSix intends to submit an Alternative RACT and Compliance Proposal to AMS for NO_X emissions from Source IDs BL-701, BL-702, and BL-703. The Alternative RACT and Compliance Proposal will present the alternative RACT determinations to be performed and the proposed alternative RACT requirements in accordance with 25 Pa. Code §129.114(d). The alternative RACT proposal for these sources will be provided under separate cover.

Alternative RACT Compliance [25 Pa. Code §129.114(i)]

In accordance with 25 Pa. Code \$129.114(i), an alternative RACT proposal, as required under 25 Pa. Code \$129.114(d), is not necessary if the source in question was in operation prior to October 24, 2016, has not been modified or changed since October 24, 2016, and does not fall into one of the presumptive source categories subject to 25 Pa. Code \$129.112(c)(11) or (i)-(k). Source ID PTC 1 meets the stated criteria and therefore, this letter serves as a demonstration that AdvanSix can maintain compliance with the alternative RACT requirements and/or emissions limitations for this source previously approved as RACT by AMS.

The following subsections provide the analysis of alternative RACT compliance under 25 Pa. Code \$129.114(i)(1)(i). Based on the summary in Attachment B, AdvanSix has determined that there are no new pollutant-specific air cleaning devices, air pollution control technologies, or techniques available at the time of submittal of this analysis. The annual cost for each technically feasible air cleaning device, air pollution control technology, or technique approved under 25 Pa. Code \$129.99(e) was greater than \$12,000 per ton of VOC emissions reduced. There were no alternative RACT requirements approved for AdvanSix under 25 Pa. Code \$129.99(e) that were below the economic feasibility benchmark value, and therefore, 25 Pa. Code \$129.114(i)(1)(ii) does not apply. Additionally, because AdvanSix did not identify any new or upgraded pollutant-specific air cleaning devices, air pollution control technologies, or techniques, a new technical and economic feasibility analysis per 25 Pa. Code \$129.114(i)(2) is not required.

<u>25 Pa. Code §129.114(i)(1)(i)(A) – Identification of New Air Cleaning Devices, Air Pollution</u> Control Technologies, or Techniques

AdvanSix conducted an analysis of the RACT/Best Available Control Technology (BACT)/Lowest Achievable Emissions Rate (LAER) Clearinghouse (RBLC) to determine if any new air cleaning devices, air pollution control technologies, or techniques could be applied to Source ID PTC 1. A summary of the RBLC search results is provided in Attachment B. No additional air cleaning devices, air pollution control technologies, or techniques other than the aforementioned were discovered and the current emissions controls for the RACT III affected units are consistent with recent and historical BACT determinations.

25 Pa. Code §129.114(i)(1)(i)(B) – List Previously-Identified Technically Feasible Controls

Table 2 below shows a list of previously identified technically feasible air pollution control technologies evaluated under 25 Pa. Code §§129.92(b)(1)-(3) that were included in AdvanSix's 25 Pa. Code §129.99(d) RACT submittal previously and approved by AMS.

	Table 2	
Technically Feasible Air Pollution	Control Technologies for Source ID PTC	1

Control Technology Option Feasibility		Rationale for Infeasibility ^(a)	
Good Operating Practices	Technically Feasible	N/A	
Vapor Recovery/ Absorption Systems	Technically Infeasible Economically Infeasible	Vendor recommended controlled temperature of phenol is between 122°F and 140°F, limiting the range at which recovery can be performed.	
Carbon Adsorption System	Technically Infeasible Economically Infeasible	Thawing frozen phenol in transfer lines can cause buildup of dangerous pressures due to uneven thawing associated with this add on control technology.	
Thermal Oxidation (RTO)	Technically Infeasible	Installation requires high temperatures in close proximity to other chemical operations, tanks, and process equipment, which results in a safety hazard and increases the Plant's risk of a fire and/or explosion.	

Economic infeasibility demonstrations were submitted to AMS in accordance with 25 Pa. Code §129.99(d), and the values provided herein reflect the cost effectiveness determinations previously approved by AMS under 25 Pa. Code §129.99(e).

Based on the technical feasibility of the control technologies evaluated, AdvanSix proposes to continue to use good air pollution control practices as RACT for VOC emissions associated with Source ID PTC 1.

25 Pa. Code §129.114(i)(1)(i)(C) – Summary of Previous Economic Feasibility Analyses

As part of AdvanSix's 25 Pa. Code §129.99(d) RACT submittal, AdvanSix evaluated the cost effectiveness of add-on VOC controls, calculated consistent with the methods presented in the "EPA Air Pollution Control Cost Manual" (Sixth Edition, EPA/452/B-02-001, January 2002). AdvanSix evaluated vapor recovery/absorption system, carbon adsorption system, and RTO technology as available add-on VOC controls to determine the economic feasibility of such controls for Source ID PTC 1. The results of the 25 Pa. Code §129.99(d) cost effectiveness evaluations, as applicable, are summarized in Table 2 above.

25 Pa. Code §129.114(i)(1)(i)(D) – Statement of Economic Infeasibility

Based on the economic feasibility analyses previously performed by AdvanSix and approved by AMS, there are no economically feasible add-on control devices that can be applied to Source ID PTC 1 because the cost effectiveness remains greater than \$12,000 per ton of VOC emissions reduced (as summarized in Table 2 above). The cost of the control technologies evaluated has not considerably changed since the analysis was performed in 2016 and, considering increases in the cost of fuel and in certain economic indicators such as the Consumer Price Index (CPI), the control cost in 2022 dollars is expected to have increased. Therefore, the control technologies for which cost effectiveness was evaluated in AdvanSix's 25 Pa. Code §129.99(d) RACT submittal remain economically infeasible.

25 Pa. Code §129.114(i)(1)(i)(E) – Additional Information

Upon request from AMS, AdvanSix will provide additional information to support the Alternative RACT Compliance Analysis included herein.

Alternative RACT Compliance Summary

Based on the 25 Pa. Code §129.114(i) analysis provided above, AdvanSix has determined that the alternative RACT requirements and/or RACT emissions limitations that were previously approved by AMS under 25 Pa. Code §129.99(e) continue to represent RACT for PTC 1 evaluated. AdvanSix proposes to comply with the RACT III Rule by maintaining compliance with the applicable RACT conditions of TVOP No. V95-047. Thus, AdvanSix will meet the January 1, 2023, compliance deadline of the RACT III Rule through continued compliance with these conditions.

Certification of Alternative RACT Compliance Analysis

I certify under penalty of law that, based on information and belief formed after reasonable inquiry, the statements and information contained in this 25 Pa. Code §129.114(i) Analysis of Alternative RACT Compliance are true, accurate, and complete.

			/ /
Signature:	/ Amtha	Date:	12/21/2022
Name:	Chrichipher & Rand	Title	Plant Manager
rume.		THE.	11441 14412

RACT III Rule Recordkeeping

In accordance with 25 Pa. Code §129.115(f), AdvanSix will keep sufficient records for demonstrating compliance with the RACT III Rule, including continued compliance with the RACT-specific recordkeeping conditions of the TVOP, and the NO_X exemption documentation

ADVANSIX

per 25 Pa. Code §129.115(g). Per 25 Pa. Code §129.115(k), all records will be maintained for at least five years, and will be made available to AMS upon receipt of a written request.

If you have any additional questions, please contact Adrienne Yeager at (215) 537-2465 or via email at Adrienne.Yeager@AdvanSix.com.

Sincerely, AdvanSix Resins & Chemicals LLC

Christopher Bond Plant Manager

cc: Adrienne Yeager (AdvanSix) Merritt McGlynn (ALL4)

•

2

		NO _X		VOC		
Source ID	Source Description	Basis for Exemption from RACT III	RACT III Citation	Basis for Exemption from RACT III	RACT III Citation	
HT-003	Holding Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
HT-005	Gasoline Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
HT-101	Acetone Bottoms Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
VT-134	Crude Acetone Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
VT-135	Crude Acetone Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
VT-136	Crude Acetone Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
VT-137	Crude Acetone Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
VT-243	Crude Product Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.56.	25 Pa. Code §129.111(a)	
VT-142	Crude Product Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.57.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.57.	25 Pa. Code §129.111(a)	
VT-143	Crude Acetone Storage Tank	Source is subject to 25 Pa. Code 25 Pa. Code §129.57.	25 Pa. Code §129.111(a)	Source is subject to 25 Pa. Code 25 Pa. Code §129.57.	25 Pa. Code §129.111(a)	
BL-001	Barge Dock Boiler	PTE is <1 TPY NO _X	25 Pa. Code §129.111(c)	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
EG-707	Emergency Generator	PTE is <1 TPY NO _X	25 Pa. Code §129.111(c)	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
AC-732	Emergency Use Air Compressor	PTE is <1 TPY NO _X	25 Pa. Code §129.111(c)	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
PAC-151	Portable air compressor	Not Exempt - Presumptive	25 Pa. Code §129.112(c)(6)	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
ATC 1	a-Methyl Styrene Tank Car Loading	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
ATL 1	a-Methyl Styrene Truck Loading	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
CLT-710A	Cooling Tower 1A	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
CLT-720	Cooling Tower 2	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
CLT-730	Cooling Tower 3	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
CLT-740	Cooling Tower 4	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
CLT-750	Cooling Tower 5	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
CLT-780	Cooling Tower #8	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
DFT-705	Diesel Fuel Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
DFT-706	Diesel Fuel Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-004	Boiler No. 2 Fuel Oil Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-006	Diesel Fuel Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-007	Diesel Fuel Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-009	Diesel Fuel Storage Tank for Fire Water Pumps	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-010	Diesel Fuel Storage Tank for Fire Water Sumps	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-011	Diesel Fuel Storage Tank for Boiler House Emergency Generator	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-201	Surge Control Vessel - Batch Still Kettle	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-202	Surge Control Vessel - Charcoal Adsorber Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-203	Caustic and Wash Water Underflow Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-215	Cumene Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-240	Preflasher Deluge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-302	Underflow Tank from CAD Decanters OX-301	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-401	Surge Control Vessel - Cumene Oil Surge Tank at OX-401	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-402	Surge Control Vessel - OX-401 Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-501	Surge Control Vessel - Charcoal Adsorber Decanter	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-502	Surge Control Vessel - Recovered Cumene Surge Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-504	Surge Control Vessel - Waste Water Oil Decanter	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-601	Aqueous Stream	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
HT-605	CatOx Knockout Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	

