

Post Construction Stormwater Management Plan Narrative Atlantic Sunrise Project

Temporary and Permanent Access Roads
Pine Grove and Eldred Townships
Schuylkill County
Pennsylvania

Prepared For:

TRANSCONTINENTAL GAS PIPE LINE COMPANY, LLC

2800 Post Oak Blvd Houston, TX, 77251

Issued: October 2016 BL Project No. 14C4909

Prepared By:

BL Companies 4242 Carlisle Pike, Suite 260 Camp Hill, PA 17011

Suzanne King, PE P.E. 082757

CONTENTS

Desc	<u>cription</u>		<u>Page</u>
GEN	ERAL I	INFORMATION	4
		ct Description	
	-	rences	
		oorary and Permanent Access Road Table	
1.0	СОМ	MON INFORMATION	6
	1.1	Topographic Features	6
	1.2	Soil Characteristics	
	1.3	Earth Disturbance Activity	8
	1.4	Project Site Runoff	10
	1.5	Surface Water Classification	11
	1.6	BMP Description Narrative	11
	1.7	BMP Installation Sequence Narrative	12
	1.8	Supporting Calculations and Measurements	12
	1.9	Plan Drawings	12
	1.10	Long Term Operation and Maintenance Schedule	12
	1.11	Material Recycling and Disposal	15
	1.12	Soil Conditions and Geologic Formations	15
	1.13	Thermal Impacts	18
	1.14	E&SC Plan and PCSM/SR Plan Consistency	
	1.15	Riparian Buffer Waiver	
	1.16	Antidegradation Requirements	19
	1.17	TMDL	19

APPENDICES

Appendix Description Appendix A Intentionally Omitted by Applicant Intentionally Omitted by Applicant Appendix B United States Department of Agriculture Natural Resources Appendix C Conservation Service Custom Soil Resource Report (Included under separate cover in Appendix C of the E&SC Narrative for Schuylkill County included in Section 2 of the ESCGP-2 NOI.) Appendix D Supporting Information Appendix J* AR-SC-063 Specific Narrative and Calculations Appendix V* AR-SC-073.5 Specific Narrative and Calculations

^{*} Road-specific Appendix letters correspond to the road-specific Appendix included in the **E&SC Narrative for Schuylkill County included in Section 2 of the ESCGP-2 NOI**. Supporting calculations are provided for permanent access roads only in this narrative.

GENERAL INFORMATION

Project Description

The following post construction stormwater management (PCSM) narrative describes the PCSM designs for the permanent access roads to be constructed within Schuylkill County (County), Pennsylvania as part of the Transcontinental Gas Pipe Line Company, LLC (Transco) Atlantic Sunrise Project ("Project"). This narrative supplements the Erosion & Sediment Control (E&SC) Plan and Site Restoration (SR) Plan Narrative included in Section 2 of the Erosion and Sediment Control General Permit 2 (ESCGP-2) Notice of Intent (NOI).

The Project includes modifications to the existing Transco Mainline system to reverse the direction of flow, enabling new north-to-south capabilities (bi-directional flow) to transport this new source of natural gas to existing markets. In Schuylkill County, the main Project improvements that the temporary and permanent access roads will support include installation of a 42-inch-diameter greenfield pipeline referred to as the Central Penn Line (CPL) South pipeline.

Where possible, existing public and private roads will be utilized to provide access to the pipeline ROW during and after construction. During construction, E&SC BMPs will be installed along all access roads as shown on the road-specific Soil Erosion Control Plans included in the Erosion & Sediment Control and Layout Plans for Access Roads in **Section 2 of the ESCGP-2 NOI**.

Permanent gravel access roads will be installed, and maintained by Transco, to provide access to mainline valves (MLVs) and select portions of the pipeline right of way (ROW) not accessible by existing roads, for pipeline maintenance and inspections in accordance with applicable regulatory guidelines. The increase in impervious area for the permanent access roads that provide access to the MLVs is permanent. However, the proposed increase in impervious area for the permanent access roads to the pipeline ROW is temporary. Similar to temporary access roads, upon construction completion, the proposed road materials will be removed and the impacted areas will be restored to pre-construction conditions. Transco operations will use the restored road surface to access the ROW as necessary in the future. Typically, pickup trucks will be used to perform routine maintenance and inspections and the trucks are capable of driving over grassy areas similar to the pipeline ROW. The permanent access roads to be restored to pre-construction conditions are not included in this PCSM Narrative. Only the access roads to MLV sites with permanent improvements are included in this PCSM Narrative.

References

E&SC Best Management Practices (E&SC BMPs), in accordance with the standards and specifications in the Pennsylvania Department of Environmental Protection's (PADEP's) "Erosion and Sediment Pollution Control Program Manual," Technical Guidance No. 363-2134-008, as amended and updated (E&SC Manual) will be used during the construction phase of the project. The proposed practices are designed to achieve the regulatory standard of minimizing the potential for accelerated erosion and sedimentation associated with temporary earth disturbance activities. The E&SC BMPs will remain in place until the surrounding area has reached final stabilization. An area shall be considered to have achieved final stabilization when it has a minimum uniform 70% perennial vegetative cover or other permanent non-vegetative cover with a density sufficient to resist accelerated surface erosion and subsurface characteristic sufficient to resist sliding and other movements.

PCSM/SR BMPs, in accordance with the PADEP's "Pennsylvania Stormwater Best Management Practices Manual," Technical Guidance No. 363-0300-002, as amended and updated (PCSM/SR Manual), will be used for site restoration and post construction stormwater management measures.

Impacts to wetlands, streams or waterbodies will be avoided to the maximum extent practicable. Refer to the Wetland Delineation Report provided as **Section 5 of the ESCGP-2 NOI** for information supporting wetland mapping shown on the E&SC Plans (**Appendix A of this narrative and Section 2 of the ESCGP-2 NOI**).

Temporary and Permanent Access Road Table

The following access roads that will provide access to an MLV are proposed to be constructed in Schuylkill County to support the CPL South pipeline:

Access Road	Mile Post (MP)	Major River Basin	Receiving Water	Designated Use	Impairment	Total Maximum Daily Load
SC-063	MP 67.7	Susquehanna	UNT to Swatara Creek	CWF, MF	None	TMDL, 2003 (metals, pH, suspended solids)
SC-073.5	MP 80.8	Susquehanna	Mahantango Creek	CWF, MF	Agriculture (Siltation); Source Unknown (Pathogens)	TMDL, 2013 (suspended solids)

1.0 COMMON INFORMATION

1.1 Topographic Features

See the **Appendices E through W** for road-specific United States Geological Survey (USGS) mapping.

1.2 Soil Characteristics

AECOM prepared the United States Department of Agriculture Natural Resources Conservation Service (NRCS) Custom Soil Resource Report for the counties crossed by the CPL South pipeline. The NRCS Custom Soil Resource Report for Columbia County, Lancaster County, Lebanon County, Northumberland County, and Schuylkill County, Pennsylvania and the Soil Association Maps prepared by Wood Group Mustang, Inc. are included in Appendix C of the E&SC Narrative for Susquehanna County included in Section 2 of the ESCGP-2 NOI. County-specific soil type and use limitations are presented in Table 1.2.1 below.

Table 1.2.1
Soil Type and Use Limitations for Schuylkill County

Map Symbol	Soil Name	Slope	Cut Banks Cave	Corrosive to Concrete or Steel	Droughty	Easily Erodible	Flooding	High Water Table	Hydric/Hydric Inclusions	Low Strength	Slow Percolation	Piping	Poor Source of Topsoil	Frost Action	Shrink-Swell	Potential Sinkhole	Ponding	Wetness
Aga	Alvira silt loam	0-3%	Х	C/S	Χ	Х		Χ	Х	Χ	Х	Χ	Х	Χ				Х
LeB LeC	Leck Kill Channery Silt Loam	3-8% 8-15%	Х	С						Х	Х	Х	х	Х				Х
MeB	Meckesville Loam	3-8%	Х	C/S				Х		Х	Х	X	х	X				Х

Source: Appendix E, Table E-1, PADEP, *Erosion and Sediment Pollution Control Program Manual*, Technical Guidance Number 363-2134-008.

Table 1.2.2 Soil Use Limitations Resolutions

Limitation	Resolution
Slopes	Excavations should be stabilized to prevent erosion and contractor should employ proper construction techniques to ensure safety on steep slope areas.
Cut Banks Cave	Excavations will be properly supported by sheeting and shoring to prevent caves.
Corrosive to Concrete or Steel	No concrete or steel piping is proposed without appropriate coatings and protection.
Droughty	Existing suitable topsoil and soil amendments will be used during construction as necessary.
Easily Erodible	Temporary and permanent E&SC BMPs will be employed throughout the construction and operation of access roads.
Flooding	Ensure that the access roads have has proper drainage and no obstructions within floodway/floodplain.
High Water Table	A geotechnical investigation was conducted to minimize conflicts with saturated zones.
Hydric/Hydric Inclusions	A wetland investigation was completed. Impacts to wetlands have been minimized by modifying the access road alignment to avoid wetlands and/or protecting wetlands with E&SC BMPs where existing roads are adjacent to wetlands.
Low Strength	A maximum of 3:1 slopes area proposed.
Slow Percolation	A field investigation of percolation rates at the infiltration areas will be performed to verify the soils percolation capacity.
Piping	Watertight pipe, antiseep collars, clay cores through basin berms, and concrete endwalls will be used to minimize water movement via pipe bedding.
Poor Source of Topsoil	Existing topsoil, which has proven to be suitable, will be reused on the site.
Frost Action	Gravel specified in lieu of pavement to minimize frost effects.
Shrink-Swell	Gravel specified in lieu of pavement.
Potential Sinkhole	Geotechnical Engineer of record recommendations will be followed for any potential occurrences.
Ponding	Surface grading and drainage facilities will be provided to minimize ponding affects.
Wetness	Wet weather construction recommendations, per the Geotechnical Engineer's recommendations, will be employed to minimize the effects of wetness during construction, surface grading. Surface grading and drainage will be provided to minimize wetness affects after construction.

1.3 Earth Disturbance Activity

The proposed permanent access roads are located in agricultural lands. The proposed land use is for a permanent access road intended to provide a means of ingress/egress to/from the MLV site for operations. The proposed alteration of the land includes modifying the existing access road ROW to accommodate a 14 foot wide gravel access road. Installing the access road requires grading activity to construct the new road. See the E&SC Plans for Schuylkill County included in Section 2 of the ESCGP-2 NOI.

Where vegetated channels are proposed to be installed alongside the permanent access roads, they will be constructed at a minimum depth as possible to maintain existing limiting zones. The PCSM/SR BMPs have been designed to meet the volume and peak flow reduction requirements without accounting for infiltration losses.

Characterization of Land Use

The characterization of land use within the proposed CPL South project areas is based on interpretation of aerial photographs taken in the spring of 2014 and information gathered from field surveys conducted during 2014 and 2015. Transco classified land uses within the proposed Project areas into the following eight broad types:

- Agricultural Land land associated with active cultivation of ROW and field crops; areas of grasses planted for livestock grazing or for the production of hay crops; orchards; and specialty crops, including vineyards, Christmas trees, and fruits and vegetables.
- Upland Forest/Woodland includes upland deciduous forest, evergreen forest, and mixed (deciduous and evergreen) forest, but does not include forested wetlands.
- Industrial/Commercial Land land used for mines or quarries and associated processing plants; manufacturing or other industrial facilities; and land developed for commercial or retail uses, including malls, strip plazas, business parks, and medical facilities.
- 4. Transportation Land land used for transportation purposes, including interstate highways; state, county, and local highways and roads; and railroad lines.
- 5. Residential Land residential areas, including yards of individual residences.
- 6. Open Land non-forested and undeveloped land not classified for another use, including land maintained as utility ROWs for overhead and underground electric transmission, natural gas transmission, and oil transmission facilities.

- 7. Wetlands includes wetlands covered with emergent, scrub-shrub, and forested vegetation.
- 8. Open Water include rivers, streams, creeks, canals, and other linear waterbodies, as well as lakes, ponds, and other non-flowing waterbodies.

New mainline valvesf will be wholly located within the permanent ROWs for the proposed CPL South pipeline. Construction will primarily occur within the proposed CPL South construction ROWs.

Area Types

The access road construction ROW is comprised of the following area types:

- Limit of Disturbance (LOD) Area The LOD area is the construction ROW for the
 access roads. For most roads, this area is 50 feet wide and centered on the
 centerline of the access road. In areas where grading and/or E&SC BMPs
 require more room, the LOD has been expanded to encompass the proposed
 improvement area.
- ESCGP-2 Permit Boundary/Site Area The ESCGP-2 Permit Boundary/Site
 Area is the area to be permitted for improvements with the Chapter 102
 Application. This area is slightly larger than the LOD area. The limit of the
 ESCGP-2 Permit Boundary/Site Area is typically offset 5 feet from the LOD limit
 for access roads.
 - Future changes made to the LOD area that are still within the ESCGP-2 Permit Boundary/ Site Area would likely be considered a minor modification to the Project's Chapter 102 Permit. However, future changes to the LOD area that are outside the ESCGP-2 Permit Boundary/Site Area may require a major modification to the Permit.
- Area of Minimum Disturbance/Reduced Grading The Area of Minimum
 Disturbance/Reduced Grading is the area within the LOD area that is outside the
 proposed grading area. Disturbances within the Area of Minimum
 Disturbance/Reduced Grading will be minimal.
- LOD Area within Floodway/Floodplain The LOD Area within
 Floodway/Floodplain is the area within the LOD that is within a FEMA (Federal
 Emergency Management Agency) designated Floodplain or an assumed
 floodway that extends approximately 50 feet from the top of bank of a stream
 landward. The LOD Area within Floodway/Floodplain have been coordinated with
 the Chapter 105 Permit application. For most of the access roads, where the
 LOD crosses a floodway/floodplain, the LOD area has been minimized and the
 existing road will be used. Where the existing road cannot support the intended

traffic loads, timber matting will be installed to provide an adequate driving surface.

- Stormwater Management Area The Stormwater Management Area is calculated using Worksheet #3. For the permanent access roads, the Stormwater Management Area is equal to the LOD Area because no credit is taken for protected areas. The LOD is minimized at wetlands and streams to mimimize impacts. Where the LOD crosses a floodway/floodplain, the existing road will be used with matting, as necessary.
- Area Controlled by BMPs The Area Controlled by BMPs is the drainage area that discharges to either the vegetated channel or MLV pad. The pre- and postconstruction cover types for the Area Controlled by BMPs are summarized in Worksheet #4.

1.4 Project Site Runoff

The E&SC BMPs for the access roads are sized using Worksheets 1 and 11 of the PADEP E&SC Manual. These worksheets take into consideration the slope length above the sediment barrier and the drainage area contributing to the channel, respectively. (See the road-specific appendices of the **E&SC Narrative for Schuylkill County included in Section 2 of the ESCGP-2 NOI** for road-specific worksheets.)

For temporary access roads and permanent access roads that provide access to the pipeline ROW and not MLVs, no permanent change in cover is proposed. Disturbed areas will be restored to pre-construction conditions. Therefore, no change in runoff rate or volume is anticipated.

For permanent access roads that provide access to MLVs, a summary table presenting the change in runoff volume for the 2-year 24-hour design storm and the change in peak rate of runoff for the 2-year, 5-year, 10-year, 25-year, 50-year and 100-year 24-hour design storms for pre-construction and post construction conditions, along with the supporting calculations, are provided for each permanent access road in the road-specific narratives appended to this narrative.

Where applicable, Act 167 Plan names and adoption dates for each access road watershed are included in the road-specific narratives appended to this narrative. The proposed permanent access roads located in Schuylkill County are located in watersheds that are not subject to an Act 167 Plan. Therefore, the PCSM MBPs for these roads have been designed to comply with section 25 Pa. Code §§ 102.8(g)(2) & 102.8(g)(3) and using the recommended Control Guideline – 1 (CG-1) form.

1.5 Surface Water Classification

The locations and Chapter 93 designation of the streams and wetlands near the LOD for the temporary and permanent access roads are shown on the E&SC Plans (**Section 2 of the ESCGP-2 NOI**).

1.6 BMP Description Narrative

E&SC BMPs, consistent with the PADEP E&SC Manual, are planned to be used along the temporary and permanent access roads before, during, and after earth disturbance activities. E&SC BMPs will be installed prior to disturbance of tributary areas. Installation and maintenance guidelines, as well as E&SC BMP locations are described in the E&SC Narrative for Schuylkill County included in Section 2 of the NOI and shown on the E&SC Plans (Section 2 of the ESCGP-2 NOI) and the Best Management Practices and Quantities Plan.

For permanent access roads that require an increase in impervious area, additional PCSM BMPs will be installed to manage the additional runoff created by the change in pre- and post-development conditions. The PCSM BMPs that will be used for the permanent access roads include the following:

PCSM BMPs

- <u>Vegetated Channels:</u> Vegetated Channels shall be installed to collect and attentuate runoff volume from adjacent impervious areas, allowing some pollutants to settle out in the process. Permanent Check Dams are used to enhance attenuation and pollutant removal.
- <u>Check Dams</u>. Check Dams will be installed as shown on the Plans and Detail Sheets. Check Dams help dissipate energy from the concentrated flow in roadside ditches and channels to prevent erosion of the channel and at the outlet. Check Dams will be earthen check dams with a height of 12 inches, typically.
- Stone Valve Site Void Storage: Runoff from the proposed permanent access roads may be detained in the void space between the stone at the valve sites (mainline valves) to attenuate the peak rate of runoff for up to the 100-year design storm event. The valve sites will be comprised of 6 inches of AASHTO #8 aggregate over a heavy nonwoven geotextile over 12 inches to 30 inches of AASHTO #57 aggregate. The depth of the AASHTO #57 aggregate varies based on the detention volume needed to attenuate the volume of runoff for the 100-year storm. Dewatering calculations for the valve sites are included in the road-specific narratives provided in Appendices E through W.

- <u>Riprap Aprons/Outlet Protection:</u> Riprap Aprons shall be installed to dissipate energy from flow concentrated at culverts and drainage channels. Permanent Riprap Aprons will remain in place and be part of the final PCSM/SR design.
- <u>Permanent Vegetative Stabilization</u>: Upon reaching final grades, and upon cessation of earth disturbance activities, disturbed areas will receive topsoil, seed, and mulch to establish permanent vegetative stabilization.
- <u>Infiltration Berm</u>: Runoff from the proposed permanent access roads may be detained behind the infiltration berm areas to attenuate the peak rate of runoff for up to the 100-year design storm event.

1.7 BMP Installation Sequence Narrative

Refer to the E&SC Plans (**Section 2 of the ESCGP-2 NOI**) for the location of the proposed work and the associated E&SC and PCSM BMPs. A road-specific construction sequence is provided in **Appendices J and V**.

1.8 Supporting Calculations and Measurements

Supporting calculations for each permanent access road design are provided in the road-specific narratives appended to this narrative.

1.9 Plan Drawings

Full size copies of the permanent access road E&SC Plans have been provided under separate cover in Section 2 of the ESCGP-2 NOI.

Preparer Qualifications are included in **Appendix D**.

1.10 Long Term Operation and Maintenance Schedule

E&SC BMPs shall be maintained properly throughout Project construction as described in the **E&SC Narrative for Schuylkill County included in Section 2 of the NOI**. Until an access road is stabilized, the associated E&SC BMPs shall be maintained properly. Maintenance shall include inspections of E&SC BMPs after each runoff event and on a weekly basis. Preventative and remedial maintenance work, including clean out, repair, replacement, re-grading, reseeding, and re-mulching must be initiated immediately. If

the E&SC BMPs fail to perform as expected, replacement E&SC BMPs, or modifications of those installed will be required.

After project completion, the PCSM BMPs will be monitored and maintained as described below:

Monitoring

Transco's personnel (Operations) will perform visual inspections on an annual basis after permit closure to ascertain that the PCSM BMPs are functioning and operating effectively to ensure the MLV sites and associated permanent access roads are causing no undue burden on the property owner or adjacent owners. Repairs of deficiencies will be initiated within ten business days of discovery.

Maintenance

The Contractor will be responsible for the maintenance of the PCSM BMPs during construction. After construction, the PCSM BMPs will be owned and maintained by Transco.

Maintenance of the PCSM BMPs after acceptance by the Owner will consist of routine cleaning of accumulated sediment and debris. The specific maintenance steps and schedule are listed below:

PCSM BMPs Inspection

PCSM BMPs (vegetated channels and rock within the MLV site) are to be inspected annually for sediment, build-up and erosion debris. The sediment, debris, trash and any other waste material removed from the PCSM BMPs shall be disposed of at a suitable disposal or recycling site and in compliance with local, state and federal waste regulations.

- <u>Vegetated Channel and Check Dams:</u> Vegetated channels shall be inspected annually and within 48 hours after every major storm event (> 1 inch rainfall depth) as follows:
 - Inspect and correct erosion problems, damage to vegetation, and sediment and debris accumulation (address when > 3 inches at any spot or covering vegetation);
 - Inspect vegetation on side slopes for erosion and formation of rills or gullies, correct as needed;
 - Inspect for pools of standing water; dewater and discharge to an approved location and restore to design grade;

- Mow and trim vegetation to ensure safety, aesthetics, proper vegetated channel operation, or to suppress weeds and invasive vegetation; dispose of cuttings in a local composting facility; mow only when vegetated channel is dry to avoid rutting;
- Inspect for litter; remove prior to mowing;
- Inspect for uniformity in cross-section and longitudinal slope, correct as needed; and
- Inspect vegetated channel inlet and outlet for signs of erosion or blockage, correct as needed.

Maintenance activities to be done as needed:

- o Plant alternative grass species in the event of unsuccessful establishment;
- Reseed bare areas; install appropriate erosion control measures when native soil is exposed or erosion channels are forming;
- Rototill and replant vegetated channel if draw down time is more than 48 hours;
- Inspect and correct check dams when signs of altered water flow (channelization, obstructions, erosion, etc.) are identified; and
- Water during dry periods, fertilize, and apply pesticide only when absolutely necessary.
- <u>Infiltration Berm</u>: The infiltration berm shall be inspected annually and within 48 hours after every major storm event (> 1 inch rainfall depth) as follows:
 - Inspect slope and integrity of berm to ensure proper functionality;
 - Inspect for pools of standing water; dewater and discharge to an approved location and restore to design grade;
 - Mow and trim vegetation to ensure safety, aesthetics, or to suppress weeds and invasive vegetation; dispose of cuttings in a local composting facility;
 - Avoid running heavy equipment over the infiltration area at the base of the berm;
 - Remove accumulated trash and debris; and
 - Inspect for signs of flow channelization; restore level gradient immediately after deficiencies are observed.
- Stone Valve Site Void Storage: MLV sites shall be inspected annually as follows:

- Inspect and correct erosion problems, disruption to stone, and sediment and debris accumulation;
- Inspect stone for erosion and formation of rills or gullies, correct as needed;
- Inspect for pools of standing water; dewater and discharge to an approved location and restore to design grade; and
- Remove litter.

Annual Records of Maintenance Procedures

The Owner shall maintain a checklist whenever the PCSM BMPs are inspected and cleaned. An annual list of inspections and major cleaning operations and repairs shall be maintained. Upon request, the local CCD or enforcement officials shall have access to those records. The Owner shall ensure compliance with ESCGP-2 Permit requirements by meeting all ongoing recordkeeping maintenance, and other applicable ESCGP-2 and PADEP permit conditions.

1.11 Material Recycling and Disposal

Maintenance of the permanent access roads that provide access to the MLV sites will require the removal of materials (i.e., sediment, debris, and litter). The materials shall be dispose of at suitable disposal or recycling sites in compliance with local, state and federal regulations.

Transco has prepared a Spill Plan for Oil and Hazardous Materials to assist in prevention of any spills that may occur at the MLV site and to respond to any spills that do occur. The Spill Plan for Oil and Hazardous Materials is included as **Attachment 9** to the Environmental Construction Plan (ECP) provided as Section 4 of the ESCGP-2 NOI.

1.12 Soil Conditions and Geologic Formations

AECOM conducted a review of the proposed CPL South pipeline for the potential of geologic formation which may cause pollution if disturbed or exposed during construction.

Karst Bedrock Formations

As identified by AECOM, naturally–occurring bedrock formations and soils types that may cause pollution are present along portions of the CPL South construction ROW. Bedrock formations that may cause pollution are associated with karst or acid-forming conditions include the following:

- Conestoga Formation
- Vintage Formation
- Buffalo Springs Formation
- Ledger Formation
- Zooks Corner Formation
- Snitz Creek Formation
- Millbach Formation

- Stonehenge Formation
- Epler Formation
- Richenbach Formation
- Ontelaunee Formation
- Annville Formation
- Hershey-Myerstown Formation
- Keyser-Tonoloway Formation

There are two bedrock formations that do not form significant karst terrain along the proposed CPL South pipelines, which include Hamburg Sequence/limestone unit and Hamilton Group/Tully limestone unit.

Acid-Producing Sulfide Bedrock Formations

In the review of the NRCS data for the proposed CPL South pipeline route, several acidproducing sulfide bedrock formations are located along the proposed route. These formations are as follows:

- Pottsville Formation (anthracite coal-bearing)
- Llewelyn Formation (anthracite coal bearing)

Formations containing variable amounts of pyrite or other sulfide minerals that may only locally be acid-producing are found along the proposed CPL South pipeline. These formations can be determined only by site-specific acid-drainage investigation, and are identified as follows:

- Octoraro schist
- Conestoga phyllite
- Antietam-Harpers schist

- Kinzers shale
- Cocalico shale
- Hamburg/Martinsburg shale

Table 6 in the Best Management Practices and Quantities Plan provides the locations of the acidic bedrock.

Acidic Soils

For the proposed CPL South pipeline, based on review of the attached NRCS Custom Soil Resource Report provided in **Appendix C**, acidity levels of the soils found along the proposed CPL South route do not fall within the pH range that is considered to be a potential source of pollution that must be mitigated. Should acidic soils deemed to be a potential source of pollution (pH of 4.0 or lower) be encountered

during the construction of the temporary and permanent access roads, the following Acid Producing Soils and Bedrock Control Plan shall be implemented. Table 5 in the Best Management Practices and Quantities Plan provides the locations of soils and their respective acidity levels. A road specific Soil Acidity Table is included for each road in the road specific appendices attached to this document.

Acid Producing Soils and Bedrock Control Plan

The following acid producing soils control plan was developed to identify BMPs and procedures for minimizing the potential for pollution associated with the disturbance of the areas associated with the construction of the temporary and permanent access roads that contain acid-producing soils with a pH less than 4.0 as recommended by the Natural Resources Conservation Service (NRCS).

- 1. Contractor shall limit the excavation area and exposure time when high acid-producing soils are encountered. Locations where acidic soils are anticipated to be present along the access roads are provided in the road specific narratives included in this document and on the E&SC plans included in Section 2 of the ESCGP-2 NOI.
- 2. Contractor shall separately store topsoil stripped from the site away from temporarily stockpiled high acid-producing soils and bedrock.
- 3. Contractor shall stockpile high acid-producing soils and bedrock material on level ground to minimize its movement, especially when these materials have a high clay content.
- 4. Contractor shall cover temporarily stockpiled high acid-producing soil and bedrock material to be exposed more than 7 days with properly anchored, heavy-grate sheets of polyethylene, where possible. If not possible, stockpiles shall be covered with a minimum of three to six inches of wood chips to minimize erosion of the stockpile. In addition, the contractor shall install silt fence at the toe of the stockpile slope to contain movement of material. Contractor shall not apply topsoil to the high acid-producing soil or bedrock stockpiles to prevent topsoil contamination.
- 5. Contractor shall ultimately dispose of high acid-producing soils or bedrock with a pH of four or less, or containing iron sulfide (including borrow from cuts) by placing the material combined with limestone at the rate of 6 tons per acre (or 275 pounds per 1,000 square feet of surface area) and covering the mixture with a minimum of 12 inches of settled soils with a pH of five or more except as follows:

- a. In the areas where trees of shrubs are to be planted, the contractor shall cover the limestone/soil mixture with a minimum of 24 inches of soils with a pH of five or more.
- b. Contractor shall not locate any disposal area within 24 inches of any surface of a slope or bank, such as berms, stream banks, ditches, and other surface waters to prevent potential lateral leaching damages.
- 6. At the end of each day, contractor shall clean all equipment used to handle high acid-producing soils or bedrock to prevent spreading of high-acid materials to other parts of the proposed right-of-way, into streams, or stormwater conveyances, and to protect machinery from accelerated corrosion.
- 7. Contractor shall provide and install non-vegetative erosion controls (stone tracking pads, strategically-place limestone check dams, silt fences, wood chips) to limit the movement of high acid-producing soils from, around, or off areas disturbed for access road construction.
- 8. Following the burial or removal of high acid-producing soils and bedrock, top soiling, and seeding of the areas restored after the removal of the temporary access roads and permanent access roads that provide access to the pipeline right-of-way, Transco shall monitor the site for approximately six to 12 months to assure there is adequate stabilization and that no high-acid soil or bedrock problems emerge. Contractor shall correct any problems that are discovered within this time period.
- 9. If problems occur where high acid-producing soils or bedrock have been placed or buried, the applicant shall monitor these areas for at least two years to assure there is no migration of potential acid leachate.

1.13 Thermal Impacts

Thermal impacts associated with permanent access roads will be avoided to the maximum extent practicable by implementing the following measures:

- Minimize permanent changes in land cover to only that necessary to construct the required permanent access roads;
- Limit removal of vegetation, especially tree cover, to only that necessary for construction;
- Minimize permanent impervious surfaces;

- Collect runoff from the permanent impervious areas and direct runoff to PCSM/SR BMPs;
- Install a gravel surface for the permanent access roads rather than asphalt;
- Incorporate the use of stone at mainline valves and vegetated swales with stone check dams to provide storage for stormwater runoff; and
- Minimize impacts to existing riparian corridors.

1.14 E&SC Plan and PCSM/SR Plan Consistency

The E&SC Plans (**Section 2 of the ESCGP-2 NOI**), the E&SC Narrative, and this PCSM Narrative have been designed and will be constructed to be consistent with the PCSM Plans (**Section 2 of the ESCGP-2 NOI**).. Following completion of construction, disturbed areas shall be stabilized and the long-term maintenance of the PCSM BMPs will begin.

1.15 Riparian Buffer Waiver

No access roads within Schuylkill County require a riparian buffer waiver.

1.16 Antidegradation Requirements

No permanent access roads within Schuylkill County are located within a special protection watershed.

1.17 TMDL

Road-specific Total Maximum Daily Load (TMDL) discussions are provided in the road-specific narratives.

APPENDIX A Intentionally Omitted by Applicant

APPENDIX B Intentionally Omitted by Applicant

APPENDIX C

United States Department of Agriculture Natural Resources Conservation Service Custom Soil Resource Report

Included under separate cover in Appendix C of the E&SC Narrative for Schuylkill County included in Section 2 of the ESCGP-2 NOI

APPENDIX D

Supporting Information

Appendix D.1 – Preparer Qualifications Appendix D.2 – North American Green Product Data

Appendix D.1 – Preparer Qualifications

NAME OF PLAN PR	EPARER: Suzanne M	larie King, PE	_
FORMAL EDUCATION	ON:		
Name of Colle	ege or Technical Instit	tute:Roger Williams Uni	versity / Stanford University
Curriculum o	r Program : General Er	ngineering / Structural E	ngineering
Dates of Atter			o: RWU: 5/2002 / SU: 5/2003
Degree Recei	ved RWU: Bachelor o	f Science - General Eng	jineering
-		cience - Structural Engir	
OTHER TRAINING:			
Name of Training:			
Presented By:			
Date:			
EMPLOYMENT HIST	ORY:		
Current Employer:	BL Companies		
Telephone:	781-619-9500		
Former Employer:	Woodard & Curran I	BKF Engineers	
Telephone:	401-273-1007	650-482-6300	
DECENT DEDMANEN		CILITY DI ANC DDEDA	DED.
RECENT PERMANEN	Treasure Island	CILITY PLANS PREPA Canal Street	KED:
Name of Project:	Redevelopment	Improvements	Beechwood Museum
County:	San Francisco	Essex	Newport
Municipality:	San Francisco, CA	Salem, MA	Newport, RI
Permit Number:	N/A	N/A	N/A
Approving Agency:	Treasure Island	City of Salem & Massachusetts	City of Newport &
	Development	Emergency	Coastal Resources
	Authority (TIDA)	Management Agency	Management Council

Appendix D.2 – North American Green Product Data

Specification Sheet – EroNet™ DS75™ Erosion Control Blanket

DESCRIPTION

The ultra short-term single net erosion control blanket shall be a machine-produced mat of 100% agricultural straw with a functional longevity of up to 45 days. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw evenly distributed over the entire area of the mat. The blanket shall be covered on the top side with a polypropylene netting having an approximate 0.50×0.50 (1.27×1.27 cm) mesh with photodegradable accelerators to provide breakdown of the netting within approximately 45 days, depending upon geographical location and elevation. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats.

The DS75 shall meet Type 1.C specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.17

Material Content				
Matrix	100% Straw Fiber	0.5 lbs/sq yd (0.27 kg/sm)		
Netting	Top side only, lightweight photodegradable with photo accelerators	1.5 lb/1000 sq ft (0.73 g/sm)		
Thread	Degradable			

Standard Roll Sizes				
Width	6.67 (2.03 m)	8.0 ft (2.4 m)	16 ft (4.87 m)	
Length	108 ft (32.92 m)	112 ft (34.14 m)	108 ft (32.92 m)	
Weight ± 10%	40 lbs (18.14 kg)	50 lbs (22.68 kg)	96 lbs (43.54 kg)	
Area	80 sq yd (66.9 sm)	100 sq yd (83.61 sm)	192 sq yd (165.5 sm)	

Index Property	Test Method	Typical
Thickness	ASTM D6525	0.45 in. (11.43 mm)
Resiliency	ECTC Guidelines	78.8%
Water Absorbency	ASTM D1117	375%
Mass/Unit Area	ASTM 6475	8.57 oz/sy (291 g/sm)
Swell	ECTC Guidelines	15%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	6.31 oz-in
Light Penetration	ASTM D6567	10%
Tensile Strength - MD	ASTM D6818	105.6 lbs/ft (1.57 kN/m)
Elongation - MD	ASTM D6818	34%
Tensile Strength - TD	ASTM D6818	42.0 lbs/ft (0.62 kN/m)
Elongation - TD	ASTM D6818	25.2%
Biomass Improvement	ASTM D7322	286%

Design Permissible Shear Stress			
Unvegetated Shear Stress 1.55 psf (74 Pa)			
Unvegetated Velocity	5.00 fps (1.52 m/s)		

Slope Design Data: C Factors				
Slope Gradients (S)				
Slope Length (L)	≤ 3:1	3:1 - 2.1	≥ 2:1	
≤ 20 ft (6 m)	0.029	N/A	N/A	
20-50 ft	0.11	N/A	N/A	
≥ 50 ft (15.2 m)	0.19	N/A	N/A	

Roughness Coefficients – Unveg.			
Flow Depth Manning's n			
≤ 0.50 ft (0.15 m)	0.055		
0.50 - 2.0 ft 0.055-0.021			
≥ 2.0 ft (0.60 m) 0.021			

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com Tensar International Corporation warrants that at the time of delivery the product furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby executed. If the product does not meet specifications on this page and Tensar is notified prior to installation, Tensar will replace the product at no cost to the customer. This product specification supersedes all prior specifications for the product described above and is not applicable to any products shipped prior to January 1, 2012.

Specification Sheet – EroNet™ C125® Erosion Control Blanket

DESCRIPTION

The long-term double net erosion control blanket shall be a machine-produced mat of 100% coconut fiber with a functional longevity of up to 36 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the coconut evenly distributed over the entire area of the mat. The blanket shall be covered on the top and bottom sides with a heavyweight photodegradable polypropylene netting having ultraviolet additives to delay breakdown and an approximate 0.63×0.63 in $(1.59 \times 1.59$ cm) mesh. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats.

The C125 shall meet Type 4 specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.17

Material Content				
Matrix	100% Coconut Fiber	0.5 lbs/sq yd (0.27 kg/sm)		
Netting	Heavyweight photodegradable with UV additives	3 lbs/1000 sq ft (1.47 g/sm)		
Thread	Black polypropylene			

Standard Roll Sizes				
Width	6.67 (2.03 m)	8 ft (2.44 m)		
Length	108 ft (32.92 m)	112 ft (35.14 m)		
Weight ± 10%	44 lbs (19.95 kg)	56.25 (25.5 kg)		
Area	80 sq yd (66.9 sm)	100 sq yd (83.61 sm)		

Markey Tourisal
Method Typical
0.22 in. (5.59 mm)
Guidelines 82%
1 D1117 167%
7.73 oz/sy (262.8 g/sm)
Guidelines 13%
Guidelines Yes
1 D1388 0.75 oz-in
1 D6567 16.6%
472.8 lbs/ft 4 D6818 (7.01 kN/m)
1 D6818 25.6%
225.6 lbs/ft 4 D6818 (3.35 kN/m)
4 D6818 33.9%

Design Permissible Shear Stress		
Unvegetated Shear Stress 2.25 psf (108 Pa)		
Unvegetated Velocity	10.0 fps (3.05 m/s)	

Slope Design Data: C Factors				
	Slope Gradients (S)			
Slope Length (L)	≤ 3:1	3:1 - 2.1	≥ 2:1	
≤ 20 ft (6 m)	0.001	0.029	0.082	
20-50 ft	0.036	0.060	0.096	
≥ 50 ft (15.2 m)	0.070	0.090	0.110	

Roughness Coefficients – Unveg.	
Flow Depth	Manning's n
≤ 0.50 ft (0.15 m)	0.022
0.50 - 2.0 ft	0.022-0.014
≥ 2.0 ft (0.60 m)	0.014

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com Tensar International Corporation warrants that at the time of delivery the product furnished hereunder shall conform to the specification stated herein. Any other warranty including merchantability and fitness for a particular purpose, are hereby executed. If the product does not meet specifications on this page and Tensar is notified prior to installation, Tensar will replace the product at no cost to the customer. This product specification supersedes all prior specifications for the product described above and is not applicable to any products shipped prior to January 1, 2012.

Specification Sheet - EroNet™ S75® Erosion Control Blanket

DESCRIPTION

The short-term single net erosion control blanket shall be a machine-produced mat of 100% agricultural straw with a functional longevity of up to 12 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw evenly distributed over the entire area of the mat. The blanket shall be covered on the top side with a lightweight photodegradable polypropylene netting having an approximate 0.50 x 0.50 in. (1.27 x 1.27 cm) mesh. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats.

The S75 shall meet Type 2.C specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.17

Material Content			
Matrix	100% Straw Fiber	0.5 lbs/sq yd (0.27 kg/sm)	
Netting	Top side only, lightweight photodegradable	1.5 lb/1000 sq ft (0.73 kg/100 sm)	
Thread	Degradable		

	Standar	d Roll Sizes	
Width	6.67 ft (2.03 m)	8.0 ft (2.4 m)	16 ft (4.87 m)
Length	108 ft (32.92 m)	112 ft (34.14 m)	108 ft (32.92 m)
Weight ± 10%	40 lbs (18.14 kg)	50 lbs (22.68 kg)	96 lbs (43.54 kg)
Area	80 sq yd (66.9 sm)	100 sq yd (83.61 sm)	192 sq yd (165.5 sm)

Index Property	Test Method	Typical
Thickness	ASTM D6525	0.50 in. (12.7 mm)
Resiliency	ECTC Guidelines	78.8%
Water Absorbency	ASTM D1117	301%
Mass/Unit Area	ASTM D6475	9.76 oz/sy (332 g/sm)
Swell	ECTC Guidelines	15%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	6.31 oz-in
Light Penetration	ASTM D6567	6.0%
Tensile Strength - MD	ASTM D6818	122.4 lbs/ft (1.81 kN/m)
Elongation - MD	ASTM D6818	36.1%
Tensile Strength - TD	ASTM D6818	79.2 lbs/ft (1.17 kN/m)
Elongation - TD	ASTM D6818	26.8%
Biomass Improvement	ASTM D7322	301%

Design Permissible Shear Stress		
Unvegetated Shear Stress	1.55 psf (74 Pa)	
Unvegetated Velocity	5.00 fps (1.52 m/s)	

Slope Design Data: C Factors			
Slope Gradients (S)			
Slope Length (L)	≤ 3:1	3:1 - 2:1	≥ 2:1
≤ 20 ft (6 m)	0.029	N/A	N/A
20-50 ft	0.11	N/A	N/A
≥ 50 ft (15.2 m)	0.19	N/A	N/A
NTPEP Large-Scale Slope Testing			

Roughness Coefficients – Unveg.	
Flow Depth	Manning's n
≤ 0.50 ft (0.15 m)	0.055
0.50 - 2.0 ft	0.055-0.021
≥ 2.0 ft (0.60 m)	0.021

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com

Specification Sheet - EroNet™ SC150® Erosion Control Blanket

DESCRIPTION

The extended-term double net erosion control blanket shall be a machine-produced mat of 70% agricultural straw and 30% coconut fiber with a functional longevity of up to 24 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw and coconut evenly distributed over the entire area of the mat. The blanket shall be covered on the top side with a heavyweight photodegradable polypropylene netting having ultraviolet additives to delay breakdown and an approximate 0.63 x 0.63 in (1.59 x 1.59 cm) mesh, and on the bottom side with a lightweight photodegradable polypropylene netting with an approximate $0.50 \times 0.50 \text{ (1.27} \times 1.27 \text{ cm)}$ mesh. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent mats.

The SC150 shall meet Type 3.B specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.17

Material Content		
Matrix	70% Straw Fiber 30% Coconut Fiber	0.35 lbs/sq yd (0.19 kg/sm) 0.15 lbs/sq yd (0.08 kg/sm)
Netting	Top: Heavyweight photodegradable with UV additives	3 lbs/1000 sq ft (1.47 kg/100 sm)
	Bottom: lighweight photodegradable	1.5 lb/1000 sq ft (0.73 kg/100 sm)
Thread	Degradable	

Standard Roll Sizes			
Width	6.67 ft (2.03 m)	8 ft (2.4 m)	16.0 ft (4.87 m)
Length	108 ft (32.92 m)	112 ft (34.14 m)	108 ft (32.92 m)
Weight ± 10%	44 lbs (19.95 kg)	55 lbs (24.95 kg)	105.6 lbs (47.9 kg)
Area	80 sq yd (66.9 sm)	100 sq yd (83.61 sm)	192 sq yd (165.6 sm)

Index Property	Test Method	Typical
Thickness	ASTM D6525	0.35 in. (8.89 mm)
Resiliency	ECTC Guidelines	75%
Water Absorbency	ASTM D1117	342%
Mass/Unit Area	ASTM D6475	7.87 oz/sy (267.6 g/sm)
Swell	ECTC Guidelines	30%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	1.11 oz-in
Light Penetration	ASTM D6567	6.2%
Tensile Strength - MD	ASTM D6818	362.4 lbs/ft (5.37 kN/m)
Elongation - MD	ASTM D6818	29.4%
Tensile Strength - TD	ASTM D6818	136.8 lbs/ft (2.03 kN/m)
Elongation - TD	ASTM D6818	27.6%
Biomass Improvement	ASTM D7322	481%

Design Permissil	ble Shear Stress
Unvegetated Shear Stress	2.00 psf (96 Pa)

Unvegetated Velocity 8.0 fps (2.44 m/s)

Slope Design Data: C Factors			
		Slope Gradien	ts (S)
Slope Length (L)	≤ 3:1	3:1 - 2:1	≥ 2:1
≤ 20 ft (6 m)	0.001	0.048	0.100
20-50 ft	0.051	0.079	0.145
≥ 50 ft (15.2 m)	0.10	0.110	0.190

NTPEP Large-Scale Slope ASTM D6459 - C-factor = 0.031

Roughness Coefficients – Unveg.		
Flow Depth	Manning's n	
≤ 0.50 ft (0.15 m)	0.050	
0.50 - 2.0 ft	0.050-0.018	
> 2.0 ft (0.60 m)	0.018	

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com

Specification Sheet – BioNet® SC150BN™ Erosion Control Blanket

DESCRIPTION

The extended-term double net erosion control blanket shall be a machine-produced mat of 70% agricultural straw and 30% coconut fiber with a functional longevity of up to 18 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw and coconut evenly distributed over the entire area of the mat. The blanket shall be covered on the top and bottom sides with a 100% biodegradable woven natural organic fiber netting. The netting shall consist of machine directional strands formed from two intertwined yarns with cross directional strands interwoven through the twisted machine strands (commonly referred to as Leno weave) to form an approximate 0.50 x 1.0 in. (1.27 x 2.54 cm) mesh. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately 2-5 inches [5-12.5 cm] from the edge) as an overlap guide for adjacent

The SC150BN shall meet Type 3.B specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.17

Material Content		
Matrix	70% Straw Fiber	0.35 lbs/sq yd (0.19 kg/sm)
	30% Coconut Fiber	0.15 lbs/sq yd (0.08 kg/sm)
	Top: Leno woven 100% biodegradable jute	9.35 lb/1000 sq ft (4.5 kg/100 sm)
Netting	Bottom: 100% biodegradable organic jute	7.7 lb/1000 sq ft (3.76 kg/100 sm)
Thread	Biodegradable	

Standard Roll Sizes			
Width	6.67 ft (2.03 m)	8.0 ft (2.4 m)	15.5 ft (4.72 m)
Length	108 ft (32.92 m)	112 ft (34.14 m)	90 ft (27.43 m)
Weight ± 10%	52.22 lbs (23.69 kg)	65.28 lbs (29.61 kg)	101.2 lbs (45.9 kg)
Area	80 sq yd (66.9 sm)	100 sq yd (83.61 sm)	155 sq yd (129.6 sm)
	Leno weave top only	Leno top and bottom	Leno top and bottom

Index Property	Test Method	Typical
Thickness	ASTM D6525	0.25 in. (6.35 mm)
Resiliency	ECTC Guidelines	86%
Water Absorbency	ASTM D1117	311%
Mass/Unit Area	ASTM D6475	8.32 oz/sy (282.9 g/sm)
Swell	ECTC Guidelines	46%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	0.42 oz-in
Light Penetration	ASTM D6567	7.6%
Tensile Strength - MD	ASTM D6818	201.6 lbs/ft (2.99 kN/m)
Elongation - MD	ASTM D6818	13.4%
Tensile Strength - TD	ASTM D6818	164.4 lbs/ft (2.44 kN/m)
Elongation - TD	ASTM D6818	14.2%
Biomass Improvement	ASTM D7322	641 %

Design Permissible Shear Stress

Unvegetated Shear Stress	2.10 psf (100 Pa)
Unvegetated Velocity	8.00 fps (2.44 m/s)

Slope Design Data: C Factors			
	S	lope Gradients ((S)
Slope Length (L)	≤ 3:1	3:1 - 2:1	≥ 2:1
≤ 20 ft (6 m)	0.001	0.029	0.063
20-50 ft	0.051	0.055	0.092
≥ 50 ft (15.2 m)	0.10	0.080	0.120

Roughness Coefficients – Unveg.		
Flow Depth	Manning's n	
≤ 0.50 ft (0.15 m)	0.050	
0.50 - 2.0 ft	0.050-0.018	
≥ 2.0 ft (0.60 m) 0.018		

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com

Specification Sheet - VMax® P550® Turf Reinforcement Mat

DESCRIPTION

The composite turf reinforcement mat (C-TRM) shall be a machine-produced mat of 100% UV stable polypropylene fiber matrix incorporated into permanent three-dimensional turf reinforcement matting. The matrix shall be evenly distributed across the entire width of the matting and stitch bonded between a ultra heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 $\,$ x 1.27 cm) openings, an ultra heavy UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.5 x 0.5 inch (1.27 x 1.27 cm) openings, and covered by an ultra heavy duty UV stabilized nettings with 0.50×0.50 inch $(1.27 \times 1.27 \text{ cm})$ openings. The middle corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81cm) centers with UV stabilized polypropylene thread to form permanent three-dimensional turf reinforcement matting. All mats shall be manufactured with a colored thread stitched along both outer edges as an overlap guide for adjacent mats.

The P550 shall meet Type 5A, 5B, and 5C specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.18

Material Content		
Matrix	100% UV stable polypropylene fiber	0.5 lb/sy (0.27 kg/sm)
Netting	Top and Bottom, UV-Stabilized Polypropylene Middle, Corrugated UV-Stabilized Polypropylene	24 lb/1000 sf (11.7 kg/100 sm) 24 lb/1000 sf (11.7 kg/100 sm)
Thread	Polypropylene, UV Stable	

	Standard Roll Sizes
Width	6.5 ft (2.0 m)
Length	55.5 ft (16.9 m)
Weight ± 10%	52 lbs (23.59 kg)
Area	40 sy (33.4 sm)

Index Property	Test Method	Typical
Thickness	ASTM D6525	0.72 in. (18.29 mm)
Resiliency	ASTM 6524	95%
Density	ASTM D792	0.892 g/cm ³
Mass/Unit Area	ASTM 6566	21.25 oz/sy (723 g/sm)
UV Stability	ASTM D4355/ 1000 HR	100%
Porosity	ECTC Guidelines	96%
Stiffness	ASTM D1388	366.3 oz-in.
Light Penetration	ASTM D6567	16.5%
Tensile Strength - MD	ASTM D6818	1421 lbs/ft (21.07 kN/m)
Elongation - MD	ASTM D6818	40.5%
Tensile Strength - TD	ASTM D6818	1191.6 lbs/ft (17.67 kN/m)
Elongation - TD	ASTM D6818	28.8%
Biomass Improvement	ASTM D7322	378%

Design Permissible Shear Stress		
	Short Duration	Long Duration
Phase 1: Unvegetated	4.0 psf (191 Pa)	3.25 psf (156 Pa)
Phase 2: Partially Veg.	12.0 psf (576 Pa)	12.0 psf (576 Pa)
Phase 3: Fully Veg.	14.0 psf (672 Pa)	12.0 psf (576 Pa)
Unvegetated Velocity	12.5 fps (3.8 m/s)	
Vegetated Velocity	25 fp	s (7.6 m/s)

NTPEP ASTM D6460 Large Scale Channel		
Vegetated Shear Stress	>13.2 psf (632 Pa)	
Vegetated Velocity	>24.5 fps (7.47 m/s)	

Slope Design Data: C Factors			
	SI	ope Gradients ((S)
Slope Length (L)	≤ 3:1	3:1 - 2.1	≥ 2:1
≤ 20 ft (6 m)	0.0005	0.015	0.043
20-50 ft	0.0173	0.031	0.050
≥ 50 ft (15.2 m)	0.035	0.047	0.057

Roughness Coefficients - Unveg.	
Flow Depth	Manning's n
≤ 0.50 ft (0.15 m)	0.041
0.50 - 2.0 ft	0.040-0.013
≥ 2.0 ft (0.60 m)	0.013

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com

Specification Sheet - VMax® SC250® Turf Reinforcement Mat

DESCRIPTION

The composite turf reinforcement mat (C-TRM) shall be a machine-produced mat of 70% straw and 30% coconut fiber matrix incorporated into permanent three-dimensional turf reinforcement matting. The matrix shall be evenly distributed across the entire width of the matting and stitch bonded between a heavy duty UV stabilized nettings with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings, an ultra heavy UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.5 x 0.5 inch (1.27 x 1.27 cm) openings, and covered by an heavy duty UV stabilized nettings with 0.50×0.50 inch $(1.27 \times 1.27 \text{ cm})$ openings. The middle corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81cm) centers with UV stabilized polypropylene thread to form permanent three-dimensional turf reinforcement matting. All mats shall be manufactured with a colored thread stitched along both outer edges as an overlap guide for adjacent mats.

The SC250 shall meet Type 5A, 5B, and 5C specification requirements established by the Erosion Control Technology Council (ECTC) and Federal Highway Administration's (FHWA) FP-03 Section 713.18

Material Content		
Matrix	70% Straw Fiber	0.35 lb/sq yd (0.19 kg/sm) 0.15 lbs/sq yd
	Top and Bottom, UV-Stabilized	(0.08 kg/sm) 5 lb/1000 sq ft
Netting	Polypropylene Middle, Corrugated UV-Stabilized	(2.44 kg/100 sm) 24 lb/1000 sf
	Polypropylene	(11.7 kg/100 sm)
Thread	Polypropylene, UV Stable	

Standard Roll Sizes	
Width	6.5 ft (2.0 m)
Length	55.5 ft (16.9 m)
Weight ± 10%	34 lbs (15.42 kg)
Area	40 sq yd (33.4 sm)

Index Property	Test Method	Typical
Thickness	ASTM D6525	0.62 in. (15.75 mm)
Resiliency	ASTM 6524	95.2%
Density	ASTM D792	0.891 g/cm ³
Mass/Unit Area	ASTM 6566	16.13 oz/sy (548 g/sm)
UV Stability	ASTM D4355/ 1000 HR	100%
Porosity	ECTC Guidelines	99%
Stiffness	ASTM D1388	222.65 oz-in.
Light Penetration	ASTM D6567	4.1%
Tensile Strength - MD	ASTM D6818	709 lbs/ft (10.51 kN/m)
Elongation - MD	ASTM D6818	23.9%
Tensile Strength - TD	ASTM D6818	712 lbs/ft (10.56 kN/m)
Elongation - TD	ASTM D6818	36.9%
Biomass Improvement	ASTM D7322	441%

Design Permissible Shear Stress		
	Short Duration	Long Duration
Phase 1: Unvegetated	3.0 psf (144 Pa)	2.5 psf (120 Pa)
Phase 2: Partially Veg.	8.0 psf (383 Pa)	8.0 psf (383 Pa)
Phase 3: Fully Veg.	10.0 psf (480 Pa)	8.0 psf (383 Pa)
Unvegetated Velocity	9.5 fps (2.9 m/s)	
Vegetated Velocity	15 fps	s (4.6 m/s)

Slope Design Data: C Factors			
Slope Gradients (S)			
Slope Length (L)	≤ 3:1	3:1 - 2.1	≥ 2:1
≤ 20 ft (6 m)	0.0010	0.0209	0.0507
20-50 ft	0.0081	0.0266	0.0574
≥ 50 ft (15.2 m)	0.0455	0.0555	0.081

Roughness Coefficients - Unveg.	
Flow Depth	Manning's n
≤ 0.50 ft (0.15 m)	0.040
0.50 - 2.0 ft	0.040-0.012
≥ 2.0 ft (0.60 m)	0.011

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com

Specification Sheet – VMax® W3000™ High-Performance Turf Reinforcement Mat

DESCRIPTION

The VMax[®] W3000[™] high performance turf reinforcement mat (HPTRM) is a machine-produced mat of 100% UV-stabilized high denier poly yarns woven into permanent, high strength threedimensional turf reinforcement matting. The mat consists of a woven bottom layer integrally interlaced into a woven corrugated middle layer, with poly tendons on the top side spanning the entire machine direction. The mat is designed to provide sufficient thickness, optimum open area and three-dimensionality for effective erosion control and vegetation reinforcement against high flow induced shear forces. The mat has high tensile strength providing excellent damage resistance and increased bearing capacity of vegetated soils subject to heavy loads from maintenance equipment and other vehicular traffic. The corrugated structure provides a highly frictional surface to prevent sod slippage when sod is installed over the mat. When used as surface protection without sod overlay, the corrugated structure encapsulates the seed and soil in place while promoting self-soil infilling of the system.

Material Content		
Bottom	100% UV stable poly fiber weave	Black/Green
Corrugated Middle	100% UV stable poly fiber weave	Black/Green
Тор	100% UV stable Poly Tendons	Green

Standard Roll Sizes	
Width	10 ft (3.05 m)
Length	90 ft (27.4 m)
Weight ± 10%	90 lbs (41.0 kg)
Area	100 sy (83.6 sm)

Index Property	Test Method	Typical
Thickness	ASTM D6525	0.40 in. (10.2 mm)
Resiliency	ASTM D6524	98%
Mass/Unit Area	ASTM 6566	14.7oz/sy (495 g/m2)
Tensile Strength - MD	ASTM D6818	3600 lbs/ft (52.6 kN/m)
Elongation - MD	ASTM D6818	35%*
Tensile Strength - TD	ASTM D6818	3800 lbs/ft (55.5 kN/m)
Elongation - TD	ASTM D6818	20%*
Light Penetration	ASTM D6567	12%
UV Stability	ASTM D4355	>80% @3000 hrs

^{*} Measured on fabric prior to corrugation for true measurement of base fabric elongation

Design Permissible Shear Stress*		
Vegetated Shear Stress	16 psf (766 Pa)	
Vegetated Velocity	25 fps (7.6 m/s)	

^{*}Values extrapolated through ASTM D6460 testing

ASTM D6460 Large Scale Channel			
Vegetated Shear Stress	>13.2 psf (632 Pa)		
Vegetated Velocity	>24.5 fps (7.47 m/s)		

Tensar International Corporation 2500 Northwinds Parkway Suite 500 Alpharetta, GA 30009 800-TENSAR-1 tensarcorp.com

APPENDIX J

AR-SC-063 Specific Narrative and Calculations

- J.1 Site Specific Narrative
 - a. Narrative
 - b. TMDL Discussion
 - c. Minimized Soil Compaction
 - d. Thermal Impact Analysis
 - e. Acidic Soil Management Plan
 - f. Road Specific Construction Sequence g. Worksheet 1. General Site Information

 - h. Permanent Access Road Summary Sheet (NOI PCSM
- J.2 Location Map
- J.3 Predevelopment Calculations
 - a. Predevelopment Drainage Area Map
 - b. 2-Year Rainfall Event
 - c. 5-Year Rainfall Event
 - d. 10-Year Rainfall Event
 - e. 25-Year Rainfall Event
 - f. 50-year Rainfall Event
 - g. 100-Year Rainfall Event
- J.4 Post Development Calculations
 - a. Post Development Drainage Area Map
 - b. 2-Year Rainfall Event
 - c. 5-Year Rainfall Event
 - d. 10-Year Rainfall Event
 - e. 25-Year Rainfall Event
 - f. 50-year Rainfall Event
 - g. 100-Year Rainfall Event
- J.5 Conveyance Calculations
 - a. E&S Worksheet 11
 - b. NAG Swale Lining Analysis
 - c. Figure 9.3-Riprap Apron Design
 - d. Culvert Analysis
- J.6 PCSM BMP Calculations
 - a. Check Dam Volume Calculations
- J.7 Water Quality Worksheets
 - a. Flow Chart A Stormwater Calculation Process
 - b. Worksheet 1. General Site Information
 - c. Worksheet 2. Sensitive Natural Resources
 - d. Worksheet 3. Nonstructural BMP Credits
 - e. Flow Chart B Control Guideline 1 Process
 - f. Worksheet 4.Change in Runoff Volume for 2-Yr Storm Event
 - g. Worksheet 5. Structural BMP Volume Credits
 - h. Worksheet 10. Water Quality Compliance for Nitrate
- J.8 Infiltration Calculations
 - a. Infiltration Report
 - b. MLV Pad Dewatering Calculations
- J.9 Off-Site Discharge Analysis
 - a. Adequacy of Off-Site Discharge
- J.10 Storage Volume Analysis
 - a. Storage Volume Analysis

Site Specific Narrative J.1

- a. Narrative
- b. TMDL Discussion
- c. Minimized Soil Compaction
- d. Thermal Impact Analysis
- e. Acidic Soil Management Plan

- f. Road Specific Construction Sequence g. Worksheet 1. General Site Information h. Permanent Access Road Summary Sheet (NOI PCSM Table)

ACCESS ROAD: AR-SC-063

ACT 167 PLAN: None

TMDL: 2003 (metals, pH, suspended solids)

NARRATIVE:

AR-SC-063 is a proposed permanent access road (PAR) located in Pine Grove Township, Schuylkill County, Pennsylvania. The intent of this PAR is to provide permanent maintenance and operational access to the proposed Main Line Valve 08 (CS-MLV-08) located on the proposed 42" Central Penn Line South Pipeline. The road begins at Beuchler Lane and terminates at the MLV site at approximate mile post 67.7. The PAR is approximately 950 feet long over relatively hilly terrain. The PAR follows Beuchler Lane with no proposed improvements for the first 750 feet. The final 200 feet of road is proposed new construction over undisturbed ground. There will be a temporary roadway apron constructed to allow access to the gas pipeline by construction vehicles. Upon completion of the construction activities, the temporary construction entrance will be removed and a permanent access road will be constructed. Within the pipeline right of way, the proposed temporary sediment barriers are included in the Pipeline E&S Plan and shown in grey on the Access Road Plan for coordination purposes.

