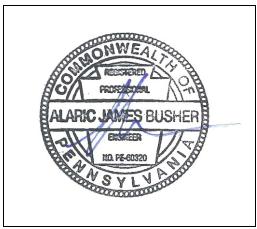


Post Construction Stormwater Management/Site Restoration Plans Narrative

Atlantic Sunrise Project Phase 2

West Diamond Regulator Station Jackson & Sugarloaf Townships Columbia County Pennsylvania

Prepared For:


Transcontinental Gas Pipe Line Company, LLC 2800 Post Oak Blvd Houston, TX, 77251

Issued: August 2015 Revised: October 2016

BL Project No. 14C4909

Prepared By:

BL Companies 4242 Carlisle Pike, Suite 260 Camp Hill, PA 17011

Alaric J. Busher, PE P.E. 60320

CONTENTS

<u>Part</u>		<u>ription</u>			<u>Page</u>					
1.0	GEN	${\sf ERAL}$ ${\sf INFORMATION}$			1					
	1.1	Topographic Features								
		Aerial Location Map	4							
	1.2									
	1.3		arth Disturbance Activity Characterization							
	1.4	Stormwater Manageme								
				ate of Runoff						
	1.5									
	1.6									
	1.7	•	ative							
	1.8	Supporting Calculation		15						
	1.9									
	1.10			enance Schedule						
	1.11	Material Recycling and	l Disposal		17					
	1.12			rmations						
	1.13									
	1.14		Riparian Forest Buffer Management Plan							
	1.15									
	1.16	Preparedness Prevent	ion and C	ontingency Plan	23					
			APPEND	ICES						
		Part	Desc	ription_						
		Appendix A		Diamond Regulator Station orting Calculations						
			A.1	Pre-Development Calculations						
			A.2 A.3	Post Development Calculations Conveyance Calculations	8					
			A.4	PCSM BMP Calculations						
			A.5	Water Quality Worksheets						
			A.6 A.7	Site Characterization Assessm Supporting Documentation	ent					
		Appendix B	Prep	arer Qualifications						

Appendix C

United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Custom Soil Resource Report

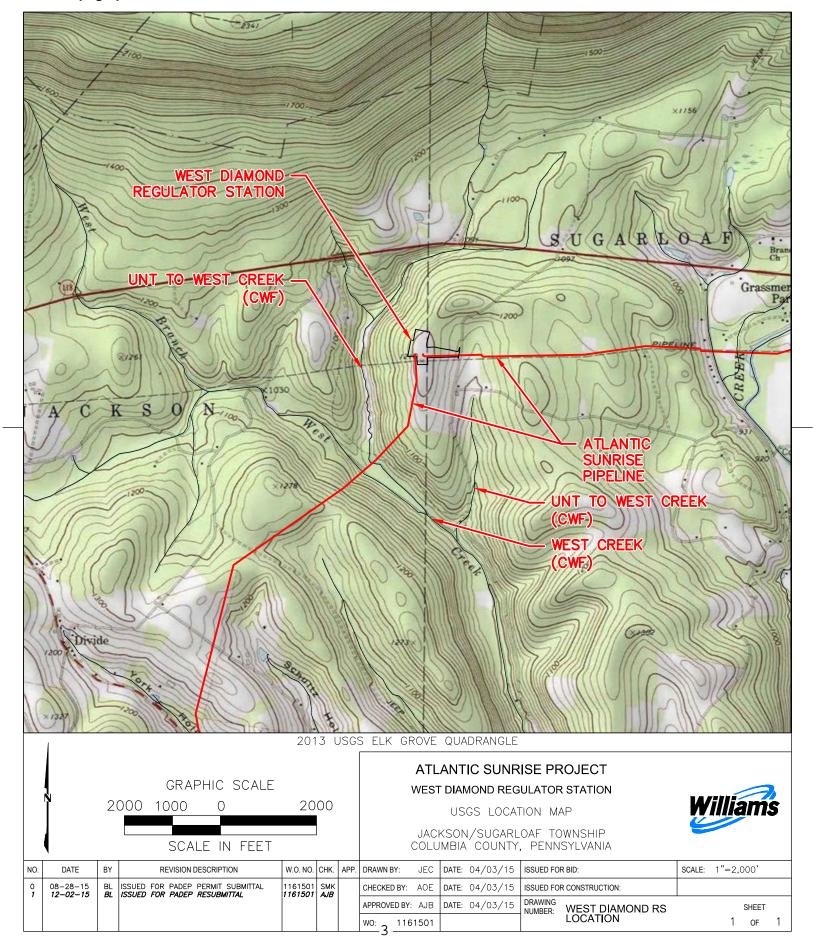
1.0 GENERAL INFORMATION

The following narrative was prepared as a supplement to the Transcontinental Gas Pipe Line Company, LLC.'s (Transco's) Environmental Construction Plan (ECP) provided in Section 4 of the Erosion and Sediment Control General Permit 2 (ESCGP-2) Notice of Intent (NOI), which was prepared for the Atlantic Sunrise Project ("Project"). This PCSM/SR narrative is intended to describe the post construction stormwater management/site restoration (PCSM/SR) design for the West Diamond Regulator Station ("Site") to be constructed as part of the Project, within Jackson/Sugarloaf Township, Columbia County, Pennsylvania. Similar narratives were prepared, under separate cover, for facilities in other affected counties, as well as for the pipeline construction.

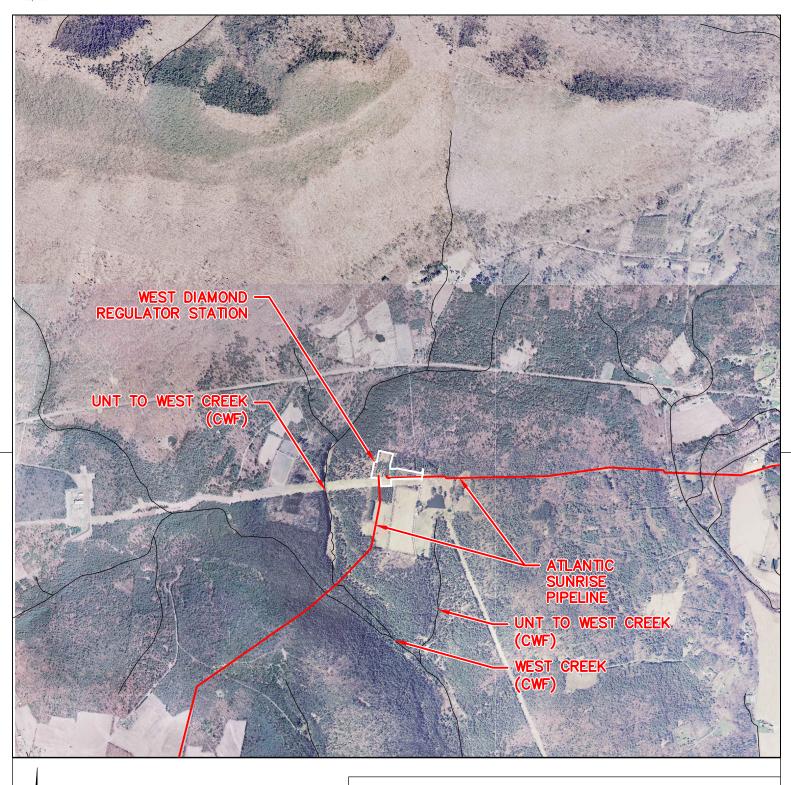
The facility proposed to be constructed as part of Phase 2 of the Atlantic Sunrise Project in Columbia County is the following:

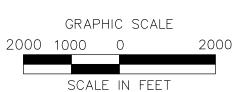
Facility Name	Facility Description	Facility Coordinates
West Diamond Regulator	Regulator Station	N41°16'24.28", W76°24'25.32"
Station		

The West Diamond Regulator Station will be approximately 7.14 acres in area including a 706 linear foot permanent gravel access road, 51,522 square feet (1.18 acre) of gravel pad and 561 square feet (0.01 acers) of building that total 67,002 square feet (1.54 acres) of impervious area. The Site will utilize existing public and private roads for access to the Site during and after construction. PCSM/SR Best Management Practices (BMPs), in accordance with the standards and specifications in the Pennsylvania Department of Environmental Protection's (PADEP's) "Erosion and Sediment Pollution Control (E&S) Program Manual," Technical Guidance No. 363-2134-008, as amended and updated (E&S Manual) will be implemented to minimize and/or avoid potential adverse environmental impacts due to the construction, operation and maintenance activities associated with the Site. The proposed practices are designed to maximize volume reduction technologies, eliminate or minimize point source discharges to surface waters, preserve the integrity of stream channels, and protect the physical, biological, and chemical qualities of the receiving surface water. The intent is to keep the post construction runoff volume and flow rate no greater than the preconstruction conditions while maintaining water quality. Impervious areas, land clearing and soil compaction are minimized and natural drainage features and vegetation are protected wherever possible. Heavy equipment will be restricted from infiltration areas. E&SC and PCSM BMP measures will be installed and maintained as needed to control stormwater movement in the Site area.



Refer to the ECP (Section 4 of the ESCGP-2 NOI) for overall Project information.


There are no impacts to regulated wetlands associated with this proposed Site. Refer to the Wetland Delineation Report provided in **Section 5 of the ESCGP-2 NOI** for information supporting wetland mapping as shown on the Erosion and Sediment Control (E&SC) Plans (**Section 2 of the ESCGP-2 NOI**).



1.1 Topographic Features

ATLANTIC SUNRISE PROJECT WEST DIAMOND REGULATOR STATION

AERIAL LOCATION MAP

JACKSON/SUGARLOAF TOWNSHIP COLUMBIA COUNTY, PENNSYLVANIA

r	NO.	DATE	BY	REVISION DESCRIPTION	WO NO	CHK	APP	DRAWN BY: JEC	DATE: 04/03/15	ISSUED FOR BID:	SCALE: 1"=2.000'	
H	0	08-28-15	-		1161501	-				ISSUED FOR CONSTRUCTION:	2,000	
	1	12-02-15			1161501	AJB			DATE: 04/03/15		SHEET	
								wo: 1161501		LOCATION	1 of 1	

1.2 Soil Characteristics

In addition to the below use limitations and resolutions, refer to Appendix C for the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Custom Soil Resource Report for the Site.

Soil Type and Use Limitations

Map Symbol	Soil Name	Slope	Cut Banks Cave	Corrosive to Concrete or Steel	Droughty	Easily Erodible	Flooding	High Water Table	Hydric/Hydric Inclusions	Low Strength	Slow Percolation	Piping	Poor Source of Topsoil	Frost Action	Shrink-Swell	Potential Sinkhole	Ponding	Wetness
OsB	Oquaga very stony silt loam	0-12%	Х	С	Х	Х			Х		Х			Х				
OcB2	Oquaga channery silt loam, moderately eroded	2-12%	Х	С	х	Х			Х		Х			х				
OcC2	Oquaga channery silt loam, moderately eroded	12-20%	Х	С	Х	Х			х		Х			Х				
OsD	Oquaga very stony silt loam	12-35%	Х	С	Х	Х			Х		Х			Х				

Source: Appendix E, Table E-1, PADEP, *Erosion and Sediment Pollution Control (E&S) Program Manual* Technical Guidance Number 363-2134-008.

Soil Use Limitations Resolutions

Limitation	Resolution
Cut Banks Cave	Excavations will be properly supported by sheeting and shoring to prevent caves.
Corrosive to Concrete or Steel	No concrete or steel piping is proposed without appropriate coatings and protection.
Droughty	Existing suitable topsoil and soil amendments will be used during construction.
Easily Erodible	Temporary and permanent erosion control BMPs will be employed throughout the Site.
Flooding	Ensure that the Site has proper drainage.
High Water Table	A geotechnical investigation was conducted to minimize conflicts with saturated zones.
Hydric/Hydric Inclusions	A wetland investigation was completed to determine no wetlands are present in the development area.
Low Strength	A maximum of 3:1 slopes are proposed.
Slow Percolation	A field investigation of percolation rates at the infiltration areas was performed to verify the soils percolation capacity.
Piping	Watertight pipe, antiseep collars, clay cores through basin berms, and concrete endwalls will be used to minimize the danger of piping.
Poor Source of Topsoil	Existing topsoil, which has proven to be suitable, will be reused on the Site.
Frost Action	Pavement subbase will be provided to minimize frost effects.
Shrink-Swell	Stone base will be provided to prevent shrink-swell from effecting pavement.
Potential Sinkhole	Geotechnical engineer of record recommendations will be followed for any potential occurrences.
Ponding	Surface grading and drainage facilities will be provided to minimize ponding affects.
Wetness	Wet weather construction recommendations, per the geotechnical engineer's recommendations, will be employed to minimize the effects of wetness during construction, surface grading. Surface grading and drainage will be provided to minimize wetness affects after construction.

1.3 Earth Disturbance Activity

Proposed Improvements and Land Use

The proposed West Diamond Regulator Station will be constructed in Lehman Township, Luzerne County. West Diamond Regulator Station will include construction of a regulator station and associated access road. The earthmoving activity will involve the stripping and stockpiling of top soil, Site grading, Site excavation, placement of fill, trenching and backfill, construction of equipment with gravel pad/parking lot, construction of a gravel access drive, construction of a stormwater management system, finish grading, and stabilization of disturbed surfaces. Approximately 67,002 square feet (1.54 acres) of additional gravel area will result on-site.

Present/Past Land Use

This section identifies the land requirements for construction and operation of the proposed CPL North, CPL South, and Associated Facilities. Table 1.3.1 summarizes the land requirements for the proposed West Diamond Regulator Station associated with the CPL North and CPL South mainlines.

The characterization of land use within the proposed CPL North, CPL South, and Associated Facilities project areas is based on interpretation of aerial photographs taken in the spring of 2014 and information gathered from field surveys conducted during 2014 and 2015. Transco classified land uses within the proposed CPL North, CPL South, and Associated Facilities project areas into the following eight broad types:

- <u>Agricultural Land</u> land associated with active cultivation of row and field crops; areas of grasses planted for livestock grazing or for the production of hay crops; orchards; and specialty crops, including vineyards, Christmas trees, and fruits and vegetables.
- <u>Upland Forest/Woodland</u> includes upland deciduous forest, evergreen forest, and mixed (deciduous and evergreen) forest, but does not include forested wetlands.
- <u>Industrial/Commercial Land</u> land used for mines or quarries and associated processing plants; manufacturing or other industrial facilities; and land developed for commercial or retail uses, including malls, strip plazas, business parks, and medical facilities.
- <u>Transportation Land</u> land used for transportation purposes, including interstate highways; state, county, and local highways and roads; and railroad lines.

- Residential Land residential areas, including yards of individual residences.
- Open Land non-forested and undeveloped land not classified for another use, including land maintained as utility ROWs for overhead and underground electric transmission, natural gas transmission, and oil transmission facilities.
- Wetlands includes wetlands covered with emergent, scrub-shrub, and forested vegetation.
- Open Water include rivers, streams, creeks, canals, and other linear waterbodies, as well as lakes, ponds, and other non-flowing waterbodies.

New MLVs will be wholly located within the permanent ROWs for the proposed CPL North and CPL South mainlines. Construction will primarily occur within the proposed CPL North and CPL South construction ROWs. Land uses appear to have remained similar for the past 50 years.

Table 1.3.1 Land Requirements for the New Aboveground Facilities^a

Facility	Milepost	County	Lar	Agricultural Land (acres)		Upland Forest / Woodland (acres)		Open Land (acres)		Total (acres)	
			Cons	Op	Cons	Op	Cons	Op	Cons	Op	
West Diamond Regulator Station with pig launcher and receiver	L114.0	Columbia	0.0	0.0	3.0	3.0	1.8	1.4	4.8	4.4	
Colu	32.8	32.8	0.7	0.7	1.8	1.4	38.3	37.9			

Notes:

Kev

Cons = Construction

L = Leidy Line system milepost

Op = Operation

Please refer to the PCSM/SR Plans and Detail Sheets, as provided in **Section 3 of the ESCGP-2 NOI**, and Section 1.2 and Appendix C of this PCSM/SR Narrative for information on the Site soils

Land use acreages for construction and operation are provided for reference only. Acreages provided were calculated by using kmz files and prepared as part of the June 8, 2015 FERC Supplement. Refer to plans and ESCGP-2 NOI for actual site conditions.

1.4 Stormwater Management Calculation Methodology & Net Change in Volume and Rate of Runoff

Runoff volume and rate calculations have been performed for the Site are included in Appendix A.

Pre-development and Post Development runoff hydrographs were developed for the 1-, 2-, 10-, 25-, 50-, and 100-year storm events using the Soil Conservation Service's TR-55 Method. The PCSM/SR BMPs will meet the volume reduction and water quality requirements of Control Guideline 1 (CG 1). Water Quality Worksheet #4 was used to complete the CG 1 volume analysis for the 2-year storm event. Stormwater models were created using the HydroCAD Version 7.10 computer program produced by HydroCAD Software Solutions, LLC. Stormwater conveyance calculations were performed using Worksheet 11 of the Pennsylvania Erosion and Sediment Pollution Control (E&S) Program Manual. (Analysis of rates and flows at each point of interest (POI) were completed to meet CG 1 Requirements.) National Oceanic Atmospheric Administration (NOAA) Atlas 14 rainfall intensities were used in the calculations. See Appendix A for calculations and results.

POI Summary:

POI A: Subarea of POI 1 (Improvements associated with pad area and basins) (UNT to West Creek)

POI B: Subarea of POI 1 (Improvements associated with permanent access road and roadside swale) (UNT to West Creek)

POI 1: Where POI A and POI B combine (downstream at West Creek)

Overall Site: West Creek

Volume Summary Table

VOLUME SUMMARY										
	2- YR PRE (FT³)	2- YR POST (FT³)	2- YR VOLUME INCREASE (FT³)	2- YR STRUCTURAL AND NONSTRUCTURAL CREDITS (FT³)	DIFFERENCE (FT³)					
POI A	11,197	17,135	5,938	9,050	3,111					
POI B	7,548	8,564	1,016	1,602	584					
POI 1	18,745	25,699	6,954	10,652	3,695					

^{*}See Appendix A.5 for calculations.

Runoff Rate Summary Table

STORM	POIN	POINT OF INTEREST A			NT OF IN	TEREST B	POINT OF INTEREST 1			
EVENT	PRE	POST	REDUCTION	PRE	POST	REDUCTION	PRE	POST	REDUCTION	
	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)	
1-yr	1.39	1.16	0.23	1.06	0.87	0.19	2.42	2.01	0.41	
2-yr	2.51	1.94	0.57	1.89	1.50	0.39	4.32	3.43	0.89	
5-yr	4.20	3.07	1.13	3.27	2.56	0.71	7.21	5.55	1.66	
10-yr	5.63	3.98	1.65	4.39	3.39	1.00	9.64	7.28	2.36	
25-yr	7.74	5.32	2.42	6.05	4.62	1.43	13.24	9.83	3.41	
50-yr	9.48	6.41	3.07	7.41	5.62	1.79	16.21	11.97	4.24	
100-yr	11.31	9.71	1.60	8.84	6.72	2.12	19.33	16.42	2.91	

^{*}See Appendix A.1 for Pre-Development Calculations with Mapping and Appendix A.2 for Post Development Calculations with Mapping.

Act 167 Summary

The Site is not located within a current, PADEP approved Act 167 Stormwater Management Watershed Plan. Therefore, the Site was designed to meet CG 1 requirements.

1.5 Surface Water Classification

The PCSM/SR drawings in **Section 3 of the ESCGP-2 NOI** depict the locations of the streams and wetlands in and near the LOD for the Site. The Site area surface water runoff drain to two different UNT to West Creek, which are not High Quality (HQ) or Exceptional Value (EV) streams. The receiving waters are designated as Cold Water Fishery (CWF) under PA Code 25 Chapter 93. The Site's watersheds are not listed as impaired in the PADEP Chapter 93 Integrated List.

1.6 BMP Description Narrative

The structural PCSM BMPs listed below are to be used for this Site. The calculations used to design the PCSM BMPs are included in Appendix A. The locations of the PCSM BMPs are shown on the PCSM/SR Plans and Detail Sheets (**Section 3 of the ESCGP-2 NOI**).

<u>Vegetated Swales with *Earthen* Check Dams</u>: A vegetated swale with earthen check dams will be utilized to manage post construction stormwater runoff.

<u>Rain Garden</u>: Infiltration will occur within Rain Garden #1 will be utilized to infiltrate post construction stormwater runoff and provide runoff rate and volume control.

<u>Stormwater Management Basin</u>: Connected to the infiltration area of Basin #1, a stormwater area will be utilized to provide runoff rate control, only.

<u>Minimize Total Disturbed Areas – Grading</u>: The extent of proposed earthwork on the Project Site will be minimized in order to avoid special value/sensitive areas and reduce disturbed areas. Orange construction fence will be used to protect special value/sensitive areas during construction.

Minimize Soil Compaction in Disturbed Areas: Soil compaction within the limit of disturbance will be minimized to the extent practicable in order to protect soil quality, preserve permeability and protect the soil from damage where possible. Minimum compaction areas will be surrounded by orange construction fence for the duration of construction activities to ensure minimum compaction.

<u>Disconnection from Storm Sewers</u>: In order to enhance infiltration and pollutant removal, reduce stormwater runoff volume, slow runoff velocities, and reduce peak discharge rates, stormwater runoff from impervious areas will be directed to infiltration areas and vegetated swales. This will also reduce or eliminate the need for curbs, gutters, inlets and storm sewers.

<u>Soil Amendment and Restoration</u>: Soil amendments shall be added to Basin areas after construction in order to restore soil porosity and enhance long term infiltration.

Reduce parking impervious area: Impervious parking areas will be minimized to the maximum extent practicable. All roads and pads will be gravel areas.

1.7 BMP Installation Sequence Narrative

- 1. At least 7 days prior to starting any earth disturbance activities, including clearing and grubbing, the owner and/or operator shall invite all contractors, Environmental Inspectors, the landowner, appropriate municipal officials, the E&S plan preparer, the PCSM plan preparer, the licensed professional responsible for oversight of critical stages of implementation of the PCSM plan, and a representative from the local conservation district to an on-site preconstruction meeting.
- 2. At least 3 days prior to starting any earth disturbance activities, or expanding into an area previously unmarked, the Pennsylvania One Call System Inc. shall be notified at 1-800-242-1776 for the location of existing underground utilities.
- 3. Install orange construction fence around areas to be protected.
- 4. Locate staging areas and access points including construction entrances. Field locate limits of disturbance.
- 5. Install rock construction entrance (RCE) at temporary access road.
- 6. Remove brush to effectively install perimeter controls, level side cuts to grant access for vehicles and workers to safely perform the installation of sediment barriers on the Site as shown on the construction drawings.
- 7. The Compliance Manager shall provide PADEP and CCD at least three days' notice prior to bulk earth disturbance and upon completed installation of perimeter erosion controls.
- 8. Install temporary access road. Construction of temporary access road shall be fully completed and stabilized prior to any additional disturbance occurs on site.
- Install waterbars. Any E&SC BMPs associated with the construction of the pipeline should remain in place until construction of pipeline and facility is completed and the areas are stabilized.

- 10. * Install Sediment Trap with temporary riser orifice configuration, including clay core, antiseep collars, slope liners, cleanout stake, and associated improvements. Install orange construction fence at perimeter of trap to prevent compaction of soils.
- 11. Proceed with major clearing and grubbing.
- 12. Begin construction staking for grading.
- 13. Begin grading and strip and stockpile topsoil within the regulator station area and install sediment barriers around stockpiles.
- 14. Upon temporary cessation of an earth disturbance activity or any stage of an activity where the cessation of earth disturbance activities will exceed four days, the Site shall be immediately seeded, mulched, or otherwise protected from accelerated erosion and sedimentation pending future earth disturbance activities. For an earth disturbance activity or any stage of an activity to be considered temporarily stabilized, the disturbed areas shall be covered with one of the following: A minimum uniform coverage of mulch and seed, with a density capable of resisting accelerated erosion and sedimentation, or an acceptable BMP which temporarily minimizes accelerated erosion and sedimentation. Temporary stabilization will not occur on active vehicular travel ways within the ROW. The onsite environmental inspector will log daily activity within the LOD and notify the Contractor of areas requiring temporary stabilization (i.e., areas where work has ceased for at least four days).
- 15. Rough grade Site.
- 16. Grade the regulator station pad as shown on the E&SC and PCSM/SR Plans (Sections 2 and 3 of the ESCGP-2 NOI).
- 17. Immediately stabilize side slopes with erosion control matting when slopes are 3:1 or greater. See PCSM/SR Plans and Detail Sheets, as provided in **Section 3 of the ESCGP-2 NOI**, (patterns differ by slope category). Install rip rap slope stabilization where shown on the PCSM/SR Plans.
- 18. Establish final grade.
- 19. Surface Stabilization, apply permanent stabilization measures immediately to any disturbed areas where work has reached final grade.

- 20. Construct remainder of stormwater management Basin 1 area. All earth moving associated with this work shall be completed prior to converting temporary riser to the permanent riser configuration. Any excess excavation material that will not be used onsite shall be hauled offsite.
- 21. Upon completion of all earthwork activities and permanent stabilization of all disturbed areas, the Owner and/or Operators shall contact the local CCD for an inspection prior to the removal/conversion of the E&SC BMPs.
- 22. * Convert trap to permanent Basin 1 configuration by removing all accumulated sediments, removing baffles and amending soils on basin bottom. Immediately seed and stabilize basin, install erosion control blanket on basin slopes, and install CFS on interior toe of slope. Haul off site any excess material not used and left over from the conversion of the basin.
- 23. * Reconfigure temporary riser to permanent outlet structure by permanently sealing the 1" orifices. Install emergency spillway.
- 24. * Once construction for the regulator station and the pipeline is complete and the areas are stabilized, install permanent access road and associated BMPs (vegetated roadside swales with earthen check dams and riprap outlet protection). Any waterbars associated with the pipeline construction that are impacted by the construction of the permanent access road should be removed.
- Remove temporary access road. Restore temporary access road area to predevelopment grades. Immediately seed and stabilize area disturbed during removal of access road.
- 26. After finish grading and topsoil placement is completed, disturbed areas shall be fertilized, seeded, and mulched. Seed mixtures, fertilizer and mulch applications rates and dates shall conform to the tables provided on the PCSM/SR Plans and Detail Sheets (Section 3 of the ESCGP-2 NOI), land owner agreements and/or the ECP (Section 4 of the ESCGP-2 NOI).
- 27. After seeding, fertilizing and mulching is complete, install ECBs as required or ordered or on slopes of 3:1 or greater.
- 28. After the Site is permanently stabilized and upon PADEP or local CCD and Owner approval of stabilization and re-vegetation, remove temporary erosion and sediment control measures and stabilize areas disturbed by removal.

29. * Complete Site stabilization, including soil amendment, seed application, ECB installation in basins, and mulching.

- 30. Upon completion of all earth disturbance activities, the Owner and/or Operators shall contact the local CCD for a final inspection.
- 31. Maintain E&SC BMPs until site work is complete and uniform 70% perennial vegetative cover is established.
- 32. Remove and properly dispose/recycle E&SC BMPs. Remove orange construction fence. Repair and permanently stabilize areas disturbed during E&SC BMP removal upon establishment of uniform 70% vegetative cover.
- * indicates a critical stage of PCSM installation to be observed by a licensed professional or designee. Contractor to provide three working days' notice to Design Engineer.

1.8 Supporting Calculations

Supporting calculations are included in Appendix A.

1.9 Plan Drawings

PCSM/SR Plans, including sensitive resource mapping, are included in **Section 3 of the ESCGP-2 NOI**.

1.10 Long Term Operation and Maintenance Schedule

Monitoring

Transco's personnel (Operations) will perform visual inspections on an annual basis after permit closure, by qualified personnel, trained and experienced in PCSM/SR, to ascertain that the BMPs are functioning and operating effectively to ensure West Diamond Regulator Station are causing no undue burden on the property owner or adjacent owners. Repairs of deficiencies will be initiated within ten business days of discovery.

Maintenance

The Contractor will be responsible for the maintenance of the system during construction. After construction, the stormwater management facilities will be owned and maintained by Transco.

Where maintenance of the storm system after acceptance by the Owner will primarily consist of routine cleaning of accumulated sediment and debris by facility staff or private contractors, the specific maintenance steps and schedule are listed below:

1. Stormwater/Infiltration Basins

Inspect stormwater/infiltration facilities annually and inspect soil, repair eroded areas and remove litter and debris as needed. Inspect twice a year for sediment buildup, erosion and vegetative conditions. Remove and replace dead and diseased vegetation. Any litter, debris, sediment, vegetation, or other items removed during maintenance activities will be disposed of in a manner consistent with the ESCGP-2 requirements. *Compaction of the basin bottom shall be prevented.*

2. Vegetated Swales with *Earthen* Check Dams

Vegetated swales with Earthen Check Dams are to be inspected annually for sediment, build-up, erosion debris, and damage due to traffic. Ditches should be maintained to ensure that the specified design dimensions and vegetative lining are available at all times. No more than one-third of the shoot (grass leaf) shall be removed in any mowing. Grass height shall be maintained between 3 and 6 inches unless otherwise specified. Excess vegetation shall be removed from permanent channels to ensure sufficient channel capacity. Any litter, debris, sediment, vegetation, or other items removed during maintenance activities will be disposed of in a manner consistent with the ESCGP-2 requirements.

3. Minimize Soil Compaction

- Protected areas restrict vehicle access, do not clear vegetation. Avoid earth disturbance.
- Minimum disturbance areas Restrict vehicle access.

4. Disconnection from Storm Sewers

Disconnected impervious areas shall continue to be directed to infiltration areas and vegetated swales as shown on the PCSM/SR Plans (Section 3 of the ESCGP-2 NOI). Infiltration areas and vegetated swales shall be maintained as indicated on the PCSM/SR Plans (Section 3 of the ESCGP-2 NOI).

5. Soil Amendments and Restoration

Restrict vehicle access. Monitor water drawdown time in infiltration areas and replace amended soils if dewatering time increases to more than three days. Maintain Infiltration areas and vegetated swales as indicated on the PCSM/SR Plans.

6. Reduce Parking Area/Street Area Imperviousness

Gravel areas will be maintained in good condition and will not be paved without obtaining prior approval from the PADEP or the County Conservation District.

7. Level Spreader

Inspect area below the level spreader on a quarterly basis for the first two years after installation and annually thereafter. Remove sediment and debris from the level spreader when it interferes with proper function. Regrade and reseed any channelized or eroded areas that develop below the level spreader. Regrade any newly occurring areas where water stands for longer than 72 hours. Inspect vegetation for the first growing season. Conduct health, diversity and density inspection twice a year after the first growing season. Maintain vegetative cover at 85%.

8. Annual Records of Maintenance Procedures

The facility shall maintain a checklist whenever the storm system is inspected and cleaned. An annual list of inspections and major cleaning operations and repairs (pumping, sweeping parking lots, cleaning catch basin, etc.) shall be maintained. The local CCD or enforcement officials shall have access to those records.

9. ESCGP-2

The facility Owner and Operator shall ensure compliance with ESCGP-2 requirements by meeting all ongoing record, keeping maintenance, and other applicable ESCGP-2 and PADEP permit conditions.

1.11 Material Recycling and Disposal

The restoration of the temporary gravel will require the removal of the temporary materials. The temporary materials include, but may not be limited to, stone surface and

associated geotextiles. The contractors are required to dispose of materials at suitable disposals or recycling sites and in compliance with local, state and federal regulations.

Transco has prepared a Spill Plan for Oil and Hazardous Materials to assist in prevention of any spills that may occur at the Site and to respond to any spills that do occur. The Contractor will be required to become familiar with the Spill Plan for Oil and Hazardous Materials and its contents prior to commencing any construction-related activities. The Spill Plan for Oil and Hazardous Materials is included as **Attachment 9** to the ECP provided as **Section 4** of the ESCGP-2 NOI.

Contractors are required to inventory and manage their construction site materials. The goal is to be aware of the materials on-site; ensure they are properly maintained, used, and disposed of; and to make sure the materials are not exposed to stormwater.

Materials Covered

The following materials or substances are expected to be present on-site during construction (Note: this list is not an all-inclusive list and the Materials Management Practices can be modified to address additional materials used on-site):

- Acids
- Detergents
- Fertilizers (nitrogen/phosphorus)
- Hydroseeding mixtures
- Petroleum based products
- Sanitary wastes
- Soil stabilization additives
- Solder
- Solvents
- Other

These materials must be stored as appropriate and shall not contact storm or nonstormwater discharges. Contractor shall provide a weather proof container to store chemicals or erodible substances that must be kept on the Site. Contractor is responsible for reading, maintaining, and making employees and subcontractors aware of safety data sheets (SDSs).

Material Management Practices

The following are material management practices that will be used to reduce the risk of spills or other accidental exposure of materials and substances to stormwater runoff.

Good Housekeeping Practices

The following good housekeeping practices will be followed on Site during construction:

- Store only enough material required to do the job.
- Store materials in a neat, orderly manner.
- Store chemicals in watertight containers or in a storage shed, under a roof, completely enclosed, with appropriate secondary containment to prevent spill or leakage. Drip pans shall be provided under dispensers.
- Substances will not be mixed with one another unless recommended by the Manufacturer.
- Manufacturer's recommendations for proper use and disposal will be followed.
- Inspections will be performed to ensure proper use and disposal of materials.
- Cover and berm loose stockpiled construction materials that are not actively being used (i.e. Soil, spoils, aggregate, etc.).
- Minimize exposure of construction materials to precipitation.
- Minimize the potential for off-site tracking of loose construction and landscape materials.

2. Hazardous Products

These practices will be used to reduce the risks associated with hazardous materials. SDSs for each substance with hazardous properties that is used on the job site(s) will be obtained and used for the proper management of potential wastes that may result from these products. A SDS will be posted in the immediate area where such product is stored and/or used and another copy of each SDS will be maintained in a file at the job site construction trailer office. Each employee, who must handle a substance with hazardous properties, will be instructed on the use of SDS and the specific information in the applicable SDS for the product he/she is using, particularly regarding spill control techniques.

- Products will be kept in original containers with the original labels in legible condition.
- Original labels and SDSs will be produced and used for each material.
- If surplus product must be disposed of, manufacturers or local/state/federal recommended methods for proper disposal will be followed.

Hazardous Wastes

All hazardous waste materials will be disposed of by the Contractor in the manner specified by local, state, and/or federal regulations and by the manufacturer of such products. Site personnel will be instructed.

4. Concrete and Other Wash Waters

Prevent disposal of rinse, wash waters, or materials on impervious or pervious surfaces, into streams, wetlands or other water bodies.

Concrete trucks will be allowed to wash out or discharge surplus concrete or drum wash water on the Site, but only in either (1) specifically designated diked areas which have been prepared to prevent contact between the concrete and/or washout and soil and stormwater having the potential to be discharged from the Site; or (2) in locations where waste concrete can be poured into forms to make riprap or other useful concrete products.

The hardened residue from the concrete washout diked areas will be disposed of in the same manner as other non-hazardous construction waste materials or may be broken up and used on the Site as deemed appropriate by the Contractor and Owner or Owner's representative. The Contractor will be responsible for seeing that these procedures are followed.

All concrete washout areas will be located in an area where the likelihood of the area contributing to stormwater discharge is negligible. If required, additional E&SC BMPs must be implemented to prevent concrete wastes from contributing to stormwater discharges. The location of the concrete washout area(s) must be identified, by the Contractor/Job Site Superintendent, on the job site copy of the E&SC Plans (Section 2 of the ESCGP-2 NOI) and in the E&SC Narrative.

5. Sanitary Wastes

All sanitary waste units will be located in an area where the likelihood of the unit contributing to stormwater discharges is negligible. Additional E&SC BMPs must be implemented, such as containment trays (provided by the rental company) or special containment created with 2" x 4" lumber, impervious plastic, and gravel. The location of the sanitary waste units must be identified on the job site copy of the E&SC Plans (Section 2 of the ESCGP-2 NOI), in the E&SC Narrative, by the Contractor/Job Site Superintendent.

Solid and Construction Wastes

All waste materials will be collected and stored in a securely lidded metal dumpster. The dumpster will comply with all local and state solid waste management regulations. The dumpster/container lids shall be closed at the end of every business day and during rain events. Appropriate measures shall be taken to prevent discharges from waste disposal containers to the receiving water.

7. Construction Access

A stabilized construction exit will be provided to help reduce vehicle tracking of sediments. The paved roads adjacent to the Site entrance will be inspected daily and swept as necessary to remove any excess mud, dirt, or rock tracked from the Site. Dump trucks hauling material from the construction site will be covered with a tarpaulin as necessary.

8. Petroleum Products

On-site vehicles will be monitored for leaks and receive regular preventative maintenance. Petroleum products will be stored in tightly sealed containers which are clearly labeled. Petroleum storage tanks on-site will have a dike or berm containment structure constructed around it to contain spills which may occur (containment volume to be 110% of volume stored). The dike or bermed area shall be lined with an impervious material such as a heavy duty plastic sheet. Drip pans shall be provided for all dispensers. Any asphalt substances used on the Site will be applied according to the manufacturer's recommendations.

9. Fertilizers and Landscape Materials

Fertilizers will be applied only in the minimum amounts recommended by the manufacturer. Once applied, fertilizer will be worked into the soil to minimize the potential for exposure to stormwater. Storage will be under cover. The contents of

any partially used bags of fertilizer will be transferred to a sealable plastic bin to minimize the potential for spills. The bin shall be labeled appropriately.

Contain stockpiled materials, such as but not limited to, mulches, top soil, rocks and gravel, and decomposed granite, when they are not actively being used.

Apply erodible landscape material at quantities and application rates according to the manufacturer's recommendations or based on written specifications by knowledgeable and experienced field personnel. Discontinue the application of any erodible landscape material within two days prior to a forecasted rain event or during periods of precipitation.

10. Paints, Paint Solvents and Cleaning Solvents

Containers will be tightly sealed and stored when not in use. Excess paint and solvents will be properly disposed of according to the manufacturer's recommendations or local, state, and/or federal regulations.

11. Contaminated Soils

Any contaminated soils (resulting from spills of materials with hazardous properties) which may result from construction activities will be contained and cleaned up immediately in accordance with applicable local, state and federal regulations.

1.12 Soil Conditions and Geologic Formations

There are no naturally occurring geologic formations or soils on-site are expected that may have the potential to cause pollution during earth disturbance activities. See E&SC Detail Sheets (**Section 2 of the ESCGP-2 NOI**) for Acid-Producing Soils and Bedrock Control Plan should any unexpected acid runoff producing soils be encountered.

1.13 Thermal Impacts

Thermal impacts associated with CPL North, CPL South, and Associated Facilities will be avoided to the maximum extent practicable. The following provisions related to thermal impacts are included in the **E&SC Plan** within **Section 2 of the ESCGP-2 NOI**:

- The minimum permanent changes in land cover, necessary to construct the required facilities are being proposed.
- Runoff from the permanent impervious areas will be collected as part of the Post Construction Stormwater Management/Site Restoration (PCSM/SR) Plan and

routed to PCSM/SR BMPs. In addition, impervious areas will be gravel instead of asphalt wherever practical.