		NO _X		VOC	
Source ID	Source Description	Basis for Exemption from RACT III	RACT III Citation	Basis for Exemption from RACT III	RACT III Citation
HT-704	Diesel Fuel Storage Tank for Emergency Air Compressor	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
HT-801	Surge Control Vessel - Charcoal Adsorber Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
HT-802	Recovered Cumene Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
HT-803	Surge Control Vessel - Oxidizer Condenser Decanter	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
NA	#1 Phenolic Sump (lift station)	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
NA	#2 Phenolic Sump (lift station)	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
NA	#3 Phenolic Sump (lift station)	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
NA	#2 Non-Phenolic Sump (lift station)	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
PB-1	Phenol Barge Loading	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-003	Phenol Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-004	Phenol Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-005	Phenol Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-006	Barge Absorber Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-009	Phenol Storage Scrubber	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-101	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-102	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-103	Phenate Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-104	Oil Wash Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-105	Effluent Oil Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-106	AMS Receiver Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-107	Batch Stills Product Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-108	Surge Control Vessel - Batch-Still Second Cut	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-109	Batch Stills Product Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-111	AMS Scrubber	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-112	AMS Scrubber	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-113	Refined AMS Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-114	Refined AMS Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-116	CL-114 Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-117	Bottoms Receiver - High Purity Phenol Receiver	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-118	Phenol Product Storage Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-119	Crude Product Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-120	Effluent Oil Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-121	Effluent Oil Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-122	Bottoms Receiver - Extracted AMS Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-123	Surge Control Vessel - Multi-Purpose Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-124	AMS Scrubber	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-125	Surge Control Vessel - Multi-Purpose Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-126	Surge Control Vessel - Multi-Purpose Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-127	Surge Control Vessel - Multi-Purpose Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-128	Off-Spec Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-129	Bottoms Receiver - High Purity Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-130	Residue Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-131	Crude AMS Storage Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)

G ID		NO _x		NO _X VOC		
Source ID	Source Description	Basis for Exemption from RACT III	RACT III Citation	Basis for Exemption from RACT III	RACT III Citation	
VT-138	CL-206 Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-139	CL-206 Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-140	CL-306 Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-141	CL-306 Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-147	Cumene Water Wash Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-148	Cumene Surge	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-149	Cumene Water Scrubber Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-150	Cumene Caustic Wash Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-151	Surge Control Vessel - Cumene Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-152	Surge Control Vessel - Recycle Cumene Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-153	Bottoms Receiver - Acetone Bottoms Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-154	Surge Control Vessel - AMS Phenol Dry Splitter Column Reflux Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-155	Surge Control Vessel - AMS Lites Column Overhead Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-160	Surge Control Vessel - Pasteurized Cut Accumulator Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-161	Surge Control Vessel - Reflux Pot	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-162	Surge Control Vessel - Reflux Pot	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-164	TETA Day Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-165	TETA Day Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-168	Surge Control Vessel - Phenol Relief Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-169	CL120 Product Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-201	Ion Exchange Acid Wash Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-204	Surge Control Vessel - Charcoal Adsorber Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-205	Surge Control Vessel - Cumene Deluge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-206	Surge Control Vessel - Charcoal Adsorber Oil Surge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-207	Surge Control Vessel - Reflux Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-209A	Surge Control Vessel - Calorimeter #1	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-209B	Surge Control Vessel - Calorimeter #2	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-210	Surge Control Vessel - Catch Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-212	Ion Exchange Acid Water Wash Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-214	Water Addition Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-217	Surge Control Vessel - Phenol Accumulator	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-218	Scrubber Liquid Stream	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-223	Acetone Water Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-224	Surge Control Vessel - AMS Extractor Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-225	Surge Control Vessel - AMS Extractor Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-226	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-227	Batch-Still - Water Cut	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-228	Phenate Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-229	AMS Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-230	Refined AMS Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-232	Refined AMS Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-233	Sprung Phenol Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	
VT-234	Sprung Phenol Storage Tank	Not a source of NO_X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)	

		NO _X		VOC	
Source ID	Source Description	Basis for Exemption from RACT III	RACT III Citation	Basis for Exemption from RACT III	RACT III Citation
VT-235	Bottoms Receiver - Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-236	Bottoms Receiver - Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-237	Bottoms Receiver - Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-238	Bottoms Receiver - Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-239	Bottoms Receiver - Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-240	Bottoms Receiver - Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-241	Bottoms Receiver - Phenol Receiver	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-245	Batch Still Residue Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-246	Recycle Cumene Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-247	Phenate Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-251	Cumene Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-252	Cumene Surge	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-253	Surge Control Vessel - Cumene Deluge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-260	Brine Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-263A	Surge Control Vessel - CL206 Resin Bed	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-263B	Surge Control Vessel - CL205 Resin Bed	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-270	Surge Control Vessel - Preflasher Level Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-271	Surge Control Vessel - Reflux Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-272	Surge Control Vessel - Batch Still Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-303	Surge Control Vessel - Charcoal Adsorber Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-304	Surge Control Vessel - Oil Surge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-305	Surge Control Vessel - Deluge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-306	Surge Control Vessel - Reflux Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-308A	Surge Control Vessel - Calorimeter #1	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-308B	Surge Control Vessel - Calorimeter # 2	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-309	Surge Control Vessel - Decomposer Catch Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-315	Surge Control Vessel - CL101/301 Water Addition Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-316	Surge Control Vessel - Cumene Recovery Column Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-318	Surge Control Vessel - Preflasher Deluge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-319	Surge Control Vessel - Phenol Accumulator	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-321	Surge Control Vessel - Reflux Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-322	Liquid Stream	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-323	Cumene Scrubber	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-324	Cumene Scrubber	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-325	Cumene Scrubber	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-326	Phenate Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-328	Surge Control Vessel - Oil Surge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-329	Surge Control Vessel - Deluge Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-332	Cumene Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-339	Phenol Product Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-340	Phenol Product Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-341	Surge Control Vessel - Multi-Purpose Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-342	Refined AMS Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)

		NO _X		VOC	
Source ID	Source Description	Basis for Exemption from RACT III	RACT III Citation	Basis for Exemption from RACT III	RACT III Citation
VT-343	Surge Control Vessel - Multi-Purpose Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-345	Merchant Phenol Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-347	Surge Control Vessel - Preflasher Level Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-348	Surge Control Vessel - Preflasher Deluge Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-350	IX Acid Wash Water	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-355	High-Purity Phenol Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-356	TETA Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-401	Aldehyde Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-402	OX 401 Vacuum Seal Pot	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-504	Surge Control Vessel - Brine Condenser Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-507	Aldehyde Drum	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-509	OX 501 Vacuum Seal Pot	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-601	Surge Control Vessel - Groundwater Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-602	Surge Control Vessel - Groundwater Oil Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-604	Sprung Phenol/Sulfate Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-605	Sprung Phenol/Sulfate Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-609	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-610	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-612	Springer	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-613	pH Adjustment Pot	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-614	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-615	Caustic Dilution Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-616	Caustic Dilution Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-617	Springer Feed Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-618	Sprung Phenol Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-619	Multi-Purpose Tank (Surge Control Vessel)	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-620	Crude Acetone Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-621	Residue Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-622	Residue Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-625	Surge Control Vessel - Phenol Water Decanter	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-626	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-627	Effluent Oil Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-634	5047 Decant Oil Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-635	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-636	Acetone Scrubber	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-650	Phenol Water Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-701	No. 6 Fuel Oil Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-750	Brine Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-780	Brine Storage Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-802	Aldehyde Drum OX-801 Bypass Stack	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-805	CatOx Knockout Tank	Not a source of NO _X emissions.	N/A	PTE is <1 TPY VOC	25 Pa. Code §129.111(c)
VT-001	Cumene Storage Tank	Not a source of NOX emissions.	N/A	Not Exempt - Presumptive	25 Pa. Code §129.112(c)(2)
VT-002	Cumene Storage Tank	Not a source of NOX emissions.	N/A	Not Exempt - Presumptive	25 Pa. Code §129.112(c)(2)

Table A-2

RACT III Rule Applicability Summary of NO_X Sources Subject to 25 Pa. Code §129.112 (Presumptive Limits) AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA

Source ID	Source Description	RACT III Classification	RACT III Citation	Limitation/Requirement
P-757	Stationary Fire Pump Engine	A lean burn stationary internal combustion engine rated at less than 500 bhp (gross)	25 Pa. Code §129.112(c)(6)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
P-758	Stationary Fire Pump Engine	A lean burn stationary internal combustion engine rated at less than 500 bhp (gross)	25 Pa. Code §129.112(c)(6)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
PAC-151	Portable air compressor	A lean burn stationary internal combustion engine rated at less than 500 bhp (gross)	25 Pa. Code §129.112(c)(6)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
CR-601 A,B,C,D	4 Catalytic Oxidizers	An incinerator, thermal oxidizer, catalytic oxidizer, or flare used primarily for air pollution control	25 Pa. Code §129.112(c)(8)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
TR-602	Thermal Oxidizer	An incinerator, thermal oxidizer, catalytic oxidizer, or flare used primarily for air pollution control	25 Pa. Code §129.112(c)(8)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-701	Boiler House Emergency Generator No. 1	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-702	Boiler House Emergency Generator No. 2	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-703	Cooling Tower 5 – Inside	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-704	No. 5 Cooling Tower - Outside	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-705	OX-801 Generator	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with specifications and good operating practices.
EG-706	No. 2 Cooling Tower - Outside	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.

Table A-3 RACT III Rule Applicability Summary of VOC Sources Subject to 25 Pa. Code §129.112 (Presumptive Limits) AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA

Source ID	Source Description	RACT III Classification	RACT III Citation	Limitation/Requirement
PTL-1 ^(a)	Phenol Truck Loading	VOC air contamination source with PTE <2.7 tpy VOC	25 Pa. Code §129.112(c)(2)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
VT-001 ^(a)	Cumene Storage Tank	VOC air contamination source with PTE <2.7 tpy VOC	25 Pa. Code §129.112(c)(2)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
VT-002 ^(a)	Cumene Storage Tank	VOC air contamination source with PTE <2.7 tpy VOC	25 Pa. Code §129.112(c)(2)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
VT-333 ^(a)	Phenol Storage Tank	VOC air contamination source with PTE <2.7 tpy VOC	25 Pa. Code §129.112(c)(2)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
VT-633 ^(a)	Effluent Oil Storage Tank	VOC air contamination source with PTE <2.7 tpy VOC	25 Pa. Code §129.112(c)(2)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
P-757	Stationary Fire Pump Engine	A lean burn stationary internal combustion engine rated at less than 500 bhp (gross)	25 Pa. Code §129.112(c)(6)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
P-758	Stationary Fire Pump Engine	A lean burn stationary internal combustion engine rated at less than 500 bhp (gross)	25 Pa. Code §129.112(c)(6)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
CR-601 A,B,C,D	4 Catalytic Oxidizers	An incinerator, thermal oxidizer, catalytic oxidizer, or flare used primarily for air pollution control	25 Pa. Code §129.112(c)(8)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
TR-602	Thermal Oxidizer	An incinerator, thermal oxidizer, catalytic oxidizer, or flare used primarily for air pollution control	25 Pa. Code §129.112(c)(8)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-701	Boiler House Emergency Generator No. 1	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-702	Boiler House Emergency Generator No. 2	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-703	Cooling Tower 5 – Inside	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-704	No. 5 Cooling Tower - Outside	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-705	OX-801 Generator	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
EG-706	No. 2 Cooling Tower - Outside	An emergency standby engine operating less than 500 hours in a 12-month rolling period	25 Pa. Code §129.112(c)(10)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
BL-701	Steam Boiler No. 1	A combustion unit, brick kiln, cement kiln, lime kiln, glass melting furnace, or combustion source	25 Pa. Code §129.112(d)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
BL-702	Steam Boiler No. 2	A combustion unit, brick kiln, cement kiln, lime kiln, glass melting furnace, or combustion source	25 Pa. Code §129.112(d)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.
BL-703	Steam Boiler No. 3	A combustion unit, brick kiln, cement kiln, lime kiln, glass melting furnace, or combustion source	25 Pa. Code §129.112(d)	Install, maintain, and operate in accordance with manufacturer specifications and good operating practices.