The proposed road will have a cross slope of 2% directing runoff in a southeasterly direction. A vegetated channel for diversion purposes is proposed to divert runoff flowing from the northwest to *an existing* cross culvert located at approximate station 2+00. A portion of the road will direct runoff to the proposed MLV site and the remaining portion of the road will direct runoff to the vegetated channel for infiltration with check dams. The MLV site will be constructed with a 6-inch thick layer of AASHTO #8 stone on top of nonwoven geotextile and a 12-inch thick layer of AASHTO #57 stone. As summarized in the infiltration calculations added to the bottom of Worksheet #5, the detained water stored in the voids of the MLV stone pad will infiltrate to the surrounding ground over approximately 4 hours and the water detained behind the check dams will infiltrate to the surrounding ground over approximately 3 hours.

A riprap apron is proposed at the termination of the vegetated channel for infiltration. In addition to the overflow runoff from the vegetated channel for infiltration, the riprap apron has been sized to accommodate the flow from the vegetated channel for diversion purposes. The two vegetated channels will be connected via an existing culvert under the access road. The riprap apron will discharge along the edge of Beuchler Lane. The existing drainage pattern will be modified for approximately 85 feet along Beuchler Lane. However, at approximately Station 3+50, the post-construction drainage pattern matches the

pre-construction drainage pattern and there will be no impacts to areas downstream of this converging point. Williams will observe the area between the riprap apron and the convergence point for signs of erosion and add control measures, such as erosion control blankets, along the drainage path, as necessary.

Water Quality Worksheet #4 was used to complete the *Control Guidelines 1* (CG-1) volume analysis for the 2 year *24-hour* storm. The storage volume provided by the check dams in the vegetated channels is greater than the required volume per Worksheet #4.

Pre-development and post-development runoff hydrographs were developed for the 1, 2, 5, 10, 25, 50 and 100 year **24-hour** storm events using the SCS TR-20 method. Directing runoff from the proposed new gravel road to roadside vegetated channels with check dams mitigates the potential impact from the proposed development.

TMDL DISCUSSION:

Receiving surface waters in the location of this access road are subject to a metals, pH and suspended solids TMDL. The rock construction entrance with a wash rack and the proposed erosion and sedimentation control measures to be implemented on this road are ABACT to minimize potential impacts from this road.

MINIMIZED SOIL COMPACTION:

The Project seeks to minimize soils compaction impacts associated with access roads to the maximum extent practicable. AR-SC-063 is a proposed permanent access road for Main Line Valve 08. All construction and operations traffic will utilize the proposed road and existing road. The permanent access road is situated completely within the permanent right of way of the pipeline reducing the area of impact. The roadway width has also been minimized to 14 feet. Additionally, infiltration and evaporation are encouraged in the MLV site pad and in the vegetated channels proposed in the permanent road construction.

THERMAL IMPACT ANALYSIS:

Thermal impacts associated with AR-SC-063 will be avoided to the maximum extent practicable. The following measures have been implemented to minimize thermal impacts:

 AR-SC-063 is approximately 950 linear feet; however, it follows an existing gravel road for approximately 750 linear feet. No improvements are necessary to use the existing gravel road. Utilizing the existing gravel road minimizes the potential thermal impact of this road.

- 750 linear feet of road follows an existing road. The use of an existing road corridor eliminates the need for additional tree removal. The ability to use this road without the removal of additional trees acts to minimize the thermal impact of this road.
- This road is proposed in a location that minimizes tree removal. The ability to use this road without the removal of additional trees acts to minimize the thermal impact of this road.
- Temporary construction phase improvements for this road are limited to equipment mats over an existing pipeline, a driveway apron and rock construction entrance with wash rack. Runoff from these temporary improvements is directed to stabilized, well vegetated areas that will promote infiltration of the runoff. Infiltration of runoff prior to entering of receiving waters allows for runoff to assimilate to ground water temperatures which are minimally influenced by seasonal temperature changes, minimizing the thermal impact of this road.
- Vegetated channels for infiltration with check dams are proposed adjacent to the proposed permanent access road. The vegetated channel and check dams promote infiltration of the runoff from the proposed impervious road. Infiltration allows the runoff to assimilate to ground water temperatures which are minimally influenced by seasonal temperature changes, minimizing the thermal impact of this road.

ACIDIC SOIL MANAGEMENT PLAN:

AR-SC-063 Soil Acidity Table				
Soil Map Symbol	Soil Name	РН		
LeC	Leck kill channery silt loam, 8 to 15 percent slopes	5.7		

An Acid Producing Soils Control Plan is included as part of this application. The plan identifies the measures to be used to control pollution associated with construction of access roads that contain acid-producing soils. The plan requires that these measures be applied only for soils with a pH less than 4.0 as recommended by the Natural Resources Conservation Service (NRCS). The table above depicts the soil types present on this road as well as the acidity of the soils. The pH of the soils on this road are outside the threshold established by the Acid Producing Soils Control Plan. Therefore, the measures prescribed in the plan do not need to be implemented for this road.

ROAD SPECIFIC CONSTRUCTION SEQUENCE:

ACCESS ROAD: AR-SC-063:

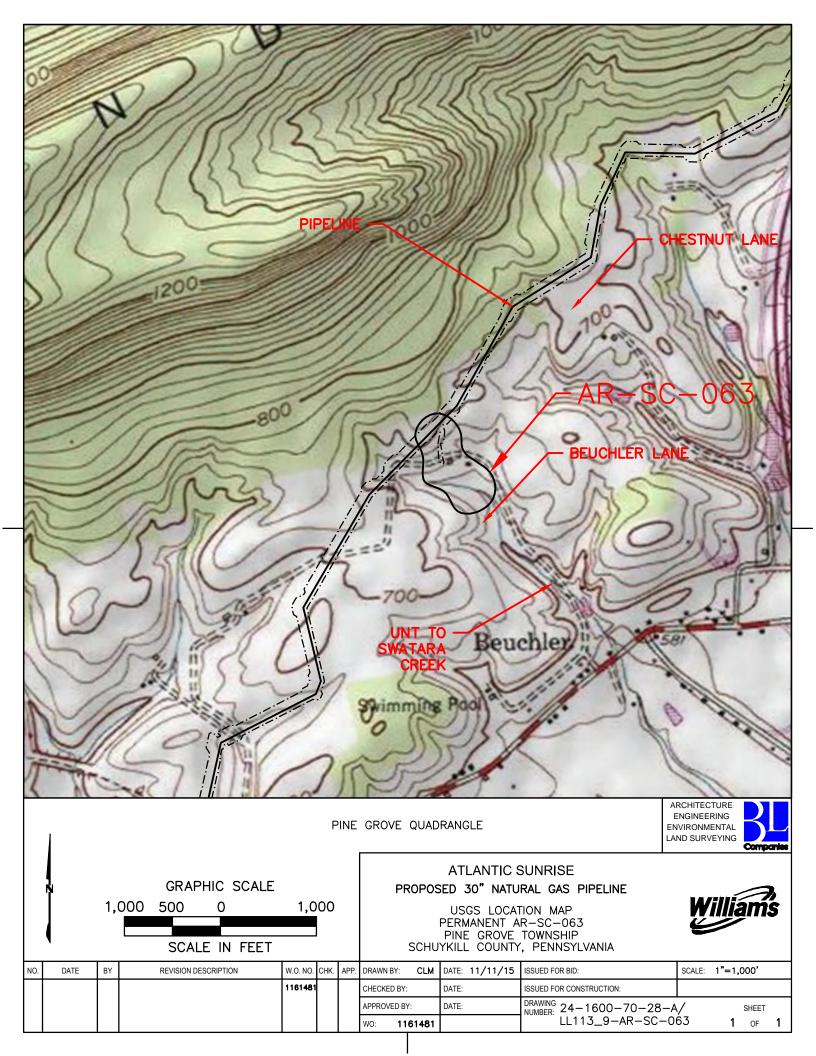
- 1. At least 7 days prior to starting any earth disturbance activities, including clearing and grubbing, the owner and/or operator shall invite all contractors, Environmental Inspectors, the landowner, appropriate municipal officials, the E&S plan preparer, the PCSM plan preparer, the licensed professional responsible for oversight of critical stages of implementation of the PCSM plan, and a representative from the local conservation district to an on-site preconstruction meeting.
- 2. At least 3 days prior to starting any earth disturbance activities, or expanding into an area previously unmarked, the Pennsylvania One Call System Inc. shall be notified at 1-800-242-1776 for the location of existing underground utilities.
- 3. Hold pre-construction conference with the Environmental Inspectors, local County Conservation District (CCD), PADEP and Design Engineer.
- 4. Survey crews locate and stake all special areas of concern (i.e., wetlands, streams, culverts, other utilities, etc.), edge of proposed access road, and field locate the limit of disturbance.
- 5. Install orange construction fence around areas to be preserved.
- 6. Locate staging areas and access points including the rock construction entrance with wash rack. Install E&SC BMPs down slope of these areas.
- 7. Perform tree cutting where required. (Areas with tree cutting shall be restored to meadow in good condition.)
- 8. Install rock construction entrance with wash rack.
- 9. Remove brush to effectively install perimeter E&SC BMPs.
- 10. The Compliance Manager shall provide PADEP at least three days' notice prior to bulk earth disturbance and upon completed installation of perimeter erosion controls.
- 11. If applicable, install orange security fence. The necessity of a security fence will be at the discretion of the Contractor.
- 12. Proceed with major clearing and grubbing.

- 13. Begin construction staking for layout of limits of access road.
- 14. Strip topsoil; contractor shall haul topsoil off site for storage. Grade the access road as shown on the E&SC Plans (Section 2 of the ESCGP-2 NOI). Excess material shall be hauled off site for storage or disposal in a legal manner.
- 15. The Compliance Manager shall provide PADEP at least three days' notice prior to installing vegetated channels for infiltration with check dams and placing the stone and geotextile fabric within the MLV pads.
 - a. Install vegetated channels for infiltration with check dams where specified on the E&SC Plans (Section 2 of the ESCGP-2 NOI). Note: this is a critical stage of PCSM plan to be observed by a licensed professional or designee. Begin vegetated channel construction only when the upgradient temporary erosion and sediment control measures are in place. Vegetated channels should be constructed and stabilized early in the construction schedule, preferably before mass earthwork and paving increase the rate and volume of runoff. (Erosion and sediment control methods shall adhere to the Pennsylvania Department of Environmental Protection's Erosion and Sediment Pollution Control Program Manual, March 2000 or latest edition.)
 - b. Rough grade the vegetated channel. Equipment shall avoid excessive compaction and/or land disturbance. Excavating equipment should operate from the side of the vegetated channel and never on the bottom. If excavation leads to substantial compaction of the subgrade (where an infiltration trench is not proposed), 18 inches shall be removed and replaced with a blend of topsoil and sand to promote infiltration and biological growth. At the very least, topsoil shall be thoroughly deep plowed into the subgrade in order to penetrate the compacted zone and promote aeration and the formation of macropores. Following this, the area should be disked prior to final grading of topsoil.
 - c. Construct check dams, if required.
 - d. Fine grade the vegetated channel. Accurate grading is crucial for vegetated channels. Even the smallest nonconformities may compromise flow conditions.
 - e. Seed, vegetate and install protective lining as per approved plans and according to final planting list. Plant the vegetated channel at a time of the year when successful establishment without irrigation is most likely. However, temporary irrigation may be needed in periods

- of little rain or drought. Vegetation should be established as soon as possible to prevent erosion and scour.
- f. Once all tributary areas are sufficiently stabilized, remove temporary erosion and sediment controls. It is very important that the vegetated channel be stabilized before receiving upland stormwater flow.
- g. Follow maintenance guidelines, as discussed below.
 - Note: If a vegetated channel is used for runoff conveyance during construction, it should be regraded and reseeded immediately after construction and stabilization has occurred. Any damaged areas should be fully restored to ensure future functionality of the vegetated channel.
- 16. Install vegetated channels for infiltration with check dams where specified on the E&SC Plans (Section 2 of the ESCGP-2 NOI). NOTE: This is a critical stage of PCSM Plan to be observed by a licensed professional or designee.
- 17. Rough grade the MLV pad. Equipment shall avoid excessive compaction and/or land disturbance. If excavation leads to substantial compaction of the subgrade (where an infiltration trench is not proposed), 18 inches shall be removed and replaced with a blend of topsoil and sand to promote infiltration and biological growth. At the very least, topsoil shall be thoroughly deep plowed into the subgrade in order to penetrate the compacted zone and promote aeration and the formation of macropores. Following this, the area should be disked prior to final grading.
- 18. Caution shall be observed when excavating above the recently installed gas pipeline. Prior to excavation over the gas pipeline, confirm the depth of cover over the pipe. Decompact the pipe trench backfill as described in the previous Step.
- 19. Place the stone and geotextile fabric within the MLV pad as specified on the E&SC Plans (Section 2 of the ESCGP-2 NOI). NOTE: This is a critical stage of PCSM Plan to be observed by a licensed professional or designee.
- 20. Immediately stabilize the Site with geotextile and gravel surfacing where indicated in the E&SC Plans.
- 21. Upon temporary cessation of an earth disturbance activity or any stage of an activity where the cessation of earth disturbance activities will exceed four days, the Site shall be immediately seeded, mulched, or otherwise protected from accelerated erosion and sedimentation pending future earth disturbance activities. For an earth disturbance activity or any stage of an activity to be considered temporarily stabilized, the disturbed areas shall

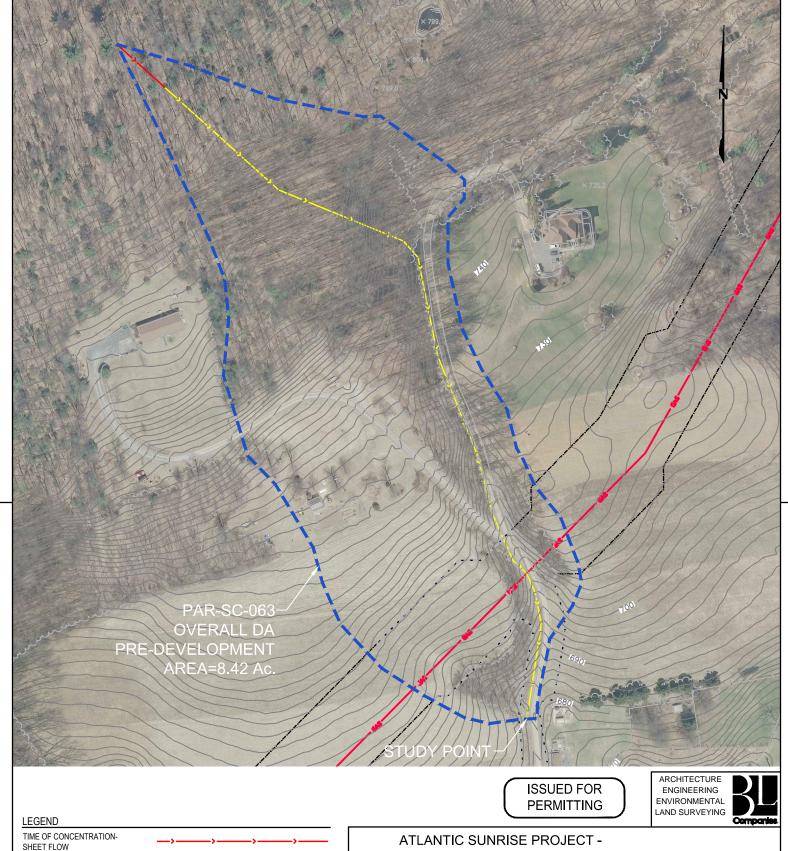
be covered with one of the following: a minimum uniform coverage of mulch and seed, with a density capable of resisting accelerated erosion and sedimentation, or an acceptable E&SC BMPs, which temporarily minimizes accelerated erosion and sedimentation. Temporary stabilization will not occur on active vehicular travel ways within the right of way. The on-site environmental inspector will log daily activity within the limits of disturbance and notify the Contractor of areas requiring temporary stabilization (i.e., areas where work has ceased for at least four days).

- 22. Immediately fertilize, seed and stabilize areas at finished grade. Maintain E&SC control devices until Site work is complete and uniform 70% perennial vegetative cover is established.
- 23. Upon completion of all earth disturbance activities and permanent stabilization of all disturbed areas, the Owner and/or Operators shall contact the local CCD for an inspection prior to the removal of the E&SC BMPs. Vegetated areas must achieve a minimum uniform 70% perennial cover over the entire disturbed area to be considered stabilized. Roadways and parking areas should have at least a clean subbase in place to be considered stabilized.
- 24. Upon local CCD and Transco approval of stabilization and re-vegetation, remove temporary E&SC BMPs and stabilize areas disturbed by removal including the perimeter sediment barrier and temporary diversions. Properly dispose/recycle E&SC BMPs. Remove orange construction fencing and security fence.
- 25. Complete access road ROW stabilization, including soil treatment, seed application and mulching in areas disturbed by E&SC BMP removal.
- 26. Upon completion of all earth disturbance activities, removal of all temporary BMPs, and permanent stabilization of all disturbed areas, the Owner and/or Operators shall contact the local CCD for a final inspection.


Permanent Access Road Summary Sheet

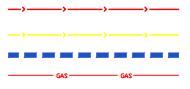
Access Road Number:	Road Number: AR-SC-063					
Watershed Name:	Swatara Creek, CWF, MF					
Act 167 Plan Name:	N/A		Date Adopted:	N/A		
Design Storm Frequency	2 year	Pre-construction	Post-construction	Net Change		
Rainfall Amount	3.12 inches	r re-construction	r ost-construction	Net Change		
Impervious area (acres)		0.362	0.514	0.152		
Volume of stormwater runoff (c		25,352	26,354	1,002		
Volume of stormwater runoff (c	f) with planned		23,132	(2,220)		
Pre- vs. Post-construction Pea		nmary				
Stormwater discharge rate for t	he design	Pre-construction	Post-construction	Net Change		
1) 1-Year/24-Hour		3.62	3.32	(0.30)		
2) 2-Year/24-Hour		5.81	5.75	(0.06)		
3) 5-Year/24-Hour		9.57	9.45	(0.12)		
4) 10-Year/24-Hour		13.72	13.51	(0.21)		
5) 25-Year/24-Hour		19.66	19.33	(0.33)		
6) 50-Year/24-Hour		25.92	25.52	(0.40)		
7) 100-Year/24-Hour		27.52	27.11	(0.41)		
				· · · · · ·		
Summary Description of Resto	ration BMPs - Perm	nanent Access Roa	ds			
			Volume of			
ВМР		Function	stormwater treated	Acres treated		
			(cf)			
Notural area concentation:		Infiltration/				
Natural area conservation:	orn into at	Recharge/	0	0		
Pre-construction drainage patte	eminiaci	Storage				
Access road design:		Infiltration/				
Ditches		Recharge/	900	0.11		
Culverts		Storage	Included in Ditches	Included in Ditches		
0		Infiltration/				
Stormwater energy dissipaters		Recharge/	0	0		
Riprap Aprons		Storage		-		
0.1. 1.1.1.01 5 1.1.1.1.01		Infiltration/				
Other: MLV Stone Pad Void Storage		Recharge/	2322	0.22		
	Storage					
		Cicrago				
Off-site Discharge Analysis:						
The point of interest (POI) for t	he access road sto	rmwater design is t	he downstream poin	t where the access		
road watershed currently disch						
or peak rate of runoff at the POI. Therefore, the existing drainage pattern will be unchanged and erosion,						

or peak rate of runoff at the POI. Therefore, the existing drainage pattern will be unchanged and erosion, damage, or nuisance to off-site properties is not anticipated to be caused by the Project improvements.


Loading Ratio: Maximum Impervious Loading Ratio		s	wale		MLV Pad		
		2.6 :1	(5:1 Max)		1.3 :1	(5:1 Max)	
Maximum Total Loading Ratio		6.3 :1	(8:1 Max)		2.8 :1	(8:1 Max)	
Supporting Areas	Swale		MLV Pad	Unit			
Impervious Drainage Area	0.04		0.11	Acres			
Infiltration Area	0.02		0.08	Acres			
Total Drainage Area	0.11		0.22	Acres			

J.2 Location Map

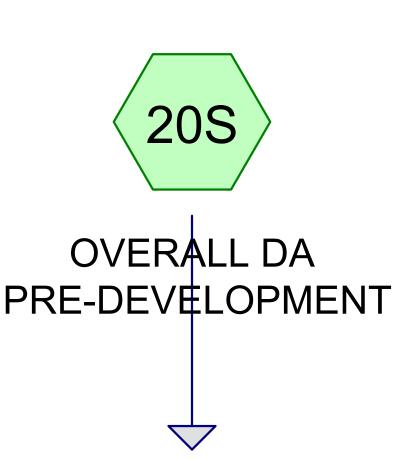
J.3 Predevelopment Calculations a. Predevelopment Drainage Area Map b. 1-Year Rainfall Event


- c. 2-Year Rainfall Event
- d. 5-Year Rainfall Event
- e. 10-Year Rainfall Event
- f. 25-Year Rainfall Event
- g. 50-year Rainfall Event h. 100-Year Rainfall Event

TIME OF CONCENTRATION-SHALLOW CONCENTRATED FLOW

DRAINAGE AREA

PROPOSED GAS PIPELINE



CENTRAL PENN LINE SOUTH

PROPOSED 42" NATURAL GAS PIPELINE ACCESS ROAD DRAINAGE AREA MAP AR-SC-063 PRE
PINE GROVE TOWNSHIP
SCHUYLKILL COUNTY, PENNSYLVANIA

L													
	١٥.	DATE	BY	REVISION DESCRIPTION	W.O. NO.	CHK.	APP.	DRAWN BY:	OLC	DATE:	10/26/15	ISSUED FOR BID:	SCALE: 1" = 150'
Γ								CHECKED BY:	BJP	DATE:	10/26/15	ISSUED FOR CONSTRUCTION:	
								APPROVED BY:	BJP	DATE:	10/26/15	DRAWING NUMBER: AR-SC-063 PRE	
1								WO:				AIX 30 000	

Existing Conditions

Printed 8/22/2016 Page 2

Area Listing (selected nodes)

Are	ea CN	Description
(acre	s)	(subcatchment-numbers)
0.36	89	Gravel roads, HSG C (20S)
3.75	56 71	Meadow, non-grazed, HSG C (20S)
4.29	70	Woods, Good, HSG C (20S)
8.4	16 71	TOTAL AREA

Type II 24-hr 1-Year Rainfall=2.64"
Printed 8/22/2016

AR-SC-063

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 3

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment20S: OVERALL DA Runoff Area=366,615 sf 0.00% Impervious Runoff Depth=0.56"

Flow Length=1,347' Tc=26.6 min CN=71 Runoff=3.62 cfs 0.395 af

Link 21L: Existing ConditionsInflow=3.62 cfs 0.395 af
Primary=3.62 cfs 0.395 af

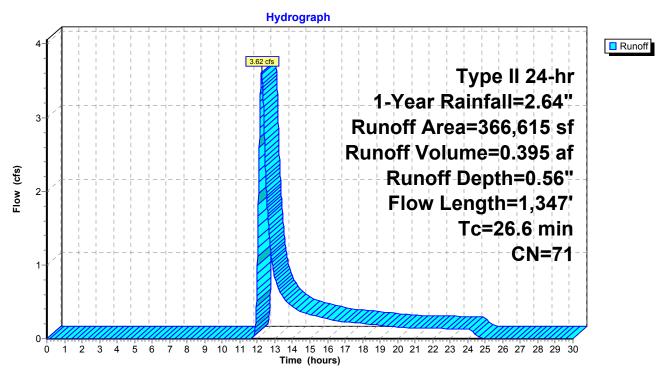
Total Runoff Area = 8.416 ac Runoff Volume = 0.395 af Average Runoff Depth = 0.56" 100.00% Pervious = 8.416 ac 0.00% Impervious = 0.000 ac

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 4

Summary for Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

Runoff = 3.62 cfs @ 12.24 hrs, Volume= 0.395 af, Depth= 0.56"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.64"

Area (sf)		CN D	escription					
		0	98 F	Paved parking, HSG C				
	15,786		89 G	Gravel roads, HSG C				
*	* 0		98 C	Crushed Stone Pad, HSG C				
	187,199			Woods, Good, HSG C				
	163,630 7			Meadow, non-grazed, HSG C				
	366,615			Weighted Average				
	366,615		1	100.00% Pervious Area				
	_					—		
,	Tc	Length	Slope	Velocity	Capacity	Description		
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	18.2	100	0.1250	0.09		Sheet Flow, Sheet		
						Woods: Dense underbrush n= 0.800 P2= 3.12"		
	3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated		
	0.0	400	0.0000	0.00		Woodland Kv= 5.0 fps		
	8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated		
	3.9	465	0.0800	1.98		Woodland Kv= 5.0 fps Shallow Concentrated Flow Shallow Concentrated		
	3.9	400	0.0000	1.90		Shallow Concentrated Flow, Shallow Concentrated Short Grass Pasture Kv= 7.0 fps		
	0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated		
	0.1	31	0.0000	4.55		Unpaved Kv= 16.1 fps		
	0.4	277	0.0900	11.35	79.45	•		
	0.4	211	0.0000	11.00	7 0.40	Area= 7.0 sf Perim= 16.7' r= 0.42'		
						n= 0.022 Earth, clean & straight		
-	26.6	1,347	Total					
	_0.0	1,017	· Otal					

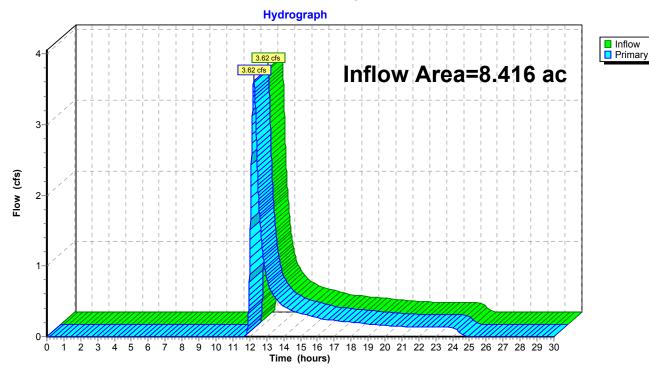
HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 5

Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

Page 6

Summary for Link 21L: Existing Conditions


Inflow Area = 8.416 ac, 0.00% Impervious, Inflow Depth = 0.56" for 1-Year event

Inflow = 3.62 cfs @ 12.24 hrs, Volume= 0.395 af

Primary = 3.62 cfs @ 12.24 hrs, Volume= 0.395 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 21L: Existing Conditions

Type II 24-hr 2-Year Rainfall=3.12"
Printed 8/22/2016

AR-SC-063

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment20S: OVERALL DA Runoff Area=366,615 sf 0.00% Impervious Runoff Depth=0.83"

Flow Length=1,347' Tc=26.6 min CN=71 Runoff=5.81 cfs 0.582 af

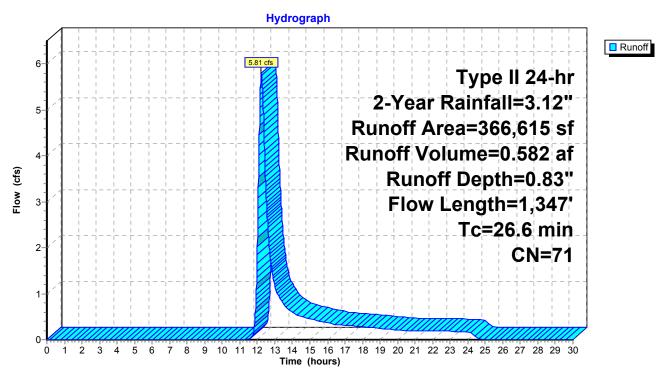
Link 21L: Existing ConditionsInflow=5.81 cfs 0.582 af Primary=5.81 cfs 0.582 af

Total Runoff Area = 8.416 ac Runoff Volume = 0.582 af Average Runoff Depth = 0.83" 100.00% Pervious = 8.416 ac 0.00% Impervious = 0.000 ac

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 8

Summary for Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT


Runoff = 5.81 cfs @ 12.23 hrs, Volume= 0.582 af, Depth= 0.83"

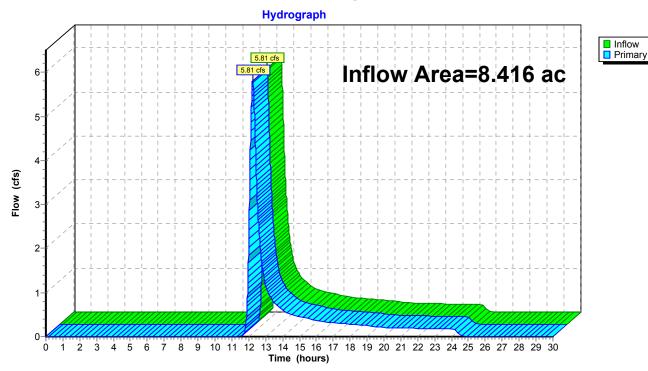
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.12"

Area (sf)		CN D	escription				
	0			ing, HSG C			
	15,786	89 G	Gravel road	ls, HSG C			
*	0	98 C	Crushed Stone Pad, HSG C				
1	187,199		Woods, Good, HSG C				
1	63,630	71 N	1eadow, no	on-grazed,	HSG C		
3	366,615		Weighted Average				
3	366,615		100.00% Pervious Area				
_							
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
18.2	100	0.1250	0.09		Sheet Flow, Sheet		
					Woods: Dense underbrush n= 0.800 P2= 3.12"		
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated		
					Woodland Kv= 5.0 fps		
0.8	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated		
	405		4.00		Woodland Kv= 5.0 fps		
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated		
0.4	0.4	0.0000	4 55		Short Grass Pasture Kv= 7.0 fps		
0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated		
0.4	277	0.0000	44.05	70.45	Unpaved Kv= 16.1 fps		
0.4	277	0.0900	11.35	79.45	•		
					Area= 7.0 sf Perim= 16.7' r= 0.42'		
	4.047	T-4-1			n= 0.022 Earth, clean & straight		
26.6	1,347	Total					

Page 9

Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

Summary for Link 21L: Existing Conditions


Inflow Area = 8.416 ac, 0.00% Impervious, Inflow Depth = 0.83" for 2-Year event

Inflow = 5.81 cfs @ 12.23 hrs, Volume= 0.582 af

Primary = 5.81 cfs @ 12.23 hrs, Volume= 0.582 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 21L: Existing Conditions

Type II 24-hr 5-Year Rainfall=3.84"
Printed 8/22/2016

AR-SC-063

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 11

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

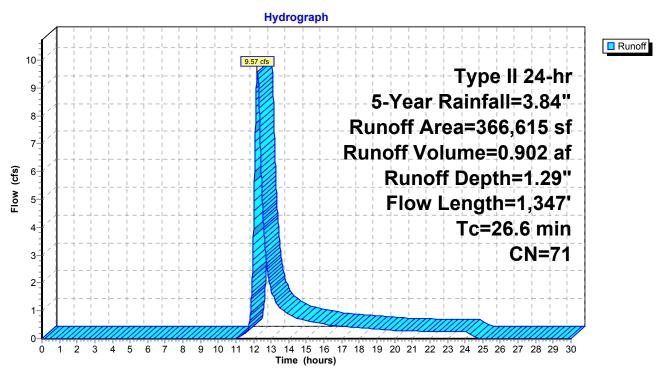
Subcatchment20S: OVERALL DA Runoff Area=366,615 sf 0.00% Impervious Runoff Depth=1.29"

Flow Length=1,347' Tc=26.6 min CN=71 Runoff=9.57 cfs 0.902 af

Link 21L: Existing ConditionsInflow=9.57 cfs 0.902 af
Primary=9.57 cfs 0.902 af

Total Runoff Area = 8.416 ac Runoff Volume = 0.902 af Average Runoff Depth = 1.29" 100.00% Pervious = 8.416 ac 0.00% Impervious = 0.000 ac

Page 12


Summary for Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

Runoff = 9.57 cfs @ 12.21 hrs, Volume= 0.902 af, Depth= 1.29"

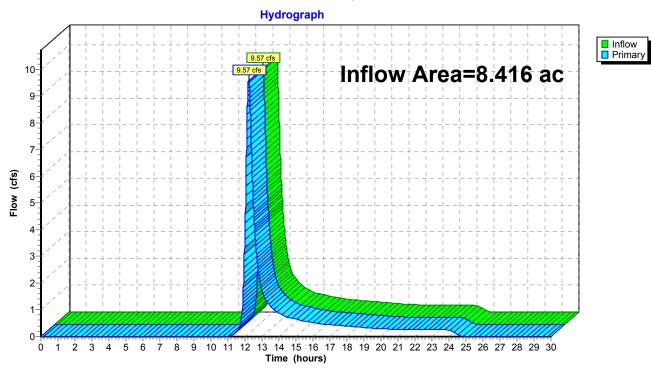
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.84"

_	Α	rea (sf)	CN D	escription					
		0 98 Paved parking, HSG C							
	15,786 89 Gravel roads, HSG C								
*		0	98 C	rushed St	one Pad, H	SG C			
		87,199	70 V	Voods, Go	od, HSG C				
	1	63,630	71 N	leadow, no	on-grazed,	HSG C			
	3	66,615	71 V	Veighted A	verage				
	3	66,615	1	00.00% Pe	ervious Are	a			
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	18.2	100	0.1250	0.09		Sheet Flow, Sheet			
						Woods: Dense underbrush n= 0.800 P2= 3.12"			
	3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated			
	0.0	400	0.0000	0.00		Woodland Kv= 5.0 fps			
	8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated			
	2.0	465	0.0000	4.00		Woodland Kv= 5.0 fps			
	3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated			
	0.1	31	0.0800	4.55		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Shallow Concentrated			
	0.1	31	0.0000	4.55		Unpaved Kv= 16.1 fps			
	0.4	277	0.0900	11.35	79.45	·			
	0.4	211	0.0000	11.00	7 3.43	Area= 7.0 sf Perim= 16.7' r= 0.42'			
						n= 0.022 Earth, clean & straight			
_	26.6	1,347	Total						

Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

<u>Page 14</u>

Summary for Link 21L: Existing Conditions


Inflow Area = 8.416 ac, 0.00% Impervious, Inflow Depth = 1.29" for 5-Year event

Inflow = 9.57 cfs @ 12.21 hrs, Volume= 0.902 af

Primary = 9.57 cfs @ 12.21 hrs, Volume= 0.902 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 21L: Existing Conditions

Type II 24-hr 10-Year Rainfall=4.56"

AR-SC-063

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Printed 8/22/2016 Page 15

ı agc

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

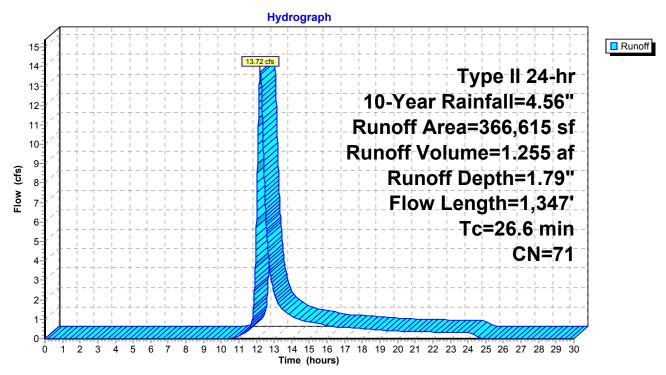
Subcatchment20S: OVERALL DA Runoff Area=366,615 sf 0.00% Impervious Runoff Depth=1.79"

Flow Length=1,347' Tc=26.6 min CN=71 Runoff=13.72 cfs 1.255 af

Link 21L: Existing ConditionsInflow=13.72 cfs 1.255 af
Primary=13.72 cfs 1.255 af

Total Runoff Area = 8.416 ac Runoff Volume = 1.255 af Average Runoff Depth = 1.79" 100.00% Pervious = 8.416 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT


Runoff 13.72 cfs @ 12.21 hrs, Volume= 1.255 af, Depth= 1.79"

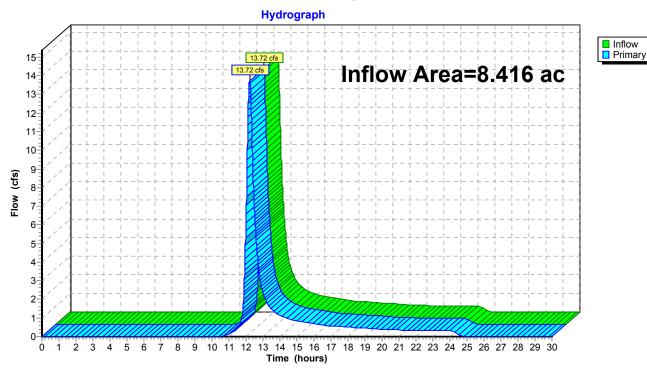
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.56"

_	Α	rea (sf)	CN D	escription					
		0 98 Paved parking, HSG C							
	15,786 89 Gravel roads, HSG C								
*		0	98 C	rushed St	one Pad, H	SG C			
		87,199	70 V	Voods, Go	od, HSG C				
	1	63,630	71 N	leadow, no	on-grazed,	HSG C			
	3	66,615	71 V	Veighted A	verage				
	3	66,615	1	00.00% Pe	ervious Are	a			
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	18.2	100	0.1250	0.09		Sheet Flow, Sheet			
						Woods: Dense underbrush n= 0.800 P2= 3.12"			
	3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated			
	0.0	400	0.0000	0.00		Woodland Kv= 5.0 fps			
	8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated			
	2.0	465	0.0000	4.00		Woodland Kv= 5.0 fps			
	3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated			
	0.1	31	0.0800	4.55		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, Shallow Concentrated			
	0.1	31	0.0000	4.55		Unpaved Kv= 16.1 fps			
	0.4	277	0.0900	11.35	79.45	·			
	0.4	211	0.0000	11.00	7 3.43	Area= 7.0 sf Perim= 16.7' r= 0.42'			
						n= 0.022 Earth, clean & straight			
_	26.6	1,347	Total						

Page 17

Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

Summary for Link 21L: Existing Conditions


Inflow Area = 8.416 ac, 0.00% Impervious, Inflow Depth = 1.79" for 10-Year event

Inflow = 13.72 cfs @ 12.21 hrs, Volume= 1.255 af

Primary = 13.72 cfs @ 12.21 hrs, Volume= 1.255 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 21L: Existing Conditions

Type II 24-hr 25-Year Rainfall=5.52"

AR-SC-063

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Printed 8/22/2016 Page 19

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment20S: OVERALL DA Runoff Area=366,615 sf 0.00% Impervious Runoff Depth=2.52"

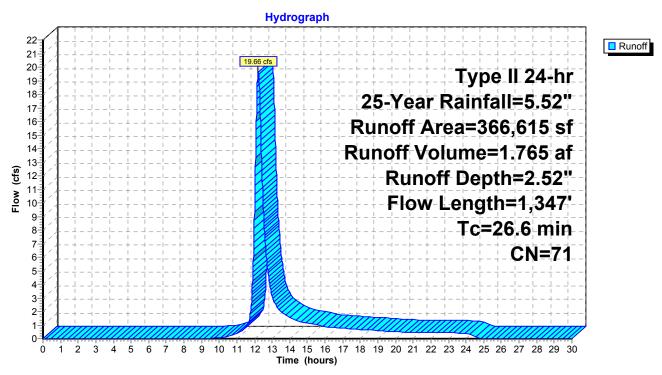
Flow Length=1,347' Tc=26.6 min CN=71 Runoff=19.66 cfs 1.765 af

Link 21L: Existing ConditionsInflow=19.66 cfs 1.765 af
Primary=19.66 cfs 1.765 af

Total Runoff Area = 8.416 ac Runoff Volume = 1.765 af Average Runoff Depth = 2.52" 100.00% Pervious = 8.416 ac 0.00% Impervious = 0.000 ac

Printed 8/22/2016 Page 20

Summary for Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT


Runoff = 19.66 cfs @ 12.21 hrs, Volume= 1.765 af, Depth= 2.52"

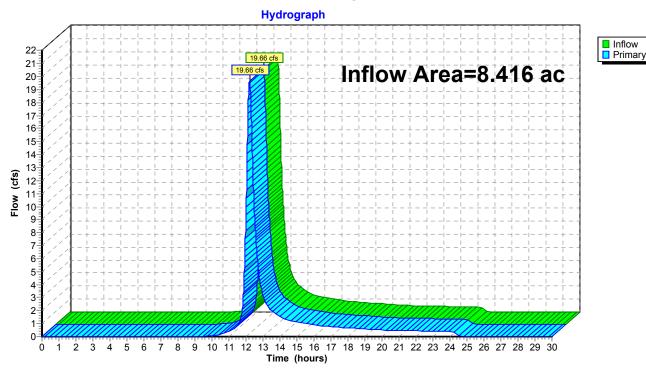
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.52"

	Α	rea (sf)	CN E	escription						
		0	98 Paved parking, HSG C							
		15,786	89 G							
*		0	98 C	crushed St	one Pad, H	ISG C				
		87,199			od, HSG C					
	1	63,630	71 N	1eadow, no	on-grazed,	HSG C				
	3	66,615	71 V	Veighted A	verage					
	3	66,615	1	00.00% Pe	ervious Are	a				
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	18.2	100	0.1250	0.09		Sheet Flow, Sheet				
						Woods: Dense underbrush n= 0.800 P2= 3.12"				
	3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated				
		400		0.00		Woodland Kv= 5.0 fps				
	8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated				
	0.0	405	0.0000	4.00		Woodland Kv= 5.0 fps				
	3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated				
	0.1	21	0.0000	1 E E		Short Grass Pasture Kv= 7.0 fps				
	0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated Unpaved Kv= 16.1 fps				
	0.4	277	0.0900	11.35	79.45	•				
	0.4	211	0.0900	11.33	79.45	Area= 7.0 sf Perim= 16.7' r= 0.42'				
						n= 0.022 Earth, clean & straight				
	26.6	1 2/17	Total			11- 0.022 Earth, Glean & Straight				
	20.0	1,347	Total							

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

Summary for Link 21L: Existing Conditions


Inflow Area = 8.416 ac, 0.00% Impervious, Inflow Depth = 2.52" for 25-Year event

Inflow = 19.66 cfs @ 12.21 hrs, Volume= 1.765 af

Primary = 19.66 cfs @ 12.21 hrs, Volume= 1.765 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 21L: Existing Conditions

Type II 24-hr 50-Year Rainfall=6.48"

AR-SC-063

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 23

Printed 8/22/2016

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment20S: OVERALL DA Runoff Area=366,615 sf 0.00% Impervious Runoff Depth=3.29"

Flow Length=1,347' Tc=26.6 min CN=71 Runoff=25.92 cfs 2.308 af

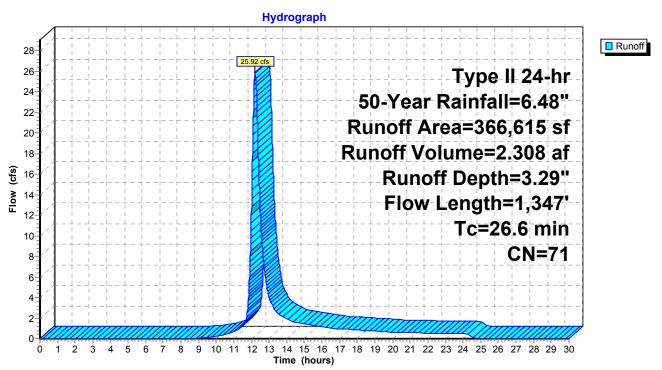
Link 21L: Existing Conditions

Inflow=25.92 cfs 2.308 af
Primary=25.92 cfs 2.308 af

Total Runoff Area = 8.416 ac Runoff Volume = 2.308 af Average Runoff Depth = 3.29" 100.00% Pervious = 8.416 ac 0.00% Impervious = 0.000 ac

Page 24

Summary for Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT


Runoff = 25.92 cfs @ 12.21 hrs, Volume= 2.308 af, Depth= 3.29"

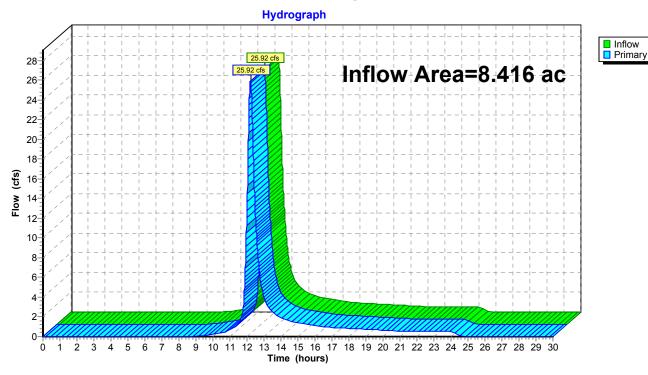
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.48"

A	rea (sf)	CN D	escription						
	0		Paved parking, HSG C						
	15,786	89 G	Gravel roads, HSG C						
*	0	98 C	rushed St	one Pad, H	SG C				
1	87,199	70 V	Voods, Go	od, HSG C					
1	63,630	71 N	1eadow, no	on-grazed,	HSG C				
3	66,615	71 V	Veighted A	verage					
3	66,615	1	00.00% Pe	ervious Are	a				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
18.2	100	0.1250	0.09		Sheet Flow, Sheet				
					Woods: Dense underbrush n= 0.800 P2= 3.12"				
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated				
					Woodland Kv= 5.0 fps				
0.8	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated				
					Woodland Kv= 5.0 fps				
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated				
					Short Grass Pasture Kv= 7.0 fps				
0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated				
					Unpaved Kv= 16.1 fps				
0.4	277	0.0900	11.35	79.45	•				
					Area= 7.0 sf Perim= 16.7' r= 0.42'				
					n= 0.022 Earth, clean & straight				
26.6	1,347	Total							

Page 25

Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

Summary for Link 21L: Existing Conditions


Inflow Area = 8.416 ac, 0.00% Impervious, Inflow Depth = 3.29" for 50-Year event

Inflow = 25.92 cfs @ 12.21 hrs, Volume= 2.308 af

Primary = 25.92 cfs @ 12.21 hrs, Volume= 2.308 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 21L: Existing Conditions

Type II 24-hr 100-Year Rainfall=6.72" Printed 8/22/2016

AR-SC-063

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 27

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment20S: OVERALL DA Runoff Area=366,615 sf 0.00% Impervious Runoff Depth=3.49"

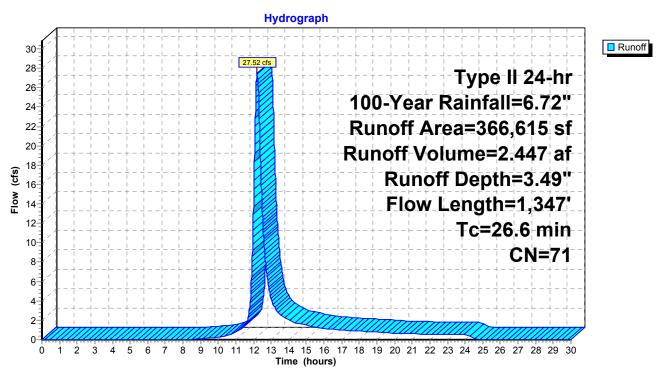
Flow Length=1,347' Tc=26.6 min CN=71 Runoff=27.52 cfs 2.447 af

Link 21L: Existing Conditions Inflow=27.52 cfs 2.447 af Primary=27.52 cfs 2.447 af

Total Runoff Area = 8.416 ac Runoff Volume = 2.447 af Average Runoff Depth = 3.49" 100.00% Pervious = 8.416 ac 0.00% Impervious = 0.000 ac

Page 28

Summary for Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT


Runoff = 27.52 cfs @ 12.21 hrs, Volume= 2.447 af, Depth= 3.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=6.72"

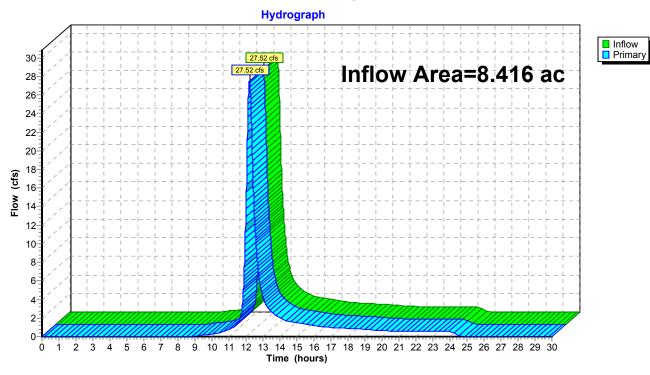
A	rea (sf)	CN D	escription						
	0	98 F	Paved parking, HSG C						
	15,786	89 G	Gravel roads, HSG C						
*	0	98 C	rushed St	one Pad, H	SG C				
	87,199			od, HSG C					
1	63,630	71 N	1eadow, no	on-grazed,	HSG C				
3	366,615	71 V	Veighted A	verage					
3	366,615	1	00.00% Pe	ervious Are	a				
_									
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
18.2	100	0.1250	0.09		Sheet Flow, Sheet				
					Woods: Dense underbrush n= 0.800 P2= 3.12"				
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated				
2.0	400		0.00		Woodland Kv= 5.0 fps				
0.8	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated				
2.0	405	0.0000	4.00		Woodland Kv= 5.0 fps				
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated				
0.1	31	0.0800	4.55		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow Shallow Concentrated				
0.1	31	0.0000	4.55		Shallow Concentrated Flow, Shallow Concentrated Unpaved Kv= 16.1 fps				
0.4	277	0.0900	11.35	79.45	·				
0.4	211	0.0900	11.55	19.45	Area= 7.0 sf Perim= 16.7' r= 0.42'				
					n= 0.022 Earth, clean & straight				
26.6	1,347	Total			11- 0.022 Laitti, olcan a straight				
20.0	1,347	Total							

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Subcatchment 20S: OVERALL DA PRE-DEVELOPMENT

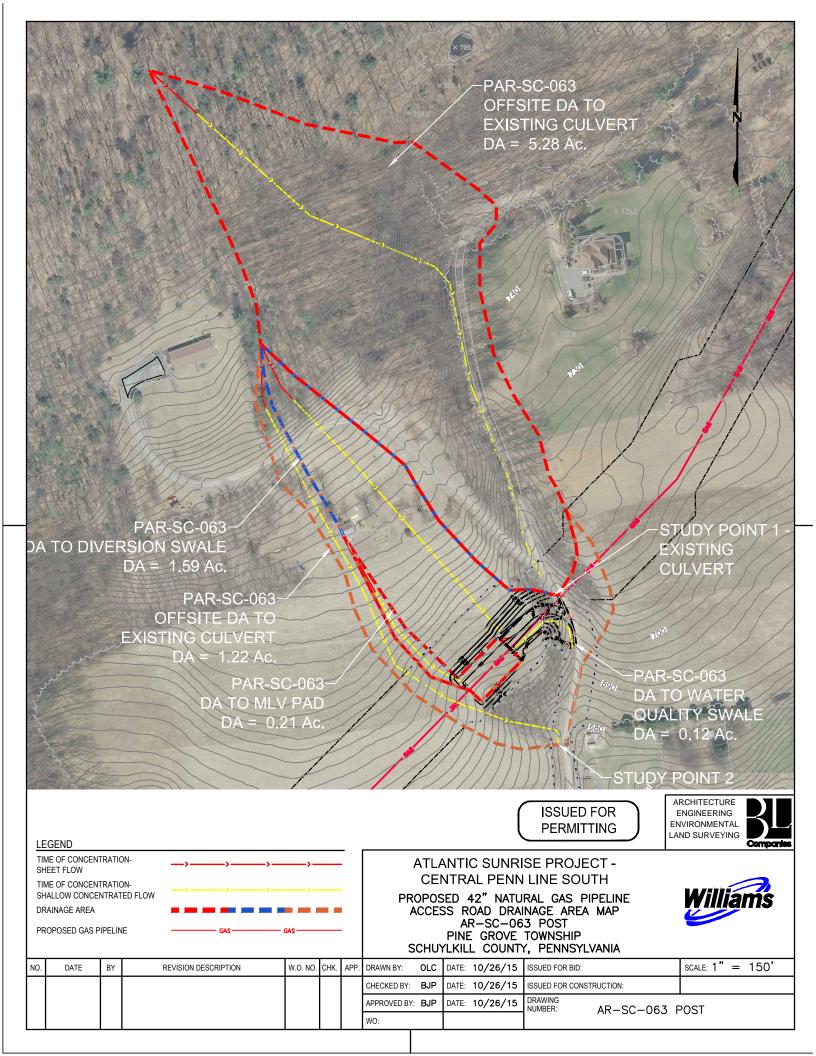
Page 30

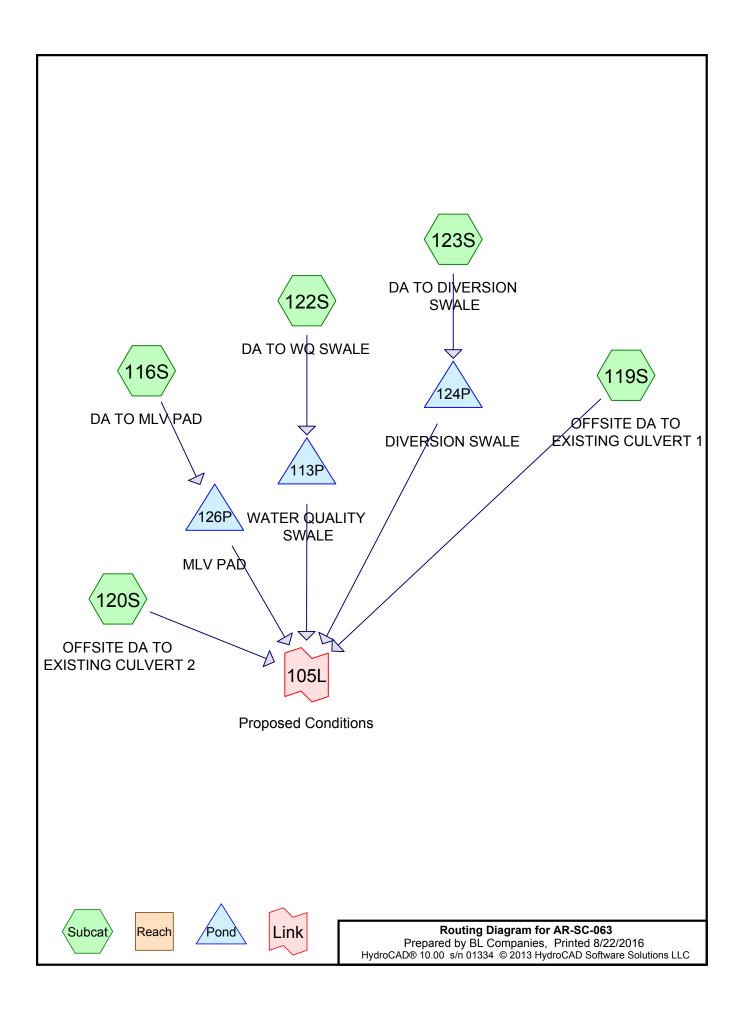
Summary for Link 21L: Existing Conditions


Inflow Area = 8.416 ac, 0.00% Impervious, Inflow Depth = 3.49" for 100-Year event

Inflow = 27.52 cfs @ 12.21 hrs, Volume= 2.447 af

Primary = 27.52 cfs @ 12.21 hrs, Volume= 2.447 af, Atten= 0%, Lag= 0.0 min


Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs


Link 21L: Existing Conditions

J.4 Post Development Calculations a. Post Development Drainage Area Map b. 1-Year Rainfall Event

- c. 2-Year Rainfall Event
- d. 5-Year Rainfall Event
- e. 10-Year Rainfall Event
- f. 25-Year Rainfall Event
- g. 50-year Rainfall Event h. 100-Year Rainfall Event

Printed 8/22/2016

Page 2

Area Listing (selected nodes)

Д	rea C	N	Description
(acı	res)		(subcatchment-numbers)
0.	107 9	98	Crushed Stone Pad, HSG C (116S)
0.	407 8	39	Gravel roads, HSG C (119S, 120S, 122S, 123S)
3.	636 7	71	Meadow, non-grazed, HSG C (116S, 119S, 120S, 122S, 123S)
4.	266 7	70	Woods, Good, HSG C (119S, 120S, 122S, 123S)
8.	416 7	72	TOTAL AREA

Printed 8/22/2016

Page 3

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment116S: DA TO MLV PAD Runoff Area=9,480 sf 49.37% Impervious Runoff Depth=1.23"

Flow Length=299' Tc=10.0 min CN=84 Runoff=0.41 cfs 0.022 af

Subcatchment119S: OFFSITE DA TO Runoff Area=229,892 sf 0.00% Impervious Runoff Depth=0.56"

Flow Length=1,070' Tc=26.2 min CN=71 Runoff=2.29 cfs 0.247 af

Subcatchment120S: OFFSITE DA TO Runoff Area=52,954 sf 0.00% Impervious Runoff Depth=0.60"

Flow Length=851' Tc=27.1 min CN=72 Runoff=0.57 cfs 0.061 af

Subcatchment122S: DA TO WQ SWALE Runoff Area=5,101 sf 0.00% Impervious Runoff Depth=0.88"

Flow Length=21' Slope=0.0200 '/' Tc=5.0 min CN=78 Runoff=0.19 cfs 0.009 af

Subcatchment123S: DA TO DIVERSION Runoff Area=69,189 sf 0.00% Impervious Runoff Depth=0.56"

Flow Length=595' Tc=23.3 min CN=71 Runoff=0.75 cfs 0.074 af

Pond 113P: WATER QUALITY SWALE Peak Elev=698.42' Storage=374 cf Inflow=0.19 cfs 0.009 af

Outflow=0.00 cfs 0.000 af

Pond 124P: DIVERSION SWALE Peak Elev=699.09' Storage=706 cf Inflow=0.75 cfs 0.074 af

Outflow=0.63 cfs 0.058 af

Pond 126P: MLV PAD Peak Elev=704.36' Storage=968 cf Inflow=0.41 cfs 0.022 af

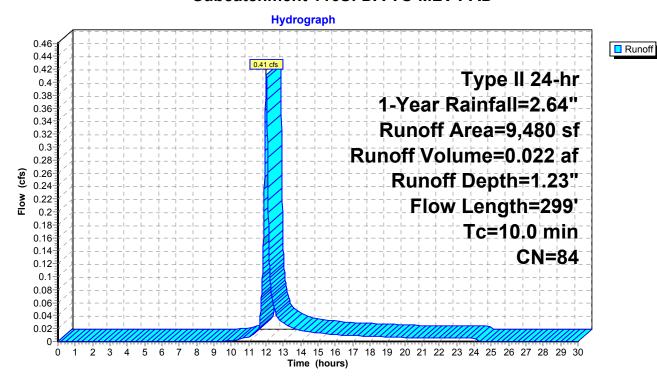
Outflow=0.00 cfs 0.000 af

Link 105L: Proposed Conditions Inflow=3.32 cfs 0.367 af

Primary=3.32 cfs 0.367 af

Total Runoff Area = 8.416 ac Runoff Volume = 0.414 af Average Runoff Depth = 0.59" 98.72% Pervious = 8.309 ac 1.28% Impervious = 0.107 ac