- PCSM/SR BMPs incorporate the use of infiltration facilities such as basins and vegetated swales with *Earthen* Check Dams.
- The removal of vegetation, especially tree cover, will be limited to only that necessary for construction.
- The amount of impervious surfaces will be limited to only that necessary to support the construction of CPL North, CPL South, and Associated Facilities and/or operation of the pipeline.
- The impacts to existing riparian corridors will be limited to only that necessary for construction.

1.14 Riparian Forest Buffer Management Plan

There are no regulated riparian buffers within the Site area.

1.15 Antidegradation Requirements

The Site is not located in a special protection or siltation impaired watershed; therefore, no antidegradation analysis is necessary.

1.16 Preparedness Prevention and Contingency Plan

See Attachment 9 of the **ECP** within **Section 4 of the ESCGP-2 NOI** for the Preparedness Prevention and Contingency Plan provided.

APPENDICES

Appendix A West Diamond Regulator Station Supporting Calculations

A.1 Pre-Development CalculationsA.2 Post Development Calculations

A.3 Conveyance CalculationsA.4 PCSM BMP Calculations

A.5 Water Quality Worksheets

A.6 Site Characterization Assessment

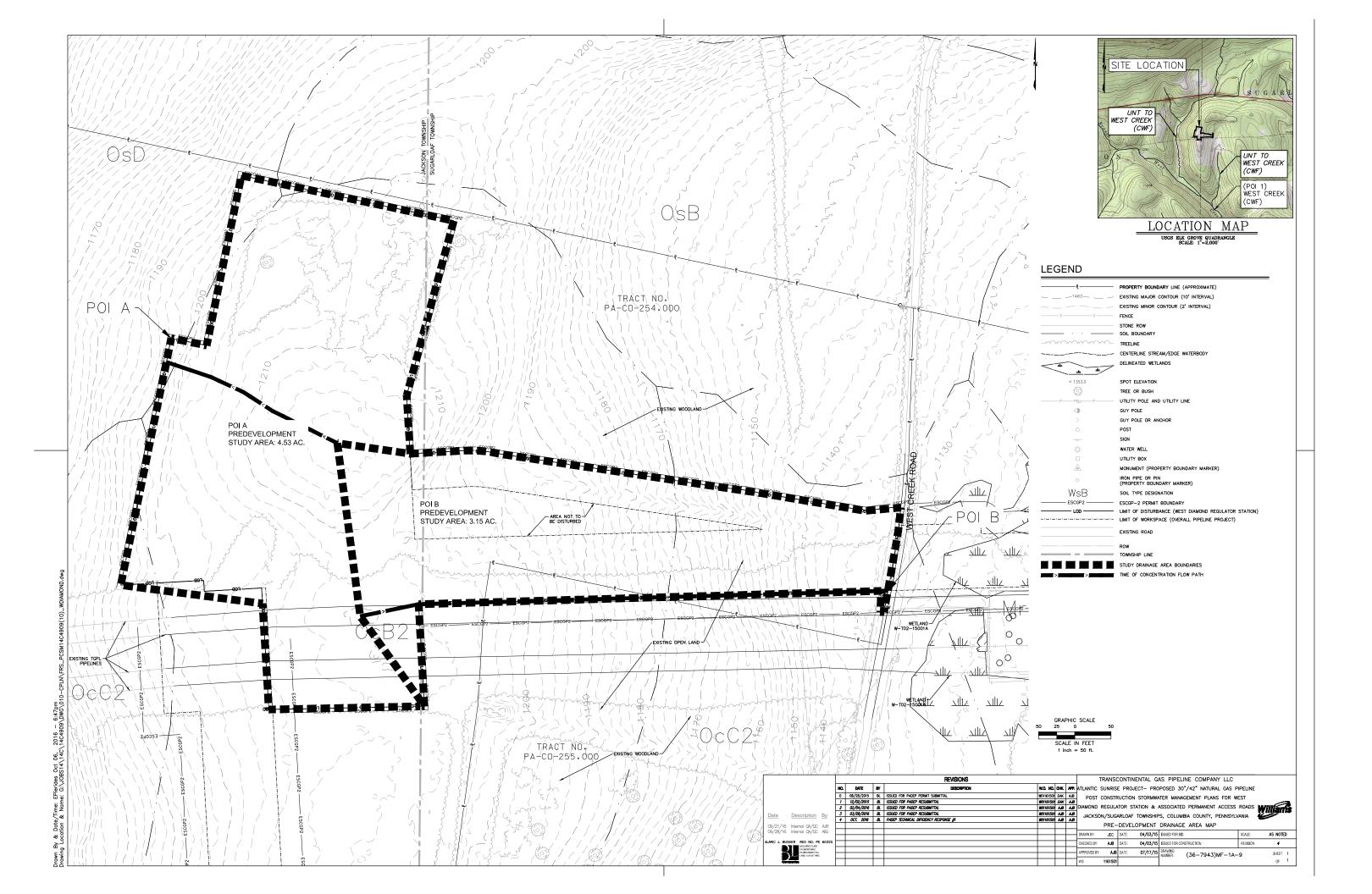
A.7 Supporting Documentation

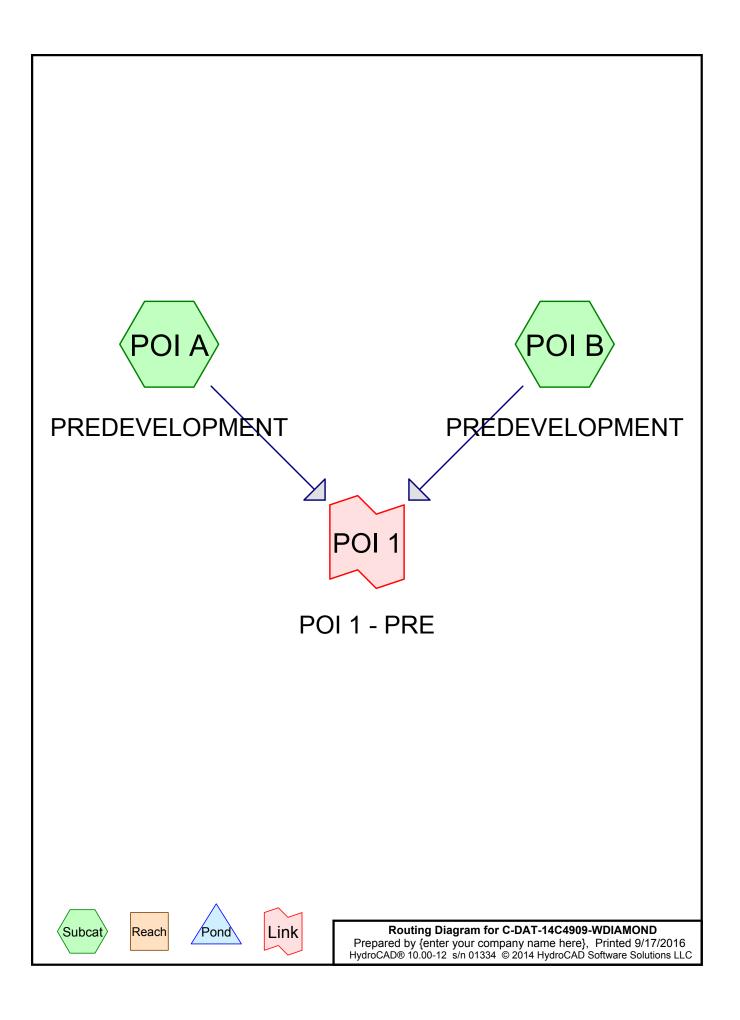
Appendix B Preparer Qualifications

Appendix C United States Department of Agriculture (USDA) Natural

Resources Conservation Service (NRCS) Custom Soil

Resource Report

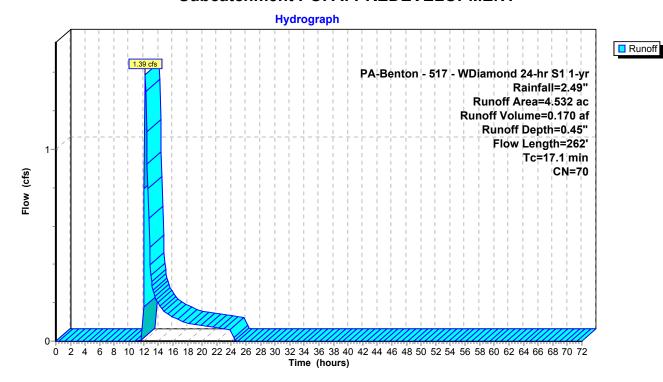

APPENDIX A


West Diamond Regulator Station Supporting Calculations

- A.1 Pre-Development Calculations
- A.2 Post Development Calculations
- A.3 Conveyance Calculations
- A.4 PCSM BMP Calculations
- A.5 Water Quality Worksheets
- A.6 Site Characterization Assessment
- A.7 Supporting Documentation

A.1 Pre-Development Calculations

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 1

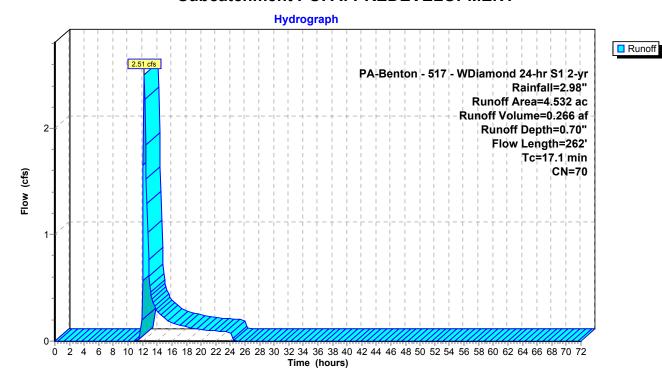
Summary for Subcatchment POI A: PREDEVELOPMENT

Runoff = 1.39 cfs @ 12.24 hrs, Volume= 0.170 af, Depth= 0.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 1-yr Rainfall=2.49"

Area	(ac) C	N Desc	cription		
			ds, Good,		
1.	.697 7	<u>'1 Mea</u>	dow, non-g	grazed, HS	G C
4.	.532 7	'0 Weig	ghted Aver	age	
4.	.532	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.4	100	0.0500	0.11		Sheet Flow, SHT 1
					Woods: Light underbrush n= 0.400 P2= 2.98"
1.5	127	0.0787	1.40		Shallow Concentrated Flow, SCF 1
					Woodland Kv= 5.0 fps
0.2	35	0.2290	2.39		Shallow Concentrated Flow, SCF 2
					Woodland Kv= 5.0 fps
17.1	262	Total			

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 2

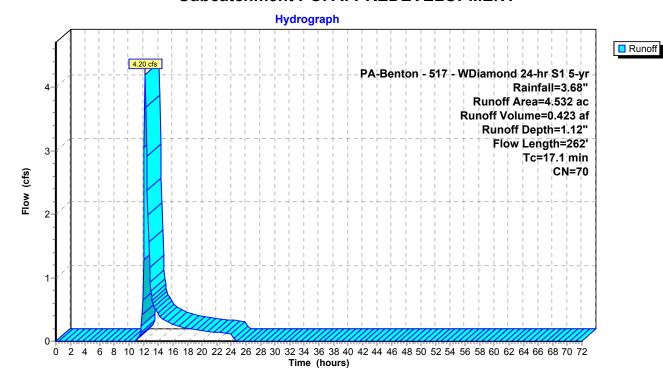
Summary for Subcatchment POI A: PREDEVELOPMENT

Runoff = 2.51 cfs @ 12.23 hrs, Volume= 0.266 af, Depth= 0.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 2-yr Rainfall=2.98"

Area	(ac) C	N Desc	cription		
2.	835 7	'0 Woo	ds, Good,	HSG C	
1.	697 7	'1 Mea	dow, non-	grazed, HS	GC
4.	532 7	'0 Weig	ghted Aver	age	
4.	. , ,	ous Area			
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.4	100	0.0500	0.11		Sheet Flow, SHT 1
					Woods: Light underbrush n= 0.400 P2= 2.98"
1.5	127	0.0787	1.40		Shallow Concentrated Flow, SCF 1
					Woodland Kv= 5.0 fps
0.2	35	0.2290	2.39		Shallow Concentrated Flow, SCF 2
					Woodland Kv= 5.0 fps
17.1	262	Total			

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 3

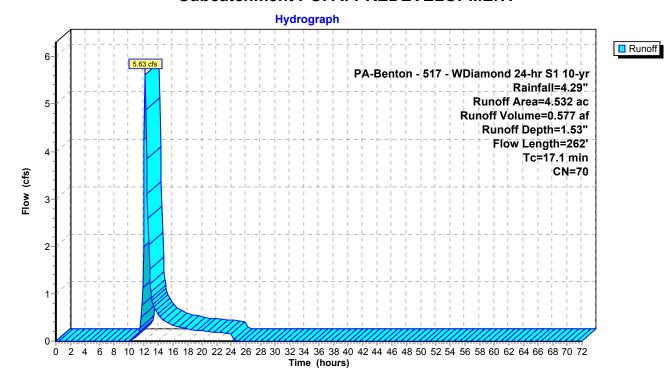
Summary for Subcatchment POI A: PREDEVELOPMENT

Runoff = 4.20 cfs @ 12.22 hrs, Volume= 0.423 af, Depth= 1.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 5-yr Rainfall=3.68"

Area	(ac) C	N Desc	cription		
1.	<u>697 7</u>	'1 Mea	<u>dow, non-</u>	grazed, HS	GC
4.	, , ,	age			
4.	2.835 70 Woods, Good, HSG 0 1.697 71 Meadow, non-grazed 4.532 70 Weighted Average 4.532 100.00% Pervious Ar Tc Length Slope Velocity Capa (min) (feet) (ft/ft) (ft/sec) (6) 15.4 100 0.0500 0.11 1.5 127 0.0787 1.40 0.2 35 0.2290 2.39				
Тс	-	•	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.4	100	0.0500	0.11		Sheet Flow, SHT 1
					Woods: Light underbrush n= 0.400 P2= 2.98"
1.5	127	0.0787	1.40		Shallow Concentrated Flow, SCF 1
					Woodland Kv= 5.0 fps
0.2	35	0.2290	2.39		Shallow Concentrated Flow, SCF 2
					Woodland Kv= 5.0 fps
17.1	262	Total			

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 4

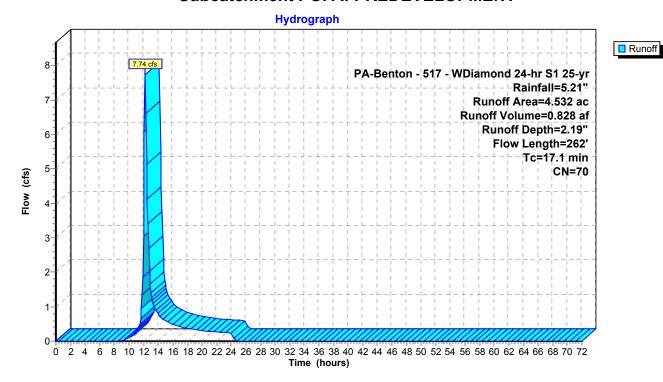
Summary for Subcatchment POI A: PREDEVELOPMENT

Runoff = 5.63 cfs @ 12.22 hrs, Volume= 0.577 af, Depth= 1.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 10-yr Rainfall=4.29"

Area	(ac) C	N Desc	cription		
2.	835 7	'0 Woo	ds, Good,	HSG C	
1.	697 7	'1 Mea	dow, non-	grazed, HS	GC
4.	532 7	'0 Weig	ghted Aver	age	
4.	. , ,	ous Area			
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.4	100	0.0500	0.11		Sheet Flow, SHT 1
					Woods: Light underbrush n= 0.400 P2= 2.98"
1.5	127	0.0787	1.40		Shallow Concentrated Flow, SCF 1
					Woodland Kv= 5.0 fps
0.2	35	0.2290	2.39		Shallow Concentrated Flow, SCF 2
					Woodland Kv= 5.0 fps
17.1	262	Total			

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 5

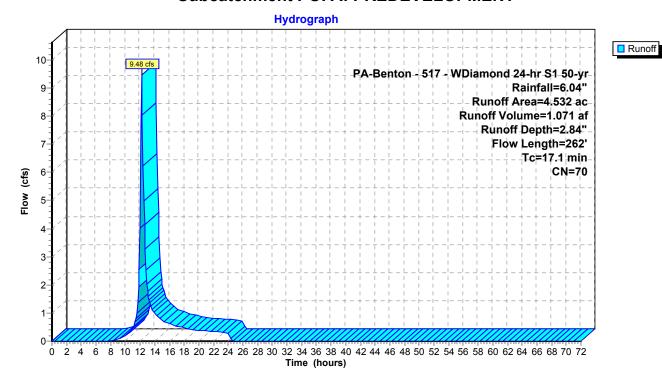
Summary for Subcatchment POI A: PREDEVELOPMENT

Runoff = 7.74 cfs @ 12.21 hrs, Volume= 0.828 af, Depth= 2.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 25-yr Rainfall=5.21"

Area	(ac) C	N Desc	cription		
1.	<u>697 7</u>	'1 Mea	<u>dow, non-</u>	grazed, HS	GC
4.	, , ,	age			
4.	2.835 70 Woods, Good, HSG 0 1.697 71 Meadow, non-grazed 4.532 70 Weighted Average 4.532 100.00% Pervious Ar Tc Length Slope Velocity Capa (min) (feet) (ft/ft) (ft/sec) (6) 15.4 100 0.0500 0.11 1.5 127 0.0787 1.40 0.2 35 0.2290 2.39				
Тс	-	•	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.4	100	0.0500	0.11		Sheet Flow, SHT 1
					Woods: Light underbrush n= 0.400 P2= 2.98"
1.5	127	0.0787	1.40		Shallow Concentrated Flow, SCF 1
					Woodland Kv= 5.0 fps
0.2	35	0.2290	2.39		Shallow Concentrated Flow, SCF 2
					Woodland Kv= 5.0 fps
17.1	262	Total			

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 6

Summary for Subcatchment POI A: PREDEVELOPMENT

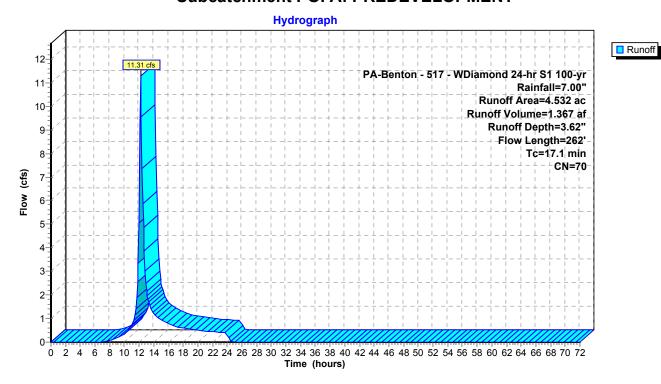
Runoff = 9.48 cfs @ 12.21 hrs, Volume= 1.071 af, Depth= 2.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 50-yr Rainfall=6.04"

Area	(ac) C	N Desc	cription		
1.	<u>697 7</u>	'1 Mea	<u>dow, non-</u>	grazed, HS	GC
4.	, , ,	age			
4.	2.835 70 Woods, Good, HSG 0 1.697 71 Meadow, non-grazed 4.532 70 Weighted Average 4.532 100.00% Pervious Ar Tc Length Slope Velocity Capa (min) (feet) (ft/ft) (ft/sec) (6) 15.4 100 0.0500 0.11 1.5 127 0.0787 1.40 0.2 35 0.2290 2.39				
Тс	-	•	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.4	100	0.0500	0.11		Sheet Flow, SHT 1
					Woods: Light underbrush n= 0.400 P2= 2.98"
1.5	127	0.0787	1.40		Shallow Concentrated Flow, SCF 1
					Woodland Kv= 5.0 fps
0.2	35	0.2290	2.39		Shallow Concentrated Flow, SCF 2
					Woodland Kv= 5.0 fps
17.1	262	Total			

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 7

Summary for Subcatchment POI A: PREDEVELOPMENT

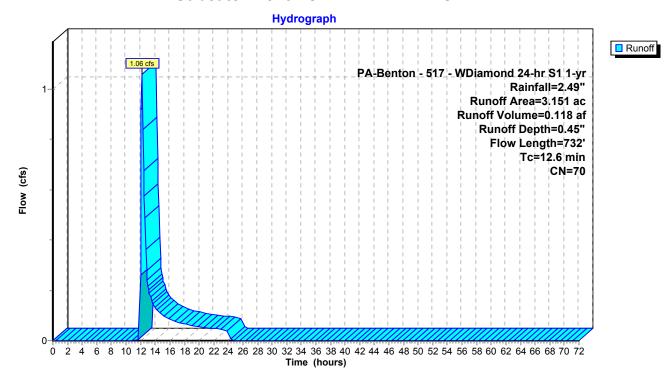
Runoff = 11.31 cfs @ 12.20 hrs, Volume= 1.367 af, Depth= 3.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 100-yr Rainfall=7.00"

	Area	(ac) C	N Des	cription		
-						
	1.	697 7	'1 Mea	dow, non-	grazed, HS	GC
	4.	532 7	'0 Wei	ghted Aver	age	
	4.	, , ,				
	Tc	Length		Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.4	100	0.0500	0.11		Sheet Flow, SHT 1
						Woods: Light underbrush n= 0.400 P2= 2.98"
	1.5	127	0.0787	1.40		Shallow Concentrated Flow, SCF 1
						Woodland Kv= 5.0 fps
	0.2	35	0.2290	2.39		Shallow Concentrated Flow, SCF 2
						Woodland Kv= 5.0 fps
	17 1	262	Total		_	

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 1

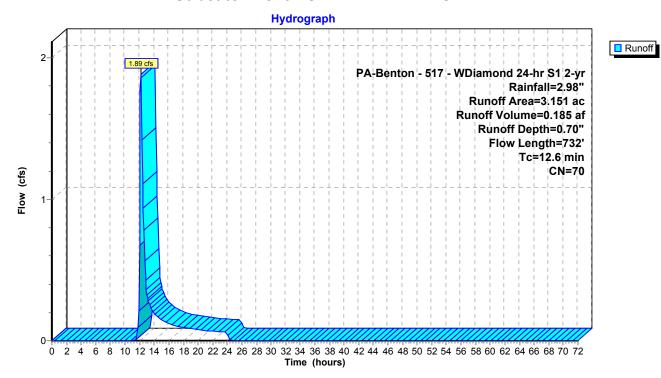
Summary for Subcatchment POI B: PREDEVELOPMENT

Runoff = 1.06 cfs @ 12.19 hrs, Volume= 0.118 af, Depth= 0.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 1-yr Rainfall=2.49"

	Area	(ac) C	N Desc	cription			
	2.	2.091 70 Woods, Good, HSG C 1.060 71 Meadow, non-grazed, H 3.151 70 Weighted Average 3.151 100.00% Pervious Area Tc Length Slope Velocity Capacity	HSG C				
	1.060 71 Meadow, non-grazed, H 3.151 70 Weighted Average 3.151 100.00% Pervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 8.3 100 0.0250 0.20 4.3 632 0.1200 2.42	grazed, HS	G C				
		age					
		ous Area					
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	8.3	100	0.0250	0.20		Sheet Flow, SHT 1	
						Range n= 0.130 P2= 2.98"	
	4.3	632	0.1200	2.42		Shallow Concentrated Flow, SCF 1	
						Short Grass Pasture Kv= 7.0 fps	
	12.6	732	Total				

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

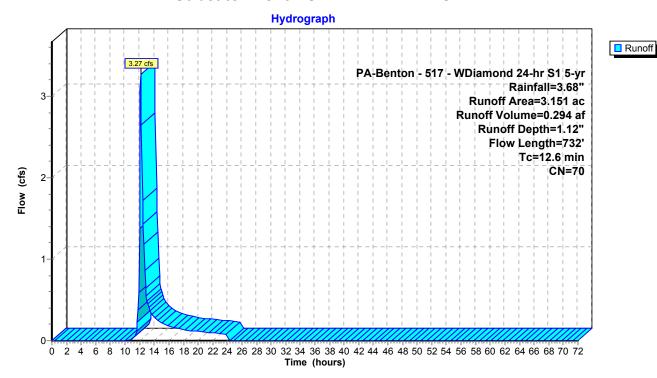

Page 2

Summary for Subcatchment POI B: PREDEVELOPMENT

Runoff = 1.89 cfs @ 12.17 hrs, Volume= 0.185 af, Depth= 0.70"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 2-yr Rainfall=2.98"

_	Area	(ac) C	N Desc	cription		
	2.	091 7	'0 Woo	ds, Good,	HSG C	
_	. , , , ,	grazed, HS	GC			
		age				
	3.	151	100.	00% Pervi	ous Area	
	_	_	•	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.3	100	0.0250	0.20		Sheet Flow, SHT 1
						Range n= 0.130 P2= 2.98"
	4.3	632	0.1200	2.42		Shallow Concentrated Flow, SCF 1
_						Short Grass Pasture Kv= 7.0 fps
	12.6	732	Total			

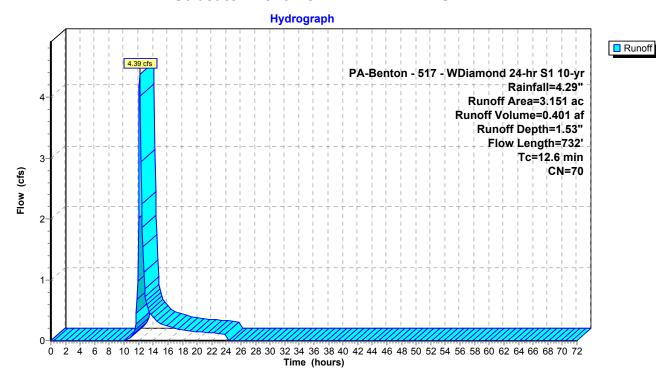

Page 3

Summary for Subcatchment POI B: PREDEVELOPMENT

Runoff = 3.27 cfs @ 12.15 hrs, Volume= 0.294 af, Depth= 1.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 5-yr Rainfall=3.68"

_	Area	(ac) C	N Desc	cription		
	2.	091 7	'0 Woo	ds, Good,	HSG C	
_	. , , , ,	grazed, HS	GC			
		age				
	3.	151	100.	00% Pervi	ous Area	
	_	_	•	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.3	100	0.0250	0.20		Sheet Flow, SHT 1
						Range n= 0.130 P2= 2.98"
	4.3	632	0.1200	2.42		Shallow Concentrated Flow, SCF 1
_						Short Grass Pasture Kv= 7.0 fps
	12.6	732	Total			


Page 4

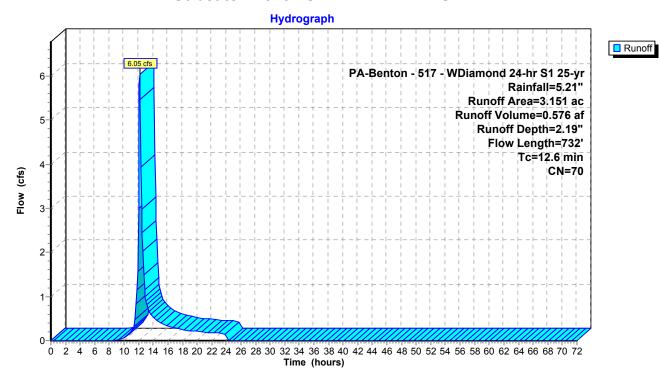
Summary for Subcatchment POI B: PREDEVELOPMENT

Runoff = 4.39 cfs @ 12.14 hrs, Volume= 0.401 af, Depth= 1.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 10-yr Rainfall=4.29"

	Area	(ac) C	N Desc	cription			
	2.	3.151 70 Weighted Average 3.151 100.00% Pervious Area Tc Length Slope Velocity Capacity	HSG C				
	2.091 70 Woods, Good, HSG C 1.060 71 Meadow, non-grazed, H 3.151 70 Weighted Average 3.151 100.00% Pervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 8.3 100 0.0250 0.20 4.3 632 0.1200 2.42	grazed, HS	G C				
		age					
	3.	151	•	,	•		
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	8.3	100	0.0250	0.20		Sheet Flow, SHT 1	
						Range n= 0.130 P2= 2.98"	
	4.3	632	0.1200	2.42		Shallow Concentrated Flow, SCF 1	
						Short Grass Pasture Kv= 7.0 fps	
	12 6	732	Total			·	

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 5

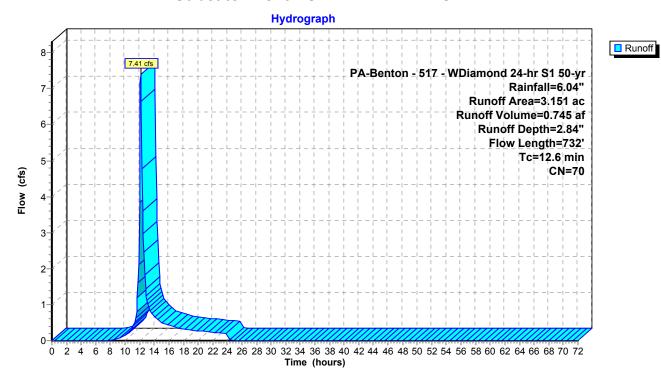
Summary for Subcatchment POI B: PREDEVELOPMENT

Runoff = 6.05 cfs @ 12.14 hrs, Volume= 0.576 af, Depth= 2.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 25-yr Rainfall=5.21"

	Area	(ac) C	N Desc	cription						
	2.	091 7	70 Woo	Woods, Good, HSG C						
	1.	060 7	71 Mea	Meadow, non-grazed, HSG C						
	3.151 70 Weighted Average									
	3.	151	•	00% Pervi	•					
3.73.										
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	8.3	100	0.0250	0.20		Sheet Flow, SHT 1				
						Range n= 0.130 P2= 2.98"				
	4.3	632	0.1200	2.42		Shallow Concentrated Flow, SCF 1				
						Short Grass Pasture Kv= 7.0 fps				
	12 6	732	Total			·				

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 6

Summary for Subcatchment POI B: PREDEVELOPMENT

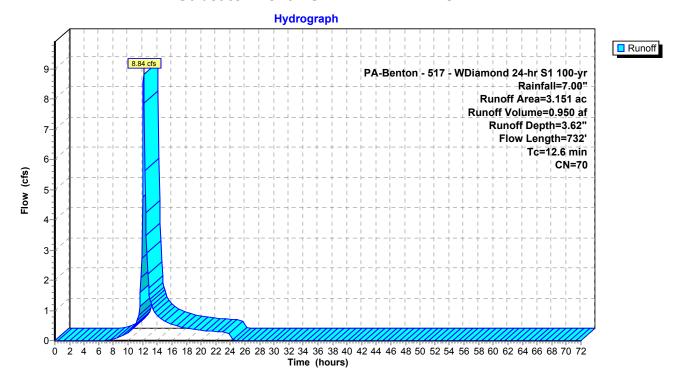
Runoff = 7.41 cfs @ 12.14 hrs, Volume= 0.745 af, Depth= 2.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 50-yr Rainfall=6.04"

	Area	(ac) C	N Desc	cription					
	2.	091 7	70 Woo	Woods, Good, HSG C					
	1.	060 7	1 Mea	dow, non-	grazed, HS	G C			
3.151 70 Weighted Average									
	3.151 100.00% Pervious Area								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.3	100	0.0250	0.20		Sheet Flow, SHT 1			
						Range n= 0.130 P2= 2.98"			
	4.3	632	0.1200	2.42		Shallow Concentrated Flow, SCF 1			
_						Short Grass Pasture Kv= 7.0 fps	_		
	12 6	732	Total						

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 7

Summary for Subcatchment POI B: PREDEVELOPMENT

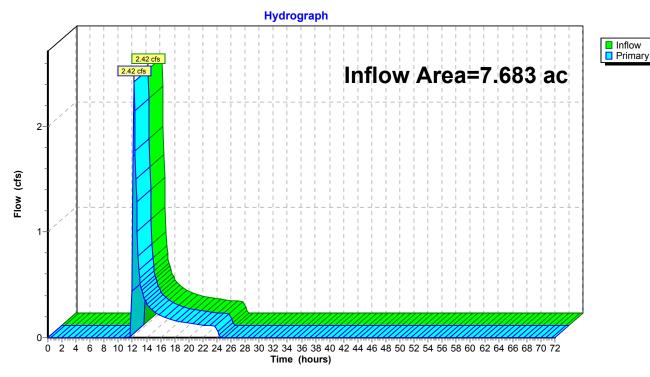
Runoff = 8.84 cfs @ 12.13 hrs, Volume= 0.950 af, Depth= 3.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 100-yr Rainfall=7.00"

_	Area	(ac) C	N Des	cription				
	2.	091 7	70 Woo	ds, Good,	HSG C			
_	1.	060 7	71 Mea	dow, non-	grazed, HS	GC		
	3.	151 7	70 Weig	ghted Aver	age			
3.151 100.00% Pervious Area								
	Тс	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	8.3	100	0.0250	0.20		Sheet Flow, SHT 1		
						Range n= 0.130 P2= 2.98"		
	4.3	632	0.1200	2.42		Shallow Concentrated Flow, SCF 1		
_						Short Grass Pasture Kv= 7.0 fps		
	12.6	732	Total					

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 1


Summary for Link POI 1: POI 1 - PRE

7.683 ac, 0.00% Impervious, Inflow Depth = 0.45" for 1-yr event Inflow Area =

Inflow 2.42 cfs @ 12.22 hrs, Volume= 0.288 af

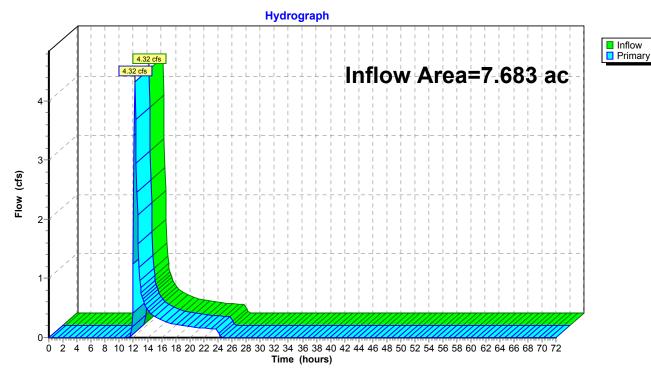
2.42 cfs @ 12.22 hrs, Volume= Primary 0.288 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

Page 2

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Summary for Link POI 1: POI 1 - PRE

Inflow Area = 7.683 ac, 0.00% Impervious, Inflow Depth = 0.70" for 2-yr event

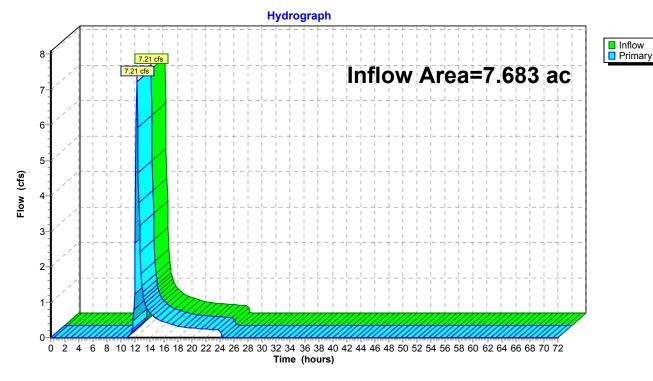
Inflow = 4.32 cfs @ 12.21 hrs, Volume= 0.450 af

Primary = 4.32 cfs @ 12.21 hrs, Volume= 0.450 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 3


Summary for Link POI 1: POI 1 - PRE

7.683 ac, 0.00% Impervious, Inflow Depth = 1.12" for 5-yr event Inflow Area =

Inflow 7.21 cfs @ 12.20 hrs, Volume= 0.718 af

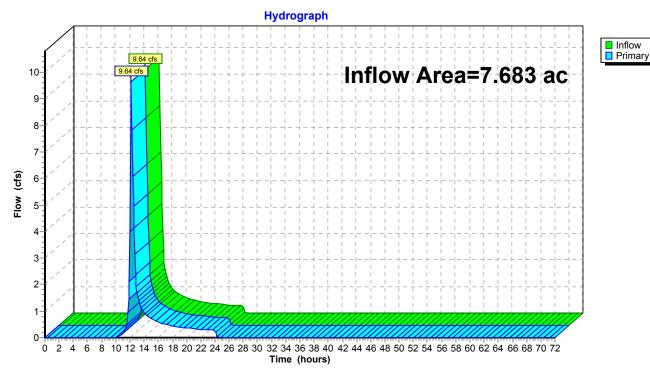
7.21 cfs @ 12.20 hrs, Volume= Primary 0.718 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 4


Summary for Link POI 1: POI 1 - PRE

Inflow Area = 7.683 ac, 0.00% Impervious, Inflow Depth = 1.53" for 10-yr event

Inflow = 9.64 cfs @ 12.19 hrs, Volume= 0.978 af

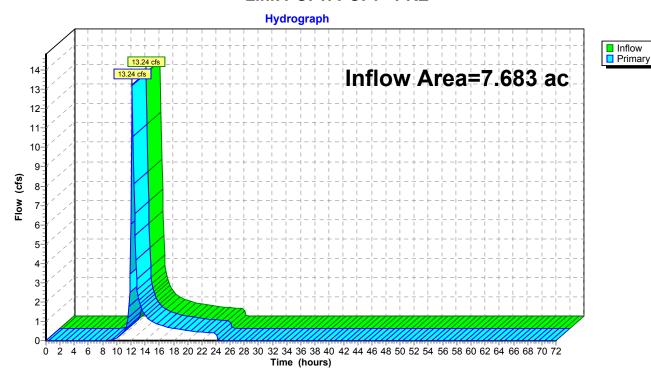
Primary = 9.64 cfs @ 12.19 hrs, Volume= 0.978 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 5


Summary for Link POI 1: POI 1 - PRE

Inflow Area = 7.683 ac, 0.00% Impervious, Inflow Depth = 2.19" for 25-yr event

Inflow = 13.24 cfs @ 12.18 hrs, Volume= 1.404 af

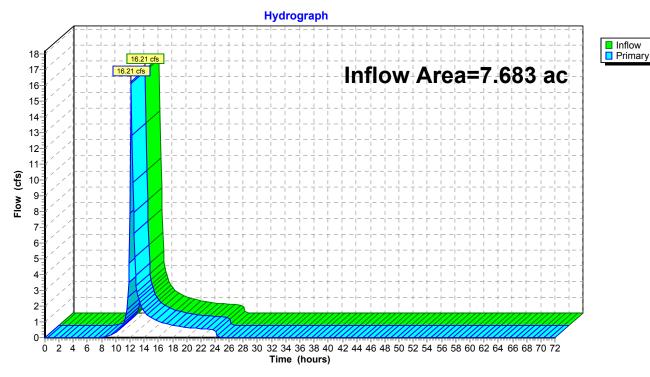
Primary = 13.24 cfs @ 12.18 hrs, Volume= 1.404 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 6