(a) This emissions source has a VOC PTE greater than or equal to 1 tpy and does not currently have a TVOP emissions limit. AdvanSix was issued AMS Installation Permit No. IP 16-000277 dated December 29, 2016 that implemented a proposed a VOC emissions limit of less than 2.7 tons in any 12-month rolling period for this emissions source to comply with the presumptive RACT II Rule requirements of 25 Pa. Code §129.97(c)(2). AdvanSix is requesting that the citations for this source be updated to reflect the RACT III Rule requirements of 25 Pa. Code §129.112(c)(2) in the pending draft TVOP renewal (June 2021).

Table A-4

RACT III Rule Applicability Summary for Sources Subject to 25 Pa. Code §129.114 (Case-by-Case Analysis) AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA

Source ID	Source Description	RACT III Citation	Pollutant Evaluated
BL-701	Steam Boiler No. 1	25 Pa. Code §129.114(a)	NO _X
BL-702	Steam Boiler No. 2	25 Pa. Code §129.114(a)	NO _X
BL-703	Steam Boiler No. 3	26 Pa. Code §129.114(a)	NO _X
PTC 1	Phenol Tank Car Loading	25 Pa. Code §129.114(c) and (i)	VOC

Table A-5Summary of Sources Applicable to AMR V, Section XVI SOCMI

Source ID	Source Description	RACT III Rule Citation
CL-101	Crude Acetone Column	N/A – AMR V, Section XVI
C-110	Crude Acetone Column Vent Condenser	N/A – AMR V, Section XVI
CL-114	Acetone Recovery Column	N/A – AMR V, Section XVI
CL-111	a-Methyl Styrene Dry Splitter	N/A – AMR V, Section XVI
CL-112	a-Methyl Styrene Lights Column	N/A – AMR V, Section XVI
CL-113	a-Methyl Styrene Product Column	N/A – AMR V, Section XVI
CL-120	High Purity Phenol Column	N/A – AMR V, Section XVI
CL-121	High Purity Phenol Column	N/A – AMR V, Section XVI
PF-201	Preflasher Column	N/A – AMR V, Section XVI
CL-200	Cumene Flash Column	N/A – AMR V, Section XVI
CL-201	Crude Acetone Column	N/A – AMR V, Section XVI
CL-203	Cumene Recovery Column	N/A – AMR V, Section XVI
CL-204	a-Methyl Styrene Recovery Column	N/A – AMR V, Section XVI
CL-205	Phenol Recovery Column	N/A – AMR V, Section XVI
CL-206	Phenol Distillation Column	N/A – AMR V, Section XVI
CL-208	Acetone Refining (NON-VOC)	N/A – AMR V, Section XVI
CL-220	Phenol Batch Column	N/A – AMR V, Section XVI
PF-301	Preflasher Column	N/A – AMR V, Section XVI
CL-300	Cumene Flash Column	N/A – AMR V, Section XVI
CL-301	Crude Acetone Column	N/A – AMR V, Section XVI
CL-303	Cumene Recovery Column	N/A – AMR V, Section XVI
CL-308	Acetone Refining	N/A – AMR V, Section XVI
CL-304	AMS Recovery	N/A – AMR V, Section XVI
CL-305	Phenol Product	N/A – AMR V, Section XVI
CL-306	Phenol Residue Stripping Column	N/A – AMR V, Section XVI
CL-602	Acetone Scrubber	N/A – AMR V, Section XVI
OX-801	85' Cumene Oxidizer	N/A – AMR V, Section XVI
OX-501	70' Cumene Oxidizer	N/A – AMR V, Section XVI
OX-401	56' Cumene Oxidizer	N/A – AMR V, Section XVI
VT-208	Unit 2 Decomposer Reactor	N/A – AMR V, Section XVI
VT-307	Unit 3 Decomposer Reactor	N/A – AMR V, Section XVI
VT-146	Cumene Scrubber Surge Tank (Reactor)	N/A – AMR V, Section XVI
CL-601	Dephenolizer Column	N/A – AMR V, Section XVI
CL-610	Wastewater Air Stripper	N/A – AMR V, Section XVI

ID Group	Source ID	Source Name	Make	Model
Group 01 – Boilers	BL-701	Steam Boiler No. 1	Babcock and Wilcox	N/A
Group 01 – Boilers	S-18-1	BL-701	N/A	N/A
Group 01 – Boilers	BL-702	Steam Boiler No. 2	Babcock and Wilcox	N/A
Group 01 – Boilers	S-18-2	BL-702	N/A	N/A
Group 01 – Boilers	BL-703	Steam Boiler No. 3	Babcock and Wilcox	N/A
Group 01 – Boilers	S-18-3 BL-001	BL-703 Barge Dock Boiler	N/A Columbia	N/A WL-180
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	EG-701	Boiler House Emergency Generator No. 1	Caterpillar	D343
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	EG-702	Boiler House Emergency Generator No. 2	Caterpillar	D343
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	EG-703	Boiler House Emergency Generator No. 3	Cummins	VT-12-700- GS
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	EG-704	No. 5 Cooling - Tower Outside	Caterpillar	3412
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	EG-705	OX-801 Generator (rental)	Caterpillar	3512
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	EG-706	OX-801 Generator (rental)	Caterpillar	3456
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	P-757	Stationary Fire Pump Engine	Clarke	KU4H- UFADW8
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	P-758	Stationary Fire Pump Engine	Clarke	KU6H- UFADW9
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	PAC-151	Portable air compressor	Sullair	425
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	AC-732	Emergency use air compressor	GM Power Solutions	5.7L00062 14
Group 02 - Emergency Generators, Fire Pumps, and Air Compressors	EG-707	Boiler House - Outside	Iveco/FPT	F4HE9685 A
Group 03 – Distillation Columns	CL 101	Crude Acetone Column	Custom	Custom
Group 03 – Distillation Columns	C-109	Crude Acetone Column Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-110	Crude Acetone Column Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	CL 114	Acetone Recovery Column	Custom	Custom
Group 03 – Distillation Columns	C-111	CL-114 Condenser	Custom	Custom
Group 03 – Distillation Columns	C-112	CL-114 Condenser	Custom	Custom
Group 03 – Distillation Columns	SCR-101	CL-114 Vent Scrubber	Custom	Custom
Group 03 – Distillation Columns	SCR-102	CL-101 Vent Scrubber	Custom	Custom
Group 03 – Distillation Columns	S-25-7	SCR-102 Scrubber	Custom	Custom
Group 03 – Distillation Columns	S-25-3	SCR-101 Scrubber	Custom	Custom
Group 03 – Distillation Columns	CL-111	a-Methyl Styrene Dry Splitter	Custom	Custom
Group 03 – Distillation Columns	C-101	AMS Phenol Dry Splitter Column Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-102	AMS Phenol Dry Splitter Column Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-108	Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	S-25-5	CL-111 Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-112	a-Methyl Styrene Lights Column	Custom	Custom
Group 03 – Distillation Columns	C-103	AMS Lights Column Primary Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-104	AMS Lights Column Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-105	AMS Lights Column Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	S-25-6	CL-112 Jet Condenser	Custom	Custom

ID Group	Source ID	Source Name	Make	Model
Group 03 – Distillation Columns	CL-113	a-Methyl Styrene Product Column	Custom	Custom
Group 03 – Distillation Columns	C-106	AMS Refining Column Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-107	AMS Refining Column Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	S-25-4	CL-113 Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-120	High Purity Phenol Column	Custom	Custom
Group 03 – Distillation Columns	C-120	CL-120 Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-122	CL-120 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-124	C-120 Steam Generator	Custom	Custom
Group 03 – Distillation Columns	CL-121	High Purity Phenol Column	Custom	Custom
Group 03 – Distillation Columns	C 121C-121	CL 121CL-121 Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C 125C-125	CL 121CL-121 Steam generator	Custom	Custom
Group 03 – Distillation Columns	C-127	CL-121 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	S-25A-1	CL-120/121 Scrubber	Custom	Custom
Group 03 – Distillation Columns	PF-201	Preflasher Column	Custom	Custom
Group 03 – Distillation Columns	C-240	Preflasher Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-241	Preflasher Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-242	Primary Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-243	Secondary Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-244	Preflasher Vent After	Custom	Custom
Group 03 – Distillation Columns	S-C-241	Final Condenser from PF-201	Custom	Custom
Group 03 – Distillation Columns	CL-200	Cumene Flash Column	Custom	Custom
Group 03 – Distillation Columns	C-210	Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-211	Primary Brine Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-212A	First Stage Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-212B	Secondary Brine Vent Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-212C	Secondary Stage Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	S-19-21	Final Condenser From CL-200	Custom	Custom
Group 03 – Distillation Columns	CL-201	Crude Acetone Column	Custom	Custom
Group 03 – Distillation Columns	C-216	Crude Acetone Condenser	Custom	Custom
Group 03 – Distillation Columns	C-217	Crude Acetone Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	S-19-22	Crude Acetone Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-203	Cumene Recovery Column	Custom	Custom
Group 03 – Distillation Columns	C-218	Overheads Condenser	Custom	Custom
Group 03 – Distillation Columns	C-219	Cumene Recovery Column Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-220	Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	SCR-262	Vent Scrubber	Custom	Custom
Group 03 – Distillation Columns	S-19-28	CL-203 Scrubber	Custom	Custom

ID Group	Source ID	Source Name	Make	Model
Group 03 – Distillation Columns	CL-204	a-Methyl Styrene Recovery Column	Custom	Custom
Group 03 – Distillation Columns	C-221	AMS Column Overheads	Custom	Custom
Group 03 – Distillation Columns	C-222	Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	S-19-30	CL-204 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-205	Phenol Recovery Column	Custom	Custom
Group 03 – Distillation Columns	C-223	Phenol Column Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-224	1st stage After condenser	Custom	Custom
Group 03 – Distillation Columns	S-19-23	CL-205 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-206	Phenol Distillation Column	Custom	Custom
Group 03 – Distillation Columns	C-232A	Topping Column Primary Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-232B	Topping Column Secondary Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-238	Topping Column Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	S-19-26	CL-206Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-208	Acetone Refining (NON-VOC)	Custom	Custom
Group 03 – Distillation Columns	C-227	Acetone Refining Column Overhead	Custom	Custom
Group 03 – Distillation Columns	C-228	Acetone Refining Column Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-229	Acetone Refining Column Primary and Secondary Jet Condensers	Custom	Custom
Group 03 – Distillation Columns	NA	CL-208 Stack	Custom	Custom
Group 03 – Distillation Columns	VT-218	Water Scrubber	Custom	Custom
Group 03 – Distillation Columns	CL-220	Phenol Batch Column	Custom	Custom
Group 03 – Distillation Columns	C-233	Overheads Condenser	Custom	Custom
Group 03 – Distillation Columns	C-234	Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-235	Primary Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	HT-201	Batch Still Kettle	Custom	Custom
Group 03 – Distillation Columns	S-19-42	CL-220 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	PF-301	Preflasher Column	Custom	Custom
Group 03 – Distillation Columns	C-338	Preflasher Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-340	Preflasher Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-341	Primary Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-342	Secondary Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	C-343	Preflasher Vent After Condenser	Custom	Custom
Group 03 – Distillation Columns	S-19-c-340 or S- 24-13	PF 301 Stack	Custom	Custom
Group 03 – Distillation Columns	CL-300	Cumene Flash Column	Custom	Custom
Group 03 – Distillation Columns	C-306	Condenser	Custom	Custom
Group 03 – Distillation Columns	C-307	Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-308 A/B/C	Jet Condensers	Custom	Custom
Group 03 – Distillation Columns	S-24-15	CL-300 Secondary Jet	Custom	Custom