Page 4


Summary for Subcatchment 116S: DA TO MLV PAD

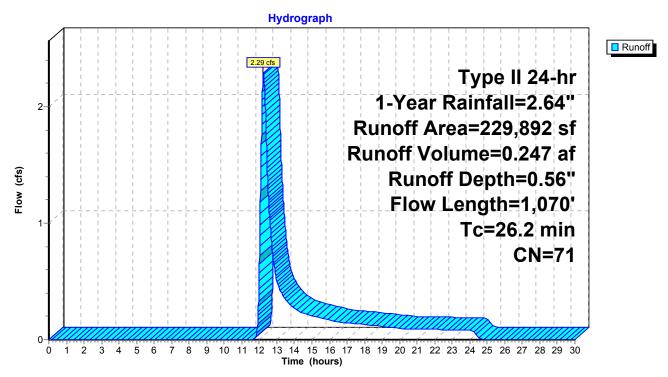
Runoff = 0.41 cfs @ 12.02 hrs, Volume= 0.022 af, Depth= 1.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.64"

	Α	rea (sf)	CN E	Description							
		0	98 F	Paved parking, HSG C							
		0	89 (Gravel roads, HSG C							
*		4,680	98 (Crushed Stone Pad, HSG C							
		0	70 V	Voods, Go	od, HSG C						
		4,800	71 N	/leadow, n	on-grazed,	HSG C					
		9,480	84 V	Veighted A	verage						
		4,800	5	0.63% Pe	rvious Area	l .					
		4,680	4	9.37% Imp	pervious Ar	ea					
	Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	8.8	100	0.0700	0.19		Sheet Flow, Sheet					
			Grass: Dense n= 0.240 P2= 3.12"								
	1.2	199	0.1500	2.71		Shallow Concentrated Flow, Shallow Concentrated					
						Short Grass Pasture Kv= 7.0 fps					
	10.0	299	Total								

Subcatchment 116S: DA TO MLV PAD

Page 5


Summary for Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Runoff = 2.29 cfs @ 12.23 hrs, Volume= 0.247 af, Depth= 0.56"

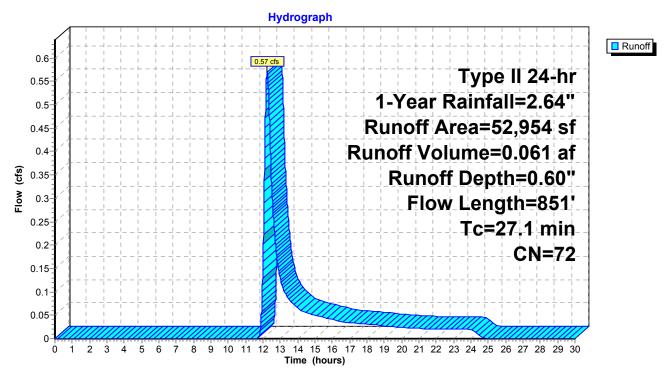
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.64"

A	rea (sf)	CN E	Description				
	0	98 Paved parking, HSG C					
	11,983	89 C	Gravel road	ls, HSG C			
*	0	98 C	Crushed St	one Pad, H	ISG C		
1	65,033	70 V	Voods, Go	od, HSG C			
	52,876	71 N	/leadow, no	on-grazed,	HSG C		
2	29,892	71 V	Veighted A	verage			
2	29,892	1	00.00% Pe	ervious Are	a		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
18.2	100	0.1250	0.09		Sheet Flow, Sheet		
					Woods: Dense underbrush n= 0.800 P2= 3.12"		
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated		
					Woodland Kv= 5.0 fps		
8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated		
					Woodland Kv= 5.0 fps		
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated		
0.4	0.4				Short Grass Pasture Kv= 7.0 fps		
0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated		
					Unpaved Kv= 16.1 fps		
26.2	1,070	Total					

Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Page 7

Summary for Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

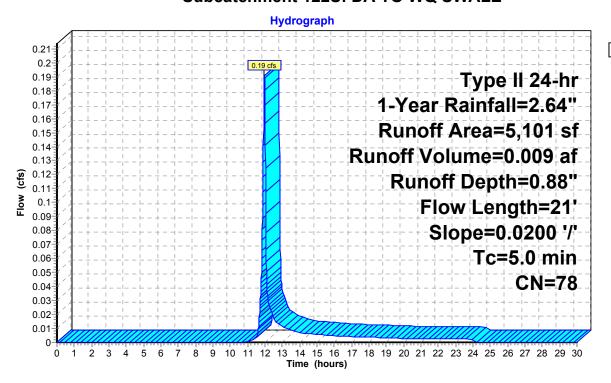

Runoff = 0.57 cfs @ 12.25 hrs, Volume= 0.061 af, Depth= 0.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.64"

	Α	rea (sf)	CN I	Description					
	0 98 Paved parking, HSG C								
2,897 89 Gravel roads, HSG C									
*		0	98 (Crushed St	one Pad, H	SG C			
		13,655	70 ١	Woods, Go	od. HSG C				
		36,402		Meadow, non-grazed, HSG C					
_		52,954		Weighted A					
		52,954		100.00% Pe		a			
		JZ,3J T		100.00 /0 1 6	ei vious Ai c	a			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	•	(cfs)	2 dod i piloti			
_	21.7	100	0.0800		(313)	Sheet Flow, Sheet			
	21.7	100	0.0000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.12"			
	0.4	47	0.1700	2.06		Shallow Concentrated Flow, Shallow Concentrated			
	0.4	71	0.1700	2.00		Woodland Kv= 5.0 fps			
	3.9	564	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated			
	0.0	JU -1	0.1200	2.72		Short Grass Pasture Kv= 7.0 fps			
	0.8	101	0.1800	2.12		Shallow Concentrated Flow, Shallow Concentrated			
	0.6	101	0.1000	2.12		Woodland Kv= 5.0 fps			
	0.3	39	0.1000	2.21		Shallow Concentrated Flow, Shallow Concentrated			
	0.3	39	0.1000	2.21		·			
_						Short Grass Pasture Kv= 7.0 fps			
	27.1	851	Total						

Page 8

Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

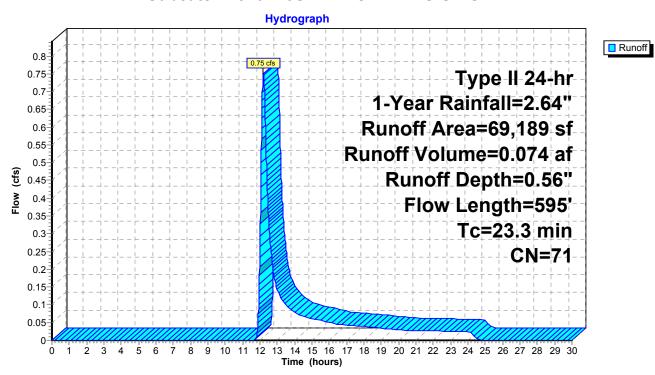

Summary for Subcatchment 122S: DA TO WQ SWALE

Runoff = 0.19 cfs @ 11.97 hrs, Volume= 0.009 af, Depth= 0.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.64"

_	Aı	rea (sf)	CN	Description						
		0	98	Paved parking, HSG C						
		1,962	89	Gravel road	ls, HSG C					
*		0	98	Crushed St	one Pad, H	ISG C				
		96	70	Woods, Good, HSG C						
_		3,043	71	Meadow, no	on-grazed,	HSG C				
		5,101	78	Weighted Average						
		5,101		100.00% Pe	ervious Are	a				
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
	0.4	21	0.0200	0.99		Sheet Flow, Sheet Smooth surfaces n= 0.011	P2= 3.12"			
	0.4	21	Total,	Increased t	o minimum	Tc = 5.0 min				

Subcatchment 122S: DA TO WQ SWALE


Summary for Subcatchment 123S: DA TO DIVERSION SWALE

Runoff = 0.75 cfs @ 12.19 hrs, Volume= 0.074 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.64"

Area (sf)		CN Description				
		0	98 F	Paved parking, HSG C		
	906		89 G	Gravel roads, HSG C		
* 0 98 Crushed Stone Pad, HSG C					ISG C	
7,030 70 Woods, Good, HSG C						
61,253 71 Meadow, non-grazed, HSG C					HSG C	
	69,189 71 Weighted Average					
	69,189		100.00% Pervious Area			a
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	19.9	100	0.1000	0.08		Sheet Flow, Sheet
						Woods: Dense underbrush n= 0.800 P2= 3.12"
	0.3	42	0.2600	2.55		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.1	453	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
						Short Grass Pasture Kv= 7.0 fps
	23.3	595	Total			

Subcatchment 123S: DA TO DIVERSION SWALE

Page 11

Summary for Pond 113P: WATER QUALITY SWALE

Inflow Area = 0.117 ac, 0.00% Impervious, Inflow Depth = 0.88" for 1-Year event

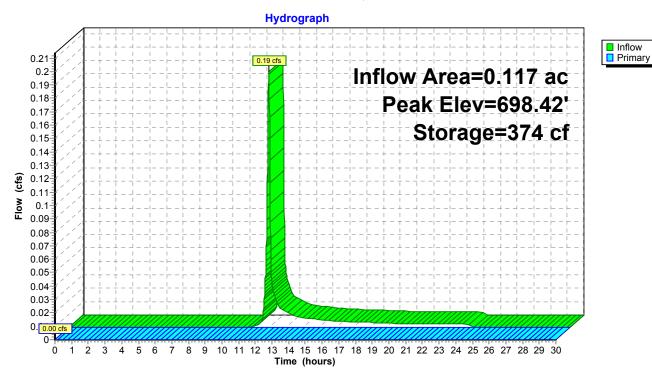
Inflow = 0.19 cfs @ 11.97 hrs, Volume= 0.009 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 698.42' @ 24.29 hrs Surf.Area= 0 sf Storage= 374 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)


Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Sto	age	Storage Description
#1	698.00	' 90	11 cf	Custom Stage DataListed below
Elevation (fee		ım.Store bic-feet)		
698.0	00	0		
698.5	50	450		
699.0	00	900		
699.	50	901		
Device	Routing	Invert	Outl	let Devices
#1	Primary	699.00'	12.0)' long x 3.0' breadth Broad-Crested Rectangular Weir
			Hea	id (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4.50
			Coe	f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72	2 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=698.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 113P: WATER QUALITY SWALE

Printed 8/22/2016 Page 13

Summary for Pond 124P: DIVERSION SWALE

Inflow Area = 1.588 ac, 0.00% Impervious, Inflow Depth = 0.56" for 1-Year event

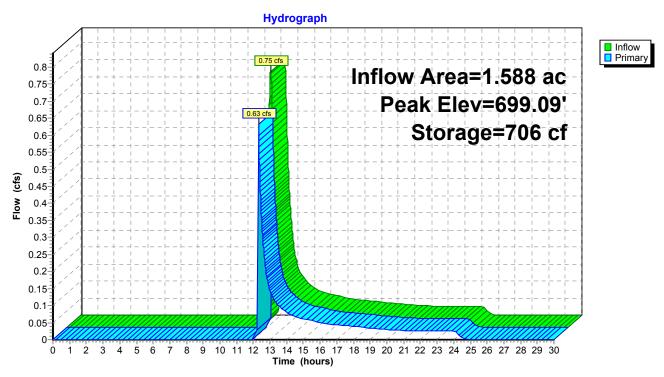
Inflow = 0.75 cfs @ 12.19 hrs, Volume= 0.074 af

Outflow = 0.63 cfs @ 12.31 hrs, Volume= 0.058 af, Atten= 16%, Lag= 7.0 min

Primary = 0.63 cfs @ 12.31 hrs, Volume= 0.058 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 699.09' @ 12.31 hrs Surf.Area= 0 sf Storage= 706 cf

Plug-Flow detention time= 145.1 min calculated for 0.058 af (78% of inflow)


Center-of-Mass det. time= 48.8 min (949.6 - 900.8)

Volume	Invert	Avail.Sto	age	Storage Description
#1	698.00'	70	7 cf	Custom Stage DataListed below
Elevatio (fee 698.0 698.5 699.0	t) (cubi 00 50 00	n.Store ic-feet) 0 353 706 707		
Device	Routing	Invert	Outl	et Devices
#1	Primary	699.00'	Hea 2.50 Coe	long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.63 cfs @ 12.31 hrs HW=699.09' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.63 cfs @ 0.75 fps)

Page 14

Pond 124P: DIVERSION SWALE

Page 15

Summary for Pond 126P: MLV PAD

Inflow Area = 0.218 ac, 49.37% Impervious, Inflow Depth = 1.23" for 1-Year event

Inflow = 0.41 cfs @ 12.02 hrs, Volume= 0.022 af

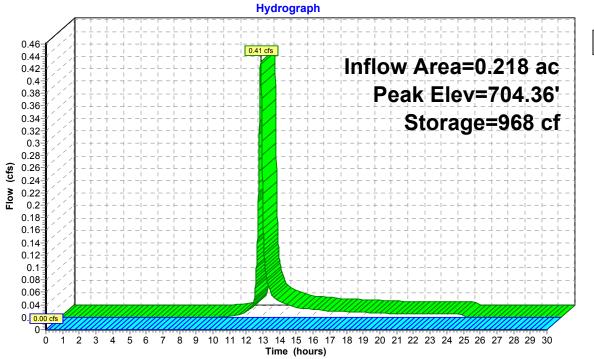
Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 704.36' @ 24.57 hrs Surf.Area= 0 sf Storage= 968 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)


Volume	Invert	Avail.Storage	Storage Description
#1	703.59'	2,322 cf	Stone Pad Void StorageListed below
			5,805 cf Overall x 40.0% Voids
Elevation	Cum St	ore	

Elevation	Cum.Store
(feet)	(cubic-feet)
703.59	0
704.00	756
704.50	3,042
705.00	5,382
705.09	5,803
705.59	5,805

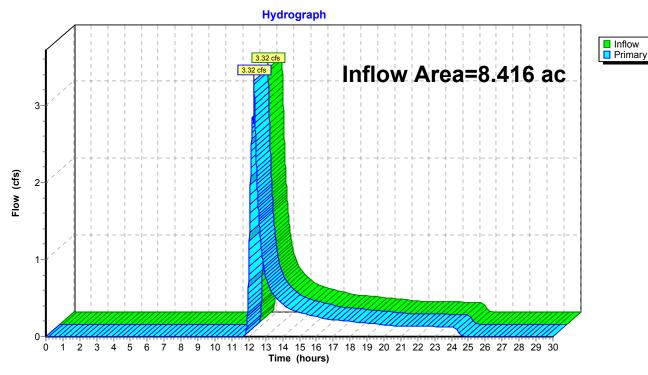
Device	Routing	Invert	Outlet Devices
#1	Primary	705.09'	90.0' long x 3.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=703.59' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 126P: MLV PAD

Page 16

Summary for Link 105L: Proposed Conditions


Inflow Area = 8.416 ac, 1.28% Impervious, Inflow Depth = 0.52" for 1-Year event

Inflow = 3.32 cfs @ 12.31 hrs, Volume= 0.367 af

Primary = 3.32 cfs @ 12.31 hrs, Volume= 0.367 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 105L: Proposed Conditions

Printed 8/22/2016

Page 18

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment116S: DA TO MLV PAD Runoff Area=9,480 sf 49.37% Impervious Runoff Depth=1.62"

Flow Length=299' Tc=10.0 min CN=84 Runoff=0.54 cfs 0.029 af

Subcatchment119S: OFFSITE DA TO Runoff Area=229,892 sf 0.00% Impervious Runoff Depth=0.83"

Flow Length=1,070' Tc=26.2 min CN=71 Runoff=3.68 cfs 0.365 af

Subcatchment120S: OFFSITE DA TORunoff Area=52,954 sf 0.00% Impervious Runoff Depth=0.88"
Flow Length=851' Tc=27.1 min CN=72 Runoff=0.89 cfs 0.089 af

Subcatchment122S: DA TO WQ SWALE Runoff Area=5,101 sf 0.00% Impervious Runoff Depth=1.22"

Flow Length=21' Slope=0.0200 '/' Tc=5.0 min CN=78 Runoff=0.26 cfs 0.012 af

Subcatchment123S: DA TO DIVERSION Runoff Area=69,189 sf 0.00% Impervious Runoff Depth=0.83"

Flow Length=595' Tc=23.3 min CN=71 Runoff=1.20 cfs 0.110 af

Pond 113P: WATER QUALITY SWALE Peak Elev=698.57' Storage=516 cf Inflow=0.26 cfs 0.012 af

Outflow=0.00 cfs 0.000 af

Pond 124P: DIVERSION SWALE Peak Elev=699.15' Storage=706 cf Inflow=1.20 cfs 0.110 af

Outflow=1.22 cfs 0.094 af

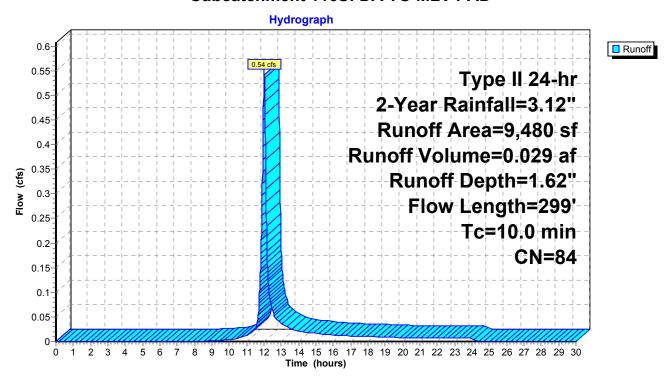
Pond 126P: MLV PADPeak Elev=704.53' Storage=1,276 cf Inflow=0.54 cfs 0.029 af

Outflow=0.00 cfs 0.000 af

Link 105L: Proposed Conditions Inflow=5.75 cfs 0.548 af

Primary=5.75 cfs 0.548 af

Total Runoff Area = 8.416 ac Runoff Volume = 0.605 af Average Runoff Depth = 0.86" 98.72% Pervious = 8.309 ac 1.28% Impervious = 0.107 ac


Summary for Subcatchment 116S: DA TO MLV PAD

Runoff = 0.54 cfs @ 12.02 hrs, Volume= 0.029 af, Depth= 1.62"

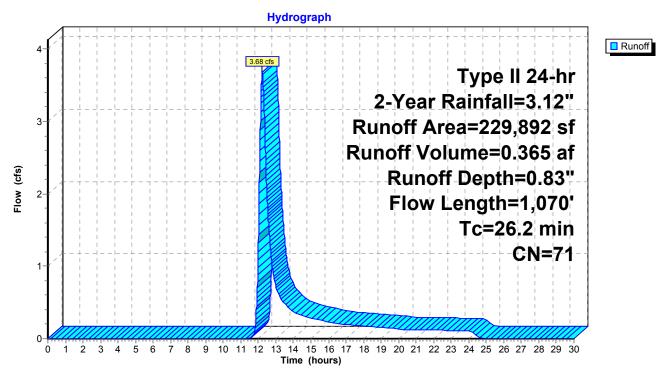
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.12"

	Α	rea (sf)	CN I	Description								
		0 98 Paved parking, HSG C										
		0	89	Gravel roads, HSG C								
* 4,680 98 Crushed Stone Pad, HSG C						ISG C						
		0	70	Noods, Go	od, HSG C							
		4,800	71 I	Meadow, no	on-grazed,	HSG C						
		9,480	84 \	Neighted A	verage							
		4,800		50.63% Pe	rvious Area							
		4,680	4	49.37% Imp	pervious Ar	ea						
	Tc	Length	Slope	Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	8.8	100	0.0700	0.19		Sheet Flow, Sheet						
						Grass: Dense n= 0.240 P2= 3.12"						
	1.2	199	0.1500	2.71		Shallow Concentrated Flow, Shallow Concentrated						
						Short Grass Pasture Kv= 7.0 fps						
	10.0	299	Total	•	•							

Subcatchment 116S: DA TO MLV PAD

Page 20

Summary for Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1


Runoff = 3.68 cfs @ 12.23 hrs, Volume= 0.365 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.12"

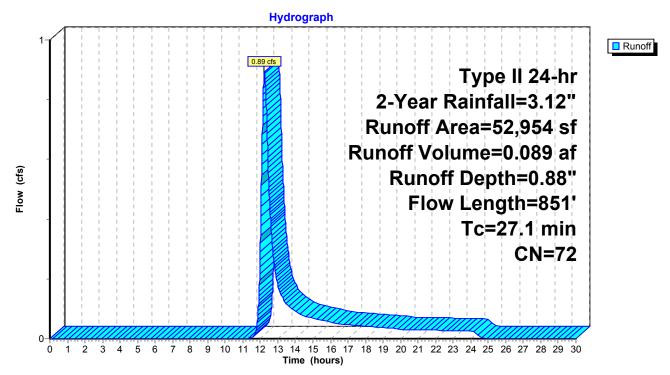
A	rea (sf)	CN E	Description					
	0	98 F	aved park	ing, HSG C				
	11,983	89 C	Gravel road	ls, HSG C				
*	0	98 C	Crushed St	one Pad, H	ISG C			
1	65,033	70 V	Woods, Good, HSG C					
	52,876	71 N	/leadow, no	on-grazed,	HSG C			
2	29,892	71 V	Veighted A	verage				
2	29,892	1	00.00% Pe	ervious Are	a			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
18.2	100	0.1250	0.09		Sheet Flow, Sheet			
					Woods: Dense underbrush n= 0.800 P2= 3.12"			
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated			
					Woodland Kv= 5.0 fps			
8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated			
					Woodland Kv= 5.0 fps			
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated			
0.4	0.4				Short Grass Pasture Kv= 7.0 fps			
0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated			
					Unpaved Kv= 16.1 fps			
26.2	1,070	Total						

Page 21

Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Page 22

Summary for Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2


Runoff = 0.89 cfs @ 12.23 hrs, Volume= 0.089 af, Depth= 0.88"

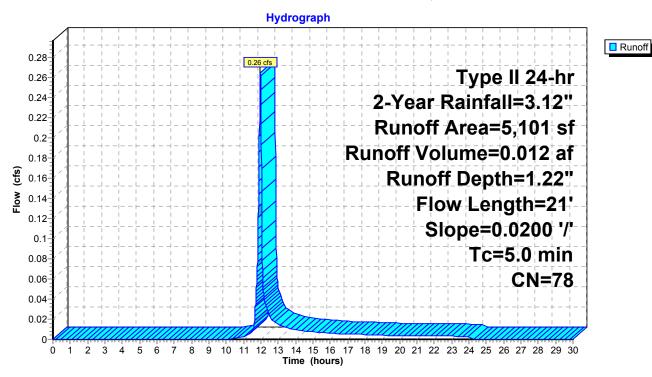
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.12"

	Α	rea (sf)	CN I	Description		
		0	98	Paved park	ina. HSG C	
		2,897		Gravel road		
*		0		Crushed St	,	ISG C
		13,655		Woods, Go	•	
		36,402		Meadow, no		
		52,954		Weighted A		
		52,954		100.00% Pe	•	ea
		,				
	Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	•	(cfs)	·
	21.7	100	0.0800	0.08		Sheet Flow, Sheet
						Woods: Dense underbrush n= 0.800 P2= 3.12"
	0.4	47	0.1700	2.06		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.9	564	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
						Short Grass Pasture Kv= 7.0 fps
	8.0	101	0.1800	2.12		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	0.3	39	0.1000	2.21		Shallow Concentrated Flow, Shallow Concentrated
						Short Grass Pasture Kv= 7.0 fps
	27.1	851	Total			

Page 23

Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

Page 24

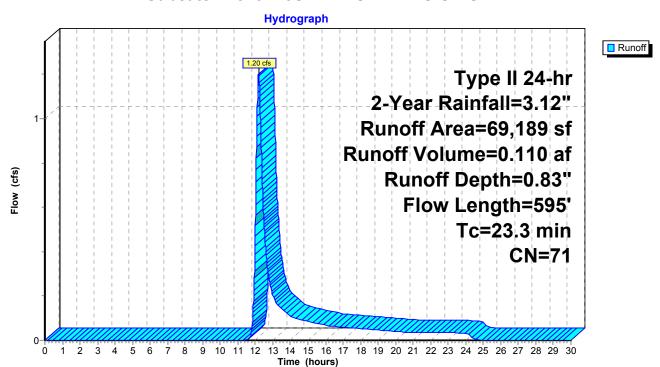

Summary for Subcatchment 122S: DA TO WQ SWALE

0.26 cfs @ 11.97 hrs, Volume= Runoff 0.012 af, Depth= 1.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.12"

_	Α	rea (sf)	CN	Description						
		0	98	Paved park	ing, HSG C					
		1,962	89	Gravel roads, HSG C						
*		0 98 Crushed Stone Pad, HSG C								
		96	70	Woods, Go	od, HSG C					
		3,043	71	Meadow, no	on-grazed,	HSG C				
		5,101	78	Weighted A	verage					
		5,101		100.00% Pe	ervious Are	a				
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description				
	0.4	21	0.0200	0.99		Sheet Flow, Sheet Smooth surfaces n= 0.011 P2= 3.12"				
	0.4	21	Total,	Total, Increased to minimum Tc = 5.0 min						

Subcatchment 122S: DA TO WQ SWALE


Summary for Subcatchment 123S: DA TO DIVERSION SWALE

Runoff = 1.20 cfs @ 12.19 hrs, Volume= 0.110 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.12"

	Α	rea (sf)	CN D	escription					
		0	98 F	98 Paved parking, HSG C					
		906	89 G	Gravel road	ls, HSG C				
*		0	98 C	Crushed St	one Pad, H	ISG C			
		7,030	70 V	Voods, Go	od, HSG C				
_		61,253	71 N	leadow, no	on-grazed,	HSG C			
		69,189	71 V	Veighted A	verage				
		69,189	1	00.00% Pe	ervious Are	a			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	19.9	100	0.1000	0.08		Sheet Flow, Sheet			
						Woods: Dense underbrush n= 0.800 P2= 3.12"			
	0.3	42	0.2600	2.55		Shallow Concentrated Flow, Shallow Concentrated			
						Woodland Kv= 5.0 fps			
	3.1	453	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated			
_						Short Grass Pasture Kv= 7.0 fps			
	23.3	595	Total						

Subcatchment 123S: DA TO DIVERSION SWALE

Page 26

Summary for Pond 113P: WATER QUALITY SWALE

Inflow Area = 0.117 ac, 0.00% Impervious, Inflow Depth = 1.22" for 2-Year event

Inflow = 0.26 cfs @ 11.97 hrs, Volume= 0.012 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

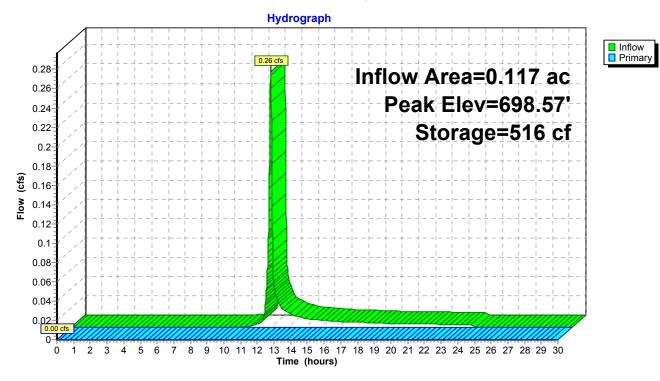
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 698.57' @ 24.29 hrs Surf.Area= 0 sf Storage= 516 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Inver	t Avail.Sto	age	Storage Description
#1	698.00	' 90	11 cf	Custom Stage DataListed below
Elevation (fee		ım.Store bic-feet)		
698.0	00	0		
698.5	50	450		
699.0	00	900		
699.	50	901		
Device	Routing	Invert	Outl	let Devices
#1	Primary	699.00'	12.0)' long x 3.0' breadth Broad-Crested Rectangular Weir
			Hea	id (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50	3.00 3.50 4.00 4.50
			Coe	f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72	2 2.81 2.92 2.97 3.07 3.32


Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=698.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

.

Page 27

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 113P: WATER QUALITY SWALE

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 28

Page 28

Summary for Pond 124P: DIVERSION SWALE

Inflow Area = 1.588 ac, 0.00% Impervious, Inflow Depth = 0.83" for 2-Year event

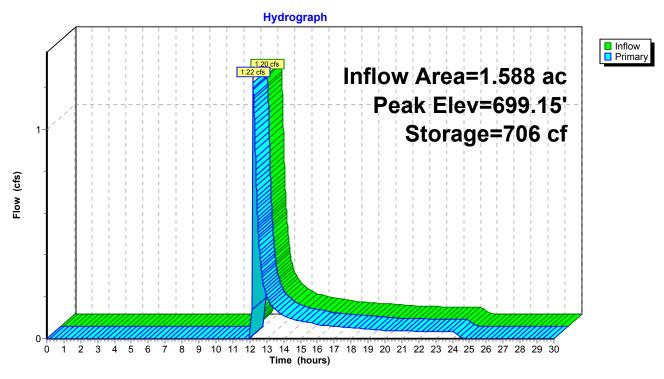
Inflow = 1.20 cfs @ 12.19 hrs, Volume= 0.110 af

Outflow = 1.22 cfs @ 12.18 hrs, Volume= 0.094 af, Atten= 0%, Lag= 0.0 min

Primary = 1.22 cfs @ 12.18 hrs, Volume= 0.094 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 699.15' @ 12.18 hrs Surf.Area= 0 sf Storage= 706 cf

Plug-Flow detention time= 98.9 min calculated for 0.094 af (85% of inflow)


Center-of-Mass det. time= 28.5 min (915.4 - 886.9)

Volume	I	nvert	Avail.Sto	rage	Storage Description
#1	69	8.00'	7	07 cf	Custom Stage DataListed below
Elevation (fee		Cum. (cubic			
698.0	00	•	0		
698.5	50		353		
699.0	00		706		
699.5	50		707		
Device	Routii	ng	Invert	Outl	et Devices
#1	Prima	ry	699.00'	9.0'	long x 3.0' breadth Broad-Crested Rectangular Weir
		-		Hea	d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				2.50	3.00 3.50 4.00 4.50
				Coe	f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
				2.72	2 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=1.22 cfs @ 12.18 hrs HW=699.15' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 1.22 cfs @ 0.93 fps)

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 124P: DIVERSION SWALE

Page 30

Summary for Pond 126P: MLV PAD

Inflow Area = 0.218 ac, 49.37% Impervious, Inflow Depth = 1.62" for 2-Year event

Inflow = 0.54 cfs @ 12.02 hrs, Volume= 0.029 af

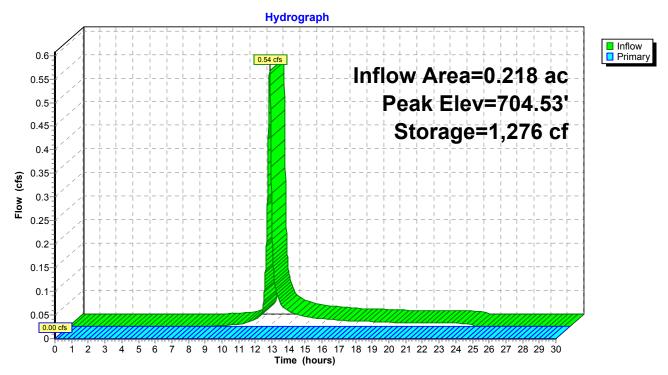
Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 704.53' @ 24.57 hrs Surf.Area= 0 sf Storage= 1,276 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)


Volume	Invert	Avail.Storage	Storage Description
#1	703.59'	2,322 cf	Stone Pad Void StorageListed below 5,805 cf Overall x 40.0% Voids
Classation	Cuma C4		

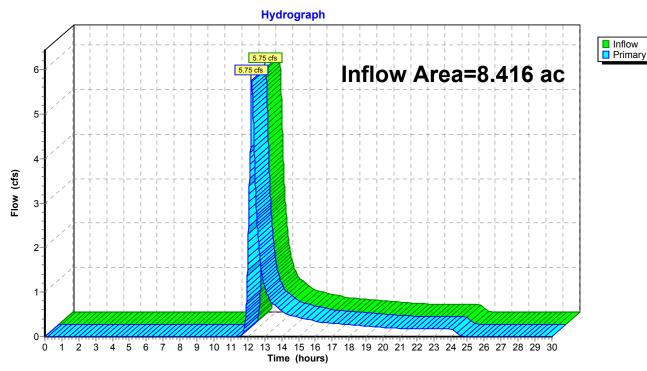
Elevation	Cum.Store
(feet)	(cubic-feet)
703.59	0
704.00	756
704.50	3,042
705.00	5,382
705.09	5,803
705.59	5,805

Device	Routing	Invert	Outlet Devices
#1	Primary	705.09'	90.0' long x 3.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=703.59' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 126P: MLV PAD

Summary for Link 105L: Proposed Conditions


Inflow Area = 8.416 ac, 1.28% Impervious, Inflow Depth = 0.78" for 2-Year event

Inflow = 5.75 cfs @ 12.22 hrs, Volume= 0.548 af

Primary = 5.75 cfs @ 12.22 hrs, Volume= 0.548 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 105L: Proposed Conditions

Printed 8/22/2016

Page 33

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment116S: DA TO MLV PAD Runoff Area=9,480 sf 49.37% Impervious Runoff Depth=2.23"

Flow Length=299' Tc=10.0 min CN=84 Runoff=0.74 cfs 0.040 af

Subcatchment119S: OFFSITE DA TO Runoff Area=229,892 sf 0.00% Impervious Runoff Depth=1.29"

Flow Length=1,070' Tc=26.2 min CN=71 Runoff=6.06 cfs 0.566 af

Subcatchment120S: OFFSITE DA TORunoff Area=52,954 sf 0.00% Impervious Runoff Depth=1.35"
Flow Length=851' Tc=27.1 min CN=72 Runoff=1.44 cfs 0.137 af

The series of th

Subcatchment122S: DA TO WQ SWALE Runoff Area=5,101 sf 0.00% Impervious Runoff Depth=1.76" Flow Length=21' Slope=0.0200 '/' Tc=5.0 min CN=78 Runoff=0.38 cfs 0.017 af

Subcatchment123S: DA TO DIVERSION Runoff Area=69,189 sf 0.00% Impervious Runoff Depth=1.29"

Flow Length=595' Tc=23.3 min CN=71 Runoff=1.97 cfs 0.170 af

Pond 113P: WATER QUALITY SWALE Peak Elev=698.83' Storage=748 cf Inflow=0.38 cfs 0.017 af

Outflow=0.00 cfs 0.000 af

Pond 124P: DIVERSION SWALE Peak Elev=699.20' Storage=706 cf Inflow=1.97 cfs 0.170 af

Outflow=1.97 cfs 0.153 af

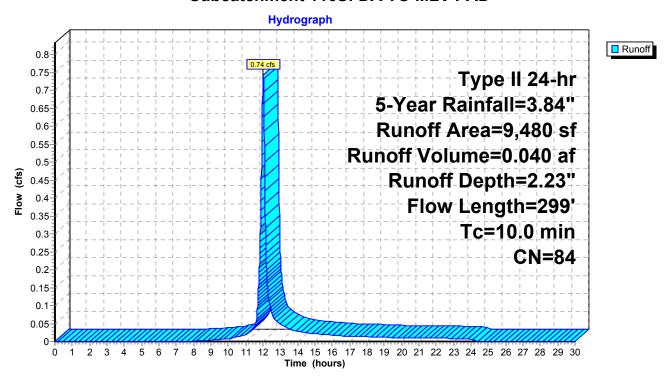
Pond 126P: MLV PAD Peak Elev=704.79' Storage=1,762 cf Inflow=0.74 cfs 0.040 af

Outflow=0.00 cfs 0.000 af

Link 105L: Proposed Conditions Inflow=9.45 cfs 0.855 af

Primary=9.45 cfs 0.855 af

Total Runoff Area = 8.416 ac Runoff Volume = 0.930 af Average Runoff Depth = 1.33" 98.72% Pervious = 8.309 ac 1.28% Impervious = 0.107 ac

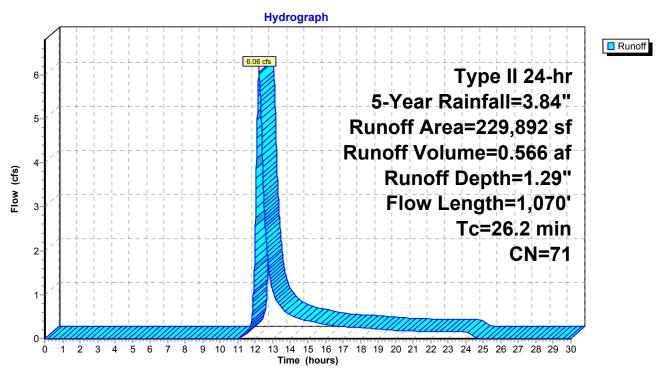

Summary for Subcatchment 116S: DA TO MLV PAD

Runoff = 0.74 cfs @ 12.02 hrs, Volume= 0.040 af, Depth= 2.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.84"

	Α	rea (sf)	CN E	escription		
		0	98 F	aved park	ing, HSG C	
		0	89 (Fravel road	ls, HSG C	
*		4,680	98 C	Crushed St	one Pad, H	ISG C
		0	70 V	Voods, Go	od, HSG C	
		4,800	71 N	/leadow, no	on-grazed,	HSG C
		9,480	84 V	Veighted A	verage	
		4,800	5	0.63% Per	vious Area	
		4,680	4	9.37% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.8	100	0.0700	0.19		Sheet Flow, Sheet
						Grass: Dense n= 0.240 P2= 3.12"
	1.2	199	0.1500	2.71		Shallow Concentrated Flow, Shallow Concentrated
						Short Grass Pasture Kv= 7.0 fps
	10.0	299	Total			

Subcatchment 116S: DA TO MLV PAD


Summary for Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

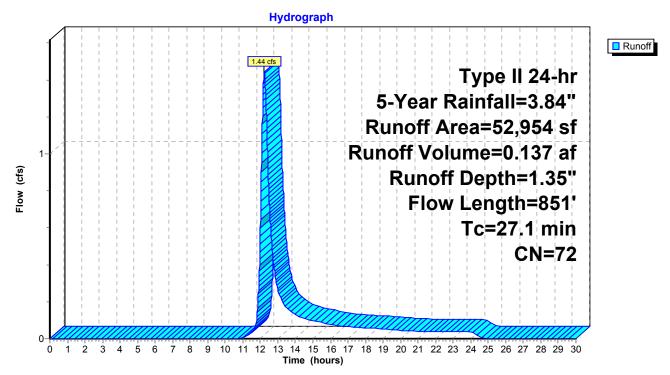
Runoff = 6.06 cfs @ 12.20 hrs, Volume= 0.566 af, Depth= 1.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.84"

A	rea (sf)	CN E	Description		
	0	98 F	aved park	ing, HSG C	
	11,983	89 C	Gravel road	ls, HSG C	
*	0	98 C	Crushed St	one Pad, H	ISG C
1	65,033	70 V	Voods, Go	od, HSG C	
	52,876	71 N	/leadow, no	on-grazed,	HSG C
2	29,892	71 V	Veighted A	verage	
2	29,892	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
18.2	100	0.1250	0.09		Sheet Flow, Sheet
					Woods: Dense underbrush n= 0.800 P2= 3.12"
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated
0.4	0.4				Short Grass Pasture Kv= 7.0 fps
0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated
					Unpaved Kv= 16.1 fps
26.2	1,070	Total			

Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Summary for Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

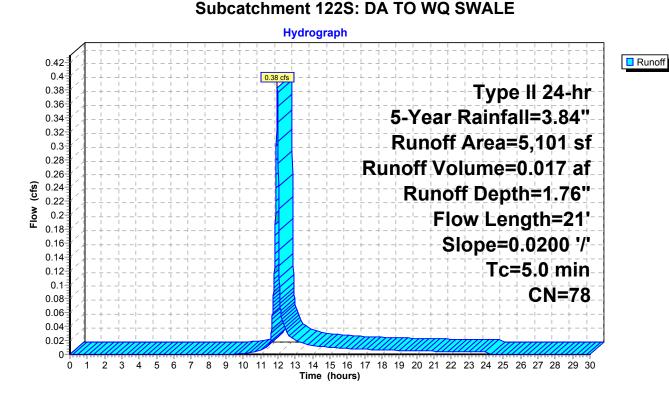

Runoff = 1.44 cfs @ 12.22 hrs, Volume= 0.137 af, Depth= 1.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.84"

A	rea (sf)	CN [Description		
	0	98 F	Paved park	ing, HSG C	
	2,897	89 (Gravel road	ls, HSG C	
*	0	98 (Crushed St	one Pad, H	ISG C
	13,655	70 \	Woods, Go	od, HSG C	
	36,402	71 N	Meadow, no	on-grazed,	HSG C
	52,954	72 \	Veighted A	verage	
	52,954	1	100.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
21.7	100	0.0800	0.08		Sheet Flow, Sheet
					Woods: Dense underbrush n= 0.800 P2= 3.12"
0.4	47	0.1700	2.06		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
3.9	564	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
					Short Grass Pasture Kv= 7.0 fps
8.0	101	0.1800	2.12		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
0.3	39	0.1000	2.21		Shallow Concentrated Flow, Shallow Concentrated
					Short Grass Pasture Kv= 7.0 fps
27.1	851	Total			

Page 38

Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

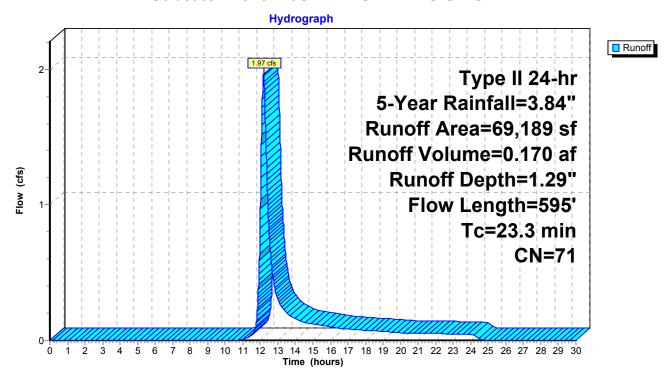

Page 39

Summary for Subcatchment 122S: DA TO WQ SWALE

Runoff = 0.38 cfs @ 11.96 hrs, Volume= 0.017 af, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.84"

_	Α	rea (sf)	CN	Description			
		0	98	Paved park	ing, HSG C		
		1,962	89	Gravel road	ls, HSG C		
*		0	98	Crushed St	one Pad, H	ISG C	
		96	70	Woods, Go	od, HSG C		
		3,043	71	Meadow, n	on-grazed,	HSG C	
		5,101	78	Weighted A	verage		
		5,101		100.00% P	ervious Are	a	
_	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description	
	0.4	21	0.020	0 0.99		Sheet Flow, Sheet Smooth surfaces n= 0.011	P2= 3.12"
	0.4	21	Total,	Increased	to minimum	Tc = 5.0 min	


Summary for Subcatchment 123S: DA TO DIVERSION SWALE

Runoff = 1.97 cfs @ 12.19 hrs, Volume= 0.170 af, Depth= 1.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.84"

	Α	rea (sf)	CN D	escription		
		0	98 F	aved park	ing, HSG C	
		906	89 G	Gravel road	ls, HSG C	
*		0	98 C	Crushed St	one Pad, H	ISG C
		7,030	70 V	Voods, Go	od, HSG C	
_		61,253	71 N	leadow, no	on-grazed,	HSG C
		69,189	71 V	Veighted A	verage	
		69,189	1	00.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	19.9	100	0.1000	0.08		Sheet Flow, Sheet
						Woods: Dense underbrush n= 0.800 P2= 3.12"
	0.3	42	0.2600	2.55		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.1	453	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
_						Short Grass Pasture Kv= 7.0 fps
	23.3	595	Total			

Subcatchment 123S: DA TO DIVERSION SWALE

Page 41

Summary for Pond 113P: WATER QUALITY SWALE

Inflow Area = 0.117 ac, 0.00% Impervious, Inflow Depth = 1.76" for 5-Year event

Inflow = 0.38 cfs @ 11.96 hrs, Volume= 0.017 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 698.83' @ 24.29 hrs Surf.Area= 0 sf Storage= 748 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	: Avail.Sto	rage	Storage Description
#1	698.00	' 90)1 cf	Custom Stage DataListed below
Elevation (fee	et) (cul 00 50	m.Store bic-feet) 0 450 900		
699.	50	901		
Device	Routing	Invert	Outl	let Devices
#1	Primary	699.00'	Hea 2.50 Coe	O' long x 3.0' breadth Broad-Crested Rectangular Weir and (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 af. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.281 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=698.00' (Free Discharge) 1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 113P: WATER QUALITY SWALE

Page 43

Summary for Pond 124P: DIVERSION SWALE

Inflow Area = 1.588 ac, 0.00% Impervious, Inflow Depth = 1.29" for 5-Year event

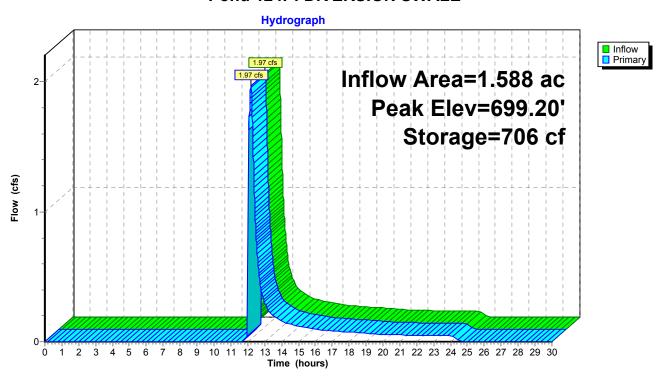
Inflow = 1.97 cfs @ 12.19 hrs, Volume= 0.170 af

Outflow = 1.97 cfs @ 12.19 hrs, Volume= 0.153 af, Atten= 0%, Lag= 0.0 min

Primary = 1.97 cfs @ 12.19 hrs, Volume= 0.153 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 699.20' @ 12.19 hrs Surf.Area= 0 sf Storage= 706 cf

Plug-Flow detention time= 68.2 min calculated for 0.153 af (90% of inflow)


Center-of-Mass det. time= 17.4 min (890.2 - 872.8)

Volume	In	vert Avail.St	orage	Storage Description
#1	698	.00' 7	707 cf	Custom Stage DataListed below
Elevation		Cum.Store		
(fee	et)	(cubic-feet)		
698.0	00	0		
698.5	50	353		
699.0	00	706		
699.	50	707		
Device	Routing	j Invert	Outl	let Devices
#1	Primar	699.00	9.0'	long x 3.0' breadth Broad-Crested Rectangular Weir
	•		Hea	nd (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.50
			Coe	ef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72	2 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=1.97 cfs @ 12.19 hrs HW=699.20' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 1.97 cfs @ 1.09 fps)

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 124P: DIVERSION SWALE

Page 45

Summary for Pond 126P: MLV PAD

Inflow Area = 0.218 ac, 49.37% Impervious, Inflow Depth = 2.23" for 5-Year event

Inflow = 0.74 cfs @ 12.02 hrs, Volume= 0.040 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 704.79' @ 24.57 hrs Surf.Area= 0 sf Storage= 1,762 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert A	Avail.Storage	Storage Description
#1	703.59'	2,322 cf	Stone Pad Void StorageListed below
			5,805 cf Overall x 40.0% Voids
Elevation (feet)	Cum.Sto (cubic-fe		


Lievation	Culli.Stole
(feet)	(cubic-feet)
703.59	0
704.00	756
704.50	3,042
705.00	5,382
705.09	5,803
705.59	5,805

Device	Routing	Invert	Outlet Devices
#1	Primary	705.09'	90.0' long x 3.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2 72 2 81 2 92 2 97 3 07 3 32

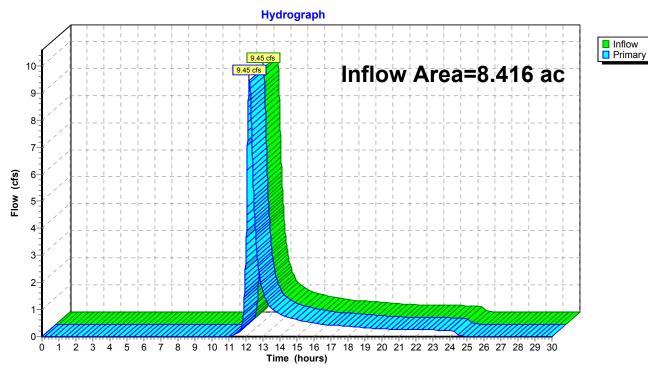
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=703.59' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 126P: MLV PAD

Page 47

Summary for Link 105L: Proposed Conditions


Inflow Area = 8.416 ac, 1.28% Impervious, Inflow Depth = 1.22" for 5-Year event

Inflow = 9.45 cfs @ 12.20 hrs, Volume= 0.855 af

Primary = 9.45 cfs @ 12.20 hrs, Volume= 0.855 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 105L: Proposed Conditions

Printed 8/22/2016

Page 48

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment116S: DA TO MLV PAD Runoff Area=9,480 sf 49.37% Impervious Runoff Depth=2.87"

Flow Length=299' Tc=10.0 min CN=84 Runoff=0.95 cfs 0.052 af

Subcatchment119S: OFFSITE DA TO Runoff Area=229,892 sf 0.00% Impervious Runoff Depth=1.79"

Flow Length=1,070' Tc=26.2 min CN=71 Runoff=8.69 cfs 0.787 af

Subcatchment120S: OFFSITE DA TO Runoff Area=52,954 sf 0.00% Impervious Runoff Depth=1.86"

Flow Length=851' Tc=27.1 min CN=72 Runoff=2.05 cfs 0.189 af

Subcatchment122S: DA TO WQ SWALE Runoff Area=5,101 sf 0.00% Impervious Runoff Depth=2.34"

Flow Length=21' Slope=0.0200 '/' Tc=5.0 min CN=78 Runoff=0.51 cfs 0.023 af

Subcatchment123S: DA TO DIVERSION Runoff Area=69,189 sf 0.00% Impervious Runoff Depth=1.79"

Flow Length=595' Tc=23.3 min CN=71 Runoff=2.81 cfs 0.237 af

Pond 113P: WATER QUALITY SWALE Peak Elev=699.00' Storage=900 cf Inflow=0.51 cfs 0.023 af

Outflow=0.01 cfs 0.002 af

Pond 124P: DIVERSION SWALE Peak Elev=699.25' Storage=707 cf Inflow=2.81 cfs 0.237 af

Outflow=2.81 cfs 0.220 af

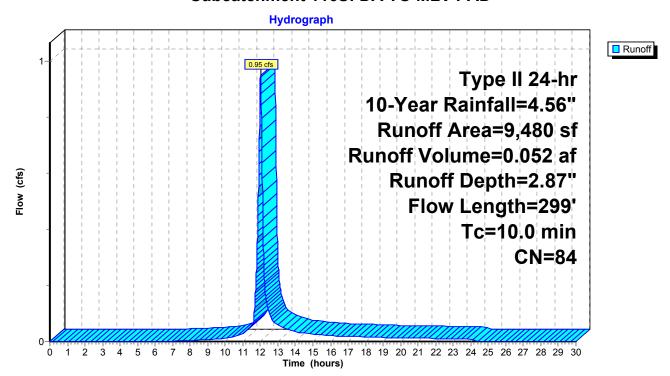
Pond 126P: MLV PAD Peak Elev=705.06' Storage=2,268 cf Inflow=0.95 cfs 0.052 af

Outflow=0.00 cfs 0.000 af

Link 105L: Proposed Conditions Inflow=13.51 cfs 1.199 af

Primary=13.51 cfs 1.199 af

Total Runoff Area = 8.416 ac Runoff Volume = 1.288 af Average Runoff Depth = 1.84" 98.72% Pervious = 8.309 ac 1.28% Impervious = 0.107 ac


Summary for Subcatchment 116S: DA TO MLV PAD

Runoff = 0.95 cfs @ 12.01 hrs, Volume= 0.052 af, Depth= 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.56"

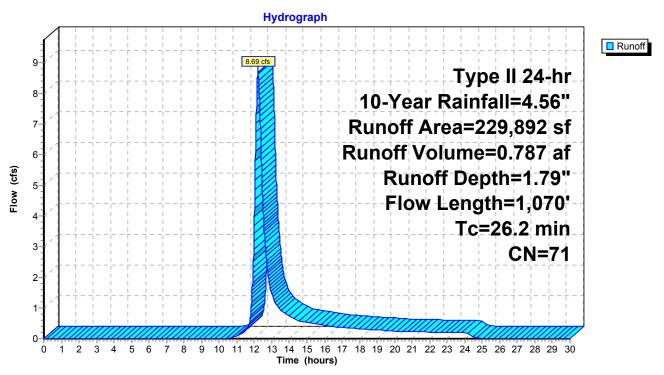
	Α	rea (sf)	CN [Description		
		0	98 F	Paved park	ing, HSG C	
0 89 Gravel roads, HSG C						
*		4,680	98 (Crushed St	one Pad, H	ISG C
		0	70 V	Voods, Go	od, HSG C	
		4,800	71 N	Meadow, no	on-grazed,	HSG C
		9,480	84 V	Veighted A	verage	
		4,800	5	50.63% Pei	rvious Area	
		4,680	4	19.37% Imp	pervious Ar	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.8	100	0.0700	0.19		Sheet Flow, Sheet
						Grass: Dense n= 0.240 P2= 3.12"
	1.2	199	0.1500	2.71		Shallow Concentrated Flow, Shallow Concentrated
_						Short Grass Pasture Kv= 7.0 fps
	10.0	299	Total			

Subcatchment 116S: DA TO MLV PAD

Printed 8/22/2016

Page 50

Summary for Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1


Runoff = 8.69 cfs @ 12.20 hrs, Volume= 0.787 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.56"

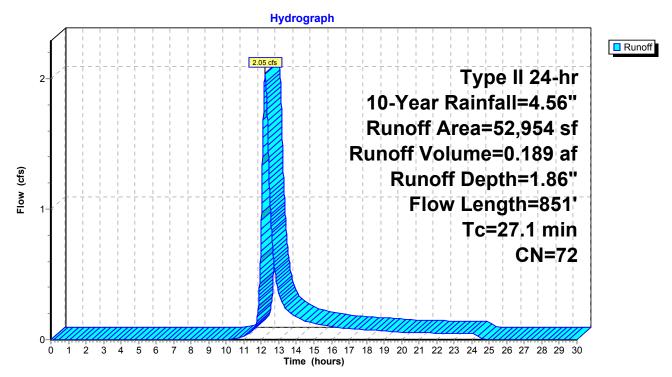
	Α	rea (sf)	CN E	escription		
		0	98 F	aved park	ing, HSG C	
		11,983	89 G	Gravel road	s, HSG C	
*		0	98 C	rushed St	one Pad, H	SG C
	1	65,033	70 V	Voods, Go	od, HSG C	
_		52,876	71 N	leadow, no	on-grazed,	HSG C
	2	29,892	71 V	Veighted A	verage	
	2	29,892	1	00.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.2	100	0.1250	0.09		Sheet Flow, Sheet
						Woods: Dense underbrush n= 0.800 P2= 3.12"
	3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated
	0.4	0.4	0.0000	4.55		Short Grass Pasture Kv= 7.0 fps
	0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated
_						Unpaved Kv= 16.1 fps
	26.2	1,070	Total			

Page 51

Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Printed 8/22/2016 Page 52

Summary for Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

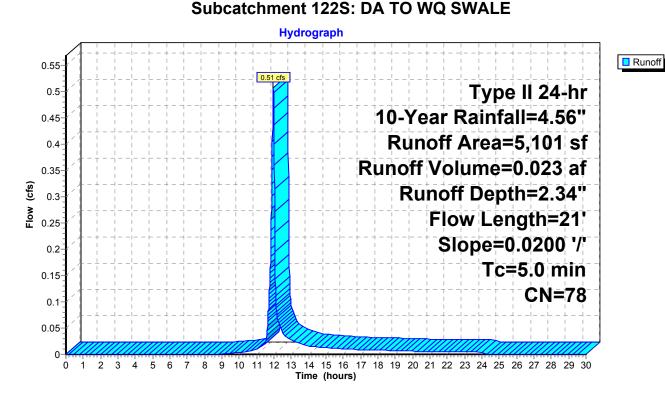

Runoff = 2.05 cfs @ 12.22 hrs, Volume= 0.189 af, Depth= 1.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.56"

	Area (sf)	CN I	Description		
	0	98 I	Paved park	ing, HSG C	
	2,897	89 (Gravel road	ls, HSG C	
*	0	98 (Crushed St	one Pad, H	ISG C
	13,655	70 \	Noods, Go	od, HSG C	
	36,402	71 I	Meadow, no	on-grazed,	HSG C
	52,954	72 \	Neighted A	verage	
	52,954	•	100.00% Pe	ervious Are	a
	c Length	Slope	•	Capacity	Description
<u>(mi</u> ı	n) (feet)	(ft/ft)	(ft/sec)	(cfs)	
21	.7 100	0.0800	0.08		Sheet Flow, Sheet
					Woods: Dense underbrush n= 0.800 P2= 3.12"
0.	.4 47	0.1700	2.06		Shallow Concentrated Flow, Shallow Concentrated
_					Woodland Kv= 5.0 fps
3.	9 564	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
•	0 404	0.4000	0.40		Short Grass Pasture Kv= 7.0 fps
0.	.8 101	0.1800	2.12		Shallow Concentrated Flow, Shallow Concentrated
^	2 20	0.4000	0.04		Woodland Kv= 5.0 fps
0.	.3 39	0.1000	2.21		Shallow Concentrated Flow, Shallow Concentrated
					Short Grass Pasture Kv= 7.0 fps
27	.1 851	Total			

Page 53

Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

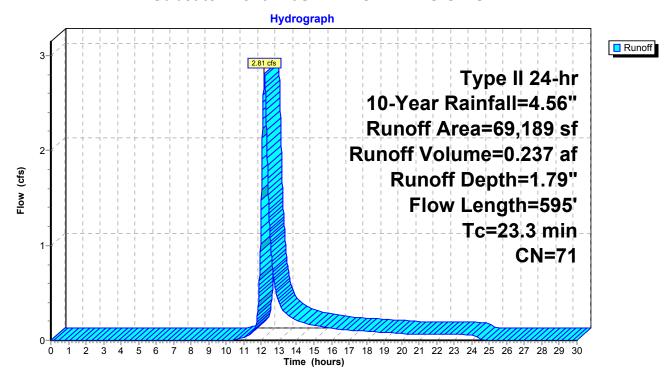


Summary for Subcatchment 122S: DA TO WQ SWALE

0.51 cfs @ 11.96 hrs, Volume= Runoff 0.023 af, Depth= 2.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.56"