Summary for Link POI 1: POI 1 - PRE

Inflow Area = 7.683 ac, 0.00% Impervious, Inflow Depth = 2.84" for 50-yr event

Inflow = 16.21 cfs @ 12.18 hrs, Volume= 1.816 af

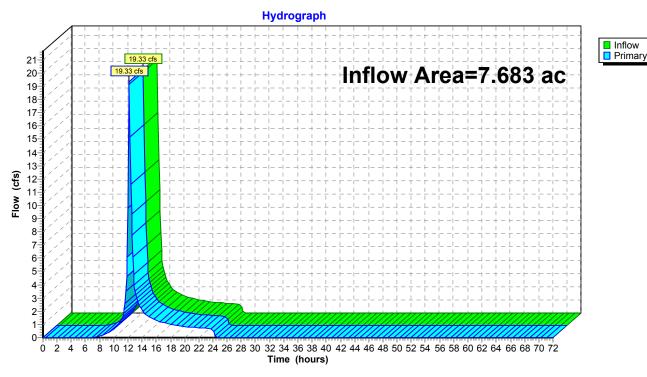
Primary = 16.21 cfs @ 12.18 hrs, Volume= 1.816 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

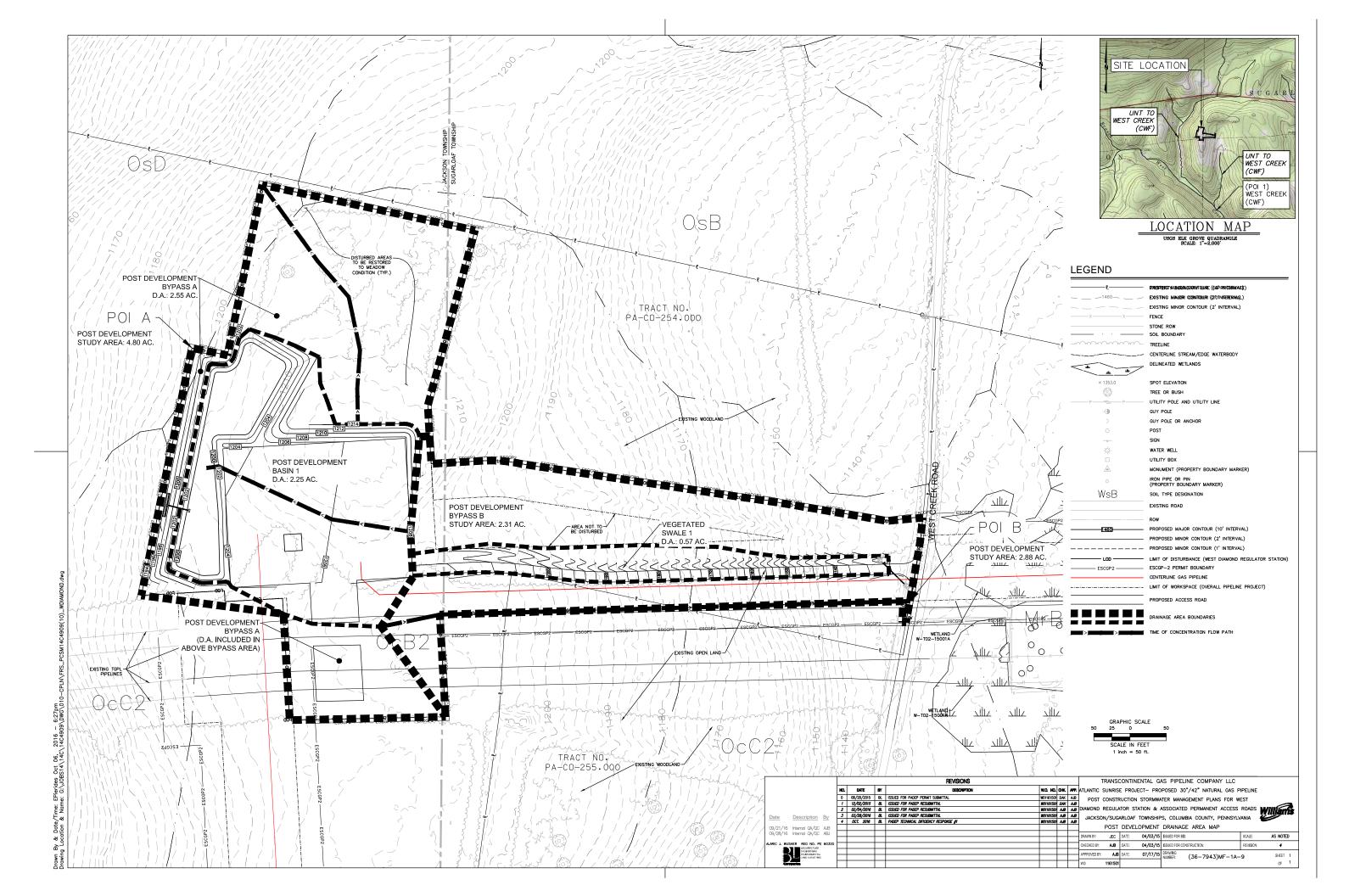
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

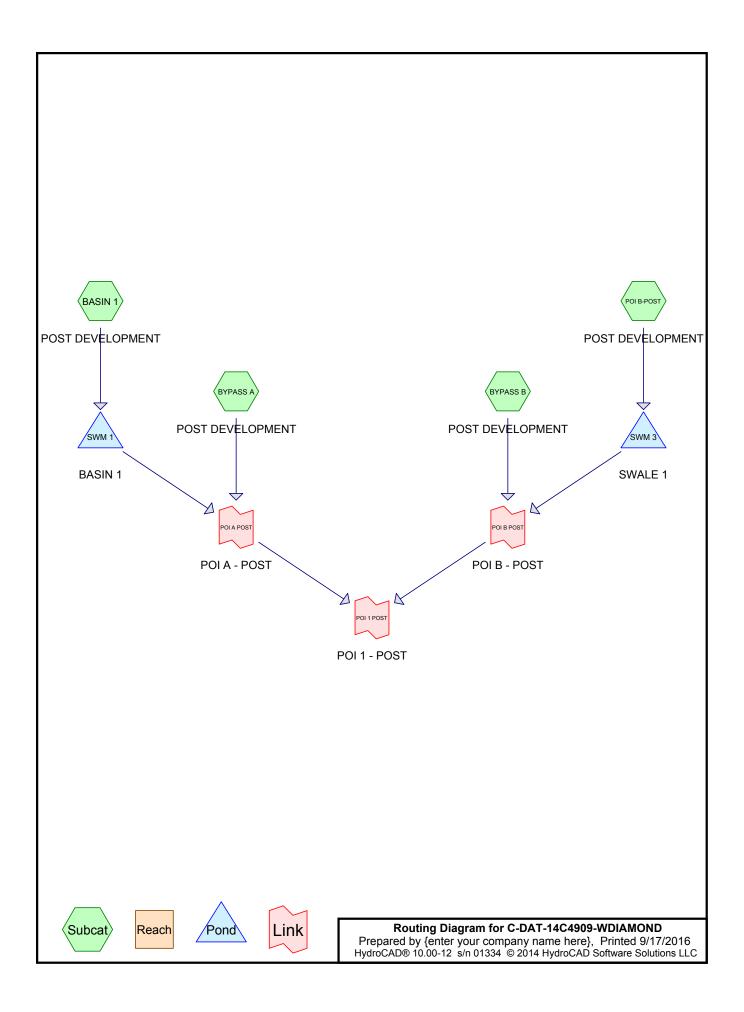
Page 7


Summary for Link POI 1: POI 1 - PRE

Inflow Area = 7.683 ac, 0.00% Impervious, Inflow Depth = 3.62" for 100-yr event

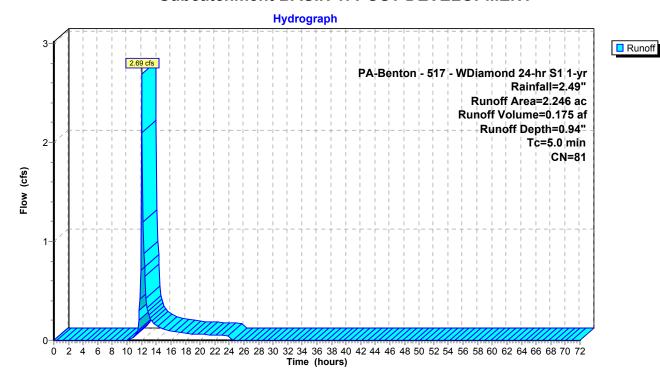
Inflow = 19.33 cfs @ 12.18 hrs, Volume= 2.317 af


Primary = 19.33 cfs @ 12.18 hrs, Volume= 2.317 af, Atten= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

A.2 Post Development Calculations

Prepared by {enter your company name here} HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC Printed 9/17/2016


<u> Page 1</u>

Summary for Subcatchment BASIN 1: POST DEVELOPMENT

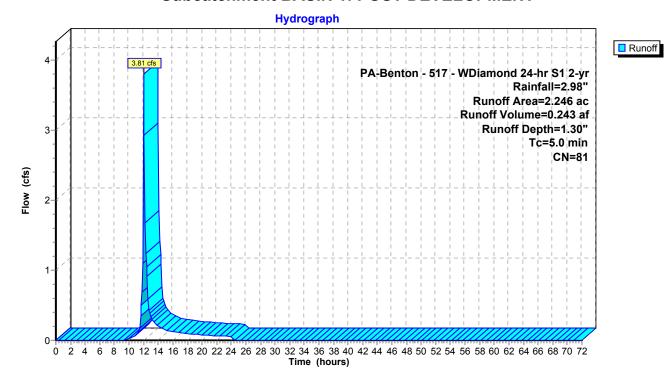
Runoff = 2.69 cfs @ 12.03 hrs, Volume= 0.175 af, Depth= 0.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 1-yr Rainfall=2.49"

	Area ((ac)	CN	Desc	cription							
	0.0	000	70	Woo	Voods, Good, HSG C							
	1.0	050	71	Mea	leadow, non-grazed, HSG C							
*	1.	186	89	Grav	el areas, Ì	HSG C						
*	0.0	010	98	Impe	ervious are	as, HSG C						
	2.2	246	81	Weig	hted Aver							
	2.2	236		99.5	5% Pervio	us Area						
	0.0	010		0.45	% Impervi	ous Area						
	Тс	Leng	jth	Slope	Velocity	Capacity	Description					
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 2

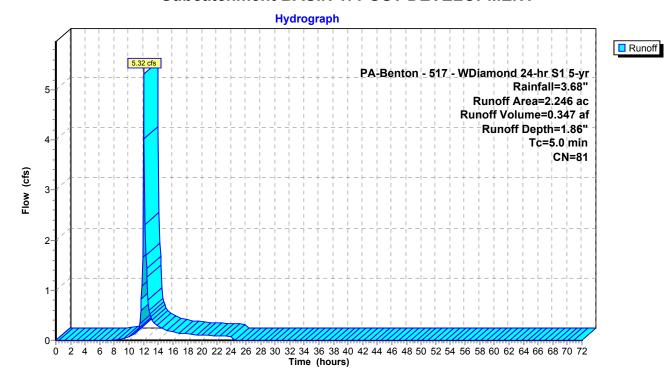
Summary for Subcatchment BASIN 1: POST DEVELOPMENT

Runoff = 3.81 cfs @ 12.03 hrs, Volume= 0.243 af, Depth= 1.30"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 2-yr Rainfall=2.98"

	Area	(ac)	CN	Desc	Description							
	0.	000	70	Woo	Voods, Good, HSG C							
	1.	050	71	Mea	Meadow, non-grazed, HSG C							
*	1.	186	89	Grav	el areas, l	HSG C						
*	0.	010	98	Impe	rvious are	as, HSG C						
	2.	246	6 81 Weighted Average									
	2.	236		99.5	5% Pervio	us Area						
	0.	010		0.45	% Impervi	ous Area						
	Тс	Leng	jth	Slope	Velocity	Capacity	Description					
_	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 3

Summary for Subcatchment BASIN 1: POST DEVELOPMENT

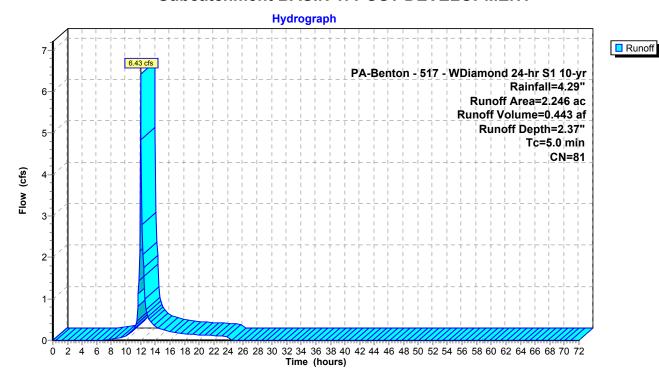
Runoff = 5.32 cfs @ 12.03 hrs, Volume= 0.347 af, Depth= 1.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 5-yr Rainfall=3.68"

_	Area	(ac)	CN	Desc	Description							
	0.	000	70	Woo	Voods, Good, HSG C							
	1.	050	71	Mea	leadow, non-grazed, HSG C							
*	1.	186	89	Grav	el areas, l	HSG C						
*	0.	010	98	Impe	rvious are	as, HSG C						
	2	246	46 81 Weighted Average									
	2	236		99.5	5% Pervio	us Area						
	0.	010		0.45	% Impervi	ous Area						
	Тс	Leng	jth	Slope	Velocity	Capacity	Description					
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 4

Summary for Subcatchment BASIN 1: POST DEVELOPMENT

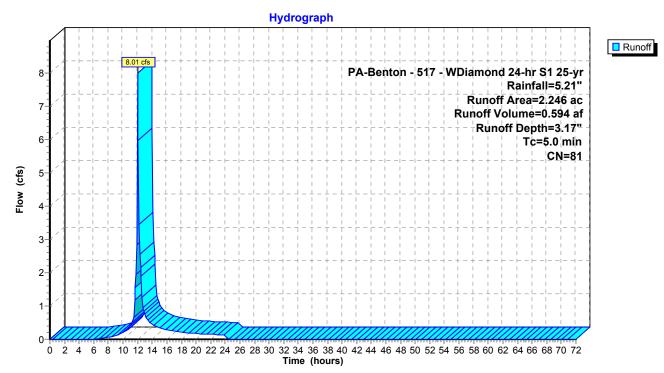
Runoff 6.43 cfs @ 12.02 hrs, Volume= 0.443 af, Depth= 2.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 10-yr Rainfall=4.29"

_	Area	(ac)	CN	Desc	Description							
	0.	000	70	Woo	Voods, Good, HSG C							
	1.	050	71	Mea	leadow, non-grazed, HSG C							
*	1.	186	89	Grav	el areas, l	HSG C						
*	0.	010	98	Impe	rvious are	as, HSG C						
	2	246	46 81 Weighted Average									
	2	236		99.5	5% Pervio	us Area						
	0.	010		0.45	% Impervi	ous Area						
	Тс	Leng	jth	Slope	Velocity	Capacity	Description					
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					

C-DAT-14C4909-WDIAMOND

Prepared by {enter your company name here} HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC Printed 9/17/2016


Page 5

Summary for Subcatchment BASIN 1: POST DEVELOPMENT

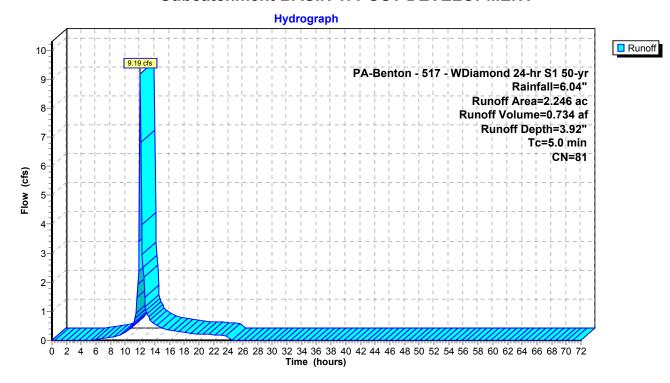
Runoff = 8.01 cfs @ 12.02 hrs, Volume= 0.594 af, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 25-yr Rainfall=5.21"

	Area	(ac)	CN	Desc	Description							
	0.	000	70	Woo	Voods, Good, HSG C							
	1.	050	71	Mea	leadow, non-grazed, HSG C							
*	1.	186	89	Grav	el areas, l	HSG C						
*	0.	010	98	Impe	rvious are	as, HSG C						
	2.	2.246 81 Weighted Average										
	2.	236		99.5	5% Pervio	us Area						
	0.	010		0.45	% Impervi	ous Area						
	Тс	Leng	•	Slope	Velocity	Capacity	Description					
	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 6

Summary for Subcatchment BASIN 1: POST DEVELOPMENT

Runoff = 9.19 cfs @ 12.02 hrs, Volume= 0.734 af, Depth= 3.92"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 50-yr Rainfall=6.04"

	Area	(ac)	CN	Desc	Description							
	0.	000	70	Woo	Voods, Good, HSG C							
	1.	050	71	Mea	Meadow, non-grazed, HSG C							
*	1.	186	89	Grav	el areas, l	HSG C						
*	0.	010	98	Impe	rvious are	as, HSG C						
	2.	246	6 81 Weighted Average									
	2.	236		99.5	5% Pervio	us Area						
	0.	010		0.45	% Impervi	ous Area						
	Тс	Leng	jth	Slope	Velocity	Capacity	Description					
_	(min)	(fe	et)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 7

Summary for Subcatchment BASIN 1: POST DEVELOPMENT

Runoff = 10.37 cfs @ 12.02 hrs, Volume= 0.899 af, Depth= 4.81"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 100-yr Rainfall=7.00"

_	Area	(ac)	CN	Desc	Description							
	0.	000	70	Woo	Voods, Good, HSG C							
	1.	050	71	Mea	leadow, non-grazed, HSG C							
*	1.	186	89	Grav	el areas, l	HSG C						
*	0.	010	98	Impe	rvious are	as, HSG C						
	2	246	46 81 Weighted Average									
	2	236		99.5	5% Pervio	us Area						
	0.	010		0.45	% Impervi	ous Area						
	Тс	Leng	jth	Slope	Velocity	Capacity	Description					
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
	5.0						Direct Entry,					

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 1

Summary for Pond SWM 1: BASIN 1

Inflow Area = 2.246 ac, 0.45% Impervious, Inflow Depth = 0.94" for 1-yr event

Inflow = 2.69 cfs @ 12.03 hrs, Volume= 0.175 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Peak Elev= 1,200.45' @ 24.40 hrs Surf.Area= 17,365 sf Storage= 7,625 cf

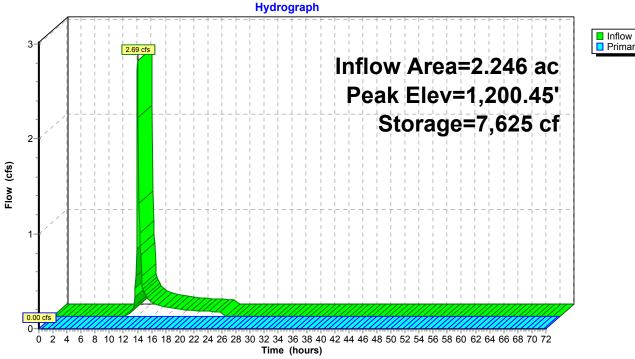
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inve	rt Avail.Sto	rage St	orage	Description		
#1	1,200.0	0' 37,48	31 cf Cι	ıstom	Stage Data (Pr	ismatic)Listed below (Recalc)	
(feet)		Surf.Area (sq-ft)	Inc.Store (cubic-feet)		Cum.Store (cubic-feet)		
1,200.00		16,221		0	0		
1,202.0	00	21,260	37,4	81	37,481		
Device Routing Invert		Outlet E					
#1 Primary 1,198.00'		12.0" Round Culvert L= 29.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 1,198.00' / 1,195.00' S= 0.1034 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf					
#2 Device 1 1,200.75' 24.0 '		24.0" x	24.0" x 48.0" Horiz. Orifice/Grate C= 0.600				
#3	Primary 1,201.00'		Limited to weir flow at low heads 15.0' long x 14.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.64 2.67 2.70 2.65 2.64 2.65 2.65 2.63				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,200.00' (Free Discharge)

1=Culvert (Passes 0.00 cfs of 4.63 cfs potential flow)


2=Orifice/Grate (Controls 0.00 cfs)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 2

Pond SWM 1: BASIN 1

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 3

Stage-Discharge for Pond SWM 1: BASIN 1

Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
1,200.00	0.00	1,200.52	0.00	1,201.04	6.34	1,201.56	23.55
1,200.01	0.00	1,200.53	0.00	1,201.05	6.48	1,201.57	24.03
1,200.02	0.00	1,200.54	0.00	1,201.06	6.63	1,201.58	24.51
1,200.03	0.00	1,200.55	0.00	1,201.07	6.80	1,201.59	24.99
1,200.04	0.00	1,200.56	0.00	1,201.08	6.97	1,201.60	25.48
1,200.05	0.00	1,200.57	0.00	1,201.09	7.16	1,201.61	25.95
1,200.06	0.00	1,200.58	0.00	1,201.10	7.35	1,201.62	26.41
1,200.07	0.00	1,200.59	0.00	1,201.11	7.55	1,201.63	26.89
1,200.08	0.00	1,200.60	0.00	1,201.12	7.77	1,201.64	27.36
1,200.09	0.00	1,200.61	0.00	1,201.13	7.99	1,201.65	27.84
1,200.10	0.00	1,200.62	0.00	1,201.14	8.22	1,201.66	28.32
1,200.11	0.00	1,200.63	0.00	1,201.15	8.46	1,201.67	28.80
1,200.12	0.00	1,200.64	0.00	1,201.16	8.70	1,201.68	29.29
1,200.13	0.00	1,200.65	0.00	1,201.17	8.95	1,201.69	29.77
1,200.14 1,200.15	0.00 0.00	1,200.66	0.00 0.00	1,201.18	9.22	1,201.70	30.26
1,200.15	0.00	1,200.67 1,200.68	0.00	1,201.19 1,201.20	9.48 9.76	1,201.71 1,201.72	30.76 31.25
1,200.16	0.00	1,200.68	0.00	1,201.20	10.04	1,201.72	31.25
1,200.17	0.00	1,200.09	0.00	1,201.21	10.04	1,201.73	32.25
1,200.10	0.00	1,200.70	0.00	1,201.22	10.62	1,201.75	32.76
1,200.20	0.00	1,200.72	0.00	1,201.24	10.93	1,201.76	33.26
1,200.21	0.00	1,200.73	0.00	1,201.25	11.24	1,201.77	33.77
1,200.22	0.00	1,200.74	0.00	1,201.26	11.55	1,201.78	34.28
1,200.23	0.00	1,200.75	0.00	1,201.27	11.87	1,201.79	34.80
1,200.24	0.00	1,200.76	0.04	1,201.28	12.20	1,201.80	35.31
1,200.25	0.00	1,200.77	0.11	1,201.29	12.53	1,201.81	35.85
1,200.26	0.00	1,200.78	0.20	1,201.30	12.87	1,201.82	36.40
1,200.27	0.00	1,200.79	0.31	1,201.31	13.22	1,201.83	36.94
1,200.28	0.00	1,200.80	0.44	1,201.32	13.57	1,201.84	37.49
1,200.29	0.00	1,200.81	0.58	1,201.33	13.92	1,201.85	38.04
1,200.30	0.00	1,200.82	0.73	1,201.34	14.29	1,201.86	38.60
1,200.31	0.00	1,200.83	0.89	1,201.35	14.65	1,201.87	39.16
1,200.32 1,200.33	0.00 0.00	1,200.84 1,200.85	1.06 1.24	1,201.36 1,201.37	15.03 15.41	1,201.88 1,201.89	39.72 40.28
1,200.33	0.00	1,200.86	1.43	1,201.37	15.79	1,201.89	40.26
1,200.35	0.00	1,200.87	1.43	1,201.30	16.18	1,201.90	41.42
1,200.36	0.00	1,200.88	1.84	1,201.40	16.57	1,201.92	41.99
1,200.37	0.00	1,200.89	2.06	1,201.41	16.97	1,201.93	42.57
1,200.38	0.00	1,200.90	2.28	1,201.42	17.38	1,201.94	43.14
1,200.39	0.00	1,200.91	2.51	1,201.43	17.79	1,201.95	43.73
1,200.40	0.00	1,200.92	2.75	1,201.44	18.20	1,201.96	44.31
1,200.41	0.00	1,200.93	3.00	1,201.45	18.62	1,201.97	44.90
1,200.42	0.00	1,200.94	3.25	1,201.46	19.04	1,201.98	45.49
1,200.43	0.00	1,200.95	3.51	1,201.47	19.47	1,201.99	46.08
1,200.44	0.00	1,200.96	3.78	1,201.48	19.91	1,202.00	46.67
1,200.45	0.00	1,200.97	4.05	1,201.49	20.35		
1,200.46	0.00	1,200.98	4.33	1,201.50	20.79		
1,200.47 1,200.48	0.00 0.00	1,200.99 1,201.00	4.61 4.91	1,201.51 1,201.52	21.24 21.69		
1,200.48	0.00	1,201.00	5.24	1,201.52	21.69		
1,200.49	0.00	1,201.01	5.62	1,201.53	22.13		
1,200.51	0.00	1,201.02	6.02	1,201.55	23.08		
.,	3.00	,_35	J.U_	,_55	_5.00		

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 4

Stage-Area-Storage for Pond SWM 1: BASIN 1

(feet) (sq-ft) (cubic-feet) (feet) (sq-ft) (cubic-feet) 1 200 00 16,221 0 1,201.04 18,841 18,922 18,610 1,200 02 16,272 325 1,201.06 18,892 18,610 1,200 06 16,372 978 1,201.10 18,992 19,367 1,200 07 16,473 1,306 1,201.12 19,043 19,748 1,200 10 16,473 1,635 1,201.14 19,093 20,129 1,200 12 16,523 1,965 1,201.16 19,144 20,511 1,200 16 16,624 2,628 1,201.20 19,244 21,279 1,200 16 16,624 2,628 1,201.22 19,295 22,651 1,200 20 16,725 3,295 1,201.26 19,396 22,438 1,200 21 16,826 3,966 1,201.26 19,396 22,438 1,200 22 16,775 3,630 1,201.26 19,396 23,216 1,20	Elevation	Surface	Storage	Elevation	Surface	Storage
1,200.02						
1,200.04			-			
1.200.06 16,372 978 1.201.10 18,992 19,367 1.200.10 16,473 1,306 1,201.12 19,043 19,748 1.200.10 16,523 1,965 1,201.14 19,093 20,129 1.200.14 16,574 2,296 1,201.18 19,194 20,895 1.200.16 16,624 2,628 1,201.20 19,244 21,279 1.200.18 16,675 2,961 1,201.22 19,295 21,665 1.200.20 16,725 3,295 1,201.24 19,396 22,438 1.200.22 16,775 3,630 1,201.26 19,396 22,438 1.200.24 16,826 3,966 1,201.28 19,446 22,827 1.200.28 16,926 4,641 1,201.32 19,547 23,607 1.200.30 16,977 4,980 1,201.34 19,597 23,998 1.200.32 17,027 5,320 1,201.36 19,548 24,391 1.200.34 17,078<						
1,200,08 16,423 1,306 1,201,12 19,043 19,748 1,200,10 16,523 1,965 1,201,16 19,144 20,511 1,200,14 16,574 2,296 1,201,16 19,144 20,511 1,200,16 16,624 2,628 1,201,20 19,244 21,279 1,200,18 16,675 2,961 1,201,22 19,295 21,665 1,200,20 16,775 3,630 1,201,26 19,396 22,438 1,200,24 16,826 3,966 1,201,28 19,446 22,827 1,200,28 16,826 3,966 1,201,30 19,496 23,216 1,200,28 16,926 4,641 1,201,32 19,547 23,607 1,200,30 16,977 4,980 1,201,34 19,597 23,998 1,200,31 17,078 5,661 1,201,38 19,698 24,784 1,200,34 17,178 6,346 1,201,44 19,799 25,574 1,200,34 17,17						
1,200.10 16,473 1,635 1,201.14 19,093 20,129 1,200.12 16,523 1,965 1,201.18 19,194 20,511 1,200.14 16,574 2,296 1,201.18 19,194 20,885 1,200.16 16,624 2,628 1,201.20 19,244 21,279 1,200.20 16,725 3,295 1,201.24 19,345 22,051 1,200.20 16,775 3,630 1,201.28 19,396 22,438 1,200.24 16,826 3,966 1,201.28 19,446 23,216 1,200.28 16,926 4,641 1,201.32 19,547 23,607 1,200.30 16,977 4,980 1,201.34 19,597 23,998 1,200.32 17,027 5,320 1,201.36 19,648 24,391 1,200.34 17,078 5,661 1,201.38 19,698 24,784 1,200.35 17,128 6,600 1,201.42 19,799 25,574 1,200.44 17,33						
1.200.12 16,523 1,965 1,201.16 19,144 20,511 1.200.16 16,624 2,628 1,201.18 19,194 20,895 1,200.18 16,675 2,961 1,201.22 19,295 21,665 1,200.20 16,725 3,295 1,201.24 19,345 22,051 1,200.22 16,775 3,630 1,201.26 19,396 22,438 1,200.24 16,826 3,966 1,201.28 19,446 22,827 1,200.25 16,876 4,303 1,201.30 19,496 23,216 1,200.26 16,876 4,303 1,201.30 19,496 23,216 1,200.38 16,926 4,641 1,201.32 19,547 23,607 1,200.39 16,977 4,980 1,201.34 19,597 23,998 1,200.34 17,078 5,661 1,201.38 19,698 24,784 1,200.34 17,078 6,691 1,201.38 19,698 24,784 1,200.34 17,12						
1,200.16 16,624 2,286 1,201.18 19,194 20,885 1,200.18 16,675 2,961 1,201.22 19,244 21,279 1,200.20 16,725 3,295 1,201.22 19,396 22,438 1,200.24 16,826 3,966 1,201.28 19,346 22,637 1,200.26 16,876 4,303 1,201.38 19,446 22,827 1,200.28 16,926 4,641 1,201.32 19,547 23,607 1,200.30 16,977 4,980 1,201.34 19,597 23,998 1,200.32 17,027 5,320 1,201.36 19,648 24,794 1,200.33 17,078 5,661 1,201.38 19,698 24,784 1,200.36 17,128 6,003 1,201.40 19,748 25,179 1,200.38 17,178 6,346 1,201.42 19,799 25,574 1,200.40 17,229 6,690 1,201.44 19,849 26,368 1,200.44 17,33						
1,200.16 16,624 2,628 1,201.20 19,244 21,279 1,200.20 16,775 3,630 1,201.22 19,345 22,051 1,200.22 16,775 3,630 1,201.26 19,396 22,438 1,200.24 16,826 3,966 1,201.28 19,446 22,827 1,200.28 16,876 4,303 1,201.30 19,496 23,216 1,200.28 16,876 4,303 1,201.32 19,547 23,607 1,200.30 16,977 4,980 1,201.34 19,597 23,998 1,200.31 17,078 5,661 1,201.36 19,648 24,331 1,200.34 17,078 5,661 1,201.38 19,698 24,784 1,200.34 17,128 6,060 1,201.40 19,748 25,179 1,200.35 17,128 6,346 1,201.42 19,799 25,574 1,200.40 17,229 6,690 1,201.44 19,849 25,970 1,200.41 17,33						,
1,200.18 16,675 2,961 1,201.22 19,295 21,665 1,200.20 16,725 3,295 1,201.26 19,396 22,438 1,200.24 16,826 3,966 1,201.28 19,446 22,827 1,200.28 16,926 4,641 1,201.32 19,547 23,607 1,200.30 16,977 4,980 1,201.36 19,549 23,216 1,200.30 17,027 5,320 1,201.36 19,648 24,391 1,200.34 17,078 5,661 1,201.38 19,698 24,784 1,200.36 17,128 6,003 1,201.40 19,748 25,179 1,200.36 17,128 6,003 1,201.42 19,799 25,574 1,200.40 17,229 6,690 1,201.44 19,849 25,970 1,200.42 17,279 7,035 1,201.46 19,899 26,368 1,200.44 17,330 7,381 1,201.44 19,849 26,368 1,200.46 17,33						
1,200,20 16,725 3,295 1,201,24 19,345 22,051 1,200,22 16,775 3,630 1,201,28 19,396 22,438 1,200,26 16,876 4,303 1,201,30 19,446 22,827 1,200,28 16,926 4,641 1,201,30 19,496 23,216 1,200,30 16,977 4,980 1,201,34 19,597 23,998 1,200,32 17,027 5,320 1,201,36 19,648 24,391 1,200,34 17,078 5,661 1,201,38 19,698 24,784 1,200,34 17,178 6,034 1,201,40 19,748 25,179 1,200,38 17,178 6,346 1,201,42 19,799 25,574 1,200,40 17,229 6,690 1,201,44 19,849 25,970 1,200,42 17,279 7,035 1,201,48 19,950 26,766 1,200,44 17,330 7,381 1,201,48 19,950 26,766 1,200,44 17,38						
1,200,22 16,775 3,630 1,201,26 19,396 22,438 1,200,24 16,826 3,966 1,201,30 19,446 22,827 1,200,28 16,926 4,641 1,201,32 19,547 23,607 1,200,30 16,977 4,980 1,201,34 19,597 23,998 1,200,32 17,027 5,320 1,201,36 19,648 24,391 1,200,34 17,078 5,661 1,201,38 19,698 24,784 1,200,36 17,128 6,003 1,201,40 19,748 25,179 1,200,36 17,128 6,003 1,201,40 19,748 25,179 1,200,40 17,229 6,690 1,201,44 19,899 25,574 1,200,42 17,279 7,035 1,201,46 19,899 26,368 1,200,42 17,330 7,381 1,201,44 19,849 25,970 1,200,42 17,330 7,381 1,201,44 19,849 25,970 1,200,42 17,33						
1,200,24 16,826 3,966 1,201,28 19,496 22,827 1,200,28 16,926 4,641 1,201,32 19,547 23,607 1,200,30 16,977 4,980 1,201,34 19,597 23,998 1,200,32 17,027 5,320 1,201,36 19,648 24,391 1,200,34 17,078 5,661 1,201,38 19,698 24,784 1,200,36 17,128 6,003 1,201,40 19,748 25,179 1,200,38 17,178 6,346 1,201,44 19,849 25,970 1,200,40 17,229 6,690 1,201,44 19,849 25,970 1,200,44 17,330 7,381 1,201,46 19,889 26,368 1,200,44 17,330 7,381 1,201,46 19,889 26,368 1,200,44 17,330 8,766 1,201,52 20,051 27,566 1,200,44 17,330 8,766 1,201,52 20,051 27,566 1,200,44 17,33	,					
1,200,26 16,876 4,303 1,201,30 19,496 23,216 1,200,30 16,977 4,980 1,201,32 19,547 23,607 1,200,32 17,027 5,320 1,201,36 19,648 24,391 1,200,34 17,078 5,661 1,201,38 19,698 24,784 1,200,36 17,128 6,003 1,201,40 19,748 25,179 1,200,38 17,178 6,346 1,201,42 19,799 25,574 1,200,40 17,229 6,690 1,201,44 19,849 25,970 1,200,42 17,279 7,035 1,201,48 19,950 26,766 1,200,44 17,330 7,381 1,201,48 19,950 26,766 1,200,46 17,330 7,381 1,201,48 19,950 26,766 1,200,46 17,330 8,076 1,201,50 20,000 27,166 1,200,46 17,331 8,076 1,201,56 20,151 23,370 1,200,54 17,58						
1,200,28 16,926 4,641 1,201,32 19,547 23,607 1,200,30 16,977 4,980 1,201,34 19,597 23,998 1,200,32 17,027 5,320 1,201,38 19,648 24,391 1,200,34 17,078 5,661 1,201,38 19,698 24,784 1,200,36 17,128 6,003 1,201,40 19,748 25,179 1,200,40 17,229 6,690 1,201,44 19,849 25,970 1,200,42 17,279 7,035 1,201,46 19,899 26,368 1,200,44 17,330 7,381 1,201,48 19,950 26,766 1,200,44 17,330 7,381 1,201,48 19,950 26,766 1,200,44 17,330 7,728 1,201,50 20,000 27,166 1,200,50 17,481 8,425 1,201,50 20,051 27,566 1,200,50 17,631 8,776 1,201,56 20,151 28,370 1,200,56 17,63						
1,200,30 16,977 4,980 1,201,36 19,648 24,391 1,200,32 17,027 5,320 1,201,36 19,648 24,391 1,200,34 17,078 5,661 1,201,38 19,698 24,784 1,200,36 17,128 6,003 1,201,40 19,748 25,179 1,200,40 17,229 6,690 1,201,44 19,849 25,970 1,200,42 17,279 7,035 1,201,46 19,899 26,368 1,200,44 17,330 7,381 1,201,48 19,950 26,766 1,200,46 17,380 7,728 1,201,50 20,000 27,166 1,200,46 17,380 7,728 1,201,50 20,051 27,566 1,200,50 17,481 8,425 1,201,54 20,101 27,968 1,200,52 17,531 8,776 1,201,56 20,151 28,370 1,200,58 17,682 9,479 1,201,60 20,252 29,179 1,200,58 17,68						
1,200,32 17,027 5,320 1,201,36 19,648 24,381 1,200,34 17,078 5,661 1,201,38 19,698 24,784 1,200,36 17,128 6,003 1,201,40 19,748 25,179 1,200,40 17,229 6,690 1,201,42 19,799 25,574 1,200,42 17,279 7,035 1,201,46 19,899 26,368 1,200,44 17,330 7,381 1,201,48 19,950 26,766 1,200,46 17,380 7,728 1,201,50 20,000 27,166 1,200,48 17,430 8,076 1,201,52 20,051 27,566 1,200,48 17,430 8,076 1,201,50 20,000 27,166 1,200,48 17,431 8,425 1,201,50 20,001 27,166 1,200,48 17,433 8,076 1,201,50 20,001 27,566 1,200,50 17,481 8,425 1,201,50 20,151 28,370 1,200,55 17,53						
1,200.34 17,078 5,661 1,201.38 19,698 24,784 1,200.36 17,128 6,003 1,201.40 19,748 25,179 1,200.38 17,178 6,346 1,201.42 19,799 25,574 1,200.40 17,229 6,690 1,201.44 19,849 25,970 1,200.42 17,279 7,035 1,201.46 19,899 26,368 1,200.46 17,330 7,381 1,201.48 19,950 26,766 1,200.46 17,330 8,076 1,201.52 20,000 27,166 1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.56 20,151 28,370 1,200.55 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,68						
1,200.36 17,128 6,003 1,201.40 19,748 25,179 1,200.38 17,178 6,346 1,201.42 19,799 25,574 1,200.40 17,279 7,035 1,201.46 19,899 26,368 1,200.42 17,279 7,035 1,201.46 19,899 26,368 1,200.44 17,330 7,381 1,201.48 19,950 26,766 1,200.46 17,380 7,728 1,201.50 20,000 27,166 1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.56 20,101 27,968 1,200.52 17,531 8,776 1,201.58 20,202 28,774 1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.54 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,73						
1,200.38 17,178 6,346 1,201.42 19,799 25,574 1,200.40 17,229 6,690 1,201.44 19,849 25,970 1,200.42 17,279 7,035 1,201.46 19,849 26,368 1,200.44 17,330 7,381 1,201.48 19,950 26,766 1,200.46 17,380 7,728 1,201.50 20,000 27,166 1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.58 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,632 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1,200.40 17,229 6,690 1,201.44 19,849 25,970 1,200.42 17,279 7,035 1,201.46 19,899 26,368 1,200.44 17,330 7,381 1,201.48 19,950 26,766 1,200.46 17,380 7,728 1,201.50 20,000 27,166 1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.66 20,403 30,398 1,200.65 </td <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td>	,					
1,200.42 17,279 7,035 1,201.46 19,899 26,368 1,200.44 17,330 7,381 1,201.48 19,950 26,766 1,200.46 17,380 7,728 1,201.50 20,000 27,166 1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.60 20,252 29,179 1,200.56 17,682 9,832 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.64 17,833 10,541 1,201.66 20,403 30,398 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72<						
1,200.44 17,330 7,381 1,201.48 19,950 26,766 1,200.46 17,380 7,728 1,201.50 20,000 27,166 1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.59 17,783 10,186 1,201.64 20,353 29,991 1,200.60 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,884 11,255 1,201.70 20,504 31,216 1,200.66 17,884 11,255 1,201.70 20,505 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72						
1,200.46 17,380 7,728 1,201.50 20,000 27,166 1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.64 17,883 10,541 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.8						
1,200.48 17,430 8,076 1,201.52 20,051 27,566 1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.68 20,202 28,774 1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.						
1,200.50 17,481 8,425 1,201.54 20,101 27,968 1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.78 20,605 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.78 18,136 13,056 1,201.80 20,756 33,279 1,200						
1,200.52 17,531 8,776 1,201.56 20,151 28,370 1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,339 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.80 20,756 33,279 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,20						
1,200.54 17,582 9,127 1,201.58 20,202 28,774 1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,419 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,2						
1,200.56 17,632 9,479 1,201.60 20,252 29,179 1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,						
1,200.58 17,682 9,832 1,201.62 20,303 29,584 1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1						
1,200.60 17,733 10,186 1,201.64 20,353 29,991 1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948						
1,200.62 17,783 10,541 1,201.66 20,403 30,398 1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368		17,002		1 201 64		
1,200.64 17,833 10,897 1,201.68 20,454 30,807 1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.90 18,489 15,619 1,201.94 21,109 36,210						
1,200.66 17,884 11,255 1,201.70 20,504 31,216 1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.94 18,589 16,361 1,201.98 21,210 37,056						
1,200.68 17,934 11,613 1,201.72 20,555 31,627 1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.94 18,589 16,361 1,201.98 21,210 37,056						
1,200.70 17,985 11,972 1,201.74 20,605 32,039 1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.98 18,640 16,733 1,202.00 21,260 37,481						
1,200.72 18,035 12,332 1,201.76 20,655 32,451 1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.98 18,640 16,733 1,202.00 21,260 37,481						
1,200.74 18,085 12,693 1,201.78 20,706 32,865 1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.98 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481 17,481 17,481						
1,200.76 18,136 13,056 1,201.80 20,756 33,279 1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.98 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481 17,481						,
1,200.78 18,186 13,419 1,201.82 20,806 33,695 1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481 17,481						
1,200.80 18,237 13,783 1,201.84 20,857 34,112 1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481 37,481						
1,200.82 18,287 14,148 1,201.86 20,907 34,529 1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481 37,481						
1,200.84 18,337 14,515 1,201.88 20,958 34,948 1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481						
1,200.86 18,388 14,882 1,201.90 21,008 35,368 1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481 17,481						
1,200.88 18,438 15,250 1,201.92 21,058 35,788 1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481						
1,200.90 18,489 15,619 1,201.94 21,109 36,210 1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,201.00 18,741 17,481						
1,200.92 18,539 15,990 1,201.96 21,159 36,633 1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,200.98 18,690 17,106 1,201.00 18,741 17,481				1,201.94		
1,200.94 18,589 16,361 1,201.98 21,210 37,056 1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,200.98 18,690 17,106 1,202.00 21,260 37,481 1,201.00 18,741 17,481 17,481 17,481			· ·			
1,200.96 18,640 16,733 1,202.00 21,260 37,481 1,200.98 18,690 17,106 1,201.00 18,741 17,481						
1,200.98	1,200.96		16,733			
1,201.00 18,741 17,481	1,200.98	18,690			•	•
1,201.02 18,791 17,856	1,201.00		17,481			
	1,201.02	18,791	17,856			