ID Group	Source ID	Source Name	Make	Model
Group 03 – Distillation Columns	CL-301	Crude Acetone Column	Custom	Custom
Group 03 – Distillation Columns	C-313	Crude Acetone Column Condenser	Custom	Custom
Group 03 – Distillation Columns	C-314	Crude Acetone Column Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-301 Bypass Stack	CL-301 Bypass Stack	Custom	Custom
Group 03 – Distillation Columns	C-317	CL-302 Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-303	Cumene Recovery Column	Custom	Custom
Group 03 – Distillation Columns	C-318A	CL-303 Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-318B	CL-303 Preheat Condenser	Custom	Custom
Group 03 – Distillation Columns	C-319	CL-303 Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-320A/B	CL 303 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-308	Acetone Refining	Custom	Custom
Group 03 – Distillation Columns	C-333	Acetone Refining Column Overhead Condenser	Custom	Custom
Group 03 – Distillation Columns	C-335	Acetone Refining Vent Condenser	Custom	Custom
Group 03 – Distillation Columns	C-336	Acetone Refining Column Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	SCR-303 (VT- 349)	CL-301/303/308 Scrubber	Custom	Custom
Group 03 – Distillation Columns	S-24-24	CL-301/303/305 /308 Scrubber	Custom	Custom
Group 03 – Distillation Columns	S-24-4	CL-301/303/305 /308 Scrubber	Custom	Custom
Group 03 – Distillation Columns	CL-304	AMS Recovery	Custom	Custom
Group 03 – Distillation Columns	C-330	AMS Column Overheads Condenser	Custom	Custom
Group 03 – Distillation Columns	C-321	AMS Column Overheads Condenser	Custom	Custom
Group 03 – Distillation Columns	C-322	AMS Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	S-24-23	CL-304 let Discharge	Custom	Custom
Group 03 – Distillation Columns	CL-305	Phenol Product	Custom	Custom
Group 03 – Distillation Columns	C-324	Steam Generating Phenol Column Condenser	Custom	Custom
Group 03 – Distillation Columns	C-325	Phenol Column Condenser	Custom	Custom
Group 03 – Distillation Columns	C-326	CL-305 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	S-24-19	CL-305 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-306	Phenol Residue Stripping Column	Custom	Custom
Crown 02 Distillation Columns	C 227	Phanel Pasidus Stringing Column Condensor	Custom	Custom
Group 03 – Distillation Columns	C 228 A/P	Int Condenser	Custom	Custom
Group 03 – Distillation Columns	C-526A/B	CL 206 Let Condenser	Custom	Custom
Group 05 – Distillation Columns	3-24-18	CL-500 Jet Condenser	Custom	Custom
Group 03 – Distillation Columns	CL-602	Acetone Scrubber	Custom	Custom
Group 04 – Oxidation Process	OX-801	85' Cumene Oxidizer	Custom	Custom
Group 04 – Oxidation Process	C-802	Oxidizer Primary Condenser	Custom	Custom
Group 04 – Oxidation Process	C-803	Oxidizer Secondary Condenser	Custom	Custom
Group 04 – Oxidation Process	DMS-801	Demister for OX-801/Knockout Drum	Custom	Custom
Group 04 – Oxidation Process	CAD-801 A/B/C	OX-801 Charcoal Adsorbers	Custom	Custom
Group 04 – Oxidation Process	C-804	Primary CAD Regen Gas Condenser	Custom	Custom
Group 04 – Oxidation Process	C-805	Secondary CAD Regen Gas Condenser	Custom	Custom
Group 04 – Oxidation Process	C-806	Tertiary CAD Regen Gas Condenser	Custom	Custom
Group 04 – Oxidation Process	VT-802	Aldehyde Drum OX-801 Bypass Stack	Custom	Custom

ID Group	Source ID	Source Name	Make	Model
Group 04 – Oxidation Process	OX-501	70' Cumene Oxidizer	Custom	Custom
Group 04 – Oxidation Process	C-505	Oxidizer Vent Condenser	Custom	Custom
Group 04 – Oxidation Process	C-506	Oxidizer Primary Condenser	Custom	Custom
Group 04 – Oxidation Process	DMS-501	Surge Control Vessel	Custom	Custom
Group 04 – Oxidation Process	CAD-501/2/3/4	OX-501 Charcoal Adsorbers	Custom	Custom
Group 04 – Oxidation Process	C-503	Primary Charcoal Adsorber Steam Condenser	Custom	Custom
Group 04 – Oxidation Process	C-504	Charcoal Adsorber Steam Condenser	Custom	Custom
Group 04 – Oxidation Process	C-507	Tertiary Vent	Custom	Custom
Group 04 – Oxidation Process	VT-507	Aldehyde Drum	Custom	Custom
Group 04 – Oxidation Process	C-501A	70' Oxidizer Coolers	Custom	Custom
Group 04 – Oxidation Process	C-501B	70' Oxidizer Coolers	Custom	Custom
Group 04 – Oxidation Process	C-502	Cumene Pre-heater	Custom	Custom
Group 04 – Oxidation Process	HT-501	OX-501 Decanter	Custom	Custom
Group 04 – Oxidation Process	HT-502	Recovered Cumene Surge Drum	Custom	Custom
Group 04 – Oxidation Process	S-34-1	Aldehyde Drum (VT-507)	Custom	Custom
Group 04 – Oxidation Process	S-34-6	CAD 501-3 Adsorber System Vent	Custom	Custom
Group 04 – Oxidation Process	OX-401	56' Cumene Oxidizer	Custom	Custom
Group 04 – Oxidation Process	C-404B	Brine Overhead Condenser	Custom	Custom
Group 04 – Oxidation Process	C-404A	Overhead Condenser	Custom	Custom
Group 04 – Oxidation Process	CAD-401/2/3	OX-401 Charcoal Adsorbers	Custom	Custom
Group 04 – Oxidation Process	C-402A	Char. Ads. Condenser	Custom	Custom
Group 04 – Oxidation Process	C-402B	Char. Ads. Condenser	Custom	Custom
Group 04 – Oxidation Process	VT-401	Aldehyde Drum	Custom	Custom
Group 04 – Oxidation Process	C-401A	Top Oxidizer Cooler	Custom	Custom
Group 04 – Oxidation Process	C-401B	Bottom Oxidizer Cooler	Custom	Custom
Group 04 – Oxidation Process	C-403	Oxidizer Interchanger	Custom	Custom
Group 04 – Oxidation Process	C-405	Circulation Cooler	Custom	Custom
Group 04 – Oxidation Process	HT-402	OX-401 Decanter	Custom	Custom
Group 04 – Oxidation Process	S-32-3	CAD 401-3 Adsorber System	Custom	Custom
Group 04 – Oxidation Process	DMS-403	OX-401 Demister	Custom	Custom
Group 05 – Reactors	VT-208	Unit 2 Decomposer Reactor	Custom	Custom
Group 05 – Reactors	S-19-10	VT-208 Decomposer Reactor	Custom	Custom
Group 05 – Reactors	VT-307	Unit 3 Decomposer Reactor	Custom	Custom
Group 05 – Reactors	S-24-6	VT 307 CHP Decomposer	Custom	Custom
Group 05 – Reactors	VT 612	Springer	Custom	Custom
Group 05 – Reactors	VT 613	pH Adjustment Pot	Custom	Custom
Group 05 – Reactors	VT-009	Phenol Storage Scrubber	Custom	Custom

ID Group	Source ID	Source Name	Make	Model
Group 05 – Reactors	VT 111	AMS Scrubber	Custom	Custom
Group 05 – Reactors	VT 112	AMS Scrubber	Custom	Custom
Group 05 – Reactors	VT 124	AMS Scrubber	Custom	Custom
Group 05 – Reactors	VT 147	Cumene Water Wash Tank	Custom	Custom
Group 05 – Reactors	VT 148	Cumene Surge	Custom	Custom
Group 05 – Reactors	VT 149	Cumene Water Scrubber Tank	Custom	Custom
Group 05 – Reactors	VT 150	Cumene Caustic Wash Tank	Custom	Custom
Group 05 – Reactors	VT 246	Recycle Cumene Tank	Custom	Custom
Group 05 – Reactors	VT 251	Cumene Decanter	Custom	Custom
Group 05 – Reactors	VT 252	Cumene Surge	Custom	Custom
Group 05 – Reactors	VT 323	Cumene Scrubber	Custom	Custom
Group 05 – Reactors	VT 324	Cumene Scrubber	Custom	Custom
Group 05 – Reactors	VT 375	Cumene Scrubber	Custom	Custom
Group 05 – Reactors	VT 376	Cumene Scrubber	Custom	Custom
Group 05 – Reactors	VT 377	Cumene Scrubber	Custom	Custom
Group 05 – Reactors	VT 380	Phenate Receiver	Custom	Custom
Group 06 – Bulk Loading Facilities	PTC 1	Phenol Tank Car Loading	Custom	Custom
Group 06 – Bulk Loading Facilities	S-9-1	PTC-1 Phenol Tank Car Loading	Custom	Custom
Group 06 – Bulk Loading Facilities	PTL 1	Phenol Truck Loading	Custom	Custom
Group 06 – Bulk Loading Facilities	S-23-1	PTL-1 Phenol Tank Car Loading	Custom	Custom
Group 06 – Bulk Loading Facilities	PB-1	Phenol Barge Loading	Custom	Custom
Group 06 – Bulk Loading Facilities	SCR-002	Phenol/Acetone Barge Scrubber	Custom	Custom
Group 06 – Bulk Loading Facilities	S-35-2	Barge Scrubber Vent	Custom	Custom
Group 06 – Bulk Loading Facilities	ATC 1	a-Methyl Styrene Tank Car Loading	Custom	Custom
Group 06 – Bulk Loading Facilities	S-9-4	ATC-1 AMS Tank Car Loading	Custom	Custom
Group 06 – Bulk Loading Facilities	ATL 1	a-Methyl Styrene Truck Loading	Custom	Custom
Group 07 – Tanks/Vessels	VT 001	Cumene Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 002	Cumene Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 119	Crude Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-121	Effluent Oil Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 146	Cumene Scrubber Surge Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 229	AMS Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 243	Crude Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 142	Crude Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 143	Crude Acetone Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT252	Cumene Scrubber Surge Tank (Reactor)	Custom	Custom
Group 07 – Tanks/Vessels	VT 332	Cumene Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-609	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-610	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-614	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 617	Springer Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 619	Multi-Purpose Tank (Surge Control Vessel)	Custom	Custom
Group 07 – Tanks/Vessels	VT-635	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 650	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	HT-005	Gasoline Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-003	Phenol Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-004	Phenol Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-005	Phenol Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-333	Phenol Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-633	Effluent Oil Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	HT 101	Acetone Bottoms Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 006	Barge Absorber Tank	Custom	Custom