_	Α	rea (sf)	CN	Description				
		0	98	Paved park	ing, HSG C			
		1,962	89	Gravel road	ls, HSG C			
*		0	98	Crushed St	one Pad, H	ISG C		
		96	70	Woods, Go	od, HSG C			
_		3,043	71	Meadow, no	on-grazed,	HSG C		
		5,101	78	Weighted A	verage			
		5,101		100.00% P	ervious Are	a		
_	Tc (min)	Length (feet)	Slope (ft/ft)	•	Capacity (cfs)	Description		
	0.4	21	0.0200	0.99		Sheet Flow, Sheet Smooth surfaces n= 0.011	P2= 3.12"	
	0.4	21	Total,	otal, Increased to minimum Tc = 5.0 min				


Summary for Subcatchment 123S: DA TO DIVERSION SWALE

Runoff = 2.81 cfs @ 12.17 hrs, Volume= 0.237 af, Depth= 1.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.56"

	Α	rea (sf)	CN E	Description		
		0	98 F	Paved park	ing, HSG C	
		906	89 (Fravel road	ls, HSG C	
*		0	98 C	Crushed St	one Pad, H	ISG C
		7,030	70 V	Voods, Go	od, HSG C	
_		61,253	71 N	/leadow, no	on-grazed,	HSG C
		69,189	71 V	Veighted A	verage	
		69,189	1	00.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	19.9	100	0.1000	0.08		Sheet Flow, Sheet
						Woods: Dense underbrush n= 0.800 P2= 3.12"
	0.3	42	0.2600	2.55		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.1	453	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
_						Short Grass Pasture Kv= 7.0 fps
	23.3	595	Total			

Subcatchment 123S: DA TO DIVERSION SWALE

Printed 8/22/2016 Page 56

Summary for Pond 113P: WATER QUALITY SWALE

Inflow Area = 0.117 ac, 0.00% Impervious, Inflow Depth = 2.34" for 10-Year event

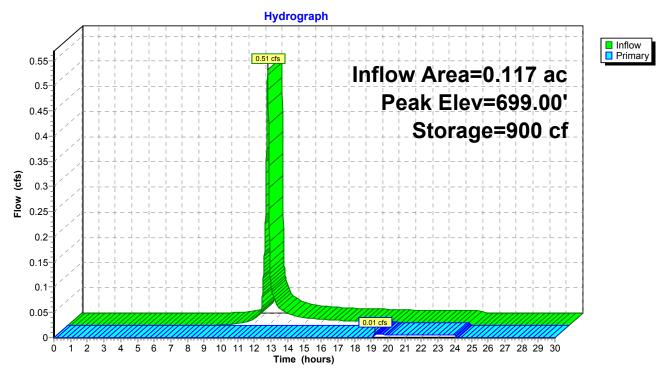
Inflow = 0.51 cfs @ 11.96 hrs, Volume= 0.023 af

Outflow = 0.01 cfs @ 19.22 hrs, Volume= 0.002 af, Atten= 98%, Lag= 435.7 min

Primary = 0.01 cfs @ 19.22 hrs, Volume= 0.002 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 699.00' @ 19.22 hrs Surf.Area= 0 sf Storage= 900 cf

Plug-Flow detention time= 625.8 min calculated for 0.002 af (10% of inflow)


Center-of-Mass det. time= 465.4 min (1,292.6 - 827.2)

Volume	Invert	Avail.Sto	rage	Storage Description
#1	698.00'	90)1 cf	Custom Stage DataListed below
Elevatio (fee 698.0 699.0 699.5	et) (cub 00 50 00	m.Store <u>oic-feet)</u> 0 450 900 901		
Device	Routing	Invert	Outl	et Devices
#1 Primary		699.00'	Hea 2.50 Coe	l' long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.281 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.01 cfs @ 19.22 hrs HW=699.00' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.01 cfs @ 0.15 fps)

Page 57

Pond 113P: WATER QUALITY SWALE

Page 58

Summary for Pond 124P: DIVERSION SWALE

Inflow Area = 1.588 ac, 0.00% Impervious, Inflow Depth = 1.79" for 10-Year event

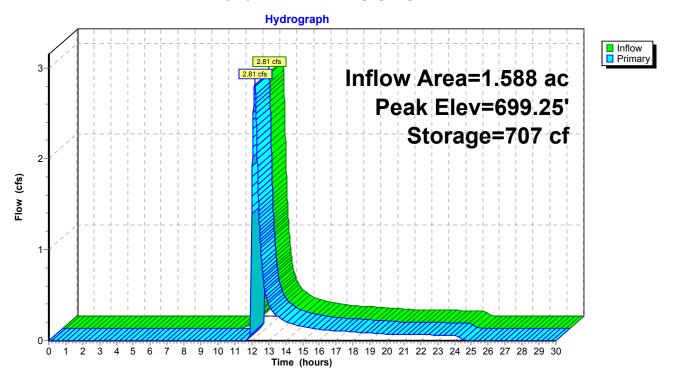
Inflow = 2.81 cfs @ 12.17 hrs, Volume= 0.237 af

Outflow = 2.81 cfs @ 12.17 hrs, Volume= 0.220 af, Atten= 0%, Lag= 0.0 min

Primary = 2.81 cfs @ 12.17 hrs, Volume= 0.220 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 699.25' @ 12.17 hrs Surf.Area= 0 sf Storage= 707 cf

Plug-Flow detention time= 49.3 min calculated for 0.220 af (93% of inflow)


Center-of-Mass det. time= 11.9 min (874.7 - 862.8)

Volume	Invert	t Avail.Sto	rage	Storage Description
#1	698.00	' 70)7 cf	Custom Stage DataListed below
Elevatio (fee 698.0 698.5 699.0	t) (cul 0 0 0	m.Store bic-feet) 0 353 706 707		
Device	Routing	Invert	Outl	et Devices
#1			Hea 2.50 Coe	long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.281 2.92 2.97 3.07 3.32

Primary OutFlow Max=2.81 cfs @ 12.17 hrs HW=699.25' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 2.81 cfs @ 1.24 fps)

Page 59

Pond 124P: DIVERSION SWALE

Page 60

Summary for Pond 126P: MLV PAD

Inflow Area = 0.218 ac, 49.37% Impervious, Inflow Depth = 2.87" for 10-Year event

Inflow = 0.95 cfs @ 12.01 hrs, Volume= 0.052 af

Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

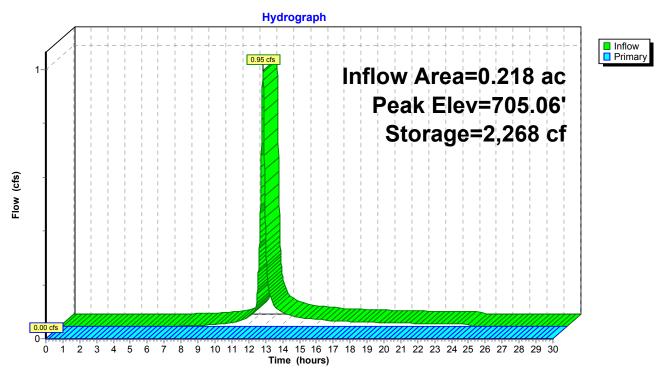
Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 705.06' @ 24.57 hrs Surf.Area= 0 sf Storage= 2,268 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert A	Avail.Storage	Storage Description
#1	703.59'	2,322 cf	Stone Pad Void StorageListed below
			5,805 cf Overall x 40.0% Voids
Elevation	Cum.Sto	ore	
(feet)	(cubic-fe		


Elevation	Cum.Store
(feet)	(cubic-feet)
703.59	0
704.00	756
704.50	3,042
705.00	5,382
705.09	5,803
705.59	5,805

Device	Routing	Invert	Outlet Devices
#1	Primary	705.09'	90.0' long x 3.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32

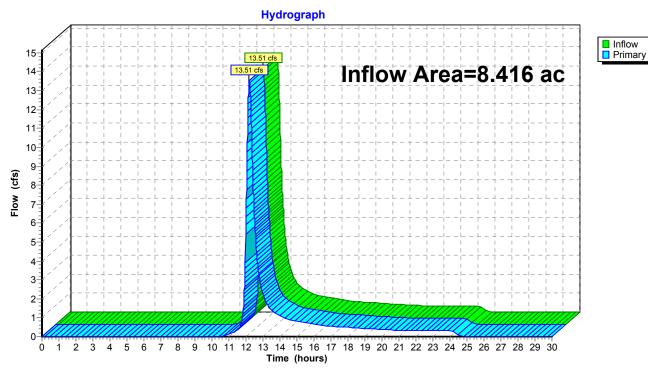
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=703.59' (Free Discharge)
1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Page 61

Pond 126P: MLV PAD

Page 62

Summary for Link 105L: Proposed Conditions


Inflow Area = 8.416 ac, 1.28% Impervious, Inflow Depth = 1.71" for 10-Year event

Inflow = 13.51 cfs @ 12.20 hrs, Volume= 1.199 af

Primary = 13.51 cfs @ 12.20 hrs, Volume= 1.199 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 105L: Proposed Conditions

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment116S: DA TO MLV PAD Runoff Area=9,480 sf 49.37% Impervious Runoff Depth=3.75"

Flow Length=299' Tc=10.0 min CN=84 Runoff=1.23 cfs 0.068 af

Subcatchment119S: OFFSITE DA TO Runoff Area=229,892 sf 0.00% Impervious Runoff Depth=2.52"

Flow Length=1,070' Tc=26.2 min CN=71 Runoff=12.46 cfs 1.107 af

Subcatchment120S: OFFSITE DA TO Runoff Area=52,954 sf 0.00% Impervious Runoff Depth=2.61"

Flow Length=851' Tc=27.1 min CN=72 Runoff=2.91 cfs 0.264 af

Subcatchment122S: DA TO WQ SWALE Runoff Area=5,101 sf 0.00% Impervious Runoff Depth=3.16"

Flow Length=21' Slope=0.0200 '/' Tc=5.0 min CN=78 Runoff=0.68 cfs 0.031 af

Subcatchment123S: DA TO DIVERSION Runoff Area=69,189 sf 0.00% Impervious Runoff Depth=2.52"

Flow Length=595' Tc=23.3 min CN=71 Runoff=4.02 cfs 0.333 af

Pond 113P: WATER QUALITY SWALE Peak Elev=699.01' Storage=900 cf Inflow=0.68 cfs 0.031 af

Outflow=0.03 cfs 0.010 af

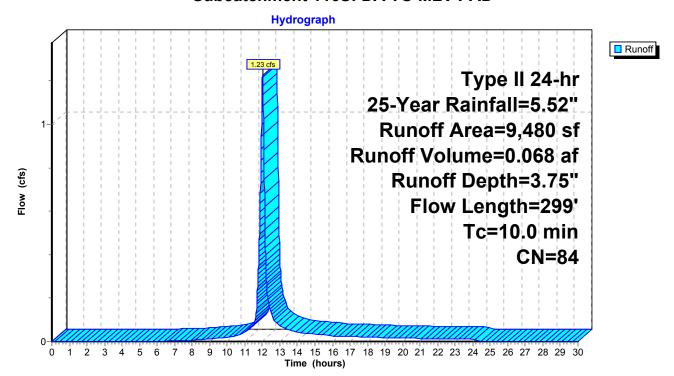
Pond 124P: DIVERSION SWALE Peak Elev=699.32' Storage=707 cf Inflow=4.02 cfs 0.333 af

Outflow=4.02 cfs 0.317 af

Pond 126P: MLV PAD Peak Elev=705.09' Storage=2,321 cf Inflow=1.23 cfs 0.068 af

Outflow=0.06 cfs 0.016 af

Link 105L: Proposed Conditions Inflow=19.33 cfs 1.714 af


Primary=19.33 cfs 1.714 af

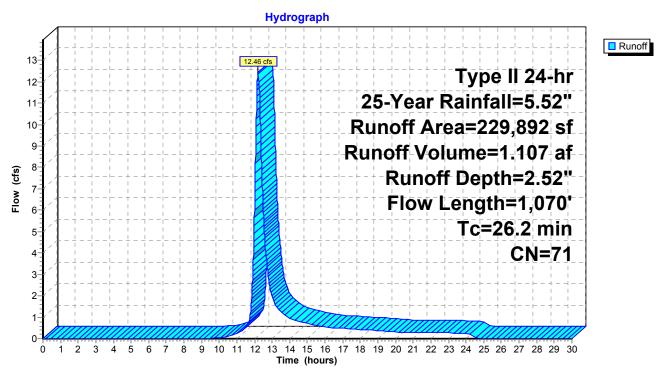
Total Runoff Area = 8.416 ac Runoff Volume = 1.803 af Average Runoff Depth = 2.57" 98.72% Pervious = 8.309 ac 1.28% Impervious = 0.107 ac Runoff = 1.23 cfs @ 12.01 hrs, Volume= 0.068 af, Depth= 3.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.52"

	Α	rea (sf)	CN I	Description						
		0	98	Paved park	ing, HSG C					
		0	89	Gravel roads, HSG C						
*		4,680	98	Crushed St	one Pad, H	ISG C				
		0	70	Noods, Go	od, HSG C					
		4,800	71 I	Meadow, no	on-grazed,	HSG C				
		9,480	84 \	Neighted A	verage					
		4,800		50.63% Pe	rvious Area					
		4,680	4	49.37% Imp	pervious Ar	ea				
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	8.8	100	0.0700	0.19		Sheet Flow, Sheet				
						Grass: Dense n= 0.240 P2= 3.12"				
	1.2	199	0.1500	2.71		Shallow Concentrated Flow, Shallow Concentrated				
						Short Grass Pasture Kv= 7.0 fps				
	10.0	299	Total	•	•					

Subcatchment 116S: DA TO MLV PAD

Page 65


Summary for Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Runoff = 12.46 cfs @ 12.20 hrs, Volume= 1.107 af, Depth= 2.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.52"

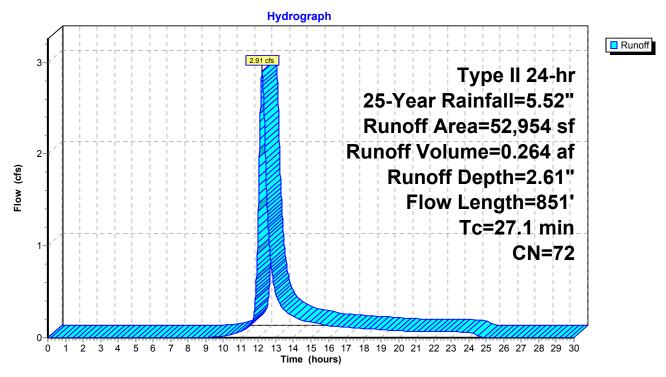
	Α	rea (sf)	CN [Description		
_		0	98 F	Paved park	ing HSG (}
		11,983		Gravel road		
*		0		Crushed St	•	ISG C
	1	65,033		Voods, Go	•	
		52,876		Meadow, no		
		29,892		Veighted A		
		29,892		100.00% Pe		na e
	_	0,00_			3. 1.000 7 11 0	·•
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	18.2	100	0.1250	0.09	, ,	Sheet Flow, Sheet
			000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.12"
	3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	0.8	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated
						Short Grass Pasture Kv= 7.0 fps
	0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated
						Unpaved Kv= 16.1 fps
	26.2	1,070	Total	_		

Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Printed 8/22/2016

Page 67

Summary for Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

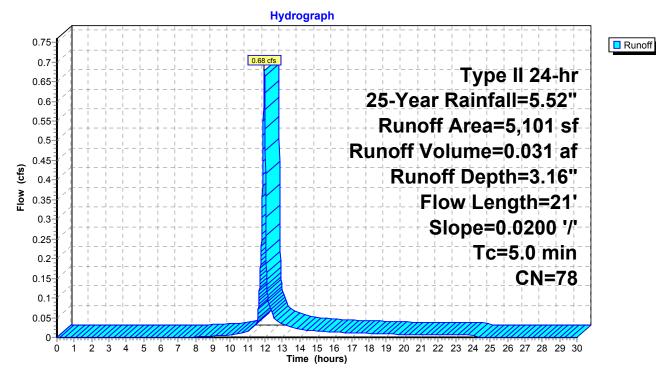

Runoff = 2.91 cfs @ 12.20 hrs, Volume= 0.264 af, Depth= 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.52"

	Α	rea (sf)	CN I	Description		
		0	98 I	Paved park	ing, HSG C	
		2,897	89 (Gravel road	ls, HSG C	
*		0	98 (Crushed St	one Pad, H	SG C
		13,655	70 \	Noods, Go	od, HSG C	
		36,402	71 I	Meadow, no	on-grazed,	HSG C
		52,954	72 \	Neighted A	verage	
		52,954	•	100.00% Pe	ervious Are	a
	Tc	Length	Slope	•	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	21.7	100	0.0800	0.08		Sheet Flow, Sheet
						Woods: Dense underbrush n= 0.800 P2= 3.12"
	0.4	47	0.1700	2.06		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.9	564	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
						Short Grass Pasture Kv= 7.0 fps
	0.8	101	0.1800	2.12		Shallow Concentrated Flow, Shallow Concentrated
						Shallow Concentrated Flow, Shallow Concentrated Woodland Kv= 5.0 fps
	0.8	101 39	0.1800 0.1000			Shallow Concentrated Flow, Shallow Concentrated Woodland Kv= 5.0 fps Shallow Concentrated Flow, Shallow Concentrated
						Shallow Concentrated Flow, Shallow Concentrated Woodland Kv= 5.0 fps

Page 68

Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

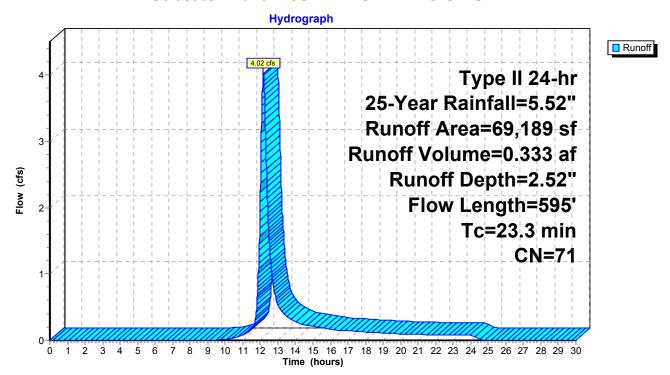

Summary for Subcatchment 122S: DA TO WQ SWALE

Runoff = 0.68 cfs @ 11.96 hrs, Volume= 0.031 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.52"

_	Α	rea (sf)	CN	Description				
		0	98	Paved park	ing, HSG C			
		1,962	89	Gravel road	ls, HSG C			
*		0	98	Crushed St	one Pad, H	ISG C		
		96	70	Woods, Go	od, HSG C			
		3,043	71	Meadow, n	on-grazed,	HSG C		
		5,101	78	78 Weighted Average				
		5,101		100.00% P	ervious Are	a		
_	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description		
	0.4	21	0.020	0 0.99		Sheet Flow, Sheet Smooth surfaces n= 0.011	P2= 3.12"	
	0.4	21	Total, Increased to minimum Tc = 5.0 min					

Subcatchment 122S: DA TO WQ SWALE


Summary for Subcatchment 123S: DA TO DIVERSION SWALE

Runoff = 4.02 cfs @ 12.17 hrs, Volume= 0.333 af, Depth= 2.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.52"

	Α	rea (sf)	CN D	escription					
		0	98 F	Paved parking, HSG C					
		906	89 G	Gravel roads, HSG C					
*		0	98 C	Crushed St	one Pad, H	ISG C			
		7,030	70 V	Voods, Go	od, HSG C				
_		61,253	71 N	leadow, no	on-grazed,	HSG C			
		69,189	71 V	Veighted A	verage				
		69,189	1	00.00% Pe	ervious Are	a			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	19.9	100	0.1000	0.08		Sheet Flow, Sheet			
						Woods: Dense underbrush n= 0.800 P2= 3.12"			
	0.3	42	0.2600	2.55		Shallow Concentrated Flow, Shallow Concentrated			
						Woodland Kv= 5.0 fps			
	3.1	453	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated			
_						Short Grass Pasture Kv= 7.0 fps			
	23.3	595	Total						

Subcatchment 123S: DA TO DIVERSION SWALE

Page 71

Summary for Pond 113P: WATER QUALITY SWALE

Inflow Area = 0.117 ac, 0.00% Impervious, Inflow Depth = 3.16" for 25-Year event

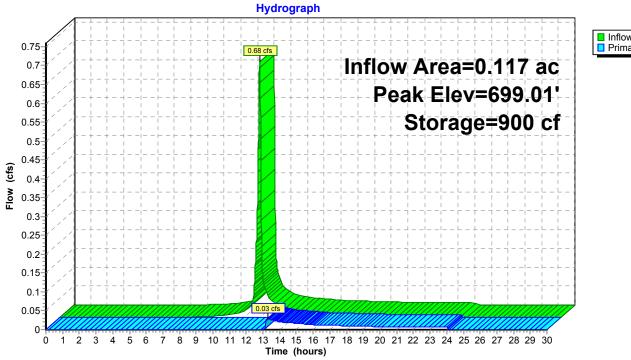
Inflow = 0.68 cfs @ 11.96 hrs, Volume= 0.031 af

Outflow = 0.03 cfs @ 13.30 hrs, Volume= 0.010 af, Atten= 96%, Lag= 80.4 min

Primary = 0.03 cfs @ 13.30 hrs, Volume= 0.010 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 699.01' @ 13.30 hrs Surf.Area= 0 sf Storage= 900 cf

Plug-Flow detention time= 342.5 min calculated for 0.010 af (33% of inflow)


Center-of-Mass det. time= 215.8 min (1,034.5 - 818.7)

Volume	Inve	rt Avail.Sto	rage	Storage Description
#1	698.0	0' 90)1 cf	Custom Stage DataListed below
Elevatio (fee 698.0 699.0 699.5	et) (c 00 50 00	um.Store ubic-feet) 0 450 900 901		
Device	Routing	Invert	Outl	et Devices
#1	Primary	699.00'	Hea 2.50 Coe	l' long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.02 cfs @ 13.30 hrs HW=699.01' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.02 cfs @ 0.23 fps)

Page 72

Pond 113P: WATER QUALITY SWALE

Page 73

Summary for Pond 124P: DIVERSION SWALE

Inflow Area = 1.588 ac, 0.00% Impervious, Inflow Depth = 2.52" for 25-Year event

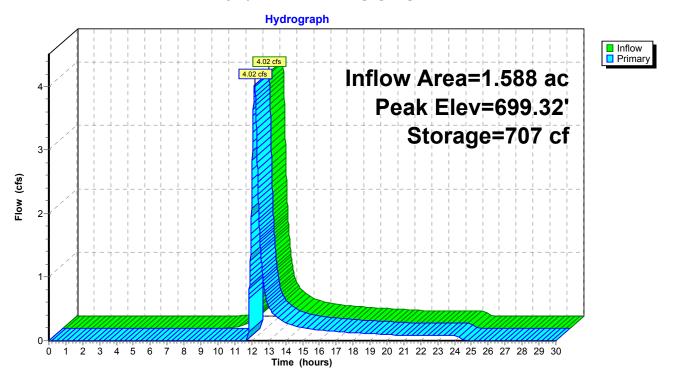
Inflow = 4.02 cfs @ 12.17 hrs, Volume= 0.333 af

Outflow = 4.02 cfs @ 12.17 hrs, Volume= 0.317 af, Atten= 0%, Lag= 0.0 min

Primary = 4.02 cfs @ 12.17 hrs, Volume= 0.317 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 699.32' @ 12.17 hrs Surf.Area= 0 sf Storage= 707 cf

Plug-Flow detention time= 36.3 min calculated for 0.317 af (95% of inflow)


Center-of-Mass det. time= 9.0 min (861.7 - 852.8)

Volume	Invert	Avail.Sto	rage	Storage Description
#1	698.00'	70)7 cf	Custom Stage DataListed below
Elevation (feet 698.00 698.50 699.00 699.50) (cub)))	m.Store bic-feet) 0 353 706 707		
Device	Routing	Invert	Outl	et Devices
#1	Primary	699.00'	Hea 2.50 Coe	long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.281 2.92 2.97 3.07 3.32

Primary OutFlow Max=4.02 cfs @ 12.17 hrs HW=699.32' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 4.02 cfs @ 1.42 fps)

Page 74

Pond 124P: DIVERSION SWALE

Page 75

Summary for Pond 126P: MLV PAD

Inflow Area = 0.218 ac, 49.37% Impervious, Inflow Depth = 3.75" for 25-Year event

Inflow = 1.23 cfs @ 12.01 hrs, Volume= 0.068 af

Outflow = 0.06 cfs @ 14.72 hrs, Volume= 0.016 af, Atten= 95%, Lag= 162.4 min

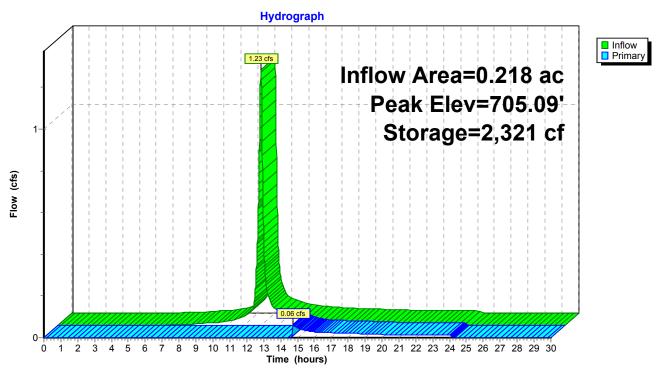
Primary = 0.06 cfs @ 14.72 hrs, Volume= 0.016 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 705.09' @ 14.72 hrs Surf.Area= 0 sf Storage= 2,321 cf

Plug-Flow detention time= 440.7 min calculated for 0.016 af (23% of inflow)

Center-of-Mass det. time= 295.3 min (1,102.6 - 807.3)

Volume	Invert Av	ail.Storage	Storage Description
#1	703.59'	2,322 cf	Stone Pad Void StorageListed below
			5,805 cf Overall x 40.0% Voids
Elevation	Cum.Store)	
(feet)	(cubic-feet)	<u>)</u>	


Elevation	Cum.Store
(feet)	(cubic-feet)
703.59	0
704.00	756
704.50	3,042
705.00	5,382
705.09	5,803
705.59	5,805

Device	Routing	Invert	Outlet Devices
#1	Primary	705.09'	90.0' long x 3.0' breadth Broad-Crested Rectangular Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32

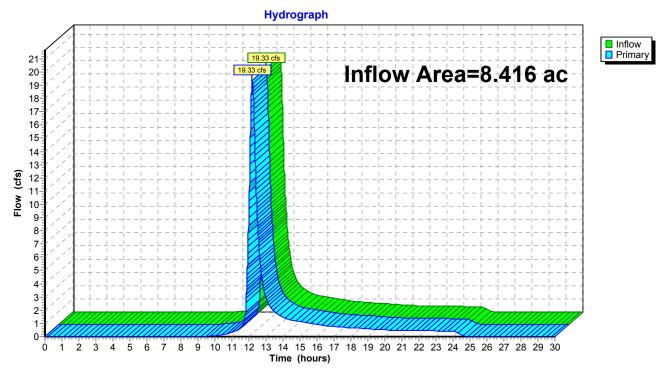
Primary OutFlow Max=0.02 cfs @ 14.72 hrs HW=705.09' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.02 cfs @ 0.11 fps)

Page 76

Pond 126P: MLV PAD

Page 77

Summary for Link 105L: Proposed Conditions


Inflow Area = 8.416 ac, 1.28% Impervious, Inflow Depth = 2.44" for 25-Year event

Inflow = 19.33 cfs @ 12.20 hrs, Volume= 1.714 af

Primary = 19.33 cfs @ 12.20 hrs, Volume= 1.714 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 105L: Proposed Conditions

Printed 8/22/2016

Page 78

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment116S: DA TO MLV PAD Runoff Area=9,480 sf 49.37% Impervious Runoff Depth=4.65"

Flow Length=299' Tc=10.0 min CN=84 Runoff=1.51 cfs 0.084 af

Subcatchment119S: OFFSITE DA TO Runoff Area=229,892 sf 0.00% Impervious Runoff Depth=3.29"

Flow Length=1,070' Tc=26.2 min CN=71 Runoff=16.42 cfs 1.447 af

Subcatchment120S: OFFSITE DA TO Runoff Area=52,954 sf 0.00% Impervious Runoff Depth=3.39"

Flow Length=851' Tc=27.1 min CN=72 Runoff=3.81 cfs 0.343 af

Subcatchment122S: DA TO WQ SWALE Runoff Area=5,101 sf 0.00% Impervious Runoff Depth=4.01"

Flow Length=21' Slope=0.0200 '/' Tc=5.0 min CN=78 Runoff=0.85 cfs 0.039 af

Subcatchment123S: DA TO DIVERSION Runoff Area=69,189 sf 0.00% Impervious Runoff Depth=3.29"

Flow Length=595' Tc=23.3 min CN=71 Runoff=5.30 cfs 0.435 af

Pond 113P: WATER QUALITY SWALE Peak Elev=699.02' Storage=900 cf Inflow=0.85 cfs 0.039 af

Outflow=0.09 cfs 0.018 af

Pond 124P: DIVERSION SWALE Peak Elev=699.38' Storage=707 cf Inflow=5.30 cfs 0.435 af

Outflow=5.30 cfs 0.419 af

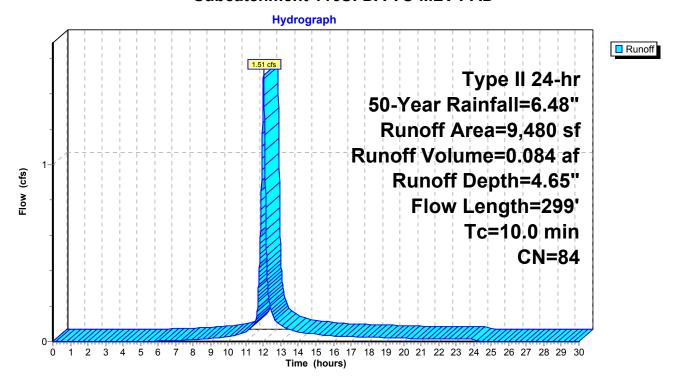
Pond 126P: MLV PAD Peak Elev=705.10' Storage=2,321 cf Inflow=1.51 cfs 0.084 af

Outflow=0.23 cfs 0.033 af

Link 105L: Proposed Conditions Inflow=25.52 cfs 2.261 af

Primary=25.52 cfs 2.261 af

Total Runoff Area = 8.416 ac Runoff Volume = 2.349 af Average Runoff Depth = 3.35" 98.72% Pervious = 8.309 ac 1.28% Impervious = 0.107 ac


Summary for Subcatchment 116S: DA TO MLV PAD

Runoff = 1.51 cfs @ 12.01 hrs, Volume= 0.084 af, Depth= 4.65"

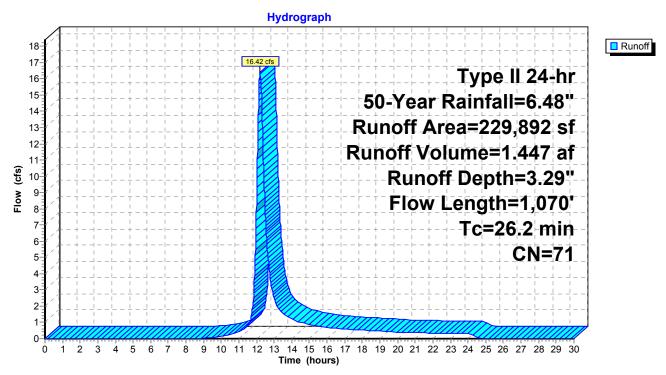
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.48"

	A	rea (sf)	CN E	Description					
		0	98 F	Paved parking, HSG C					
		0	89 (Gravel roads, HSG C					
*		4,680	98 (Crushed Stone Pad, HSG C					
		0	70 V	Voods, Go	od, HSG C				
		4,800	71 N	/leadow, n	on-grazed,	HSG C			
		9,480	84 V	Veighted A	verage				
		4,800	5	0.63% Pe	rvious Area	l .			
		4,680	4	9.37% Imp	pervious Ar	ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
(ı	min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.8	100	0.0700	0.19		Sheet Flow, Sheet			
						Grass: Dense n= 0.240 P2= 3.12"			
	1.2	199	0.1500	2.71		Shallow Concentrated Flow, Shallow Concentrated			
						Short Grass Pasture Kv= 7.0 fps			
	10.0	299	Total						

Subcatchment 116S: DA TO MLV PAD

Page 80

Summary for Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1


Runoff = 16.42 cfs @ 12.20 hrs, Volume= 1.447 af, Depth= 3.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.48"

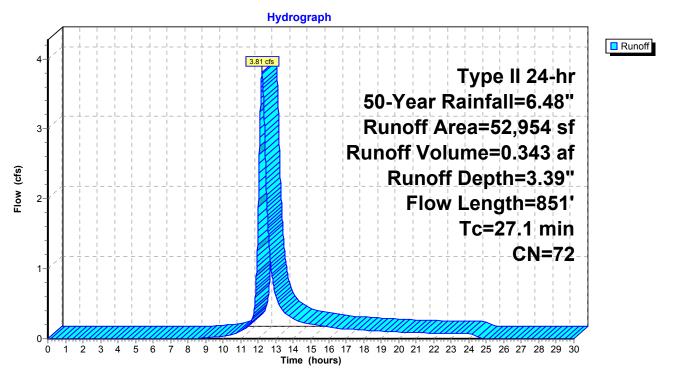
	Area (sf)	CN [Description		
	0	98 F	Paved park	ing, HSG C	
	11,983	89 (Gravel road	ls, HSG C	
*	0	98 (Crushed St	one Pad, H	ISG C
	165,033	70 \	Woods, Go	od, HSG C	
	52,876	71 N	Meadow, no	on-grazed,	HSG C
	229,892	71 \	Weighted A	verage	
	229,892	1	100.00% Pe	ervious Are	a
To		Slope	•	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
18.2	100	0.1250	0.09		Sheet Flow, Sheet
					Woods: Dense underbrush n= 0.800 P2= 3.12"
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
9.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated
	6.4	0.0000	4.55		Short Grass Pasture Kv= 7.0 fps
0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated
					Unpaved Kv= 16.1 fps
26.2	1,070	Total			

Page 81

Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Printed 8/22/2016 Page 82

Summary for Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

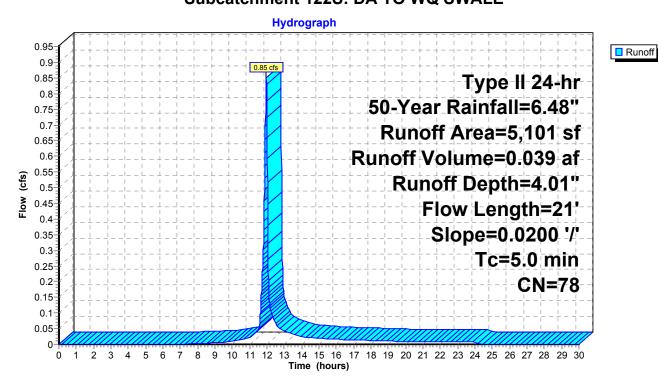

Runoff = 3.81 cfs @ 12.20 hrs, Volume= 0.343 af, Depth= 3.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.48"

	Area (sf)	CN I	Description		
	0	98 I	Paved park		
	2,897	89 (Gravel road	ls, HSG C	
*	0	98 (Crushed St	one Pad, H	ISG C
	13,655	70 \	Noods, Go	od, HSG C	
	36,402	71 I	Meadow, no	on-grazed,	HSG C
	52,954	72 \	Neighted A	verage	
	52,954	•	100.00% Pe	ervious Are	a
	c Length	Slope	•	Capacity	Description
<u>(mi</u> ı	n) (feet)	(ft/ft)	(ft/sec)	(cfs)	
21	.7 100	0.0800	0.08		Sheet Flow, Sheet
					Woods: Dense underbrush n= 0.800 P2= 3.12"
0.	.4 47	0.1700	2.06		Shallow Concentrated Flow, Shallow Concentrated
_					Woodland Kv= 5.0 fps
3.	9 564	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
•	0 404	0.4000	0.40		Short Grass Pasture Kv= 7.0 fps
0.	.8 101	0.1800	2.12		Shallow Concentrated Flow, Shallow Concentrated
^	2 20	0.4000	0.04		Woodland Kv= 5.0 fps
0.	.3 39	0.1000	2.21		Shallow Concentrated Flow, Shallow Concentrated
	4 051				Short Grass Pasture Kv= 7.0 fps
27	.1 851	Total			

Page 83

Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

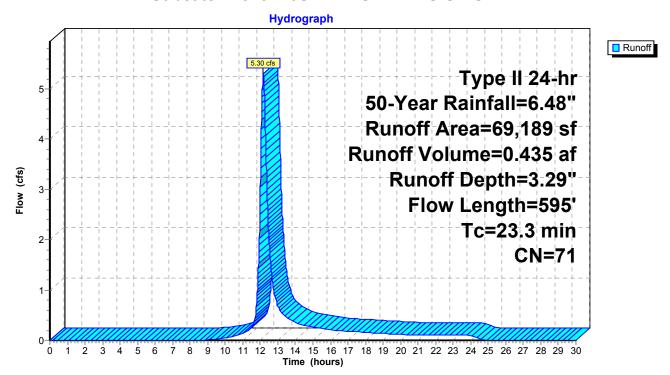

Summary for Subcatchment 122S: DA TO WQ SWALE

Runoff = 0.85 cfs @ 11.96 hrs, Volume= 0.039 af, Depth= 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.48"

_	Aı	rea (sf)	CN	Description						
		0	98	Paved park	Paved parking, HSG C					
		1,962	89	Gravel road	ls, HSG C					
*		0	98	Crushed St	one Pad, H	ISG C				
		96	70	Woods, Go	od, HSG C					
_		3,043	71	Meadow, no	on-grazed,	HSG C				
		5,101	78	Weighted A	verage					
		5,101		100.00% Pe	ervious Are	a				
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
	0.4	21	0.0200	0.99		Sheet Flow, Sheet Smooth surfaces n= 0.011	P2= 3.12"			
	0.4	21	Total,	Increased t	o minimum	Tc = 5.0 min				

Subcatchment 122S: DA TO WQ SWALE


Summary for Subcatchment 123S: DA TO DIVERSION SWALE

Runoff = 5.30 cfs @ 12.17 hrs, Volume= 0.435 af, Depth= 3.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.48"

	Α	rea (sf)	CN E	escription		
		0	98 F	aved park	ing, HSG C	
		906	89 G	Fravel road	ls, HSG C	
*		0	98 C	Crushed St	one Pad, H	ISG C
		7,030	70 V	Voods, Go	od, HSG C	
		61,253	71 N	leadow, no	on-grazed,	HSG C
		69,189	71 V	Veighted A	verage	
		69,189	1	00.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	19.9	100	0.1000	0.08		Sheet Flow, Sheet
						Woods: Dense underbrush n= 0.800 P2= 3.12"
	0.3	42	0.2600	2.55		Shallow Concentrated Flow, Shallow Concentrated
						Woodland Kv= 5.0 fps
	3.1	453	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
						Short Grass Pasture Kv= 7.0 fps
	23.3	595	Total			

Subcatchment 123S: DA TO DIVERSION SWALE

Page 86

Summary for Pond 113P: WATER QUALITY SWALE

Inflow Area = 0.117 ac, 0.00% Impervious, Inflow Depth = 4.01" for 50-Year event

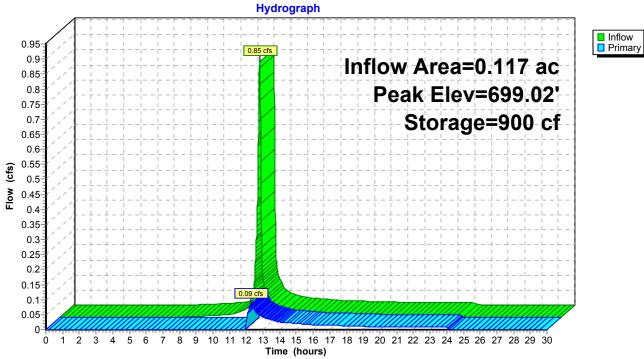
Inflow = 0.85 cfs @ 11.96 hrs, Volume= 0.039 af

Outflow = 0.09 cfs @ 12.29 hrs, Volume= 0.018 af, Atten= 90%, Lag= 19.8 min

Primary = 0.09 cfs @ 12.29 hrs, Volume= 0.018 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 699.02' @ 12.29 hrs Surf.Area= 0 sf Storage= 900 cf

Plug-Flow detention time= 256.6 min calculated for 0.017 af (45% of inflow)


Center-of-Mass det. time= 138.7 min (950.6 - 811.9)

Volume	Invert	t Avail.Sto	rage	Storage Description
#1	698.00	' 90)1 cf	Custom Stage DataListed below
Elevatio (fee 698.0 698.5 699.0	t) (cu 0 0 0	m.Store bic-feet) 0 450 900 901		
Device	Routing	Invert	Outl	et Devices
#1	Primary	699.00'	Hea 2.50 Coe	Viong x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.281 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.08 cfs @ 12.29 hrs HW=699.02' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.08 cfs @ 0.35 fps)

Page 87

Pond 113P: WATER QUALITY SWALE

Page 88

Summary for Pond 124P: DIVERSION SWALE

Inflow Area = 1.588 ac, 0.00% Impervious, Inflow Depth = 3.29" for 50-Year event

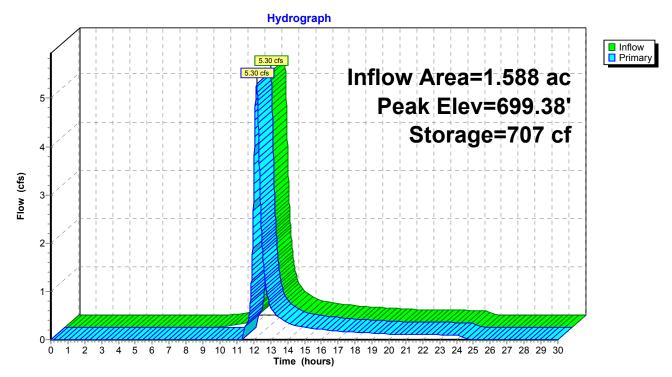
Inflow = 5.30 cfs @ 12.17 hrs, Volume= 0.435 af

Outflow = 5.30 cfs @ 12.17 hrs, Volume= 0.419 af, Atten= 0%, Lag= 0.0 min

Primary = 5.30 cfs @ 12.17 hrs, Volume= 0.419 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 699.38' @ 12.17 hrs Surf.Area= 0 sf Storage= 707 cf

Plug-Flow detention time= 29.3 min calculated for 0.419 af (96% of inflow)


Center-of-Mass det. time= 7.8 min (852.8 - 845.1)

Volume	Invert	Avail.Sto	rage	Storage Description
#1	698.00'	70)7 cf	Custom Stage DataListed below
Elevatio (fee 698.0 698.5 699.0	t) (cubi 0 0 0	n.Store ic-feet) 0 353 706 707		
Device	Routing	Invert	Outl	et Devices
#1	Primary	699.00'	Hea 2.50 Coe	long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=5.29 cfs @ 12.17 hrs HW=699.37' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 5.29 cfs @ 1.57 fps)

Page 89

Pond 124P: DIVERSION SWALE

Printed 8/22/2016 Page 90

Summary for Pond 126P: MLV PAD

Inflow Area = 0.218 ac, 49.37% Impervious, Inflow Depth = 4.65" for 50-Year event

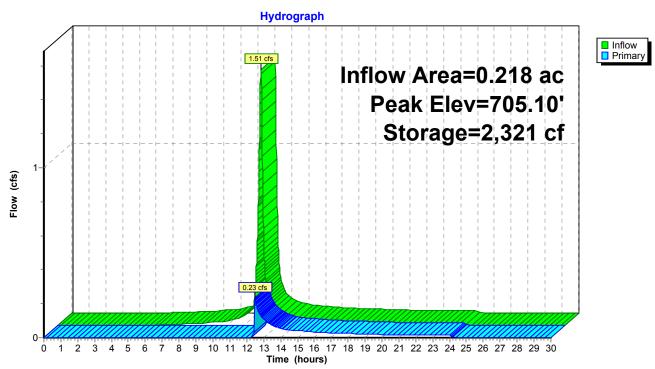
Inflow = 1.51 cfs @ 12.01 hrs, Volume= 0.084 af

Outflow = 0.23 cfs @ 12.48 hrs, Volume= 0.033 af, Atten= 85%, Lag= 28.0 min

Primary = 0.23 cfs @ 12.48 hrs, Volume= 0.033 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 705.10' @ 12.48 hrs Surf.Area= 0 sf Storage= 2,321 cf

Plug-Flow detention time= 285.9 min calculated for 0.033 af (40% of inflow)


Center-of-Mass det. time= 163.4 min (964.6 - 801.2)

Volume	Inve	rt Avail.Sto	rage	Storage Description
#1	703.59	9' 2,3	22 cf	Stone Pad Void StorageListed below 5,805 cf Overall x 40.0% Voids
Elevation	on C	um.Store		
(fee	et) (cı	ubic-feet)		
703.5	59	0		
704.0	00	756		
704.5	50	3,042		
705.0	00	5,382		
705.0)9	5,803		
705.5	59	5,805		
Device	Routing	Invert	Outl	let Devices
#1	Primary	705.09'	90.0)' long x 3.0' breadth Broad-Crested Rectangular Weir
	•		Hea	nd (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
				3.00 3.50 4.00 4.50
				ef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72	2 2.81 2.92 2.97 3.07 3.32

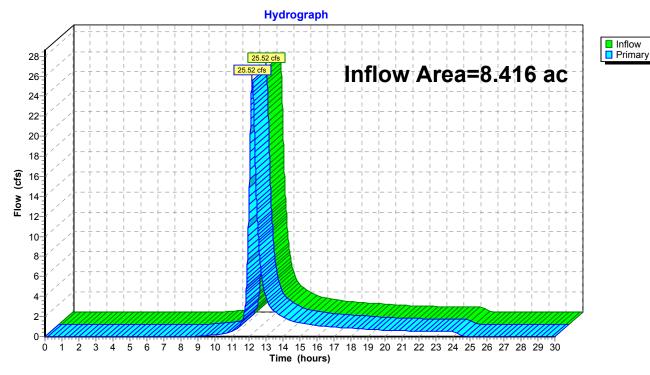
Primary OutFlow Max=0.14 cfs @ 12.48 hrs HW=705.10' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.14 cfs @ 0.21 fps)

Page 91

Pond 126P: MLV PAD

Page 92

Summary for Link 105L: Proposed Conditions


Inflow Area = 8.416 ac, 1.28% Impervious, Inflow Depth = 3.22" for 50-Year event

Inflow = 25.52 cfs @ 12.20 hrs, Volume= 2.261 af

Primary = 25.52 cfs @ 12.20 hrs, Volume= 2.261 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 105L: Proposed Conditions

Page 93

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment116S: DA TO MLV PAD Runoff Area=9,480 sf 49.37% Impervious Runoff Depth=4.87"

Flow Length=299' Tc=10.0 min CN=84 Runoff=1.58 cfs 0.088 af

Subcatchment119S: OFFSITE DA TO Runoff Area=229,892 sf 0.00% Impervious Runoff Depth=3.49"

Flow Length=1,070' Tc=26.2 min CN=71 Runoff=17.43 cfs 1.534 af

Subcatchment120S: OFFSITE DA TORunoff Area=52,954 sf 0.00% Impervious Runoff Depth=3.59"

Flow Length=851' Tc=27.1 min CN=72 Runoff=4.04 cfs 0.364 af

Subcatchment122S: DA TO WQ SWALE Runoff Area=5,101 sf 0.00% Impervious Runoff Depth=4.22"

Flow Length=21' Slope=0.0200 '/' Tc=5.0 min CN=78 Runoff=0.89 cfs 0.041 af

Subcatchment123S: DA TO DIVERSION Runoff Area=69,189 sf 0.00% Impervious Runoff Depth=3.49"

Flow Length=595' Tc=23.3 min CN=71 Runoff=5.62 cfs 0.462 af

Pond 113P: WATER QUALITY SWALE Peak Elev=699.05' Storage=900 cf Inflow=0.89 cfs 0.041 af

Outflow=0.32 cfs 0.020 af

Pond 124P: DIVERSION SWALE Peak Elev=699.39' Storage=707 cf Inflow=5.62 cfs 0.462 af

Outflow=5.62 cfs 0.446 af

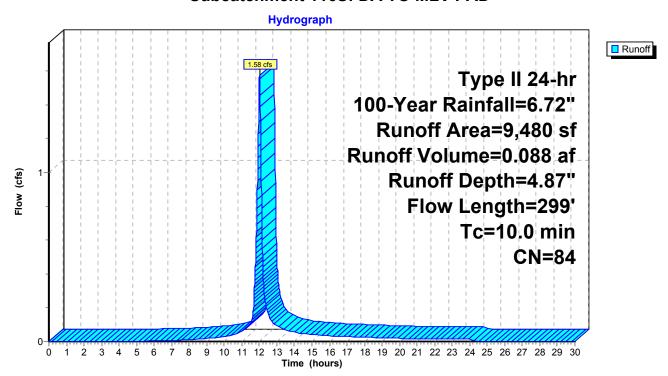
Pond 126P: MLV PAD Peak Elev=705.10' Storage=2,321 cf Inflow=1.58 cfs 0.088 af

Outflow=0.26 cfs 0.034 af

Link 105L: Proposed Conditions Inflow=27.11 cfs 2.398 af

Primary=27.11 cfs 2.398 af

Total Runoff Area = 8.416 ac Runoff Volume = 2.490 af Average Runoff Depth = 3.55" 98.72% Pervious = 8.309 ac 1.28% Impervious = 0.107 ac


Summary for Subcatchment 116S: DA TO MLV PAD

Runoff = 1.58 cfs @ 12.01 hrs, Volume= 0.088 af, Depth= 4.87"

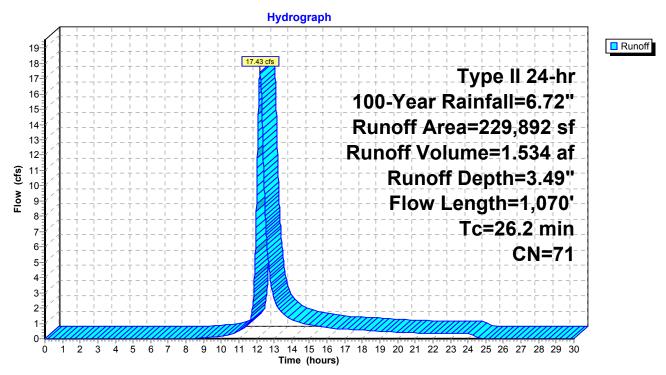
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=6.72"

	Α	rea (sf)	CN I	Description								
		0	98	Paved parking, HSG C								
		0	89	Gravel road	ls, HSG C							
*		4,680	98	Crushed St	one Pad, H	ISG C						
		0	70	Noods, Go	od, HSG C							
		4,800	71 I	Meadow, no	on-grazed,	HSG C						
		9,480	84 \	Neighted A	verage							
		4,800		50.63% Pervious Area								
		4,680	4	49.37% Imp	pervious Ar	ea						
	Tc	Length	Slope	Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	8.8	100	0.0700	0.19		Sheet Flow, Sheet						
						Grass: Dense n= 0.240 P2= 3.12"						
	1.2	199	0.1500	2.71		Shallow Concentrated Flow, Shallow Concentrated						
						Short Grass Pasture Kv= 7.0 fps						
	10.0	299	Total	•	•							

Subcatchment 116S: DA TO MLV PAD

Page 95

Summary for Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1


Runoff = 17.43 cfs @ 12.20 hrs, Volume= 1.534 af, Depth= 3.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=6.72"

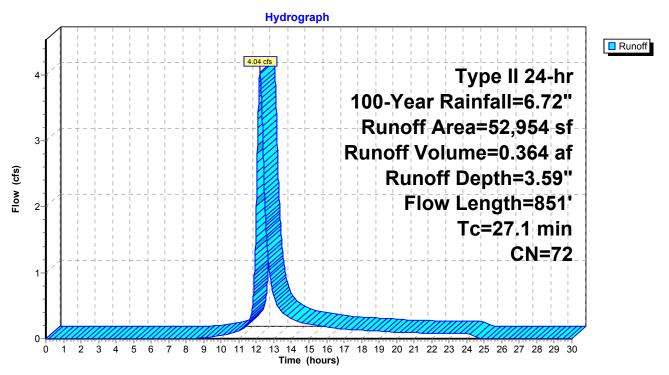
A	rea (sf)	CN E	Description		
	0	98 F	aved park	ing, HSG C	
	11,983	89 C	Gravel road	ls, HSG C	
*	0	98 C	Crushed St	one Pad, H	ISG C
1	65,033	70 V	Voods, Go	od, HSG C	
	52,876	71 N	/leadow, no	on-grazed,	HSG C
2	29,892	71 V	Veighted A	verage	
2	29,892	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
18.2	100	0.1250	0.09		Sheet Flow, Sheet
					Woods: Dense underbrush n= 0.800 P2= 3.12"
3.2	342	0.1250	1.77		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
8.0	132	0.3200	2.83		Shallow Concentrated Flow, Shallow Concentrated
					Woodland Kv= 5.0 fps
3.9	465	0.0800	1.98		Shallow Concentrated Flow, Shallow Concentrated
0.4	0.4				Short Grass Pasture Kv= 7.0 fps
0.1	31	0.0800	4.55		Shallow Concentrated Flow, Shallow Concentrated
					Unpaved Kv= 16.1 fps
26.2	1,070	Total			

Page 96

Subcatchment 119S: OFFSITE DA TO EXISTING CULVERT 1

Page 97

Summary for Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

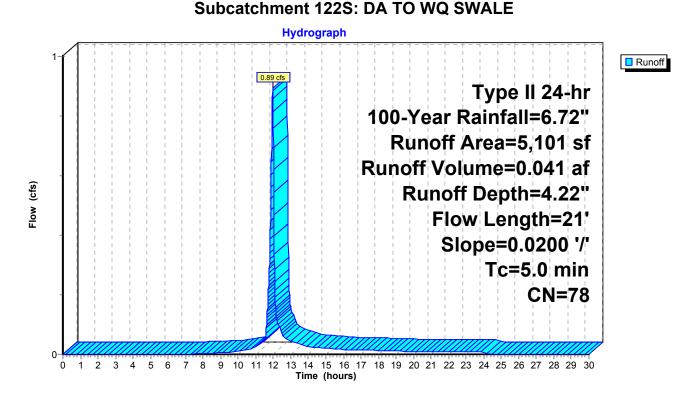

Runoff = 4.04 cfs @ 12.20 hrs, Volume= 0.364 af, Depth= 3.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=6.72"

	Α	rea (sf)	CN I	Description		
		2,897	89 (Gravel road	ls, HSG C	
*		0	98 (Crushed St	one Pad, H	SG C
		13,655	70 ١	Woods, Go	od. HSG C	
		36,402		Meadow, no	•	
_		52,954		Weighted A		
		52,954		100.00% Pe		a
		JZ,3J T		100.00 /0 1 6	ei vious Ai c	a
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	•	(cfs)	2 dod i piloti
_	21.7	100	0.0800		(313)	Sheet Flow, Sheet
	21.7	100	0.0000	0.00		Woods: Dense underbrush n= 0.800 P2= 3.12"
	0.4	47	0.1700	2.06		Shallow Concentrated Flow, Shallow Concentrated
	0.4	71	0.1700	2.00		Woodland Kv= 5.0 fps
	3.9	564	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated
	0.0	JU -1	0.1200	2.72		Short Grass Pasture Kv= 7.0 fps
	0.8	101	0.1800	2.12		Shallow Concentrated Flow, Shallow Concentrated
	0.6	101	0.1000	2.12		Woodland Kv= 5.0 fps
	0.3	39	0.1000	2.21		Shallow Concentrated Flow, Shallow Concentrated
	0.3	39	0.1000	2.21		·
_						Short Grass Pasture Kv= 7.0 fps
	27.1	851	Total			

Page 98

Subcatchment 120S: OFFSITE DA TO EXISTING CULVERT 2

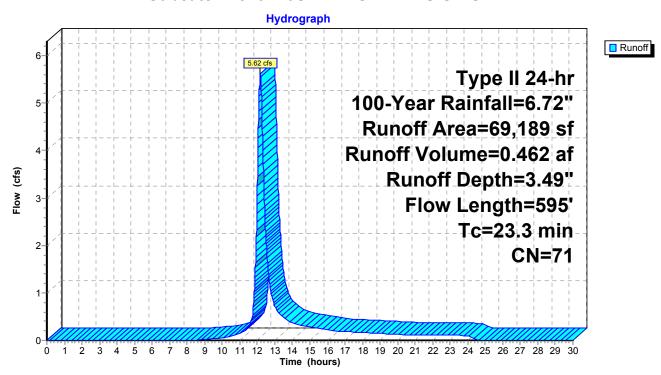


Summary for Subcatchment 122S: DA TO WQ SWALE

Runoff = 0.89 cfs @ 11.96 hrs, Volume= 0.041 af, Depth= 4.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=6.72"

_	Α	rea (sf)	CN	Description					
		0							
		1,962	89	Gravel road	ls, HSG C				
*		0	98	Crushed St	one Pad, H	ISG C			
		96	70	Woods, Go	od, HSG C				
		3,043	71	Meadow, n	on-grazed,	HSG C			
		5,101	78	78 Weighted Average					
		5,101		100.00% P	ervious Are	a			
_	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description			
	0.4	21	0.020	0 0.99		Sheet Flow, Sheet Smooth surfaces n= 0.011	P2= 3.12"		
	0.4	21	Total,	Total, Increased to minimum Tc = 5.0 min					


Summary for Subcatchment 123S: DA TO DIVERSION SWALE

Runoff = 5.62 cfs @ 12.17 hrs, Volume= 0.462 af, Depth= 3.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=6.72"

	Α	rea (sf)	CN D	escription							
		0	98 F	98 Paved parking, HSG C							
		906	89 G	Gravel road	ls, HSG C						
*		0	98 C	Crushed St	one Pad, H	ISG C					
		7,030	70 V	Voods, Go	od, HSG C						
_		61,253	71 N	leadow, no	on-grazed,	HSG C					
		69,189	71 V	Veighted A	verage						
		69,189	1	00.00% Pe	ervious Are	a					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	19.9	100	0.1000	0.08		Sheet Flow, Sheet					
						Woods: Dense underbrush n= 0.800 P2= 3.12"					
	0.3	42	0.2600	2.55		Shallow Concentrated Flow, Shallow Concentrated					
						Woodland Kv= 5.0 fps					
	3.1	453	0.1200	2.42		Shallow Concentrated Flow, Shallow Concentrated					
_						Short Grass Pasture Kv= 7.0 fps					
	23.3	595	Total								

Subcatchment 123S: DA TO DIVERSION SWALE

Printed 8/22/2016

Page 101

Summary for Pond 113P: WATER QUALITY SWALE

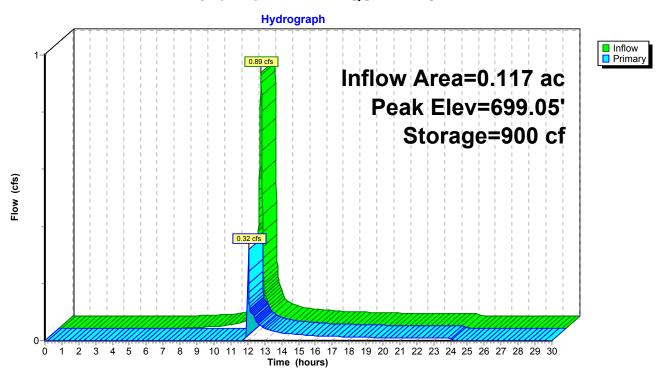
Inflow Area = 0.117 ac, 0.00% Impervious, Inflow Depth = 4.22" for 100-Year event