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 5

Summary for Pond SWM 1: BASIN 1

Inflow Area = 2.246 ac, 0.45% Impervious, Inflow Depth = 1.30" for 2-yr event

Inflow = 3.81 cfs @ 12.03 hrs, Volume= 0.243 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Peak Elev= 1,200.62' @ 24.40 hrs Surf.Area= 17,789 sf Storage= 10,584 cf

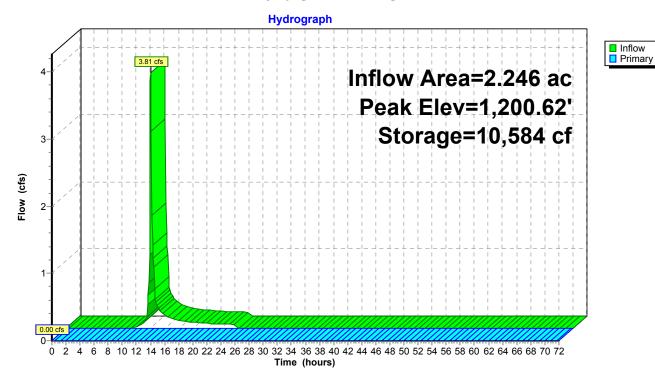
Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inve	ert Avail.Sto	rage Stor	age Description		
#1	1,200.0	0' 37,48	31 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)	
Elevation (feet	t)	Surf.Area (sq-ft) 16,221	Inc.Store (cubic-feet) (cubic-feet)		
1,200.0		21,260	37,48	•		
Device Routing Invert		Outlet Dev 12.0" Ro L= 29.0'	vices und Culvert RCP, sq.cut end pro	ojecting, Ke= 0.500 '/1,195.00' S= 0.1034'/' Cc= 0.900		
n= 0.012, Flow Area= 0.79 sf #2 Device 1 1,200.75' 24.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			f Grate C= 0.600 ads			
#3 Primary 1,201.00'		15.0' long x 14.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.64 2.67 2.70 2.65 2.64 2.65 2.65 2.63				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,200.00' (Free Discharge)

1=Culvert (Passes 0.00 cfs of 4.63 cfs potential flow)


2=Orifice/Grate (Controls 0.00 cfs)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 6

Pond SWM 1: BASIN 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 9

Summary for Pond SWM 1: BASIN 1

Inflow Area = 2.246 ac, 0.45% Impervious, Inflow Depth = 1.86" for 5-yr event

Inflow = 5.32 cfs @ 12.03 hrs, Volume= 0.347 af

Outflow = 0.11 cfs @ 19.89 hrs, Volume= 0.052 af, Atten= 98%, Lag= 471.7 min

Primary = 0.11 cfs @ 19.89 hrs, Volume= 0.052 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Peak Elev= 1,200.77' @ 19.89 hrs Surf.Area= 18,156 sf Storage= 13,202 cf

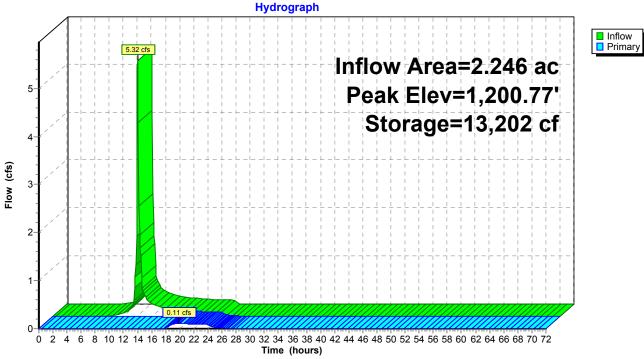
Plug-Flow detention time= 620.4 min calculated for 0.052 af (15% of inflow)

Center-of-Mass det. time= 456.0 min (1,296.4 - 840.4)

Volume	Inver	t Avail.Stor	age Storage	Description			
#1	1,200.00)' 37,48	1 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
1,200.00)	16,221	0	0			
1,202.00)	21,260	37,481	37,481			
Device Routing Invert		Outlet Devices 12.0" Round	Culvert	significant Kon 0.500			
			L= 29.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 1,198.00' / 1,195.00' S= 0.1034 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf				
#2 Device 1 1,200.75' 24.0" x 48.0" Horiz. Orifice/Grate Limited to weir flow at low heads							
#3	Primary	1,201.00'	15.0' long x 14.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.64 2.67 2.70 2.65 2.64 2.65 2.65 2.63				

Primary OutFlow Max=0.10 cfs @ 19.89 hrs HW=1,200.77' (Free Discharge)

1=Culvert (Passes 0.10 cfs of 5.70 cfs potential flow)


²⁼Orifice/Grate (Weir Controls 0.10 cfs @ 0.44 fps)

⁻³⁼Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 10

Pond SWM 1: BASIN 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 13

Summary for Pond SWM 1: BASIN 1

Inflow Area = 2.246 ac, 0.45% Impervious, Inflow Depth = 2.37" for 10-yr event

Inflow = 6.43 cfs @ 12.02 hrs, Volume= 0.443 af

Outflow = 0.26 cfs @ 14.90 hrs, Volume= 0.148 af, Atten= 96%, Lag= 172.7 min

Primary = 0.26 cfs @ 14.90 hrs, Volume= 0.148 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Peak Elev= 1,200.79' @ 14.90 hrs Surf.Area= 18,199 sf Storage= 13,513 cf

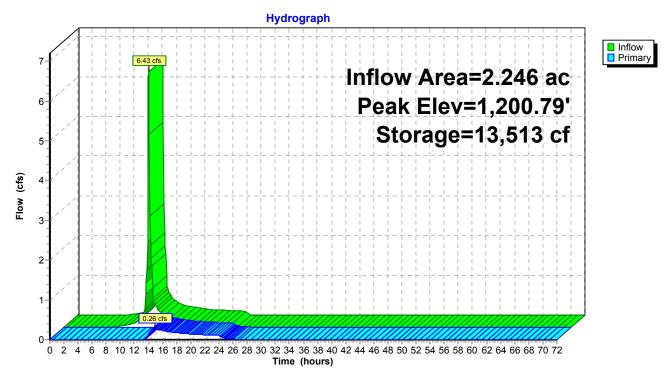
Plug-Flow detention time= 420.1 min calculated for 0.148 af (33% of inflow)

Center-of-Mass det. time= 275.3 min (1,111.0 - 835.6)

Volume	Invert	t Avail.Sto	rage Storage	Description			
#1	1,200.00	37,48	31 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)		
Elevation (feet	_	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
1,200.0	0	16,221	0	0			
1,202.0	0	21,260	37,481	37,481			
Device Routing Invert		Outlet Devices	8				
#1	Primary	1,198.00'	12.0" Round Culvert L= 29.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 1,198.00' / 1,195.00' S= 0.1034 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf				
#2 Device 1 1,200.75' 2 4		24.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads					
#3	Primary	1,201.00'	15.0' long x 1 Head (feet) 0.	road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.65 2.64 2.65 2.65 2.63			

Primary OutFlow Max=0.26 cfs @ 14.90 hrs HW=1,200.79' (Free Discharge)

1=Culvert (Passes 0.26 cfs of 5.72 cfs potential flow)


²⁼Orifice/Grate (Weir Controls 0.26 cfs @ 0.61 fps)

⁻³⁼Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 14

Pond SWM 1: BASIN 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 17

Summary for Pond SWM 1: BASIN 1

Inflow Area = 2.246 ac, 0.45% Impervious, Inflow Depth = 3.17" for 25-yr event

Inflow = 8.01 cfs @ 12.02 hrs, Volume= 0.594 af

Outflow = 0.89 cfs @ 12.77 hrs, Volume= 0.298 af, Atten= 89%, Lag= 44.9 min

Primary = 0.89 cfs @ 12.77 hrs, Volume= 0.298 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Peak Elev= 1,200.83' @ 12.77 hrs Surf.Area= 18,312 sf Storage= 14,328 cf

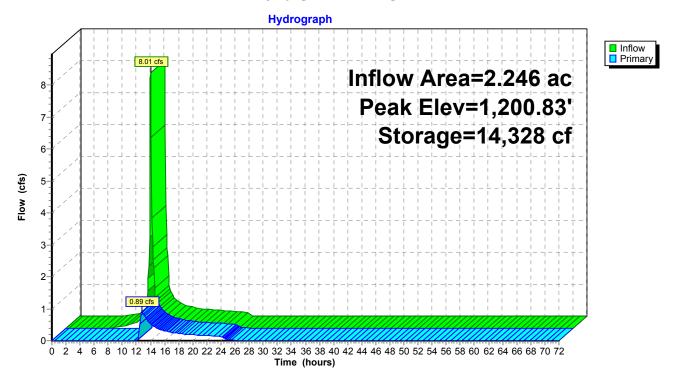
Plug-Flow detention time= 306.8 min calculated for 0.298 af (50% of inflow)

Center-of-Mass det. time= 172.7 min (1,003.1 - 830.3)

Volume	Invert	t Avail.Sto	rage Storage	Description			
#1	1,200.00	37,48	31 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)		
Elevation (feet	_	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
1,200.0	0	16,221	0	0			
1,202.0	0	21,260	37,481	37,481			
Device Routing Invert		Outlet Devices	8				
#1	Primary	1,198.00'	12.0" Round Culvert L= 29.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 1,198.00' / 1,195.00' S= 0.1034 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf				
#2 Device 1 1,200.75' 2 4		24.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads					
#3	Primary	1,201.00'	15.0' long x 1 Head (feet) 0.	road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.65 2.64 2.65 2.65 2.63			

Primary OutFlow Max=0.88 cfs @ 12.77 hrs HW=1,200.83' (Free Discharge)

1=Culvert (Passes 0.88 cfs of 5.77 cfs potential flow)


²⁼Orifice/Grate (Weir Controls 0.88 cfs @ 0.92 fps)

⁻³⁼Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 18

Pond SWM 1: BASIN 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

<u>Page 21</u>

Summary for Pond SWM 1: BASIN 1

Inflow Area = 2.246 ac, 0.45% Impervious, Inflow Depth = 3.92" for 50-yr event

Inflow = 9.19 cfs @ 12.02 hrs, Volume= 0.734 af

Outflow = 2.11 cfs @ 12.51 hrs, Volume= 0.438 af, Atten= 77%, Lag= 29.0 min

Primary = 2.11 cfs @ 12.51 hrs, Volume= 0.438 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Peak Elev= 1,200.89' @ 12.51 hrs Surf.Area= 18,469 sf Storage= 15,479 cf

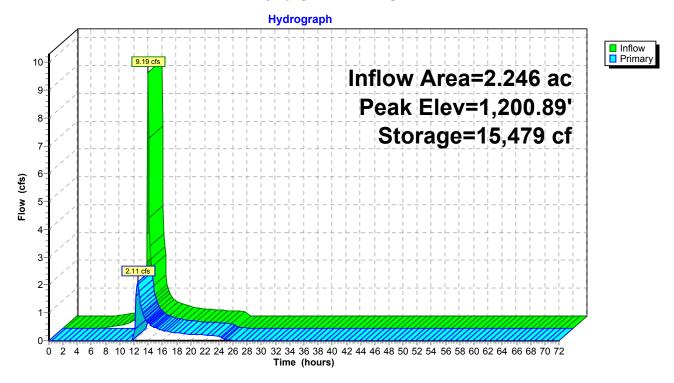
Plug-Flow detention time= 264.9 min calculated for 0.438 af (60% of inflow)

Center-of-Mass det. time= 136.0 min (962.1 - 826.1)

Volume	Inver	t Avail.Stor	age Storage	Description			
#1	1,200.00)' 37,48	1 cf Custom	Stage Data (Pr	rismatic)Listed below (Recalc)		
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
1,200.00)	16,221	0	0			
1,202.00)	21,260	37,481	37,481			
Device Routing Invert		Outlet Devices 12.0" Round	Culvert	significant Kon 0.500			
			L= 29.0' RCP, sq.cut end projecting, Ke= 0.500 Inlet / Outlet Invert= 1,198.00' / 1,195.00' S= 0.1034 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf				
#2 Device 1 1,200.75' 24.0" x 48.0" Horiz. Orifice/Grate Limited to weir flow at low heads							
#3	Primary	1,201.00'	15.0' long x 14.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.64 2.67 2.70 2.65 2.64 2.65 2.65 2.63				

Primary OutFlow Max=2.10 cfs @ 12.51 hrs HW=1,200.89' (Free Discharge)

1=Culvert (Passes 2.10 cfs of 5.85 cfs potential flow)


2=Orifice/Grate (Weir Controls 2.10 cfs @ 1.23 fps)

-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 22

Pond SWM 1: BASIN 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 25

Summary for Pond SWM 1: BASIN 1

Inflow Area = 2.246 ac, 0.45% Impervious, Inflow Depth = 4.81" for 100-yr event

Inflow = 10.37 cfs @ 12.02 hrs, Volume= 0.899 af

Outflow = 3.69 cfs @ 12.29 hrs, Volume= 0.604 af, Atten= 64%, Lag= 16.1 min

Primary = 3.69 cfs @ 12.29 hrs, Volume= 0.604 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

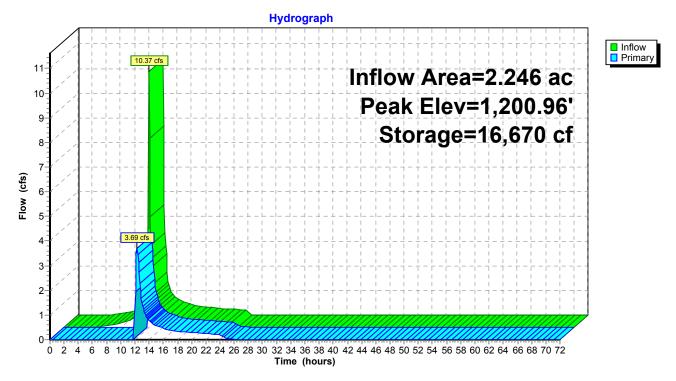
Peak Elev= 1,200.96' @ 12.29 hrs Surf.Area= 18,631 sf Storage= 16,670 cf

Plug-Flow detention time= 240.8 min calculated for 0.604 af (67% of inflow)

Center-of-Mass det. time= 115.8 min (937.9 - 822.0)

Volume	Inve	ert Avail.Sto	rage Stor	age Description		
#1	1,200.0	0' 37,48	31 cf Cus	tom Stage Data (P	rismatic)Listed below (Recalc)	
Elevation (feet	t)	Surf.Area (sq-ft) 16,221	Inc.Store (cubic-feet) (cubic-feet)		
1,200.0		21,260	37,48	•		
Device Routing Invert		Outlet Dev 12.0" Ro L= 29.0'	vices und Culvert RCP, sq.cut end pro	ojecting, Ke= 0.500 '/1,195.00' S= 0.1034'/' Cc= 0.900		
n= 0.012, Flow Area= 0.79 sf #2 Device 1 1,200.75' 24.0" x 48.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads			f Grate C= 0.600 ads			
#3 Primary 1,201.00'		15.0' long x 14.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.64 2.67 2.70 2.65 2.64 2.65 2.65 2.63				

Primary OutFlow Max=3.67 cfs @ 12.29 hrs HW=1,200.96' (Free Discharge)


1=Culvert (Passes 3.67 cfs of 5.93 cfs potential flow)

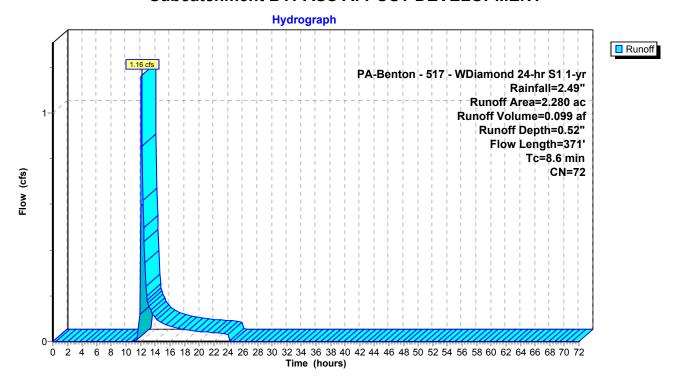
²⁼Orifice/Grate (Weir Controls 3.67 cfs @ 1.48 fps)

⁻³⁼Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 26

Pond SWM 1: BASIN 1

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 1

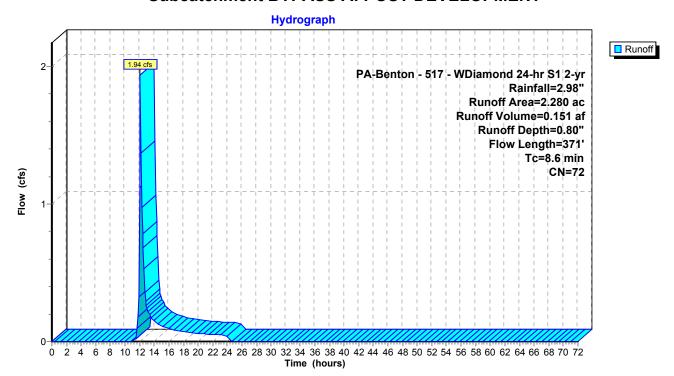
Summary for Subcatchment BYPASS A: POST DEVELOPMENT

Runoff = 1.16 cfs @ 12.12 hrs, Volume= 0.099 af, Depth= 0.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 1-yr Rainfall=2.49"

	Area	(ac)	CN	Desc	cription					
	0.	010	70	Woo	ds, Good,	HSG C				
	2.	155	71			grazed, HS	GC			
*		115	89		el areas, l	,				
*	•	0.000 98 Impervious areas, HSG C								
_										
	2.280 100.00% Pervious Area									
	Tc	Lengtl		Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.8	100	0.0	0600	0.29		Sheet Flow, SHT			
							Range n= 0.130 P2= 2.98"			
	1.1	7!	5 00	0267	1.14		Shallow Concentrated Flow, SCF 1			
			0	J_U.			Short Grass Pasture Kv= 7.0 fps			
	1.7	196	3 00	0714	1.87		Shallow Concentrated Flow, SCF 2			
	1.7	130	0.0	<i>01</i> 1 4	1.01		Short Grass Pasture Kv= 7.0 fps			
_							311011 G1855 F851UIE NV- 1.0 1PS			
	8.6	37	1 To	otal						

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 2

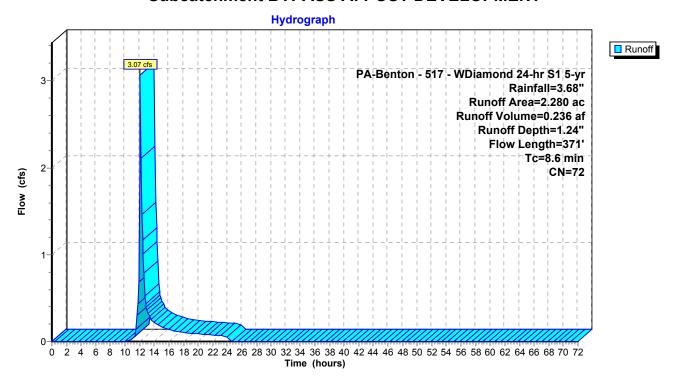
Summary for Subcatchment BYPASS A: POST DEVELOPMENT

Runoff = 1.94 cfs @ 12.11 hrs, Volume= 0.151 af, Depth= 0.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 2-yr Rainfall=2.98"

	Area	(ac)	CN	Desc	cription					
	0.	010	70	Woo	ds, Good,	HSG C				
	2.	155	71	Mea	dow, non-	grazed, HS	GC			
*	0.	115	89	Grav	el areas, Ì	HSG C				
*	0.	000	,							
	2.	2.280 72 Weighted Average								
	2.280 100.00% Pervious Area									
	Tc	Length	ı Sl	lope	Velocity	Capacity	Description			
	(min)	(feet)		ft/ft)	(ft/sec)	(cfs)	·			
	5.8	100	0.0	600	0.29		Sheet Flow, SHT			
							Range n= 0.130 P2= 2.98"			
	1.1	75	0.0	267	1.14		Shallow Concentrated Flow, SCF 1			
							Short Grass Pasture Kv= 7.0 fps			
	1.7	196	0.0	714	1.87		Shallow Concentrated Flow, SCF 2			
							Short Grass Pasture Kv= 7.0 fps			
	8.6	371	To	tal	·					

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 3

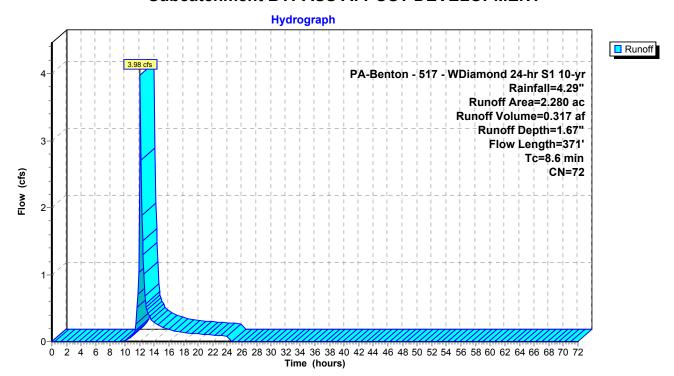
Summary for Subcatchment BYPASS A: POST DEVELOPMENT

Runoff = 3.07 cfs @ 12.10 hrs, Volume= 0.236 af, Depth= 1.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 5-yr Rainfall=3.68"

	Area	(ac)	CN	Desc	cription				
	0.	010	70	Woo	ds, Good,	HSG C			
	2.	155	71	Mea	dow, non-	grazed, HS	GC		
*	0.	115	89	Grav	∕el areas, Ì	HSG C			
*	0.000 98 Impervious areas, HSG C								
	2.	280	72	Weid	hted Aver	age			
	2.280 100.00% Pervious Area								
	Tc	Length	n S	Slope	Velocity	Capacity	Description		
	(min)	(feet) ((ft/ft)	(ft/sec)	(cfs)	·		
	5.8	100	0.0	0600	0.29		Sheet Flow, SHT		
			• • • • • • • • • • • • • • • • • • •			Range n= 0.130 P2= 2.98"			
	1.1 75 0		5 0.0	0267	1.14		Shallow Concentrated Flow, SCF 1		
							Short Grass Pasture Kv= 7.0 fps		
	1.7	196	0.0	0714	1.87		Shallow Concentrated Flow, SCF 2		
							Short Grass Pasture Kv= 7.0 fps		
	8.6	37	1 To	tal	•	·			

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 4

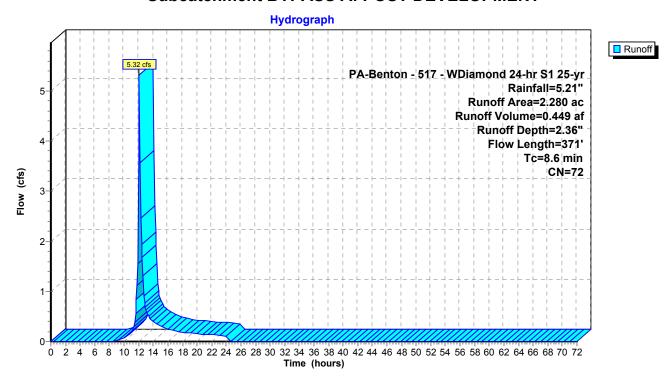
Summary for Subcatchment BYPASS A: POST DEVELOPMENT

Runoff = 3.98 cfs @ 12.10 hrs, Volume= 0.317 af, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 10-yr Rainfall=4.29"

	Area	(ac)	CN D	esc	ription					
	0.	010	70 V	/oo	ds, Good,	HSG C				
	2.	155	71 M	Meadow, non-grazed, HSG C						
*		115			el areas, l	,				
*		000			,					
* 0.000 98 Impervious areas, HSG C 2.280 72 Weighted Average										
					00% Pervi					
	۷.	280	1	00.0	Ju% Pervi	ous Area				
	т.	ا المصملا	Cla		\/alaaitu	Canacity	Description			
	Tc	Length			Velocity	Capacity	Description			
_	(min)	(feet)	(ft/	ft)	(ft/sec)	(cfs)				
	5.8	100	0.060	00	0.29		Sheet Flow, SHT			
							Range n= 0.130 P2= 2.98"			
	1.1	75	0.020	67	1.14		Shallow Concentrated Flow, SCF 1			
							Short Grass Pasture Kv= 7.0 fps			
	1.7	196	0.07	14	1.87		Shallow Concentrated Flow, SCF 2			
		100	0.07		1.07		Short Grass Pasture Kv= 7.0 fps			
_		074	T-4-				Onort Oraco i actare Tive 7.0 lps			
	8.6	371	Total							

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

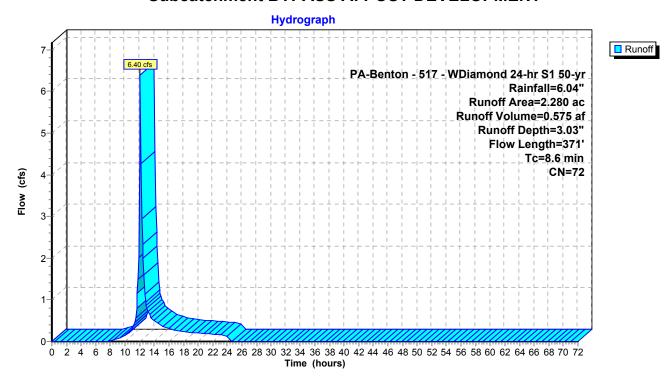

Page 5

Summary for Subcatchment BYPASS A: POST DEVELOPMENT

Runoff = 5.32 cfs @ 12.10 hrs, Volume= 0.449 af, Depth= 2.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 25-yr Rainfall=5.21"

	Area	(ac)	CN	Desc	ription				
	0.	010	70	Woo	ds, Good,	HSG C			
	2.	155	71			grazed, HS	GC		
*		115	89		el areas, l				
*		000	98			as, HSG C			
2.280 72 Weighted Average									
		280	12	_	00% Pervi	•			
	۷.	200		100.	JU 76 FEI VI	ous Alea			
	To	Longt	. (Slope	Valoaity	Canacity	Description		
	Tc	Lengt		Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	5.8	10	0.	.0600	0.29		Sheet Flow, SHT		
							Range n= 0.130 P2= 2.98"		
	1.1	7	5 0.	.0267	1.14		Shallow Concentrated Flow, SCF 1		
							Short Grass Pasture Kv= 7.0 fps		
	1.7	19	3 0	.0714	1.87		Shallow Concentrated Flow, SCF 2		
	•••		· ·		1.01		Short Grass Pasture Kv= 7.0 fps		
_	0.6	27	1 T				Chort Crade i detaile 1tt 7.0 ips		
	8.6	37	1 10	otal					


Page 6

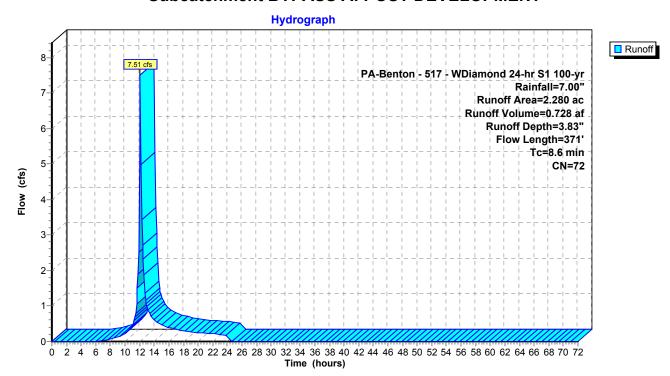
Summary for Subcatchment BYPASS A: POST DEVELOPMENT

Runoff = 6.40 cfs @ 12.10 hrs, Volume= 0.575 af, Depth= 3.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 50-yr Rainfall=6.04"

	Area	(ac)	CN	Desc	cription			
	0.	010	70	Woo	ds, Good,	HSG C		
	2.	155	71			grazed, HS	GC	
*		115	89		el areas, l	,		
*	•		98		,			
,								
		280	72					
	2.	280		100.	00% Pervi	ous Area		
	_		_					
	Tc	Lengtl		Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	5.8	100	0.0	0600	0.29		Sheet Flow, SHT	
							Range n= 0.130 P2= 2.98"	
	1.1	7!	5 0 0	0267	1.14		Shallow Concentrated Flow, SCF 1	
			•				Short Grass Pasture Kv= 7.0 fps	
	1.7	196	s 0.0	0714	1.87		Shallow Concentrated Flow, SCF 2	
	1.7	130	. 0.0	01 I T	1.07		Short Grass Pasture Kv= 7.0 fps	
_							311011 G1855 F851U1E NV- 1.0 1PS	
	8.6	37	1 To	otal				

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 7

Summary for Subcatchment BYPASS A: POST DEVELOPMENT

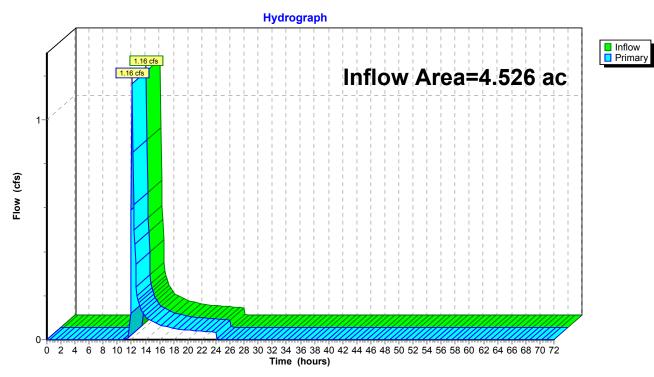
Runoff = 7.51 cfs @ 12.09 hrs, Volume= 0.728 af, Depth= 3.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 100-yr Rainfall=7.00"

	Area	(ac)	CN	Desc	ription				
	0.	010	70	Woo	ds, Good,	HSG C			
	2.	155	71			grazed, HS	GC		
*		115	89		el areas, l				
*		000	98			as, HSG C			
2.280 72 Weighted Average									
		280	12	_	00% Pervi	•			
	۷.	200		100.	JU 76 FEI VI	ous Alea			
	To	Longt	. (Slope	Valoaity	Canacity	Description		
	Tc	Lengt		Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	5.8	10	0.	.0600	0.29		Sheet Flow, SHT		
							Range n= 0.130 P2= 2.98"		
	1.1	7	5 0.	.0267	1.14		Shallow Concentrated Flow, SCF 1		
							Short Grass Pasture Kv= 7.0 fps		
	1.7	19	3 0	.0714	1.87		Shallow Concentrated Flow, SCF 2		
	•••		· ·		1.01		Short Grass Pasture Kv= 7.0 fps		
_	0.6	27	1 T				Chort Crade i detaile 1tt 7.0 ips		
	8.6	37	1 10	otal					

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 1


Summary for Link POI A POST: POI A - POST

Inflow Area = 4.526 ac, 0.22% Impervious, Inflow Depth = 0.26" for 1-yr event

Inflow 1.16 cfs @ 12.12 hrs, Volume= 0.099 af

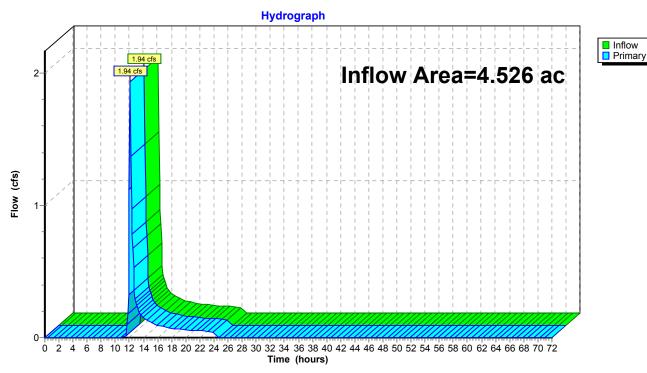
1.16 cfs @ 12.12 hrs, Volume= Primary 0.099 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 2


Summary for Link POI A POST: POI A - POST

Inflow Area = 4.526 ac, 0.22% Impervious, Inflow Depth = 0.40" for 2-yr event

Inflow = 1.94 cfs @ 12.11 hrs, Volume= 0.151 af

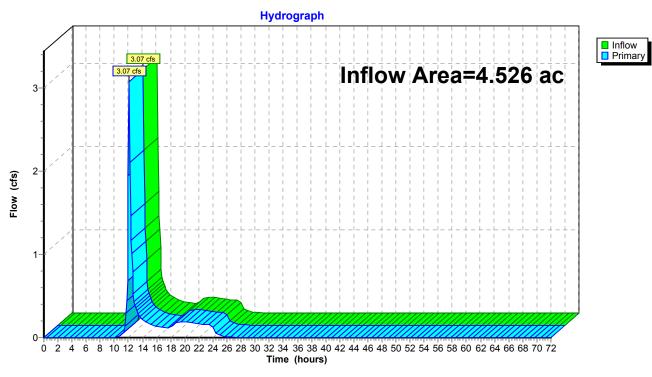
Primary = 1.94 cfs @ 12.11 hrs, Volume= 0.151 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 3


Summary for Link POI A POST: POI A - POST

Inflow Area = 4.526 ac, 0.22% Impervious, Inflow Depth = 0.76" for 5-yr event

Inflow = 3.07 cfs @ 12.10 hrs, Volume= 0.287 af

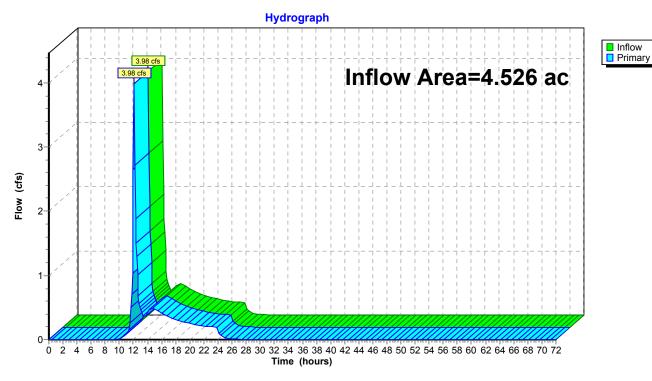
Primary = 3.07 cfs @ 12.10 hrs, Volume= 0.287 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 4


Summary for Link POI A POST: POI A - POST

Inflow Area = 4.526 ac, 0.22% Impervious, Inflow Depth = 1.23" for 10-yr event

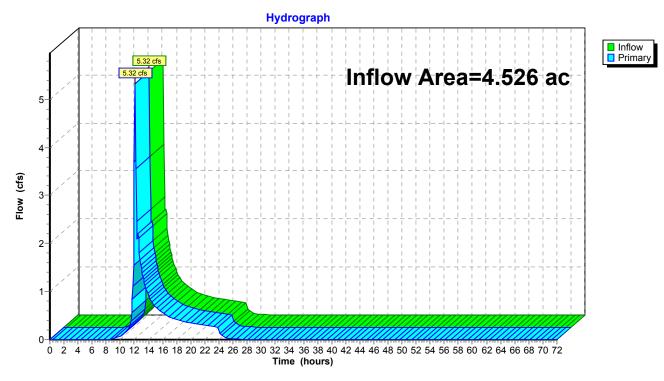
Inflow = 3.98 cfs @ 12.10 hrs, Volume= 0.464 af