ID Group	Source ID	Source Name	Make	Model
Group 07 – Tanks/Vessels	VT 101	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 102	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 105	Effluent Oil Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 107	Batch Stills Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 109	Batch Stills Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 113	Refined AMS Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 114	Refined AMS Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 116	CL-114 Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 118	Phenol Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 120	Effluent Oil Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 128	Off-Spec Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT 130	Residue Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-131	Crude AMS Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 134	Crude Acetone Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 135	Crude Acetone Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 136	Crude Acetone Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 137	Crude Acetone Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 138	CL-206 Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 139	CL-206 Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 140	CL-306 Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 141	CL-306 Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 165	TETA Day Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 214	Water Addition Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 223	Acetone Water Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 226	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 227	Batch-Still - Water Cut	Custom	Custom
Group 07 – Tanks/Vessels	VT 228	Phenate Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 230	Refined AMS Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 232	Refined AMS Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 234	Sprung Phenol Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 245	Batch Still Residue Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 247	Phenate Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 260	Brine Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 379	Phenate and Cumene Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 339	Phenol Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 340	Phenol Product Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 342	Refined AMS Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 345	Merchant Phenol Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VI 350	IX Acid wash water	Custom	Custom
Group 07 – Tanks/Vessels	VT 355	High-Purity Phenol Feed Tank	Custom	Custom
Group 07 – Tanks/Vessels	VI 356	OX 401 Vacuum Saal Bat	Custom	Custom
Group 07 – Tanks/Vessels	VT 500	OX 401 Vacuum Seal Pot	Custom	Custom
Group 07 – Tanks/Vessels	VT 509	Summer Phase 1/Sulfate Starses Tests	Custom	Custom
Group 07 – Tanks/Vessels	VI 604	Sprung Phenol/Sulfate Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VI 605	Sprung Phenol/Sultate Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 615	Caustic Dilution Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 616	Caustic Dilution Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 618	Sprung Phenol Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 620	Crude Acetone Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 621	Residue Storage Tenk	Custom	Custom
Group 07 – Tanks/Vessels	VT 622	Residue Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 626	Phenol Water Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 627	Effluent Oil Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT 701	No. 6 Fuel Oil Storage Tank	Custom	Custom
Group 07 - Tanke/Veccele	VT 750	Rrine Storage Tank	Custom	Custom
Group 07 Tanks/Vessels	HT_002	Holding Tank	Custom	Custom
Group 07 – Tanks/ vessels	111-003	rioluling ralik	CustoIII	Custom

ID Group	Source ID	Source Name	Make	Model
Group 07 – Tanks/Vessels	HT-004	Boiler No. 2 Fuel Oil Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	HT-006	Diesel Fuel Storage Tank	Custom	Custom
Group 07 Tanks/Vessels	H1-00/ HT-009	Diesel Fuel Storage Tank Diesel Fuel Storage Tank for Fire Water Pumps	Custom	Custom
Group 07 – Tanks/Vessels	DFT-705	Diesel Fuel Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	DFT-706	Diesel Fuel Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	HT-010	Diesel Fuel Storage Tank for Fire Water Sumps	Custom	Custom
Group 07 – Tanks/Vessels	HT-011	Diesel Fuel Storage Tank for Boiler House Emergency Generator	Custom	Custom
Group 07 – Tanks/Vessels	H1-203	Caustic and Wash Water Underflow Tank	Custom	Custom
Group 07 – Tanks/Vessels	H1-302	Direct First Stars as Tank from CAD Decanters 0X-301	Custom	Custom
Group 07 Tanks/Vessels	HT-802	Becovered Cumene Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-103	Phenate Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-104	Oil Wash Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-104	AMS Receiver Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-164	TETA Day Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-169	CL120 Product Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-201	Ion Exchange Acid Wash Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-212	Ion Exchange Acid Water Wash Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-636	Acetone Scrubber	Custom	Custom
Group 07 – Tanks/Vessels	VI 050		Custom	Custom
Group 07 – Tanks/Vessels	VT-780	Brine Storage Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-117	Bottoms Receiver - High Purity Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-122	Bottoms Receiver - Extracted AMS Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-129	Bottoms Receiver - High Purity Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-153	Bottoms Receiver - Acetone Bottoms Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-235	Bottoms Receiver - Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-236	Bottoms Receiver - Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-237	Bottoms Receiver - Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-238	Bottoms Receiver - Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-239	Bottoms Receiver - Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-240	Bottoms Receiver - Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	VT-241	Bottoms Receiver - Phenol Receiver	Custom	Custom
Group 07 – Tanks/Vessels	HT-201	Surge Control Vessel - Batch Still Kettle	Custom	Custom
Group 07 – Tanks/Vessels	HT-202	Surge Control Vessel - Charcoal Adsorber Decanter	Custom	Custom
Group 07 – Tanks/Vessels	HT-215	Surge Control Vessel - Cumene Decanter	Custom	Custom
Group 07 – Tanks/Vessels	HT-240	Surge Control Vessel - Preflasher Deluge Tank	Custom	Custom
Group 07 – Tanks/Vessels	HT-401	Surge Control Vessel - Cumene Oil Surge Tank at OX-401	Custom	Custom
Group 07 – Tanks/Vessels	HT-402	Surge Control Vessel - OX-401 Decanter	Custom	Custom
Group 07 – Tanks/Vessels	HT-501	Surge Control Vessel - Charcoal Adsorber Decanter	Custom	Custom
Group 07 – Tanks/Vessels	HT-502	Surge Control Vessel - Recovered Cumene Surge Tank	Custom	Custom
Group 07 – Tanks/Vessels	HT-504	Surge Control Vessel - Waste Water Oil Decanter	Custom	Custom
Group 07 – Tanks/Vessels	HT-801	Surge Control Vessel - Charcoal Adsorber Decanter	Custom	Custom
Group 07 – Tanks/Vessels	HT-803	Surge Control Vessel - Oxidizer Condenser Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-108	Surge Control Vessel - Batch-Still Second Cut	Custom	Custom
Group 07 – Tanks/Vessels	VT-123	Surge Control Vessel - Multi-Purpose Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-125	Surge Control Vessel - Multi-Purpose Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-126	Surge Control Vessel - Multi-Purpose Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-127	Surge Control Vessel - Multi-Purpose Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-151	Surge Control Vessel - Cumene Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-152	Surge Control Vessel - Recycle Cumene Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-154	Surge Control Vessel - AMS Phenol Dry Splitter Column Reflux Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-155	Surge Control Vessel - AMS Lights Column Overhead Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-160	Surge Control Vessel - Pasteurized Cut Accumulator Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-161	Surge Control Vessel - Reflux Pot	Custom	Custom
Group 07 – Tanks/Vessels	VT-162	Surge Control Vessel - Reflux Pot	Custom	Custom
Group 07 – Tanks/Vessels	VT-168	Surge Control Vessel - Phenol Relief Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-204	Surge Control Vessel - Charcoal Adsorber Decanter	Custom	Custom

ID Group	Source ID	Source Name	Make	Model
Group 07 – Tanks/Vessels	VT-205	Surge Control Vessel - Cumene Deluge Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-206	Surge Control Vessel - Charcoal Adsorber Oil Surge Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-207	Surge Control Vessel - Reflux Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-209A	Surge Control Vessel - Calorimeter #1	Custom	Custom
Group 07 – Tanks/Vessels	VT-209B	Surge Control Vessel - Calorimeter #2	Custom	Custom
Group 07 – Tanks/Vessels	VT-210	Surge Control Vessel - Catch Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-217	Surge Control Vessel - Phenol Accumulator	Custom	Custom
Group 07 – Tanks/Vessels	VT-224	Surge Control Vessel - AMS Extractor Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-225	Surge Control Vessel - AMS Extractor Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-253	Surge Control Vessel - Cumene Deluge Tank	Custom	Custom
Group 07 - Tanks/Vessels	VT-263A	Surge Control Vessel - CL206 Resin Bed	Custom	Custom
Group 07 – Tanks/Vessels	VT-263B	Surge Control Vessel - CL205 Resin Bed	Custom	Custom
Group 07 – Tanks/Vessels	VT-270	Surge Control Vessel - Preflasher Level Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-271	Surge Control Vessel - Reflux Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-272	Surge Control Vessel - Batch Still Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-303	Surge Control Vessel - Charcoal Adsorber Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-304	Surge Control Vessel - Oil Surge Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-305	Surge Control Vessel - Deluge Tank	Custom	Custom
Group 07 - Tanks/Vessels	VT-306	Surge Control Vessel - Reflux Drum	Custom	Custom
Group 07 - Tanks/Vessels	VT-308A	Surge Control Vessel - Calorimeter #1	Custom	Custom
Group 07 - Tanks/Vessels	VT-308B	Surge Control Vessel - Calorimeter # 2	Custom	Custom
Group 07 – Tanks/Vessels	VT-309	Surge Control Vessel - Decomposer Catch Tank	Custom	Custom
Group 07 - Tanks/Vessels	VT-315	Surge Control Vessel - CL101/301 Water Addition Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-316	Surge Control Vessel - Cumene Recovery Column Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-318	Surge Control Vessel - Preflasher Deluge Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-319	Surge Control Vessel - Phenol Accumulator	Custom	Custom
Group 07 – Tanks/Vessels	VT-321	Surge Control Vessel - Reflux Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-378	Surge Control Vessel - Cumene Surge Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-329	Surge Control Vessel - Deluge Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-341	Surge Control Vessel - Multi-Purpose Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-343	Surge Control Vessel - Multi-Purpose Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-347	Surge Control Vessel - Preflasher Level Drum	Custom	Custom
Group 07 – Tanks/Vessels	VT-348	Surge Control Vessel - Preflasher Deluge Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-504	Surge Control Vessel - Brine Condenser Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-601	Surge Control Vessel - Groundwater Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-602	Surge Control Vessel - Groundwater Oil Tank	Custom	Custom
Group 07 – Tanks/Vessels	VT-625	Surge Control Vessel - Phenol Water Decanter	Custom	Custom
Group 07 – Tanks/Vessels	VT-634	Surge Control Vessel - Decant Oil Tank	Custom	Custom
Group 08 – Control & Recovery Devices	CR-601A,B,C,D	4 Catalytic Oxidizers (each 17,500 scfm) Nov - 02	Custom	Custom
Group 08 – Control & Recovery Devices	TR-602	Thermal Oxidizer	Custom	Custom
Group 09 – MACT Fugitive		Pumps - Light Liquid Service	Custom	Custom
Group 09 – MACT Fugitive		Relief Devices - Gas/Vapor Service	Custom	Custom
Group 09 – MACT Fugitive		Open-Ended Lines	Custom	Custom
Group 09 – MACT Fugitive		Valves	Custom	Custom
Group 09 – MACT Fugitive	-	Gas/Vapor or	Custom	Custom
Group 09 – MACT Fugitive		Light Liquid Service Heavy Liquid Service	Custom	Custom
Group 09 – MACT Fugitive	1	Pumps	Custom	Custom
Group 09 – MACT Fugitive		Valves	Custom	Custom
Group 09 – MACT Fugitive	4	Connectors	Custom	Custom
Group 09 – MACT Fugitive	4	Liquid Service	Custom	Custom
Group 09 – MACT Fugitive	1	Instrumentation Systems	Custom	Custom
Group 09 – MACT Fugitive		Relief Devices	Custom	Custom
Group 09 – MACT Fugitive		Surge Vessels &	Custom	Custom