Inflow = 0.89 cfs @ 11.96 hrs, Volume= 0.041 af

Outflow = 0.32 cfs @ 12.05 hrs, Volume= 0.020 af, Atten= 65%, Lag= 5.6 min

Primary = 0.32 cfs @ 12.05 hrs, Volume= 0.020 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 699.05' @ 12.05 hrs Surf.Area= 0 sf Storage= 900 cf


Plug-Flow detention time= 240.9 min calculated for 0.020 af (48% of inflow)

Center-of-Mass det. time= 124.8 min (935.2 - 810.4)

Volume	Invert	: Avail.Sto	rage	Storage Description
#1	698.00	' 90)1 cf	Custom Stage DataListed below
Elevation (fee	et) (cul 00 50	m.Store bic-feet) 0 450 900		
699.	50	901		
Device	Routing	Invert	Outl	let Devices
#1	Primary	699.00'	Hea 2.50 Coe	O' long x 3.0' breadth Broad-Crested Rectangular Weir and (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 af. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.281 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.28 cfs @ 12.05 hrs HW=699.04' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.28 cfs @ 0.51 fps)

Pond 113P: WATER QUALITY SWALE

Printed 8/22/2016

Page 103

Summary for Pond 124P: DIVERSION SWALE

Inflow Area = 1.588 ac, 0.00% Impervious, Inflow Depth = 3.49" for 100-Year event

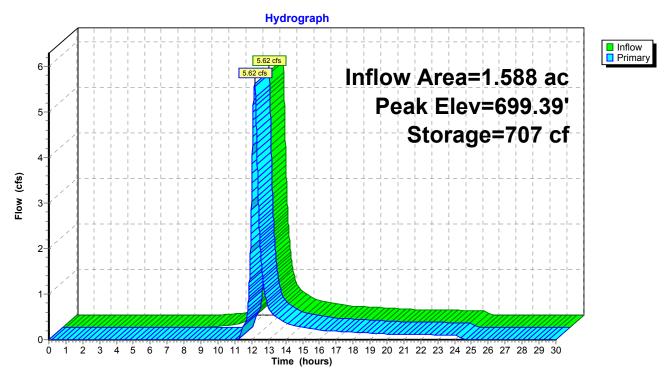
Inflow = 5.62 cfs @ 12.17 hrs, Volume= 0.462 af

Outflow = 5.62 cfs @ 12.17 hrs, Volume= 0.446 af, Atten= 0%, Lag= 0.0 min

Primary = 5.62 cfs @ 12.17 hrs, Volume= 0.446 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 9 Peak Elev= 699.39' @ 12.17 hrs Surf.Area= 0 sf Storage= 707 cf

Plug-Flow detention time= 27.7 min calculated for 0.446 af (96% of inflow)


Center-of-Mass det. time= 7.5 min (850.9 - 843.4)

Volume	Invert	: Avail.Sto	age	Storage Description
#1	698.00	' 70	7 cf	Custom Stage DataListed below
Elevatio (fee 698.0 698.5 699.0	t) (cul 0 0 0	m.Store bic-feet) 0 353 706 707		
Device	Routing	Invert	Outl	et Devices
#1	Primary	699.00'	Hea 2.50 Coe	long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 0 3.00 3.50 4.00 4.50 f. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=5.62 cfs @ 12.17 hrs HW=699.39' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 5.62 cfs @ 1.60 fps)

Page 104

Pond 124P: DIVERSION SWALE

Prepared by BL Companies

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Printed 8/22/2016 Page 105

Summary for Pond 126P: MLV PAD

Inflow Area = 0.218 ac, 49.37% Impervious, Inflow Depth = 4.87" for 100-Year event

Inflow 1.58 cfs @ 12.01 hrs, Volume= 0.088 af

0.26 cfs @ 12.32 hrs, Volume= Outflow 0.034 af, Atten= 83%, Lag= 18.7 min

Primary 0.26 cfs @ 12.32 hrs, Volume= 0.034 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 705.10' @ 12.32 hrs Surf.Area= 0 sf Storage= 2,321 cf

Plug-Flow detention time= 287.6 min calculated for 0.034 af (39% of inflow)

Center-of-Mass det. time= 164.1 min (964.0 - 799.9)

Volume	Invert	Avail.Sto	rage	Storage Description
#1	703.59'	2,32	22 cf	Stone Pad Void StorageListed below 5,805 cf Overall x 40.0% Voids
Elevation	n Cum	.Store		
(feet) (cubio	c-feet)		
703.59	9	0		
704.00)	756		
704.50		3,042		
705.00)	5,382		
705.09	9	5,803		
705.59	9	5,805		
Device	Routing	Invert	Outl	et Devices
#1	Primary	705.09'	Hea	' long x 3.0' breadth Broad-Crested Rectangular Weir d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 3.00 3.50 4.00 4.50

2.72 2.81 2.92 2.97 3.07 3.32

Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68

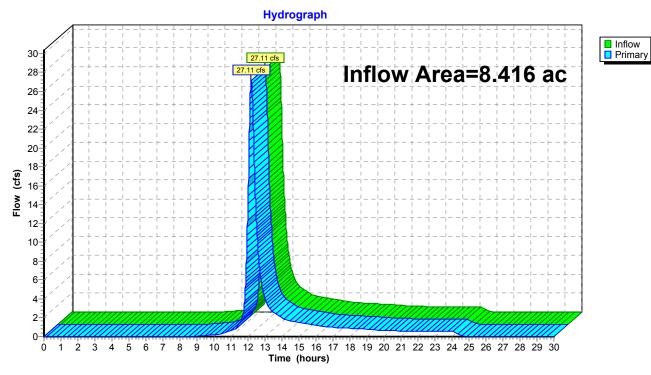
Primary OutFlow Max=0.14 cfs @ 12.32 hrs HW=705.10' (Free Discharge)
1=Broad-Crested Rectangular Weir (Weir Controls 0.14 cfs @ 0.21 fps)

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 126P: MLV PAD

Page 107

Summary for Link 105L: Proposed Conditions


Inflow Area = 8.416 ac, 1.28% Impervious, Inflow Depth = 3.42" for 100-Year event

Inflow = 27.11 cfs @ 12.20 hrs, Volume= 2.398 af

Primary = 27.11 cfs @ 12.20 hrs, Volume= 2.398 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 105L: Proposed Conditions

J.5 Conveyance Calculations a. E&S Worksheet 11 b. NAG Swale Lining Analysis c. Figure 9.3-Riprap Apron Design

E&S WORKSHEET # 11 Channel Design Data

PROJECT NAME: Atlantic Sunrise	
LOCATION: AR-SC-063 Diversion Swale _	
PREPARED BY: OLC	DATE: 7/26/16
OUEOVED DV. D ID	DATE: 7/00/40

CHECKED BY: BJP		DATE: 7/26/1	6
CHANNEL OR CHANNEL SECTION	AR-SC-063 LINING (MIN)	AR-SC-063 GRASS (MIN)	
TEMPORARY OR PERMANENT? (T OR P)	Р	Р	
DESIGN STORM (2, 5, OR 10 YR)	10	10	
ACRES (AC)	1.61	1.61	
MULTIPLIER ¹ (1.6, 2.25, or 2.75) ¹	-	-	
Qr (REQUIRED CAPACITY) (CFS)	0.51	0.51	
Q (CALCULATED AT FLOW DEPTH d) (CFS)	0.46	0.52	
PROTECTIVE LINING ²	SC250	SC250 REINFORCED VEGATATION	
n (MANNING'S COEFFICIENT) ²	0.04	0.25	
Va (ALLOWABLE VELOCITY) (FPS)	N/A	N/A	
V (CALCULATED AT FLOW DEPTH d) (FPS)	1.49	0.50	
та (MAX ALLOWABLE SHEAR STRESS) (LB/FT²)	2.50	8.00	
td (CALC'D SHEAR STRESS AT FLOW DEPTH d) (LB/FT ²)	0.28	0.90	
CHANNEL BOTTOM WIDTH (FT)	6	6	
CHANNEL SIDE SLOPES (H:V)	3	3	
D (TOTAL DEPTH) (FT)	1.5	1.5	
CHANNEL TOP WIDTH @ D (FT)	15	15	
d (CALCULATED FLOW DEPTH) (FT)	0.05	0.16	
CHANNEL TOP WIDTH @ FLOW DEPTH d (FT)	6.30	6.96	
BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX)	120.00	37.50	
d50 STONE SIZE (IN)	N/A	N/A	
A (CROSS-SECTIONAL AREA) (SQ. FT.)	0.31	1.04	
R (HYDRAULIC RADIUS)	0.05	0.15	
S (BED SLOPE) ³ (FT/FT)	0.09	0.09	
Sc (CRITICAL SLOPE) (FT/FT)	0.064	1.734	
.7Sc (FT/FT)	0.045	1.214	
1.3Sc (FT/FT)	0.083	2.254	
STABLE FLOW? (Y/N)	Y	Υ	
FREEBOARD BASED ON UNSTABLE FLOW (FT)	0.01	0.0	
FREEBOARD BASED ON STABLE FLOW (FT)	0.50	0.5	
MINIMUM REQUIRED FREEBOARD ⁴ (FT)	0.50	0.5	
DESIGN METHOD FOR PROTECTIVE LINING 5 PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S)	S	S	

^{1.} Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.

- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

Source: 363-2134-008 / March 31, 2012 / Page 382

^{2.} Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.

E&S WORKSHEET # 11 Channel Design Data

PROJECT NAME: Atlantic Sunrise	
LOCATION: AR-SC-063 Water Quality Swale	
PREPARED BY: JMS	DATE: 5/01/15
OUEOVED DV. D ID	DATE: 5/04/45

CHECKED BY: BJP		DATE: 5/01/1	5
CHANNEL OR CHANNEL SECTION	AR-SC-063 LINING (MIN)	AR-SC-063 GRASS (MIN)	
TEMPORARY OR PERMANENT? (T OR P)	Р	Р	
DESIGN STORM (2, 5, OR 10 YR)	10	10	
ACRES (AC)	0.12	0.12	
MULTIPLIER ¹ (1.6, 2.25, or 2.75) ¹	-	-	
Qr (REQUIRED CAPACITY) (CFS)	0.51	0.51	
Q (CALCULATED AT FLOW DEPTH d) (CFS)	0.51	0.58	
PROTECTIVE LINING ²	SC250	SC250 REINFORCED VEGETATION	
n (MANNING'S COEFFICIENT) ²	0.04	0.25	
Va (ALLOWABLE VELOCITY) (FPS)	N/A	N/A	
V (CALCULATED AT FLOW DEPTH d) (FPS)	1.96	0.62	
та (MAX ALLOWABLE SHEAR STRESS) (LB/FT²)	2.50	8.00	
td (CALC'D SHEAR STRESS AT FLOW DEPTH d) (LB/FT²)	0.45	1.40	
CHANNEL BOTTOM WIDTH (FT)	3	3	
CHANNEL SIDE SLOPES (H:V)	3	3	
D (TOTAL DEPTH) (FT)	3.0	3.0	
CHANNEL TOP WIDTH @ D (FT)	21	21	
d (CALCULATED FLOW DEPTH) (FT)	0.08	0.25	
CHANNEL TOP WIDTH @ FLOW DEPTH d (FT)	3.48	4.50	
BOTTOM WIDTH: FLOW DEPTH RATIO (12:1 MAX)	37.50	12.00	
d50 STONE SIZE (IN)	N/A	N/A	
A (CROSS-SECTIONAL AREA) (SQ. FT.)	0.26	0.94	
R (HYDRAULIC RADIUS)	0.07	0.20	
S (BED SLOPE) ³ (FT/FT)	0.09	0.09	
Sc (CRITICAL SLOPE) (FT/FT)	0.056	1.572	
.7Sc (FT/FT)	0.039	1.100	
1.3Sc (FT/FT)	0.073	2.044	
STABLE FLOW? (Y/N)	Y	Υ	
FREEBOARD BASED ON UNSTABLE FLOW (FT)	0.01	0.0	
FREEBOARD BASED ON STABLE FLOW (FT)	0.50	0.5	
MINIMUM REQUIRED FREEBOARD ⁴ (FT)	0.50	0.5	
DESIGN METHOD FOR PROTECTIVE LINING ⁵ PERMISSIBLE VELOCITY (V) OR SHEAR STRESS (S)	S	S	

^{1.} Use 1.6 for Temporary Channels; 2.25 for Temporary Channels in Special Protection (HQ or EV) Watersheds; 2.75 for Permanent Channels. For Rational Method, enter "N/A" and attach E&S Worksheets 9 and 10. For TR-55 enter "N/A" and attach appropriate Worksheets.

- 3. Slopes may not be averaged.
- 4. Minimum Freeboard is 0.5 ft. or 1/4 Total Channel Depth, whichever is greater
- 5. Permissible velocity lining design method is not acceptable for channels with a bed slope of 10% or greater. Shear stress lining design method is required for channels with a bed slope of 10% or greater. Shear stress lining design method may be used for any channel bed slope.

Source: 363-2134-008 / March 31, 2012 / Page 382

^{2.} Adjust "n" value for changes in channel liner and flow depth. For vegetated channels, provide data for manufactured linings without vegetation and with vegetation in separate columns.

Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com

Erosion Control Materials Design Software Version 5.0

Project Name: ASR Access Roads Project Number: 63544 Channel Name: AR-SC-063 Diversion Swale

Discharge	2.81
Peak Flow Period	24
Channel Slope	0.09
Channel Bottom Width	3
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	С
Vegtation Type	Mix (Sod & Bunch)
Vegetation Density	Good 75-95%
Soil Type	Silt Loam

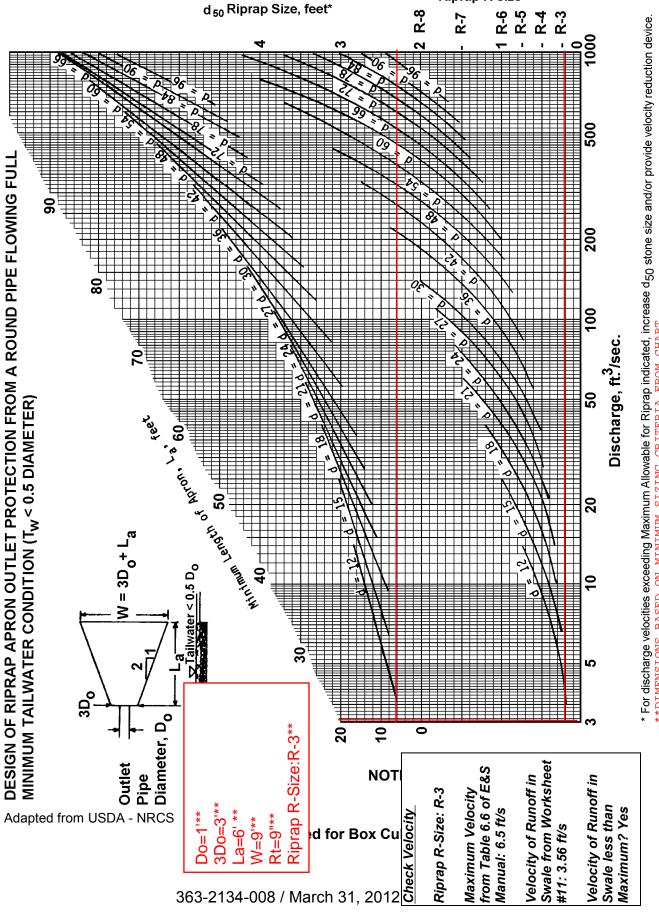
SC250 - Class C - Mix (Sod & Bunch) - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
				-						
SC250	Straight	2.81 cfs	3.56	0.22 ft	0.04	2.5 lbs/ft2	1.21 lbs/ft2	2.06	STABLE	Е
Unvegetated			ft/s							
SC250	Straight	2.81 cfs	1.73	0.39 ft	0.115	8 lbs/ft2	2.19 lbs/ft2	3.66	STABLE	Е
Reinforced			ft/s							
Vegetation										
Underlying	Straight	2.81 cfs	1.73	0.39 ft		0.8 lbs/ft2	0.066 lbs/ft2	12.04	STABLE	
Substrate			ft/s							

Tensar International Corporation 5401 St. Wendel-Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com

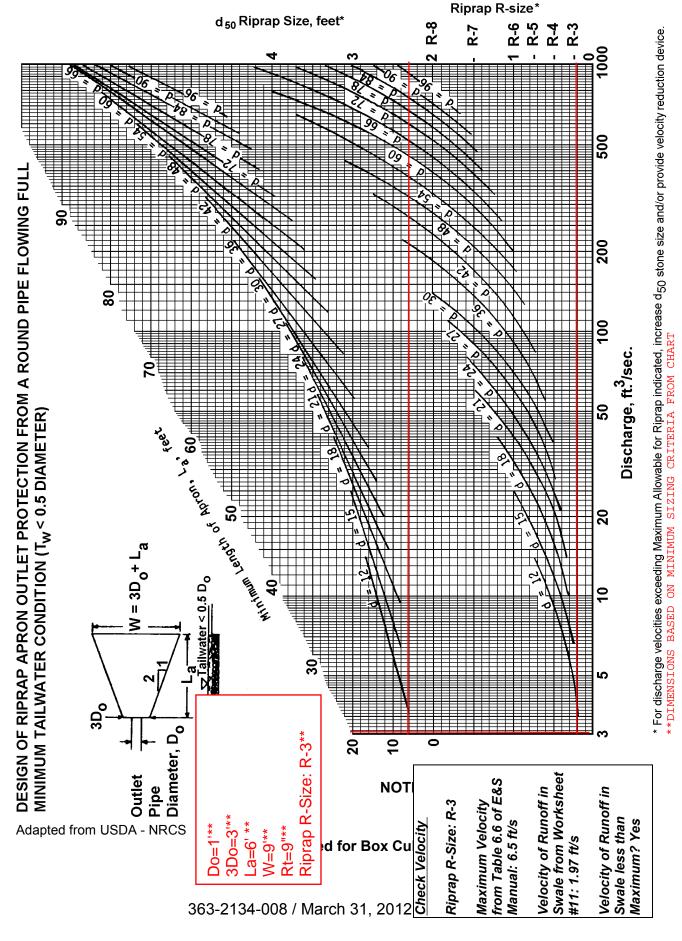
Erosion Control Materials Design Software Version 5.0

Project Name: ASR Access Roads Project Number: 63544 Channel Name: AR-SC-063 WQS


Discharge	0.51
Peak Flow Period	24
Channel Slope	0.09
Channel Bottom Width	6
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardance Class	С
Vegtation Type	Mix (Sod & Bunch)
Vegetation Density	Good 75-95%
Soil Type	Silt Loam

SC250 - Class C - Mix (Sod & Bunch) - Good 75-95%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
				Берин	1,	Silver Stress	Shear Stress	1 40001		1 11000111
SC250	Straight	0.51 cfs	1.55	0.05 ft	0.04	2.5 lbs/ft2	0.3 lbs/ft2	8.34	STABLE	Е
Unvegetated			ft/s							
SC250	Straight	0.51 cfs	0.5 ft/s	0.16 ft	0.25	8 lbs/ft2	0.89 lbs/ft2	8.97	STABLE	Е
Reinforced										
Vegetation										
Underlying	Straight	0.51 cfs	0.5 ft/s	0.16 ft		0.8 lbs/ft2	0.006 lbs/ft2	140.39	STABLE	
Substrate										


FIGURE 9.3 Riprap Apron Design, Minimum Tailwater Condition

Riprap R-size*

* For discharge velocities exceeding Maximum Allowable for Riprap indicated, increase d₅₀ stone size and/or provide velocity reduction device. **DIMENSIONS BASED ON MINIMUM SIZING CRITERIA FROM CHART

FIGURE 9.3
Riprap Apron Design, Minimum Tailwater Condition

J.6 PCSM BMP Calculations

a. Check Dam Volume Calculations

ATLANTIC SUNRISE NATURAL GAS PIPELINE PROJECT (ACCESS ROAD) VEGETATED CHANNEL FOR INFILTRATION CHECKDAM VOLUME **AR-SC-063**

7/25/2016

TOTAL REACH VOLUME =

900 CF

Width (W_B) : 6 FT.

Depth (H): 1

FT.

<u>VEGETATED CHANNEL FOR INFILTRATION PAR-SC-063</u> <u>VEGETATED CHANNEL FOR INFILTRATION PAR-SC-063</u>

ROAD STA 1+15 to 1+85

Input data

ROAD STA 1+85 to 2+20

Input data

S = 0.005 ft/ft

H = 1 ft

 $W_B =$ 6

> $z_1 =$ 3

 $Z_2 =$ 3

0.170 ft/ft S =

H = 1 ft

 $W_B =$ 6

 $Z_1 =$ 3

 $Z_2 =$ 3

Output data

 $L_{\text{storage}} =$ 200 ft

 $W_T =$ 12 ft

 $W_T + W_B =$ 18 ft

V = 900 cf

> L_{spacing} = 203

No. of rock filters =

Subreach Volume = 900 CF

Output data

6 ft $L_{\text{storage}} =$

 $W_T =$ 12 ft

 $W_T + W_B =$ 18 ft V =

26 cf

 $L_{\text{spacing}} =$

No. of rock filters = 0 (>6%)

Subreach Volume = 0 CF

Infiltration(Q_i)

Infiltration Area = 510 sf

Field $Q_i = 4.3 \text{ in/hr}$

Factor of Safety = 2.0

Reduced $Q_i = 2.1$ in/hr

Dewatering Time = 5.61 hr

Less than 72 hours? YES

ATLANTIC SUNRISE NATURAL GAS PIPELINE PROJECT (ACCESS ROAD) VEGETATED CHANNEL FOR DIVERSION CHECKDAM VOLUME AR-SC-063

7/25/2016

TOTAL REACH VOLUME = 635 CF Width (W_B) : 3 FT. Depth (H): 1 FT.

<u>VEGETATED CHANNEL FOR DIVERSION PAR-SC-063</u> <u>VEGETATED CHANNEL FOR DIVERSION PAR-SC-063</u>

ROAD STA 1+15 to 1+85

ROAD STA 1+85 to 2+00

Input data

Input data

S =	0.005	ft/ft
H =	1	ft
$W_B =$	3	
z ₁ =	3	
7. =	2	

$$S = 0.170 \text{ ft/ft}$$

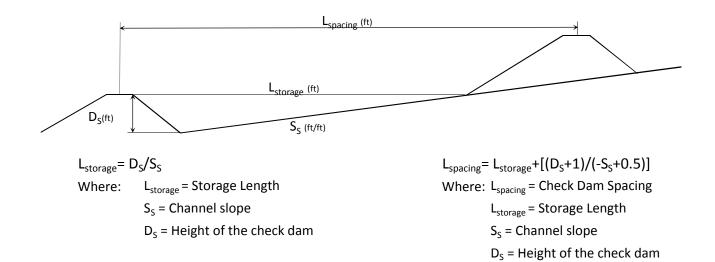
 $H = 1 \text{ ft}$
 $W_B = 3$
 $z_1 = 3$
 $z_2 = 3$

Output data

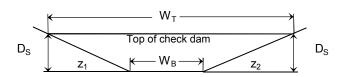
Output data

$$L_{storage}$$
= 6 ft W_T = 9 ft $W_T + W_B$ = 12 ft V = 18 cf $L_{soacing}$ = 9

No. of rock filters = 1 Subreach Volume = 600 CF No. of rock filters = 2 Subreach Volume = 35 CF


Infiltration(Q_i)

$Infiltration(Q_i)$


Infiltration Area = 255 sf Field Q_i = 4.3 in/hr Factor of Safety = 2.0 Reduced Q_i = 2.1 in/hr Dewatering Time = 5.61 hr Less than 72 hours? YES Infiltration Area = 255 sf Field Q_i = 4.3 in/hr Factor of Safety = 2.0 Reduced Q_i = 2.1 in/hr Dewatering Time = 5.61 hr Less than 72 hours? YES

EARTHEN CHECK DAM INFILTRATION VOLUME AND SPACING

Per the Pennsylvania Stormwater BMP Manual (pg 94), the minimum spacing ($L_{spacing}$) of check dams is determined by the length of the storage volume ($L_{storage}$) and the length to the check dam center line. The length of the storage volume is calculated by dividing the height of the rock filter (D_s) by the slope of the channel (S_s):

The volume of runoff that will be stored upstream of a check dam is dependent on the height of the check dam, the slope of the upstream channel and the dimensions of the upstream channel. The storage volume (V_s) can be calculated with:

$$V_S = 0.25 \times L_{storage} \times D_S \times (W_T + W_B)$$

Where:

L_{storage} = Storage Length

D_S = Height of check dam

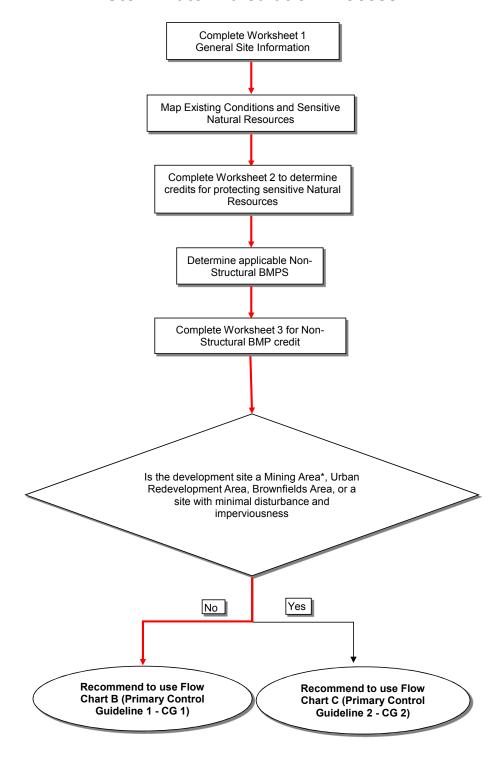
 W_T = check dam top width

W_B = check dam bottom width

The check dam top width (W_T) is given by:

$$W_T = W_B + z_1 + z_2$$

Where: W_B = check dam bottom width


 z_1 = side slope

 z_2 = side slope

J.7 Water Quality Worksheets a. Flow Chart A – Stormwater Calculation Process

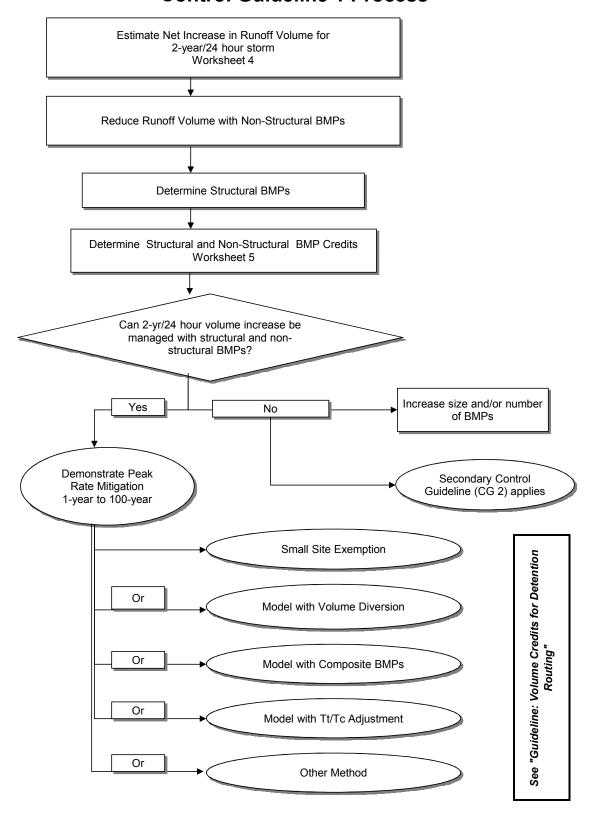
- b. Worksheet 1. General Site Information
- c. Worksheet 2. Sensitive Natural Resources
- d. Worksheet 3. Nonstructural BMP Credits
- e. Flow Chart B Control Guideline 1 Process
- f. Worksheet 4. Change in Runoff Volume for 2-Yr Storm Event
- g. Worksheet 5. Structural BMP Volume Credits
- h. Worksheet 10. Water Quality Compliance for Nitrate
- i. Worksheet 11. BMPS for Pollution Prevention

FLOW CHART A Stormwater Calculation Process

	Worksheet 1. Genera	al Site Information		
RUCTIONS: Fill out W	orksheet 1 for each watershed			
Date:		26-Jul-16		_
Project Name:	Atlantic S	Sunrise Pipeline AR-SC-063		
Municipality:	P	Pine Grove Township		
County:		Schuylkill		
Total Area (acres):		1.18		
Major River Basin:		Susquehanna		
http://www.dep.state.	pa.us/dep/depupdate/watermgt/wo	c/default.htm#newtopics		
Watershed:		Swatara Creek		_
Sub-Basin:	ι	ower Susquehanna		
Nearest Surface Wa	ter(s) to Receive Runoff:	UNT to Swatara Creek		
Chapter 93 - Design	ated Water Use:	CWF, MF		
http://www.pacode.co	om/secure/data/025/chapter93/cha	p93toc.html		
	to Chanton 202/d\ Lint?		V	
. •	to Chapter 303(d) List?	/wastandarda/202d Banart htm	Yes	
List Causes of Imp	pa.us/dep/deputate/watermgt/wqp.	wqstandards/505d-Report.htm	No	X
Is project subject to	o, or part of:			
	Storm Sewer System (MS4) Req pa.us/dep/deputate/watermgt/wc/S		Yes	_
anagement/GeneralF		Judjesta/Stormwaterw r	No	Х
	drinking water supply?		Yes No	Х
If yes, distance from	drinking water supply?			X
If yes, distance fron Approved Act 167 P	n proposed discharge (miles):		No Yes	x
Approved Act 167 P	n proposed discharge (miles):	ts/StormwaterManagem	No	x x
Approved Act 167 P	n proposed discharge (miles): Plan? us/dep/deputate/watermgt/wc/Subjec	ts/StormwaterManagem	No Yes	x x
Approved Act 167 P http://www.dep.state.pa ent/Approved_1.html Existing River Cons	n proposed discharge (miles): Plan? us/dep/deputate/watermgt/wc/Subjec		No Yes No	x x

Worksheet 2. Sensitive Natural Resources

INSTRUCTIONS:


- 1. Provide Sensitive Resources Map according to non-structural BMP 5.4.1 in Chapter 5. This map should identify wetlands, woodlands, natural drainage ways, steep slopes, and other sensitive natural areas.
- 2. Summarize the existing extent of each sensitive resource in the Existing Sensitive Resources Table (below, using Acres). If none present, insert 0.
- 3. Summarize Total Protected Area as defined under BMPs in Chapter 5.
- 4. Do not count any area twice. For example, an area that is both a floodplain and a wetland may only be considered once.

EXISTING NATURAL SENSITIVE RESOURCE	MAPPED? yes/no/n/a	TOTAL AREA (Ac.)	PROTECTED AREA (Ac.)
Waterbodies	N/A		
Floodplains	N/A		
Riparian Areas	N/A		
Wetlands	N/A		
Woodlands	Y	0.16	0.00
Natural Drainage Ways*	Υ	0.02	0.00
Steep Slopes, 15% - 25%	N/A		
Steep Slopes, over 25%	N/A		
Other:			
Other:			
TOTAL EXISTING:		0.18	0.00

^{*}Overlapping areas from this sensitive natural resource are counted as another resource

Worksheet 3. Nonstructural BMP Credits	
PROTECTED AREA	
1.1 Area of Protected Sensitive/Special Value Features (see WS 2)Ac.	
1.2 Area of Riparian Forest Buffer ProtectionAc.	
3.1 Area of Minimum Disturbance/Reduced Grading 0.40 Ac.	
TOTAL <u>0.40</u> Ac.	
Site Area Protected = Stormwater Management Area	
1.18 - 0.40 =	
This is the area that requires	
stormwater management 7	
VOLUME CREDITS	
3.1 Minimum Soil Compaction	
Lawn ft^2 x 1/4" x 1/12 = $-ft^3$	
Meadow ft^2 x 1/3" x 1/12 =ft ³	
3.3 Protect Existing Trees	
For Trees within 100 feet of impervious area:	
Tree Canopy $ft^2 \times 1/2$ " $\times 1/12 = - ft^3$	
For Trees within 20 feet of impervious area:	
Tree Canopy	
5.1 Disconnect Roof Leaders to Vegetated Areas	
For Runoff directed to areas protected under 5.8.1 and 5.8.2	
Roof Areaft ² x 1/3" x 1/12 =ft ³	
For all other disconnected roof areas	
Roof Area ft^2 x 1/4" x 1/12 = $-ft^3$	
5.2 Disconnect Non-Roof impervious to Vegetated Areas	
For Runoff directed to areas protected under 5.8.1 and 5.8.2	
Impervious Area ft^2 x 1/3" x 1/12 = ft^3	
For all other disconnected non-roof areas	
Impervious Area ft^2 x 1/4" x 1/12 = ft^3	
TOTAL NON-STRUCTURAL VOLUME CREDIT* - ft ³	
* For use on Worksheet 5	

FLOW CHART B Control Guideline 1 Process

WORKSHEET 4. CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

PROJECT: Atlantic Sunrise Pipeline AR-SC-063

2-Year Rainfall: 3.12 in

Total Site Area:1.18 acresProtected Site Area:0.40 acresManaged Area0.78 acres

Existing Conditions:

Cover Type	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Gravel Roads ³	С	12,629	0.290	89	1.24	0.25	2.49	2,618
"Meadow" ³	С	3,157	0.072	71	4.08	0.82	1.41	370
Crushed Stone Pad	С	-	ı	98	0.20	0.04	3.01	-
Woods	С	187,199	4.297	70	4.29	0.86	1.35	20,989
Meadow	С	163,630	3.756	71	4.08	0.82	1.41	19,167
TOTAL:		366,615	8.416					43,144

Developed Conditions:

Cover Type	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Gravel Roads	С	17,748	0.407	89	1.24	0.25	2.49	3,679
Crushed Stone Pad	С	4,680	0.107	98	0.20	0.04	3.01	1,173
Woods	С	185,814	4.266	70	4.29	0.86	1.35	20,834
Meadow	С	158,374	3.636	71	4.08	0.82	1.41	18,552
TOTAL:		366,616	8.416					44,238

2-Year Volume Increase (ft³) 1,093

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

1. Runoff (in) = Q =
$$(P - 0.2S)^2 / (P + 0.8S)$$
 where
P = 2-Year Rainfall (in)
S = $(1000/ CN)-10$

2. Runoff Volume (CF) = $Q \times Area \times 1/12$

Q = Runoff (in)

Area = Land use area (sq. ft.)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

3. Twenty (20) percent of existing impervious area, when present, shall be considered meadow (good condition) in the model for existing conditions for redevelopment per Volume Control Guideline 1. (For Existing Condition: Impervious Area + "Meadow" = Total Impervious Area)

WORKSHEET 5. STRUCTURAL BMP VOLUME CREDITS

PROJECT: Atlantic Sunrise Pipeline AR-SC-063 SUB-BASIN:

Lower Susquehanna

Required Control Volume (ft3) - from Worksheet 4: 1,093 Non-structural Volume Credit (ft³) - from Worksheet 3: 0

Structural Volume Reqmt (ft³)

1,093

(Required Control Volume minus Non-structural Credit)

	Proposed BMP	Area (ft²)	Storage Volume (ft³)
6.4.1	Porous Pavement		
6.4.2	Infiltration Basin		
6.4.3	Infiltration Bed		
6.4.4	Infiltration Trench		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well / Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond / Retention Basin		
6.6.3	Dry Extended Detention Basin		
6.6.4	Water Quality Filters		
6.7.1	Riparian Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
Other	Check dams in Vegetated Channels		900
	Storage in 18" stone MLV Pad		2,322

Total Structural Volume (ft³): Structural Volume Requirement (ft³): 1,093

> DIFFERENCE 2,129

MLV Pad Infiltration Calculations Summary				
Average Measured Infiltration Rate for MLV Pad	8.41	in/hr		
Factor of Safety	2.00			
Design Infiltration Rate	4.21	in/hr		
Dewatering Time for top 6 inches of MLV Pad	1.43	hours		
Depth of AASHTO #57 Section of MLV Pad	12	inches		
Dewatering Time for AASHTO #57 Section of MLV Pad	2.85	hours		
Total Dewatering Time for MLV Pad	4.28	hours		

Check Dam Infiltration Calculations Summary					
Average Measured Infiltration Rate for Swale 8.56 in/hr					
Factor of Safety	2.00				
Design Infiltration Rate	4.28	in/hr			
Height of Check Dam	12	inches			
Dewatering Time for Detained Water in Swale	2.80	hours			

^{*}A factor of safety of 2 is the minimal safety factor for design purposes per pager 19 of 21 of "Protocol 1, Site Evaluation and Soil Infiltration Testing, included as Appendix C of the Pennsylvania Stormwater BMP Manual.

WORKSHEET 10. WATER QUALITY COMPLIANCE FOR NITRATE

Does the site design incorporate the following BMPs to address nitrate pollution? A summary "yes" rating is achieved if at least 2 Primary BMPs for nitrate are provided across the site or 4 secondary BMPs for nitrate are provided across the site (or the

provided a	cross the site (or the				
PRIMARY	BMPs FOR NITRATE:				
		ı	YES	NO	
	NS BMP 5.4.2 - Protect / Conserve / Enhance Riparian Buffers	l		X	
	NS BMP 5.5.4 - Cluster Uses at Each Site	[-	X	
	NS BMP 5.6.1 - Minimize Total Disturbed Area]	Χ		
	NS BMP 5.6.3 - Re-Vegetate / Re-Forest Disturbed Areas (Native	[Х		
	NS BMP 5.9.1 - Street Sweeping / Vacuuming	[X	
	Structural BMP 6.7.1 - Riparian Buffer Restoration]		X	
	Structural BMP 6.7.2 - Landscape Restoration	[Х	
SECONDA	RY BMPs FOR NITRATE:				
	NS BMP 5.4.1 - Protect Sensitive / Special Value Features	[
	NS BMP 5.4.3 - Protect / Utilize Natural Drainage Features	[
	NS BMP 5.6.2 - Minimize Soil Compaction	į			
ļ	Structural BMP 6.4.5 - Rain Garden / Bioretention	[
	Structural BMP 6.4.8 - Vegetated Swale	[
	Structural BMP 6.4.9 - Vegetated Filter Strip	[
	Structural BMP 6.6.1 - Constructed Wetland				
	Structural BMP 6.7.1 - Riparian Buffer Restoration	į			
	Structural BMP 6.7.2 - Landscape Restoration	[
ļ	Structural BMP 6.7.3 - Soils Amendment/Restoration	[

J.8 Infiltration Data

a. Infiltration Report

Field Observation Report

Project Number:	14C4909 - A		
Project Name:	Atlantic Sunrise Project – Al	R-SC-063	
Date of Field Visit:	October 23, 2015		
Weather Conditions:	Sunny	Temperature:	Approx. 50-60°F
Prepared By:	Krystal Bealing, APSS and	Joseph Kempf	
Copies of Report Hav	re Been Sent To: ⊠ Clier	nt] Other
Client:		Contractor:	
Transcontiner Company, LL0 2800 Post Oa Houston, TX 7	k Blvd	BL Compan 4242 Carlisl Camp Hill, F	le Pike, Suite 260

Seven soil pits were excavated by backhoe and described to varying depths.

Soils within the area of the pits are described by the USDA-NRCS as Leck kill channery silt loam, 8-15% slopes.

Test Pit #1, located at N40° 33' 23.50", W76° 26' 38.25", was observed to have four horizons, with a restrictive soil horizon due to bedrock components observed at 24 inches.

Test Pit #2, located at N40° 33' 23.28", W76° 26' 38.95", was observed to have five horizons, with no observed limiting layer.

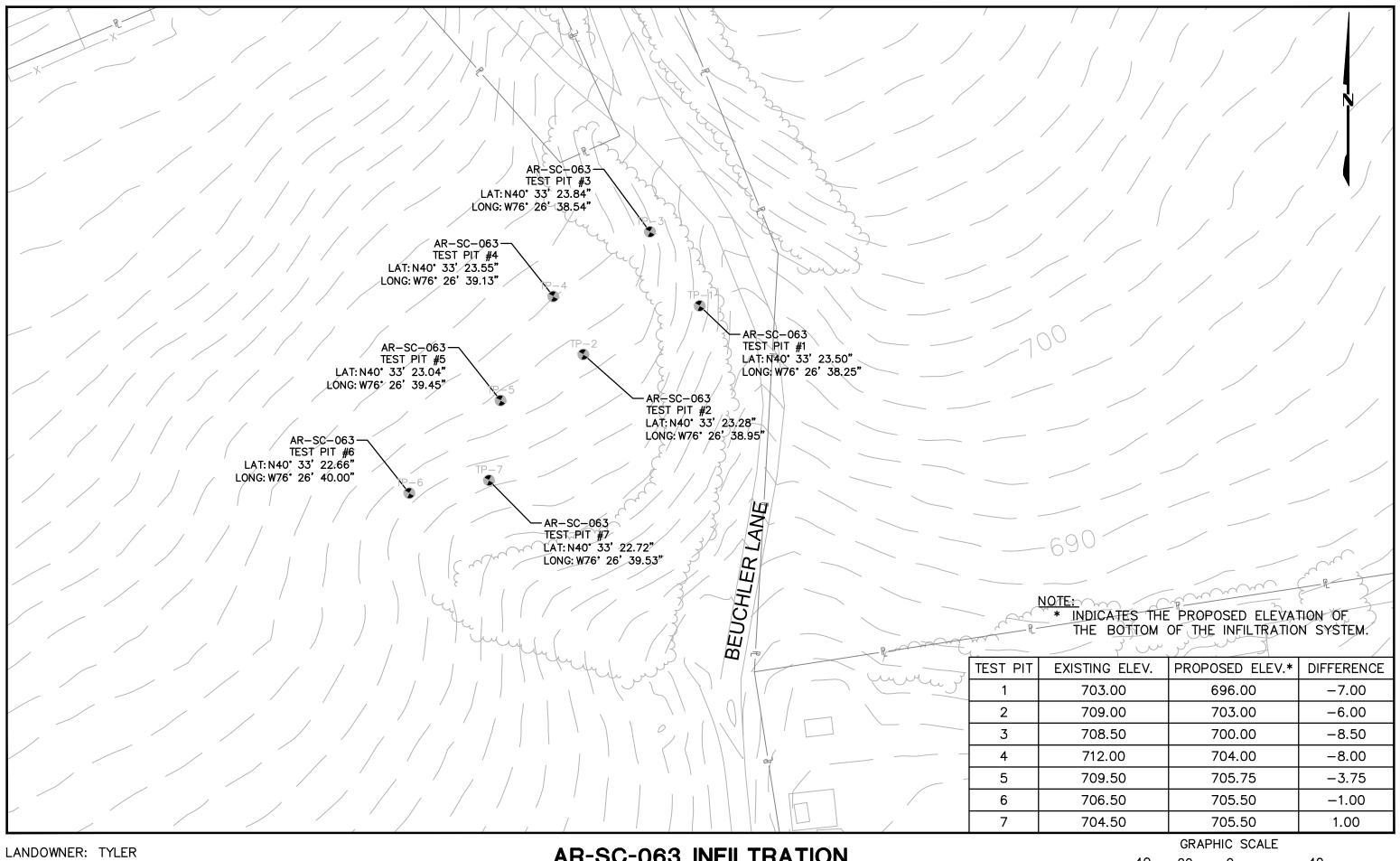
Test Pit #3, located at N40° 33' 23.84", W76° 26' 38.54", was observed to have five horizons, with bedrock observed at 39 inches.

Test Pit #4, located at N40° 33' 23.55", W76° 26' 39.13", was observed to have four horizons, with a restrictive soil horizon due to bedrock components observed at 30 inches.

Test Pit #5 located at N40° 33' 23.04", W76° 26' 39.45", was observed to have four horizons, with a restrictive soil horizon due to bedrock components observed at 56 inches.

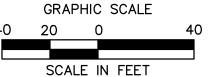
Field Observation Report

Test Pit #6 located at N40° 33' 22.66", W76° 26' 40.00", was observed to have three horizons, with a restrictive soil horizon due to bedrock components observed at 32 inches.


Test Pit #7 located at N40° 33' 22.72", W76° 26' 39.53", was observed to have three horizons, with a restrictive soil horizon due to bedrock components observed at 30 inches.

Additionally, infiltration tests using the double ring infiltrometer method were conducted at each pit location, at depths ranging from the surface (0 inches) to 60 inches below surface.

Infiltration testing was conducted within a level testing area at all test pit locations using the double ring infiltrometer method. An infiltrometer containing a 12-inch outer ring and a 6-inch inner ring was driven into the soil a minimum of two inches. Both rings were filled with water to the rim at 30 minute intervals for one hour. If the drop in water level, measured within the center ring, during the last 30 minutes of the presoak is 2 inches or more, measurements are taken in 10-minute intervals. If the water level drop is less than 2 inches, measurements are taken in 30minute intervals. After each measurement, the rings were refilled to the rim. Each measurement was taken at a fixed reference point. Measurements were taken until the rate of drop stabilized. or eight measurements were taken. A stabilized rate of drop is considered a difference of 0.25inch or less between the highest and lowest measurements of four consecutive readings. An average of the stabilized rate (i.e., the last four measurements) or the average of eight total measurements if the rate of drop did not stabilize, expressed in inches per hour, represents the infiltration rate. Testing was completed at the surface at Test Pit #1, at 6 inches below the surface at Test Pits #4 and #7, at 8 inches below the surface at Test Pit #6, at 15 inches below the surface at Test Pit #3, at 32 inches below the surface at Test Pit #5, and at 60 inches below the surface at Test Pit #2.


The infiltration rate at Test Pit #1 was observed to be 7.784 inches per hour. The infiltration rate at Test Pit #2 was observed to be 3.001 inches per hour. The infiltration rate at Test Pit #3 was observed to be 13.500 inches per hour. The infiltration rate at Test Pit #4 was observed to be 9.938 inches per hour. The infiltration rate at Test Pit #5 was observed to be 5.063 inches per hour. The infiltration rate at Test Pit #6 was observed to be 13.125 inches per hour. The infiltration rate at Test Pit #7 was observed to be 7.032 inches per hour.

The soil profile descriptions, infiltration worksheet, photographs, test pit location map, and USDA-NRCS Soil Survey information are attached.

LANDOWNER: TYLER
HALDEMAN
KUTZ

AR-SC-063 INFILTRATION TESTING LOCATIONS

Weather 50-60°F; Sunny	Landscape Position Sideslope	Slope 5-15%	Additional Notes
Project 14C4909-A Atlantic Sunrise Project - AR-SC-063	Test Pit # 1	Name Joe Kempf and Krystal Bealing, APSS	Date October 23, 2015

		Notes		Roots observed			Roots observed					Limiting Layer -	Restrictive soil horizon	due to bedrock	components
	Depth to Depth to	Water		1			ı			ı				ı	
	Depth to	Bedrock		ı			ı			ı				ı	
Structure	(Grade,	Shape)	Weak,	Subangular	blocky	Weak,	Subangular	blocky	Weak,	Subangular	blocky			IVIdaalve	
	Moisture	Consistency		Very Friable			Friable			Friable) 2 2 2	בומח	
	Concentrations	(%, Color)		1			ı			1				ı	
	Depletions	(%, Color)		ı			ı			ı				ı	
		Matrix Color		5YR 3/3			5YR 4/3			5YR 4/6			C/C G/J	5/5 VIC	
		Texture		ChSiL			ChSiL			VChSiL			3	L C	
	Boundary Limits	(inches)		0-10			10-18			18-24			100 70	+ 000-+	
		Horizon		Ap			Bw			O			ć	5	

Project 14C4909-A Atlantic Sunrise Project - AR-SC-063

Test Pit # 2

Name Joe Kempf and Krystal Bealing, APSS

Date October 23, 2015

Weather 50-60°F; Sunny	Sideslope	5-15%	
Weather	Landscape Position Sideslope	Slope 5-15%	Additional Notes

							Structure			
Horizon	Boundary Limits (inches)	Texture	Matrix Color	Depletions (%, Color)	Concentrations (%, Color)	Moisture Consistency	(Grade, Shape)	Depth to Bedrock	Depth to Depth to Bedrock Water	Notes
Ар	0-10	SiL	7.5YR 3/3	ı	ı	Very Friable	Weak, Granular	1	ı	Roots observed
Bw1	10-26	SiL	5YR 4/3	-		Friable	Weak, Subangular Blocky	1	ı	Roots observed
Bw2	26-60	SiL	5YR 3/3	-		Friable	Weak, Subangular Blocky	1	1	
C1	60-71	VChSiL	5YR 3/3	-		Friable	Massive	-	ı	
C2	71-84+	VChL	5YR 3/3	-		Friable	Massive	-	ı	

Project 14C4909-A Atlantic Sunrise Project - AR-SC-063

Test Pit # 3

Name Joe Kempf and Krystal Bealing, APSS

Date October 23, 2015

Weather 50-60°F; Sunny
Landscape Position Sideslope
Slope 5-15%
Additional Notes

							Structure			
Horizon	Boundary Limits (inches)	Texture	Matrix Color	Depletions (%, Color)	Concentrations (%. Color)	Moisture	(Grade, Shape)	Depth to Depth to	Depth to	Notes
A	6-0	ChSiL	5YR 3/4			Very Friable	Weak, Granular	1	1	Roots observed
Bw	9-19	ChSiL	5YR 4/3	1		Friable	Weak, Subangular Blocky	-	ı	
C1	19-30	VChSiL	5YR 5/4	•	ı	Firm	Massive	1	1	
C2	30-39	VChSiL	5YR 4/4	•	1	Firm	Massive	39	1	
R	39-43+	ı	,		ı		1	ı	ı	Limiting Layer - Bedrock

Weather 50-60°F; Sunny	Landscape Position Sideslope	Slope 5-15%	Additional Notes
Project 14C4909-A Atlantic Sunrise Project - AR-SC-063	Test Pit # 4	Name Joe Kempf and Krystal Bealing, APSS	Date October 23, 2015

		Notes		Roots observed			Roots observed					Limiting Layer -	Restrictive soil horizon	due to bedrock	components
	Depth to Depth to	Water		1			ı			1				1	
	Depth to	Bedrock		ı			ı			ı				ı	
Structure	(Grade,	Shape)	Weak,	Subangular	blocky	Weak,	Subangular	blocky	Weak,	Subangular	blocky			IVIdSSIVE	
	Moisture	Consistency		Friable			Friable			Friable			<u> </u>	ר ומט ת	
	Concentrations	(%, Color)		ı			ı			ı				ı	
	Depletions	(%, Color)		ı			ı			ı				ı	
		Matrix Color		5YR 4/3			2.5YR 4/3			2.5YR 4/3			EVD 4/4	31R 4/4	
		Texture		ChSiL			ChSiL			VChSiL			1:040	ECIISIE	
	Boundary Limits	(inches)		6-0			9-20			20-30			00 00	+0c-0c	
		Horizon		∢			Bw1			Bw2			ç	5	

Weather 50-60°F; Sunny	Landscape Position Sideslope	Slope 5-15%	Additional Notes
Project 14C4909-A Atlantic Sunrise Project - AR-SC-063	Test Pit # 5	Name Joe Kempf and Krystal Bealing, APSS	Date October 23, 2015

							Structure			
	Boundary Limits			Depletions	Concentrations	Moisture	(Grade,	Depth to	Depth to Depth to	
Horizon	(inches)	Texture	Matrix Color	(%, Color)	(%, Color)	Consistency	Shape)	Bedrock	Water	Notes
							Weak,			
∀	0-13	SiL	7.5YR 3/3	ı	ı	Friable	Subangular	ı	,	Roots observed
							blocky			
							Weak,			
Bw1	13-32	ChSiL	5YR 4/4	ı	ı	Friable	Subangular	ı	ı	Roots observed
							blocky			
							Weak,			
Bw2	32-56	VChSiL	5YR 4/4	1	ı	Friable	Subangular	ı	,	
							blocky			
										Limiting Layer -
č	. 00	-40	7 5 7 7 7							Restrictive soil horizon
כֿ	+00-00	FCIIL	7.31R 4/0	1	ı	=	Massive	ı	ı	due to bedrock
										components

Weather 50-60°F; Sunny	Landscape Position Sideslope	Slope 5-15%	Additional Notes
Project 14C4909-A Atlantic Sunrise Project - AR-SC-063	Test Pit # 6	Name Joe Kempf and Krystal Bealing, APSS	Date October 23, 2015

							Structure			
	Boundary Limits			Depletions	Concentrations	Moisture	(Grade,	Depth to Depth to	Depth to	
Horizon	(inches)	Texture	Matrix Color	(%, Color)	(%, Color)	Consistency	Shape)	Bedrock	Water	Notes
							Weak,			
Ар	0-10	ChSiL	5YR 3/3	1	ı	Friable	Subangular	ı	,	Roots observed
							Blocky			
							Moderate,			
Bw	10-32	VChSiL	5YR 4/4	1	ı	Friable	Subangular	ı	ı	
							Blocky			
										Limiting Layer -
ځ	103 66	140	EVD 4/4			<u>.</u>	0,1000			Restrictive soil horizon
5	100-2C		71V 4/4	1	ı	בומס	ไข้องไข้	ı	ı	due to bedrock
										components

Weather 50-60°F; Sunny	Landscape Position Sideslope	Slope 5-15%	Additional Notes
Project 14C4909-A Atlantic Sunrise Project - AR-SC-063	Test Pit # 7	Name Joe Kempf and Krystal Bealing, APSS	Date October 23, 2015

							Structure	,	,	
	Boundary Limits			Depletions	Concentrations	Moisture	(Grade,	Depth to Depth to	Depth to	
Horizon	(inches)	Texture	Matrix Color	(%, Color)	(%, Color)	Consistency	Shape)	Bedrock	Water	Notes
							Weak,			
Ар	0-13	ChSiL	7.5YR 3/4	1	ı	Friable	Subangular	ı	,	Roots observed
							Blocky			
							Moderate,			
Bw	13-30	VChSiL	7.5YR 4/4	1	ı	Friable	Subangular	ı	ı	
							Blocky			
										Limiting Layer -
ځ	10306	140	EVD 4/4			<u>.</u>	0,1000			Restrictive soil horizon
5	+00-0c		71V 4/4	1	ı	בומס	ไข้องไข้	ı	ı	due to bedrock
										components

		Comments	50-60°F, sunny. Test done at the surface.	50-60°F, sunny. Test done at 60 inches below the surface.	50-60°F, sunny. Test done at 15 inches below the surface.	50-60°F, sunny. Test done at 6 inches below the surface.	50-60°F, sunny. Test done at 32 inches below the surface.	50-60°F, sunny. Test done at 8 inches below the surface.
		Infiltration Rate ³ (in/hr)	7.784	3.001	13.500	9.938	5.063	13.125
	ИЕТНОD	Average Stabilized Reading ² (Inches of Drop)	1.297	0.500	2.250	1.656	0.844	2.188
33	SOIL INFILTRATION WORKSHEET - DOUBLE RING INFILTROMETER METHOD	Reading 8 (Inches of Drop)						
ATLANTIC SUNRISE PROJECT - AR-SC-063	IG INFILTR	Reading 7 (Inches of Drop)						
PROJECT	JUBLE RIN	Reading 6 (Inches of Drop)	1.188					
SUNRISE	HEET - DO	Reading 5 (Inches of Drop)	1.375					2.250
ATLANTIC	N WORKS	Reading 4 (Inches of Drop)	1.313	0.500	2.250	1.625	1.000	2.000
	FILTRATIO	Reading 3 (Inches of Drop)	1.313	0.625	2.375	1.750	0.875	2.250
	SOIL IN	Reading 2 (Inches of Drop)	1.750	0.438	2.250	1.750	0.688	2.250
		Reading 1 (Inches of Drop)	1.875	0.438	2.125	1.500	0.813	2.875
		Reading Interval (minutes)	10	10	10	10	10	10
		Drop >2 inches after 30 minute presoak? ¹	Yes	Yes	Yes	Yes	Yes	Yes
		Hole Number	1	2	м	4	2	ω

			Comments		50-60°F, sunny. Test done at 6 inches below the surface.										
		Infiltration	Do+0 ³ (in /br)	מווא וווו)	7.032										
	МЕТНОБ	Ave	Reading ²	(Inches of Drop)	1.172										
33	SOIL INFILTRATION WORKSHEET - DOUBLE RING INFILTROMETER METHOD	Reading 8	(Inches of (Inches of (Inches of (Inches of (Inches of (Inches of (Inches of	Drop)											
ATLANTIC SUNRISE PROJECT - AR-SC-063		Reading 7	(Inches of	Drop)											
PROJECT.		Reading 6	(Inches of	Drop)											
SUNRISE		SHEET - DO	Reading 5	(Inches of	Drop)										
ATLANTIC		Reading 4	(Inches of	Drop)	1.063										
		Reading 3	(Inches of	Drop)	1.125										
		Reading 2	(Inches of	Drop)	1.250										
												Reading 1	(Inches of	Drop)	1.250
			Interval	(minutes)	10										
		Drop >2 inches	after 30 minute	presoak?¹	Yes										
		Hole	Nimbor	ם ב	7										

Inches of drop greater than 2 inches after the 30 minute presoak? Yes, use 10 minute interval; No, use 30 minute interval.

² Calculated as the average of the last four stabilized (less than 0.25-inch difference overall) readings, or an overall average in the case of eight total readings.

 3 Calculated as the average stabilized reading x 2 for 30 minute intervals; x 6 for 10 minute intervals.

View of Pit #1.

View of Pit #2.

View of Pit #3.

View of Pit #4.

View of Pit #5.

View of Pit #6.

View of Pit #7.

J.9 Off-Site Discharge Analysis a. Adequacy of Off-Site Discharge

ACCESS ROAD: AR-SC-063- Adequacy of Off-Site Discharge

AR-SC-063 is a proposed permanent access road (PAR) located in Pine Grove Township, Schuylkill County, Pennsylvania. The intent of this PAR is to provide permanent maintenance and operational access to the proposed Main Line Valve 08 (CS-MLV-08) located on the proposed 42" Central Penn Line South Pipeline. The road begins at Beuchler Lane and terminates at the MLV site at approximate mile post 67.7. The PAR is approximately 950 feet long over relatively hilly terrain. The TAR follows Beuchler Lane with no proposed improvements for the first 750 feet. The final 200 feet of road is proposed new construction over undisturbed existing pasture (As seen in the picture below). The proposed improvements have been designed to have no anticipated impacts or changes to downhill properties as a result of construction the MLV site.

The proposed permanent access road and the MLV site has been designed to reduce overall disturbance to the maximum extent practicable. The PAR and MLV site has been constructed with stone rather than pavement to further help with keeping with the existing conditions. As mentioned above, the road follows the existing path were practical for most of the length and will maintain a new minimal width of only 14 feet wide. The width is only slightly larger than the existing gravel travel way. The MLV site has also been design to minimum the footprint to the maximum extent practical for the operation and maintenance requirements.

As for any development, the road and MLV site has been designed to match or

reduce peak stormwater runoff from the design areas to an off-site discharge point where stormwater runoff is conveyed. (See the enclosed Pre and Post drainage area maps and calculations in Appendix J.3 and J.4 for details) In the case of this design, we were able to achieve a reduced peek runoff for all storm events, as shown in the Pre-vs. Post- Construction Peak Rate of Flow Summary for The Study Point chart below. The reduction was achieved by utilizing Vegetated Channel for Diversions (VCD), Vegetated Channel for Infiltration (VCI), and utilizing the MLV pad itself as a retention area. All these Stormwater BMP measures are used to slow down the stormwater runoff, infiltrate and release at a slower and reduced rate to existing land.