Primary = 3.98 cfs @ 12.10 hrs, Volume= 0.464 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 5


Summary for Link POI A POST: POI A - POST

Inflow Area = 4.526 ac, 0.22% Impervious, Inflow Depth = 1.98" for 25-yr event

Inflow 5.32 cfs @ 12.10 hrs, Volume= 0.747 af

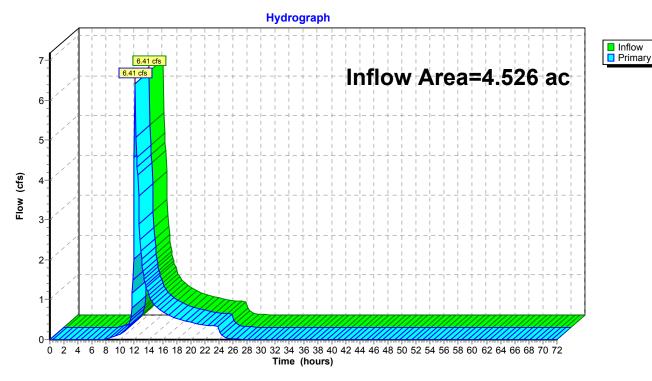
5.32 cfs @ 12.10 hrs, Volume= Primary 0.747 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

Page 6

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Summary for Link POI A POST: POI A - POST

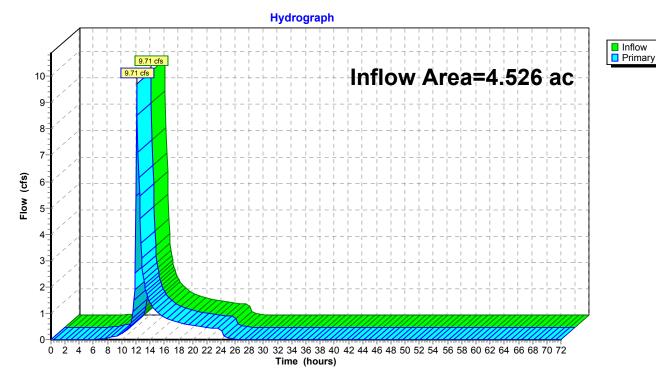
Inflow Area = 4.526 ac, 0.22% Impervious, Inflow Depth = 2.69" for 50-yr event

Inflow = 6.41 cfs @ 12.11 hrs, Volume= 1.013 af

Primary = 6.41 cfs @ 12.11 hrs, Volume= 1.013 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Page 7


Summary for Link POI A POST: POI A - POST

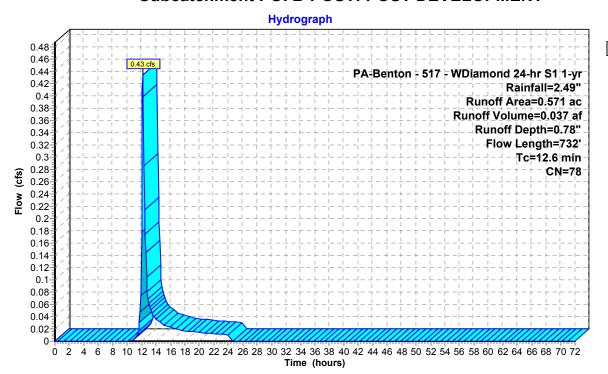
Inflow Area = 4.526 ac, 0.22% Impervious, Inflow Depth = 3.53" for 100-yr event

Inflow = 9.71 cfs @ 12.13 hrs, Volume= 1.331 af

Primary = 9.71 cfs @ 12.13 hrs, Volume= 1.331 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Page 1


Summary for Subcatchment POI B-POST: POST DEVELOPMENT

Runoff = 0.43 cfs @ 12.15 hrs, Volume= 0.037 af, Depth= 0.78"

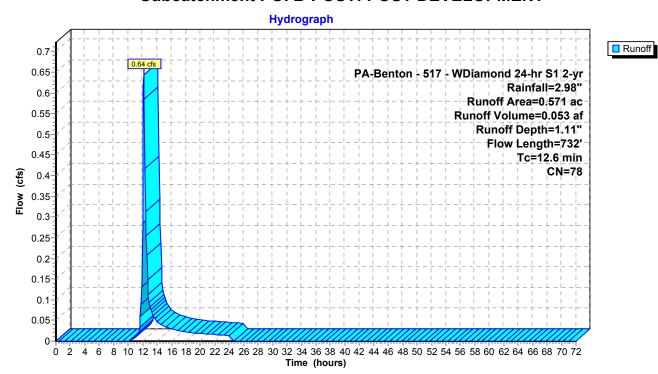
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 1-yr Rainfall=2.49"

_	Area	(ac)	CN	Desc	cription					
	0.	007	70	Woo	ds, Good,	HSG C				
	0.	353	71	Meadow, non-grazed, HSG C						
*	0.	211	89	Grav	el areas, Ì	HSG C				
*	0.	000	98	Impe	Impervious areas, HSG C					
	0.571 78 Weighted Average									
	0.	571		100.00% Pervious Area						
	Tc	Length	າ ເ	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.3	100	0.	.0250	0.20		Sheet Flow, SHT 1			
							Range n= 0.130 P2= 2.98"			
	4.3	632	2 0.	.1200	2.42		Shallow Concentrated Flow, SCF 1			
							Short Grass Pasture Kv= 7.0 fps			
	12.6	732	2 To	otal						

Subcatchment POI B-POST: POST DEVELOPMENT

Runoff

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 2

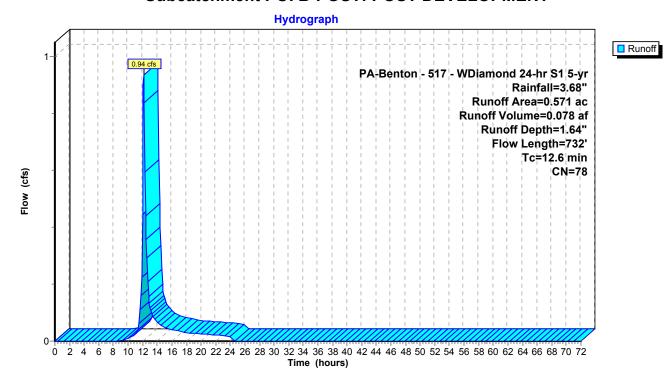
Summary for Subcatchment POI B-POST: POST DEVELOPMENT

Runoff = 0.64 cfs @ 12.14 hrs, Volume= 0.053 af, Depth= 1.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 2-yr Rainfall=2.98"

_	Area	(ac)	CN	Desc	cription		
	0.	007	70	Woo	ds, Good,	HSG C	
	0.	353	71	Mea	dow, non-	grazed, HS	G C
*	0.	211	89	Grav	el areas, l	HSG C	
*	0.	000	98	Impe	rvious are	as, HSG C	
0.571 78 Weighted Average							
	0.	571		100.0	00% Pervi	ous Area	
	Tc	Length	n S	Slope	Velocity	Capacity	Description
_	(min)	(feet))	(ft/ft)	(ft/sec)	(cfs)	
	8.3	100	0.0	0250	0.20		Sheet Flow, SHT 1
							Range n= 0.130 P2= 2.98"
	4.3	632	2 0.	1200	2.42		Shallow Concentrated Flow, SCF 1
							Short Grass Pasture Kv= 7.0 fps
	12.6	732	? To	otal			

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 3

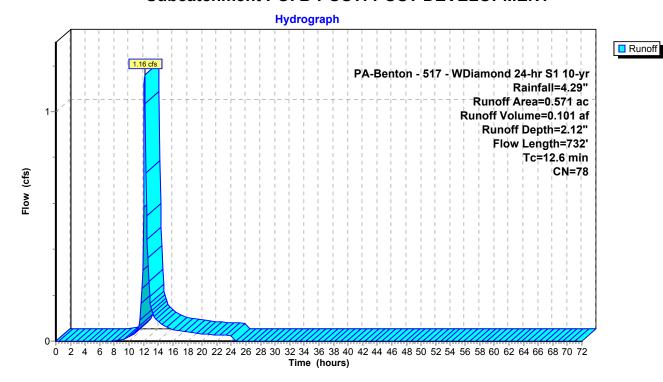
Summary for Subcatchment POI B-POST: POST DEVELOPMENT

Runoff = 0.94 cfs @ 12.14 hrs, Volume= 0.078 af, Depth= 1.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 5-yr Rainfall=3.68"

_	Area	(ac)	CN	l Desc	cription			_			
	0.	007	70) Woo	ds, Good,	HSG C					
	0.353 71			Mea	Meadow, non-grazed, HSG C						
*	0.	211	89) Grav	el areas, l	HSG C					
*	0.	000	98	3 Impe	ervious are	as, HSG C		_			
0.571 78 Weighted Average											
	0.	571		100.	100.00% Pervious Area						
	Tc	Lengt	th	Slope	Velocity	Capacity	Description				
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)					
	8.3	10	0	0.0250	0.20		Sheet Flow, SHT 1				
							Range n= 0.130 P2= 2.98"				
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1				
_							Short Grass Pasture Kv= 7.0 fps	_			
	12.6	73	32	Total							

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 4

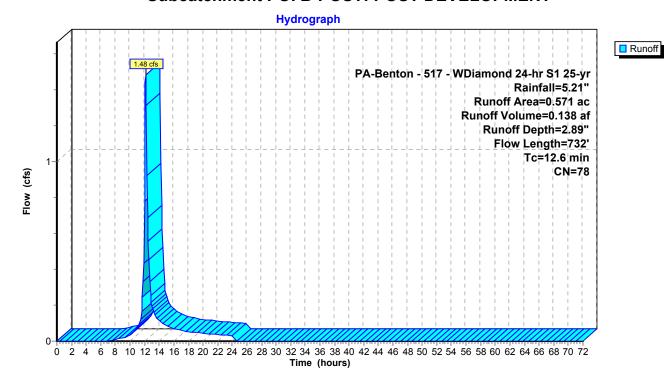
Summary for Subcatchment POI B-POST: POST DEVELOPMENT

Runoff = 1.16 cfs @ 12.14 hrs, Volume= 0.101 af, Depth= 2.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 10-yr Rainfall=4.29"

_	Area	(ac)	CN	l Desc	cription			_			
	0.	007	70) Woo	ds, Good,	HSG C					
	0.353 71			Mea	Meadow, non-grazed, HSG C						
*	0.	211	89) Grav	el areas, l	HSG C					
*	0.	000	98	3 Impe	ervious are	as, HSG C		_			
0.571 78 Weighted Average											
	0.	571		100.	100.00% Pervious Area						
	Tc	Lengt	th	Slope	Velocity	Capacity	Description				
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)					
	8.3	10	0	0.0250	0.20		Sheet Flow, SHT 1				
							Range n= 0.130 P2= 2.98"				
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1				
_							Short Grass Pasture Kv= 7.0 fps	_			
	12.6	73	32	Total							

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 5

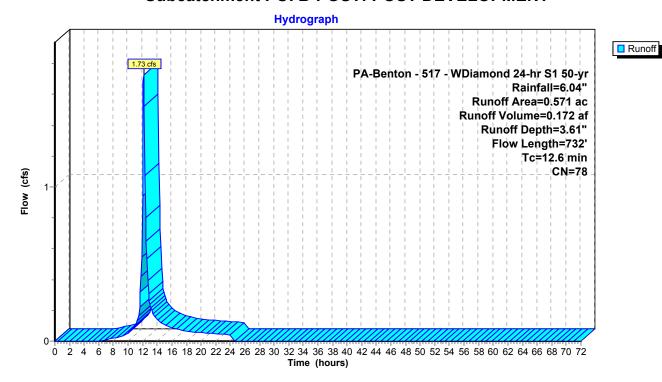
Summary for Subcatchment POI B-POST: POST DEVELOPMENT

Runoff = 1.48 cfs @ 12.13 hrs, Volume= 0.138 af, Depth= 2.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 25-yr Rainfall=5.21"

	Area	(ac)	CN	Desc	cription				
	0.	007	70	Woo	ds, Good,	HSG C			
	0.	353	71	Mea	dow, non-g	grazed, HS	GC		
*	0.	211	89	Grav	el areas, Ì	HSG C			
*	0.	000	98	Impe	rvious are	as, HSG C	;		
0.571 78 Weighted Average									
	0.	571		100.	00% Pervi	ous Area			
	Tc	Lengt	h :	Slope	Velocity	Capacity	Description		
	(min)	(feet	:)	(ft/ft)	(ft/sec)	(cfs)			
	8.3	10	0 0	.0250	0.20		Sheet Flow, SHT 1		
							Range n= 0.130 P2= 2.98"		
	4.3	63	2 0	.1200	2.42		Shallow Concentrated Flow, SCF 1		
							Short Grass Pasture Kv= 7.0 fps		
	12.6	73	2 T	otal			·		

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 6

Summary for Subcatchment POI B-POST: POST DEVELOPMENT

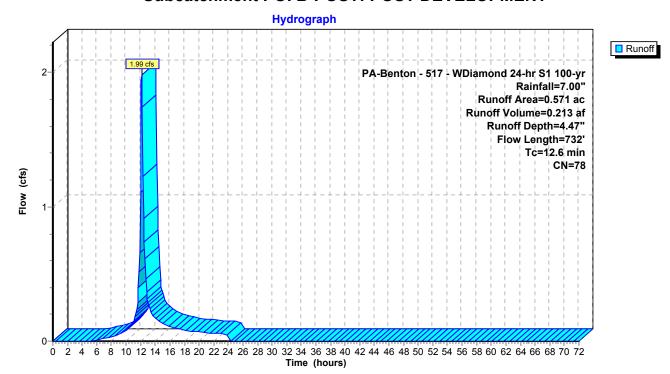
Runoff = 1.73 cfs @ 12.13 hrs, Volume= 0.172 af, Depth= 3.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 50-yr Rainfall=6.04"

_	Area	(ac)	CN	l Desc	cription			_			
	0.	007	70) Woo	ds, Good,	HSG C					
	0.353 71			Mea	Meadow, non-grazed, HSG C						
*	0.	211	89) Grav	el areas, l	HSG C					
*	0.	000	98	3 Impe	ervious are	as, HSG C		_			
0.571 78 Weighted Average											
	0.	571		100.	100.00% Pervious Area						
	Tc	Lengt	th	Slope	Velocity	Capacity	Description				
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)					
	8.3	10	0	0.0250	0.20		Sheet Flow, SHT 1				
							Range n= 0.130 P2= 2.98"				
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1				
_							Short Grass Pasture Kv= 7.0 fps	_			
	12.6	73	32	Total							

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 7


Summary for Subcatchment POI B-POST: POST DEVELOPMENT

Runoff = 1.99 cfs @ 12.13 hrs, Volume= 0.213 af, Depth= 4.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 100-yr Rainfall=7.00"

_	Area	(ac)	CN	l Desc	cription			_	
	0.	007	70) Woo	ds, Good,	HSG C			
	0.	353	71	Mea	dow, non-	grazed, HS	G C		
*	0.	211	89) Grav	el areas, l	HSG C			
*	0.	000	98	3 Impe	ervious are	as, HSG C		_	
	0.	571	78	8 Weig	ghted Aver	age			
	0.	571		100.	100.00% Pervious Area				
	Tc	Lengt	th	Slope	Velocity	Capacity	Description		
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)			
	8.3	10	0	0.0250	0.20		Sheet Flow, SHT 1		
							Range n= 0.130 P2= 2.98"		
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1		
_							Short Grass Pasture Kv= 7.0 fps	_	
	12.6	73	32	Total					

Subcatchment POI B-POST: POST DEVELOPMENT

PA-Benton - 517 - WDiamond 24-hr S1 1-yr Rainfall=2.49"

Prepared by {enter your company name here}

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 1

Summary for Pond SWM 3: SWALE 1

Inflow Area = 0.571 ac, 0.00% Impervious, Inflow Depth = 0.78" for 1-yr event

Inflow = 0.43 cfs @ 12.15 hrs, Volume= 0.037 af

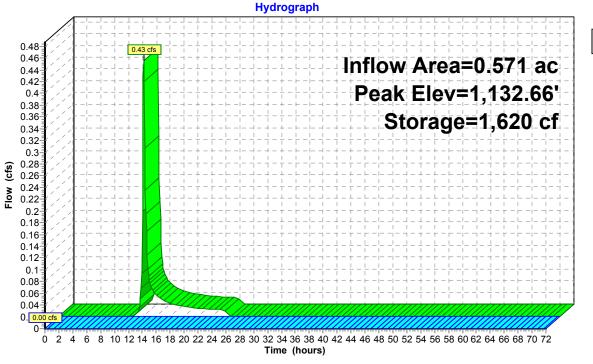
Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = $0.00 \text{ cfs } \bar{\text{@}} 0.00 \text{ hrs}$, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs Peak Elev= 1,132.66' @ 24.80 hrs Surf.Area= 3,686 sf Storage= 1,620 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)


Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	1,132.0	00' 9,92	20 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatior (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,132.00		1,240	0	0	
1,133.00)	4,960	3,100	3,100	
1,134.00)	8,680	6,820	9,920	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	1,133.00'	Head (feet) 0 2.50 3.00	.20 0.40 0.60 a) 2.69 2.72 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,132.00' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 2

Pond SWM 3: SWALE 1

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 3

Stage-Discharge for Pond SWM 3: SWALE 1

1,132,00	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)	Elevation (feet)	Primary (cfs)
1,132.01								
1,132.02								
1,132,03 0.00 1,132,26 0.00 1,133,08 0.49 1,133,60 10,22 1,132,05 0.00 1,132,57 0.00 1,133,09 0.58 1,133,61 10,50 1,132,06 0.00 1,132,59 0.00 1,133,11 0.79 1,133,63 11,06 1,132,08 0.00 1,132,60 0.00 1,133,11 0.79 1,133,63 11,06 1,132,09 0.00 1,132,60 0.00 1,133,11 0.79 1,133,63 11,06 1,132,10 0.00 1,132,60 0.00 1,133,13 1.01 1,133,66 11,05 1,132,11 0.00 1,132,63 0.00 1,133,14 1.13 1,133,66 11,92 1,132,13 0.00 1,132,64 0.00 1,133,16 1.38 1,133,66 12,52 1,132,13 0.00 1,132,66 0.00 1,133,18 1.64 1,133,70 13,12 1,132,14 0.00 1,132,66 0.00 1,133,18 1.64 1,133,71 13,42 1,132,15 0.00 1,132,66 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132,04 0,00 1,132,57 0,00 1,133,09 0,58 1,133,66 10,22 1,132,06 0,00 1,132,58 0,00 1,133,10 0,68 1,133,62 10,78 1,132,07 0,00 1,132,59 0,00 1,133,11 0,79 1,133,63 11,06 1,132,09 0,00 1,132,61 0,00 1,133,13 1,01 1,133,66 11,03 1,132,10 0,00 1,132,61 0,00 1,133,13 1,01 1,133,66 11,63 1,132,10 0,00 1,132,61 0,00 1,133,14 1,13 1,133,66 11,63 1,132,11 0,00 1,132,63 0,00 1,133,15 1,25 1,133,66 11,92 1,132,13 0,00 1,132,66 0,00 1,133,17 1,51 1,133,66 11,92 1,132,14 0,00 1,132,66 0,00 1,133,17 1,51 1,133,36 1,25 1,132,15 0,00 1,132,66 0,00 1,133,18 1,64 1,133,70 1,31 1,132,15 0,00 1,132,19								
1,132.05								
1,132,06 0,00 1,132,58 0,00 1,133,10 0.68 1,133,63 10,76 1,132,08 0,00 1,132,60 0,00 1,133,12 0.89 1,133,63 11,06 1,132,09 0,00 1,132,62 0,00 1,133,13 1,01 1,133,66 11,52 1,132,11 0,00 1,132,62 0,00 1,133,14 1,13 1,133,66 11,52 1,132,11 0,00 1,132,63 0,00 1,133,16 1,38 1,133,66 11,52 1,132,13 0,00 1,132,63 0,00 1,133,16 1,38 1,133,66 12,52 1,132,13 0,00 1,132,66 0,00 1,133,17 1,51 1,133,68 12,52 1,132,13 0,00 1,132,67 0,00 1,133,17 1,51 1,133,70 13,12 1,132,15 0,00 1,132,67 0,00 1,133,20 1,92 1,133,73 14,05 1,132,17 0,00 1,132,69 0,00 1,133,22 2,07 1,133,74 14,36 1,132,29 0,00 1,132,72 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.07 0.00 1,132.59 0.00 1,133.11 0.79 1,133.63 11.05 1,132.08 0.00 1,132.61 0.00 1,133.13 1.01 1,133.65 11.63 1,132.10 0.00 1,132.63 0.00 1,133.14 1.13 1,133.67 12.22 1,132.12 0.00 1,132.63 0.00 1,133.15 1.25 1,133.67 12.22 1,132.13 0.00 1,132.64 0.00 1,133.18 1.13 1,133.69 12.82 1,132.14 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.14 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.16 0.00 1,132.68 0.00 1,133.19 1.78 1,133.71 13.42 1,132.17 0.00 1,132.68 0.00 1,133.20 1.92 1,133.72 13.72 1,132.19 0.00 1,132.70 0.00 1,133.22 2.27 1,133.77 14.05 1,132.20 0.00 1,132.72 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132,08 0.00 1,132,61 0.00 1,133,13 1.01 1,133,65 11.63 1,132,09 0.00 1,132,62 0.00 1,133,14 1.13 1,133,66 11.63 1,132,11 0.00 1,132,64 0.00 1,133,16 1.38 1,133,68 11.92 1,132,12 0.00 1,132,64 0.00 1,133,16 1.38 1,133,68 12.52 1,132,13 0.00 1,132,65 0.00 1,133,17 1.51 1,133,68 12.52 1,132,14 0.00 1,132,67 0.00 1,133,19 1.78 1,133,70 13.12 1,132,15 0.00 1,132,69 0.00 1,133,20 1.92 1,133,73 14.05 1,132,18 0.00 1,132,70 0.00 1,133,22 2.22 1,133,75 14.65 1,132,19 0.00 1,132,72 0.00 1,133,23 2.38 1,133,76 14.68 1,132,20 0.00 1,132,73 0.00 1,133,24 2.54 1,133,76 14.68 1,132,22 0.00 1,132,73 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.09								
1,132.10 0.00 1,132.62 0.00 1,133.15 1.25 1,133.67 12.22 1,132.12 0.00 1,132.64 0.00 1,133.16 1.25 1,133.67 12.22 1,132.13 0.00 1,132.66 0.00 1,133.17 1.51 1,133.69 12.82 1,132.14 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.15 0.00 1,132.67 0.00 1,133.19 1.78 1,133.71 13.42 1,132.16 0.00 1,132.68 0.00 1,133.20 1.92 1,133.72 13.73 1,132.17 0.00 1,132.68 0.00 1,133.20 1.92 1,133.73 14.05 1,132.18 0.00 1,132.70 0.00 1,133.22 2.22 1,133.74 14.68 1,132.19 0.00 1,132.70 0.00 1,133.23 2.38 1,133.76 14.68 1,132.20 0.00 1,132.73 0.00 1,133.25 2.70 1,133.77 15.02 1,132.23 0.00 1,132.73 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.11 0.00 1,132.63 0.00 1,133.15 1.25 1,133.67 12.22 1,132.12 0.00 1,132.65 0.00 1,133.16 1.38 1,133.68 12.52 1,132.14 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.15 0.00 1,132.68 0.00 1,133.19 1.78 1,133.71 13.42 1,132.16 0.00 1,132.68 0.00 1,133.20 1.92 1,133.72 13.73 1,132.17 0.00 1,132.70 0.00 1,133.21 2.07 1,133.73 14.05 1,132.18 0.00 1,132.70 0.00 1,133.22 2.22 1,133.74 14.36 1,132.29 0.00 1,132.71 0.00 1,133.23 2.38 1,133.75 14.68 1,132.21 0.00 1,132.73 0.00 1,133.24 2.54 1,133.76 14.68 1,132.22 0.00 1,132.73 0.00 1,133.26 2.86 1,133.77 15.32 1,132.23 0.00 1,132.77 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.12 0.00 1,132.65 0.00 1,133.17 1.51 1,133.68 12.52 1,132.14 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.15 0.00 1,132.67 0.00 1,133.18 1.64 1,133.70 13.12 1,132.16 0.00 1,132.68 0.00 1,133.20 1.92 1,133.73 14.05 1,132.18 0.00 1,132.69 0.00 1,133.22 2.22 1,133.73 14.05 1,132.19 0.00 1,132.70 0.00 1,133.24 2.54 1,133.76 15.00 1,132.21 0.00 1,132.73 0.00 1,133.24 2.54 1,133.76 15.00 1,132.22 0.00 1,132.73 0.00 1,133.25 2.70 1,133.77 15.32 1,132.23 0.00 1,132.73 0.00 1,133.25 2.70 1,133.77 15.32 1,132.24 0.00 1,132.75 0.00 1,133.28 3.20 1,133.37 15.65 1,132.25 0.00 1,132.76 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.13 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.15 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.15 0.00 1,132.68 0.00 1,133.20 1.92 1,133.72 13.73 1,132.17 0.00 1,132.69 0.00 1,133.21 2.07 1,133.73 14.05 1,132.18 0.00 1,132.70 0.00 1,133.22 2.22 1,133.73 14.05 1,132.19 0.00 1,132.71 0.00 1,133.22 2.22 1,133.75 14.05 1,132.20 0.00 1,132.73 0.00 1,133.24 2.54 1,133.76 15.00 1,132.21 0.00 1,132.74 0.00 1,133.26 2.86 1,133.77 15.02 1,132.22 0.00 1,132.75 0.00 1,133.28 2.86 1,133.77 15.02 1,132.23 0.00 1,132.76 0.00 1,133.29 3.38 1,133.81 16.65 1,132.26 0.00 1,132.77 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.14 0.00 1,132.66 0.00 1,133.18 1.64 1,133.70 13.12 1,132.16 0.00 1,132.68 0.00 1,133.19 1,78 1,133.72 13.73 1,132.17 0.00 1,132.68 0.00 1,133.21 2.07 1,133.73 14.05 1,132.18 0.00 1,132.70 0.00 1,133.22 2.22 1,133.74 14.36 1,132.19 0.00 1,132.72 0.00 1,133.23 2.38 1,133.75 14.68 1,132.20 0.00 1,132.72 0.00 1,133.24 2.54 1,133.76 15.00 1,132.21 0.00 1,132.73 0.00 1,133.26 2.86 1,133.78 15.65 1,132.23 0.00 1,132.74 0.00 1,133.27 3.03 1,133.79 15.98 1,132.24 0.00 1,132.76 0.00 1,133.29 3.38 1,133.81 16.66 1,132.25 0.00 1,132.79 0.00 1,133.30 3.56 1,133.81 16.66 1,132.26 0.00 1,132.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.15 0.00 1,132.68 0.00 1,133.19 1,78 1,133.71 13.42 1,132.17 0.00 1,132.68 0.00 1,133.20 1.92 1,133.73 14.05 1,132.18 0.00 1,132.69 0.00 1,133.22 2.07 1,133.73 14.05 1,132.19 0.00 1,132.71 0.00 1,133.23 2.38 1,133.75 14.68 1,132.20 0.00 1,132.73 0.00 1,133.25 2.70 1,133.76 15.00 1,132.21 0.00 1,132.73 0.00 1,133.25 2.70 1,133.77 15.32 1,132.22 0.00 1,132.74 0.00 1,133.26 2.86 1,133.78 15.65 1,132.23 0.00 1,132.76 0.00 1,133.28 3.20 1,133.80 16.31 1,132.24 0.00 1,132.77 0.00 1,133.29 3.38 1,133.81 16.66 1,132.25 0.00 1,132.77 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.16 0.00 1,132.68 0.00 1,133.20 1.92 1,133.72 13.73 1,132.17 0.00 1,132.69 0.00 1,133.21 2.07 1,133.73 14.05 1,132.18 0.00 1,132.71 0.00 1,133.22 2.22 1,133.74 14.36 1,132.20 0.00 1,132.72 0.00 1,133.24 2.54 1,133.76 15.00 1,132.21 0.00 1,132.73 0.00 1,133.25 2.70 1,133.77 15.32 1,132.22 0.00 1,132.74 0.00 1,133.26 2.86 1,133.78 15.65 1,132.23 0.00 1,132.75 0.00 1,133.28 3.03 1,133.79 15.98 1,132.24 0.00 1,132.76 0.00 1,133.29 3.38 1,133.81 16.66 1,132.26 0.00 1,132.77 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.79 0.00 1,133.33 3.92 1,133.83 17.36 1,132.28 0.00 1,132.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.17 0.00 1,132.69 0.00 1,133.21 2.07 1,133.73 14.05 1,132.19 0.00 1,132.70 0.00 1,133.22 2.22 1,133.74 14.36 1,132.19 0.00 1,132.71 0.00 1,133.23 2.38 1,133.75 14.68 1,132.20 0.00 1,132.72 0.00 1,133.24 2.54 1,133.76 15.00 1,132.21 0.00 1,132.73 0.00 1,133.26 2.86 1,133.78 15.65 1,132.23 0.00 1,132.76 0.00 1,133.27 3.03 1,133.79 15.98 1,132.24 0.00 1,132.76 0.00 1,133.29 3.38 1,133.80 16.31 1,132.26 0.00 1,132.77 0.00 1,133.30 3.56 1,133.80 16.31 1,132.26 0.00 1,132.77 0.00 1,133.30 3.56 1,133.81 16.66 1,132.27 0.00 1,132.80 0.00 1,133.31 3.74 1,133.83 17.66 1,132.28 0.00 1,132.80 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.18 0.00 1,132.70 0.00 1,133.22 2.22 1,133.74 14.36 1,132.19 0.00 1,132.71 0.00 1,133.23 2.38 1,133.75 14.68 1,132.20 0.00 1,132.73 0.00 1,133.25 2.70 1,133.77 15.32 1,132.22 0.00 1,132.74 0.00 1,133.27 3.03 1,133.79 15.92 1,132.23 0.00 1,132.76 0.00 1,133.27 3.03 1,133.79 15.98 1,132.24 0.00 1,132.76 0.00 1,133.28 3.20 1,133.80 16.31 1,132.25 0.00 1,132.77 0.00 1,133.30 3.56 1,133.81 16.66 1,132.26 0.00 1,132.79 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.80 0.00 1,133.33 3.74 1,133.83 17.36 1,132.29 0.00 1,132.80 0.00 1,133.33 4.11 1,133.86 18.07 1,132.30 0.00 1,132.83 <td></td> <td></td> <td>· '</td> <td></td> <td></td> <td></td> <td></td> <td></td>			· '					
1,132.19 0.00 1,132.71 0.00 1,133.23 2.38 1,133.76 14.68 1,132.20 0.00 1,132.72 0.00 1,133.25 2.70 1,133.77 15.32 1,132.21 0.00 1,132.74 0.00 1,133.26 2.86 1,133.78 15.65 1,132.23 0.00 1,132.75 0.00 1,133.28 3.20 1,133.80 15.65 1,132.24 0.00 1,132.76 0.00 1,133.28 3.20 1,133.80 16.31 1,132.25 0.00 1,132.77 0.00 1,133.29 3.38 1,133.81 16.66 1,132.26 0.00 1,132.78 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.79 0.00 1,133.31 3.74 1,133.83 17.36 1,132.29 0.00 1,132.80 0.00 1,133.33 3.92 1,133.84 17.71 1,132.30 0.00 1,132.83 0.00 1,133.35 4.49 1,133.86 18.07 1,132.33 0.00 1,132.83 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.20 0.00 1,132.72 0.00 1,133.25 2.54 1,133.76 15.00 1,132.21 0.00 1,132.73 0.00 1,133.25 2.70 1,133.77 15.32 1,132.23 0.00 1,132.75 0.00 1,133.27 3.03 1,133.79 15.98 1,132.24 0.00 1,132.76 0.00 1,133.29 3.38 1,133.81 16.66 1,132.25 0.00 1,132.77 0.00 1,133.30 3.56 1,133.82 17.01 1,132.26 0.00 1,132.79 0.00 1,133.31 3.74 1,133.83 17.36 1,132.28 0.00 1,132.80 0.00 1,133.33 3.74 1,133.84 17.71 1,132.29 0.00 1,132.80 0.00 1,133.33 3.92 1,133.86 18.07 1,132.31 0.00 1,132.80 0.00 1,133.34 4.30 1,133.86 18.07 1,132.30 0.00 1,132.83 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.21 0.00 1,132.73 0.00 1,133.26 2.70 1,133.77 15.32 1,132.22 0.00 1,132.74 0.00 1,133.27 3.03 1,133.78 15.65 1,132.23 0.00 1,132.76 0.00 1,133.28 3.20 1,133.80 16.31 1,132.25 0.00 1,132.77 0.00 1,133.30 3.56 1,133.82 17.01 1,132.26 0.00 1,132.78 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.79 0.00 1,133.31 3.74 1,133.82 17.01 1,132.28 0.00 1,132.80 0.00 1,133.33 3.74 1,133.84 17.71 1,132.29 0.00 1,132.81 0.00 1,133.33 4.11 1,133.85 18.07 1,132.30 0.00 1,132.82 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.88 19.17 1,132.33 0.00 1,132.84 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.23 0.00 1,132.75 0.00 1,133.27 3.03 1,133.79 15.98 1,132.24 0.00 1,132.76 0.00 1,133.28 3.20 1,133.80 16.31 1,132.25 0.00 1,132.77 0.00 1,133.29 3.38 1,133.81 16.66 1,132.26 0.00 1,132.78 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.79 0.00 1,133.32 3.92 1,133.82 17.01 1,132.28 0.00 1,132.80 0.00 1,133.33 4.11 1,133.85 18.07 1,132.30 0.00 1,132.81 0.00 1,133.33 4.11 1,133.85 18.07 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.86 18.43 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.86 0.00 1,133.39 5.30 1,133.99 19.54 1,132.34 0.00 1,132.86 <td></td> <td></td> <td></td> <td>0.00</td> <td>1,133.25</td> <td></td> <td></td> <td></td>				0.00	1,133.25			
1,132.24 0.00 1,132.76 0.00 1,133.28 3.20 1,133.80 16.31 1,132.25 0.00 1,132.78 0.00 1,133.29 3.38 1,133.81 16.66 1,132.26 0.00 1,132.78 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.80 0.00 1,133.31 3.74 1,133.83 17.36 1,132.28 0.00 1,132.81 0.00 1,133.32 3.92 1,133.84 17.71 1,132.30 0.00 1,132.81 0.00 1,133.33 4.11 1,133.85 18.07 1,132.31 0.00 1,132.82 0.00 1,133.34 4.30 1,133.87 18.80 1,132.32 0.00 1,132.83 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.84 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.39 5.30 1,133.90 19.91 1,132.35 0.00 1,132.87 <td>1,132.22</td> <td>0.00</td> <td>1,132.74</td> <td>0.00</td> <td>1,133.26</td> <td>2.86</td> <td>1,133.78</td> <td>15.65</td>	1,132.22	0.00	1,132.74	0.00	1,133.26	2.86	1,133.78	15.65
1,132.25 0.00 1,132.78 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.79 0.00 1,133.30 3.56 1,133.82 17.01 1,132.28 0.00 1,132.80 0.00 1,133.32 3.74 1,133.84 17.71 1,132.29 0.00 1,132.81 0.00 1,133.33 4.11 1,133.85 18.07 1,132.30 0.00 1,132.82 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.87 18.80 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.39 5.09 1,133.90 19.91 1,132.35 0.00 1,132.88 0.00 1,133.39 5.30 1,133.91 20.29 1,132.36 0.00 1,132.89 <td>1,132.23</td> <td>0.00</td> <td>1,132.75</td> <td>0.00</td> <td>1,133.27</td> <td>3.03</td> <td>1,133.79</td> <td>15.98</td>	1,132.23	0.00	1,132.75	0.00	1,133.27	3.03	1,133.79	15.98
1,132.26 0.00 1,132.78 0.00 1,133.30 3.56 1,133.82 17.01 1,132.27 0.00 1,132.80 0.00 1,133.31 3.74 1,133.83 17.36 1,132.28 0.00 1,132.81 0.00 1,133.32 3.92 1,133.84 17.71 1,132.29 0.00 1,132.81 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.87 18.80 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.39 5.09 1,133.90 19.91 1,132.35 0.00 1,132.87 0.00 1,133.40 5.50 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.41 5.72 1,133.93 21.05 1,132.39 0.00 1,132.99 <td>1,132.24</td> <td>0.00</td> <td>1,132.76</td> <td>0.00</td> <td>1,133.28</td> <td>3.20</td> <td>1,133.80</td> <td>16.31</td>	1,132.24	0.00	1,132.76	0.00	1,133.28	3.20	1,133.80	16.31
1,132.27 0.00 1,132.79 0.00 1,133.31 3.74 1,133.83 17.36 1,132.28 0.00 1,132.80 0.00 1,133.32 3.92 1,133.84 17.71 1,132.29 0.00 1,132.81 0.00 1,133.33 4.11 1,133.85 18.07 1,132.30 0.00 1,132.82 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.87 18.80 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.39 5.30 1,133.90 19.91 1,32.35 0.00 1,132.87 0.00 1,133.40 5.50 1,133.91 20.29 1,132.37 0.00 1,132.88 0.00 1,133.41 5.72 1,133.92 20.67 1,132.38 0.00 1,132.90 <td>1,132.25</td> <td>0.00</td> <td>1,132.77</td> <td>0.00</td> <td>1,133.29</td> <td></td> <td>1,133.81</td> <td>16.66</td>	1,132.25	0.00	1,132.77	0.00	1,133.29		1,133.81	16.66
1,132.28 0.00 1,132.80 0.00 1,133.32 3.92 1,133.84 17.71 1,132.29 0.00 1,132.81 0.00 1,133.33 4.11 1,133.85 18.07 1,132.30 0.00 1,132.82 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.87 18.80 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.89 19.54 1,132.33 0.00 1,132.85 0.00 1,133.38 5.09 1,133.90 19.91 1,132.35 0.00 1,132.86 0.00 1,133.39 5.30 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,133.44 <td>1,132.26</td> <td>0.00</td> <td>1,132.78</td> <td>0.00</td> <td>1,133.30</td> <td>3.56</td> <td>1,133.82</td> <td>17.01</td>	1,132.26	0.00	1,132.78	0.00	1,133.30	3.56	1,133.82	17.01
1,132.29 0.00 1,132.81 0.00 1,133.33 4.11 1,133.85 18.07 1,132.30 0.00 1,132.82 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.87 18.80 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.39 5.30 1,133.90 19.91 1,132.35 0.00 1,132.87 0.00 1,133.40 5.50 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,133.43 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.30 0.00 1,132.82 0.00 1,133.34 4.30 1,133.86 18.43 1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.87 18.80 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.39 5.30 1,133.90 19.91 1,132.35 0.00 1,132.87 0.00 1,133.40 5.50 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 <td></td> <td></td> <td>1,132.80</td> <td></td> <td>1,133.32</td> <td></td> <td>1,133.84</td> <td></td>			1,132.80		1,133.32		1,133.84	
1,132.31 0.00 1,132.83 0.00 1,133.35 4.49 1,133.87 18.80 1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.38 5.09 1,133.90 19.91 1,132.35 0.00 1,132.87 0.00 1,133.39 5.30 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.99 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,133.43 6.15 1,133.95 21.83 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.32 0.00 1,132.84 0.00 1,133.36 4.69 1,133.88 19.17 1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.38 5.09 1,133.90 19.91 1,132.35 0.00 1,132.87 0.00 1,133.39 5.30 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.96 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.33 0.00 1,132.85 0.00 1,133.37 4.89 1,133.89 19.54 1,132.34 0.00 1,132.86 0.00 1,133.38 5.09 1,133.90 19.91 1,132.35 0.00 1,132.87 0.00 1,133.39 5.30 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.47 7.04 1,133.99 23.43 1,132.43 0.00 1,132.96 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.34 0.00 1,132.86 0.00 1,133.38 5.09 1,133.90 19.91 1,132.35 0.00 1,132.87 0.00 1,133.39 5.30 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.47 7.04 1,133.99 23.43 1,132.43 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.46 0.00 1,132.99 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.35 0.00 1,132.87 0.00 1,133.39 5.30 1,133.91 20.29 1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.96 0.00 1,133.49 7.50 1,134.00 23.84 1,132.46 0.00 1,132.99 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.36 0.00 1,132.88 0.00 1,133.40 5.50 1,133.92 20.67 1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.98 0.00 1,133.50 7.74 1,132.46 0.00 1,133.99 0.00 1,133.52 8.21 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,132.37 0.00 1,132.89 0.00 1,133.41 5.72 1,133.93 21.05 1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.98 0.00 1,133.50 7.74 1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50					· · · · · · · · · · · · · · · · · · ·			
1,132.38 0.00 1,132.90 0.00 1,133.42 5.93 1,133.94 21.44 1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.48 0.00 1,133.00 0.00 1,133.53 8.46 1,132.49 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.39 0.00 1,132.91 0.00 1,133.43 6.15 1,133.95 21.83 1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.40 0.00 1,132.92 0.00 1,133.44 6.36 1,133.96 22.23 1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.47 0.00 1,133.00 0.00 1,133.52 8.21 1,132.48 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.41 0.00 1,132.93 0.00 1,133.45 6.59 1,133.97 22.63 1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.47 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.42 0.00 1,132.94 0.00 1,133.46 6.81 1,133.98 23.03 1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 7.74 7.50 7.74 7.132.46 0.00 1,132.98 0.00 1,133.50 7.74 7.97 7.132.48 0.00 1,133.00 0.00 1,133.52 8.21 8.21 8.46 1,132.49 0.00 1,133.02 0.06 1,133.54 8.70 8.70								
1,132.43 0.00 1,132.95 0.00 1,133.47 7.04 1,133.99 23.43 1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.47 0.00 1,132.99 0.00 1,133.51 7.97 1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70			l '					
1,132.44 0.00 1,132.96 0.00 1,133.48 7.27 1,134.00 23.84 1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.47 0.00 1,132.99 0.00 1,133.51 7.97 1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.45 0.00 1,132.97 0.00 1,133.49 7.50 1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.47 0.00 1,132.99 0.00 1,133.51 7.97 1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.46 0.00 1,132.98 0.00 1,133.50 7.74 1,132.47 0.00 1,132.99 0.00 1,133.51 7.97 1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70							1,134.00	23.04
1,132.47 0.00 1,132.99 0.00 1,133.51 7.97 1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.48 0.00 1,133.00 0.00 1,133.52 8.21 1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
1,132.49 0.00 1,133.01 0.02 1,133.53 8.46 1,132.50 0.00 1,133.02 0.06 1,133.54 8.70			l '					
1,132.50 0.00 1,133.02 0.06 1,133.54 8.70								
, , , , , , , , , , , , , , , , , , , ,								
ı ı	•		,		,			