		Τa	able A-6		
		Sourc	e Inventory		
AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA					

ID Group	Source ID	Source Name	Make	Model
Group 09 – MACT Fugitive		Bottoms Receivers	Custom	Custom
Group 09 – MACT Fugitive		Closed Vent Systems	Custom	Custom
Group 09 – MACT Fugitive	-	Connectors	Custom	Custom
Group 09 – MACT Fugitive	-	Gas/Vapor Service or	Custom	Custom
Group 09 – MACT Fugitive	CL (01	Light Liquid Service	Custom	Custom
Group 10 – Process Wastewater	CL 601	Dephenolizer Column	Custom	Custom
Group 10 – Process Wastewater	C-604	CL-601 Condenser	Custom	Custom
Group 10 – Process Wastewater	S-8-13	Dephenolizer Column CL-601	Custom	Custom
Group 10 – Process Wastewater	CL 610	Wastewater Air Stripper	Custom	Custom
Group 10 – Process Wastewater	TR-602	Thermal Oxidizer	Custom	Custom
Group 10 – Process Wastewater	S-20-1	Thermal Oxidizer (TR-602)	Custom	Custom
Group 10 - Process Wastewater	VT-633	Effluent Tank	Custom	Custom
Group 10 - Process Wastewater	VT-650	Air Stripper Feed Tank	Custom	Custom
Group 10 – Process Wastewater	HT-601	Aqueous Stream	Custom	Custom
Group 10 – Process Wastewater	Bottom Filters F- 603 A/B (Phenolic)		Custom	Custom
	VT-633 (Non-			
Group 10 – Process Wastewater	Phenolic) – sent to CL-610 Air		Custom	Custom
	VT-650 (Non- Phonolic) sont			
Group 10 – Process Wastewater	to CL-610 Air Stripper		Custom	Custom
	HT-601 (Non-			
Correct 10 Decorrect Westernation	Phenolic) - sent		Custow	Custom
Gloup 10 – Flocess Wastewater	to CL-610 Air		Custom	Custom
	Stripper			
Group 11– Liquid Streams within	NA	#1 Phenolic Sump (lift station)	Custom	Custom
Crown 11 Liquid Streams within				
Chemical Mfg Process Units	NA	#2 Phenolic Sump (lift station)	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	NA	#3 Phenolic Sump (lift station)	Custom	Custom
Group 11– Liquid Streams within	NA	#2 Non-Phenolic Sump (lift station)	Custom	Custom
Group 11– Liquid Streams within	NA	#1 Phenolic Sumn Carbon Canister System	Custom	Custom
Chemical Mfg. Process Units Group 11– Liquid Streams within			Custom	Custom
Chemical Mfg. Process Units	NA	#2 Phenolic Sump Carbon Canister System	Custom	Custom
Chemical Mfg. Process Units	NA	#3 Phenolic Sump Carbon Canister System	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	NA	#2 Non-Phenolic Sump Carbon Canister System	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-801	Charcoal Adsorber Decanter	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-402	Charcoal Adsorber Decanter	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-501	Charcoal Adsorber Decanter	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	VT-218	Scrubber Liquid Stream	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	VT-153	Aqueous Stream	Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	VT-322	Liquid Stream	Custom	Custom
Group 11– Liquid Streams within	VT-805	Catox Knockout Tank	Custom	Custom
Group 11– Liquid Streams within	HT-605	Catox Knockout Tank	Custom	Custom
Chemical Wilg. Flocess Ullits	1		L	1

Table A-6
Source Inventory
AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA

ID Group	Source ID	Source Name	Make	Model
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-342 Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-343 Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-341 Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-801 (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-402 (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-501 (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	VT-218 (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	VT-153 (Non- Phenolic) SCR- 262 (Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	Phenolic Pit #1Phenolic Pit #2		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	Phenolic Pit #3 CL-610 Air Stripper (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	VT-322 (Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HX-235 (Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	VT-805 Catox Knockout Tank (Non-Phenolic		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	Unit #2 Non- Phenolic Sump (Non-Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-601 (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	HT-605 Catox Knockout Tank (Non-Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-242 Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-243 Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-244 Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-212A Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-212B Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-212C Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-308A Jet Condensate (Non- Phenolic)		Custom	Custom
Group 11– Liquid Streams within Chemical Mfg. Process Units	C-308B Jet Condensate (Non- Phenolic)		Custom	Custom

Table A-6									
Source Inventory									
AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA									

ID Group	Source ID	Source Name	Make	Model
Crown 11 Liquid Streams within	C-308C Jet			
Chamical Mfa Brazaga Unita	Condensate (Non-		Custom	Custom
Chemical Mig. Flocess Units	Phenolic)			
Group 12 – Cooling Towers	CLT-780	Cooling Tower 8	Custom	Custom
Group 12 – Cooling Towers	CLT-710A	Cooling Tower 1A	Custom	Custom
Group 12 – Cooling Towers	CLT-720	Cooling Tower 2	Custom	Custom
Group 12 – Cooling Towers	CLT-730	Cooling Tower 3	Custom	Custom
Group 12 – Cooling Towers	CLT-740	Cooling Tower 4	Custom	Custom
Group 12 – Cooling Towers	CLT-750	Cooling Tower 5	Custom	Custom
Group 14 -Stage II Vapor Recovery	Stage II Vapor Recovery	Side by Side Tanks HT-005 & HT-006	Custom	Custom

Table B-1 VOC RBLC Search - Phenol Tank Car Loading Operations AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA

Facility Name	NAICS Code	Permit Issuance Date	Process Name	Primary Fuel	Throughput	Throughput Units	Pollutant	Control Method Description	Emission Limit	Emission Limit Units	Pollutant Compliance Notes
Houston Plant - 22052	325110	6/13/2022	Marine Loading		0		Volatile Organic Compounds (VOC)	Vapor tightness tests and vapor collection connection pressure checks. Loading will be submerged. Captured emissions will be routed to the	0	MACT Y	
Houston Plant - 22052	325110	6/13/2022	Marine Loading Flare	Natural Gas	0		Volatile Organic Compounds (VOC)	Use of natural gas and good combustion practices	5.5	lb/MMscf	
Roehm America Bay City Site	325199	12/16/2021	Truck and Rail Loading		0		Volatile Organic Compounds (VOC)	Transport vehicles limited to DOT pressure-rated railcars and trucks meeting NSPS XX vapor-tightness specifications. Capture and route loading vapors to VCU if VOC VP > 0.5 psia. Inspection of closed vent system in same manner as other piping components in VOC	0		
Nacero Penwell Facility	325110	11/17/2021	Rail and Truck Loading		0		Volatile Organic Compounds (VOC)	Vapor-tightness testing of trucks and railcars, hard-piped and flanged	0		
Chevron Phillips Chemical Sweeny Complex	325110	10/30/2020	Unit 81 Truck Loading (EPN LOADRACK, 81-97- 9611)		0		Volatile Organic Compounds (VOC)	Control: submerged filling. The emissions from tank truck loading will be routed to the Unit 81 flare (EPN 81-97-9611) with a collection efficiency of 99 2%	0		
Chevron Phillips Chemical Sweeny Complex	325110	10/30/2020	Unit 81 Truck Loading (EPN LOADRACK, 81-97- 9611)		0		Volatile Organic Compounds (VOC)	Control: submerged filling. The emissions from tank truck loading will be routed to the Unit 81 flare (EPN 81-97-9611) with a collection efficiency of 99 2%	0		
Chevron Phillips Chemical Sweeny Complex	325110	10/30/2020	Unit 81 Railcar Loading (EPN VCU-1)		0		Volatile Organic Compounds (VOC)	The emissions from railcar loading will be routed to the VCU (EPN VCU-1). A collection efficiency of 100% will be applied to the railcar loading, as the railcars meet DOT testing requirements and the connections are pressure stressed type connections A vapor combustion unit (EPN VCU-1) will be used to control the emissions generated from the loading of the 1-hexene product into railcars.	0		
Chevron Phillips Chemical Sweeny Complex	325110	10/30/2020	MELT Handling and Loading (EPN MELT)		0		Volatile Organic Compounds (VOC)	The drums and containers will be loaded in an enclosure that meets the current TCEQ BACT for drum filling and will achieve a 100% collection rate while loading. The material has a consistency like wax, and will be splash loaded, as submerged filling could result in line plugging. The thermal oxidizer controlling the emissions from drum and container loading will be designed to have a minimum destruction efficiency of 99.9% for VOCs. The cooling of drums and totes will be done in a closed vent system.	0		
Cardinal Ethanol, LLC	325193	10/1/2020	Ethanol Loading Rack		17000000	gallons	Volatile Organic Compounds (VOC)	Enclosed Flare	98	°∕₀	
Cardinal Ethanol, LLC	325193	10/1/2020	Ethanol Loading Rack		170000000	gallons	Volatile Organic Compounds (VOC)	Enclosed Flare	98	%	
Diamond Green Diesel Port Arthur Facility	325998	9/16/2020	Loading		0		Volatile Organic Compounds (VOC)	racks shall be designed such that the total volume of components to be disconnected and vented to the atmosphere following transfer to any transport truck or railcar, including adapters, hoses, fittings, valves or couplings, does not exceed 1.47 cubic feet	0		
Motiva Polyethylene Manufacturing Complex	325199	9/9/2020	Truck and Railcar Loading		0		Volatile Organic Compounds (VOC)	Vapor-tightness testing of trucks and railcars, hard-piped and flanged connections, route vapors to thermal oxidizer if VP>0.5psi	0		
Mont Belvieu NGL Fractionation Unit	211112	3/31/2020	Truck Loading		0		Volatile Organic Compounds (VOC)	Submerged or bottom filled loading for VOC VP<0.5 psia	0	Ch. 115	Subchapter C Division1, Division 3, Subchapter F Division 3
Mont Belvieu NGL Fractionation Unit	211112	3/31/2020	Pressurized Loading		0		Volatile Organic Compounds (VOC)	Pressure rated truck meeting DOT standards and transfer lines equipped with stressed connectors 100% capture efficiency	0	Ch. 115 S	Subchapter C Division1, Division 3, Subchapter F Division 3
Motiva Port Arthur Terminal	424710	43880	Ship and Barge Loading Losses		142370242	bbl/yr	Volatile Organic Compounds (VOC)	Controlled loading of materials with a vapor pressure greater than 0.5 psia. Barge loading will utilize vacuum loading for 100% collection efficiency. 99% collection efficiency is claimed for ship loading. Collected emissions are controlled by a vapor combustor.	0	МАСТ Ү	r
Motiva Port Arthur Terminal	424710	43880	Loading Losses		118625000	bbl/yr	Volatile Organic Compounds (VOC)	 VOC >= 0.5 psia: Route VOC to vapor combustor and meet the vapor combustor requirements.□ □ Vessel leak testing: the marine vessel must pass an annual vapor tightness test as specified in 40 CFR ŧ63.565(c) or 40 CFR ŧ61.304(f). 	0		
Port Arthur Ethane Cracker Unit	325110	2/6/2020	Truck and railcar loading operations		0		Volatile Organic Compounds (VOC)	Vapor-tightness testing of trucks and railcars, hard-piped and flanged connections, route vapors to thermal oxidizer	0		
Port Arthur Refinery	324110	2/4/2020	Railcar Loading		121652748	gal/yr	Volatile Organic Compounds (VOC)	DOT testing. Hard-piped, dry lock design loading arm and pressure- rated chemical transfer hoses. 100-percent collection efficiency.	0		
Propane Dehydrogenation (PDH) Unit	325110	1/24/2020	Truck Loading		0		Volatile Organic Compounds (VOC)	Flexible hoses with dry-disconnect fittings will be used.	0		
FG LA Complex	325110	1/6/2020	HDPE2 Low Polymer Tank Truck Loading		4861689	gal/yr	Volatile Organic Compounds (VOC)	Routing through a closed vent system to a thermal oxidizer or flare.	0		
FG LA Complex	325110	1/6/2020	HDPE2 Oilgomer Tank Truck Loading		486209	gal/yr	Volatile Organic Compounds (VOC)	Routing through a closed vent system to a thermal oxidizer or flare.	0		
FG LA Complex	325110	1/6/2020	PP Tank Truck Loading		24000	gal/hr	Volatile Organic Compounds (VOC)	Routing through a closed vent system to a vapor combustor.	0		
FG LA Complex	325110	1/6/2020	LOG Uncontrolled Barge Dock Loading (Heavy Oil)		264151	gal/hr	Volatile Organic Compounds (VOC)	Routing through a closed vent system to a vapor combustor.	0		
FG LA Complex	325110	1/6/2020	LOG Barge Loading (Pyrolysis Gasoline)		0		Volatile Organic Compounds (VOC)	Routing through a closed vent system to a vapor combustor.	0		
FG LA Complex	325110	1/6/2020	LOG Railcar Loading		63396	gal/hr	Volatile Organic Compounds (VOC)	Compliance with all applicable provisions of 40 CFR 63 Subpart YY and routing through a closed vent system to a flare.	0	BACT w complian	th loading spent wash oil and/or ethylene glycol is ce with all applicable provisions of 40 CFR 63 Subpart G.
FG LA Complex	325110	1/6/2020	LOG Tank Truck Loading		31698	gal/hr	Volatile Organic Compounds (VOC)	Compliance with all applicable provisions of 40 CFR 63 Subpart YY and routing through a closed vent system to a vapor combustor.	0	BACT w complian	th loading spent wash oil and/or ethylene glycol is ce with all applicable provisions of 40 CFR 63 Subpart G.
FG LA Complex FG LA Complex	325110 325110	1/6/2020	LOG Ianker Dock Loading LOG Uncaptured Tank Truck Loading (Heavy Oil)		0	gal/hr	Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Good operating practices.	0		
FG LA Complex	325110	1/6/2020	LOG Railcar and Barge Dock Loading (Ethylene		0		Volatile Organic Compounds (VOC)	Compliance with all applicable provisions of 40 CFR 63 Subpart G.	0		
FG LA Complex	325110	1/6/2020	LOG Railcar Loading (Pyrolysis/Heavy Oil)		0		Volatile Organic Compounds (VOC)	Routing through a closed vent system to a vapor combustor or flare.	0		
FG LA Complex	325110	1/6/2020	LDPE Compressor Used Oil Storage and Loading		0		Volatile Organic Compounds (VOC)	Good operating practices.	0.01	ton/yr	
FG LA Complex	325110	1/6/2020	LDPE Spent Lube Oil and Wax Loading		0		Volatile Organic Compounds (VOC)		0		
FG LA Complex	325110	1/6/2020	ET1 Tank Truck Loading		185100	bbl/yr	Volatile Organic Compounds (VOC)	Routing through a closed vent system to a vapor combustor.	0		

Table B-1 VOC RBLC Search - Phenol Tank Car Loading Operations AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA

Facility Name	NAICS Code	Permit Issuance Date	Process Name	Primary Fuel	Throughput	Throughput Units	Pollutant	Control Method Description	Emission Limit	Emission Limit Units Pollutant Compliance Notes
FG LA Complex	325110	1/6/2020	ET2 Tank Truck Loading		185100	bbl/yr	Volatile Organic Compounds (VOC)	Routing through a closed vent system to a vapor combustor.	0	
FG LA Complex	325110	1/6/2020	HDPE1 Low Polymer Tank Truck Loading		0		Volatile Organic Compounds (VOC)	Routing through a closed vent system to a thermal oxidizer or flare.	0	
FG LA Complex	325110	1/6/2020	HDPE1 Oilgomer Tank Truck Loading		486209	gal/yr	Volatile Organic Compounds (VOC)	Routing through a closed vent system to a thermal oxidizer or flare.	0	
Condensate Splitter Facility	324110	43769	Marine Loading with a VP equal or lesser than 0.5 psia – Non-inert Barge (Routine)		13249500	bbl/yr	Volatile Organic Compounds (VOC)	Equipped with submerged fill pipes. 100-percent collection efficiency with vacuum loading. Vacuum blower maintained at ±0.15 inches of water. Total marine loading of distillate limited to 20,000 and residual limited to 10.000 bbl/hr. respectively.	0	NSPS Y
Condensate Splitter Facility	324110	43769	Marine Loading with a VP greater than 0.5 psia – Non-inert Barge (Routine)		13249500	bbl/yr	Volatile Organic Compounds (VOC)	Vacuum loading with a 100-percent collection efficiency. Vacuum blower maintained at ±0.15 inches of water. □ Vapors routed to the marine VCUs .□ Total marine loading of naphtha and condensate limited to 20,000 bbls/hr each.	0	NSPS Y
Condensate Splitter Facility	324110	43769	Marine Loading with a VP equal or lesser than 0.5 psia – Ship and Inert-Barges (Routine)		13249500	bbl/yr	Volatile Organic Compounds (VOC)	Annual tightness testing via 40 CFR A§63.565(c) or 40 CFR §61.304(f). AVO once every 8-hrs. 99% collection efficiency. Maintain vessel cargo tank above 0.2% psig. Total marine loading of distillate limited to 20,000 and residual limited to 10 000 bbl/hr respectively	0	NSPS Y
Condensate Splitter Facility	324110	43769	Marine Loading with a VP greater than 0.5 psia – Ship and Inert Barges (Routine)		13249500	bbl/yr	Volatile Organic Compounds (VOC)	Annual tightness testing via 40°CFR A \$65.565(c) or 40°CFR \$61.304(f). □ AVO once every 8-hrs. □ Vapors routed to one of the marine VCU. □ 99% collection efficiency. □ 99.5% DRE. □ Maintain vessel cargo tank above 0.2% □ Total marine loading of naphtha and condensate limited to 20,000	0	NSPS Y
Gulf Coast Growth Ventures Project	325110	6/12/2019	Truck and Railcar Liquid Loading/Unloading Operations		0		Volatile Organic Compounds (VOC)	Low vapor pressure (< 0.50 psia) organic liquids For organic liquids with a low volatility the permit requires that loading be conducted using bottom or submerged fill. Add-on control is not required. High vapor pressure (> 0.50 psia) organic liquids For high volatility organic liquids (pyrolysis gasoline), the permit requires that the truck or railcar being loaded be certified as vapor tight (following NSPS XX vapor tightness specifications), and that a closed vent system be used to direct all displaced loading emissions to a properly-operated control device. For loading into railcars, vapor tightness can also be demonstrated through a valid DOT certification for pressure-rated vessels.	0	
Big Lake Fuels Methanol	325199	4/25/2019	Methanol Loading (EQT0029, EQT0031)		0		Volatile Organic Compounds (VOC)	Water Scrubber	98	Percent
Buckeye South Texas	493190	3/13/2019	Loading		0		Volatile Organic Compounds (VOC)	vapor combustion units	0	Keduction
Gateway Terminal Buckeye South Texas	493190	3/13/2019	Loading during MSS via Vacuum Truck		0		Volatile Organic Compounds (VOC)	Carbon Absorption System	100	PPMV
Gateway Terminal Buckeye South Texas	493190	43537	Loading		0		Volatile Organic Compounds (VOC)	vapor compustion units	0	
Gateway Terminal Buckeye South Texas	493190	43537			0		Volatile Organie Compounds (VOC)		100	
Gateway Terminal	493190	43537	Loading during MSS via Vacuum Truck		0		Volatile Organic Compounds (VOC)	Carbon Absorption System	100	PPMV
Terminal	493190	43467	Marine Loading		0		Volatile Organic Compounds (VOC)	Captured vapors will be routed to vapor combustion units	0	
Pttgca Petrochemical Complex	325110	12/21/2018	Light and Heavy Pygas Railcar Loading (J001)		0		Volatile Organic Compounds (VOC)	 Thermal oxidizer (TO) achieving a destruction efficiency of >99.5%. The TO controlling heavy and light pygas railcar loading operations is permitted as a separate and individual emissions unit (emissions unit P001 or P002). For efficient permitting structure, the applicable operational restrictions, monitoring, record keeping, reporting, and testing associated with TO control are contained within the requirements of emissions unit P001 and P002. A separate emissions unit (P807) associated with fugitive leaks of VOC, HAP*, VHAP/Benzene*, and GHGs* from all component equipment at the facility subject to the leak control and repair regulations above has been established. For efficient permitting structure, the applicable requirements (limitations, operational restrictions, monitoring, record keeping, reporting, and testing) associated with equipment leak control and repair for VOC, HAP*, VHAP/Benzene*, and GHGs* are contained within the requirements of emissions unit P807. 	0	The TO controlling heavy and light pygas railcar loading operations is permitted as a separate and individual emissions unit (emissions unit P001 or P002). For efficient permitting structure, the applicable operational restrictions, monitoring, record keeping, reporting, and testing associated with TO control are contained within the requirements of emissions unit P001 and P002. A separate emissions unit (P807) associated with fugitive leaks of VOC, HAP*, VHAP/Benzene*, and GHGs* from all component equipment at the facility subject to the leak control and repair regulations above has been established. For efficient permitting structure, the applicable requirements (limitations, operational restrictions, monitoring, record keeping, reporting, and testing) associated with equipment leak control and repair for VOC, HAP*, VHAP/Benzene*, and GHGs* are contained within the requirements of emissions unit P807.
Oxy Ingleside Energy	493190	43306	Marine Loading		0		Volatile Organic Compounds (VOC)	VAPOR COMBUSTOR UNIT	0	
Invista S.A.R.L. Victoria Plant	325199	7/12/2018	Loading		0		Volatile Organic Compounds (VOC)	all loading operations will be conducted with submerged fill. Loading activities for liquids with a vapor pressure of greater than or equal to 0.50 psia will be vented to the ADN Flare.	0	
Victoria Plant	325199	6/30/2018	Loading		0		Volatile Organic Compounds (VOC)	all loading operations will be conducted with submerged fill. Loading activities for liquids with a vapor pressure of greater than or equal to 0.50 psia will be vented to the ADN Flare.	0	30 TAC 115
Lake Charles Facility Gulf Coast Methanol	325110	2/2/2018	Railcar / Truck Loading Area (EQT0023)		0		Volatile Organic Compounds (VOC)	Route to a flare	0	
Complex	325199	1/4/2018	Marine Vessels Loading		4618	gpm	volatile Organic Compounds (VOC)	Wet Scrubber Captured vapors will be routed to vapor recovery units (VRL) capable	0	
Pasadena Terminal	493190	7/14/2017	Marine Vessel Ship Loading		30000	bbl/hr	Volatile Organic Compounds (VOC)	of achieving 1 milligram VOC per liter of VOC loaded.	1	mg/ltr MACT Y
Pasadena Terminal	493190	7/14/2017	Marine Barge Loading		0		Volatile Organic Compounds (VOC)	vapor recovery unit.	71.36	ton/yr MACT Y
Pasadena Terminal	493190	7/14/2017	Uncaptured Marine Loading Fugitives From Ships		0		Volatile Organic Compounds (VOC)	A minimum of three vessels per year for five years will undergo VOC collection efficiency testing to ensure compliance with 99.89% loading vapor collection efficiency of inerted ocean-going marine vessels	23.66	ton/yr MACT Y

Table B-1 VOC RBLC Search - Phenol Tank Car Loading Operations AdvanSix Resins & Chemicals LLC, Frankford Plant - Philadelphia, PA

Facility Name	NAICS Code	Permit Issuance Date	Process Name	Primary Fuel	Throughput	Throughput Units	Pollutant	Control Method Description	Emission Limit	Emission Limit Units	Pollutant Compliance Notes
Pasadena Terminal	493190	7/14/2017	Tank Truck Loading		120000	gal/hr	Volatile Organic Compounds (VOC)	All loading will be submerged fill and vented to a vapor recovery unit. Vapor collection system will operate with 100% capture efficiency	1	mg/ltr	NSPS XX□ MACT R
Pasadena Terminal	493190	7/14/2017	Tank Truck Loading		120000	gal/hr	Volatile Organic Compounds (VOC)	All loading will be submerged fill and vented to a vapor recovery unit. Air eliminator venting will result in emissions to the atmosphere at less than 3 lb/hr for air purging in truck tanks.	4.48	ton/yr	NSPS XX□ MACT R
Pasadena Terminal	493190	7/14/2017	Tank Truck Unloading		0		Volatile Organic Compounds (VOC)	Specialized connection system of transfer valves that minimize the volume of piping containing residual butane after unloading	33	ton/yr	NSPS XX 🗆 MACT R
Pasadena Terminal	493190	42930	Marine Vessel Ship Loading		30000	bbl/hr	Volatile Organic Compounds (VOC)	Captured vapors will be routed to vapor recovery units (VRU) capable of achieving 1 milligram VOC per liter of VOC loaded.	1	mg/ltr	МАСТ Ү
Pasadena Terminal	493190	42930	Marine Barge Loading		0		Volatile Organic Compounds (VOC)	100% of vapors will be captured with vacuum loading and routed to a vapor recovery unit.	71.36	ton/yr	MACT Y
Pasadena Terminal	493190	42930	Uncaptured Marine Loading Fugitives From Ships		0		Volatile Organic Compounds (VOC)	A minimum of three vessels per year for five years will undergo VOC collection efficiency testing to ensure compliance with 99.89% loading vapor collection efficiency of inerted ocean-going marine vessels	23.66	ton/yr	MACT Y
Pasadena Terminal	493190	42930	Tank Truck Loading		120000	gal/hr	Volatile Organic Compounds (VOC)	All loading will be submerged fill and vented to a vapor recovery unit. Vapor collection system will operate with 100% capture efficiency and routed to vapor recovery unit	1	mg/ltr	NSPS XX□ MACT R
Pasadena Terminal	493190	42930	Tank Truck Loading		120000	gal/hr	Volatile Organic Compounds (VOC)	All loading will be submerged fill and vented to a vapor recovery unit. Air eliminator venting will result in emissions to the atmosphere at less than 3 lb/hr for air purging in truck tanks.	4.48	ton/yr	NSPS XX 🗆 MACT R
Pasadena Terminal	493190	42930	Tank Truck Unloading		0		Volatile Organic Compounds (VOC)	Specialized connection system of transfer valves that minimize the volume of piping containing residual butane after unloading	33	ton/yr	NSPS XX 🗆 MACT R
Lyondell Chemical Bayport Choate Plant	325199	6/7/2017	Loading		0		Volatile Organic Compounds (VOC)	Materials with vapor pressures > 0.5 psia loaded through submerged or bottom fill lines into pressure rated trucks meeting DOT standards and pressure ratings. Transfer lines equipped with stressed connectors for 100% capture efficiency. Captured vapors are routed to the flare.	0		40 CFR 60.18 □ 40 CFR 63 Subpart G□ 30 TAC Subchapter C
Fuel Oil Terminal	493190	42851	Marine Loading		30000	bbl/hr	Volatile Organic Compounds (VOC)	Marine loading is controlled by a VCU with 99.9% destruction removal efficiency for VOC □ •Ships will be leak tested to verify 99.5% collection efficiency	0		
Fuel Oil Terminal	493190	42851	Fugitives Marine Loading		0		Volatile Organic Compounds (VOC)	Monitoring under 28LAER (Lowest Available Emission Rate) Leak Detection and Repair program.	0.16	ton/yr	
Linear Alpha Olefins Plant	325110	11/3/2016	SOCMI Transfer Operations		120000	gal/hr	Volatile Organic Compounds (VOC)	pressure of 0.10 psia or greater. Truck and railcar vessels must possess a valid vapor tightness certificate prior to commencement of loading. Barge cargo vessels must be loaded under vacuum. All captured loading emissions must be routed to a thermal oxidizer achieving destruction/removal efficiency (DRE) of 99.9%, or a vapor combustor achieving DRE of 99.5%	99.9	%	MACT FFFF
Houston Fuel Oil Terminal	493190	42615	Marine Loading		67600600	bbl/yr	Volatile Organic Compounds (VOC)	Vapor Combuster □ Vapor tightness test per Title 40 Code of Federal Regulations (40 CFR) §63.565(c) or 40 CFR §61.304(f)□ •Marine loading is controlled by a VCU with 99.9% destruction removal efficiency for VOC□ •Ships will be leak tested to verify 99.5% collection efficiency	0		
Houston Fuel Oil Terminal	493190	42615	Fugitives at Marine Loading		0		Volatile Organic Compounds (VOC)	Monitoring under 28LAER (Lowest Available Emission Rate) Leak Detection and Repair program.	0.04	ton/yr	
Comonimer-1 Unit Comonimer-1 Unit	325199 325199	9/1/2016 9/1/2016	Hopper, Dryer, Unloading, Water Tank Product Loading LR		0		Volatile Organic Compounds (VOC) Volatile Organic Compounds (VOC)	Controlled by flares (Ethylene Unit)	8.33 0	lb/hr	8.33 lbs/hr from raw material unloading
Lake Charles Chemical Complex - Comonomer-1 Unit	325199	9/1/2016	Product Loading LR		0		Volatile Organic Compounds (VOC)	Closed vent and routing to the flares (@ Ethylene Unit)	0		
Lake Charles Chemical Complex - Comonomer-1 Unit	325199	9/1/2016	Raw Material Unloading		0		Volatile Organic Compounds (VOC)		0		
Corpus Crude Oil Terminal	424710	42543	Marine Loading		20000000	bbl/yr	Volatile Organic Compounds (VOC)	Marine loading operations are loaded into MACT-Y vapor tight vessels for control for materials with a true vapor pressure (TVP) of 0.5 psia or greater. Capture efficiency for inland barges is 100% based on vacuum loading. The capture efficiency for ocean-going vessels is estimated at 95%. Captured emissions are routed to a vapor combustion unit (VCU).	351.1	ton/yr	40 CFR Part 63, Subparts A & Y
Beaumont Terminal	424710	6/8/2016	Marine Loading		0		Volatile Organic Compounds (VOC)	Marine loading operations are loaded into MACT-Y vapor tight vessels for controlled for materials with a TVP of 0.5 psia or greater. Capture efficiency for inland barges is 100% based on vacuum loading. The capture efficiency for ocean ships and barges is estimated at 99.8% and will be tested to verify. Captured emissions are routed to a vapor combustor unit (VCU), which results in collateral emissions including carbon monoxide (CO).	24.5	ton/yr	40 CFR Part 63, Subparts A, R, Y & EEEE
Beaumont Terminal	424710	6/8/2016	Truck and Railcar Loading		0		Volatile Organic Compounds (VOC)	Loading vapors of materials with a TVP of 0.5 psia or greater are controlled by a flare. Railcar capture efficiency of 100% will be verified annually by Class DOT-111AW or Class DOT-115AW testing, and truck capture efficiency of 100% will be verified annually by DOT testing specified in 49 CFR 180.407.	28.83	ton/yr	40 CFR Part 63, Subparts A, R, & EEEE
Buckeye Terminals, LLC - Hammond Terminal	486910	42482	Railcar Loading Rack	Crude Oil/Gasoline	432000	gal/hr	Volatile Organic Compounds (VOC)	Vapor Combustion Unit (VCU)	99.4	%	Additional Limits: VAC assist shall be in operation when loading crude oil or gasoline, 1.7 mg/l (0.01 lb/kgal) of distillate loaded, when loading distillate, submerged loading shall be used.
Buckeye Terminals, LLC - Hammond Terminal	486910	42482	Railcar Loading Rack	Crude Oil/Gasoline	432000	gal/hr	Volatile Organic Compounds (VOC)	Vapor Combustion Unit (VCU)	99.4	%	Additional Limits: VAC assist shall be in operation when loading crude oil or gasoline, 1.7 mg/l (0.01 lb/kgal) of distillate loaded, when loading distillate, submerged loading shall be used.