Pre- vs. Post-construction Peak Rate	of Flow Summ	ary	
Stormwater discharge rate for the	Pre-	Post-	Net Change
design frequency storm (cfs)	construction	construction	_
1) 1-Year/24-Hour	3.62	3.32	(0.30)
2) 2-Year/24-Hour	5.81	5.75	(0.06)
3) 5-Year/24-Hour	9.57	9.45	(0.12)
4) 10-Year/24-Hour	13.72	13.51	(0.21)
5) 25-Year/24-Hour	19.66	19.33	(0.33)
6) 50-Year/24-Hour	25.92	25.52	(0.40)
7) 100-Year/24-Hour	27.52	27.11	(0.41)

The VCD is proposed to the north and west of the MLV site and access road. This VCD is 3-feet wide and 1.5-feet-deep and conveys flows from abutting properties away from the MLV and access road to a rip rap apron prior to its preconstruction discharge point. The VCD is equipped with multiple check dams to slow down flow and create small retention areas throughout the run in order to promote infiltration. These measures allow for some of the stormwater to pond during storm events and infiltrate into the ground, which reduces flows. A rip rap apron is proposed at the end of the channel to further slowdown stormwater runoff and dissipate energy.

The VCI is located on the southeast side of the MLV site and access road. The VCI is 6-feet wide and 1.5-feet deep and collects runoff from the access drive and areas between the drive and the existing pasture at the limit of disturbance. The VCI is equipped with multiple check dams to slow down flow and creates small retention areas throughout the channel to promote infiltration. A rip rap apron is proposed at the end of the channel to further slowdown stormwater runoff and dissipate energy.

The final measure used to ensure reduced peak stormwater runoff is the MLV pad itself. The pad is a flat area constructed of a top layer of 6" of AASHTO #8 aggregate, on a non-woven geotextile fabric, and a bottom layer of 12" AASHTO #57 stone. This 12-inch-deep area will detain and infiltrate the foot print of the MLV pad, plus a small area around the pad to the East.

After being conveyed through one of the three stormwater PCSM BMP's above, the runoff from the northern swale will flow approximately 50 feet south and converge with the runoff from the southern swale, approximately 90 feet northeast of the MLV site. At this point the runoff follows pre-construction conditions until ultimately outletting into an unnamed tributary to Swatara Creek, approximately 930 feet southeast of the MLV Site.

The flow path from the MLV site crosses the following soil types:

- AgA Alvira silt loam, 0 to 3 percent slopes.
- LeC Leck kill channery silt loam, 8 to 15 percent slopes.

The PADEP E&S Manual defines erosion resistant soils as soils having an erodibility "K" factor less than or equal to 0.37. The K factor for the soil types, according to the National Resources Conservation Service (NRCS) website

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx, crossed by the flow path are summarized below:

- AgA 0.43
- LeC 0.20

The post-construction runoff travels approximately 490 feet thru soils with an erodibility factor of greater than 0.37. Since the pre- and post-construction flow paths match, there is no concern that the construction of the MLV site have a negative impact on down slope properties.

In addition to the stormwater flow reduction and soil data above, the VCI, VCD and MLV pad has reduced the proposed stormwater velocity as it leaves the design points. The velocities at both points are such that they are slower than 2 fps, as see in the Stormwater Velocity Rate Chart. Based on Table G.1 in the Pennsylvania DEP erosion and Sediment Pollution Control Program Manual "Allowable Velocities for Downslope covers for Channeled Flows" (shown below), The maximum allowable velocity for mulch is 2 fps. The velocity of the runoff from the proposed improvements is less than the maximum allowable velocity listed in the table, and is an allowable velocity for the area that we are discharging too.

Stormwater Velocity Rate	VCD Pad	VCI Pad	MLV Pad
Chart for the design frequency	Velocities	Velocities	Velocities
storm (fps)	(fps)	(fps)	(fps)
1) 1-Year/24-Hour	0.75	0.00	0.00
2) 2-Year/24-Hour	0.93	0.00	0.00
3) 5-Year/24-Hour	1.09	0.00	0.00
4) 10-Year/24-Hour	1.24	0.15	0.00
5) 25-Year/24-Hour	1.42	0.23	0.11
6) 50-Year/24-Hour	1.57	0.35	0.21
7) 100-Year/24-Hour	1.60	0.51	0.21

Table G.1. Allowable Velocities for Downslope Covers for Channeled Flows

Ground Cover	Allowable Velocity
Grass*	4 fps
Gravel	5 fps
Mulch	1-2 fps

See E&S Manual for more information on permissible velocities for grass and other cover types. Allowable velocities for grass can vary from 2.5 fps to as much as 8 fps. 4 fps has been selected as a conservative figure for design purposes.

(Table from the 2012 PDEP E&S PCPM)

In conclusion, based on the designed measures discussed above, and the soil and velocity data provided for this MLV site and access road, there are no anticipated impacts or changes to downhill properties as a result of construction the MLV site.

Down Slope Property Owners:

 Robert O. Tyler, AKA Robert Ogden Tyler & Cheryl L. Tyler, AKA Cheryl Lynn Kutz (PA-SC-022.000)

J.10 Storage Volume Analysis a. Storage Volume Analysis

ACCESS ROAD: SC-063 - Storage Volume Analysis

Stormwater detention is provided in the void space between the AASHTO #57 stone layer at the MLV pad. The void space between the 6" AASHTO #8 stone at the surface of the pad is excluded from the detention, or storage volume, calculations. The required storage volume is calculated through an iterative process of increasing the storage volume in the HydroCAD model until the post-construction stormwater runoff rate is less than or equal to the pre-construction runoff rate.

The void space between the AASHTO #57 stone provides the storage volume for the MLV pad. The void space between the 6" AASHTO #8 stone at the surface of the pad is excluded from the volume calculations.

The storage volume of the MLV pad is dependent on the slope of the MLV pad. If the pad were graded at 0% in all directions, the storage volume would simply be the area of the pad multiplied by the depth. However, due to site topography, a 0% grade would result in large quantities of earth movement, fill at the infiltration interface, or cut too close to the ground water table. Instead, the pad was designed to minimize these impacts by mimicking the existing grade. An actual storage volume was calculated based on the elevation of the low point of the pad (minus the 6" AASHTO #8 cover), since that is the highest runoff could be stored without overtopping the AASHTO #57 stone. Two scenarios apply to all of the main line valve pads on the project: low side pads and low corner pads. Since many of the volumes can only be obtained using calculus to determine the total storage the water surface elevation and base of the pad, AutoCAD Civil 3D was used to determine the storage volumes. To determine volumes in Civil 3D, surfaces representing the bottom of the pad and water surface elevation were built and combined into a volumetric surface; an earthwork analysis was run on the volumetric surface to determine the total volume between the two. The volume of low side pads can be checked using simple volumetric formulas for triangular (steeper grades, shallower pads) or trapezoidal (more gradual grades, deeper pads) prisms, with the cross sectional wetted area multiplied by the length of the low side of the pad. AR-SC-063 is a low-side pad. Finally, the calculated storage volume was reduced by 60% to determine the available storage volume with 40% voids.

The detained stormwater will infiltrate the ground. The dewatering time for the stormwater detained in the void space of the MLV pad rock is provided at the bottom of Worksheet #5 included in Appendix J.4.

APPENDIX V

AR-SC-073.5 Specific Narrative and Calculations

- V.1 Site Specific Narrative
 - a. Narrative
 - b. TMDL Discussion
 - c. Minimized Soil Compaction
 - d. Thermal Impact Analysis
 - e. Acidic Soil Management Plan
 - f. Road Specific Construction Sequence
 - g. Permanent Access Road Summary Sheet (NOI PCSM Table)
- V.2 Location Map
- V.3 Predevelopment Calculations
 - a. Predevelopment Drainage Area Map
 - b. 1-Year Rainfall Event
 - c. 2-Year Rainfall Event
 - d. 5-Year Rainfall Event
 - e. 10-Year Rainfall Event
 - f. 25-Year Rainfall Event
 - g. 50-year Rainfall Event
 - h. 100-Year Rainfall Event
- V.4 Post Development Calculations
 - a. Post Development Drainage Area Map
 - b. 1-Year Rainfall Event
 - c. 2-Year Rainfall Event
 - d. 5-Year Rainfall Event
 - e. 10-Year Rainfall Event
 - f. 25-Year Rainfall Event
 - g. 50-year Rainfall Eventh. 100-Year Rainfall Event
- 15 Mata O all Madalatata
- V.5 Water Quality Worksheets
 - a. Flow Chart A Stormwater Calculation Process
 - b. Worksheet 1. General Site Information
 - c. Worksheet 2. Sensitive Natural Resources
 - d. Worksheet 3. Nonstructural BMP Credits
 - e. Flow Chart B Control Guideline 1 Process
 - f. Worksheet4. Change in Runoff Volume for 2-Yr Storm Event
 - g. Worksheet 5. Structural BMP Volume Credits
 - h. Worksheet 10. Water Quality Compliance for Nitrate
 - i. Worksheet 11. BMPs for Pollution Prevention
- V.6 Infiltration Information
 - a. Field Observation Report
- V.7 Off-Site Discharge Analysis
 - a. Adequacy of Off-Site Discharge
- V.8 Storage Volume Analysis
 - a. Storage Volume Analysis
- V.9 Sediment Barrier Table
 - a. E&S Worksheet 1

Site Specific Narrative a. Narrative **V.1**

- b. TMDL Discussion
- c. Minimized Soil Compaction
- d. Thermal Impact Analysis
 e. Acidic Soil Management Plan
- f. Road Specific Construction Sequenceg. Permanent Access Road Summary Sheet (NOI PCSM Table)

ACCESS ROAD: AR-SC-073.5

ACT 167 PLAN: None

TMDL: 2013 (suspended solids)

NARRATIVE:

AR-SC-073.5 is a proposed permanent access road (PAR) located in Eldred Township, Schuylkill County Pennsylvania. The intent of this PAR is to provide maintenance and operations access to Main Line Valve - 09 (MLV-09) located on the proposed 42" Central Penn Line South Pipeline. The road begins at Ranch Road and terminates at MLV-09 at approximate mile post 80.8. The proposed road is approximately 135 feet long over relatively hilly terrain. There will be a temporary *rock construction entrance with wash rack and driveway* apron constructed to allow access to the gas pipeline by construction vehicles. *The wash rack is proposed due to the watershed siltation impairment.* Upon completion of the construction activities, the temporary construction entrance *and driveway apron* will be removed and a permanent access road will be constructed. *Within the pipeline right of way, the proposed temporary sediment barriers are included in the Pipeline E&S Plan and shown in grey on the Access Road Plan for coordination purposes.*

The proposed road will have a cross slope of 2% directing runoff in an easterly direction. The MLV site will be constructed with a 6-inch thick layer of AASHTO #8 stone on top of nonwoven geotextile and an 18-inch thick layer of AASHTO #57 stone. As summarized in the infiltration calculations added to the bottom of Worksheet #5, the detained water stored in the voids of the MLV stone pad will infiltrate to the surrounding ground over approximately 12 hours and the water detained behind the check dams will infiltrate to the surrounding ground over approximately 4 hours.

Water Quality Worksheet #4 was used to complete the *Control Guidelines 1* (CG-1) volume analysis for the 2 year *24-hour* storm.

Pre-development and post-development runoff hydrographs were developed for the 1, 2, 5, 10, 25, 50 and 100 **24-hour** year storm events using the SCS TR-20 method. Detaining runoff from the proposed new gravel road in the MLV site and check dams in the vegetated channel for infiltration mitigates the potential impact from the proposed development.

TMDL DISCUSSION:

Receiving surface waters in the location of this access road are subject to a siltation TMDL. The rock construction entrance with wash rack is to minimize potential impacts from this road.

MINIMIZED SOIL COMPACTION:

The Project seeks to minimize soils compaction impacts associated with access roads to the maximum extent practicable. AR-SC-073.5 is a proposed permanent access road for Main Line Valve 09. All construction and operations traffic will utilize the proposed road. The permanent access road is situated completely within the permanent right of way of the pipeline reducing the area of impact. The roadway width has also been minimized to 14 feet. Additionally, infiltration and evaporation are encouraged in the MLV site pad.

THERMAL IMPACT ANALYSIS:

Thermal impacts associated with AR-SC-073.5 will be avoided to the maximum extent practicable. The following measures have been implemented to minimize thermal impacts:

- AR-SC-073.5 is approximately 135 linear feet, minimizing the total length of necessary temporary construction and, therefore, minimizing thermal impact of the road.
- This road is proposed in a location that minimizes tree removal. The ability to use this road without the removal of additional trees acts to minimize the thermal impact of this road.

ACIDIC SOIL MANAGEMENT PLAN:

	AR-SC-073.5 Soil Acidity Table	
Soil Map Symbol	Soil Name	PH
LeB	Leck kill channery silt loam, 3 to 8 percent slopes	5.7
MeB	Meckesville loam, 3 to 8 percent slopes	4.7

An Acid Producing Soils Control Plan is included as part of this application. The plan identifies the measures to be used to control pollution associated with construction of access roads that contain acid-producing soils. The plan requires that these measures be applied only for soils with a pH less than 4.0 as recommended by the Natural Resources Conservation Service (NRCS). The table above depicts the soil types present on this road as well as the acidity of the soils. The pH of the soils on this road are outside the threshold established by the Acid Producing Soils Control Plan. Therefore, the measures prescribed in the plan do not need to be implemented for this road.

ROAD SPECIFIC CONSTRUCTION SEQUENCE: ACCESS ROAD: AR-SC-073.5

- 1. At least 7 days prior to starting any earth disturbance activities, including clearing and grubbing, the owner and/or operator shall invite all contractors, Environmental Inspectors, the landowner, appropriate municipal officials, the E&S plan preparer, the PCSM plan preparer, the licensed professional responsible for oversight of critical stages of implementation of the PCSM plan, and a representative from the local conservation district to an on-site preconstruction meeting.
- 2. At least 3 days prior to starting any earth disturbance activities, or expanding into an area previously unmarked, the Pennsylvania One Call System Inc. shall be notified at 1-800-242-1776 for the location of existing underground utilities.
- 3. Hold pre-construction conference with the Environmental Inspectors, local County Conservation District (CCD), PADEP and Design Engineer.
- 4. Survey crews locate and stake all special areas of concern (i.e., wetlands, streams, culverts, other utilities, etc.), edge of proposed access road, and field locate the limit of disturbance.
- 5. Install orange construction fence around areas to be preserved.
- 6. Locate staging areas and access points including the rock construction entrance with wash rack. Install E&SC BMPs down slope of these areas.
- 7. Perform tree cutting where required. (Areas with tree cutting shall be restored to meadow in good condition.)
- 8. Install rock construction entrance with wash rack and gravel driveway apron.
- 9. Remove brush to effectively install perimeter E&SC BMPs.
- 10. The Compliance Manager shall provide PADEP at least three days' notice prior to bulk earth disturbance and upon completed installation of perimeter erosion controls.
- 11. If applicable, install orange security fence. The necessity of a security fence will be at the discretion of the Contractor.
- 12. Proceed with major clearing and grubbing.

- 13. Begin construction staking for layout of access road.
- 14. Grade the access road as shown on the E&SC Plans (Section 2 of the ESCGP-2 NOI).
- 15. Immediately stabilize the Site with geotextile and gravel surfacing where indicated in the E&SC Plans.
- 16. The Compliance Manager shall provide PADEP at least three days' notice prior to placing the stone and geotextile fabric within the MLV pads.
- 17. Rough grade the MLV pad. Equipment shall avoid excessive compaction and/or land disturbance. If excavation leads to substantial compaction of the subgrade (where an infiltration trench is not proposed), 18 inches shall be removed and replaced with a blend of topsoil and sand to promote infiltration and biological growth. At the very least, topsoil shall be thoroughly deep plowed into the subgrade in order to penetrate the compacted zone and promote aeration and the formation of macropores. Following this, the area should be disked prior to final grading.
- 18. Caution shall be observed when excavating above the recently installed gas pipeline. Prior to excavation over the gas pipeline, confirm the depth of cover over the pipe. Decompact the pipe trench backfill as described in the previous Step.
- 19. Place the stone and geotextile fabric within the MLV pad as specified on the E&SC Plans (Section 2 of the ESCGP-2 NOI). NOTE: This is a critical stage of PCSM Plan to be observed by a licensed professional or designee.
- 20. Upon temporary cessation of an earth disturbance activity or any stage of an activity where the cessation of earth disturbance activities will exceed four days, the Site shall be immediately seeded, mulched, or otherwise protected from accelerated erosion and sedimentation pending future earth disturbance activities. For an earth disturbance activity or any stage of an activity to be considered temporarily stabilized, the disturbed areas shall be covered with one of the following: a minimum uniform coverage of mulch and seed, with a density capable of resisting accelerated erosion and sedimentation, or an acceptable E&SC BMPs, which temporarily minimizes accelerated erosion and sedimentation. Temporary stabilization will not occur on active vehicular travel ways within the right of way. The on-site environmental inspector will log daily activity within the limits of disturbance and notify the Contractor of areas requiring temporary stabilization (i.e., areas where work has ceased for at least four days).
- 21. Once the temporary improvements to the permanent access road are no longer necessary; remove all gravel and geotextile fabric from the

temporarily improved sections outside of permanent access road areas and dispose of the materials at a suitable disposal or recycling site in compliance with local, state, and federal regulations. Restore preconstruction grades. Immediately seed and stabilize disturbed areas, including areas used to stockpile topsoil. E&SC BMPs will remain in place and functional.

- 22. Loosen and de-compact topsoil throughout the temporarily improved sections of the access road and grade the access road so finish grades and drainage patterns match preconstruction conditions. Immediately fertilize, seed and stabilize areas at finished grade. Maintain E&SC control devices until Site work is complete and uniform 70% perennial vegetative cover is established.
- 23. Upon completion of all earth disturbance activities and permanent stabilization of all disturbed areas, the Owner and/or Operators shall contact the local CCD for an inspection prior to the removal of the E&SC BMPs. Vegetated areas must achieve a minimum uniform 70% perennial cover over the entire disturbed area to be considered stabilized. Roadways and parking areas should have at least a clean subbase in place to be considered stabilized.
- 24. Upon local CCD and Transco approval of stabilization and re-vegetation, remove temporary E&SC BMPs and stabilize areas disturbed by removal including the perimeter sediment barrier and temporary diversions. Properly dispose/recycle E&SC BMPs. Remove orange construction fencing and security fence.
- 25. Complete access road limit of disturbance stabilization, including soil treatment, seed application and mulching in areas disturbed by E&SC BMP removal.
- 26. Upon completion of all earth disturbance activities, removal of all temporary BMPs, and permanent stabilization of all disturbed areas, the Owner and/or Operators shall contact the local CCD for a final inspection.

Permanent Access Road Summary Sheet

Access Road Number:	AR-SC-073.5	o read Gainmary		
Watershed Name:		isco Creeks, CWF, MF	=	
Act 167 Plan Name:		,	Date Adopted:	
Design Storm Frequency	2 year	Dro construction	Post-	Not Change
Rainfall Amount	3.07 inches	Pre-construction	construction	Net Change
Impervious area (acres)		0	0.18	0.18
Volume of stormwater runoff (c	cf) without planned	4,454	5,557	1,103
Volume of stormwater runoff (c	cf) with planned		796	(3,658)
Pre- vs. Post-construction Pea		mary		
Stormwater discharge rate for	the design	Pre-construction	Post-	Net Change
frequency storm (cfs)		FTE-CONSTRUCTION	construction	Net Change
1) 1-Year/24-Hour		1.22	-	(1.22)
2) 2-Year/24-Hour		1.97	0.07	(1.90)
3) 5-Year/24-Hour		3.18	0.31	(2.87)
4) 10-Year/24-Hour		4.31	1.68	(2.63)
5) 25-Year/24-Hour		6.20	5.25	(0.95)
6) 50-Year/24-Hour		8.03	7.40	(0.63)
7) 100-Year/24-Hour		10.23	9.48	(0.75)
Summary Description of Resto	ration BMPs - Perm	anent Access Roads		7
			Volume of	
BMP		Function	stormwater	Acres treated
N. ()			treated (cf)	0.00
Natural area conservation:			0	0.00
Access road design:		Infiltration/		
Ditches		Recharge/Storage		
Culverts		Infiltration/		
Stormwater energy dissipaters Infiltration Basin	:	Infiltration/	4311	0.39
Other: MLV Stone Pad Void St	rorago	Recharge/Storage Infiltration/		
Other, MLV Storie Pad Void Si	lorage		450	1.21
		Recharge/Storage		
Off site Discharge Analysis:				
Off-site Discharge Analysis:		annatan da alem le He - L		
The point of interest (POI) for t				
road watershed currently disch				
or peak rate of runoff at the PC			_	
damage, or nuisance to off-site	e properties is not an	iticipated to be caused	by the Project imp	provements.
Loading Ratio:	E	Basin/MLV Pad	MLV	' Pad
Maximum Impervious Loadii	ng Ratio 0.7	:1 (5:1 Max)	1.0	:1 (5:1 Max)
Maximum Total Loading Rat	_	:1 (8:1 Max)	11.7	•
Supporting Areas	Basin/MLV Pad	MLV Pad	Unit	
Impervious Drainage Area	0.16	0.11	Acres	
Infiltration Area	n 21	0.40	Acros	

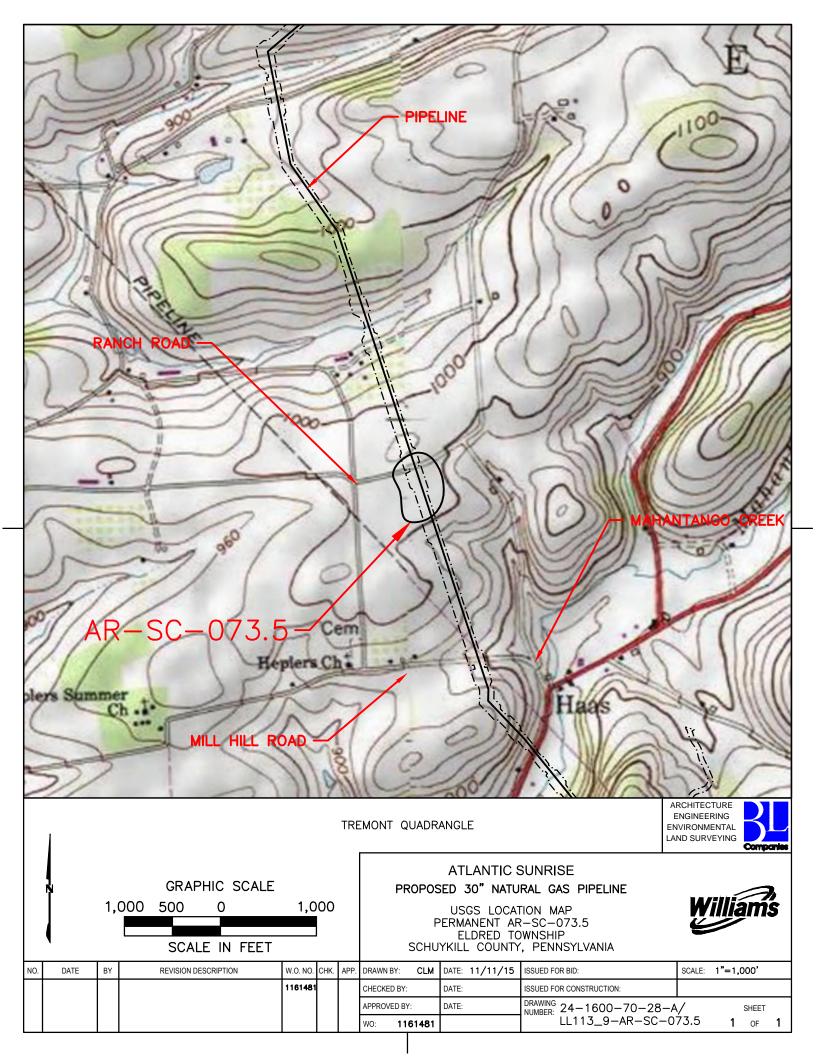
July 2015 14C4909

0.10

1.21

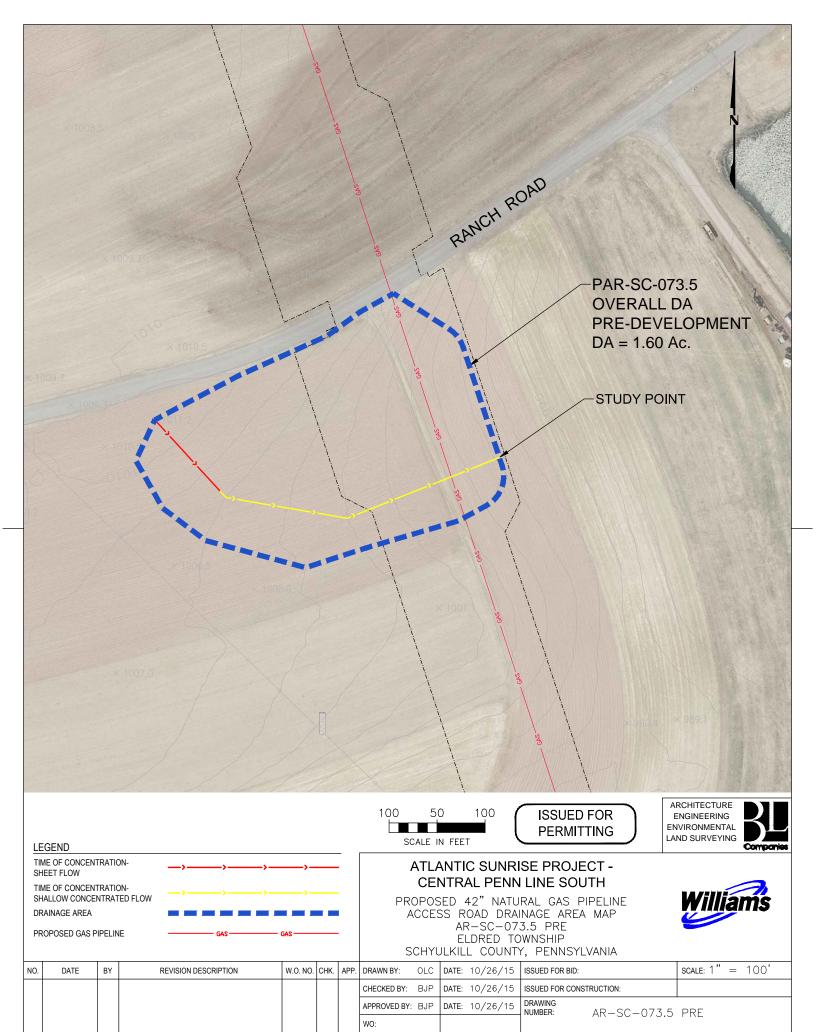
Acres

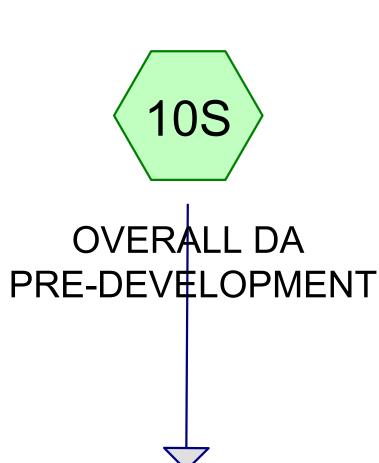
Acres


0.21

1.60

Infiltration Area


Total Drainage Area



V.3 Predevelopment Calculations a. Predevelopment Drainage Area Map

- b. 1-Year Rainfall Event
- c. 2-Year Rainfall Event
- d. 5-Year Rainfall Event
- e. 10-Year Rainfall Eventf. 25-Year Rainfall Event
- g. 50-year Rainfall Eventh. 100-Year Rainfall Event

Existing Conditions

Area Listing (selected nodes)

Are	ea Cl	N I	Description
(acre	es)	((subcatchment-numbers)
0.0	53 8	7	Dirt roads, HSG C (10S)
1.5	51 7	1 I	Meadow, non-grazed, HSG C (10S)
1.6	04 7	2	TOTAL AREA

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
1.604	HSG C	10S
0.000	HSG D	
0.000	Other	
1.604		TOTAL AREA

Type II 24-hr 1-Year Rainfall=2.56" Printed 10/20/2016

AR-SC-073.5

Prepared by Microsoft

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

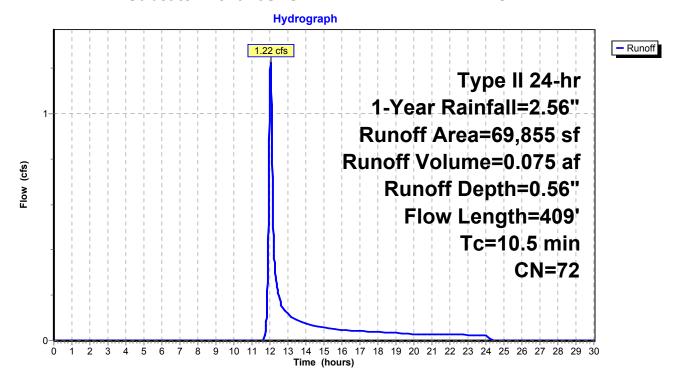
Subcatchment10S: OVERALL DA Runoff Area=69,855 sf 0.00% Impervious Runoff Depth=0.56"

Flow Length=409' Tc=10.5 min CN=72 Runoff=1.22 cfs 0.075 af

Link 20L: Existing ConditionsInflow=1.22 cfs 0.075 af
Primary=1.22 cfs 0.075 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.075 af Average Runoff Depth = 0.56" 100.00% Pervious = 1.604 ac 0.00% Impervious = 0.000 ac

Page 5


Summary for Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Runoff = 1.22 cfs @ 12.04 hrs, Volume= 0.075 af, Depth= 0.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.56"

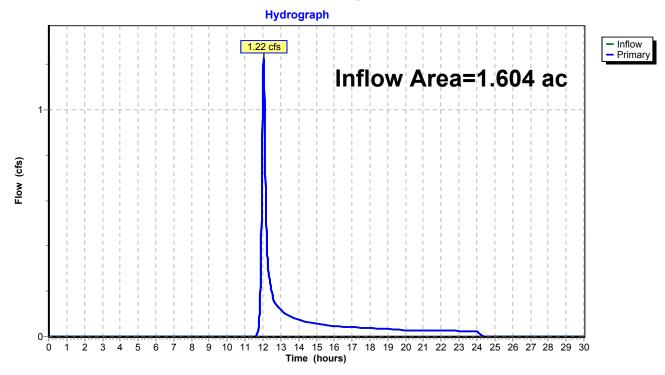
	Α	rea (sf)	CN E	Description			
		67,554	71 Meadow, non-grazed, HSG C				
		2,301	87 Dirt roads, HSG C				
		69,855 72 Weighted Average					
	69,855 100.00% Pervious Area					a	
-	Гс	Length	Slope	Velocity	Capacity	Description	
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6	.9	100	0.0500	0.24		Sheet Flow, Sheet	
						Grass: Short n= 0.150 P2= 3.07"	
3	.1	242	0.0350	1.31		Shallow Concentrated Flow, SC1	
						Short Grass Pasture Kv= 7.0 fps	
0	.0	9	0.0650	4.10		Shallow Concentrated Flow, SC2	
						Unpaved Kv= 16.1 fps	
0	.5	58	0.0650	1.78		Shallow Concentrated Flow, SC3	
						Short Grass Pasture Kv= 7.0 fps	
10	.5	409	Total				

Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 6

Summary for Link 20L: Existing Conditions


Inflow Area = 1.604 ac, 0.00% Impervious, Inflow Depth = 0.56" for 1-Year event

Inflow = 1.22 cfs @ 12.04 hrs, Volume= 0.075 af

Primary = 1.22 cfs @ 12.04 hrs, Volume= 0.075 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 20L: Existing Conditions

Type II 24-hr 2-Year Rainfall=3.07" Printed 10/20/2016

AR-SC-073.5

Prepared by Microsoft

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 7

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: OVERALL DA Runoff Area=69,855 sf 0.00% Impervious Runoff Depth=0.85"

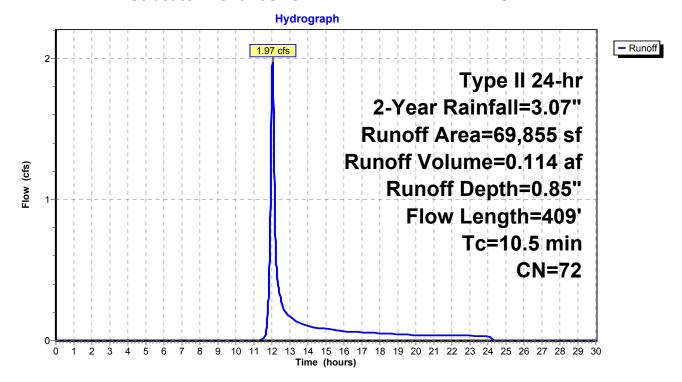
Flow Length=409' Tc=10.5 min CN=72 Runoff=1.97 cfs 0.114 af

Link 20L: Existing Conditions

Inflow=1.97 cfs 0.114 af
Primary=1.97 cfs 0.114 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.114 af Average Runoff Depth = 0.85" 100.00% Pervious = 1.604 ac 0.00% Impervious = 0.000 ac

Page 8


Summary for Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Runoff = 1.97 cfs @ 12.03 hrs, Volume= 0.114 af, Depth= 0.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.07"

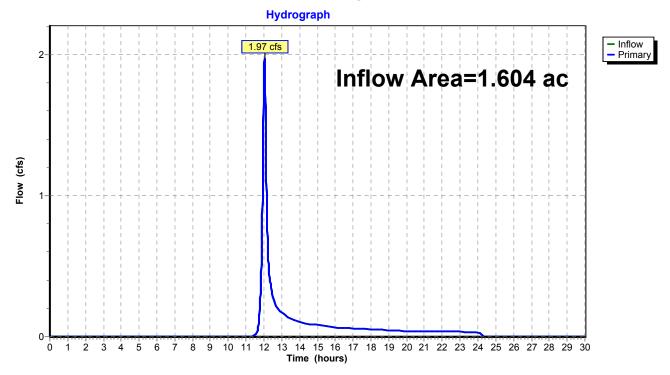
_	Α	rea (sf)	CN E	Description			
		67,554	71 Meadow, non-grazed, HSG C				
_		2,301	87 Dirt roads, HSG C				
		69,855	72 V				
		69,855	1	00.00% P	ervious Are	ea	
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· ·	
	6.9	100	0.0500	0.24		Sheet Flow, Sheet	
						Grass: Short n= 0.150 P2= 3.07"	
	3.1	242	0.0350	1.31		Shallow Concentrated Flow, SC1	
				_		Short Grass Pasture Kv= 7.0 fps	
	0.0	9	0.0650	4.10		Shallow Concentrated Flow, SC2	
	0.0	Ū	0.0000	0		Unpaved Kv= 16.1 fps	
	0.5	58	0.0650	1.78		Shallow Concentrated Flow, SC3	
	0.0	00	0.0000	1.70		Short Grass Pasture Kv= 7.0 fps	
-	40.5	400	T-4-1			Chart Crace r detaile 110 17.0 190	
	10.5	409	Total				

Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 9

Summary for Link 20L: Existing Conditions


Inflow Area = 1.604 ac, 0.00% Impervious, Inflow Depth = 0.85" for 2-Year event

Inflow = 1.97 cfs @ 12.03 hrs, Volume= 0.114 af

Primary = 1.97 cfs @ 12.03 hrs, Volume= 0.114 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 20L: Existing Conditions

AR-SC-073.5

Type II 24-hr 5-Year Rainfall=3.81" Printed 10/20/2016

Prepared by Microsoft HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 10

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: OVERALL DA Runoff Area=69,855 sf 0.00% Impervious Runoff Depth=1.33"

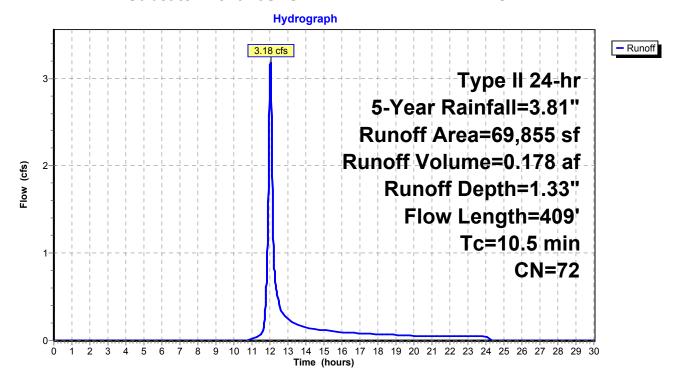
Flow Length=409' Tc=10.5 min CN=72 Runoff=3.18 cfs 0.178 af

Link 20L: Existing ConditionsInflow=3.18 cfs 0.178 af
Primary=3.18 cfs 0.178 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.178 af Average Runoff Depth = 1.33" 100.00% Pervious = 1.604 ac 0.00% Impervious = 0.000 ac

Page 11

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC


Summary for Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Runoff = 3.18 cfs @ 12.03 hrs, Volume= 0.178 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.81"

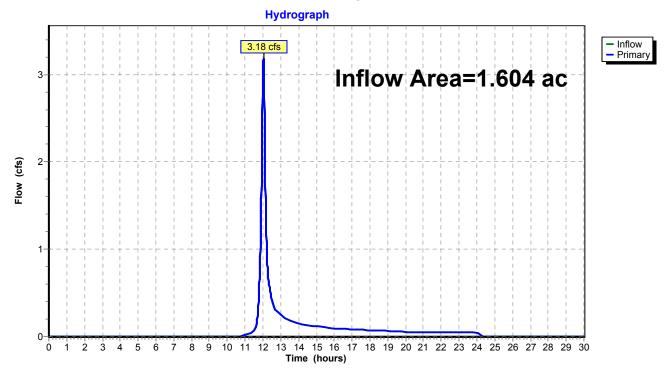
	Α	rea (sf)	CN E	Description			
		67,554	71 Meadow, non-grazed, HSG C				
		2,301	87 Dirt roads, HSG C				
		69,855 72 Weighted Average					
	69,855 100.00% Pervious Area					a	
-	Гс	Length	Slope	Velocity	Capacity	Description	
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6	.9	100	0.0500	0.24		Sheet Flow, Sheet	
						Grass: Short n= 0.150 P2= 3.07"	
3	.1	242	0.0350	1.31		Shallow Concentrated Flow, SC1	
						Short Grass Pasture Kv= 7.0 fps	
0	.0	9	0.0650	4.10		Shallow Concentrated Flow, SC2	
						Unpaved Kv= 16.1 fps	
0	.5	58	0.0650	1.78		Shallow Concentrated Flow, SC3	
						Short Grass Pasture Kv= 7.0 fps	
10	.5	409	Total				

Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 12

Summary for Link 20L: Existing Conditions


Inflow Area = 1.604 ac, 0.00% Impervious, Inflow Depth = 1.33" for 5-Year event

Inflow = 3.18 cfs @ 12.03 hrs, Volume= 0.178 af

Primary = 3.18 cfs @ 12.03 hrs, Volume= 0.178 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 20L: Existing Conditions

Type II 24-hr 10-Year Rainfall=4.45" Printed 10/20/2016

AR-SC-073.5

Prepared by Microsoft HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 13

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

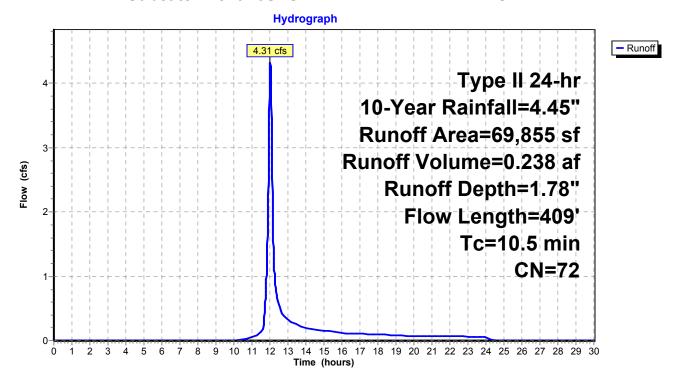
Subcatchment10S: OVERALL DA Runoff Area=69,855 sf 0.00% Impervious Runoff Depth=1.78"

Flow Length=409' Tc=10.5 min CN=72 Runoff=4.31 cfs 0.238 af

Link 20L: Existing ConditionsInflow=4.31 cfs 0.238 af
Primary=4.31 cfs 0.238 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.238 af Average Runoff Depth = 1.78" 100.00% Pervious = 1.604 ac 0.00% Impervious = 0.000 ac

Page 14


Summary for Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Runoff = 4.31 cfs @ 12.03 hrs, Volume= 0.238 af, Depth= 1.78"

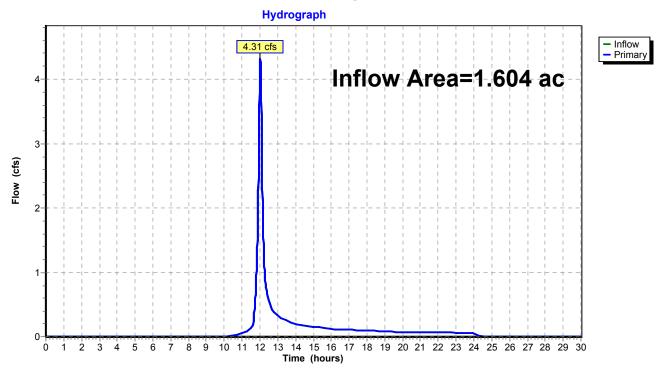
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.45"

	Area (sf)	CN D	escription							
	67,554		, , ,							
	2,301									
	69,855		√eighted A	-						
	69,855	1	00.00% Pe	ervious Are	a					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)		(ft/ft)	(ft/sec)	(cfs)	'					
6.9	100	0.0500	0.24		Sheet Flow, Sheet					
					Grass: Short n= 0.150 P2= 3.07"					
3.1	242	0.0350	1.31		Shallow Concentrated Flow, SC1					
• • • • • • • • • • • • • • • • • • • •		0.000			Short Grass Pasture Kv= 7.0 fps					
0.0	9	0.0650	4.10		Shallow Concentrated Flow, SC2					
0.0	3	0.0000	4.10		Unpaved Kv= 16.1 fps					
0.5	58	0.0650	1.78		Shallow Concentrated Flow, SC3					
0.5	36	0.0650	1.70		•					
					Short Grass Pasture Kv= 7.0 fps					
10.5	409	Total								

Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Page 15

Summary for Link 20L: Existing Conditions


Inflow Area = 1.604 ac, 0.00% Impervious, Inflow Depth = 1.78" for 10-Year event

Inflow = 4.31 cfs @ 12.03 hrs, Volume= 0.238 af

Primary = 4.31 cfs @ 12.03 hrs, Volume= 0.238 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 20L: Existing Conditions

AR-SC-073.5 Type II 24-hr 25-Year Rainfall=5.45"
Prepared by Microsoft Printed 10/20/2016

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 16

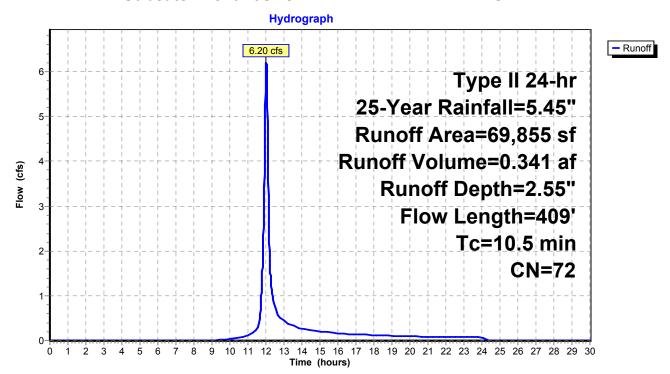
Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment10S: OVERALL DA Runoff Area=69,855 sf 0.00% Impervious Runoff Depth=2.55"

Flow Length=409' Tc=10.5 min CN=72 Runoff=6.20 cfs 0.341 af

Link 20L: Existing ConditionsInflow=6.20 cfs 0.341 af
Primary=6.20 cfs 0.341 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.341 af Average Runoff Depth = 2.55" 100.00% Pervious = 1.604 ac 0.00% Impervious = 0.000 ac


Summary for Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Runoff = 6.20 cfs @ 12.03 hrs, Volume= 0.341 af, Depth= 2.55"

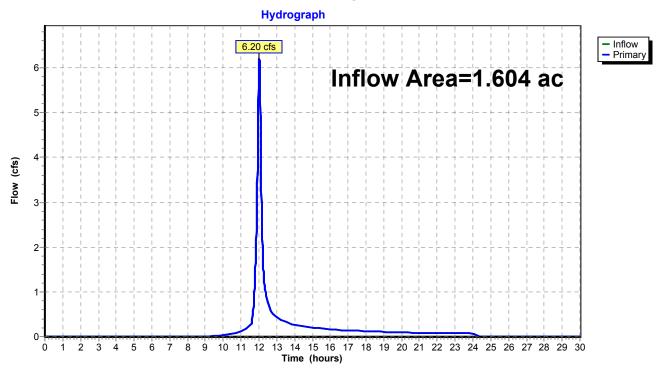
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.45"

	Area (sf)	CN D	escription							
	67,554		, , ,							
	2,301									
	69,855		√eighted A	-						
	69,855	1	00.00% Pe	ervious Are	a					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)		(ft/ft)	(ft/sec)	(cfs)	'					
6.9	100	0.0500	0.24		Sheet Flow, Sheet					
					Grass: Short n= 0.150 P2= 3.07"					
3.1	242	0.0350	1.31		Shallow Concentrated Flow, SC1					
• • • • • • • • • • • • • • • • • • • •		0.000			Short Grass Pasture Kv= 7.0 fps					
0.0	9	0.0650	4.10		Shallow Concentrated Flow, SC2					
0.0	3	0.0000	4.10		Unpaved Kv= 16.1 fps					
0.5	58	0.0650	1.78		Shallow Concentrated Flow, SC3					
0.5	36	0.0650	1.70		•					
					Short Grass Pasture Kv= 7.0 fps					
10.5	409	Total								

Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Page 18

Summary for Link 20L: Existing Conditions


Inflow Area = 1.604 ac, 0.00% Impervious, Inflow Depth = 2.55" for 25-Year event

Inflow = 6.20 cfs @ 12.03 hrs, Volume= 0.341 af

Primary = 6.20 cfs @ 12.03 hrs, Volume= 0.341 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 20L: Existing Conditions

AR-SC-073.5

Type II 24-hr 50-Year Rainfall=6.38" Printed 10/20/2016

Prepared by Microsoft
HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 19

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

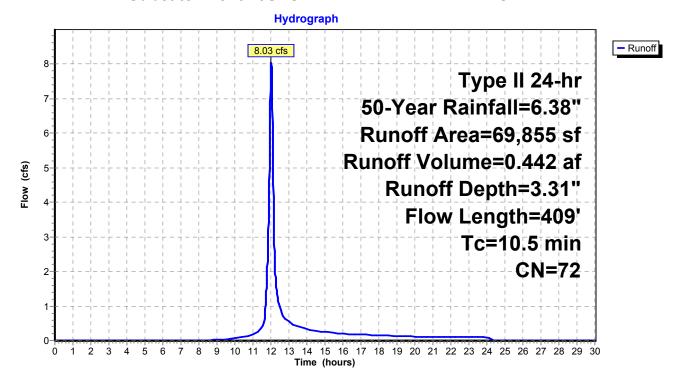
Subcatchment10S: OVERALL DA Runoff Area=69,855 sf 0.00% Impervious Runoff Depth=3.31"

Flow Length=409' Tc=10.5 min CN=72 Runoff=8.03 cfs 0.442 af

Link 20L: Existing ConditionsInflow=8.03 cfs 0.442 af Primary=8.03 cfs 0.442 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.442 af Average Runoff Depth = 3.31" 100.00% Pervious = 1.604 ac 0.00% Impervious = 0.000 ac

Page 20


Summary for Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Runoff = 8.03 cfs @ 12.02 hrs, Volume= 0.442 af, Depth= 3.31"

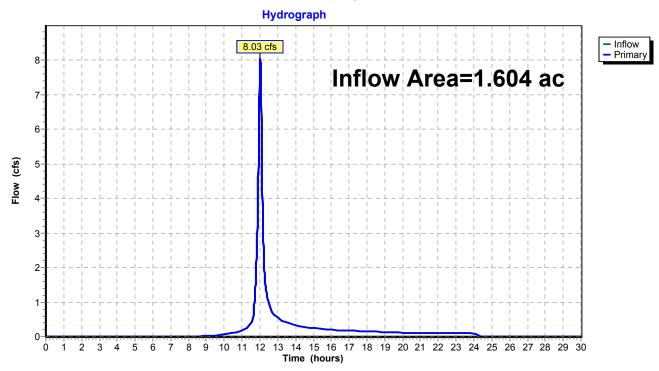
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.38"

	Aı	rea (sf)	CN E	Description							
		67,554 2,301		, , ,							
		69,855	72 V	Veighted A	verage						
		69,855	1	100.00% Pe	ervious Are	a					
	Тс	Length	Slope		Capacity	Description					
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6	6.9	100	0.0500	0.24		Sheet Flow, Sheet					
						Grass: Short n= 0.150 P2= 3.07"					
3	3.1	242	0.0350	1.31		Shallow Concentrated Flow, SC1					
						Short Grass Pasture Kv= 7.0 fps					
0	0.0	9	0.0650	4.10		Shallow Concentrated Flow, SC2					
		•				Unpaved Kv= 16.1 fps					
0	.5	58	0.0650	1.78		Shallow Concentrated Flow, SC3					
•	. •			•		Short Grass Pasture Kv= 7.0 fps					
10	.5	409	Total			•					

Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Page 21

Summary for Link 20L: Existing Conditions


Inflow Area = 1.604 ac, 0.00% Impervious, Inflow Depth = 3.31" for 50-Year event

Inflow = 8.03 cfs @ 12.02 hrs, Volume= 0.442 af

Primary = 8.03 cfs @ 12.02 hrs, Volume= 0.442 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 20L: Existing Conditions

AR-SC-073.5

Type II 24-hr 100-Year Rainfall=7.47" Printed 10/20/2016

Prepared by Microsoft
HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 22

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

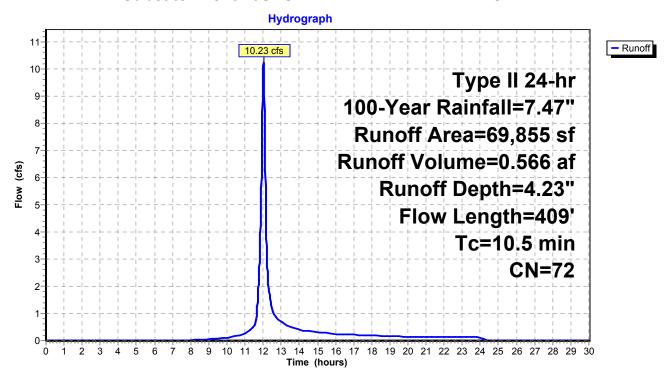
Subcatchment10S: OVERALL DA Runoff Area=69,855 sf 0.00% Impervious Runoff Depth=4.23"

Flow Length=409' Tc=10.5 min CN=72 Runoff=10.23 cfs 0.566 af

Link 20L: Existing Conditions

Inflow=10.23 cfs 0.566 af
Primary=10.23 cfs 0.566 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.566 af Average Runoff Depth = 4.23" 100.00% Pervious = 1.604 ac 0.00% Impervious = 0.000 ac


Summary for Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

Runoff = 10.23 cfs @ 12.02 hrs, Volume= 0.566 af, Depth= 4.23"

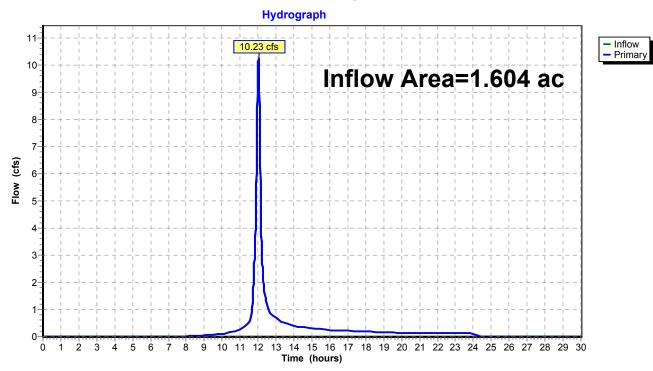
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=7.47"

A	rea (sf)	CN D	escription							
	67,554		, , ,							
	2,301									
	69,855	72 V	/eighted A	verage						
	69,855	1	00.00% Pe	ervious Are	a					
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'					
6.9	100	0.0500	0.24		Sheet Flow, Sheet					
					Grass: Short n= 0.150 P2= 3.07"					
3.1	242	0.0350	1.31		Shallow Concentrated Flow, SC1					
					Short Grass Pasture Kv= 7.0 fps					
0.0	9	0.0650	4.10		Shallow Concentrated Flow, SC2					
					Unpaved Kv= 16.1 fps					
0.5	58	0.0650	1.78		Shallow Concentrated Flow, SC3					
					Short Grass Pasture Kv= 7.0 fps					
10.5	409	Total								

Subcatchment 10S: OVERALL DA PRE-DEVELOPMENT

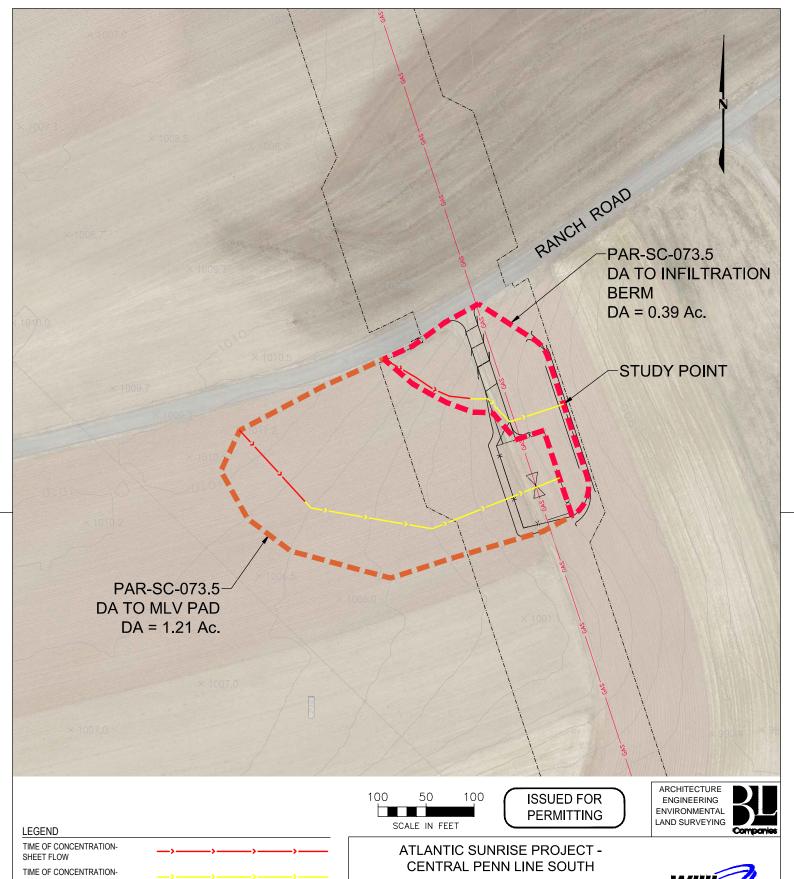
Page 24

Summary for Link 20L: Existing Conditions

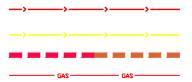

Inflow Area = 1.604 ac, 0.00% Impervious, Inflow Depth = 4.23" for 100-Year event

Inflow = 10.23 cfs @ 12.02 hrs, Volume= 0.566 af

Primary = 10.23 cfs @ 12.02 hrs, Volume= 0.566 af, Atten= 0%, Lag= 0.0 min

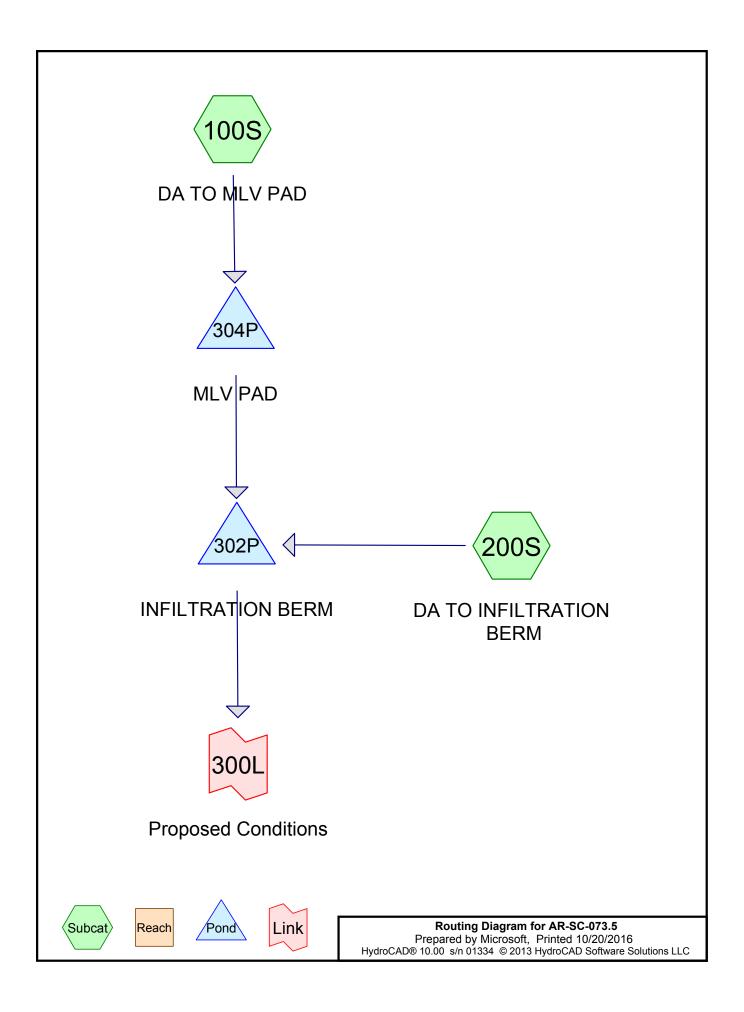

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 20L: Existing Conditions


V.4 Post Development Calculations a. Post Development Drainage Area Map

- b. 1-Year Rainfall Event
- c. 2-Year Rainfall Event
- d. 5-Year Rainfall Event
- e. 10-Year Rainfall Eventf. 25-Year Rainfall Event
- g. 50-year Rainfall Eventh. 100-Year Rainfall Event

TIME OF CONCENTRATION-SHALLOW CONCENTRATED FLOW DRAINAGE AREA


PROPOSED GAS PIPELINE

PROPOSED 42" NATURAL GAS PIPELINE ACCESS ROAD DRAINAGE AREA MAP AR-SC-073.5 POST ELDRED TOWNSHIP SCHYULKILL COUNTY, PENNSYLVANIA

NO.	DATE	BY	REVISION DESCRIPTION	W.O. NO.	CHK.	APP.	DRAWN BY:	OLC	DATE:	10/26/15	ISSUED FOR BID:	scale: 1" = 100'
							CHECKED BY:	BJP	DATE:	10/26/15	ISSUED FOR CONSTRUCTION:	
							APPROVED BY:	BJP	DATE:	10/26/15	DRAWING NUMBER: AR-SC-073.5	POST
							WO:				7(17 30 073.3	1 031

Printed 10/20/2016

Page 2

Area Listing (selected nodes)

Area	a CN	Description
(acres)	(subcatchment-numbers)
0.10	7 98	Crushed Stone Pad, HSG C (100S)
0.048	8 89	Gravel roads, HSG C (100S, 200S)
1.44	8 71	Meadow, non-grazed, HSG C (100S, 200S)
1.60	4 73	TOTAL AREA

Printed 10/20/2016

Page 3

Soil Listing (selected nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
0.000	HSG B	
1.604	HSG C	100S, 200S
0.000	HSG D	
0.000	Other	
1.604		TOTAL AREA

Prepared by Microsoft

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100S: DA TO MLV PAD Runoff Area=52,985 sf 8.83% Impervious Runoff Depth=0.60"

Flow Length=381' Tc=13.4 min CN=73 Runoff=0.90 cfs 0.061 af

Subcatchment200S: DA TO INFILTRATION Runoff Area=16,870 sf 0.00% Impervious Runoff Depth=0.60"

Flow Length=211' Tc=9.2 min CN=73 Runoff=0.34 cfs 0.019 af

Pond 302P: INFILTRATIONBERM Peak Elev=995.24' Storage=3,036 cf Inflow=1.21 cfs 0.070 af

Outflow=0.00 cfs 0.000 af

Pond 304P: MLV PAD Peak Elev=994.98' Storage=450 cf Inflow=0.90 cfs 0.061 af

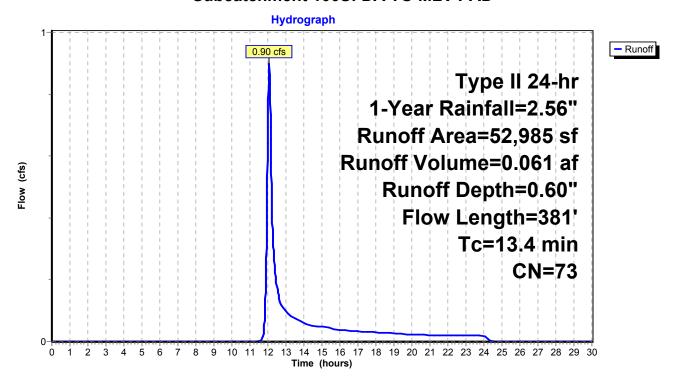
Outflow=0.85 cfs 0.050 af

Link 300L: Proposed Conditions Inflow=0.00 cfs 0.000 af

Primary=0.00 cfs 0.000 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.080 af Average Runoff Depth = 0.60" 93.30% Pervious = 1.496 ac 6.70% Impervious = 0.107 ac

Page 5

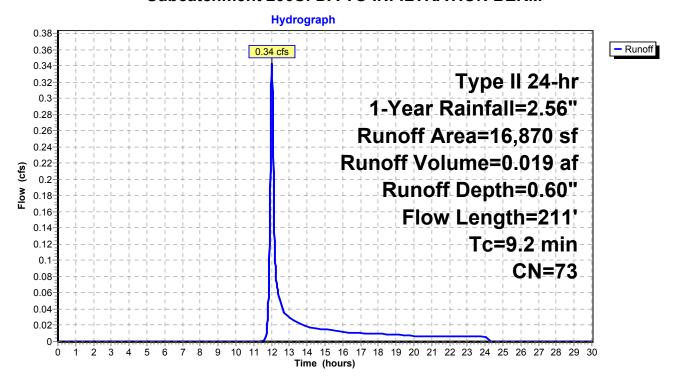

Summary for Subcatchment 100S: DA TO MLV PAD

Runoff = 0.90 cfs @ 12.07 hrs, Volume= 0.061 af, Depth= 0.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.56"

	Α	rea (sf)	CN	N Description							
*		4,680	98	8 Crushed Stone Pad, HSG C							
		240	89	Gravel road	ls, HSG C						
_		48,065	71	Meadow, no	on-grazed,	HSG C					
		52,985	73	Neighted A	verage						
		48,305	,	91.1 <mark>7</mark> % Pei	rvious Area						
		4,680	:	3.83% Impe	ervious Are	a					
	Tc	Length	Slope	•	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.1	100	0.0500	0.17		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 3.07"					
	2.9	229	0.0350	1.31		Shallow Concentrated Flow, SC1					
						Short Grass Pasture Kv= 7.0 fps					
	0.4	52	0.0200	2.28		Shallow Concentrated Flow, SC2					
_						Unpaved Kv= 16.1 fps					
	13.4	381	Total								

Subcatchment 100S: DA TO MLV PAD


Summary for Subcatchment 200S: DA TO INFILTRATION BERM

Runoff = 0.34 cfs @ 12.02 hrs, Volume= 0.019 af, Depth= 0.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 1-Year Rainfall=2.56"

_	Α	rea (sf)	CN E	escription		
		1,860	89 G	Fravel road	ls, HSG C	
*		15,010	71 N	leadow, no	on-grazed,	HSG C
		16,870	73 V	Veighted A	verage	
		16,870		•	ervious Are	a
		,				
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
	8.2	100	0.0850	0.20		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.07"
	0.2	19	0.0850	2.04		Shallow Concentrated Flow, SC1
						Short Grass Pasture Kv= 7.0 fps
	0.2	33	0.0200	2.28		Shallow Concentrated Flow, SC2
						Unpaved Kv= 16.1 fps
	0.6	59	0.0650	1.78		Shallow Concentrated Flow, SC3
_						Short Grass Pasture Kv= 7.0 fps
	9.2	211	Total			

Subcatchment 200S: DA TO INFILTRATION BERM

Page 7

Summary for Pond 302P: INFILTRATION BERM

Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 0.52" for 1-Year event

Inflow = 1.21 cfs @ 12.08 hrs, Volume= 0.070 af

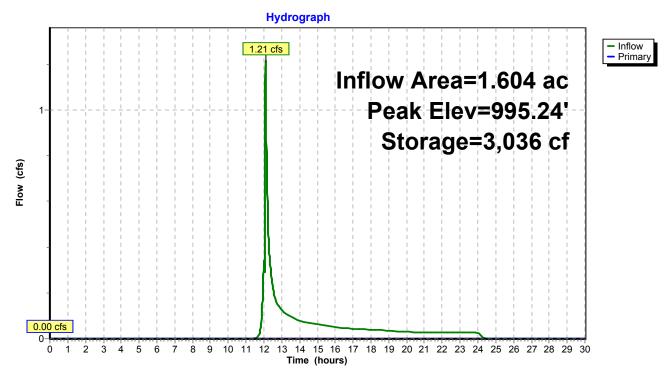
Outflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.24' @ 24.77 hrs Surf.Area= 4,497 sf Storage= 3,036 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow)

Center-of-Mass det. time= (not calculated: no outflow)


Volume	Inv	ert Ava	il.Storage	Storage Descript	ion		
#1	993.	75'	4,311 cf	Custom Stage D	oata (Irregular)List	ted below (Recalc)
Elevatior (feet		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
993.75	5	0	0.0	0	0	0	
994.00)	455	225.5	38	38	4,047	
994.50)	2,009	324.3	570	608	8,371	
995.00)	3,803	364.6	1,429	2,037	10,587	
995.30)	4,676	385.8	1,270	3,307	11,858	
995.50)	5,376	394.8	1,004	4,311	12,423	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	995	5.30' 50.0	' long x 3.0' brea	dth Broad-Creste	ed Weir	
	•		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60 1	1.80 2.00
			2.50	3.00 3.50 4.00	4.50		
			Coe	f. (English) 2.44 2	2.58 2.68 2.67 2.	.65 2.64 2.64 2.6	38 2.68

2.72 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=993.75' (Free Discharge) 1=Broad-Crested Weir (Controls 0.00 cfs)

Page 8

Pond 302P: INFILTRATION BERM

Page 9

Summary for Pond 304P: MLV PAD

Inflow Area = 1.216 ac, 8.83% Impervious, Inflow Depth = 0.60" for 1-Year event

Inflow = 0.90 cfs @ 12.07 hrs, Volume= 0.061 af

Outflow = 0.85 cfs @ 12.08 hrs, Volume= 0.050 af, Atten= 5%, Lag= 0.5 min

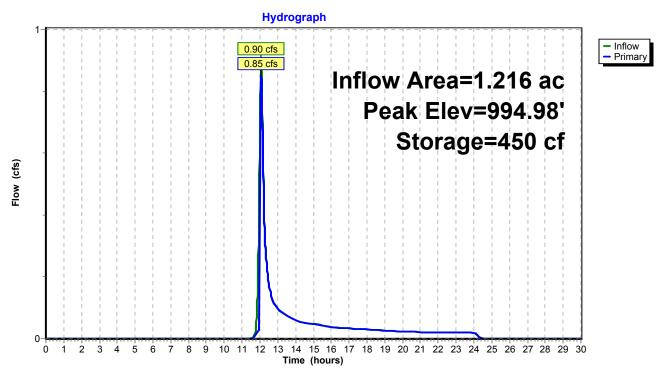
Primary = 0.85 cfs @ 12.08 hrs, Volume= 0.050 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 994.98' @ 12.08 hrs Surf.Area= 0 sf Storage= 450 cf

Plug-Flow detention time= 114.6 min calculated for 0.050 af (83% of inflow)

Center-of-Mass det. time= 34.8 min (920.4 - 885.6)

Volume	Invert	Avail.Storage	Storage Description
#1	993.96'	450 cf	MLV Pad StorageListed below
			1,126 cf Overall x 40.0% Voids
Flevation	Cum St	ore	


Elevation	Cum.Store
(feet)	(cubic-feet)
993.96	0
994.46	563
994.96	1,125
995.00	1,126

Device	Routing	invert	Outlet Devices
#1	Primary	994.96'	90.0' long x 3.0' breadth Broad-Crested Weir
	•		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32

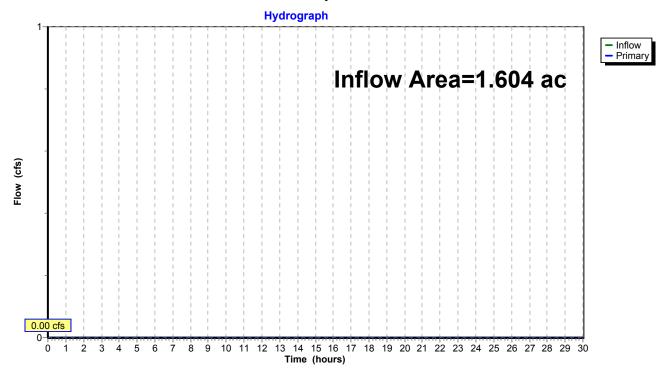
Primary OutFlow Max=0.84 cfs @ 12.08 hrs HW=994.98' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 0.84 cfs @ 0.38 fps)

Page 10

Pond 304P: MLV PAD

Page 11

Summary for Link 300L: Proposed Conditions


Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 0.00" for 1-Year event

Inflow = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af

Primary = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 300L: Proposed Conditions

Type II 24-hr 2-Year Rainfall=3.07" Printed 10/20/2016

AR-SC-073.5

Prepared by Microsoft

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 12

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100S: DA TO MLV PAD Runoff Area=52,985 sf 8.83% Impervious Runoff Depth=0.90"

Flow Length=381' Tc=13.4 min CN=73 Runoff=1.42 cfs 0.091 af

Subcatchment200S: DA TO INFILTRATION Runoff Area=16,870 sf 0.00% Impervious Runoff Depth=0.90"

Flow Length=211' Tc=9.2 min CN=73 Runoff=0.54 cfs 0.029 af

Pond 302P: INFILTRATIONBERM Peak Elev=995.31' Storage=3,336 cf Inflow=1.74 cfs 0.108 af

Outflow=0.07 cfs 0.032 af

Pond 304P: MLV PAD Peak Elev=994.99' Storage=450 cf Inflow=1.42 cfs 0.091 af

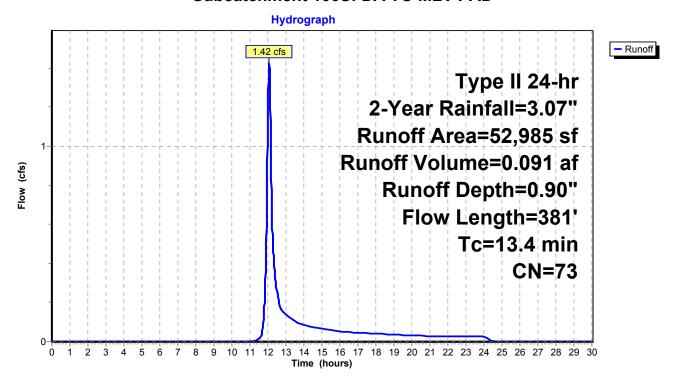
Outflow=1.27 cfs 0.079 af

Link 300L: Proposed Conditions Inflow=0.07 cfs 0.032 af

Primary=0.07 cfs 0.032 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.120 af Average Runoff Depth = 0.90" 93.30% Pervious = 1.496 ac 6.70% Impervious = 0.107 ac

Page 13


Summary for Subcatchment 100S: DA TO MLV PAD

Runoff = 1.42 cfs @ 12.07 hrs, Volume= 0.091 af, Depth= 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.07"

	Α	rea (sf)	CN I	Description			
*		4,680	98 Crushed Stone Pad, F			ISG C	
		240	89	Gravel road	ls, HSG C		
_		48,065	71	Meadow, non-grazed, HSG C			
		52,985	73	Neighted A	verage		
	48,305 91.17% Pervious Area		rvious Area				
		4,680	;	3.83% Impe	ervious Are	a	
	Tc	Length	Slope	•	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	10.1	100	0.0500	0.17		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.07"	
	2.9	229	0.0350	1.31		Shallow Concentrated Flow, SC1	
						Short Grass Pasture Kv= 7.0 fps	
	0.4	52	0.0200	2.28		Shallow Concentrated Flow, SC2	
_						Unpaved Kv= 16.1 fps	
	13.4	381	Total				

Subcatchment 100S: DA TO MLV PAD

Page 14


Summary for Subcatchment 200S: DA TO INFILTRATION BERM

Runoff = 0.54 cfs @ 12.02 hrs, Volume= 0.029 af, Depth= 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 2-Year Rainfall=3.07"

	Α	rea (sf)	CN D	escription		
		1,860	89 G	avel road	s, HSG C	
*		15,010	71 N	leadow, no	on-grazed,	HSG C
		16,870	73 V	Veighted A	verage	
		16,870	1	00.00% Pe	ervious Are	ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.2	100	0.0850	0.20		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.07"
	0.2	19	0.0850	2.04		Shallow Concentrated Flow, SC1
						Short Grass Pasture Kv= 7.0 fps
	0.2	33	0.0200	2.28		Shallow Concentrated Flow, SC2
						Unpaved Kv= 16.1 fps
	0.6	59	0.0650	1.78		Shallow Concentrated Flow, SC3
_						Short Grass Pasture Kv= 7.0 fps
	9.2	211	Total			

Subcatchment 200S: DA TO INFILTRATION BERM

Page 15

Summary for Pond 302P: INFILTRATION BERM

Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 0.81" for 2-Year event

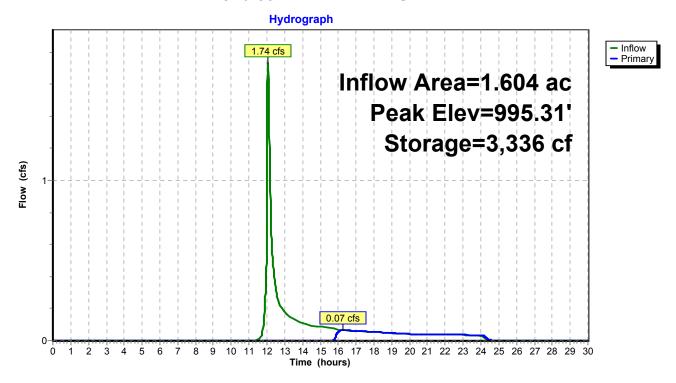
Inflow = 1.74 cfs @ 12.05 hrs, Volume= 0.108 af

Outflow = 0.07 cfs @ 16.28 hrs, Volume= 0.032 af, Atten= 96%, Lag= 253.7 min

Primary = 0.07 cfs @ 16.28 hrs, Volume= 0.032 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.31' @ 16.28 hrs Surf.Area= 4,697 sf Storage= 3,336 cf

Plug-Flow detention time= 450.7 min calculated for 0.032 af (29% of inflow)


Center-of-Mass det. time= 285.6 min (1,174.7 - 889.1)

Volume	Inv	ert Ava	il.Storage	Storage Descript	ion		
#1	993.	75'	4,311 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recald	<u>.</u>
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
993.7	75	0	0.0	0	0	0	
994.0	00	455	225.5	38	38	4,047	
994.5	50	2,009	324.3	570	608	8,371	
995.0	00	3,803	364.6	1,429	2,037	10,587	
995.3	30	4,676	385.8	1,270	3,307	11,858	
995.5	50	5,376	394.8	1,004	4,311	12,423	
Device	Routing	In	vert Outle	et Devices			
#1	Primary	995	5.30' 50.0	' long x 3.0' brea	dth Broad-Crest	ed Weir	
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60	1.80 2.00
			2.50	3.00 3.50 4.00	4.50		
			Coe	f. (English) 2.44 2	2.58 2.68 2.67 2	.65 2.64 2.64 2.6	68 2.68
			2.72	2.81 2.92 2.97	3.07 3.32		

Primary OutFlow Max=0.06 cfs @ 16.28 hrs HW=995.31' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 0.06 cfs @ 0.19 fps)

Page 16

Pond 302P: INFILTRATION BERM

Page 17

Summary for Pond 304P: MLV PAD

Inflow Area = 1.216 ac, 8.83% Impervious, Inflow Depth = 0.90" for 2-Year event

Inflow 1.42 cfs @ 12.07 hrs, Volume= 0.091 af

Outflow 1.27 cfs @ 12.07 hrs, Volume= 0.079 af, Atten= 11%, Lag= 0.4 min

Primary 1.27 cfs @ 12.07 hrs, Volume= 0.079 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 994.99' @ 12.07 hrs Surf.Area= 0 sf Storage= 450 cf

Plug-Flow detention time= 92.2 min calculated for 0.079 af (86% of inflow)

Center-of-Mass det. time= 25.2 min (897.0 - 871.7)

Cura Ctara

Volume	Invert	Avail.Storage	Storage Description
#1	993.96'	450 cf	MLV Pad StorageListed below 1,126 cf Overall x 40.0% Voids

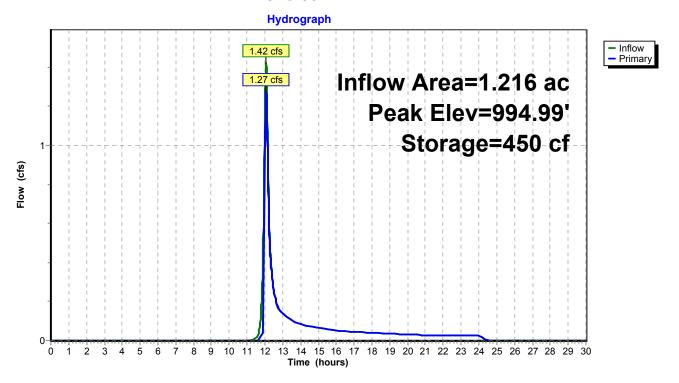
Elevation	Cum.Store
(feet)	(cubic-feet)
993.96	0
994.46	563
994.96	1,125
995.00	1,126
994.46 994.96	563 1,125

Device	Routing	Invert	Outlet Devices
#1	Primary	994.96'	90.0' long x 3.0' breadth Broad-Crested Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 4.00 4.50

Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68


2.72 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=1.26 cfs @ 12.07 hrs HW=994.99' (Free Discharge) **1=Broad-Crested Weir** (Weir Controls 1.26 cfs @ 0.44 fps)

Page 18

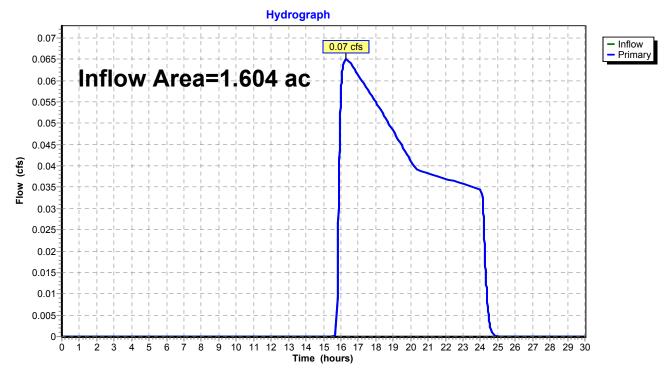
HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 304P: MLV PAD

Page 19

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Summary for Link 300L: Proposed Conditions


Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 0.24" for 2-Year event

Inflow = 0.07 cfs @ 16.28 hrs, Volume= 0.032 af

Primary = 0.07 cfs @ 16.28 hrs, Volume= 0.032 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 300L: Proposed Conditions

Page 20

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100S: DA TO MLV PAD Runoff Area=52,985 sf 8.83% Impervious Runoff Depth=1.39"

Flow Length=381' Tc=13.4 min CN=73 Runoff=2.27 cfs 0.141 af

Subcatchment200S: DA TO INFILTRATION Runoff Area=16,870 sf 0.00% Impervious Runoff Depth=1.39"

Flow Length=211' Tc=9.2 min CN=73 Runoff=0.85 cfs 0.045 af

Pond 302P: INFILTRATIONBERM Peak Elev=995.32' Storage=3,389 cf Inflow=2.77 cfs 0.167 af

Outflow=0.31 cfs 0.091 af

Pond 304P: MLV PAD Peak Elev=995.00' Storage=450 cf Inflow=2.27 cfs 0.141 af

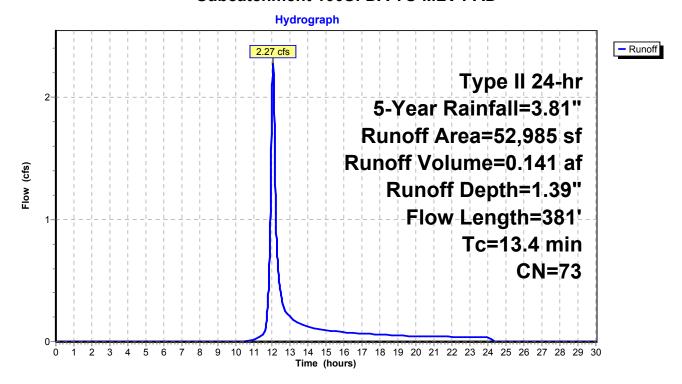
Outflow=2.00 cfs 0.122 af

Link 300L: Proposed Conditions Inflow=0.31 cfs 0.091 af

Primary=0.31 cfs 0.091 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.186 af Average Runoff Depth = 1.39" 93.30% Pervious = 1.496 ac 6.70% Impervious = 0.107 ac

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC


Summary for Subcatchment 100S: DA TO MLV PAD

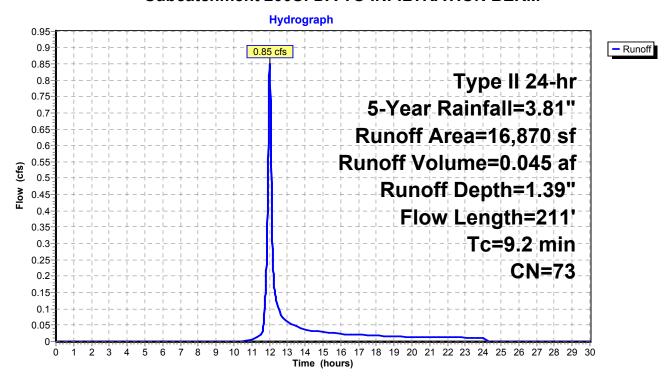
Runoff = 2.27 cfs @ 12.06 hrs, Volume= 0.141 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.81"

_	Α	rea (sf)	CN E	Description							
*		4,680	98 C	,							
		240	89 C	Gravel roads, HSG C							
		48,065	71 N	/leadow, no	on-grazed,	HSG C					
		52,985	73 V	Veighted A	verage						
		48,305	9	1.17% Pei	vious Area	ľ					
		4,680	8	3.83% Impe	ervious Are	a					
·											
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.1	100	0.0500	0.17		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 3.07"					
	2.9	229	0.0350	1.31		Shallow Concentrated Flow, SC1					
						Short Grass Pasture Kv= 7.0 fps					
	0.4	52	0.0200	2.28		Shallow Concentrated Flow, SC2					
_						Unpaved Kv= 16.1 fps					
	13.4	381	Total								

Subcatchment 100S: DA TO MLV PAD

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC


Summary for Subcatchment 200S: DA TO INFILTRATION BERM

Runoff = 0.85 cfs @ 12.01 hrs, Volume= 0.045 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 5-Year Rainfall=3.81"

	Α	rea (sf)	CN D	escription						
		1,860	89 G	Gravel road	ls, HSG C					
*		15,010	71 N	,						
		16,870	73 V	Veighted A	verage					
		16,870			ervious Are	a				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	8.2	100	0.0850	0.20		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.07"				
	0.2	19	0.0850	2.04		Shallow Concentrated Flow, SC1				
						Short Grass Pasture Kv= 7.0 fps				
	0.2	33	0.0200	2.28		Shallow Concentrated Flow, SC2				
						Unpaved Kv= 16.1 fps				
	0.6	59	0.0650	1.78		Shallow Concentrated Flow, SC3				
_						Short Grass Pasture Kv= 7.0 fps				
	9.2	211	Total							

Subcatchment 200S: DA TO INFILTRATION BERM

Page 23

Summary for Pond 302P: INFILTRATION BERM

Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 1.25" for 5-Year event

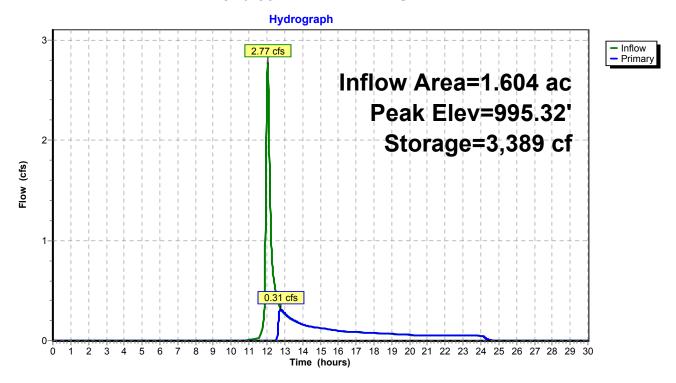
Inflow = 2.77 cfs @ 12.05 hrs, Volume= 0.167 af

Outflow = 0.31 cfs @ 12.77 hrs, Volume= 0.091 af, Atten= 89%, Lag= 43.8 min

Primary = 0.31 cfs @ 12.77 hrs, Volume= 0.091 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.32' @ 12.77 hrs Surf.Area= 4,735 sf Storage= 3,389 cf

Plug-Flow detention time= 268.1 min calculated for 0.091 af (54% of inflow)


Center-of-Mass det. time= 128.9 min (1,002.9 - 873.9)

Volume	Inv	ert Ava	il.Storage	e Storage Description				
#1	993.	75'	4,311 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recald	<u>.</u>	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
993.7	75	0	0.0	0	0	0		
994.0	00	455	225.5	38	38	4,047		
994.5	50	2,009	324.3	570 1,429 1,270	608	8,371		
995.0	00	3,803	364.6		2,037	10,587		
995.3	30	4,676	385.8		3,307	11,858		
995.5	50	5,376	394.8	1,004	4,311	12,423		
Device	Routing	In	vert Outle	et Devices				
#1	Primary	995	5.30' 50.0	' long x 3.0' brea	dth Broad-Crest	ed Weir		
			Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60	1.80 2.00	
			2.50	3.00 3.50 4.00	4.50			
			Coe	f. (English) 2.44 2	2.58 2.68 2.67 2	.65 2.64 2.64 2.6	68 2.68	
			2.72	2.81 2.92 2.97	3.07 3.32			

Primary OutFlow Max=0.28 cfs @ 12.77 hrs HW=995.32' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 0.28 cfs @ 0.32 fps)

Page 24

Pond 302P: INFILTRATION BERM

Page 25

Summary for Pond 304P: MLV PAD

Inflow Area = 1.216 ac, 8.83% Impervious, Inflow Depth = 1.39" for 5-Year event

Inflow = 2.27 cfs @ 12.06 hrs, Volume= 0.141 af

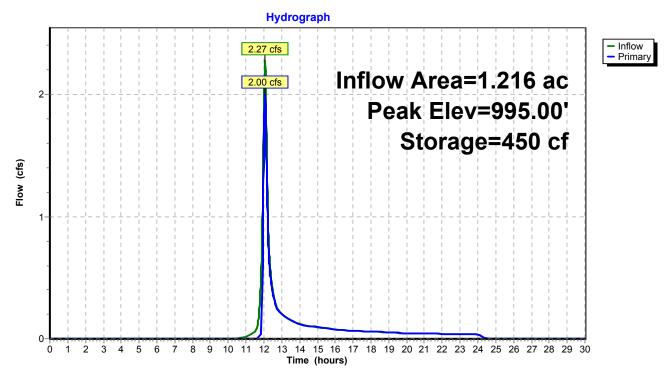
Outflow = 2.00 cfs @ 12.06 hrs, Volume= 0.122 af, Atten= 12%, Lag= 0.0 min

Primary = 2.00 cfs @ 12.06 hrs, Volume= 0.122 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.00' @ 12.06 hrs Surf.Area= 0 sf Storage= 450 cf

Plug-Flow detention time= 88.8 min calculated for 0.122 af (86% of inflow)

Center-of-Mass det. time= 23.1 min (881.2 - 858.1)


Volume	Invert	Avail.Storage	Storage Description
#1	993.96'	450 cf	MLV Pad StorageListed below 1,126 cf Overall x 40.0% Voids
Elevation (feet)	Cum.S (cubic-		
993.96		0	
994.46		563	
994.96	1	,125	
995.00	1	,126	

Device	Routing	Invert	Outlet Devices
#1	Primary	994.96'	90.0' long x 3.0' breadth Broad-Crested Weir
	-		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32

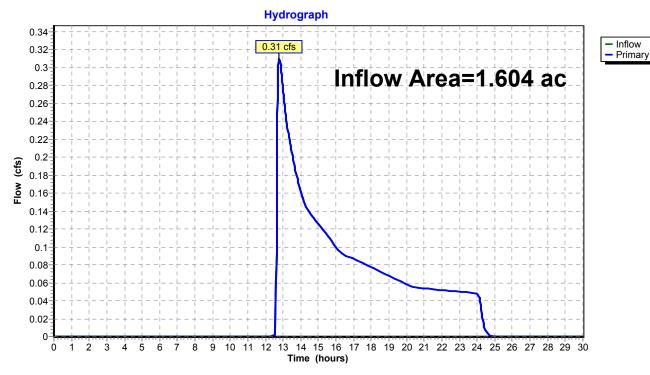
Primary OutFlow Max=1.99 cfs @ 12.06 hrs HW=995.00' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 1.99 cfs @ 0.51 fps)

Page 26

Pond 304P: MLV PAD

Page 27

Summary for Link 300L: Proposed Conditions


Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 0.68" for 5-Year event

Inflow = 0.31 cfs @ 12.77 hrs, Volume= 0.091 af

Primary = 0.31 cfs @ 12.77 hrs, Volume= 0.091 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 300L: Proposed Conditions

Page 28

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100S: DA TO MLV PAD Runoff Area=52,985 sf 8.83% Impervious Runoff Depth=1.86"

Flow Length=381' Tc=13.4 min CN=73 Runoff=3.07 cfs 0.188 af

Subcatchment200S: DA TO INFILTRATION Runoff Area=16,870 sf 0.00% Impervious Runoff Depth=1.86"

Flow Length=211' Tc=9.2 min CN=73 Runoff=1.14 cfs 0.060 af

Pond 302P: INFILTRATIONBERM Peak Elev=995.36' Storage=3,580 cf Inflow=3.98 cfs 0.231 af

Outflow=1.68 cfs 0.155 af

Pond 304P: MLV PAD Peak Elev=995.02' Storage=450 cf Inflow=3.07 cfs 0.188 af

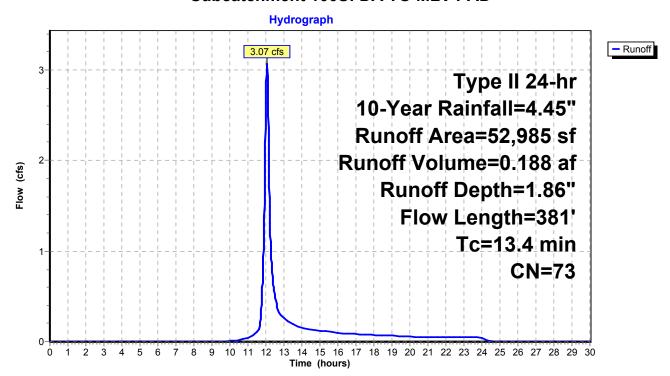
Outflow=2.94 cfs 0.171 af

Link 300L: Proposed Conditions Inflow=1.68 cfs 0.155 af

Primary=1.68 cfs 0.155 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.248 af Average Runoff Depth = 1.86" 93.30% Pervious = 1.496 ac 6.70% Impervious = 0.107 ac

Page 29

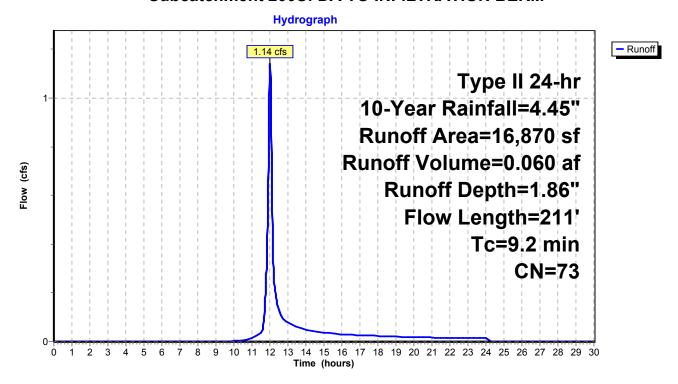

Summary for Subcatchment 100S: DA TO MLV PAD

Runoff = 3.07 cfs @ 12.06 hrs, Volume= 0.188 af, Depth= 1.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.45"

	Α	rea (sf)	CN E	Description						
*		4,680	98 C	Crushed Stone Pad, HSG C						
		240	89 C	ravel roads, HSG C						
		48,065	71 N	/leadow, no	on-grazed,	HSG C				
		52,985	73 V	Veighted A	verage					
		48,305	9	1.17% Per	vious Area	l .				
		4,680	8	3.83% Impe	ervious Are	a				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.1	100	0.0500	0.17		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.07"				
	2.9	229	0.0350	1.31		Shallow Concentrated Flow, SC1				
						Short Grass Pasture Kv= 7.0 fps				
	0.4	52	0.0200	2.28		Shallow Concentrated Flow, SC2				
_						Unpaved Kv= 16.1 fps				
	13.4	381	Total							

Subcatchment 100S: DA TO MLV PAD


Summary for Subcatchment 200S: DA TO INFILTRATION BERM

Runoff = 1.14 cfs @ 12.01 hrs, Volume= 0.060 af, Depth= 1.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 10-Year Rainfall=4.45"

_	Α	rea (sf)	CN E	escription			
		1,860	89 G	Fravel road	ls, HSG C		
*		15,010	71 N	leadow, no	on-grazed,	HSG C	
		16,870	73 V	Veighted A	verage		
		16,870	1	00.00% P	ervious Are	a	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	8.2	100	0.0850	0.20		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.07"	
	0.2	19	0.0850	2.04		Shallow Concentrated Flow, SC1	
						Short Grass Pasture Kv= 7.0 fps	
	0.2	33	0.0200	2.28		Shallow Concentrated Flow, SC2	
						Unpaved Kv= 16.1 fps	
	0.6	59	0.0650	1.78		Shallow Concentrated Flow, SC3	
_						Short Grass Pasture Kv= 7.0 fps	
	92	211	Total				

Subcatchment 200S: DA TO INFILTRATION BERM

Page 31

Summary for Pond 302P: INFILTRATION BERM

Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 1.73" for 10-Year event

Inflow = 3.98 cfs @ 12.04 hrs, Volume= 0.231 af

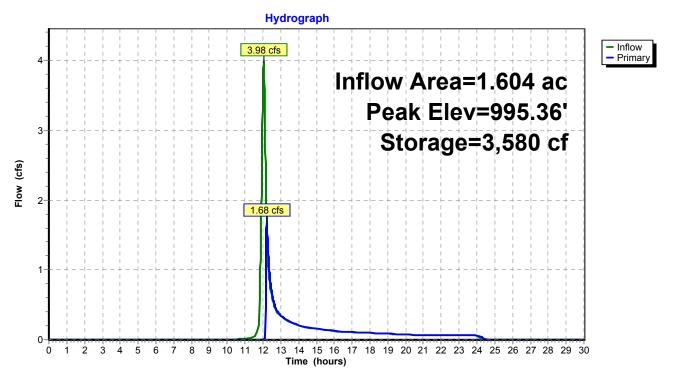
Outflow = 1.68 cfs @ 12.21 hrs, Volume= 0.155 af, Atten= 58%, Lag= 10.0 min

Primary = 1.68 cfs @ 12.21 hrs, Volume= 0.155 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.36' @ 12.21 hrs Surf.Area= 4,871 sf Storage= 3,580 cf

Plug-Flow detention time= 189.9 min calculated for 0.155 af (67% of inflow)

Center-of-Mass det. time= 74.0 min (933.6 - 859.5)


Volume	Inv	ert Avai	I.Storage	Storage Description				
#1	993.	75'	4,311 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc	2)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
993.7	75	0	0.0	0	0	0		
994.0	00	455	225.5	38	38	4,047		
994.5	50	2,009	324.3	570	608	8,371		
995.0	00	3,803	364.6	1,429	2,037	10,587		
995.3	30	4,676	385.8	1,270	3,307	11,858		
995.5	50	5,376	394.8	1,004	4,311	12,423		
Device	Routing	In	vert Outle	et Devices				
#1	Primary	995	5.30' 50.0	50.0' long x 3.0' breadth Broad-Crested Weir				
	·		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60	1.80 2.00	
			2.50	3.00 3.50 4.00	4.50			
				f. (English) 2.44 2		.65 2.64 2.64 2.6	38 2.68	
			2.72	2.81 2.92 2.97	3.07 3.32			

Primary OutFlow Max=1.67 cfs @ 12.21 hrs HW=995.36' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 1.67 cfs @ 0.58 fps)

Printed 10/20/2016 Page 32

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 302P: INFILTRATION BERM

Page 33

Summary for Pond 304P: MLV PAD

Inflow Area = 1.216 ac, 8.83% Impervious, Inflow Depth = 1.86" for 10-Year event

Inflow = 3.07 cfs @ 12.06 hrs, Volume= 0.188 af

Outflow = 2.94 cfs @ 12.06 hrs, Volume= 0.171 af, Atten= 4%, Lag= 0.0 min

Primary = 2.94 cfs @ 12.06 hrs, Volume= 0.171 af

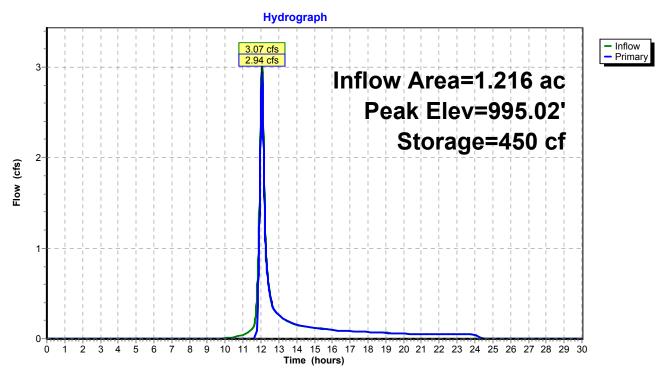
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.02' @ 12.06 hrs Surf.Area= 0 sf Storage= 450 cf

Plug-Flow detention time= 61.7 min calculated for 0.171 af (91% of inflow)

Center-of-Mass det. time= 14.8 min (864.4 - 849.5)

Volume	Invert	Avail.Storage	Storage Description
#1	993.96'	450 cf	MLV Pad StorageListed below
			1,126 cf Overall x 40.0% Voids
Elevation	Cum.St	ore	

Lievation	Culli.Store
(feet)	(cubic-feet)
993.96	0
994.46	563
994.96	1,125
995.00	1,126


Device	Rouling	invert	Outlet Devices
#1	Primary	994.96'	90.0' long x 3.0' breadth Broad-Crested Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50 4.00 4.50
			Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68
			2.72 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=2.93 cfs @ 12.06 hrs HW=995.02' (Free Discharge)

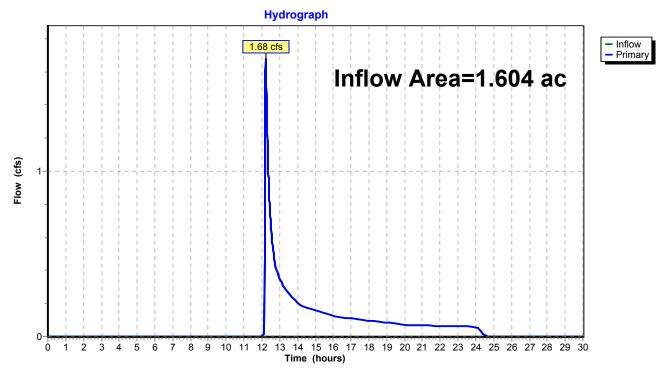
1=Broad-Crested Weir (Weir Controls 2.93 cfs @ 0.58 fps)

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Pond 304P: MLV PAD

Page 35

Summary for Link 300L: Proposed Conditions


Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 1.16" for 10-Year event

Inflow = 1.68 cfs @ 12.21 hrs, Volume= 0.155 af

Primary = 1.68 cfs @ 12.21 hrs, Volume= 0.155 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 300L: Proposed Conditions

Page 36

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100S: DA TO MLV PAD Runoff Area=52,985 sf 8.83% Impervious Runoff Depth=2.64"

Flow Length=381' Tc=13.4 min CN=73 Runoff=4.39 cfs 0.267 af

Subcatchment200S: DA TO INFILTRATION Runoff Area=16,870 sf 0.00% Impervious Runoff Depth=2.64"

Flow Length=211' Tc=9.2 min CN=73 Runoff=1.62 cfs 0.085 af

Pond 302P: INFILTRATIONBERM Peak Elev=995.42' Storage=3,906 cf Inflow=5.87 cfs 0.342 af

Outflow=5.25 cfs 0.266 af

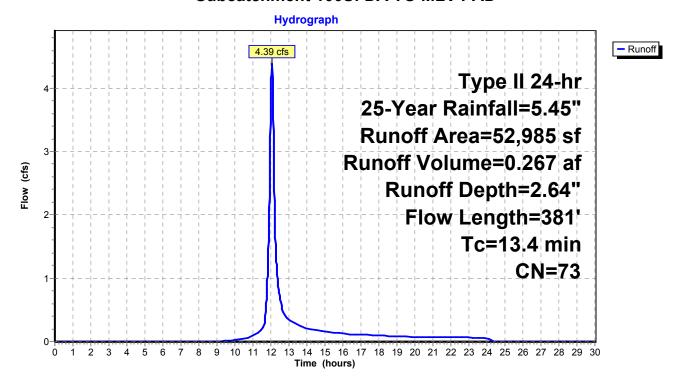
Pond 304P: MLV PAD Peak Elev=995.03' Storage=450 cf Inflow=4.39 cfs 0.267 af

Outflow=4.39 cfs 0.257 af

Link 300L: Proposed Conditions Inflow=5.25 cfs 0.266 af

Primary=5.25 cfs 0.266 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.353 af Average Runoff Depth = 2.64" 93.30% Pervious = 1.496 ac 6.70% Impervious = 0.107 ac

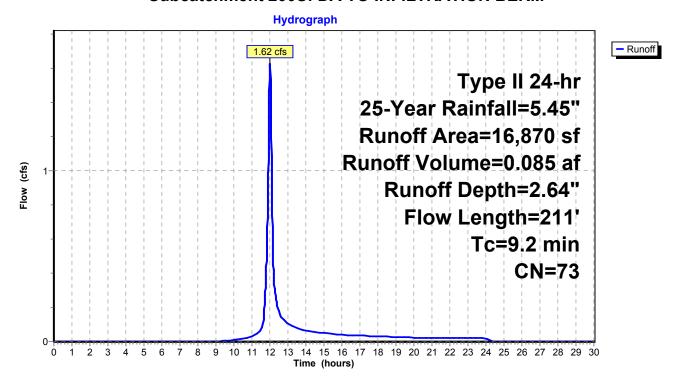

Summary for Subcatchment 100S: DA TO MLV PAD

Runoff = 4.39 cfs @ 12.06 hrs, Volume= 0.267 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.45"

	Α	rea (sf)	CN E	Description						
*		4,680	98 C	Crushed Stone Pad, HSG C						
		240	89 C	ravel roads, HSG C						
		48,065	71 N	/leadow, no	on-grazed,	HSG C				
		52,985	73 V	Veighted A	verage					
		48,305	9	1.17% Per	vious Area	l .				
		4,680	8	3.83% Impe	ervious Are	a				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.1	100	0.0500	0.17		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.07"				
	2.9	229	0.0350	1.31		Shallow Concentrated Flow, SC1				
						Short Grass Pasture Kv= 7.0 fps				
	0.4	52	0.0200	2.28		Shallow Concentrated Flow, SC2				
_						Unpaved Kv= 16.1 fps				
	13.4	381	Total							

Subcatchment 100S: DA TO MLV PAD


Summary for Subcatchment 200S: DA TO INFILTRATION BERM

Runoff = 1.62 cfs @ 12.01 hrs, Volume= 0.085 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 25-Year Rainfall=5.45"

	Α	rea (sf)	CN D	escription					
		1,860	89 G	ravel road	ls, HSG C				
*		15,010	71 N	1eadow, no	on-grazed,	HSG C			
		16,870	73 V	73 Weighted Average					
		16,870	1	00.00% Pe	ervious Are	a			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.2	100	0.0850	0.20		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.07"			
	0.2	19	0.0850	2.04		Shallow Concentrated Flow, SC1			
						Short Grass Pasture Kv= 7.0 fps			
	0.2	33	0.0200	2.28		Shallow Concentrated Flow, SC2			
						Unpaved Kv= 16.1 fps			
	0.6	59	0.0650	1.78		Shallow Concentrated Flow, SC3			
_						Short Grass Pasture Kv= 7.0 fps			
	9.2	211	Total						

Subcatchment 200S: DA TO INFILTRATION BERM

Page 39

Summary for Pond 302P: INFILTRATION BERM

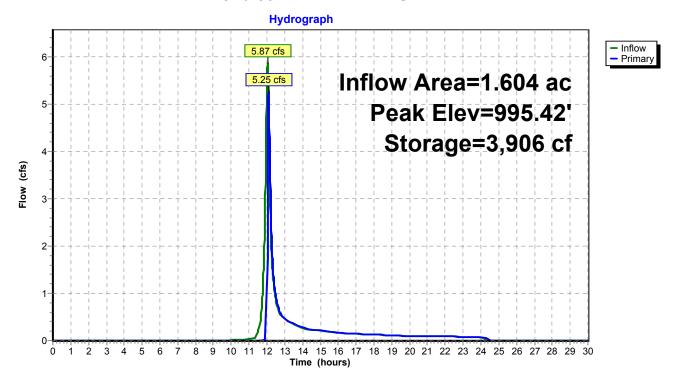
Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 2.56" for 25-Year event

Inflow = 5.87 cfs @ 12.04 hrs, Volume= 0.342 af

Outflow = 5.25 cfs @ 12.09 hrs, Volume= 0.266 af, Atten= 11%, Lag= 3.0 min

Primary = 5.25 cfs @ 12.09 hrs, Volume= 0.266 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.42' @ 12.09 hrs Surf.Area= 5,100 sf Storage= 3,906 cf


Plug-Flow detention time= 132.7 min calculated for 0.266 af (78% of inflow)

Center-of-Mass det. time= 42.5 min (886.8 - 844.4)

Volume	Inv	ert Avai	I.Storage	Storage Description				
#1	993.	75'	4,311 cf	Custom Stage D	oata (Irregular)Lis	ted below (Recald	(a)	
Elevation (fee		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
993.7	75	0	0.0	0	0	0		
994.0	00	455	225.5	38	38	4,047		
994.5	50	2,009	324.3	570	608	8,371		
995.0	00	3,803	364.6	1,429	2,037	10,587		
995.3	30	4,676	385.8	1,270	3,307	11,858		
995.5	50	5,376	394.8	1,004	4,311	12,423		
Device Routing Invert Outlet Device		et Devices						
#1 Primary 995.30' 50.0		.0' long x 3.0' breadth Broad-Crested Weir						
He		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60	1.80 2.00		
2.50 3			3.00 3.50 4.00	3.00 3.50 4.00 4.50				
				f. (English) 2.44 2		.65 2.64 2.64 2.6	68 2.68	
			2.72	2.81 2.92 2.97	3.07 3.32			

Primary OutFlow Max=5.24 cfs @ 12.09 hrs HW=995.42' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 5.24 cfs @ 0.85 fps)

Pond 302P: INFILTRATION BERM

Page 41

Summary for Pond 304P: MLV PAD

Inflow Area = 1.216 ac, 8.83% Impervious, Inflow Depth = 2.64" for 25-Year event

Inflow = 4.39 cfs @ 12.06 hrs, Volume= 0.267 af

Outflow = 4.39 cfs @ 12.06 hrs, Volume= 0.257 af, Atten= 0%, Lag= 0.0 min

Primary = 4.39 cfs @ 12.06 hrs, Volume= 0.257 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.03' @ 12.06 hrs Surf.Area= 0 sf Storage= 450 cf

Plug-Flow detention time= 31.0 min calculated for 0.257 af (96% of inflow)

Center-of-Mass det. time= 7.9 min (847.3 - 839.4)

Cum Store

Volume	Invert	Avail.Storage	Storage Description	
#1	993.96'	450 cf	MLV Pad StorageListed below	
			1,126 cf Overall x 40.0% Voids	

Elevation	Cum.Store
(feet)	(cubic-feet)
993.96	0
994.46	563
994.96	1,125
995.00	1,126

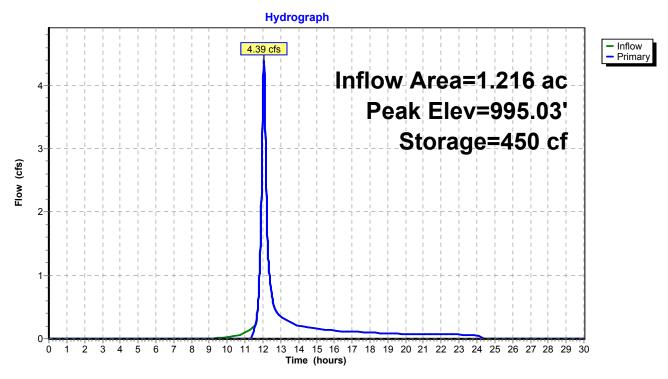
Flovetion

Device	Routing	Invert	Outlet Devices
#1	Primary	994.96'	90.0' long x 3.0' breadth Broad-Crested Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 4.00 4.50

Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68


2.72 2.81 2.92 2.97 3.07 3.32

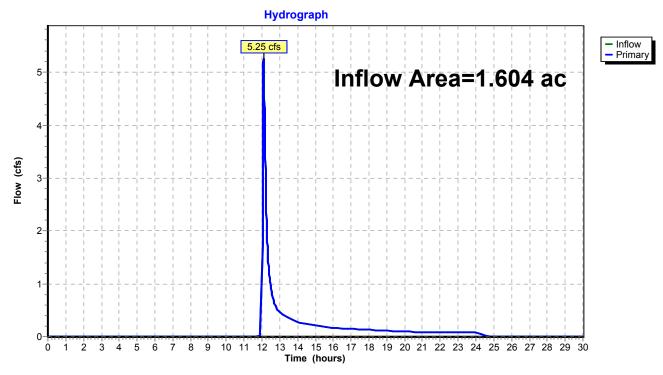
Primary OutFlow Max=4.38 cfs @ 12.06 hrs HW=995.03' (Free Discharge)

1=Broad-Crested Weir (Weir Controls 4.38 cfs @ 0.66 fps)

Page 42

Page 43

Summary for Link 300L: Proposed Conditions


Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 1.99" for 25-Year event

Inflow = 5.25 cfs @ 12.09 hrs, Volume= 0.266 af

Primary = 5.25 cfs @ 12.09 hrs, Volume= 0.266 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 300L: Proposed Conditions

Page 44

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100S: DA TO MLV PAD Runoff Area=52,985 sf 8.83% Impervious Runoff Depth=3.41"

Flow Length=381' Tc=13.4 min CN=73 Runoff=5.67 cfs 0.345 af

Subcatchment200S: DA TO INFILTRATION Runoff Area=16,870 sf 0.00% Impervious Runoff Depth=3.41"

Flow Length=211' Tc=9.2 min CN=73 Runoff=2.09 cfs 0.110 af

Peak Elev=995.45' Storage=4,069 cf Inflow=7.58 cfs 0.445 af Pond 302P: INFILTRATIONBERM

Outflow=7.40 cfs 0.369 af

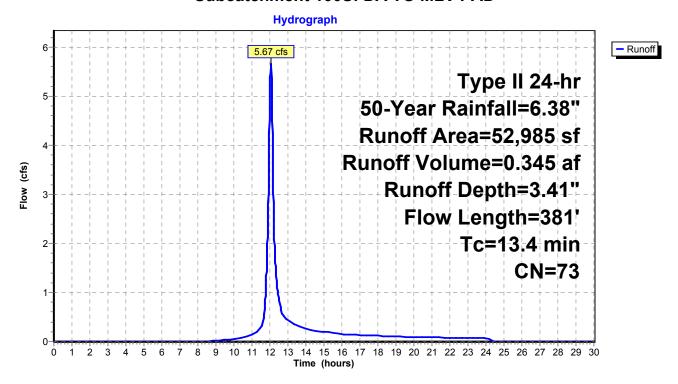
Pond 304P: MLV PAD Peak Elev=995.05' Storage=450 cf Inflow=5.67 cfs 0.345 af

Outflow=5.67 cfs 0.335 af

Inflow=7.40 cfs 0.369 af **Link 300L: Proposed Conditions**

Primary=7.40 cfs 0.369 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.455 af Average Runoff Depth = 3.41" 93.30% Pervious = 1.496 ac 6.70% Impervious = 0.107 ac

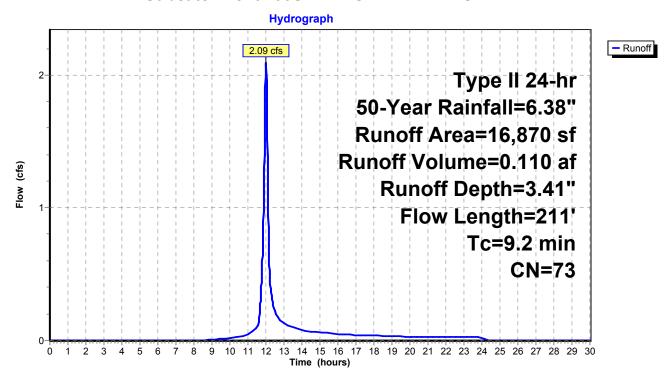

Summary for Subcatchment 100S: DA TO MLV PAD

Runoff = 5.67 cfs @ 12.05 hrs, Volume= 0.345 af, Depth= 3.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.38"

_	Α	rea (sf)	CN E	Description						
*		4,680	98 (Crushed Stone Pad, HSG C						
		240	89 C	Gravel road	ravel roads, HSG C					
		48,065	71 N	/leadow, no	on-grazed,	HSG C				
		52,985	73 V	Veighted A	verage					
		48,305	g	1.17% Per	vious Area					
		4,680	8	3.83% Impe	ervious Are	a				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.1	100	0.0500	0.17		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.07"				
	2.9	229	0.0350	1.31		Shallow Concentrated Flow, SC1				
						Short Grass Pasture Kv= 7.0 fps				
	0.4	52	0.0200	2.28		Shallow Concentrated Flow, SC2				
_						Unpaved Kv= 16.1 fps				
	13.4	381	Total							

Subcatchment 100S: DA TO MLV PAD


Summary for Subcatchment 200S: DA TO INFILTRATION BERM

Runoff = 2.09 cfs @ 12.01 hrs, Volume= 0.110 af, Depth= 3.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 50-Year Rainfall=6.38"

_	Α	rea (sf)	CN E	escription			
		1,860	89 G	Fravel road	ls, HSG C		
*		15,010	71 N	leadow, no	on-grazed,	HSG C	
		16,870	73 V	Veighted A	verage		
		16,870	1	00.00% P	ervious Are	a	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	8.2	100	0.0850	0.20		Sheet Flow,	
						Grass: Dense n= 0.240 P2= 3.07"	
	0.2	19	0.0850	2.04		Shallow Concentrated Flow, SC1	
						Short Grass Pasture Kv= 7.0 fps	
	0.2	33	0.0200	2.28		Shallow Concentrated Flow, SC2	
						Unpaved Kv= 16.1 fps	
	0.6	59	0.0650	1.78		Shallow Concentrated Flow, SC3	
_						Short Grass Pasture Kv= 7.0 fps	
	92	211	Total				

Subcatchment 200S: DA TO INFILTRATION BERM

Page 47

Summary for Pond 302P: INFILTRATION BERM

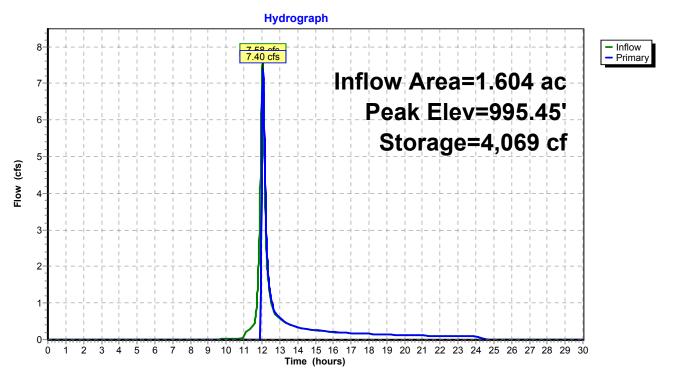
Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 3.33" for 50-Year event

Inflow = 7.58 cfs @ 12.04 hrs, Volume= 0.445 af

Outflow = 7.40 cfs @ 12.06 hrs, Volume= 0.369 af, Atten= 2%, Lag= 1.4 min

Primary = 7.40 cfs @ 12.06 hrs, Volume= 0.369 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.45' @ 12.06 hrs Surf.Area= 5,212 sf Storage= 4,069 cf


Plug-Flow detention time= 107.1 min calculated for 0.369 af (83% of inflow)

Center-of-Mass det. time= 31.7 min (867.9 - 836.2)