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 4

Stage-Area-Storage for Pond SWM 3: SWALE 1

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
1,132.00	1,240	0	1,133.04	5,109	3,301
1,132.02	1,314	26	1,133.06	5,183	3,404
1,132.04	1,389	53	1,133.08	5,258	3,509
1,132.06	1,463	81	1,133.10	5,332	3,615
1,132.08	1,538	111	1,133.10	5,406	3,722
1,132.10	1,612	143	1,133.12	5,481	3,831
1,132.12	1,686	176	1,133.14	5,555	3,941
1,132.14	1,761	210	1,133.18	5,630	4,053
1,132.14	1,835	246	1,133.20	5,704	4,166
1,132.18	1,910	283	1,133.22	5,778	4,281
1,132.20	1,984	322	1,133.24	5,853	4,398
1,132.22	2,058	363	1,133.26	5,927	4,515
1,132.24	2,133	405	1,133.28	6,002	4,635
1,132.26	2,207	448	1,133.30	6,076	4,755
1,132.28	2,282	493	1,133.32	6,150	4,878
1,132.30	2,356	539	1,133.34	6,225	5,001
1,132.32	2,430	587	1,133.36	6,299	5,127
1,132.34	2,505	637	1,133.38	6,374	5,253
1,132.36	2,579	687	1,133.40	6,448	5,382
1,132.38	2,654	740	1,133.42	6,522	5,511
1,132.40	2,728	794	1,133.44	6,597	5,642
1,132.42	2,802	849	1,133.46	6,671	5,775
1,132.44	2,877	906	1,133.48	6,746	5,909
1,132.46	2,951	964	1,133.50	6,820	6,045
1,132.48	3,026	1,024	1,133.52	6,894	6,182
1,132.50	3,100	1,085	1,133.54	6,969	6,321
1,132.52	3,174	1,148	1,133.56	7,043	6,461
1,132.54	3,249	1,212	1,133.58	7,118	6,603
1,132.56	3,323	1,278	1,133.60	7,192	6,746
1,132.58	3,398	1,345	1,133.62	7,266	6,890
1,132.60	3,472	1,414	1,133.64	7,341	7,036
1,132.62	3,546	1,484	1,133.66	7,415	7,184
1,132.64	3,621	1,555	1,133.68	7,490	7,333
1,132.66	3,695	1,629	1,133.70	7,564	7,483
1,132.68	3,770	1,703	1,133.72	7,638	7,635
1,132.70	3,844	1,779	1,133.74	7,713	7,789
1,132.72	3,918	1,857	1,133.76	7,787	7,944
1,132.74	3,993	1,936	1,133.78	7,862	8,100
1,132.76	4,067	2,017	1,133.80	7,936	8,258
1,132.78	4,142	2,099	1,133.82	8,010	8,418
1,132.80	4,216	2,182	1,133.84	8,085	8,579
1,132.82	4,290	2,267	1,133.86	8,159	8,741
1,132.84	4,365	2,354	1,133.88	8,234	8,905
1,132.86	4,439	2,442	1,133.90	8,308	9,071
1,132.88	4,514	2,532	1,133.92	8,382	9,238
1,132.90	4,588	2,623	1,133.94	8,457	9,406 0.576
1,132.92	4,662	2,715	1,133.96	8,531	9,576
1,132.94	4,737 4,811	2,809	1,133.98	8,606	9,747
1,132.96 1,132.98	4,811 4,886	2,905 3,002	1,134.00	8,680	9,920
1,132.96	4,960 4,960	3,002 3,100			
1,133.00	5,034	3,200			
1,100.02	5,054	3,200			
			ı		

PA-Benton - 517 - WDiamond 24-hr S1 2-yr Rainfall=2.98"

Prepared by {enter your company name here}

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 5

Summary for Pond SWM 3: SWALE 1

Inflow Area = 0.571 ac, 0.00% Impervious, Inflow Depth = 1.11" for 2-yr event

Inflow = 0.64 cfs @ 12.14 hrs, Volume= 0.053 af

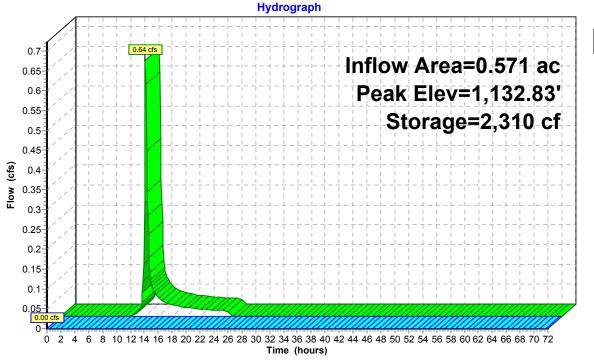
Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs Peak Elev= 1,132.83' @ 24.80 hrs Surf.Area= 4,327 sf Storage= 2,310 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)


Volume	Inv	ert Avail.Sto	rage Storage	Description	
#1	1,132.0	00' 9,92	20 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatior (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,132.00		1,240	0	0	
1,133.00)	4,960	3,100	3,100	
1,134.00)	8,680	6,820	9,920	
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	1,133.00'	Head (feet) 0 2.50 3.00	.20 0.40 0.60 a) 2.69 2.72 2.	ad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 75 2.85 2.98 3.08 3.20 3.28 3.31

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,132.00' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Printed 9/17/2016

Page 6

Pond SWM 3: SWALE 1

PA-Benton - 517 - WDiamond 24-hr S1 5-yr Rainfall=3.68"

Prepared by {enter your company name here}

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 9

Summary for Pond SWM 3: SWALE 1

Inflow Area = 0.571 ac, 0.00% Impervious, Inflow Depth = 1.64" for 5-yr event

Inflow = 0.94 cfs @ 12.14 hrs, Volume= 0.078 af

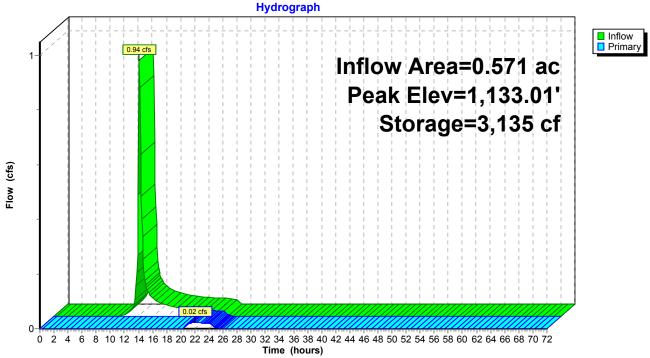
Outflow = 0.02 cfs @ 22.03 hrs, Volume= 0.007 af, Atten= 98%, Lag= 593.5 min

Primary = 0.02 cfs @ 22.03 hrs, Volume= 0.007 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs Peak Elev= 1,133.01' @ 22.03 hrs Surf.Area= 4,986 sf Storage= 3,135 cf

Plug-Flow detention time= 681.1 min calculated for 0.007 af (9% of inflow)

Center-of-Mass det. time= 503.7 min (1,360.9 - 857.2)


Volume	Inv	ert Avai	I.Storage	Storage	Description		
#1	1,132.	00'	9,920 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatior (feet		Surf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)		
1,132.00 1,133.00 1,134.00)	1,240 4,960 8,680		0 3,100 6,820	0 3,100 9,920		
Device	Routing	In	vert Outl	et Devices	5		
#1	Primary	1,133	Hea 2.50 Coe	d (feet) 0 3.00	.20 0.40 0.60) 2.69 2.72 2.	ad-Crested Rectangu 0.80 1.00 1.20 1.40 75 2.85 2.98 3.08 3.2	1.60 1.80 2.00

Primary OutFlow Max=0.01 cfs @ 22.03 hrs HW=1,133.01' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.01 cfs @ 0.23 fps)

Printed 9/17/2016

Page 10

Pond SWM 3: SWALE 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

<u>Page 13</u>

Summary for Pond SWM 3: SWALE 1

Inflow Area = 0.571 ac, 0.00% Impervious, Inflow Depth = 2.12" for 10-yr event

Inflow = 1.16 cfs @ 12.14 hrs, Volume= 0.101 af

Outflow = 0.05 cfs @ 15.79 hrs, Volume= 0.030 af, Atten= 95%, Lag= 219.2 min

Primary = 0.05 cfs @ 15.79 hrs, Volume= 0.030 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs Peak Elev= 1,133.02' @ 15.79 hrs Surf.Area= 5,026 sf Storage= 3,188 cf

Plug-Flow detention time= 437.2 min calculated for 0.030 af (29% of inflow)

Center-of-Mass det. time= 289.7 min (1,141.9 - 852.3)

Volume	Inv	ert Avai	I.Storage	Storage	Description		
#1	1,132.	00'	9,920 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatior (feet		Surf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)		
1,132.00 1,133.00 1,134.00)	1,240 4,960 8,680		0 3,100 6,820	0 3,100 9,920		
Device	Routing	In	vert Outl	et Devices	5		
#1	Primary	1,133	Hea 2.50 Coe	d (feet) 0 3.00	.20 0.40 0.60) 2.69 2.72 2.	ad-Crested Rectangu 0.80 1.00 1.20 1.40 75 2.85 2.98 3.08 3.2	1.60 1.80 2.00

Primary OutFlow Max=0.05 cfs @ 15.79 hrs HW=1,133.02' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.36 fps)

Printed 9/17/2016

Page 14

Pond SWM 3: SWALE 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 17

Summary for Pond SWM 3: SWALE 1

Inflow Area = 0.571 ac, 0.00% Impervious, Inflow Depth = 2.89" for 25-yr event

Inflow = 1.48 cfs @ 12.13 hrs, Volume= 0.138 af

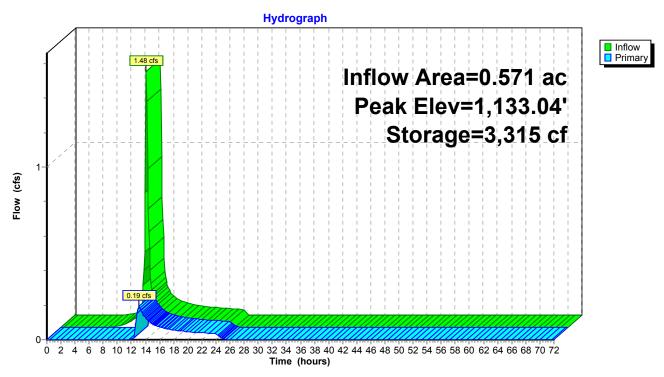
Outflow = 0.19 cfs @ 13.04 hrs, Volume= 0.066 af, Atten= 87%, Lag= 54.2 min

Primary = 0.19 cfs @ 13.04 hrs, Volume= 0.066 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs Peak Elev= 1,133.04' @ 13.04 hrs Surf.Area= 5,119 sf Storage= 3,315 cf

Plug-Flow detention time= 307.8 min calculated for 0.066 af (48% of inflow)

Center-of-Mass det. time= 169.9 min (1,016.9 - 847.0)


Volume	Inv	<u>ert Avail.Sto</u>	orage Storage	e Description	
#1	1,132.0	00' 9,9	20 cf Custor	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatior (feet	-	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,132.00 1,133.00 1,134.00)	1,240 4,960 8,680	0 3,100 6,820	0 3,100 9,920	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	1,133.00'	Head (feet) 2.50 3.00	1.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 sh) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.32	_

Primary OutFlow Max=0.19 cfs @ 13.04 hrs HW=1,133.04' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.19 cfs @ 0.55 fps)

Printed 9/17/2016

Page 18

Pond SWM 3: SWALE 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 21

Summary for Pond SWM 3: SWALE 1

Inflow Area = 0.571 ac, 0.00% Impervious, Inflow Depth = 3.61" for 50-yr event

Inflow = 1.73 cfs @ 12.13 hrs, Volume= 0.172 af

Outflow = 0.53 cfs @ 12.61 hrs, Volume= 0.101 af, Atten= 69%, Lag= 28.9 min

Primary = 0.53 cfs @ 12.61 hrs, Volume= 0.101 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs Peak Elev= 1,133.08' @ 12.61 hrs Surf.Area= 5,275 sf Storage= 3,533 cf

Plug-Flow detention time= 260.0 min calculated for 0.101 af (59% of inflow)

Center-of-Mass det. time= 128.1 min (970.9 - 842.8)


Volume	Inve	ert Avail.	.Storage	Storage [Description			
#1	1,132.0	00'	9,920 cf	Custom	Stage Data (P	rismatic) Listed b	elow (Recal	c)
Elevation (feet	· -	Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)			
1,132.00 1,133.00 1,134.00	0	1,240 4,960 8,680		0 3,100 6,820	0 3,100 9,920			
Device	Routing	Inv	ert Outle	et Devices				
#1	Primary	1,133.	Head 2.50 Coef	d (feet) 0.: 3.00	20 0.40 0.60) 2.69 2.72 2.	ad-Crested Rec 0.80 1.00 1.20 75 2.85 2.98 3	1.40 1.60	1.80 2.00

Primary OutFlow Max=0.52 cfs @ 12.61 hrs HW=1,133.08' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.52 cfs @ 0.78 fps)

Printed 9/17/2016

Page 22

Pond SWM 3: SWALE 1

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 25

Summary for Pond SWM 3: SWALE 1

Inflow Area = 0.571 ac, 0.00% Impervious, Inflow Depth = 4.47" for 100-yr event

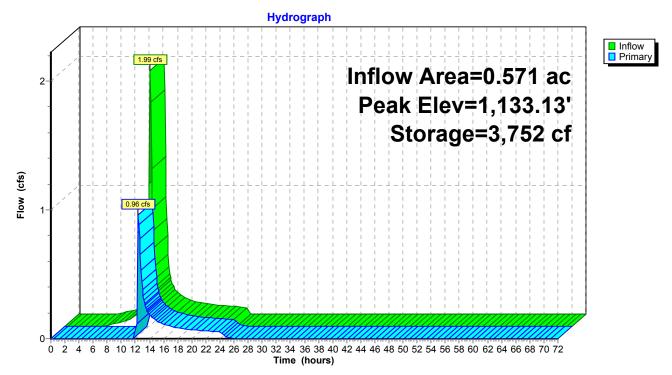
Inflow = 1.99 cfs @ 12.13 hrs, Volume= 0.213 af

Outflow = 0.96 cfs @ 12.42 hrs, Volume= 0.142 af, Atten= 52%, Lag= 17.1 min

Primary = 0.96 cfs @ 12.42 hrs, Volume= 0.142 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs Peak Elev= 1,133.13' @ 12.42 hrs Surf.Area= 5,427 sf Storage= 3,752 cf

Plug-Flow detention time= 232.2 min calculated for 0.142 af (67% of inflow)


Center-of-Mass det. time= 105.8 min (944.6 - 838.8)

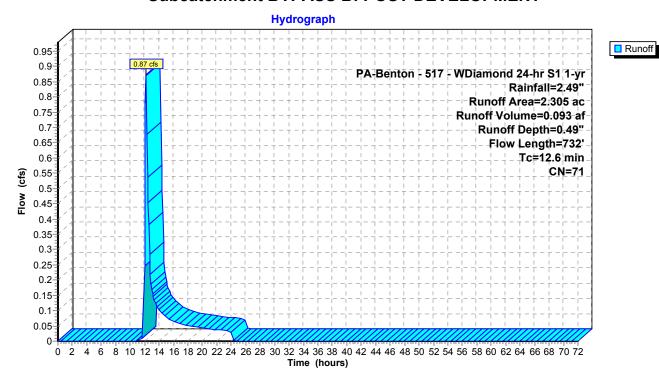
Volume	Inv	ert Avail.Sto	orage Storage	e Description	
#1	1,132.	00' 9,9	20 cf Custon	m Stage Data (Prismatic)Listed below (Recalc)	
Elevatio (feet		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,132.0 1,133.0 1,134.0	0	1,240 4,960 8,680	0 3,100 6,820	0 3,100 9,920	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	1,133.00'	Head (feet) (2.50 3.00	1.0' breadth Broad-Crested Rectangular Weir 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 (sh) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 .32)

Primary OutFlow Max=0.94 cfs @ 12.42 hrs HW=1,133.12' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 0.94 cfs @ 0.95 fps)

Page 26

Pond SWM 3: SWALE 1

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

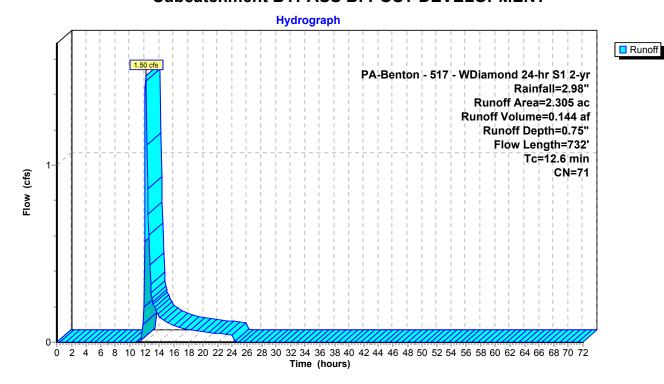

Page 1

Summary for Subcatchment BYPASS B: POST DEVELOPMENT

Runoff = 0.87 cfs @ 12.18 hrs, Volume= 0.093 af, Depth= 0.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 1-yr Rainfall=2.49"

	Area	(ac)	CN	l Desc	cription		
	0.	459	70) Woo	ds, Good,	HSG C	
	1.	830	71	l Mea	dow, non-	grazed, HS	G C
*	0.	016	89	9 Grav	el areas, l	HSG C	
*	0.	.000	98	3 Impe	ervious are	as, HSG C	
	2.	305	71	l Weig	hted Aver	age	
	2.	305		100.	00% Pervi	ous Area	
	Tc	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	8.3	10	00	0.0250	0.20		Sheet Flow, SHT 1
							Range n= 0.130 P2= 2.98"
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1
							Short Grass Pasture Kv= 7.0 fps
	12.6	73	32	Total	·		


Page 2

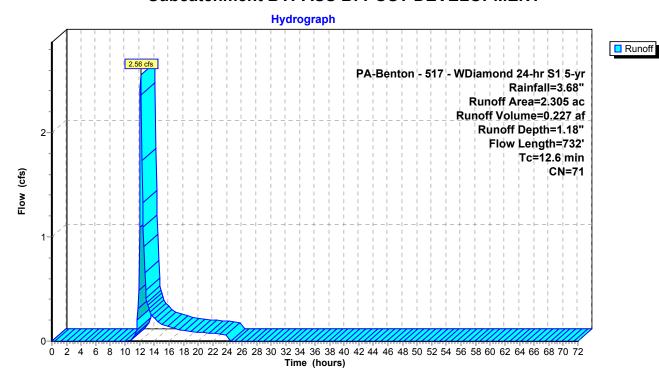
Summary for Subcatchment BYPASS B: POST DEVELOPMENT

Runoff = 1.50 cfs @ 12.16 hrs, Volume= 0.144 af, Depth= 0.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 2-yr Rainfall=2.98"

	Area	(ac)	CN	l Desc	cription			_	
	0.	459	70) Woo	ds, Good,	HSG C			
	1.	830	71	l Mea	dow, non-	grazed, HS	G C		
*	0.	016	89	9 Grav	el areas, l	HSG C			
*	0.	000	98	3 Impe	ervious are	as, HSG C		_	
	2.	305	71	l Weig	ghted Aver	age			
	2.	305		100.	100.00% Pervious Area				
	Тс	Leng	th	Slope	Velocity	Capacity	Description		
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		_	
	8.3	10	00	0.0250	0.20		Sheet Flow, SHT 1		
							Range n= 0.130 P2= 2.98"		
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1		
							Short Grass Pasture Kv= 7.0 fps	_	
	12.6	73	32	Total					

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 3

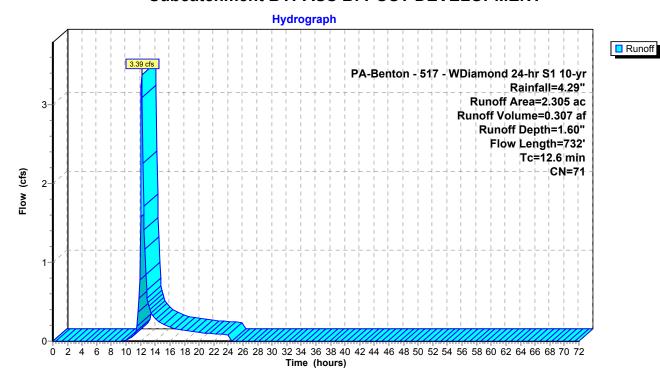
Summary for Subcatchment BYPASS B: POST DEVELOPMENT

Runoff = 2.56 cfs @ 12.15 hrs, Volume= 0.227 af, Depth= 1.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 5-yr Rainfall=3.68"

_	Area	(ac)	CN	Desc	cription				
	0.	459	70	Woo	ds, Good,	HSG C			
	1.830 71 Meadow, non-grazed, HSG C								
*	0.016 89 Gravel areas, HSG C								
*	0.	000	98	Impe	rvious are	as, HSG C	;		
	2.305 71 Weighted Average								
	2.305 100.0				00.00% Pervious Area				
	Tc	Lengtl	า ร	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	8.3	100	0.	.0250	0.20		Sheet Flow, SHT 1		
							Range n= 0.130 P2= 2.98"		
	4.3	632	2 0.	.1200	2.42		Shallow Concentrated Flow, SCF 1		
							Short Grass Pasture Kv= 7.0 fps		
	12.6	732	2 To	otal					

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 4

Summary for Subcatchment BYPASS B: POST DEVELOPMENT

Runoff = 3.39 cfs @ 12.14 hrs, Volume= 0.307 af, Depth= 1.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 10-yr Rainfall=4.29"

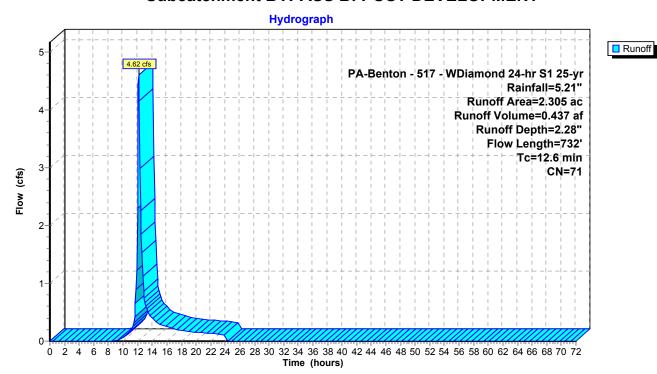
	Area	(ac)	CN	l Desc	cription			_		
	0.	459	70) Woo	ds, Good,	HSG C				
	1.830 71			l Mea	Meadow, non-grazed, HSG C					
*	* 0.016 89 Gravel areas, HSG C									
*	0.	000	98	3 Impe	ervious are	as, HSG C		_		
	2.	305	71	l Weig	ghted Aver	age				
	2.305			100.	00% Pervi	ous Area				
	Тс	Leng	th	Slope	Velocity	Capacity	Description			
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		_		
	8.3	10	00	0.0250	0.20		Sheet Flow, SHT 1			
							Range n= 0.130 P2= 2.98"			
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1			
							Short Grass Pasture Kv= 7.0 fps	_		
	12.6	73	32	Total						

0.437 af, Depth= 2.28"

Runoff

Printed 9/17/2016

Page 5

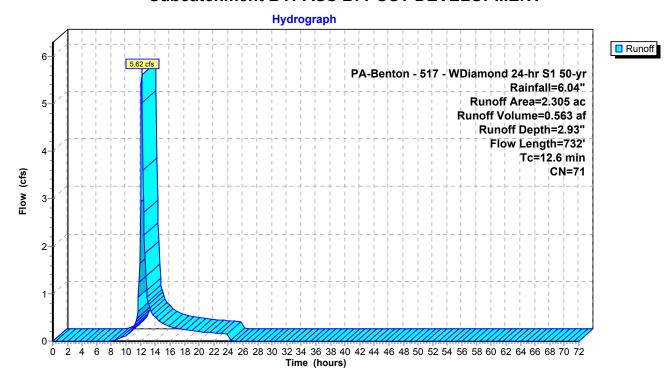

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

4.62 cfs @ 12.14 hrs, Volume=

Summary for Subcatchment BYPASS B: POST DEVELOPMENT

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 25-yr Rainfall=5.21"

	Area	(ac)	CN	Desc	cription					
	0.	459	70	Woo	ds, Good,	HSG C				
	1.830		71	Mea	dow, non-	grazed, HS	G C			
* 0.016 89 Gravel areas, HSG C										
*	0.	000	98	Impe	Impervious areas, HSG C					
	2.305 71 Weighted Average									
	2.	305		100.	100.00% Pervious Area					
	Tc	Lengt	:h	Slope	Velocity	Capacity	Description			
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)				
	8.3	10	0 (0.0250	0.20		Sheet Flow, SHT 1			
							Range n= 0.130 P2= 2.98"			
	4.3	63	2 (0.1200	2.42		Shallow Concentrated Flow, SCF 1			
							Short Grass Pasture Kv= 7.0 fps			
	12.6	73	2	Total						


Page 6

Summary for Subcatchment BYPASS B: POST DEVELOPMENT

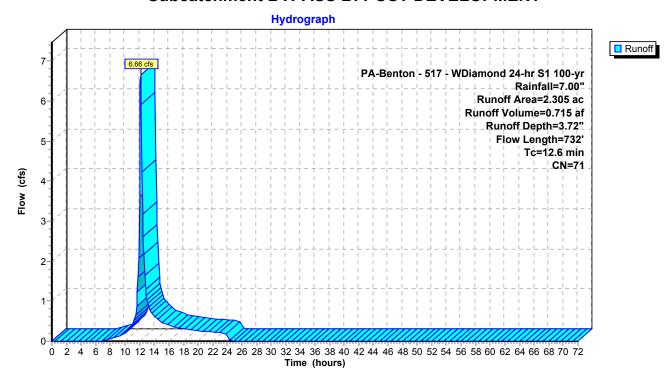
Runoff = 5.62 cfs @ 12.14 hrs, Volume= 0.563 af, Depth= 2.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 50-yr Rainfall=6.04"

	Area	(ac)	CN	l Des	cription				
	0.	459	70) Woo	ds, Good,	HSG C			
	1.830 71 Meadow, non-grazed, HSG C								
*	0.016 89 Gravel areas, HSG C								
*	0.	000	98	3 Impe	ervious are	as, HSG C			
	2.	305	71	l Weig	ghted Aver	age			
	2.305			100.	100.00% Pervious Area				
	Tc	Leng	th	Slope	Velocity	Capacity	Description		
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)			
	8.3	10	00	0.0250	0.20		Sheet Flow, SHT 1		
							Range n= 0.130 P2= 2.98"		
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1		
							Short Grass Pasture Kv= 7.0 fps		
	12.6	73	32	Total					

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Page 7

Summary for Subcatchment BYPASS B: POST DEVELOPMENT

Runoff = 6.66 cfs @ 12.13 hrs, Volume= 0.715 af, Depth= 3.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs PA-Benton - 517 - WDiamond 24-hr S1 100-yr Rainfall=7.00"

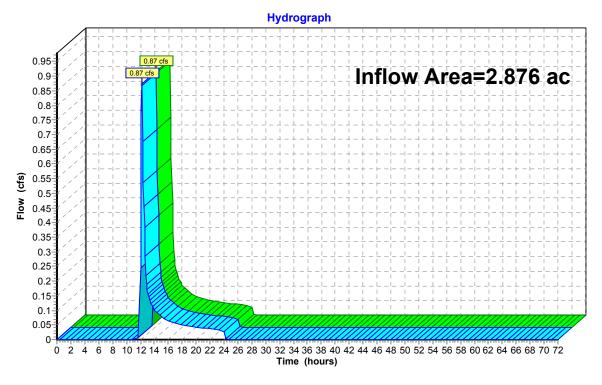
	Area	(ac)	CN	l Desc	cription			
	0.	459	70) Woo	ds, Good,	HSG C		
1.830 71 Meadow, non-grazed, HSG C							G C	
*	* 0.016 89 Gravel areas, HSG C							
*	0.	000	98	3 Impe	ervious are	as, HSG C		
	2.	305	71	Weig	hted Aver	age		
	2.305			100.	00% Pervi	ous Area		
	Tc	Leng	th	Slope	Velocity	Capacity	Description	
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)		
	8.3	10	00	0.0250	0.20		Sheet Flow, SHT 1	
							Range n= 0.130 P2= 2.98"	
	4.3	63	32	0.1200	2.42		Shallow Concentrated Flow, SCF 1	
							Short Grass Pasture Kv= 7.0 fps	
	12.6	73	32	Total				

Printed 9/17/2016

Inflow Primary

Page 1

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Summary for Link POI B POST: POI B - POST

Inflow Area = 2.876 ac, 0.00% Impervious, Inflow Depth = 0.39" for 1-yr event

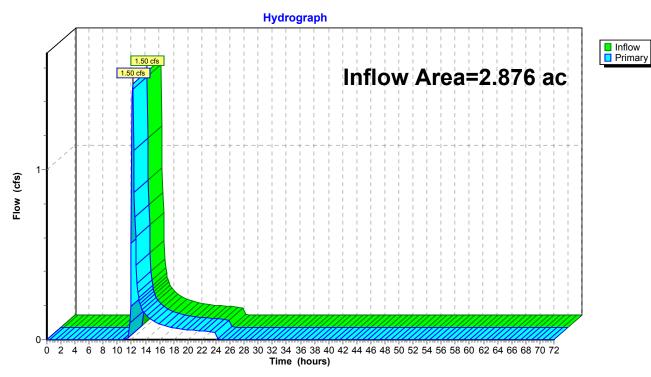
Inflow = 0.87 cfs @ 12.18 hrs, Volume= 0.093 af

Primary = 0.87 cfs @ 12.18 hrs, Volume= 0.093 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 2


Summary for Link POI B POST: POI B - POST

2.876 ac, 0.00% Impervious, Inflow Depth = 0.60" for 2-yr event Inflow Area =

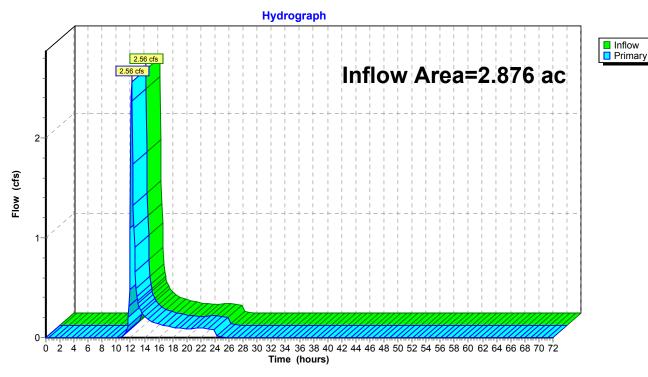
Inflow 1.50 cfs @ 12.16 hrs, Volume= 0.144 af

1.50 cfs @ 12.16 hrs, Volume= Primary 0.144 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 3


Summary for Link POI B POST: POI B - POST

2.876 ac, 0.00% Impervious, Inflow Depth = 0.97" for 5-yr event Inflow Area =

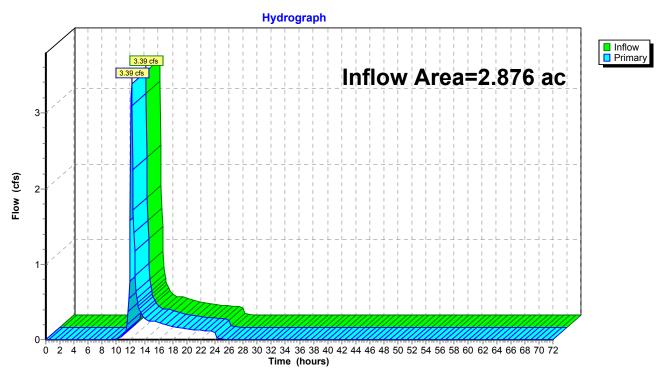
Inflow 2.56 cfs @ 12.15 hrs, Volume= 0.233 af

2.56 cfs @ 12.15 hrs, Volume= Primary 0.233 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 4


Summary for Link POI B POST: POI B - POST

2.876 ac, 0.00% Impervious, Inflow Depth = 1.40" for 10-yr event Inflow Area =

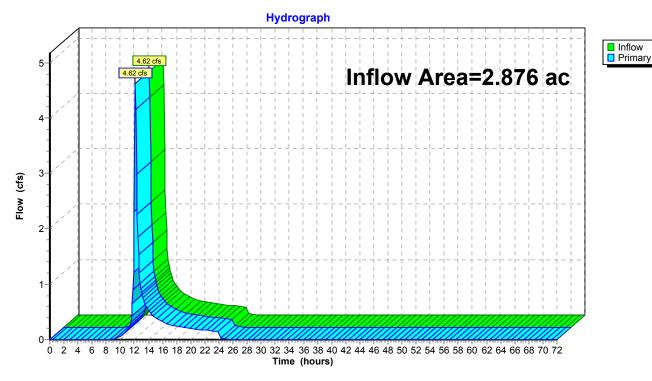
Inflow 3.39 cfs @ 12.14 hrs, Volume= 0.336 af

3.39 cfs @ 12.14 hrs, Volume= Primary 0.336 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Page 5

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC


Summary for Link POI B POST: POI B - POST

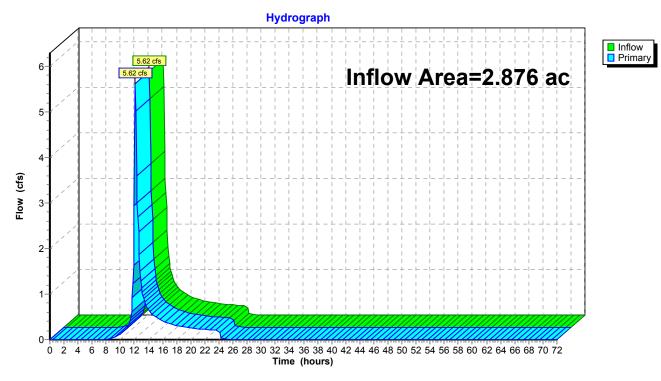
2.876 ac, 0.00% Impervious, Inflow Depth = 2.10" for 25-yr event Inflow Area =

Inflow 4.62 cfs @ 12.14 hrs, Volume= 0.504 af

4.62 cfs @ 12.14 hrs, Volume= Primary 0.504 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC Page 6


Summary for Link POI B POST: POI B - POST

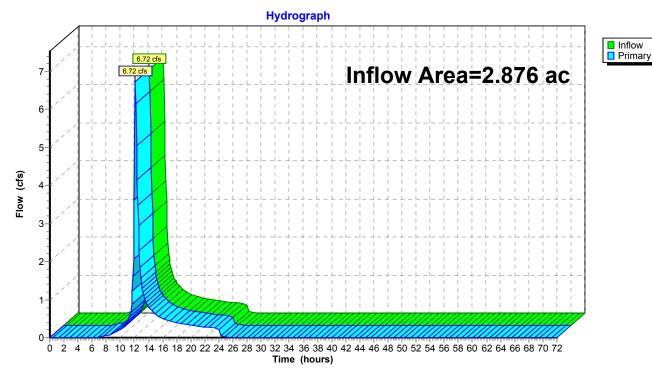
2.876 ac, 0.00% Impervious, Inflow Depth = 2.77" for 50-yr event Inflow Area =

Inflow 5.62 cfs @ 12.14 hrs, Volume= 0.664 af

5.62 cfs @ 12.14 hrs, Volume= Primary 0.664 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Page 7


Summary for Link POI B POST: POI B - POST

Inflow Area = 2.876 ac, 0.00% Impervious, Inflow Depth = 3.58" for 100-yr event

Inflow = 6.72 cfs @ 12.14 hrs, Volume= 0.857 af

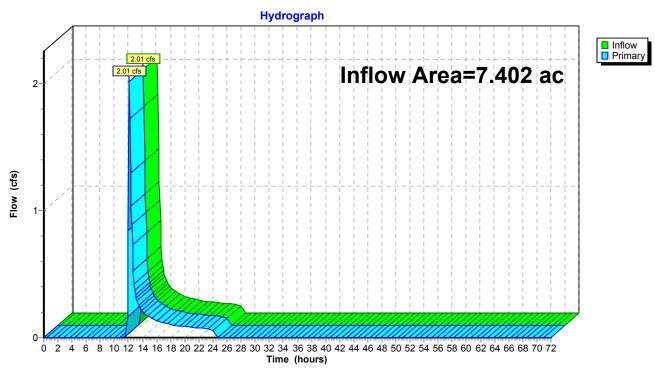
Primary = 6.72 cfs @ 12.14 hrs, Volume= 0.857 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 1


Summary for Link POI 1 POST: POI 1 - POST

Inflow Area = 7.402 ac, 0.14% Impervious, Inflow Depth = 0.31" for 1-yr event

Inflow = 2.01 cfs @ 12.13 hrs, Volume= 0.193 af

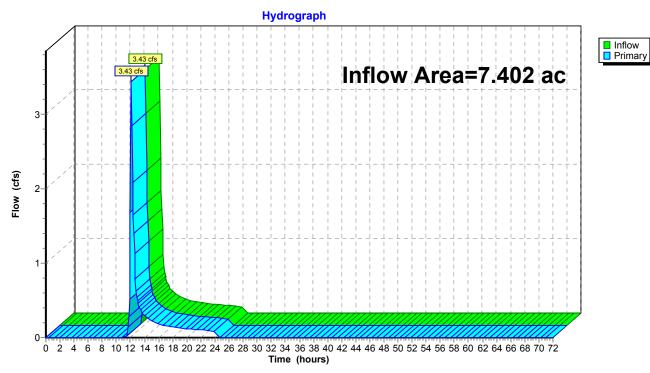
Primary = 2.01 cfs @ 12.13 hrs, Volume= 0.193 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 2


Summary for Link POI 1 POST: POI 1 - POST

Inflow Area = 7.402 ac, 0.14% Impervious, Inflow Depth = 0.48" for 2-yr event

Inflow = 3.43 cfs @ 12.13 hrs, Volume= 0.295 af

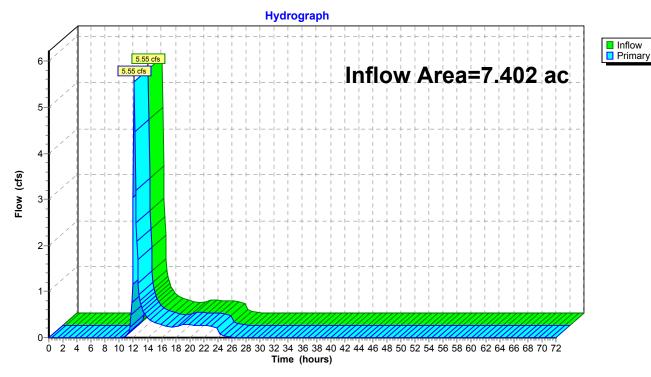
Primary = 3.43 cfs @ 12.13 hrs, Volume= 0.295 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 3


Summary for Link POI 1 POST: POI 1 - POST

Inflow Area = 7.402 ac, 0.14% Impervious, Inflow Depth = 0.84" for 5-yr event

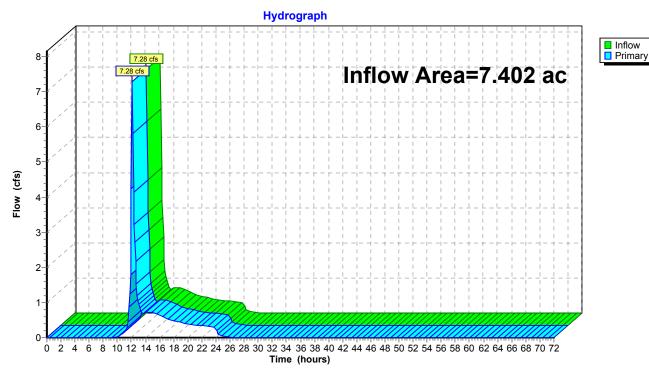
Inflow = 5.55 cfs @ 12.12 hrs, Volume= 0.521 af

Primary = 5.55 cfs @ 12.12 hrs, Volume= 0.521 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Prepared by {enter your company name here}
HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 4


Summary for Link POI 1 POST: POI 1 - POST

7.402 ac, 0.14% Impervious, Inflow Depth = 1.30" for 10-yr event Inflow Area =

Inflow 7.28 cfs @ 12.12 hrs, Volume= 0.801 af

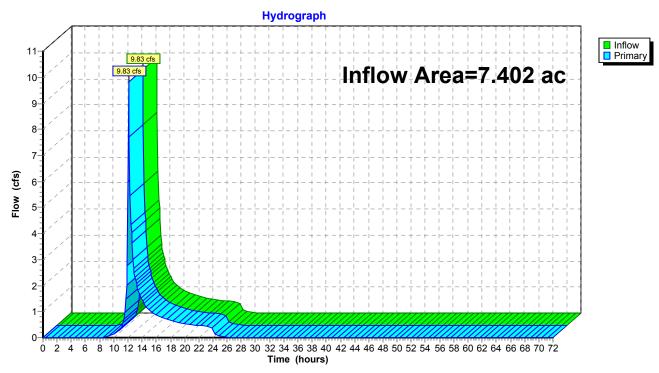
7.28 cfs @ 12.12 hrs, Volume= Primary 0.801 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

<u> Page 5</u>


Summary for Link POI 1 POST: POI 1 - POST

Inflow Area = 7.402 ac, 0.14% Impervious, Inflow Depth = 2.03" for 25-yr event

Inflow = 9.83 cfs @ 12.11 hrs, Volume= 1.250 af

Primary = 9.83 cfs @ 12.11 hrs, Volume= 1.250 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

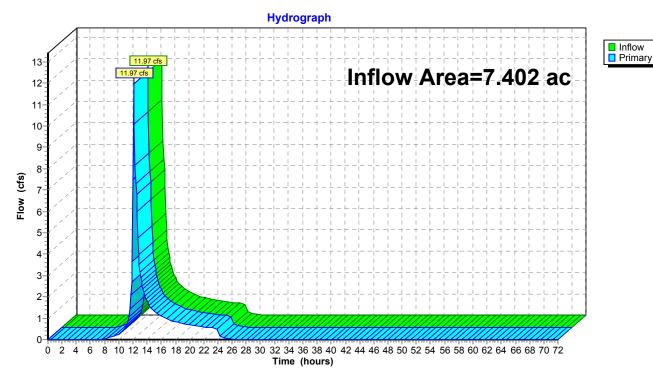
Prepared by {enter your company name here}

Printed 9/17/2016

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 6

Summary for Link POI 1 POST: POI 1 - POST


Inflow Area = 7.402 ac, 0.14% Impervious, Inflow Depth = 2.72" for 50-yr event

Inflow = 11.97 cfs @ 12.12 hrs, Volume= 1.677 af

Primary = 11.97 cfs @ 12.12 hrs, Volume= 1.677 af, Atten= 0%, Lag= 0.0 min

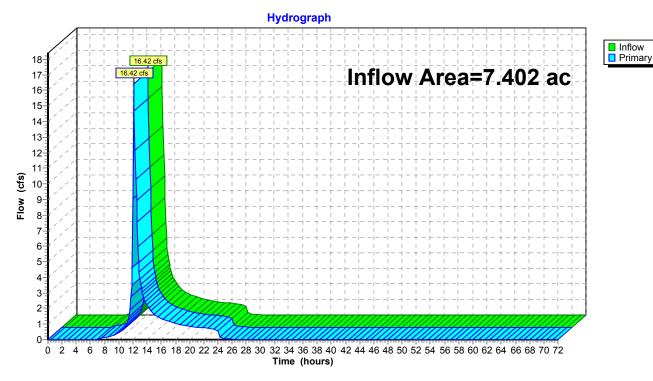
Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Link POI 1 POST: POI 1 - POST

HydroCAD® 10.00-12 s/n 01334 © 2014 HydroCAD Software Solutions LLC

Page 7

Summary for Link POI 1 POST: POI 1 - POST


Inflow Area = 7.402 ac, 0.14% Impervious, Inflow Depth = 3.55" for 100-yr event

Inflow = 16.42 cfs @ 12.13 hrs, Volume= 2.188 af

Primary = 16.42 cfs @ 12.13 hrs, Volume= 2.188 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.10 hrs

Link POI 1 POST: POI 1 - POST

A.3 Conveyance Calculations

E&S WORKSHEET #11

Channel Design Data

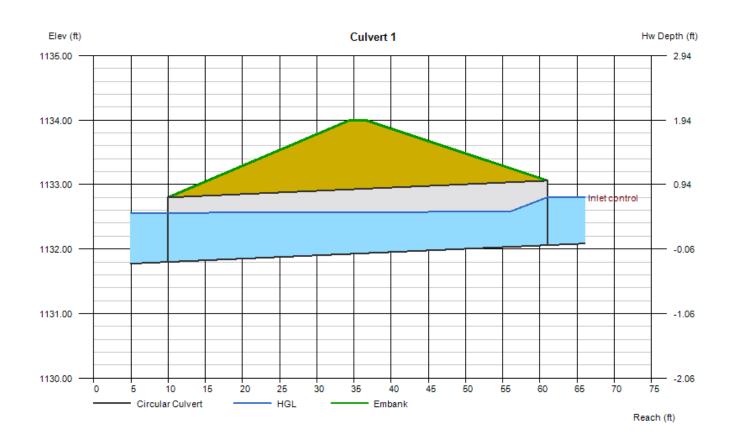
PROJECT NAME:	ATLANTIC SUNRISE PROJECT - WEST DIAMOND F	REGULATO	OR STATION
LOCATION: JACK		Y, PENNSY	/LVANIA
PREPARED BY: J	EC	DATE:	04/03/2015
CHECKED BY: A	 JB	DATE:	04/03/2015

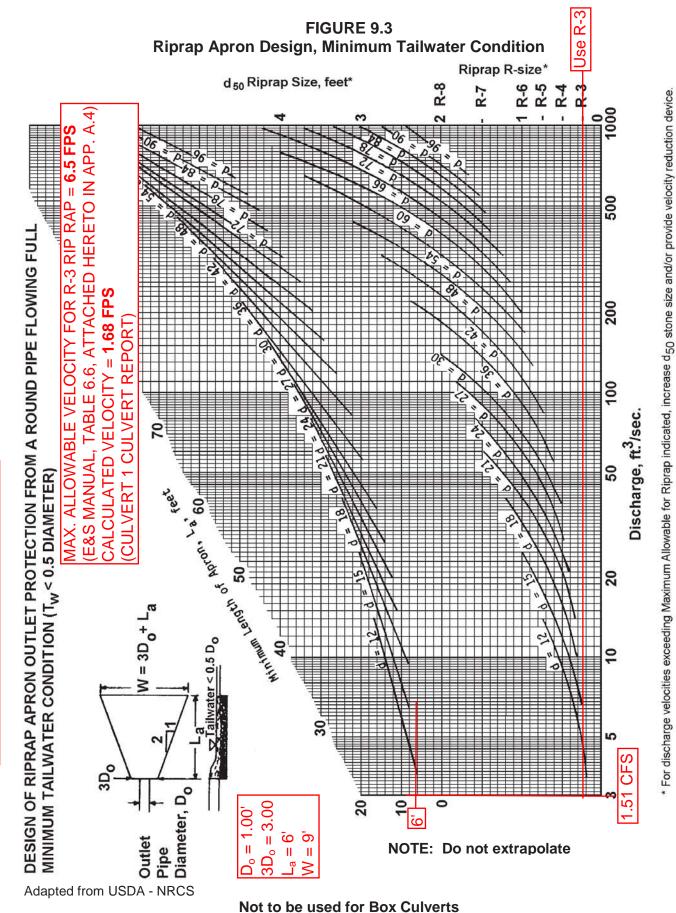
CHECKED BT. AJB			DATE04	703/2013	
CHANNEL OR CHANNEL SECTION		VEGETATED SWALE 1 LINING	VEGETATED SWALE 1 GRASS		
TEMPORARY OR PERMANENT? (T.C.	OR P)	Р	Р		
DESIGN STORM (2, 5, OR 10	YR)	10	10		
ACRES	(AC)	0.57	0.57		
MULTIPLIER ¹ (1.6, 2.25, or 2	2.75) ¹	2.75	2.75		
Qr (REQUIRED CAPACITY) (CFS)	1.57	1.57		
Q (CALCULATED AT FLOW DEPTH d) (CFS)	1.58	1.58		
PROTECTIVE LINING ²		SC250	GRASS/ SC250		
n (MANNING'S COEFFICIENT) ²		0.040	0.128		
· · · · · · · · · · · · · · · · · · ·	(FPS)	N/A	N/A		
	(FPS)	4.19	1.88		
	3/FT ²)	2.50	8.00		
•	3/FT ²)	1.91	3.64		
CHANNEL BOTTOM WIDTH	(FT)	2	2		
	(H:V)	3	3		
D (TOTAL DEPTH)	(FT)	2.0	2.0		
CHANNEL TOP WIDTH @ D	(FT)	14	14		
d (CALCULATED FLOW DEPTH)	(FT)	0.15	0.29		
CHANNEL TOP WIDTH @ FLOW DEPTH d	(FT)	2.92	3.75		
BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 I	MAX)	13.07	6.85		
d50 STONE SIZE	(IN)	N/A	N/A		
A (CROSS-SECTIONAL AREA) (SQ	. FT.)	0.38	0.84		
R (HYDRAULIC RADIUS)		0.13	0.22		
,	T/FT)	0.2	0.2		
Sc (CRITICAL SLOPE) (F	T/FT)	0.047	0.406		
.7Sc (F	T/FT)	0.033	0.284		
1.3Sc (F	T/FT)	0.061	0.528		
STABLE FLOW?	(Y/N)	Y	Y		
FREEBOARD BASED ON UNSTABLE FLOW	(FT)	0.05	0.0		
FREEBOARD BASED ON STABLE FLOW	(FT)	0.50	0.5		
MINIMUM REQUIRED FREEBOARD ⁴	(FT)	0.50	0.5		
DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (4)	S)	S	S		

- 1. Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.
- 2. Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.
- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

Source: 363-2134-008 / March 31, 2012 / Page 382

For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device.

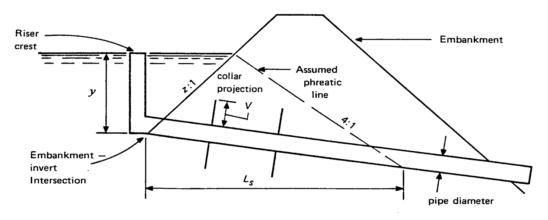

Culvert Report


Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Thursday, Oct 27 2016

Culvert 1

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 1131.80 = 51.00 = 0.51 = 1132.06 = 12.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 1.51 = 6.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 12.0	Qtotal (cfs)	= 1.51
No. Barrels	= 1	Qpipe (cfs)	= 1.51
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 2.36
Culvert Entrance	= Groove end projecting (C)	Veloc Up (ft/s)	= 3.63
Coeff. K,M,c,Y,k	= 0.0045, 2, 0.0317, 0.69, 0.2	HGL Dn (ft)	= 1132.56
		HGL Up (ft)	= 1132.58
Embankment		Hw Elev (ft)	= 1132.80
Top Elevation (ft)	= 1134.00	Hw/D (ft)	= 0.74
Top Width (ft)	= 2.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 20.00	-	



A.4 PCSM BMP Calculations

STANDARD WORKSHEET #18 Anti-seep Collar Design

BASIN NO.	TEMP. OR PERM.	Y (FT)	z	Ls (FT)	Lf (FT)	V (IN)	BARRELL DIA. (IN)	COLLAR SIZE (IN)	NO. COLLARS	COLLAR SPACING (FT)	DISTANCE TO 1 ST COLLAR (FT)
1	Р	2.25	3	27	31.0	24	16	60	1	NA	11

Source: 363-2134-008 / March 31, 2012 / Page 389

WEST DIAMOND REGULATOR STATION INFILTRATION BASIN OUTLET STRUCTURE FLOTATION CALCULATIONS

Assumptions

24" X 48" concrete inlet box riser

Total area of 24" x 48" inlet box = 10 sf

6" concrete wall thickness

6" thick bottom

Density of water = 62.4 lb/cf

Density of concrete = 150 lb/cf

Area of concrete in a 2' X 4' inlet box with a 6" thick wall = 3.5 sf

Volume of concrete per vertical foot of inlet box = 1' X 3.5 sf = 3.5 cf.

Weight of concrete per vertical foot of inlet box = 3.5 cf X 150 lb/cf = 525 Lbs

Buoyant force from water per vertical foot of inlet box = 62.4lb/cf X 10 sf X 1 ft = 624 lb.

Volume of bottom of inlet = 10 sf X 0.5 ft = 5 cf

Weight of bottom of inlet = 150 lb/cf X 5 cf = 750 lb

Buoyant force on bottom of inlet = 62.4 lb/cf X 5 = 312 lb

West Diamond RS outlet structure height = 2.75 ft

Weight of outlet structure = 2.75 X 525 + 750 = 2,194 lb

Buoyant force = 312 + 624 X 2.75 = 2,028 lb

Weight of outlet structure with 6 inches of concrete below invert:

2,194 + 10 X 150 = 3,694 lb OK

ATLANTIC SUNRISE PROJECT WEST DIAMOND REGULATOR STATION LEVEL SPREADER DESIGN

9/19/2016

LEVEL SPREADER DESIGN CALCULATIONS

Required Perforated Pipe Length

Q=C*A*(2*G*H)^0.5 (Weir Equation)

where: Q = 100 year year storm, cfs

C = weir coefficient (0.60)

A = cross sectional area of orifice in sf

G = acceleration of gravity, 32.2

H = head from 100 year pond elevation to top of perforated pipe

Pipe perforation information taken from ADS Technical Note TN 1.02 for Single wall HDPE perforated patterns for 12" pipe with type C perforated pattern

100 year Q: 3.69 cfs Head: 4.96 ft

Perforation Dia.: 0.313 in. per each hole

Perforation Area: 0.0005 sq. ft Flow per Perforation: 0.005727 cfs

Holes required: 644.3

Length of pipe: 33.03 If (TN 1.02 lists a minimum inlet area of 1.5 sq. in./ft.)

Summary:

To pass the 100 year storm through the level spreader, 33 lf. 12" perforated HDPE pipe is needed.

ATLANTIC SUNRISE PROJECT W. DIAMOND REGULATOR STATION VEGETATED SWALE STORAGE VOLUME

10/27/2016

Input data

V = 13 cf

No. of *check dams* = 11

138 CF

Subreach Volume =

TOTAL REACH VOLUME = 1616 CF Width (W_B) : 2 FT. Depth (H): 1 FT.

Input data

VEGETATED SWALE 1

V = 18 cf

Subreach Volume = 709 CF

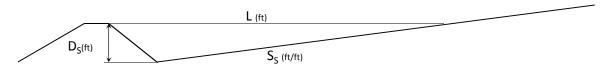
39

No. of *check dams* =

Input data

S =	0.138	ft/ft	S = (0.065	ft/ft	S = (.200	ft/ft
H =	1	ft	H =	1	ft	H =	1	ft
$W_B =$	2		$W_B =$	2		$W_B =$	2	
z ₁ =	3		z ₁ =	3		z ₁ =	3	
z ₂ =	3		z ₂ =	3		z ₂ =	3	
Output data	ı		Output data			Output data		
•			•			•		
Output data		ft	Output data L =		ft	Output data L =	5	ft
•		ft ft	•	15		•		ft ft

No. of *check dams* = 20

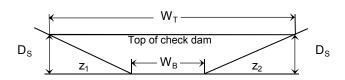

Subreach Volume = 769 CF

V = 38 cf

ATLANTIC SUNRISE PIPELINE PROJECT

W. DIAMOND REGULATOR STATION VEGETATED SWALE INFILTRATION VOLUME ROCK FILTER VOLUME AND SPACING

Per the Pennsylvania Stormwater BMP Manual (pg 94), the minimum spacing of check dam is determined by the length of the storage volume (L). The length of the storage volume is calculated by dividing the height of the check dam (D_s) by the slope of the channel (S_s):


 $L = D_S/S_S$

Where: L = Storage Length

S_S = Channel slope

D_S = Height of the check dam

The volume of runoff that will be stored upstream of a check dam is dependent on the height of the check dam, the slope of the upstream channel and the dimensions of the upstream channel. The storage volume (V_S) can be calculated with:

$$V_S = 0.25 \times L \times D_S \times (W_T + W_B)$$

Where:

L = Storage Length

D_S = Height of check dam

 W_T = check dam top width

W_B = check dam bottom width

The check dam top width (W_T) is given by:

$$W_T = W_B + z_1 + z_2$$

Where: W_B = check dam bottom width

 z_1 = side slope

 z_2 = side slope

ATLANTIC SUNRISE PROJECT WEST DIAMOND REGULATOR STATION RAIN GARDEN 1 VOLUME

9/17/2016

BASIN 1

Elevation	Surface Area	Inc. Storage	Cumulative Storage
	(S.F.)	(C.F.)	(C.F.)
1200	16221	0	0
1202	21260	37481	37481

ATLANTIC SUNRISE PROJECT WEST DIAMOND REGULATOR STATION RAIN GARDEN VOLUME CREDIT

10/3/2016

RAIN GARDEN 1

1) Surface Volume (cf) = Bed Area (sf) x Average Depth

16,211 x 0.75 = **12,165** cf

2a) Infiltration Volume = Bed Bottom Area (sf) x infiltration design rate (in/hr) x infiltration period x 1/12

16,211 x 0 x 24hr x 1/12 = **0 cf**

2b) Volume = Bed Bottom Area (sf) x soil mix bed depth x void space

16,221 X 1 X 0.2 = **3,214 CF**

Volume Reduction = sum of 1 and the smaller of 2a or 2b

12,165 + 0 = 12,165 cf

Amended Soil Volume Credit

Amended Area (sf) x 0.50in x 1/12 = Volume (cf)

POI A: 5,607 x 0.50 x 1/12 = 233.63 cf

POI B: 19,492 x 0.50 x 1/12 = 812.17 cf

Criteria and Credits for BMP 5.6.1 Minimize Total Disturbed Area - Grading

To receive credit, areas of Minimized Disturbance/Grading must meet the following criteria:
Area shall not be subject to grading or movement of existing soils.
Existing native vegetation in a healthy condition may not be removed.
☐ Invasive non-native vegetation may be removed. N/A
\square Pruning or other required maintenance of vegetation is permitted. Additional planting permitted. N/A
Area shall be protected by having the limits of disturbance clearly shown on all construction drawings and delineated in the field.
The area not subject to grading shall be clearly delineated on the Stormwater Management Plan. If future grading or disturbance of this area occurs, subsequent stormwater management must be provided to address disturbance.
☑ Shall be located on the development project.

CREDITS

Volume and Quality

Protected Area is not to be included in Runoff Volume calculation or Water Quality volume

Mitigation Area = (Total Area – Protected Area)

Peak Rate and Channel Protection

Runoff from the Protected Area (area not subject to grading) may be excluded from Peak Rate calculations and Channel Protection calculations for rate control, provided that the runoff from the protected area is not conveyed to and/or through stormwater management control structures. If necessary, runoff from Protected Areas should be directed around BMPs and stormwater pipes and inlets by means of vegetated swales or low berms that direct flow to natural drainage ways.

Criteria and Credits for BMP 5.8.2 Disconnection from Storm Sewers

To receive credit, the following must be met: Runoff from the non-rooftop impervious cover shall be directed to pervious areas where it is infiltrated into the soil. May include Vegetated Swales as outlined in BMP 6.8. May include check dams, low berms, native vegetation, and limited grading to improve natural drainage features. ☑ Shall be designed such that flows after development are non-erosive. ☐ Shall be protected from compaction or unintended disturbance during construction by having the limits of disturbance clearly shown on all construction drawings and delineated in the field. ☐ Shall be noted on stormwater management plans as part of stormwater management system and included in any municipal easement requirements for stormwater systems. ☑ Shall be located on the development project. Runoff cannot originate from a designated hotspot. The maximum contributing impervious flow path length shall be 75 feet. The disconnection shall drain continuously through a vegetated swale or filter strip, or planted area to the property line or BMP. ☐ The length of the disconnection area must be at the least the length of the contributing area. ☐ The entire vegetated "disconnection" area shall have a maximum slope of 5%. The contributing impervious area to any one discharge point shall not exceed 1000 ft². ☐ Disconnections are encouraged on relatively well-draining soils (HSG A & B). ☐ If the site cannot meet the required disconnect length, a level-spreading device, recharge garden, infiltration trench, or other storage device may be needed for

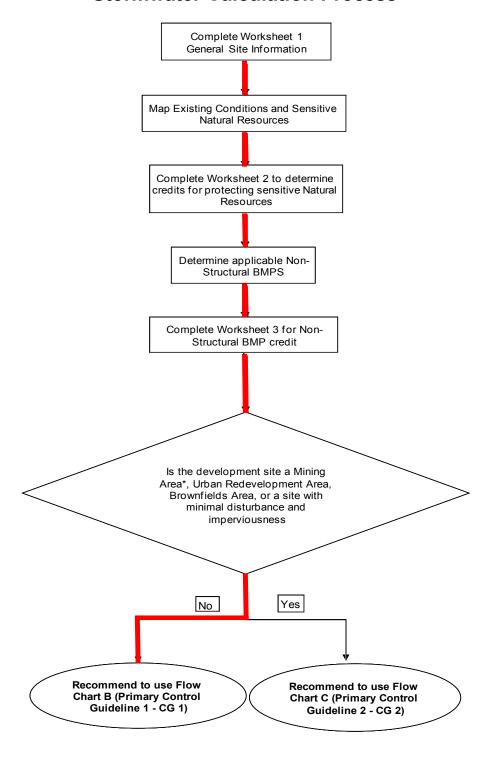
CREDITS

Volume and Quality

compensation.

Volume Reduction (ft³) = Contributing Impervious Area (ft²) x 1/4" / 12

Note: A greater volume credit may be requested by the applicant if calculations support a greater numerical value to Minimizing Soil Compaction.


Peak Rate and Channel Protection

The Peak Rate for flood protection and channel protection will be reduced by the reduction in runoff volume provided above.

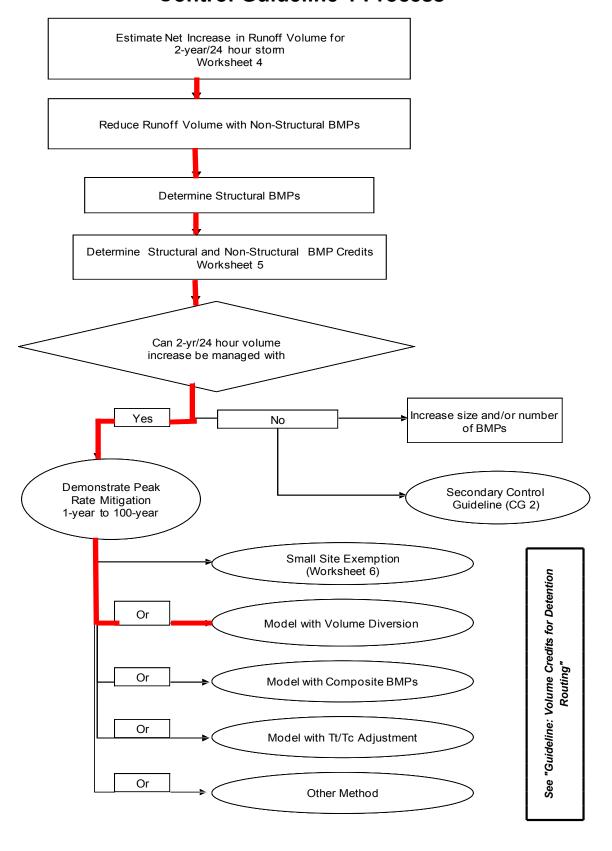
A.5 Water Quality Worksheets

FLOW CHART A Stormwater Calculation Process

Worksheet 1. General Site Information				
RUCTIONS: Fill out Wo	orksheet 1 for each watershed			
Date				
Date:	13-	-Aug-15		
Project Name:	Atlantic Sunrise Project - \	West Diamond Regulator Station	,	
Municipality:	Jackson/Su	garloaf Township	,	
County:	Colum	nbia County		
Total Area (acres):	7.14 (POI A =	4.30; POI B = 2.84)		
Major River Basin:	Susque	hanna River		
http://www.dep.state	.pa.us/dep/depupdate/watermgt/w	vc/default.htm#newtopics		
Watershed:	We	st Creek		
Sub-Basin:	UNT to West Cred	ek; UNT to West Creek		
Nearest Surface Wa	ater(s) to Receive Runoff:	UNT; UNT		
	()	- , -		
Chapter 93 - Design		CWF; CWF		
http://www.pacode.co	om/secure/data/025/chapter93/ch	ap93toc.html		
Impaired according	g to Chapter 303(d) List?		Yes	
•	pa.us/dep/deputate/watermgt/wqp	h/wastandards/303d-Renor		X
List Causes of Im		·	LITUINO	
List oddscs of fill	<u> </u>			
Is project subject to	, or part of:			
	e Storm Sewer System (MS4) R	oquiromonte?	Yes	
•	.pa.us/dep/deputate/watermgt/wc	-	No	X
rManagement/Gener	alPermits/default.htm			
Existing or planned	d drinking water supply?		Yes	
If yes, distance fror	m proposed discharge (miles):		No	X
Approved Act 167 F	Plan?		Yes	X
• •	oa.us/dep/deputate/watermgt/wc/Sub	ojects/StormwaterMan	No	
Existing River Cons		n/planningprojects/	Yes	X
imp.//www.uchi.state	e.pa.us/brc/rivers/riversconservation	in/planningprojects/	No	\Box

Worksheet 2. Sensitive Natural Resources

INSTRUCTIONS:


- 1. Provide Sensitive Resources Map according to non-structural BMP 5.4.1 in Chapter 5. This map should identify wetlands, woodlands, natural drainage ways, steep slopes, and other sensitive natural areas.
- 2. Summarize the existing extent of each sensitive resource in the Existing Sensitive Resources Table (below, using Acres). If none present, insert 0.
- 3. Summarize Total Protected Area as defined under BMPs in Chapter 5.
- 4. Do not count any area twice. For example, an area that is both a floodplain and a wetland may only be considered once.

EXISTING NATURAL SENSITIVE RESOURCE	MAPPED? yes/no/n/a	TOTAL AREA (Ac.)	PROTECTED AREA (Ac.)
Waterbodies	N/A	0.00	0.00
Floodplains	N/A	0.00	0.00
Riparian Areas	N/A	0.00	0.00
Wetlands	N/A	0.00	0.00
Woodlands	N/A	3.35	0.00
Natural Drainage Ways	N/A	0.00	0.00
Steep Slopes, 15% - 25%	N/A	0.00	0.00
Steep Slopes, over 25%	N/A	0.00	0.00
Other:			
Other:			
TOTAL EXISTING:		3.35	0.00

Worksheet 3. Nonstructural BMP Credits					
POI A					
PROTECTED AREA					
1.1 Area of Protected Sensitive/Special Value Features (see WS 2)	- Ac.				
1.2 Area of Riparian Forest Buffer Protection	Ac.				
3.1 Area of Minimum Disturbance/Reduced Grading	- Ac.				
o. 1 Area of Millimani Distarbance/Reduced Ordanig	Ao.				
TOTAL	Ac.				
Site Area minus Protected = Stormwater Management Area					
4.30 4.30					
This is the area that requires					
stormwater management /					
VOLUME OPERITO					
VOLUME CREDITS					
3.1 Minimum Soil Compaction Lawn ft^2 $x \frac{1}{4}$ $x \frac{1}{12}$ =	- ft³				
Lawii					
Meadow	ft³				
3.3 Protect Existing Trees					
For Trees within 100 feet of impervious area: DISCONECTED NON-ROOF					
Tree Canopy ft ² x 1/2" x 1/12 =	ft³				
For Trees within 20 feet of impervious area:					
Tree Canopy x 1/12 =	- ft³				
······································					
5.1 Disconnect Roof Leaders to Vegetated Areas					
For Runoff directed to areas protected under 5.8.1 and 5.8.2 Roof Area ft ² x 1/12 =	- ft³				
For all other disconnected roof areas	_				
Roof Area ft ² x 1/4" x 1/12 =	ft³				
5.2 Disconnect Non-Roof impervious to Vegetated Areas					
For Runoff directed to areas protected under 5.8.1 and 5.8.2					
Impervious Area $ x 1/3 x 1/12 = $	ft³				
For all other disconnected roof areas					
Impervious Area ft^2 $x 1/4$ " $x 1/12$ =	- ft³				
· · · · · · · · · · · · · · · · · · ·					
TOTAL NON-STRUCTURAL VOLUME CREDIT*	- ft³				
* For use on Worksheet 5					
I OI USE OII WOINSIIEEL S					

Worksheet 3. Nonstructural BMP Credits	
POI B	
PROTECTED AREA	
1.1 Area of Protected Sensitive/Special Value Features (see WS 2)	- Ac.
1.2 Area of Riparian Forest Buffer Protection	Ac.
3.1 Area of Minimum Disturbance/Reduced Grading	Ac.
TOTAL	- Ac.
TOTAL	AG.
Site Area minus Protected = Stormwater Management Area	
Area	,
2.84 2.84	J
This is the area that requires stormwater management	
Stormate management	
VOLUME CREDITS	
3.1 Minimum Soil Compaction	
Lawn ft^2 x 1/4" x 1/12 =	ft³
Mandau 4/21 v 4/40 -	
Meadow ft ²	ft³
3.3 Protect Existing Trees	
For Trees within 100 feet of impervious area:	
Tree Canopy ft ²	ft³
For Trees within 20 feet of impervious area:	
Tree Canopy x 1/12 =	- ft³
EA Bissannest Booklanders to Vanstated Asses	
5.1 Disconnect Roof Leaders to Vegetated Areas For Runoff directed to areas protected under 5.8.1 and 5.8.2	
Roof Area	- ft³
1001 Area 1712 -	"
For all other disconnected roof areas	
Roof Area ft ²	ft³
5.2 Disconnect Non-Roof impervious to Vegetated Areas	
For Runoff directed to areas protected under 5.8.1 and 5.8.2	
Impervious Area $9,887$ ft ² x 1/3" x 1/12 =	ft ³
For all other disconnected reaf areas	
For all other disconnected roof areas Impervious Area ft² x 1/4" x 1/12 =	- ft³
Impervious Area ft ² x $1/4$ " x $1/12$ =	- It'
TOTAL NON-STRUCTURAL VOLUME CREDIT*	275 ft ³
* For use on Worksheet 5	

FLOW CHART B Control Guideline 1 Process

WORKSHEET 4. CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

PROJECT: Atlantic Sunrise Project - West Diamond Regulator Station

DA: POI A

2-Year Rainfall: 2.98 in

Total Site Area:

Protected Site Area:

Managed Area

4.30

acres
acres
4.30

acres

Existing Conditions:

Cover Type/ Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff (in)	Runoff Volume ² (ft³)
Meadow	С	54,792.00	1.26	71	4.08	0.82	0.75	3,420
Woods	С	132,723.00	3.05	70	4.29	0.86	0.70	7,778
Dirt Road	С	-	0.00	87	1.49	0.30	1.72	-
TOTAL:		187,515.00	4.30					11,197

Developed Conditions:

Cover Type/ Condition	Soil Type	Area (sf)	Area (ac)	CN	s	la (0.2*S)	Q Runoff (in)	Runoff Volume ² (ft³)
Meadow	С	130,400.00	2.99	71	4.08	0.82	0.75	8,138
Woods	С	-	0.00	70	4.29	0.86	0.70	-
Gravel Road	С	56,554.00	1.30	89	1.24	0.25	1.88	8,868
Impervious	С	561.00	0.01	98	0.20	0.04	2.75	128
TOTAL:		187,515.00	4.30					17,135

0 1/ 1/ 1		(6:2)	= 000
2-Year Volume	Increase	(TT°)	5.938

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P - 0.2S)^2 / (P + 0.8S)$ where

P = 2-Year Rainfall (in)

S = (1000/CN)-10

2. Runoff Volume (CF) = $Q \times Area \times 1/12$

Q = Runoff (in)

Area = Land use area (sq. ft.)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

WORKSHEET 4. CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

PROJECT: Atlantic Sunrise Project - West Diamond Regulator Station

DA: POI B

2-Year Rainfall: 2.98 in

Total Site Area:

Protected Site Area:

Managed Area

2.84

acres

acres

acres

acres

Existing Conditions:

Cover Type/ Condition	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff (in)	Runoff Volume ² (ft³)
Meadow	С	81,396.00	1.87	71	4.08	0.82	0.75	5,080
Woods	С	42,109.00	0.97	70	4.29	0.86	0.70	2,468
Dirt Road	С	-	0.00	87	1.49	0.30	1.72	-
TOTAL:		123,505.00	2.84					7,548

Developed Conditions:

Cover Type/ Condition	Soil Type	Area (sf)	Area (ac)	CN	s	la (0.2*S)	Q Runoff (in)	Runoff Volume ² (ft³)
Meadow	С	93, 284.00	2.14	71	4.08	0.82	0.75	5,822
Woods	С	20,334.00	0.47	70	4.29	0.86	0.70	1,192
Gravel Road	С	9,887.00	0.23	89	1.24	0.25	1.88	1,550
TOTAL:		123,505.00	2.84					8,564

2-Year Volume Increase	(f43)	1.016
12-Year volume increase	(π°)	7.076

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q = $(P - 0.2S)^2 / (P + 0.8S)$ where

P = 2-Year Rainfall (in)

S = (1000/CN)-10

2. Runoff Volume (CF) = $Q \times Area \times 1/12$

Q = Runoff (in)

Area = Land use area (sq. ft.)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

WORKSHEET 5. STRUCTURAL BMP VOLUME CREDITS

POI A

PROJECT: Atlantic Sunrise Project - West Diamond Regulator Station SUB-BASIN:			
Red	quired Control Volume (ft³) - from Worksheet 4:		5,938
Non-stru	ictural Volume Credit (ft³) - from Worksheet 3:	-	C
	Structural Volume Reqmt (ft³)		5,938
(Require	ed Control Volume minus Non-structural Credit)		

	Proposed BMP	Area	Volume Reduction Permanently Removed
		(ft²)	(ft³)
6.4.1	Porous Pavement	` /	` '
6.4.2	Infiltration Basin		
6.4.3	Infiltration Bed		
6.4.4	Infiltration Trench		
6.4.5	Rain Garden/Bioretention	16,221	12,165
6.4.6	Dry Well / Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond / Retention Basin		
6.7.1	Riparian Buffer/Riparian Forest Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment	5,607	234
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
Other	Check Dams in Vegetated Swales		