Volume	Inv	ert Avai	I.Storage	Storage Description				
#1	993.	75'	4,311 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc	2)	
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
993.7	75	0	0.0	0	0	0		
994.0	00	455	225.5	38	38	4,047		
994.5	50	2,009	324.3	570	608	8,371		
995.0	00	3,803	364.6	1,429	2,037	10,587		
995.3	30	4,676	385.8	1,270	3,307	11,858		
995.5	50	5,376	394.8	1,004	4,311	12,423		
Device Routing Invert Outl		et Devices						
#1 Primary 995.30' 50.0		5.30' 50.0	0.0' long x 3.0' breadth Broad-Crested Weir					
	·		Hea	d (feet) 0.20 0.40	0.60 0.80 1.00	1.20 1.40 1.60	1.80 2.00	
2.50 3				3.00 3.50 4.00	4.50			
				f. (English) 2.44 2		.65 2.64 2.64 2.6	38 2.68	
2.72 2.81 2.92 2.97 3.07 3.32								

Primary OutFlow Max=7.39 cfs @ 12.06 hrs HW=995.45' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 7.39 cfs @ 0.96 fps)

Pond 302P: INFILTRATION BERM

Page 49

Summary for Pond 304P: MLV PAD

Inflow Area = 1.216 ac, 8.83% Impervious, Inflow Depth = 3.41" for 50-Year event

Inflow 5.67 cfs @ 12.05 hrs, Volume= 0.345 af

5.67 cfs @ 12.05 hrs, Volume= Outflow 0.335 af, Atten= 0%, Lag= 0.0 min

Primary 5.67 cfs @ 12.05 hrs, Volume= 0.335 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.05' @ 12.05 hrs Surf.Area= 0 sf Storage= 450 cf

Plug-Flow detention time= 24.4 min calculated for 0.335 af (97% of inflow)

Center-of-Mass det. time= 6.8 min (838.9 - 832.1)

Cum Ctara

Volume	Invert	Avail.Storage	Storage Description
#1	993.96'	450 cf	MLV Pad StorageListed below
			1,126 cf Overall x 40.0% Voids

Elevation	Cum.Store
(feet)	(cubic-feet)
993.96	0
994.46	563
994.96	1,125
995.00	1,126

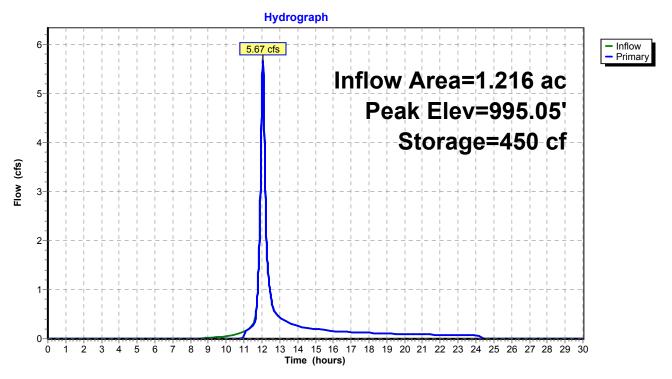
Floriation

Device	Routing	Invert	Outlet Devices
#1	Primary	994.96'	90.0' long x 3.0' breadth Broad-Crested Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 4.00 4.50

Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68


2.72 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=5.65 cfs @ 12.05 hrs HW=995.05' (Free Discharge)

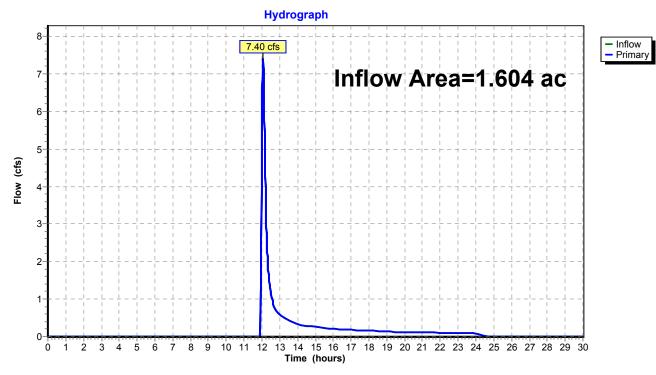
1=Broad-Crested Weir (Weir Controls 5.65 cfs @ 0.72 fps)

Page 50

Pond 304P: MLV PAD

Page 51

Summary for Link 300L: Proposed Conditions


Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 2.76" for 50-Year event

Inflow = 7.40 cfs @ 12.06 hrs, Volume= 0.369 af

Primary = 7.40 cfs @ 12.06 hrs, Volume= 0.369 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Link 300L: Proposed Conditions

Prepared by Microsoft

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 52

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment100S: DA TO MLV PAD Runoff Area=52,985 sf 8.83% Impervious Runoff Depth=4.34"

Flow Length=381' Tc=13.4 min CN=73 Runoff=7.20 cfs 0.440 af

Subcatchment200S: DA TO INFILTRATION Runoff Area=16,870 sf 0.00% Impervious Runoff Depth=4.34"

Flow Length=211' Tc=9.2 min CN=73 Runoff=2.65 cfs 0.140 af

Pond 302P: INFILTRATIONBERM Peak Elev=995.48' Storage=4,216 cf Inflow=9.64 cfs 0.570 af

Outflow=9.48 cfs 0.494 af

Pond 304P: MLV PAD Peak Elev=995.06' Storage=450 cf Inflow=7.20 cfs 0.440 af

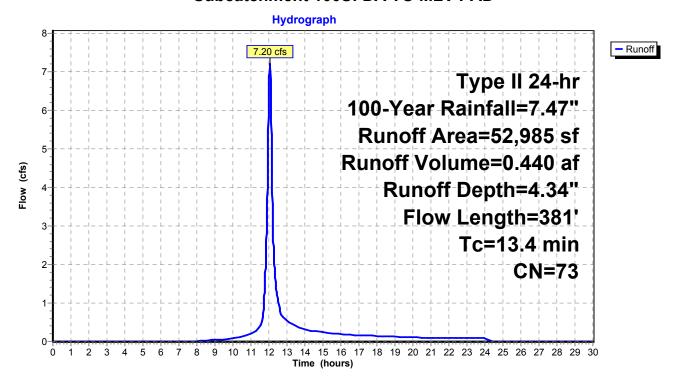
Outflow=7.20 cfs 0.430 af

Link 300L: Proposed Conditions Inflow=9.48 cfs 0.494 af

Primary=9.48 cfs 0.494 af

Total Runoff Area = 1.604 ac Runoff Volume = 0.580 af Average Runoff Depth = 4.34" 93.30% Pervious = 1.496 ac 6.70% Impervious = 0.107 ac

Page 53


Summary for Subcatchment 100S: DA TO MLV PAD

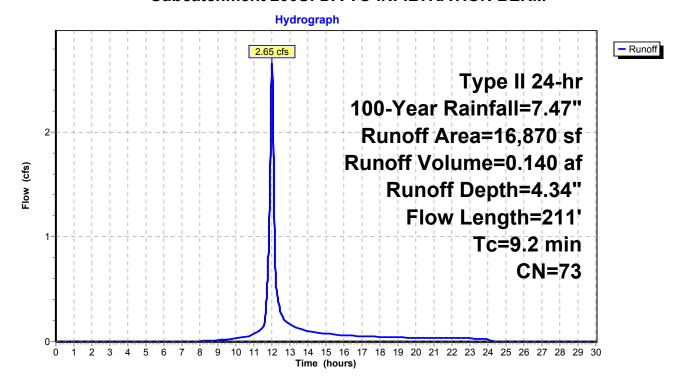
Runoff = 7.20 cfs @ 12.05 hrs, Volume= 0.440 af, Depth= 4.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=7.47"

	Α	rea (sf)	CN E	Description							
*		4,680	98 C	Crushed Stone Pad, HSG C							
		240	89 C	Gravel road	avel roads, HSG C						
		48,065	71 N	/leadow, no	on-grazed,	HSG C					
		52,985	73 V	Veighted A	verage						
		48,305	9	1.17% Per	vious Area	l .					
		4,680	8	3.83% Impe	ervious Are	a					
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	10.1	100	0.0500	0.17		Sheet Flow,					
						Grass: Dense n= 0.240 P2= 3.07"					
	2.9	229	0.0350	1.31		Shallow Concentrated Flow, SC1					
						Short Grass Pasture Kv= 7.0 fps					
	0.4	52	0.0200	2.28		Shallow Concentrated Flow, SC2					
_						Unpaved Kv= 16.1 fps					
	13.4	381	Total								

Subcatchment 100S: DA TO MLV PAD

Page 54


Summary for Subcatchment 200S: DA TO INFILTRATION BERM

Runoff = 2.65 cfs @ 12.01 hrs, Volume= 0.140 af, Depth= 4.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type II 24-hr 100-Year Rainfall=7.47"

	Α	rea (sf)	CN D	escription					
		1,860	89 G	Fravel road	ls, HSG C				
*		15,010	71 N	leadow, no	on-grazed,	HSG C			
		16,870	73 Weighted Average						
		16,870	100.00% Pervious Area						
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	8.2	100	0.0850	0.20		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.07"			
	0.2	19	0.0850	2.04		Shallow Concentrated Flow, SC1			
						Short Grass Pasture Kv= 7.0 fps			
	0.2	33	0.0200	2.28		Shallow Concentrated Flow, SC2			
						Unpaved Kv= 16.1 fps			
	0.6	59	0.0650	1.78		Shallow Concentrated Flow, SC3			
_						Short Grass Pasture Kv= 7.0 fps			
	9.2	211	Total						

Subcatchment 200S: DA TO INFILTRATION BERM

Page 55

Summary for Pond 302P: INFILTRATION BERM

Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 4.27" for 100-Year event

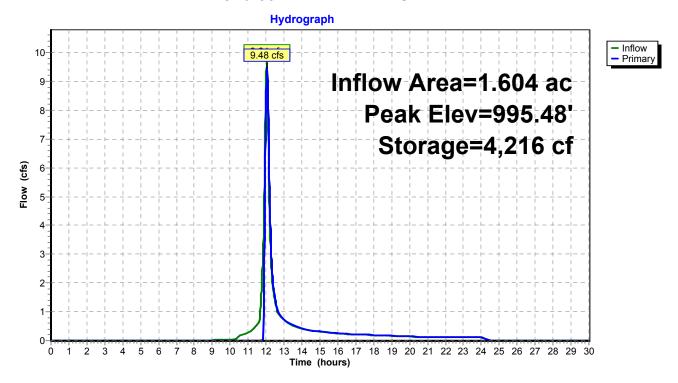
Inflow = 9.64 cfs @ 12.04 hrs, Volume= 0.570 af

Outflow = 9.48 cfs @ 12.06 hrs, Volume= 0.494 af, Atten= 2%, Lag= 1.1 min

Primary = 9.48 cfs @ 12.06 hrs, Volume= 0.494 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.48' @ 12.06 hrs Surf.Area= 5,311 sf Storage= 4,216 cf

Plug-Flow detention time= 88.5 min calculated for 0.494 af (87% of inflow)


Center-of-Mass det. time= 25.5 min (854.2 - 828.8)

Volume	Inv	ert Avai	I.Storage	Storage Descript	ion				
#1	993.	75'	4,311 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc	2)		
Elevatio		Surf.Area (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)			
993.7	75	0	0.0	0	0	0			
994.0	00	455	225.5	38	38	4,047			
994.5	50	2,009	324.3	570	608	8,371			
995.0	00	3,803	364.6	1,429	2,037	10,587			
995.3	30	4,676	385.8	1,270	3,307	11,858			
995.5	50	5,376	394.8	1,004	4,311	12,423			
Device	Routing	In	vert Outle	et Devices					
#1 Primary 995.30' 50.0' long x 3.0' breadth Broad-Crested Weir									
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2									
2.50 3.00 3.50 4.00 4.50									
Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.72 2.81 2.92 2.97 3.07 3.32									

Primary OutFlow Max=9.47 cfs @ 12.06 hrs HW=995.48' (Free Discharge) 1=Broad-Crested Weir (Weir Controls 9.47 cfs @ 1.04 fps)

Page 56

Pond 302P: INFILTRATION BERM

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 57

Summary for Pond 304P: MLV PAD

Inflow Area = 1.216 ac, 8.83% Impervious, Inflow Depth = 4.34" for 100-Year event

7.20 cfs @ 12.05 hrs, Volume= Inflow 0.440 af

Outflow 7.20 cfs @ 12.05 hrs, Volume= 0.430 af, Atten= 0%, Lag= 0.0 min

Primary 7.20 cfs @ 12.05 hrs, Volume= 0.430 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 995.06' @ 12.05 hrs Surf.Area= 0 sf Storage= 450 cf

Plug-Flow detention time= 19.9 min calculated for 0.430 af (98% of inflow)

Center-of-Mass det. time= 6.1 min (831.2 - 825.1)

Volume	Invert	Avail.Storage	Storage Description
#1	993.96'	450 cf	MLV Pad StorageListed below 1,126 cf Overall x 40.0% Voids
Elevation (feet)	Cum.S (cubic-f		
000 00		•	

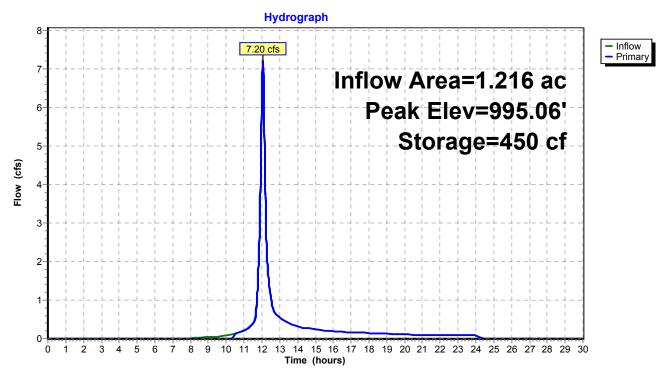
(feet)	(cubic-feet)
993.96	0
994.46	563
994.96	1,125
995.00	1,126

Device	Routing	IIIVEIL	Outlet Devices
#1	Primary	994 96'	90.0' long x 3.0' breadth Broad-Crested Weir

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2.50 3.00 3.50 4.00 4.50

Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68


2.72 2.81 2.92 2.97 3.07 3.32

Primary OutFlow Max=7.20 cfs @ 12.05 hrs HW=995.06' (Free Discharge)

1=Broad-Crested Weir (Weir Controls 7.20 cfs @ 0.78 fps)

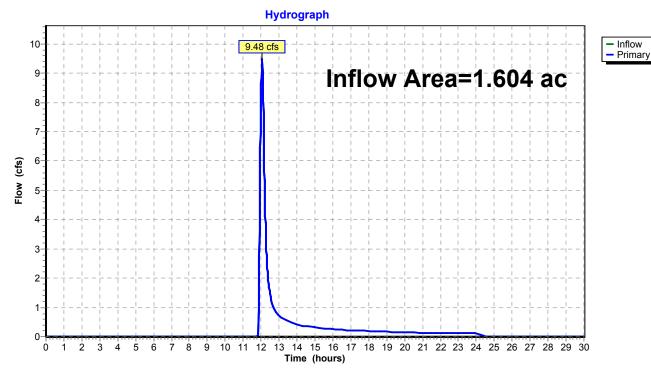
Page 58

Pond 304P: MLV PAD

HydroCAD® 10.00 s/n 01334 © 2013 HydroCAD Software Solutions LLC

Page 59

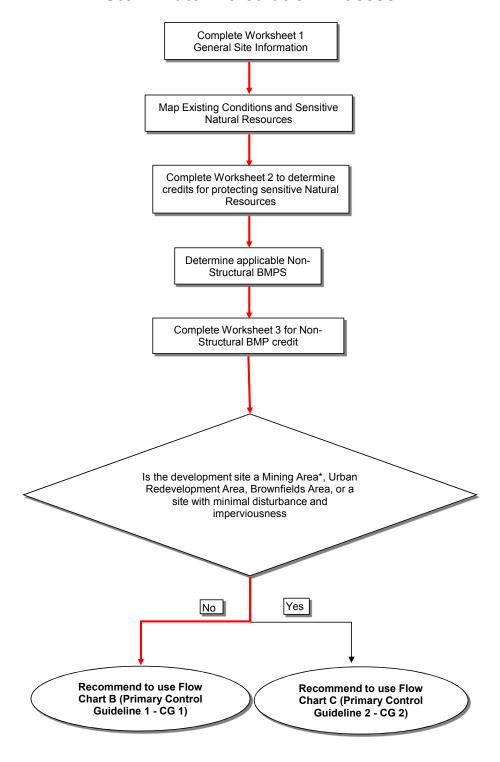
Summary for Link 300L: Proposed Conditions


Inflow Area = 1.604 ac, 6.70% Impervious, Inflow Depth = 3.70" for 100-Year event

Inflow = 9.48 cfs @ 12.06 hrs, Volume= 0.494 af

Primary = 9.48 cfs @ 12.06 hrs, Volume= 0.494 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs


Link 300L: Proposed Conditions

V.5 Water Quality Worksheets a. Flow Chart A – Stormwater Calculation Process

- b. Worksheet 1. General Site Information
- c. Worksheet 2. Sensitive Natural Resources
- d. Worksheet 3. Nonstructural BMP Credits
- e. Flow Chart B Control Guideline 1 Process
- f. Worksheet 4. Change in Runoff Volume for 2-Yr Storm Event
- g. Worksheet 5. Structural BMP Volume Credits
- h. Worksheet 10. Water Quality Compliance for Nitrate

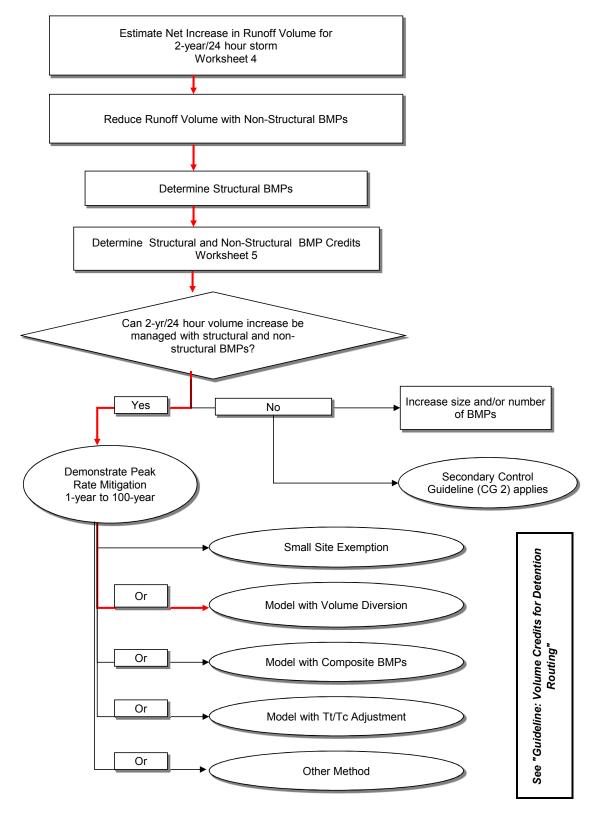
FLOW CHART A Stormwater Calculation Process

Date: 20-Oct-16 Project Name: Attantic Sunrise Pipeline AR-SC-073.5 Municipality: Eldred Township County: Schuylkill Total Area (acres): 1.01 Major River Basin: Susquehanna http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: CWF, MF http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm No List Causes of Impairment: Agriculture (Sillation): Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM No xanagement/CeneralPermits/default.htm Existing or planned drinking water supply? Yes No wif yes, distance from proposed discharge (miles): Approved Act 167 Plan? Yes Atternative Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes Intp://www.don.rstate.pa.us/sbrc/rivers/riversconservation/planningprojects/ No Little/Waterns/riversconservation/planningprojects/ No Little/Waterns/riversconservation/plann		Worksheet 1. Genera	al Site Information		
Project Name: Atlantic Sunrise Pipeline AR-SC-073.5 Municipality: Eldred Township County: Schuylkill Total Area (acres): 1.01 Major River Basin: Susquehanna http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: Chapter 93 - Designated Water Use: http://www.pacode.com//secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	RUCTIONS: Fill out Wo	rksheet 1 for each watershed			
Project Name: Atlantic Sunrise Pipeline AR-SC-073.5 Municipality: Eldred Township County: Schuylkill Total Area (acres): 1.01 Major River Basin: Susquehanna http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: Chapter 93 - Designated Water Use: http://www.pacode.com//secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X					
Municipality: Schuylkill Total Area (acres): 1.01 Major River Basin: Susquehanna http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: CWF, MF http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? Yes Attp://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm No List Causes of Impairment: Agriculture (Sittation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM No anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No If yes, distance from proposed discharge (miles): Approved Act 167 Plan? Yes No Xestisting River Conservation Plan? Yes Statisting River Conservation Plan? Yes Xestisting River Conservation Plan? Yes	Date:		20-Oct-16		
Municipality: Schuylkill Total Area (acres): 1.01 Major River Basin: Susquehanna http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: CWF, MF http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? Yes Attp://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm No List Causes of Impairment: Agriculture (Sittation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM No anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No If yes, distance from proposed discharge (miles): Approved Act 167 Plan? Yes No Existing River Conservation Plan? Yes X	Project Name:	unrise Pipeline AR-SC-073.5			
County: Schuylkill Total Area (acres): 1.01 Major River Basin: Susquehanna http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm/newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: CWF, MF http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm No List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM No anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No If yes, distance from proposed discharge (miles): Approved Act 167 Plan? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	<u>-</u>		_		
Total Area (acres): Major River Basin: Susquehanna	Municipality:	Eldred Township			
Major River Basin: http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: CWF, MF http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes Approved Act 167 Plan? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	County:		Schuylkill		
http://www.dep.state.pa.us/dep/depupdate/watermgt/wc/default.htm#newtopics Watershed: Mahantango - Wiconisco Creeks Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: CWF, MF http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? Yes Attp://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm No List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM No xanagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No X If yes, distance from proposed discharge (miles): Approved Act 167 Plan? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem No X Existing River Conservation Plan? Yes X	Total Area (acres):		1.01		
Watershed: Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use: http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM no anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem	Major River Basin:		Susquehanna		
Sub-Basin: Lower Central Susquehanna Nearest Surface Water(s) to Receive Runoff: UNT to Little Mahantango Creek Chapter 93 - Designated Water Use:	http://www.dep.state.p	oa.us/dep/depupdate/watermgt/wo	c/default.htm#newtopics		
Nearest Surface Water(s) to Receive Runoff: Chapter 93 - Designated Water Use:	Watershed:	Mahan	tango - Wiconisco Creeks		
Chapter 93 - Designated Water Use: http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? If yes, distance from proposed discharge (miles): Approved Act 167 Plan? Approved_1.html Existing River Conservation Plan? Yes X Existing River Conservation Plan? Yes X	Sub-Basin:	Lowe	er Central Susquehanna		
http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	Nearest Surface Wat	er(s) to Receive Runoff:	UNT to Little Mahantango Creek		
http://www.pacode.com/secure/data/025/chapter93/chap93toc.html Impaired according to Chapter 303(d) List? http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X Existing River Conservation Plan? Yes X	Chapter 93 - Designa	ated Water Use:	CWF, MF		
http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	•		p93toc.html		_
http://www.dep.state.pa.us/dep/deputate/watermgt/wqp/wqstandards/303d-Report.htm List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X					
List Causes of Impairment: Agriculture (Siltation); Source Unknown (Pathogens) Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No If yes, distance from proposed discharge (miles): Approved Act 167 Plan? Approved_Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	-	, ,		Yes	Х
Is project subject to, or part of: Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X				No	
Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No X If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	List Gauses of Imp	Agriculture (Si	Itation); Source Unknown (Pathogens)		
Municipal Separate Storm Sewer System (MS4) Requirements? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No X If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X	Is project subject to	or part of			
http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterM anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No X If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X		•			_
anagement/GeneralPermits/default.htm Existing or planned drinking water supply? Yes No X If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagement/Approved_1.html Existing River Conservation Plan? Yes X					-
Existing or planned drinking water supply? If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagement/Approved_1.html Existing River Conservation Plan? Yes X			subjects/Stormwaterivi	No	Х
If yes, distance from proposed discharge (miles): Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagem ent/Approved_1.html Existing River Conservation Plan? Yes X		·		Yes	
Approved Act 167 Plan? http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagement/Approved_1.html Existing River Conservation Plan? Yes X	•			No	Х
http://www.dep.state.pa.us/dep/deputate/watermgt/wc/Subjects/StormwaterManagement/Approved_1.html Existing River Conservation Plan? Yes	If yes, distance from	proposed discharge (miles):			
ent/Approved_1.html Existing River Conservation Plan? Yes	Approved Act 167 PI	an?		Yes	Г
		us/dep/deputate/watermgt/wc/Subjec	ts/StormwaterManagem	No	Х
	Existing River Conse	ervation Plan?		Yes	Х
			n/planningprojects/		

Worksheet 2. Sensitive Natural Resources

INSTRUCTIONS:

1. Provide Sensitive Resources Map according to non-structural BMP 5.4.1 in Chapter 5. This map should identify wetlands, woodlands, natural drainage ways, steep slopes, and other sensitive natural areas.


*Note: Sensitive areas are shown on the Soil Erosion Control Plans.

- 2. Summarize the existing extent of each sensitive resource in the Existing Sensitive Resources Table (below, using Acres). If none present, insert 0.
- 3. Summarize Total Protected Area as defined under BMPs in Chapter 5.
- 4. Do not count any area twice. For example, an area that is both a floodplain and a wetland may only be considered once.

EXISTING NATURAL SENSITIVE RESOURCE	MAPPED? yes/no/n/a	TOTAL AREA (Ac.)	PROTECTED AREA (Ac.)
Waterbodies	N/A		
Floodplains	N/A		
Riparian Areas	N/A		
Wetlands	N/A		
Woodlands	N/A		
Natural Drainage Ways	N/A		
Steep Slopes, 15% - 25%	N/A		
Steep Slopes, over 25%	N/A		
Other:			
Other:			
TOTAL EXISTING:		0.00	0.00

Worksheet 3. Nonstructural BMP Credits	
PROTECTED AREA	
1.1 Area of Protected Sensitive/Special Value Features (see WS 2)	Ac.
1.2 Area of Riparian Forest Buffer Protection	Ac.
3.1 Area of Minimum Disturbance/Reduced Grading	Ac.
TOTAL	Ac.
Site Area minus Protected = Stormwater Management Area	
1.01 - 0 = 1.01	7
This is the area that requires	_
stormwater management /	
VOLUME CREDITS	
3.1 Minimum Soil Compaction	
Lawn ft^2 x 1/4" x 1/12 =	ft³
Meadow ft^2 x 1/3" x 1/12 =	ft³
3.3 Protect Existing Trees	
For Trees within 100 feet of impervious area:	•
Tree Canopy	ft ³
For Trees within 20 feet of impervious area:	
Tree Canopy $x 1" x 1/12 =$	ft ³
5.1 Disconnect Roof Leaders to Vegetated Areas	
For Runoff directed to areas protected under 5.8.1 and 5.8.2	
Roof Area	ft ³
For all other disconnected roof areas	
Roof Area	ft³
5.2 Disconnect Non-Roof impervious to Vegetated Areas	
For Runoff directed to areas protected under 5.8.1 and 5.8.2	
Impervious Area $x 1/3$ $x 1/12$ =	ft ³
For all other disconnected non-roof areas	
Impervious Area $\frac{1}{2}$ ft ² x 1/4" x 1/12 =	ft ³
	e.3
TOTAL NON-STRUCTURAL VOLUME CREDIT*	ft³
* For use on Worksheet 5	

FLOW CHART B Control Guideline 1 Process

WORKSHEET 4. CHANGE IN RUNOFF VOLUME FOR 2-YR STORM EVENT

PROJECT: Atlantic Sunrise Pipeline AR-SC-073.5

2-Year Rainfall: 3.07 in

Total Site Area:1.01acresProtected Site Area:0acresManaged Area1.01acres

Existing Conditions:

Cover Type	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Impervious ³	С	0	0.000	98	0.20	0.04	2.84	-
"Meadow" ³	С	0	0.000	71	4.08	0.82	0.80	-
Gravel Rd	С	0	0.000	89	1.24	0.25	1.96	-
Meadow	С	66,722	1.532	71	4.08	0.82	0.80	4,454
Woods	С	0	0.000	70	4.29	0.86	0.75	-
TOTAL:		66,722	1.532					4,454

Developed Conditions:

Cover Type	Soil Type	Area (sf)	Area (ac)	CN	S	la (0.2*S)	Q Runoff ¹ (in)	Runoff Volume ² (ft ³)
Gravel Rd	С	3,190	0.073	89	1.24	0.25	1.96	522
Stone Pad	С	4,680	0.107	98	0.20	0.04	2.84	1,107
Impervious	С	0	0.000	98	0.20	0.04	2.84	-
Woods	С	0	0.000	70	4.29	0.86	0.75	-
Meadow	С	58,852	1.351	71	4.08	0.82	0.80	3,928
TOTAL:		66,722	1.532					5,557

2-Year Volume Increase (ft³) 1,103

2-Year Volume Increase = Developed Conditions Runoff Volume - Existing Conditions Runoff Volume

- 1. Runoff (in) = Q = $(P 0.2S)^2 / (P + 0.8S)$ where P = 2-Year Rainfall (in)
 - S = (1000/CN)-10
- 2. Runoff Volume (CF) = $Q \times Area \times 1/12$

Q = Runoff (in)

Area = Land use area (sq. ft.)

Note: Runoff Volume must be calculated for EACH land use type/condition and HSGI. The use of a weighted CN value for volume calculations is not acceptable.

3. Twenty (20) percent of existing impervious area, when present, shall be considered meadow (good condition) in the model for existing conditions for redevelopment per Volume Control Guideline 1. (For Existing Condition: Impervious Area + "Meadow" = Total Impervious Area)

WORKSHEET 5. STRUCTURAL BMP VOLUME CREDITS

PROJECT: Atlantic Sunrise Pipeline AR-SC-073.5

SUB-BASIN: Lower Central Susquehanna

Required Control Volume (ft³) - from Worksheet 4: 1,103 Non-structural Volume Credit (ft³) - from Worksheet 3: 1,103

Structural Volume Reqmt (ft³)

(Required Control Volume minus Non-structural Credit)

	Proposed BMP	Area (ft²)	Volume Reduction Permanently Removed (ft ³)
6.4.1	Porous Pavement		
6.4.2	Infiltration Basin		4,311
6.4.3	Infiltration Bed		
6.4.4	Infiltration Trench		
6.4.5	Rain Garden/Bioretention		
6.4.6	Dry Well / Seepage Pit		
6.4.7	Constructed Filter		
6.4.8	Vegetated Swale		
6.4.9	Vegetated Filter Strip		
6.4.10	Berm		
6.5.1	Vegetated Roof		
6.5.2	Capture and Re-use		
6.6.1	Constructed Wetlands		
6.6.2	Wet Pond / Retention Basin		
6.6.3	Dry Extended Detention Basin		
6.6.4	Water Quality Filters		
6.7.1	Riparian Buffer Restoration		
6.7.2	Landscape Restoration / Reforestation		
6.7.3	Soil Amendment		
6.8.1	Level Spreader		
6.8.2	Special Storage Areas		
Other	Storage in 12" stone MLV Pad		450

Total Structural Volume (ft³): Structural Volume Requirement (ft³): 1,103 DIFFERENCE 3,658

MLV Pad Infiltration Calculations Summary						
Average Measured Infiltration Rate for MLV Pad	3.94	in/hr				
Factor of Safety	2.00					
Design Infiltration Rate	1.97	in/hr				
Dewatering Time for top 6 inches of MLV Pad	3.05	hours				
Depth of AASHTO #57 Section of MLV Pad	6	inches				
Dewatering Time for AASHTO #57 Section of MLV Pad	3.05	hours				
Total Dewatering Time for MLV Pad	6.09	hours				

^{*}A factor of safety of 2 is the minimal safety factor for design purposes per pager 19 of 21 of "Protocol 1, Site Evaluation and Soil Infiltration Testing, included as Appendix C of the Pennsylvania Stormwater BMP Manual.

WORKSHEET 10. WATER QUALITY COMPLIANCE FOR NITRATE

Does the site design incorporate the following BMPs to address nitrate pollution? A summary "yes" rating is achieved if at least 2 Primary BMPs for nitrate are provided across the site or 4 secondary BMPs for nitrate are provided across the site (or the

YES	NO X
	Х
Х	
X	
	X
	X
	Х

V.6 Infiltration Information

a. Field Observation Report

Field Observation Report

Project Number:	_14C4909 - A		
Project Name:	Atlantic Sunrise Project – A	R-SC-073.5	
Date of Field Visit:	October 20, 2015		
Weather Conditions:	Sunny	Temperature:	Approx. 40-55°F
Prepared By:	Krystal Bealing, APSS and	Joseph Kempf	
Copies of Report Hav	ve Been Sent To: ⊠ Clier	nt	Other
Client:		Contractor:	
Transcontiner Company, LL0 2800 Post Oa Houston, TX 7	k Blvd	BL Compan 4242 Carlisl Camp Hill, F	e Pike, Suite 260

Five soil pits were excavated by backhoe and described by an Associate Professional Soil Scientist (APSS) to varying depths utilizing the U.S. Department of Agriculture Natural Resources Conservation Service (USDA-NRCS) *Field Book for Describing and Sampling Soils, Version 3.0* and *Keys to Soil Taxonomy, Twelfth Edition, 2014.* According to the Web Soil Survey, soils within the area of the pits are described by the USDA-NRCS as Meckesville loam, 3-8% slopes, and Leck kill channery silt loam, 3-8% slopes.

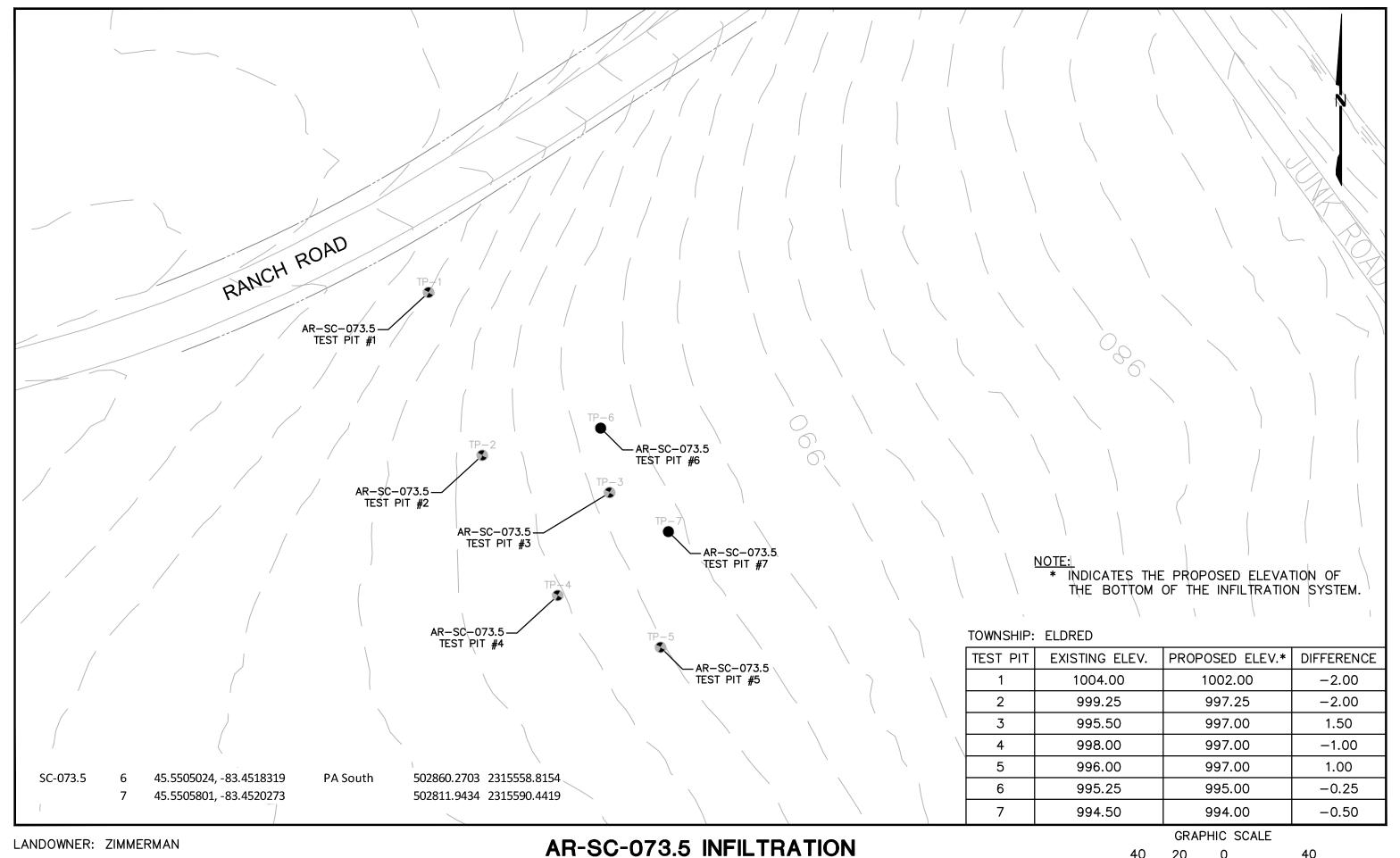
Test Pit #1, located at N40° 42' 25.69", W76° 29' 54.34", was observed to have two horizons, with bedrock observed at 11 inches.

Test Pit #2, located at N40° 42' 24.94", W76° 29' 54.03", was observed to have four horizons, with a restrictive soil horizon due to bedrock components observed at 24 inches, and bedrock at 35 inches.

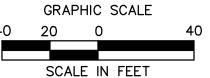
Test Pit #3, located at N40° 42' 24.76", W76° 29' 53.58", was observed to have three horizons, with a restrictive soil horizon due to bedrock components observed at 17 inches.

Test Pit #4, located at N40° 42' 24.29", W76° 29' 53.58", was observed to have three horizons, with a restrictive soil horizon due to bedrock components observed at 14 inches.

Field Observation Report


Test Pit #5 located at N40° 42' 24.04", W76° 29' 52.96", was observed to have four horizons, with a restrictive soil horizon due to bedrock components observed at 15 inches and bedrock observed at 37 inches.

Additionally, infiltration tests using the double ring infiltrometer method were conducted at each pit location, at the surface. The elevations of the proposed improvements and the existing ground are provided on the infiltration testing location map. If the difference between the existing and proposed elevations is greater than zero, infiltration was performed at the existing elevation. If the difference between the existing and proposed elevation is between 0 and -5.00 feet, infiltration was conducted at the proposed elevation, or at two feet above the observed limiting layer, whichever was more shallow. If the difference between the existing and proposed elevations is greater than -5.00, infiltration was placed at 5 feet (60 inches) below the existing elevation to adhere to Occupational Safety and Health Administration (OSHA) standards for trenching and excavation safety.


Infiltration testing was conducted within a level testing area at all test pit locations using the double ring infiltrometer method. An infiltrometer containing a 12-inch outer ring and a 6-inch inner ring was driven into the soil a minimum of two inches. Both rings were filled with water to the rim at 30 minute intervals for one hour. If the drop in water level, measured within the center ring, during the last 30 minutes of the presoak is 2 inches or more, measurements are taken in 10-minute intervals. If the water level drop is less than 2 inches, measurements are taken in 30-minute intervals. After each measurement, the rings were refilled to the rim. Each measurement was taken at a fixed reference point. Measurements were taken until the rate of drop stabilized, or eight measurements were taken. A stabilized rate of drop is considered a difference of 0.25-inch or less between the highest and lowest measurements of four consecutive readings. An average of the stabilized rate (i.e., the last four measurements) or the average of eight total measurements if the rate of drop did not stabilize, expressed in inches per hour, represents the infiltration rate.

The infiltration rate at Test Pit #1 was observed to be 5.907 inches per hour. The infiltration rate at Test Pit #2 was observed to be 7.221 inches per hour. The infiltration rate at Test Pit #3 was observed to be 2.251 inches per hour. The infiltration rate at Test Pit #4 was observed to be 1.500 inches per hour. The infiltration rate at Test Pit #5 was observed to be 8.064 inches per hour.

The soil profile descriptions, infiltration worksheet, photographs, infiltration testing location map, and USDA-NRCS Soil Survey information are attached.

AR-SC-073.5 INFILTRATION TESTING LOCATIONS

Elevation 1004.00 AMSL	Soil Type Leck kill channery silt loam, 3-8% slopes	Geology Sherman Creek Member of Catskill formation	Landscape Position/Slope Sideslope, 3-8%	Land Use Agricultural	Additional Comments
Project 14C4909-A Atlantic Sunrise Project - AR-SC-073.5	Test Pit # 1	Name Joe Kempf and Krystal Bealing, APSS	Date October 20, 2015	Weather 40-55°F; Sunny	Equipment Mini Excavator

				Type, Size,						
	Upper	Lower	Soil	Coarse						
	Boundary	Boundary Boundary	Textural	Fragments, Soil Matrix	Soil Matrix		Pores, Roots,	Depth to Depth to	Depth to	
Horizon	(inches) (inches)	(inches)	Class	etc.	Color	Color Patterns	Structure	Bedrock	Water	Comments
Ap	0	11	SiL	35-60% Channery	5YR 3/4	,	Roots present, Moderate, Subangular blockv	11	1	Friable
R	11	54+	1	-	-		,	-	33	Seeps observed within the bedrock

Note: Unless stated otherwise, horizon strike and dip was not observed to have a significant impact on water flow within the profile.

Elevation 999.25 AMSL	Soil Type Mecksville loam, 3-8% slopes	Geology Sherman Creek Member of Catskill formation	Landscape Position/Slope Sideslope, 3-8%	Land Use Agricultural	Additional Comments	
Project 14C4909-A Atlantic Sunrise Project - AR-SC-073.5	Test Pit # 2	Name Joe Kempf and Krystal Bealing, APSS	Date October 20, 2015	Weather 40-55°F; Sunny	Equipment Mini Excavator	

				Type, Size,						
	Upper	Lower	Soil	Coarse						
	Boundary	Boundary	Textural	Fragments,	Soil Matrix		Pores, Roots,	Depth to	Depth to	
Horizon	(inches)	(inches)	Class	etc.	Color	Color Patterns	Structure	Bedrock	Water	Comments
Ap	0	8	SiL	15-35% Channery	5YR 3/4	ı	Roots present, Moderate, Subangular Blocky	1	1	Friable
Bw	8	24	SiL	35-60% Channery	2.5YR 3/4		Moderate, Subangular Blocky	-	1	Friable
Cr	24	35	SiL	60-90% Channery	2.5YR 4/4	1	Moderate, Subangular Blocky	35	,	Firm, Limiting Layer - Restrictive soil horizon due to bedrock components
R	35	54+			1	,	,	1	,	1

Note: Unless stated otherwise, horizon strike and dip was not observed to have a significant impact on water flow within the profile.

Elevation 995.50 AMSL	Soil Type Mecksville loam, 3-8% slopes	Geology Sherman Creek Member of Catskill formation	Landscape Position/Slope Sideslope, 3-8%	Land Use Agricultural	Additional Comments
Project 14C4909-A Atlantic Sunrise Project - AR-SC-073.5	Test Pit # 3	Name Joe Kempf and Krystal Bealing, APSS	Date October 20, 2015	Weather 40-55°F; Sunny	Equipment Mini Excavator

	Upper	lower	Soil	Type, Size,						
	Boundary	8	Textural	Fragments, Soil Matrix	Soil Matrix		Pores, Roots,	Depth to	Depth to	
Horizon	(inches)	(inches)	Class	etc.	Color	Color Patterns	Structure	Bedrock	Water	Comments
Ap	0	7	SiL	15-35% Channery	5YR 3/4	,	Roots present, Moderate, Grandular	1	ı	Very Friable
Bw	7	17	SiL	35-60% Channery	2.5YR 3/4	,	Moderate, Subangular Blocky	1	ı	Friable
Ċ	17	44+	٦	60-90% Channery	2.5YR 4/4	,	Moderate, Subangular Blocky	,	ı	Friable, Limiting Layer - Restrictive Soil horizon due to bedrock components

Note: Unless stated otherwise, horizon strike and dip was not observed to have a significant impact on water flow within the profile.

Elevation 998.00 AMSL	Soil Type Mecksville loam, 3-8% slopes	Geology Sherman Creek Member of Catskill formation	Landscape Position/Slope Sideslope, 3-8%	Land Use Agricultural	Additional Comments	
Project 14C4909-A Atlantic Sunrise Project - AR-SC-073.5	Test Pit # 4	Name Joe Kempf and Krystal Bealing, APSS	Date October 20, 2015	Weather 40-55°F; Sunny	Equipment Mini Excavator	

_				7.00000000	Coll BActuin		4000	0+4+4	Don't have	
	boundary	boundary	extural	ragments,	SOII IVIATEIX		Pores, Roots,	Deptn to	Deptn to	
Horizon	(inches)	(inches) (inches)	Class	etc.	Color	Color Patterns	Structure	Bedrock	Water	Comments
Ар	0	6	SiL	15-35% Channery	5YR 3/4	1	Roots present, Weak, Granular	-	1	Very Friable
Bw	6	14	SiL	35-60% Channery	2.5YR 3/4	1	Moderate, Subangular Blocky	1	1	Friable
Cr	14	54+	ı	60-90% Channery	2.5YR 3/4	1	Massive		1	Firm, Limiting Layer - Restrictive Soil horizon due to bedrock components

Note: Unless stated otherwise, horizon strike and dip was not observed to have a significant impact on water flow within the profile.

Elevation 996.00 AMSL	Soil Type Mecksville loam, 3-8% slopes	Geology Sherman Creek Member of Catskill formation	Landscape Position/Slope Sideslope, 3-8%	Land Use Agricultural	Additional Comments	
Project 14C4909-A Atlantic Sunrise Project - AR-SC-073.5	Test Pit # 5	Name Joe Kempf and Krystal Bealing, APSS	Date October 20, 2015	Weather 40-55°F; Sunny	Equipment Mini Excavator	

				Type, Size,						
	Upper	Lower	Soil	Coarse						
	Boundary	Boundary	Textural	Fragments,	Soil Matrix		Pores, Roots,	Depth to	Depth to	
Horizon	(inches)	(inches)	Class	etc.	Color	Color Patterns	Structure	Bedrock	Water	Comments
Ар	0	7	SiL	1	5YR 3/4	ı	Roots present, Weak, Granular	ı	1	Very Friable
Bw	7	15	SiL	35-60% Channery	2.5YR 3/4	ı	Weak, Granular	ı	1	Firm
Cr	15	37	٦	60-90% Channery	2.5YR 4/4	1	Moderate, Subangular Blocky	37	,	Friable, Limiting Layer - Restrictive soil horizon due to bedrock components
œ	37	38+				'		1		Observed excavator limit

Note: Unless stated otherwise, horizon strike and dip was not observed to have a significant impact on water flow within the profile.

		Comments	40-55°F, sunny. Test done at the surface.				
		Infiltration Rate ³ (in/hr)	5.907	7.221	2.251	1.500	8.064
METHOD	ЛЕТНОД	Average Stabilized Reading ² (Inches of Drop)	0.985	1.204	0.375	0.250	1.344
3.5	OMETER	Reading 8 (Inches of Drop)					
SOIL INFILTRATION WORKSHEET - DOUBLE RING INFILTROMETER METHOD	IG INFILTR	Reading 7 Reading 8 (Inches of Drop) Drop)					
	OUBLE RIN	Reading 5 Reading 6 (Inches of Drop) Drop)					
	HEET - D(Reading 5 (Inches of Drop)	1.000				1.250
	N WORKS	Reading 4 (Inches of Drop)	1.063	1.125	0.313	0.188	1.438
∢	FILTRATIO	Reading 3 (Inches of Drop)	0.875	1.313	0.375	0.250	1.438
	SOIL INF	Reading 2 (Inches of Drop)	1.000	1.188	0.500	0.188	1.250
		Reading 1 (Inches of Drop)	1.938	1.188	0.313	0.375	0.625
		Reading Interval (minutes)	10	10	10	10	10
		Drop >2 inches after 30 minute presoak?¹	Yes	Yes	Yes	Yes	Yes
		Hole Number	1	2	м	4	rv .

¹Inches of drop greater than 2 inches after the 30 minute presoak? Yes, use 10 minute interval; No, use 30 minute interval.

²Calculated as the average of the last four stabilized (less than 0.25-inch difference overall) readings, or an overall average in the case of eight total readings.

 $^{^3}$ Calculated as the average stabilized reading x 2 for 30 minute intervals; x 6 for 10 minute intervals.

View of Pit #1.

View of Pit #2.

View of Pit #3.

View of Pit #4.

View of Pit #5.

Schuylkill County, Pennsylvania

MeB—Meckesville loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 13n4 Elevation: 500 to 2,800 feet

Mean annual precipitation: 34 to 48 inches Mean annual air temperature: 45 to 55 degrees F

Frost-free period: 130 to 190 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Meckesville and similar soils: 85 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the

mapunit.

Description of Meckesville

Setting

Landform: Mountain valleys

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Lower third of mountainflank

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Sandstone, siltstone and shale colluvium derived

from sedimentary rock

Typical profile

H1 - 0 to 7 inches: loam

H2 - 7 to 31 inches: gravelly loam H3 - 31 to 70 inches: gravelly loam H4 - 70 to 96 inches: gravelly loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 25 to 48 inches to fragipan; 60 to 99

inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high (0.20 to 0.60 in/hr)

Depth to water table: About 25 to 48 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Minor Components

Leck kill

Percent of map unit: 5 percent

Kedron

Percent of map unit: 5 percent

Data Source Information

Soil Survey Area: Schuylkill County, Pennsylvania

Survey Area Data: Version 7, Sep 22, 2014

Schuylkill County, Pennsylvania

LeB—Leck kill channery silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 13mw Elevation: 300 to 2,800 feet

Mean annual precipitation: 34 to 50 inches Mean annual air temperature: 45 to 57 degrees F

Frost-free period: 130 to 200 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Leck kill and similar soils: 85 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the

mapunit.

Description of Leck Kill

Setting

Landform position (three-dimensional): Mountaintop

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Reddish residuum derived from sedimentary rock

Typical profile

H1 - 0 to 10 inches: channery silt loam
H2 - 10 to 43 inches: channery silt loam
H3 - 43 to 58 inches: very channery silt loam
R - 58 to 62 inches: unweathered bedrock

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 40 to 80 inches to lithic bedrock

Natural drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high to high (0.60 to 6.00 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Moderate (about 7.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: A

Minor Components

Meckesville

Percent of map unit: 10 percent

Landform: Mountain valleys

Landform position (two-dimensional): Footslope

Landform position (three-dimensional): Lower third of mountainflank

Down-slope shape: Concave Across-slope shape: Linear

Klinesville

Percent of map unit: 5 percent

Data Source Information

Soil Survey Area: Schuylkill County, Pennsylvania Survey Area Data: Version 7, Sep 22, 2014

V.7 Off-Site Discharge Analysis a. Adequacy of Off-Site Discharge

ACCESS ROAD: AR-SC-073.5- Adequacy of Off-Site Discharge

AR-SC-073.5 is a proposed permanent access road (PAR) located in Eldred Township, Schuylkill County Pennsylvania. The intent of this PAR is to provide maintenance and operations access to Main Line Valve - 09 (MLV-09) located on the proposed 42" Central Penn Line South Pipeline. The road begins at Ranch Road and terminates at MLV-09 at approximate mile post 80.8. The proposed road is approximately 135 feet long over relatively hilly terrain located on an existing pasture. Existing Agricultural (Pasture) land surrounds the road and MLV site on all sides (As seen in the picture below). The proposed improvements have been designed to have no anticipated impacts or changes to downhill properties as a result of construction the MLV site.

(Ranch Road looking south toward MLV site location)

The proposed permanent access road and the MLV site has been designed to reduce overall disturbance to the maximum extent practicable. The PAR and MLV site has been constructed with stone rather than pavement to further help with keeping with the existing conditions. The proposed road maintains a new minimal width of only 14 feet wide. The MLV site has also been design to minimum the footprint to the maximum extent practical for the operation and maintenance requirements.

As for any development, the road and MLV site has been designed to match or reduce peak stormwater runoff from the design areas to an off-site discharge point where stormwater

runoff is conveyed. (See the enclosed Pre and Post drainage area maps and calculations in Appendix V.3 and V.4 for details) In the case of this design, we were able to achieve a reduced peek runoff for all storm events, as shown in the Pre-vs. Post- Construction Peak Rate of Flow Summary for The Study Point chart below. The reduction was achieved by utilizing an Infiltration berm, and utilizing the MLV pad itself as a retention areas. These Stormwater BMP measures are used to slow down the stormwater runoff, infiltrate and release at a slower and reduced rate to existing land.

Pre- vs. Post-construction Peak Rate of Flow Summary				
Stormwater discharge rate for the design	Pre-construction	Post- construction	Net Change	
frequency storm (cfs) 1) 1-Year/24-Hour	1.22	-	(1.22)	
2) 2-Year/24-Hour	1.97	0.07	(1.90)	
3) 5-Year/24-Hour	3.18	0.31	(2.87)	
4) 10-Year/24-Hour	4.31	1.68	(2.63)	
5) 25-Year/24-Hour	6.20	5.25	(0.95)	
6) 50-Year/24-Hour	8.03	7.40	(0.63)	
7) 100-Year/24-Hour	10.23	9.48	(0.75)	

The Infiltration berm is located on the east side of the MLV site and access road. The Infiltration berm area is approximately 1.3-feet high and collects runoff from the MLV site, and access drive. The infiltrated berm is designed to create a retention area promoting infiltration after the flows travel through the MVL site and from the PAR and will reduces peak stormwater runoff rates leaving the site.

The other measure used to ensure reduced peak stormwater runoff is the MLV pad itself. The pad is a flat area constructed of a top layer of 6" of AASHTO #8 aggregate, on a non-woven geotextile fabric, and a bottom layer of 18" AASHTO #57 stone. This 18-inch-deep area will detain and infiltrate the foot print of the MLV pad, plus pasture land area around the pad to the south and west.

After being conveyed through one of these stormwater PCSM BMP's above, the runoff from the area will follow pre-construction conditions and travel through the pasture approximately 380 feet east until reaching a gravel road. From the gravel road, the runoff will travel south until it reaches a small pond that ultimately outlets into an unnamed tributary to Mahantango Creek, approximately 890 feet southeast of the MLV Site.

The flow path from the MLV site crosses the following soil types:

- LeB Leck kill channery silt loam, 3 to 8 percent slopes.
- LeC Leck kill channery silt loam, 8 to 15 percent slopes.
- MeB Meckesville loam, 3 to 8 percent slopes.
- MeC Meckesville loam, 8 to 15 percent slopes.
- WKF Weikert and Klinesville shaly silt loams, steep.

The PADEP E&S Manual defines erosion resistant soils as soils having an erodibility "K" factor less than or equal to 0.37. The K factor for the soil types, according to the National Resources Conservation Service (NRCS) website

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx, crossed by the flow path are summarized below:

- LeB 0.20
- LeC 0.20
- MeB − 0.28
- MeC 0.28

WKF – 0.17

All soils crossed by the flow path are considered erosion resistant soils.

In addition to the stormwater flow reduction and soil data above, the VCI and MLV pad has reduced the proposed stormwater velocity as it leaves the design points. The velocities at both points are such that they are slower than 2 fps, as see in the Stormwater Velocity Rate Chart. Based on Table G.1 in the Pennsylvania DEP erosion and Sediment Pollution Control Program Manual "Allowable Velocities for Downslope covers for Channeled Flows" (shown below), The maximum allowable velocity for mulch is 2 fps. The velocity of the runoff from the proposed improvements is less than the maximum allowable velocity listed in the table, and is an allowable velocity for the area that we are discharging too.

Stormwater Velocity Rate Chart for	Infiltration
the design frequency storm (fps)	Berm
	Velocities (fps)
1) 1-Year/24-Hour	0.00
2) 2-Year/24-Hour	0.19
3) 5-Year/24-Hour	0.32
4) 10-Year/24-Hour	0.58
5) 25-Year/24-Hour	0.85
6) 50-Year/24-Hour	0.96
7) 100-Year/24-Hour	1.04

Table G.1. Allowable Velocities for Downslope Covers for Channeled Flows

Ground Cover	Allowable Velocity
Grass*	4 fps
Gravel	5 fps
Mulch	1-2 fps

See E&S Manual for more information on permissible velocities for grass and other cover types. Allowable velocities for grass can vary from 2.5 fps to as much as 8 fps. 4 fps has been selected as a conservative figure for design purposes.

(Table from the 2012 PDEP E&S PCPM)

In conclusion, based on the designed measures discussed above, and the soil and velocity data provided for this MLV site and access road, there are no anticipated impacts or changes to downhill properties as a result of construction the MLV site.

Down Slope Property Owners:

• F. Leon Zimmerman (PA-SC-111.000)

V.8 Storage Volume Analysis a. Storage Volume Analysis

ACCESS ROAD: SC-073.5 - Storage Volume Analysis

Stormwater detention is provided behind infiltration berm and in the void space between the AASHTO #57 stone layer at the MLV pad. The void space between the 6" AASHTO #8 stone at the surface of the pad is excluded from the detention, or storage volume, calculations. The required storage volume is calculated through an iterative process of increasing the storage volume in the HydroCAD model until the post-construction stormwater runoff rate is less than or equal to the pre-construction runoff rate.

The void space between the AASHTO #57 stone provides the storage volume for the MLV pad. The void space between the 6" AASHTO #8 stone at the surface of the pad is excluded from the volume calculations.

The storage volume of the MLV pad is dependent on the slope of the MLV pad. If the pad were graded at 0% in all directions, the storage volume would simply be the area of the pad multiplied by the depth. However, due to site topography, a 0% grade would result in large quantities of earth movement, fill at the infiltration interface, or cut too close to the ground water table. Instead, the pad was designed to minimize these impacts by mimicking the existing grade. An actual storage volume was calculated based on the elevation of the low point of the pad (minus the 6" AASHTO #8 cover), since that is the highest runoff could be stored without overtopping the AASHTO #57 stone. Two scenarios apply to all of the main line valve pads on the project: low side pads and low corner pads. Since many of the volumes can only be obtained using calculus to determine the total storage the water surface elevation and base of the pad, AutoCAD Civil 3D was used to determine the storage volumes. To determine volumes in Civil 3D, surfaces representing the bottom of the pad and water surface elevation were built and combined into a volumetric surface; an earthwork analysis was run on the volumetric surface to determine the total volume between the two. The volume of low side pads can be checked using simple volumetric formulas for triangular (steeper grades, shallower pads) or trapezoidal (more gradual grades, deeper pads) prisms, with the cross sectional wetted area multiplied by the length of the low side of the pad. AR-SC-073.5 is a low-corner pad. Finally, the calculated storage volume was reduced by 60% to determine the available storage volume with 40% voids.

The detained stormwater will infiltrate the ground. The dewatering time for the stormwater detained in the void space of the MLV pad rock is provided at the bottom of Worksheet #5 included in Appendix V.5.

V.9 Sediment Barrier Table

a. E&S Worksheet 1

E&S WORKSHEET #1 Compost Filter Sock

PROJECT NAME:_Atlantic Sunrise	
LOCATION: _AR-SC-073.5_	
PREPARED BY: <u>EAW</u>	DATE:_10/21/16
CHECKED BY: _BJP	DATE:_10/21/16
BLOWN/PLACED FILTER MEDIA DISTURBED AREA 12" MIN	2" X 2"WOODEN STAKES PLACED 10' O.C. COMPOST FILTER SOCK UNDISTURBED AREA

SOCK NO.	Dia. In.	LOCATION	SLOPE PERCENT	SLOPE LENGTH ABOVE BARRIER (FT)	SOCK LENGTH
STOCKPILE					
SP 1	12	LOCATED IN THE PIPELINE ROW	N/A	N/A	225
			1		
					_

SOURCE: Pennsylvania Erosion and Sediment Pollution Control Manual, Page 372