Total Structural Volume (ft³): 12,399
Structural Volume Requirement (ft³): 5,938

DIFFERENCE 6,461

WORKSHEET 5. STRUCTURAL BMP VOLUME CREDITS

POI B

PROJECT:	Atlantic Sunrise Project - West Diamond Regulator Station	on	
SUB-BASIN	:		
Re	quired Control Volume (ft³) - from Worksheet 4:		1,016
Non-str	uctural Volume Credit (ft³) - from Worksheet 3:		254
	Structural Volume Reqmt (ft³)		762
(Requir	ed Control Volume minus Non-structural Credit)		

			Volume Reduction Permanently
	Proposed BMP	Area	Removed
		(ft²)	(ft³)
6.4.1	Porous Pavement		
6.4.2	Infiltration Basin		
6.4.3	Infiltration Bed		
6.4.4	Infiltration Trench		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well / Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond / Retention Basin		
6.7.1	Riparian Buffer/Riparian Forest Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment	19,492	812
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
Other	Check Dams in Vegetated Swales		

Total Structural Volume (ft³):	812
Structural Volume Requirement (ft³):	762
	_
DIFFERENCE	50

WORKSHEET 10. WATER QUALITY COMPLIANCE FOR NITRATE

Does the site design incorporate the following BMPs to address nitrate pollution? A summary "yes" rating is achieved if at least 2 Primary BMPs for nitrate are provided across the site or 4 secondary BMPs for nitrate are provided across the site (or the

ovided across the site (or the POI A		
RIMARY BMPs FOR NITRATE:		
	YES	NO
NS BMP 5.4.2 - Protect / Conserve / Enhance Riparian Buffers		
NO DND 5.5.4. Objective Hanne of Foods Office		
NS BMP 5.5.4 - Cluster Uses at Each Site		
NS BMP 5.6.1 - Minimize Total Disturbed Area	X	
	7	
NS BMP 5.6.3 - Re-Vegetate / Re-Forest Disturbed Areas (Native		
NS BMP 5.9.1 - Street Sweeping / Vacuuming		
Structural BMP 6.7.1 - Riparian Buffer Restoration		
Structural BMF 6.7.1 - Riparian Burier Restoration		
Structural BMP 6.7.2 - Landscape Restoration		
ECONDARY BMPs FOR NITRATE:		
NS BMP 5.4.1 - Protect Sensitive / Special Value Features		
NS BMP 5.4.3 - Protect / Utilize Natural Drainage Features		
No Diffr 3.4.3 - Frotect / Otilize Natural Drailiage reatures		
NS BMP 5.6.2 - Minimize Soil Compaction		
Structural BMP 6.4.5 - Rain Garden / Bioretention	X	
Structural BMP 6.4.8 - Vegetated Swale		
Structural BMP 6.4.9 - Vegetated Filter Strip		
Structural BMF 0.4.3 - Vegetated Filter Strip		
Structural BMP 6.6.1 - Constructed Wetland		
Structural BMP 6.7.1 - Riparian Buffer Restoration		
Structural BMP 6.7.2 - Landscape Restoration		
Structural BMP 6.7.3 - Soils Amendment/Restoration	V	
Structural DIVIP 6.7.3 - Solis Americanent/Restoration	X	

WORKSHEET 10. WATER QUALITY COMPLIANCE FOR NITRATE

Does the site design incorporate the following BMPs to address nitrate pollution? A summary "yes" rating is achieved if at least 2 Primary BMPs for nitrate are provided across the site or 4 secondary BMPs for nitrate are provided across the site (or the

rovided across the site (or the	. ,
POI B PRIMARY BMPs FOR NITRATE:	
TAMBART BINI STORATION.	YES NO
NS BMP 5.4.2 - Protect / Conserve / Enhance Riparian Buffers	120 110
NS BMP 5.5.4 - Cluster Uses at Each Site	
NS BMP 5.6.1 - Minimize Total Disturbed Area	Х
N3 DIMF 3.0.1 - Millimize Total Disturbed Area	_ ^
NS BMP 5.6.3 - Re-Vegetate / Re-Forest Disturbed Areas (Native	
NS BMP 5.9.1 - Street Sweeping / Vacuuming	
Structural BMP 6.7.1 - Riparian Buffer Restoration	
Cauctulal Diffr 0.7.1 - Alpanan Dullet Restolation	
Structural BMP 6.7.2 - Landscape Restoration	
SECONDARY BMPs FOR NITRATE:	
NS BMP 5.4.1 - Protect Sensitive / Special Value Features	
110 Dilli 0.4.1 -1 Totect delisitive / Opecial Value i eatales	
NS BMP 5.4.3 - Protect / Utilize Natural Drainage Features	
NS BMP 5.6.2 - Minimize Soil Compaction	
Structural BMP 6.4.5 - Rain Garden / Bioretention	
Otractara Bin 0.4.0 - Italii Gardeli / Bioretention	
Structural BMP 6.4.8 - Vegetated Swale	X
Structural BMP 6.4.9 - Vegetated Filter Strip	
Structural BMP 6.6.1 - Constructed Wetland	
Ottuctural Bini 0.0.1 - Oblight delea Wettand	
Structural BMP 6.7.1 - Riparian Buffer Restoration	
Structural BMP 6.7.2 - Landscape Restoration	
Structural BMP 6.7.3 - Soils Amendment/Restoration	Х
Su uctural DWF 0.7.3 - SUIS AMENUMENTRESTOTATION	^

A.6 Site Characterization Assessment

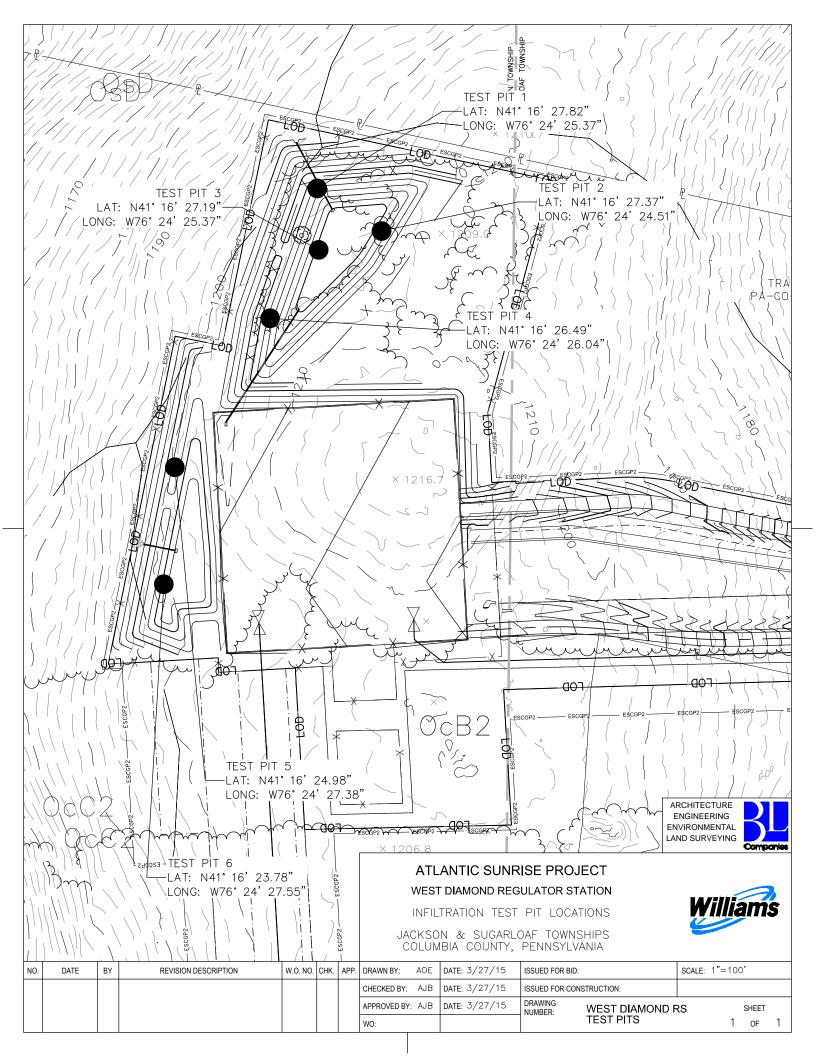
Field Observation Report

Project Number:	14C4909			
Project Name:	Atlantic Sunrise Project –	West Diamond	Regulator 9	Station
Date of Field Visit:	March 11, 2015			
Weather Conditions:	Sunny	Tem	perature:	Approximately 40-52°F
Prepared By:	Krystal Bealing, APSS an	d Joseph Kemp	f	
Copies of Report Ha	ve Been Sent To: 🛛 C	lient 🗌 Co	ontractor	Other
Client:		Contracto	r:	
	tal Gas Pipe Line		BL Comp	panies rlisle Pike, Suite 260
Company, LL0 2800 Post Oa				ill, PA 17011
Houston, TX 7	7251			

Six soil pits were excavated by backhoe and described to varying depths. Additionally, infiltration tests using the double ring infiltrometer method were conducted at each pit location, at depths ranging from the surface to 22 inches.

The test pit location map, soil profile descriptions, infiltration worksheet and photographs are attached. Determined limiting layer depths are listed below:

Pit #1: 17 inches deep, Limiting Layer observed at 17 inches
Infiltration conducted at the surface, Infiltration Rate = 3.321 inches/hour


Pit #2: 12 inches deep, Limiting Layer observed at 12 inches Infiltration conducted at the surface, Infiltration Rate = 0.094 inches/hour

Pit #3: 59 inches deep, Limiting Layer observed at 22 inches Infiltration conducted at 22 inches, Infiltration Rate = 1.000 inches/hour

Pit #4: 43 inches deep, Limiting Layer observed at 18 inches Infiltration conducted at 18 inches, Infiltration Rate = 1.250 inches/hour

Pit #5: 40 inches deep, Limiting Layer observed at 40 inches
Infiltration conducted at 16 inches, Infiltration Rate = 2.250 inches/hour

Pit #6: 17 inches deep, Limiting Layer observed at 17 inches
Infiltration conducted at the surface, Infiltration Rate = 0.000 inches/hour

Elevation 1201 AMSL	Soil Type Oquaga channery silt loam, 3-12% slopes	Geology Catskill Formation	Landscape Position/Slope Summit, 2-5%	Land Use Wooded	Additional Comments Approximately 12" snow
Project 14C4909-A Atlantic Sunrise Project -West Diamond Regulator Station	Test Pit # 1	Name Krystal Beaing, APSS	Date March 11, 2015	Weather 40-52°F; Sunny	Equipment Mini Excavator

		V	
Comments	-	Limiting Layer - Bedrock	
Depth to			
Depth to Depth to	1	17	
Pores, Roots,	Weak, Granular	Weak, Subangular Blocky	137 - 1 - 14 - 1 14: 13
Color Patterns	,		
Soil Matrix Color	5YR 3/3	5YR 4/3	
Type, Size, Coarse Fragments,	15-35% Channery	35-60% Channery	
Upper Lower Coarse Boundary Boundary Soil Textural Fragments,	SiL	SiL	the later and the same
Lower Boundary	6	17	- in a large
Upper Boundary (inches)	0	6	and the state
Horizon	A	Bw	

Additional Comm	Equipment Mini Excavator
Land	Weather 40-52°F; Sunny
Landscape Position/S	Date March 11, 2015
Oe9	Name Krystal Beaing, APSS
Soil	Test Pit # 2
Eleva	Project 14C4909-A Atlantic Sunrise Project -West Diamond Regulator Station

Elevation	Elevation 1208 AMSL
agki iybe	Soli i ype Oquaga chamery siit ioam, 3-12% siopes Geology Catskill Formation
Landscape Position/Slope Summit, 2-5%	ummit, 2-5%
Land Use Wooded	Vooded
Additional Comments	Additional Comments Approximately 12" snow

Horizon	Upper Lower Boundary Boundary (inches) (inches)	Lower Boundary (inches)	Upper Lower Coarse Boundary Boundary Soil Textural Fragments, (inches) Class etc.	Type, Size, Coarse Fragments, etc.	Soil Matrix Color	Color Patterns	Pores, Roots, Structure	Depth to Bedrock	Depth to Water	Comments	
٨	0	6	SiL	15-35% Channery	5YR 3/3		Weak, Granular	-	1	•	
Bw	6	12	SiL	35-60% Channery	5YR 4/3		Weak, Subangular Blocky	12	ı	Limiting Layer - Bedrock	1
1 0	ne dan benam		The latest and the second	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			- 1:3 12				1

Project $\underline{14C4909}$ -A Atlantic Sunrise Project -West Diamond Regulator Station Test Pit # $\underline{3}$ Name Krystal Beaing, APSS

Date March 11, 2015

Weather 40-52°F; Sunny

Equipment Mini Excavator

Elevation 1205 AMSL Soil Type Oquaga channe Geology Catskill Formati andscape Position/Slope Summit, 2-5% Land Use Wooded Additional Comments Approximately	Elevation 1205 AMSL	Soil Type Oquaga channery silt loam, 3-12% slopes	Geology Catskill Formation	ndscape Position/Slope Summit, 2-5%	Land Use Wooded	Additional Comments Approximately 12" snow
---	---------------------	---	----------------------------	-------------------------------------	-----------------	--

Horizon	Upper Boundary (inches)	Lower Boundary (inches)	Soil Textural Class	Type, Size, Coarse Fragments, etc.	Soil Matrix Color	Color Patterns	Pores, Roots, Structure	Depth to Bedrock	Depth to Water	Comments
Ą	0	6	SiL	15-35% Channery	5YR 3/3	ı	Roots present; Weak, Granular	ı	1	1
Bw1	6	22	SiL	15-35% Channery	5YR 4/3	,	Weak, Granular	1	1	-
Bw2	22	28	SiL	15-35% Channery	5YR 4/4	15% 5YR 5/8	Weak, Granular	1	1	Limiting Layer - Season High Water Table
Bw3	28	44	Sil	15-35% Channery	5YR 5/2	40% 5YR 5/8	Weak, Subangular Blocky	1	ı	Limiting Layer - Season High Water Table
BC	44	56	٦	35-60% Channery	2.5YR 4/4	10% 5YR 4/6	Weak, Subangular Blocky	1	1	Limiting Layer - Season High Water Table
O	95	-65	1S	35-60% Channery	5YR 3/4	5% 5YR 5/6	Weak, Granular	1	ı	Limiting Layer - Season High Water Table

Project 14C4909-A Atlantic Sunrise Project -West Diamond Regulator Station Name Krystal Beaing, APSS

Date March 11, 2015

Weather 40-52°F; Sunny

Equipment Mini Excavator Test Pit # 4

Elevation 1206 AMSL	Soil Type Oquaga channery silt loam, 3-12% slopes	Geology Catskill Formation	Landscape Position/Slope Summit, 2-5%	Land Use Wooded	Additional Comments Approximately 12" snow
			Га		

	Upper		Lower Roundary Soil Textural	Type, Size, Coarse			Pores Roots	Denth to	Denth to	
Horizon	(inches)				Soil Matrix Color	Color Patterns	Structure	Bedrock	Water	Comments
A	0	7	SiL	15-35% Channery	5YR 3/3	1	Roots present; Weak, Granular	ı	1	1
Bw1	7	18	SiL	15-35% Channery	5YR 4/3	ı	Weak, Subangular Blocky	ı	ı	1
Bw2	18	24	SiL	15-35% Channery	5YR 4/4	10% 5YR 5/8	Weak, Subangular Blocky	ı	1	Limiting Layer - Seasonal High Water Table
Bw3	24	34	SiL	15-35% Channery	5YR 5/2	40% 5YR 5/8	Weak, Subangular Blocky	1	1	Limiting Layer - Seasonal High Water Table
BC	34	43	J	35-60% Channery	2.5YR 4/4	15% 5YR 4/6	Weak, Subangular Blocky	43	1	Limiting Layer - Seasonal High Water Table; Bedrock

Elevation 1202 AMSL	Soil Type Oquaga channery silt loam, 3-12% slopes	Geology Catskill Formation	Landscape Position/Slope Summit, 2-5%	Land Use Wooded	Additional Comments Approximately 12" snow	
Project 14C4909-A Atlantic Sunrise Project -West Diamond Regulator Station	Test Pit # 5	Name Krystal Beaing, APSS	Date March 11, 2015	Weather 40-52°F; Sunny	Equipment Mini Excavator	

-	Limiting Layer - Bedrock
ı	ı
-	40
Roots present; Weak, Granular	Weak, Subangular Blocky
	-
5YR 3/3	5YR 4/4
15-35% Channery	15-35% Channery
Sil	SiL
11	40
0	11
А	Bw
	0 11 SiL 15-35% 5YR 3/3 -

Elevation 1203 AMSL	Geology Catskill Formation	Landscape Position/Slope Summit, 2-5%	Land Use Wooded	Additional Comments Approximately 12" snow	
Project 14C4909-A Atlantic Sunrise Project -West Diamond Regulator Station	Name Krystal Beaing, APSS	Date March 11, 2015	Weather 40-52°F; Sunny	Equipment Mini Excavator	

	Upper Boundary	Lower Boundary	Upper Lower Coarse Boundary Boundary Soil Textural Fragments,	Type, Size, Coarse Fragments,			Pores, Roots,	Depth to Depth to	Depth to	
Horizon	(inches)	(inches)	Class	etc.	Soil Matrix Color	Color Patterns	Structure	Bedrock	Water	Comments
٧	0	11	SiL	15-35% Channery	5YR 3/3		Roots present; Weak, Granular	•	1	•
Bw	11	17	SiL	15-35% Channery	5YR 4/4	ı	Weak, Subangular Blocky	17	ı	Limiting Layer - Bedrock
Note: Unless	stated other	rwise, horizα	on strike and di	p was not obse	Note: Unless stated otherwise, horizon strike and dip was not observed to have a significant impact on water flow within the profile.	it impact on water	flow within the profile			

				ATLA	NTIC SUN	IRISE PRO	JECT - WE	ST DIAMO	ATLANTIC SUNRISE PROJECT - WEST DIAMOND REGULATOR STATION	LATOR ST.	ATION		
				SOIL IN	FILTRATIC	N WORK	SHEET - DC	OUBLE RIP	NG INFILTE	SOIL INFILTRATION WORKSHEET - DOUBLE RING INFILTROMETER METHOD	METHOD		
Hole Number	Drop >2 inches after 30 minute presoak? ¹	Reading Interval (minutes)	Reading 1 (Inches of Drop)	Reading 2 (Inches of Drop)	Reading 3 (Inches of Drop)	Reading 4 (Inches of Drop)	Reading 5 (Inches of Drop)	Reading 6 (Inches of Drop)	Reading 7 (Inches of Drop)	Reading 8 (Inches of Drop)	Average Stabilized Reading ² (Inches of Drop)	Infiltration Rate³ (in/hr)	Comments
1	Yes	10	0.625	0.563	0.526	0.500					0.553	3.321	40-52 degrees, sunny, approx. 12" snow cover. Test done at the surface.
2	No	30	0.063	0.000	0.063	0.063					0.047	0.094	40-52 degrees, sunny, approx. 12" snow cover. Test done at the surface.
ю	O N	30	0.563	0.438	0.500	0.500					0.500	1.000	40-52 degrees, sunny, approx. 12" snow cover. Test done 22" below the surface.
4	ON N	30	0.750	0.625	0.625	0.500					0.625	1.250	40-52 degrees, sunny, approx. 12" snow cover. Test done 18" below the surface.
εs	Yes	10	0.250	0.250	0.500	0.500					0.375	2.250	40-52 degrees, sunny, approx. 12" snow cover. Test done 16" below the surface.
9	O N	30	0.000	0.000	0.000	0.000					0.000	0.000	40-52 degrees, sunny, approx. 12" snow cover. Test done at the surface.
¹ Inches of a ² Calculated ³ Calculated	Inches of drop greater than 2 inches after the 30 minute presoak? Yes, use 10 minute interval; No, use 30 minute interval. Calculated as the average of the last four stabilized (less than 0.25-inch difference overall) readings. Calculated as the average stabilized reading x 2 for 30 minute intervals; x 6 for 10 minute intervals.	inches after ne last four s illized readir	the 30 minut stabilized (les Ig x 2 for 30 r	e presoak? \ s than 0.25-i ninute inten	fes, use 10 m inch differen als; x 6 for 1	inute interv ce overall) ra .0 minute int	al; No, use 3te adings.	0 minute int	terval.				

View of Pit #1.

View of Pit #2.

View of Pit #3.

View of Pit #4.

View of Pit #5.

View of Pit #6.

WEST DIAMOND REGULATOR STATION INFILTRATION RATE/DEWATERING TIME

Note: the infiltration tests were performed with a double ring infiltrometer. Therefore, no reduction factors were applied.

The limiting layer was found to be approximately 17 inches to 40 inches below exising grade (± 1200.00). Therefore, the infiltration areas would be shallow or at existing grade. Therefore, infiltration facilities are not feasible for this site

BASIN 1

Infiltration Rate

Test pit 4	1.25	in/hr
Test pit 5	2.25	in/hr
Test pit 6	0.00	in/hr
Average	1.75	in/hr
Safety factor	3.00	
Adjusted rate	0.58	in/hr

A.7 Supporting Documentation

TABLE 6.6
Riprap Gradation, Filter Blanket Requirements, Maximum Velocities

	•	Percent P	assing (Squar			
Class, Size NO.						
Rock Size (Inches)	R-8	R-7	R-6	R-5	R-4	R-3
42	100					
30		100				
24	15-50		100			
18		15-50		100		
15	0-15					
12		0-15	15-50		100	
9				15-50		
6			0-15		15-50	100
4				0-15		
3					0-15	15-50
2						0-15
Nominal Placement Thickness (inches)	63	45	36	27	18	9
Filter	AASHTO #1	AASHTO #1	AASHTO #1	AASHTO #3	AASHTO #3	AASHTO #57
V _{max} (ft/sec)	17.0	14.5	13.0	11.5	9.0	6.5
Adapted from F	PennDOT Pub. 4	08, Section 703.2	2(c), Table C			

¹ This is a general standard. Soil conditions at each site should be analyzed to determine actual filter size. A suitable woven or non-woven geotextile underlayment, used according to the manufacturer's recommendations, may be substituted for the filter stone for gradients < 10%.

TABLE 6.7
Comparison of Various Gradations of Coarse Aggregates

					T	otal F	Percen	t Pass	ing						
AASHTO NUMBER	6 1/2	4"	3 ½"	2 1/2	2"	1 ½ "	1"	3/4 "	1/2"	3/8"	#4	#8	#16	#30	#100
1		100	90-100	25-60		0-15		0-5							
3				100	90-100	35-70	0-15		0-5						
5						100	90-100	20-55	0-10	0-5					
57						100	90-100		25-60		0-10	0-5			
67							100	90-100		20-55	0-10	0-5			
7								100	90-100	40-70	0-15	0-5			
8									100	85-100	10-30	0-10	0-5		
10										100	75-100				10-30

PennDOT Publication 408, Section 703.2(c), Table C

Tables 6.6 and 6.7 should be placed on the plan drawings of all sites where riprap channel linings are proposed.

NOAA Atlas 14, Volume 2, Version 3 Location name: Benton, Pennsylvania, US* Latitude: 41.2734°, Longitude: -76.4070° Elevation: 1210 ft*

source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

	S-based p	- 1				ce interval (
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.336 (0.305-0.371)	0.400	0.464	0.509	0.564	0.605	0.644 (0.576-0.711)	0.685	0.740	0.781
10-min	0.523 (0.473-0.576)	0.624 (0.566-0.688)	0.721 (0.652-0.795)	0.786 (0.712-0.866)	0.862 (0.777-0.950)	0.917 (0.824-1.01)	0.970 (0.867-1.07)	1.02 (0.909-1.13)	1.09 (0.960-1.21)	1.14 (0.996-1.27
15-min	0.641 (0.580-0.706)	0.764 (0.692-0.842)	0.885 (0.801-0.977)	0.967 (0.876-1.07)	1.06 (0.960-1.17)	1.14 (1.02-1.25)	1.21 (1.08-1.33)	1.27 (1.13-1.41)	1.36 (1.20-1.51)	1.42 (1.25-1.59)
30-min	0.848 (0.767-0.934)	1.02 (0.926-1.13)	1.21 (1.10-1.34)	1.34 (1.22-1.48)	1.50 (1.36-1.66)	1.62 (1.46-1.79)	1.74 (1.56-1.92)	1.86 (1.65-2.05)	2.01 (1.77-2.24)	2.13 (1.87-2.38)
60-min	1.03 (0.937-1.14)	1.25 (1.14-1.38)	1.52 (1.38-1.68)	1.71 (1.55-1.88)	1.95 (1.76-2.15)	2.14 (1.92-2.36)	2.33 (2.08-2.57)	2.52 (2.24-2.78)	2.78 (2.45-3.09)	2.99 (2.62-3.34)
2-hr	1.20 (1.08-1.33)	1.44 (1.30-1.60)	1.76 (1.59-1.96)	2.02 (1.81-2.24)	2.38 (2.13-2.64)	2.68 (2.38-2.97)	3.01 (2.66-3.35)	3.37 (2.96-3.75)	3.91 (3.38-4.38)	4.37 (3.74-4.92)
3-hr	1.30 (1.17-1.45)	1.56 (1.41-1.75)	1.92 (1.73-2.15)	2.21 (1.98-2.46)	2.63 (2.34-2.93)	2.99 (2.65-3.34)	3.39 (2.97-3.79)	3.83 (3.32-4.29)	4.50 (3.85-5.07)	5.09 (4.30-5.76)
6-hr	1.63 (1.46-1.84)	1.96 (1.76-2.22)	2.40 (2.15-2.70)	2.76 (2.46-3.10)	3.28 (2.90-3.68)	3.73 (3.28-4.19)	4.22 (3.68-4.75)	4.78 (4.12-5.38)	5.63 (4.77-6.37)	6.37 (5.33-7.24)
12-hr	2.03 (1.82-2.29)	2.44 (2.19-2.74)	2.99 (2.68-3.36)	3.45 (3.08-3.87)	4.13 (3.66-4.62)	4.72 (4.16-5.29)	5.38 (4.69-6.03)	6.13 (5.28-6.89)	7.28 (6.16-8.22)	8.31 (6.92-9.43)
24-hr	2.45 (2.24-2.71)	2.94 (2.69-3.25)	3.63 (3.31-4.01)	4.22 (3.84-4.66)	5.13 (4.63-5.64)	5.95 (5.33-6.51)	6.89 (6.12-7.53)	8.00 (7.04-8.71)	9.75 (8.45-10.6)	11.4 (9.70-12.3)
2-day	2.88 (2.61-3.23)	3.45 (3.13-3.87)	4.26 (3.85-4.77)	4.95 (4.46-5.54)	6.02 (5.38-6.70)	6.98 (6.20-7.76)	8.10 (7.13-8.98)	9.39 (8.19-10.4)	11.5 (9.84-12.7)	13.4 (11.3-14.7)
3-day	3.06 (2.78-3.41)	3.65 (3.33-4.08)	4.48 (4.07-4.99)	5.19 (4.70-5.77)	6.28 (5.65-6.96)	7.26 (6.49-8.03)	8.39 (7.44-9.26)	9.71 (8.53-10.7)	11.8 (10.2-13.0)	13.7 (11.7-15.0)
4-day	3.23 (2.95-3.58)	3.85 (3.52-4.28)	4.70 (4.29-5.22)	5.43 (4.94-6.01)	6.54 (5.92-7.22)	7.54 (6.78-8.30)	8.69 (7.76-9.54)	10.0 (8.87-11.0)	12.1 (10.6-13.3)	14.0 (12.1-15.3)
7-day	3.82 (3.52-4.20)	4.55 (4.19-5.01)	5.49 (5.04-6.04)	6.29 (5.75-6.90)	7.49 (6.82-8.21)	8.56 (7.75-9.36)	9.77 (8.79-10.7)	11.2 (9.97-12.2)	13.4 (11.8-14.5)	15.3 (13.3-16.7)
10-day	4.40 (4.07-4.81)	5.22 (4.83-5.71)	6.24 (5.76-6.82)	7.10 (6.53-7.75)	8.38 (7.67-9.12)	9.49 (8.65-10.3)	10.7 (9.73-11.7)	12.2 (10.9-13.2)	14.4 (12.8-15.6)	16.3 (14.4-17.6)
20-day	5.98 (5.60-6.41)	7.04 (6.60-7.55)	8.20 (7.67-8.78)	9.17 (8.56-9.82)	10.6 (9.85-11.3)	11.8 (10.9-12.6)	13.1 (12.1-14.0)	14.6 (13.4-15.6)	16.8 (15.3-17.9)	18.7 (16.9-19.9)
30-day	7.44 (7.00-7.96)	8.72 (8.21-9.32)	10.0 (9.41-10.7)	11.1 (10.4-11.8)	12.6 (11.8-13.5)	13.9 (13.0-14.8)	15.3 (14.2-16.3)	16.7 (15.5-17.9)	18.9 (17.4-20.2)	20.8 (19.0-22.2)
45-day	9.40 (8.88-9.99)	11.0 (10.4-11.7)	12.4 (11.7-13.2)	13.6 (12.8-14.4)	15.2 (14.4-16.2)	16.6 (15.6-17.6)	18.0 (16.9-19.2)	19.6 (18.3-20.8)	21.7 (20.2-23.1)	23.5 (21.8-25.0)
60-day	11.3 (10.8-12.0)	13.2 (12.5-13.9)	14.8 (14.0-15.7)	16.1 (15.3-17.1)	18.0 (17.0-19.0)	19.5 (18.4-20.6)	21.1 (19.9-22.3)	22.8 (21.4-24.1)	25.2 (23.6-26.7)	27.2 (25.3-28.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Back to Top

PF graphical

Please refer to NOAA Atlas 14 document for more information.

APPENDIX B

Preparer Qualifications

STANDARD E&S WORKSHEET # 22 PLAN PREPARER RECORD OF TRAINING AND EXPERIENCE IN EROSION AND SEDIMENT POLLUTION CONTROL METHODS AND TECHNIQUES

NAME OF PLAN PRE	Alaric J. Bush	er, PE, CF	E, CPESC			
FORMAL EDUCATIO						
Name of Colle	ge or Technical Institute	e: The Pe	nnsylvania Sta	te University		
Curriculum or	Program: Civil Engineer	ring				
Dates of Atten		5	To:_	5/1999		
Degree Receiv	ved Bachelor of Science	- Civil Eng	gineering			
OTHER TRAINING: Name of Training:	Annual Oil and Gas Train	ning	Chapter 102 L the Regulated	Jpdate Training for Community		
Presented By:	PADEP		PADEP			
Date:	7/10/2013		11/12/2010			
EMPLOYMENT HIST Current Employer: Telephone:	ORY: BL Companies 717-651-9850					
Former Employer: Telephone:	N/A					
	S PREPARED: stitution Pipeline, Access Roads Meter Station (ES, PCSM)	Reynolds Al (E&S, PCSN	ford Pipeline //)	Annville Medical Office (E&S, PCSM)		
County:	Susquehanna	Susqueh	nanna	Lebanon		
Municipality:	Multiple	Brooklyr	n, Harford	Annville Twp		
Permit Number:	ESG0011540002	ESX13-11	5-0152(01)	PAG-02-0038-15-010		
Approving Agency:	Susquehanna CCD	PADEP (O&G)	Lebanon CCD		

APPENDIX C

United States Department of Agriculture (USDA)
Natural Resources Conservation Service (NRCS)
Custom Soil Resource Report

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Columbia County, Pennsylvania

West Diamond Regulator Station

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means

for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	8
Legend	9
Map Unit Legend	10
Map Unit Descriptions	10
Columbia County, Pennsylvania	12
OcB2—Oquaga channery silt loam, 3 to 12 percent slopes, moderately	
eroded	12
OcC2—Oquaga channery silt loam, 12 to 20 percent slopes, moderately	
eroded	13
OsB—Oquaga very stony silt loam, 0 to 12 percent slopes	14
OsD—Oquaga very stony silt loam, 12 to 35 percent slopes	15
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

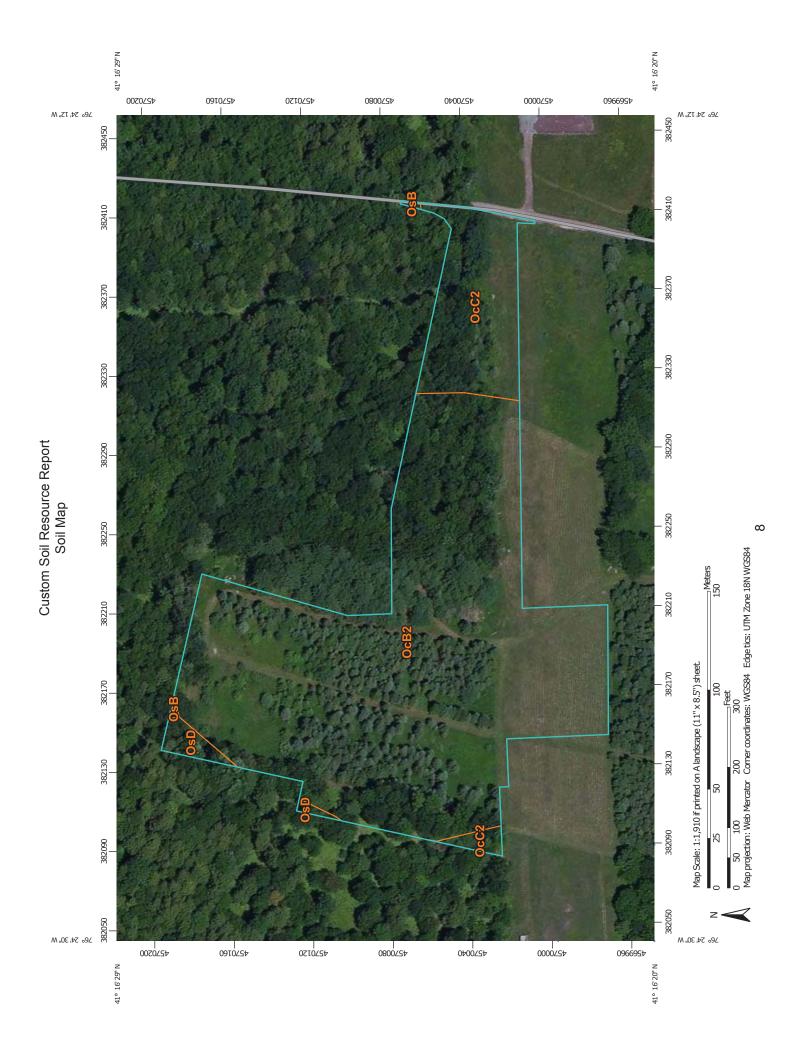
Custom Soil Resource Report

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.


While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

misunderstanding of the detail of mapping and accuracy of soil line Albers equal-area conic projection, should be used if more accurate This product is generated from the USDA-NRCS certified data as of Soil map units are labeled (as space allows) for map scales 1:50,000 Apr 14, 2011—Sep 18, imagery displayed on these maps. As a result, some minor shifting The soil surveys that comprise your AOI were mapped at 1:20,000. placement. The maps do not show the small areas of contrasting Maps from the Web Soil Survey are based on the Web Mercator distance and area. A projection that preserves area, such as the The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background Enlargement of maps beyond the scale of mapping can cause Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) projection, which preserves direction and shape but distorts Natural Resources Conservation Service soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map Columbia County, Pennsylvania Version 7, Sep 15, 2014 MAP INFORMATION Warning: Soil Map may not be valid at this scale. calculations of distance or area are required. Date(s) aerial images were photographed: the version date(s) listed below. Soil Survey Area: Survey Area Data: Source of Map: measurements. or larger. Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot **US Routes** Spoil Area Wet Spot Other Rails Water Features **Fransportation** Background MAP LEGEND W 8 ŧ Soil Map Unit Polygons Severely Eroded Spot Area of Interest (AOI) Miscellaneous Water Soil Map Unit Points Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Rock Outcrop Special Point Features **Gravelly Spot** Saline Spot Sandy Spot Slide or Slip Sodic Spot Lava Flow **Borrow Pit** Gravel Pit Clay Spot Area of Interest (AOI) Sinkhole Blowout Landfill 9 Soils

of map unit boundaries may be evident

Map Unit Legend

Columbia County, Pennsylvania (PA037)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
OcB2	Oquaga channery silt loam, 3 to 12 percent slopes, moderately eroded	6.6	84.7%			
OcC2	Oquaga channery silt loam, 12 to 20 percent slopes, moderately eroded	1.1	13.6%			
OsB	Oquaga very stony silt loam, 0 to 12 percent slopes	0.0	0.2%			
OsD	Oquaga very stony silt loam, 12 to 35 percent slopes	0.1	1.6%			
Totals for Area of Interest		7.8	100.0%			

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

Custom Soil Resource Report

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Columbia County, Pennsylvania

OcB2—Oquaga channery silt loam, 3 to 12 percent slopes, moderately eroded

Map Unit Setting

National map unit symbol: 13fk Elevation: 600 to 1,800 feet

Mean annual precipitation: 35 to 50 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 120 to 180 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Oquaga and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Oquaga

Setting

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Reddish ablation till derived from sandstone and siltstone

Typical profile

H1 - 0 to 7 inches: channery silt loam
H2 - 7 to 22 inches: very channery loam
H3 - 22 to 26 inches: unweathered bedrock

Properties and qualities

Slope: 3 to 12 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

OcC2—Oquaga channery silt loam, 12 to 20 percent slopes, moderately eroded

Map Unit Setting

National map unit symbol: 13fl Elevation: 600 to 1,800 feet

Mean annual precipitation: 35 to 50 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 120 to 180 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Oquaga and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Oquaga

Setting

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Reddish ablation till derived from sandstone and siltstone

Typical profile

H1 - 0 to 7 inches: channery silt loam
H2 - 7 to 22 inches: very channery loam
H3 - 22 to 26 inches: unweathered bedrock

Properties and qualities

Slope: 12 to 20 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

OsB—Oquaga very stony silt loam, 0 to 12 percent slopes

Map Unit Setting

National map unit symbol: 13fn Elevation: 700 to 1,800 feet

Mean annual precipitation: 35 to 50 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 110 to 180 days

Farmland classification: Not prime farmland

Map Unit Composition

Oquaga and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Oquaga

Setting

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Reddish ablation till derived from sandstone and siltstone

Typical profile

H1 - 0 to 7 inches: channery silt loam
H2 - 7 to 22 inches: very channery silt loam
H3 - 22 to 26 inches: unweathered bedrock

Properties and qualities

Slope: 0 to 12 percent

Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

OsD—Oquaga very stony silt loam, 12 to 35 percent slopes

Map Unit Setting

National map unit symbol: 13fp Elevation: 700 to 1,800 feet

Mean annual precipitation: 35 to 50 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 110 to 180 days

Farmland classification: Not prime farmland

Map Unit Composition

Oquaga and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Oquaga

Setting

Landform: Hillslopes

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Reddish ablation till derived from sandstone and siltstone

Typical profile

H1 - 0 to 7 inches: channery silt loam
H2 - 7 to 22 inches: very channery silt loam
H3 - 22 to 26 inches: unweathered bedrock

Properties and qualities

Slope: 12 to 35 percent

Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.60 to 2.00 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6s

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2 054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf