HORIZONTAL DIRECTIONAL DRILL ANALYSIS
WETLAND J-47 CROSSING
PADEP SECTION 105 PERMIT NO.S:
PA-LE-0001.0000-SR & PA-LE-0001.0000-SR-16
(SPLP HDD No. S3-0090)

This reanalysis of the horizontal directional drill (HDD) installation of a 16-inch and 20-inch diameter pipeline crossing under Wetland J-47, has been completed in accordance with paragraphs 4 and 5 of the Stipulated Order issued under Environmental Hearing Board Docket No. 2017-009-L. This HDD is number 15 on the list of HDDs included on Exhibit 2 of the Stipulated Order.

PIPE INFORMATION

20-Inch: 0.456 wall thickness; X-65 16-Inch: 0.438 wall thickness; X-70

Pipe stress allowances are an integral part of the design calculations performed for each HDD.

ORIGINAL HORIZONTAL DIRECTIONAL DRILL DESIGN SUMMARY: 20-INCH

Horizontal length: 1,020 foot (ft)
Entry/Exit angle: 10-15 degrees
Maximum Depth of cover: 60 ft
Pipe design radius: 2,000 ft

ORIGINAL HORIZONTAL DIRECTIONAL DRILL DESIGN SUMMARY: 16-INCH

Horizontal length: 1,070 ft
Entry/Exit angle: 10-12 degrees
Maximum Depth of cover: 75 ft
Pipe design radius: 1,600 ft

GEOLOGIC AND HYDROGEOLOGIC ANALYSIS

Based upon publications by the Pennsylvania Bureau of Topographic and Geologic Survey (BTGS, 2001 and Sevon, 2000), the site is in the Gettysburg-Newark Lowland Section of the Piedmont Physiographic Province of Pennsylvania, underlain by sedimentary rocks of the Newark Group. Local topography is characterized by rolling lowlands, shallow valleys, and isolated hills (Geyer and Wilshusen, 1982).

The HDD site geology is mapped as the Gettysburg Formation and Gettysburg Formation-Conglomerate. The Gettysburg Formation is described as red shale, red, brown and gray sandstone, and quartz and limestone conglomerate (Geyer and Wilshusen, 1982). The Gettysburg Formation-Conglomerate is described as coarse, quartz conglomerate containing rounded pebbles and cobbles in a matrix of red sand (Geyer and Wilshusen, 1982). The general structure of the Newark Group is a north-northwestward dipping homocline. Typical dip directions are north or northwest and range from 20° to 40° (Newport, 1971). Intrusive diabase has been mapped north and south of the HDD.

Karst geology is not present at this HDD location. At this HDD location the use of geophysics assessments was considered but not conducted because the results from these types of assessments provide limited useable data after 20 to 50 ft below the ground surface (bgs) varying by the nature of the geologic structure.

Attachment 1 provides an extensive discussion on the geology, hydrogeology and results of the geotechnical investigation performed at this location.

HYDROGEOLOGY, GROUND WATER, AND WELL PRODUCTION ZONES

Groundwater in the vicinity of the Wetland J-47 HDD moves in interconnected, secondary openings such as fractures and joints in the sedimentary bedrock aquifer system. Typically, these openings are best developed and found more frequently near the surface. At depth, these openings occur less frequently and tend to be smaller due to compressional loading (Wood, 1980).

Based upon reported data on 332 wells in the Gettysburg Formation, water-bearing zones range from 5 to 900 feet below the ground surface (bgs). Fifty percent of the 669 reported water-bearing zones were penetrated at a depth of 115 feet or less, with 90% of the water-bearing zones encountered at a depth of 288 feet bgs or less. The greatest density of water-bearing zones is from approximately 51 to 100 feet bgs. The density of water-bearing zones encountered at depths greater than 401 feet are based on five or fewer zones per 50-foot interval. Overall density of water-bearing zones in the Gettysburg Formation is 0.41 per 50-feet of well depth (Low, et. al., 2002).

Attachment 1 provides an extensive discussion on the geology, hydrogeology and results of the geotechnical investigation performed at this location.

INADVERTENT RETURN (IR) DISCUSSION

HDD specialists for Sunoco Pipeline, L.P. (SPLP) reviewed the original HDD designs summarized above, and predicted that that the design profiles for the 16 and 20-inch HDDs would produce an IR at or before 100 ft into the pilot profile for either pipe, where the drill crossed the first stream, and an IR to a water of the state may occur.

As presented and discussed in the Conclusion section below, the profile for both the 16 and 20-inch pipelines have been redesigned so that they are longer and deeper, and with the maximum degree of entry and exit angles allowed by the stress radius of the pipelines, to sharpen the pilot run down to horizontal depth and return exit to the land surface.

As shown on Figures 2 and 4 in Attachment 2, the weakest point in both profiles is the first stream undercrossing, occurring at Station 5+66 on the 20-inch profile, and Station 5+33 on the 16-inch profile. The revised design profiles provide for 78 ft of cover above the 20-inch pilot drill, and 91 ft of cover over the 16-inch pilot drill.

These new profile designs are based upon the fracture pressure of the overlying bedrock. As shown on the core data set forth in the attached hydrogeology report, these siltstone, sandstone and conglomeratic sandstone layers had moderate to high recovery, and varied from poor to high quality in value (RQD) indicative of good structural integrity, and low to very high strength, depending on depth in the formation. As shown on Figure 1 - Annular Pressure and Formation Pressure Capacity Curves in Attachment 3, the revised design pressures are below the bedrock fracture pressure at Drill Rod 19, so long as the return fluids and cuttings are kept below 10.5 pounds per gallon (ppg). Achieving this return fluid flow weight requires monitoring of the recycling of the return flows to ensure that cuttings are adequately removed prior to returning the recycled fluids into the drilling process. The entire HDD profile is designed to manage drilling pressures under this point in the profile.

ADJACENT FEATURES ANALYSIS

The crossing of Wetland J-47 is located in rural Dauphin and Lebanon counties, approximately 3.6 miles southeast of Hershey, PA. The pipeline route follows parallel to two previously existing Sunoco pipelines.

This HDD location is within unmanaged deciduous woodlands. The HDD would cross under two streams and one wetland, none of which are designated as exceptional value. A 3.5 acre impoundment occurs approximately 385 ft north-northwest of the HDD location.

In addition to the resources listed above, based upon the data from the Pennsylvania Groundwater Information System (PaGWIS) and review of aerial photography, five domestic (private) supply wells were identified within 450 feet of the proposed HDD. Of these, three occur north of the HDD profile at distances between 180 and 530 ft. Based upon the data in PaGWIS, the well depths are 100 to 150 ft bgs, with a reported static water level of 30 bgs. Typically, a "good drilling mud program" forms a "cake wall" around the diameter of the pilot or reamer during drilling process which seals fissures within the profile geology and limits the horizontal and vertical movement of drilling fluids. Secondly, controlling the down hole mud weights and pressures should minimize the lateral movement of these materials through the geology. These wells will have to be monitored during the HDD process in accordance with PADEP requirements.

To further avoid and mitigate any adverse effects from the HDD to private water wells, and in accordance with the requirements of the Stipulated Order, SPLP will transmit a copy of this HDD analysis to all landowners having a property line within 450 ft of any direction of this HDD location. SPLP will also inform these landowners that SPLP will conduct pre-, during, and post-construction sampling of their private water wells to ensure that mitigating actions are taken, if necessary.

ALTERNATIVES ANALYSIS

The proposed HDD is an alternative plan of installation to a conventional open trench construction plan. Using the HDD method avoids new unavoidable direct impacts to the stream, wetlands, and associated forested woodland and riparian habitats. Alteration of the current permitted route and plans for installation would require major modifications of the state Chapter 102 and Chapter 105 permits, and authorization issued by the U.S. Army Corps of Engineers.

Both of these HDDs are 2,200 ft in horizontal length and include the crossings of two stream channels, and approximately 620 ft of an emergent and forested wetland complex.

Open-cut and Conventional Bore Analysis

Sunoco Pipeline, L.P. (SPLP) specifications require a minimum of 48-inches of cover over the installed pipelines. To meet these cover requirements, during construction through the stream and wetlands would require a minimum authorized open cut work space 75 ft in width to accommodate the 16 and 20-inch pipelines, allowing for each pipeline to be installed with sufficient separation for integrity management. The assessed area of impact by this open cut plan would directly affect approximately 0.09 acres of state water bottoms, 0.12 acres of emergent wetland, and 1.12 acres of forested wetland.

Due to the existing saturated ground conditions, a significant volume of produced groundwater will fill all the excavations during the open cut process. These water volumes can be pumped to a discharge filtration structure; however the current feasible filtration ability does not exceed 50 microns, therefore,

cloudy water (from suspended fine clay and silt particles) will be discharged downstream regardless of all control methods employed for the entire duration of this open cut installation until completion.

The crossing distance of the emergent and forested wetlands, which are the most expansive natural features crossed by the HDDs, is beyond the technical limits of a conventional auger bore.

In sum, a combination of open-cut and conventional bores would not work as an alternative to the Wetland J-47 HDD.

Re-Route Analysis

The pipeline route as currently permitted follows parallel to two existing Sunoco pipelines.

There are no existing utility corridors to the north or south that provide a practical alternative route. Any alternate route considered north or south of the existing utility corridor would require the clearing of a new "greenfield" corridor through existing woodlands and croplands, increase the number of stream crossings, and possibly encroach on additional private residences before it could rejoin the current route.

During the PADEP Chapter 105 permit process for the Mariner II East Project, SPLP created and submitted for review a project wide alternatives analysis. The baseline route provided for the pipeline construction to cross every wetland and stream on the project by open cut construction procedures. The alternatives analysis submitted to PADEP conceptually analyzed the feasibility of any alternative to trenched resource crossings (e.g., reroute, bore, HDD). The decision making processes for switching from an open cut to HDD is discussed thoroughly in the previously-submitted alternatives analysis and was an important part of the permit application package of HDD plans as currently permitted. The reroute analysis conducted for the Joanna Road HDD confirms the conclusions reached in the previously submitted alternatives analysis.

HORIZONTAL DIRECTIONAL DRILL REDESIGN

Additional geologic investigations have been completed and utilized in the redesign of the planned HDDs. These redesigns adjust the HDD profile deeper to place the HDD pathway under and through bedrock having better structural integrity than a shallower profile and increase the overall length of the HDD due to pipe design requirements. A summary of the redesign factors is provided below. The original and redesigned HDD plan and profile drawings are provided in Attachment 2.

REVISED HORIZONTAL DIRECTIONAL DRILL DESIGN SUMMARY: 20-INCH

Horizontal length: 2,200 ft
Entry/Exit angle: 16 degrees
Maximum Depth of cover: 119 ft
Pipe design radius: 2,400 ft

REVISED HORIZONTAL DIRECTIONAL DRILL DESIGN SUMMARY: 16-INCH

Horizontal length: 2,200 ft
Entry/Exit angle: 16 degrees
Maximum Depth of cover: 137 ft
Pipe design radius: 1,800 ft

As shown on Figure 2, the redesigned HDD profile for the 20-inch pipeline is 1,180 ft longer, with a maximum depth of cover increased by 59 ft from the permitted design. In addition, the entry/exit angles have been increased from 10-15 degrees to 16 degrees allowing for a sharper and quicker descent into more competent rock. As shown on Figure 4 the redesigned HDD profile for the 16-inch pipeline is 1,130 ft longer, with a depth of cover increased by 62 ft, and designed for a sharp and quick entry and exit from the horizontal depth.

CONCLUSION

HDD specialists and geologists employed by SPLP have investigated the HDD design and subsurface geologic conditions and concluded that the original HDD design for the 16 and 20 inch pipelines, as summarized in the introduction, have an increased risk of IRs to the land surface, wetlands, and streams if implemented; therefore, the HDD for the 16-inch and 20-inch diameter pipeline have been redesigned as set forth above to maximize the potential to complete each HDD without an occurrence of an IR.

Upon the start of these HDDs, SPLP will employ the following HDD best management practices:

- SPLP will mandate annular pressure monitoring during the drilling of the pilot hole, which assists
 in immediate identification of pressure changes indicative of loss of return flows or over
 pressurization of the annulus, and allows the operator to manage the development of pressures
 that can induce an IR;
- SPLP inspectors will ensure that an appropriate diameter pilot tool, relative to the diameter of the drilling pipe, is used to ensure adequate "annulus spacing" around the drilling pipe exits to allow good return flows during the pilot drilling;
- SPLP will mandate short-tripping of the reaming tools to ensure an open annulus is maintained to manage the potential inducement of IRs;
- SPLP will require monitoring of the drilling fluid viscosity, such that fissures and fractures in the subsurface are sealed during the drilling process;
- SPLP will mandate monitoring of the drilling fluid cleaning, such that the return weight of the recycled drilling fluids is kept below 10.5 ppg;
- During the reaming phase, the use of Loss Control Materials may be implemented if indications of a potential IR are noted or an IR is observed, and
- If necessary, the pilot hole and reaming phases at the point of entry for the HDD may utilize casing, hammered into the substrate down to structurally better rock, to prevent vertical or lateral movement of drilling fluids at shallow depths.

ATTACHMENT 1 GEOLOGY AND HYDROGEOLOGICAL EVALUATION REPORT

3020 Columbia Avenue, Lancaster, PA 17603 ● Phone: (800) 738-8395

E-mail: rettew@rettew.com • Website: rettew.com

September 22, 2017

Mr. Matthew Gordon Sunoco Pipeline, L.P. 535 Fritztown Road Sinking Spring, PA 19608 **Engineers**

Environmental Consultants

Surveyors

Landscape Architects

Safety Consultants

RE: Sunoco Pipeline, L.P. Pipeline Project - Mariner East II

Wetland J-47 Horizontal Directional Drill Location (S3-0090)

Hydrogeological Reevaluation Report Conewago Township, Dauphin County and

South Londonderry Township, Lebanon County, Pennsylvania

RETTEW Project No. 096302011

EXECUTIVE SUMMARY

1. The Stipulated Order dated August 8, 2017 requires a reevaluation of the Wetland J-47 Horizontal Directional Drill (HDD) location, including a geologic report.

- 2. HDD Wetland J-47 is underlain by sedimentary rocks of the Gettysburg Formation (Trg) and Gettysburg Formation-Conglomerate (Trgc).
- 3. Geologic mapping and published reports indicate typically open and moderate to steeply dipping beds, with regularly spaced bedrock joints and fractures.
- 4. Water-bearing zones generally occur in secondary openings along bedding planes, joints, faults and fractures. Water-bearing zones in both formations are most frequent within approximately 300 to 200 feet of the ground surface.
- 5. To date, no HDD operations have started for either the 16-inch or 20-inch pipeline.
- 6. Based on the hydro-structural characteristics of the underlying geology, and proposed bore path through shallow unconsolidated soil materials and generally shallow bedrock, the Wetland J-47 HDD is susceptible to the inadvertent return (IR) of drilling fluids during HDD operations for the planned 16-inch and 20-inch drills. The revised HDD profile and HDD best management practices during drilling operations will be used to reduce the risk of an IR.

1.0 INTRODUCTION

The purpose of this report is to describe the geologic and hydrogeologic setting of the Wetland J-47 (S3-0090) HDD location (the site) on the Sunoco Pipeline, L.P. (SPLP) Pennsylvania Pipeline Project - Mariner East II (PPP-ME2) Project. The site is located in Conewago Township, Dauphin County and South Londonderry Township, Lebanon County, Pennsylvania (refer to **Figure 1**). The HDD was designed to be drilled under two small streams (S-A47 and S-A48) and Wetland J-47. This reevaluation report is part of the response to the Stipulated Order dated August 8, 2017.

Page 2 of 8 Sunoco Pipeline, L.P. September 29, 2017 RETTEW Project No. 096302011

The HDD profile was lengthened on September 25, 2017 to provide additional protective cover beneath the streams and wetland. The HDD entry on the western side of the profile is at an elevation of approximately 525 feet above mean sea level (AMSL) for the proposed 16-inch drill and 527 feet AMSL for the proposed 20-inch drill. The exit on the eastern side of the profile is at an elevation of approximately of 566 feet AMSL for the proposed 16-inch drill and 554 feet AMSL for the proposed 20-inch drill. The inclination of the entry and exit angles has been increased as a means to install the pipe through these protective soils, residual soils, and bedrock in closer proximity to the entry and exit points than the original, shorter profile.

Based on the annular pressure and formation pressure capacity curves provided by Directional Project Support (DPS) as part of the overall reevaluation submittal, the weakest point in the profile is beneath the first crossing of stream S-A47. At this location, the HDD profile is approximately 91 feet below the stream for the proposed 16-inch drill and 78 feet for the proposed 20-inch drill. Copies of the revised HDD profiles are included in **Attachment 1.**

2.0 GEOLOGY AND SOILS

Based upon publications by the Pennsylvania Bureau of Topographic and Geologic Survey (BTGS, 2001 and Sevon, 2000), the site is in the Gettysburg-Newark Lowland Section of the Piedmont Physiographic Province of Pennsylvania, underlain by sedimentary rocks of the Newark Group. Local topography is characterized by rolling lowlands, shallow valleys, and isolated hills (Geyer and Wilshusen, 1982).

According to the United States Department of Agriculture (USDA) Soil Surveys of Dauphin County and Lebanon County, Pennsylvania, soils within approximately 450 feet of the drill path for HDD S3-0090 consist of Basher silt loam (Bc), Brinkerton silt loam, 0 to 3 percent slopes (BrA), Brinkerton and Armagh silt loams, 0 to 3 percent slopes (BtA), Bucks silt loam, 3 to 8 percent slopes (ByB), Croton silt loam, occasionally ponded, 0 to 3 percent slopes (Cr), Lewisberry gravelly sandy loam, 3 to 8 percent slopes, moderately eroded (LrB2), Lewisberry gravelly sandy loam, 8 to 15 percent slopes, moderately eroded (LrC2), Lewisberry very stony sandy loam, 5 to 25 percent slopes (LsD), Lewisberry very stony sandy loam, 25 to 60 percent slopes (LsF), Penn channery silt loam, 3 to 8 percent slopes (PeB2), Penn channery silt loam, 8 to 15 percent slopes (PeC and PeC2), Ungers loam, 3 to 8 percent slopes (UnB), and Ungers loam, 8 to 15 percent slopes (UnC). A USDA map identifying the general area, along with the soil profile descriptions is included as **Attachment 2**.

The site geology is mapped as the Gettysburg Formation and Gettysburg Formation-Conglomerate, as shown on **Figure 2** (Berg and Dodge, 1981). The Gettysburg Formation is described as red shale, red, brown and gray sandstone, and quartz and limestone conglomerate (Geyer and Wilshusen, 1982). The Gettysburg Formation-Conglomerate is described as coarse, quartz conglomerate containing rounded pebbles and cobbles in a matrix of red sand (Geyer and Wilshusen, 1982). The general structure of the Newark Group is a north-northwestward dipping homocline. Typical dip directions are north or northwest and range from 20° to 40° (Newport, 1971). Intrusive diabase has been mapped north and south of the HDD.

The Gettysburg Formation is moderately well bedded, thin to flaggy, moderately weathered and moderately resistant to weathering. Joint and bedding plane openings provide moderate secondary porosity. Permeability is described as moderate. Weathered rock is reported to be moderately easy to

Page 3 of 8 Sunoco Pipeline, L.P. September 29, 2017 RETTEW Project No. 096302011

excavate whereas unweathered rock is reported to be difficult to excavate. Drilling rates are moderate to fast. Foundation stability is good when material is excavated to sound rock (Geyer and Wilshusen, 1982).

The Gettysburg Formation-Conglomerate is well bedded and thick to massive. Bedrock fracturing is described as jointed with a blocky pattern that is moderately developed and moderately abundant. The joints are regularly spaced with a moderate distance between fractures that are open and steeply dipping. The joint, bedding and fracture-plane openings provide a secondary porosity of low magnitude and low permeability. Overall, the formation is moderately resistant to weathering. These rocks reportedly provide good foundation stability (Geyer and Wilshusen, 1982).

3.0 HYDROGEOLOGY

Groundwater in the vicinity of the Wetland J-47 HDD moves in interconnected, secondary openings such as fractures and joints in the sedimentary bedrock aquifer system. Typically, these openings are best developed and found more frequently near the surface. At depth, these openings occur less frequently and tend to be smaller because compressional loading results in an increase of closed openings (Wood, 1980).

Bedrock geology ultimately influences the storage, transmission, and use of groundwater. Geologic factors such as rock type, intergranular porosity, rock strata inclination, faults, joints, bedding planes, and solution channels affect groundwater movement and availability. Groundwater within the Gettysburg Formation and Gettysburg Formation-Conglomerate can occur under both unconfined (i.e., water table) and confined conditions. In general, groundwater generally occurs under unconfined conditions within the upper portion of the aquifer, and under confined or semiconfined conditions in the deeper portions of the aquifer. The groundwater flow system is described as a series of sedimentary beds with relatively high transmissivity separated by beds exhibiting lower transmissivities. This sequence of beds exhibits different hydraulic properties that collectively act as a series of alternating aquifers and confining or semi-confining units forming a leaky multi-aquifer system (LMAS). The groundwater flow direction within the Gettysburg and Gettysburg Formation-Conglomerate is controlled by hydraulic gradients and variability of hydraulic conductivity. The predominant flow direction is parallel to bedding (Wood, 1980).

Groundwater flow paths within the sedimentary rocks have both local and regional components. Locally, shallow groundwater discharges to the gaining portions of nearby streams and deeper regional groundwater flow is toward points of regional groundwater discharge such as the Susquehanna River. Groundwater divides may be different for each zone of groundwater flow, and therefore may not coincide with surface water divides. Based on our review of available reference sources, no regional water table mapping is available for the Wetland J-47 HDD or surrounding area. As a result, no water table mapping was available for review or inclusion with this HDD reevaluation report.

Based upon reported data on 332 wells in the Gettysburg Formation, water-bearing zones range from 5 to 900 feet below the ground surface (bgs). Fifty percent of the 669 reported water-bearing zones were penetrated at a depth of 115 feet or less, with 90% of the water-bearing zones encountered at a depth of 288 feet bgs or less. The greatest density of water-bearing zones is from approximately 51 to 100 feet bgs. The density of water-bearing zones encountered at depths greater than 401 feet are based on five or fewer zones per 50-foot interval. Overall density of water-bearing zones in the Gettysburg Formation is 0.41 per 50-feet of well depth (Low, et. al., 2002).

Well records reviewed within a 0.5-mile radius of the HDD location were obtained from the Pennsylvania Groundwater Information System (PaGWIS) on September 20, 2017. Records and information from 10 wells in this radius were available and are summarized below. These well locations are shown on **Figures 2** and **3**.

Well No.	Well Use	Casing Depth (feet)	Total Depth (feet)	Water Level (feet)	Yield (gpm)
86665	DOMESTIC	48	100	Not Available	12
86346	DOMESTIC	43	100	Not Available	20
637244	DOMESTIC	61	160	35	40
625206	DOMESTIC	84	140	38	50
617996	DOMESTIC	258	380	200	20
541860	DOMESTIC	99	225	26	8
491472	GEOTHERMAL	60	375	Not Available	Not Available
490905	GEOTHERMAL	80	375	Not Available	Not Available
415899	DOMESTIC	95	150	Not Available	20
258993	OTHER	60	100	30	40

4.0 FRACTURE TRACE ANALYSIS

Fracture traces underlying, or in close proximity to, the site were evaluated using historical aerial photographs from the years 1992 through 2016 (Google Earth, 2017), the Elizabethtown and Palmyra Quadrangle Geologic Maps (Berg and Dodge, 1981), Plate 1-Part 2 in Wood (1980), and the United States Geological Survey (USGS) 7.5-Minute Topographic Quadrangle Maps. The photographs, publications and maps were reviewed to estimate lineaments or natural linear features on the ground surface. The linear features may be the surficial representation of deeper fractures, joints, faults or bedding planes within the subsurface which can transmit groundwater in the fractured bedrock aguifer at the site.

Figures 2 and **3** show the results of the fracture trace analysis overlain on the geologic map of the site and an aerial basemap. Five fracture traces were identified within close proximity to the Wetland J-47 HDD that are likely related to the primary geologic structure. Two of the fracture traces trend approximately northwest-southeast, similar to the general structure of the regional homocline. The three perpendicular fracture traces trend approximately northeast-southwest and may represent stress-related joints.

5.0 GEOTECHNICAL EVALUATION

Two geotechnical drilling evaluations were performed at the site; one was performed in 2014 and the other in 2017. Test borings were advanced by hollow-stem augers. An NQ core barrel/bit was used for rock coring. Geotechnical boring logs are included in **Attachment 1**. The locations of the borings are depicted on **Figure 2** and **Figure 3**.

Page 5 of 8 Sunoco Pipeline, L.P. September 29, 2017 RETTEW Project No. 096302011

The first geotechnical drilling program was performed on November 18, 2014, prior to the initiation of HDD operations. Soil Boring 01 (SB-01) was located approximately 45 feet north of the approximate midpoint of the bore path on the north side of Stream A-47 and Wetland J-47. Soil Boring 02 (SB-02) was located approximately 400 feet west of the eastern entry point and 75 feet north of the bore path. Soil Boring 03 (SB-03) was located approximately 400 feet east of the eastern entry point and 210 feet south of bore path.

Two additional borings were advanced between August 28 and September 7, 2017, prior to the initiation of HDD operations. Boring B-1 was installed near the HDD exit point on the west side of the HDD profile. Boring B-2 was installed near the HDD entry on the east side of the profile.

In general, the subsurface profile at the site, as observed in the borings, is described as follows:

- Soil and residual soil depths vary from west to east; 6.3 feet at B-1, 21.5 feet at SB-01, 32.5 feet at SB-02, 9.4 feet at B-2, and 30 feet at SB-03. The residual soils are described as follows:
 - Boring B-1: Sandy lean CLAY (CL) and poorly graded SAND with gravel (SP) (weathered sandstone);
 - Boring SB-01: SILT with sand (ML) and fine SAND with silt and gravel (sandstone);
 - Boring SB-02: Fine to medium SAND with silt and gravel (SM); Silty CLAY with sand (CL);
 Fine SAND with clay (SC); Silty CLAY with sand (CL); and weathered sandstone;
 - Boring B-2: Sandy SILT (ML) and poorly graded SAND with silt (SP-SM) (weathered sandstone); and
 - o **Boring SB-03**: Silty CLAY with sand (CL); Fine to medium SAND with clay (SC); Silty CLAY with sand (CL-claystone); and weathered sandstone.
- Refusal, defined as naturally occurring rock that cannot be penetrated by standard soil sampling methods consisting of split-spoon samplers and augers, was encountered at 6.3 feet in B-1, 21.5 feet in SB-01, 32.5 feet at SB-02, 9.4 feet in B-2.
- Beneath auger refusal to the total depth of the NQ cores, bedrock was encountered and is described as follows:
 - Boring B-1: B-1 was completed to a total depth of 159 feet. Alternating sequences of grayish to reddish brown, conglomeratic to coarse- to fine-grained, SANDSTONE and reddish brown SILTSTONE were encountered. Two layers of CONGLOMERATE were encountered (at 40.0 to 45.6 feet and 95.3 to 96.7 feet). A total of 21 distinct strata composed of sandstone, siltstone, and conglomerate bedrock were identified, with thicknesses ranging from 1.5 feet to 34.5 feet. Rock recoveries were generally excellent (100%) in the majority of the core runs. One core run had poor core recovery (44%) from 84.0 to 87.4 feet in a highly weathered siltstone/sandstone zone. RQDs were very poor to excellent (0 to 99%), and in general the lower RQD values correlated to the siltstone layers and the higher RQD values correlate to the sandstone/conglomerate layers. Multiple soil seam and highly weathered rock were encountered in the upper 24 feet of the boring. Fractures ranging from generally horizontal to high angle were recorded in the core logs.

Page 6 of 8 Sunoco Pipeline, L.P. September 29, 2017 RETTEW Project No. 096302011

O Boring B-2: B-2 was completed to a total depth of 201 feet. Alternating sequences of grayish to reddish brown, conglomeratic and coarse- to fine-grained SANDSTONE and reddish brown SILTSTONE were encountered. Two layers of SHALE were encountered (at 84.8 to 102 feet and 153.4 to 170.8 feet). A total of 18 distinct strata of sandstone, siltstone, and shale bedrock were identified, with thicknesses ranging from 2.0 feet to 28.0 feet. Rock recoveries were generally excellent (100%) in the majority of the core runs. RQDs were poor to excellent (40 to 100%) below a depth of 20 feet. Fractures ranging from generally horizontal to high angle were recorded on the core logs.

Please note that RETTEW did not oversee or direct the geotechnical drilling program associated with the Wetland J-47 HDD, including but not limited to, the selection of boring locations and target depths, observations of rock cores during drilling operations, or preparation of boring logs. The geotechnical reports, boring logs, and core photographs that resulted from these programs were generated by other Sunoco Pipeline, L.P. contractors. RETTEW relied on these reports and incorporated their data into the general geologic and hydrogeologic framework of the analysis of the Wetland J-47 HDD in this report.

6.0 FIELD OBSERVATIONS

A field investigation was performed by a RETTEW geologist on September 18, 2017, to identify rock outcrops for fracture fabric analysis, evaluation and possible ground-truthing of fracture traces identified during the desktop evaluation, and to identify potential sensitive receptors to IRs. Readily accessible bedrock outcrops were not observed. No additional sensitive receptors to IRs were identified during the site reconnaissance.

7.0 CONCEPTUAL HYDROGEOLOGIC MODEL AND CONCLUSION

Based on published geologic and hydrogeologic information, and the evaluation of geotechnical borings from the site, the Wetland J-47 HDD location is underlain by sedimentary rocks of the Gettysburg Formation and Gettysburg Formation-Conglomerate. The hydrogeologic setting is dominated by groundwater flow in secondary openings along geologic features that include bedding planes, fractures, and joints. In these formations, secondary openings are more common near the surface. Well records indicate 90% of the water-bearing zones in the Gettysburg Formation are within 280 feet of the surface. Geotechnical core observations indicate that bedrock near the center of the HDD profiles is fractured.

The proposed 16-inch and 20-inch HDD profiles are relatively shallow compared to the land surface, streams S-A47 and S-A48, and Wetland J-47, and pass through both the unconsolidated overburden and fractured bedrock. The weakest point of the profile is beneath the first crossing of Stream S-A47. Based on the hydro-structural characteristics of the underlying geology described in this report and the known HDD profile through shallow soils and bedrock, the Wetland J-47 HDD site is susceptible to the inadvertent return of drilling fluids during HDD operations. The HDD profile has been lengthened to allow for deeper crossings beneath the streams and wetland. The inclination of the entry and exit angles has been increased as a means to install the pipe through these protective soils, residual soils, and bedrock in closer proximity to the entry and exit points than the original, shorter profile. From a geologic perspective, the longer and deeper profile, in conjunction with the proposed engineering controls and/or drilling best management practices will be used to reduce the risk of an IR.

8.0 REFERENCES

- Berg, T. M., and C. M., Dodge, 1981, Atlas of Preliminary Geologic Quadrangle Maps of Pennsylvania, Pennsylvania Topographic and Geologic Survey, Map 61, 636 pages.
- Geyer, A. R., and P. J. Wilshusen, 1982, Engineering Characteristics of the Rocks of Pennsylvania, Pennsylvania Topographic and Geologic Survey, Environmental Geology Report 1, Second Edition, 300 pages.
- Google Earth Pro, 2017, Version 7.1.8.3036, September 20, 2017.
- Low, Dennis J., Daniel J. Hippe, and Dawna Yannacci, 2002, Geohydrology of Southeastern Pennsylvania, U.S. Geological Survey, Water-Resources Investigations Report 00-4166, 347 pages.
- Newport, T. G., 1971, Ground-water Resources of Montgomery County, Pennsylvania, Pennsylvania Topographic and Geologic Survey, Water Resources Report, W29, 83 pages.
- Pennsylvania Bureau of Topographic and Geologic Survey, Department of Conservation and Natural Resources, 2001, Bedrock Geology of PA, Edition: 1.0, Digital Map. Retrieved from internet September 18, 2017; HTTP://www.dcnr.state.pa.us/topogeo/map1/bedmap.aspxDL Data: Page oexp.zip [HTTP://www.dcnr.state.pa.us/topogeo/map1/bedmap.aspx].
- Pennsylvania Department of Conservation and Natural Resources, Pennsylvania Groundwater Information System (PaGWIS) database, website address: http://www.dcnr.pa.gov/Conservation/Water/Groundwater/PAGroundwaterInformationSystem/Pages/default.aspx, accessed September 21, 2017.
- Sevon, D., 2000, Map 13, Physiographic Provinces of Pennsylvania, Pennsylvania Bureau of Topographic and Geologic Survey, Harrisburg, Pennsylvania.
- United States Department of Agriculture, 2017, Natural Resources Conservation Service, Published Soil Surveys for Pennsylvania, Dauphin and Lebanon Counties, Pennsylvania: website address: https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx accessed September 21, 2017.
- Wood, C. R., 1980, Groundwater Resources of the Gettysburg and Hammer Creek Formations, Southeastern, Pennsylvania, Pennsylvania Geologic Survey, 4th Series, Water Resources Report 49, 87 pages.

Page 8 of 8 Sunoco Pipeline, L.P. September 29, 2017 RETTEW Project No. 096302011

9.0 CERTIFICATION

The studies and evaluations presented in this report (other than Section 5) were completed under the direction of a licensed professional geologist (P.G.), and are covered under the P.G. seals that follow.

By affixing my seal to this document, I am certifying that, to my knowledge and belief, the information herein is true and correct. I further certify, that I am licensed to practice in the Commonwealth of Pennsylvania and that it is within my professional expertise to verify the correctness of the information

Douglas J. Hess P.G.
License No. PG000186G

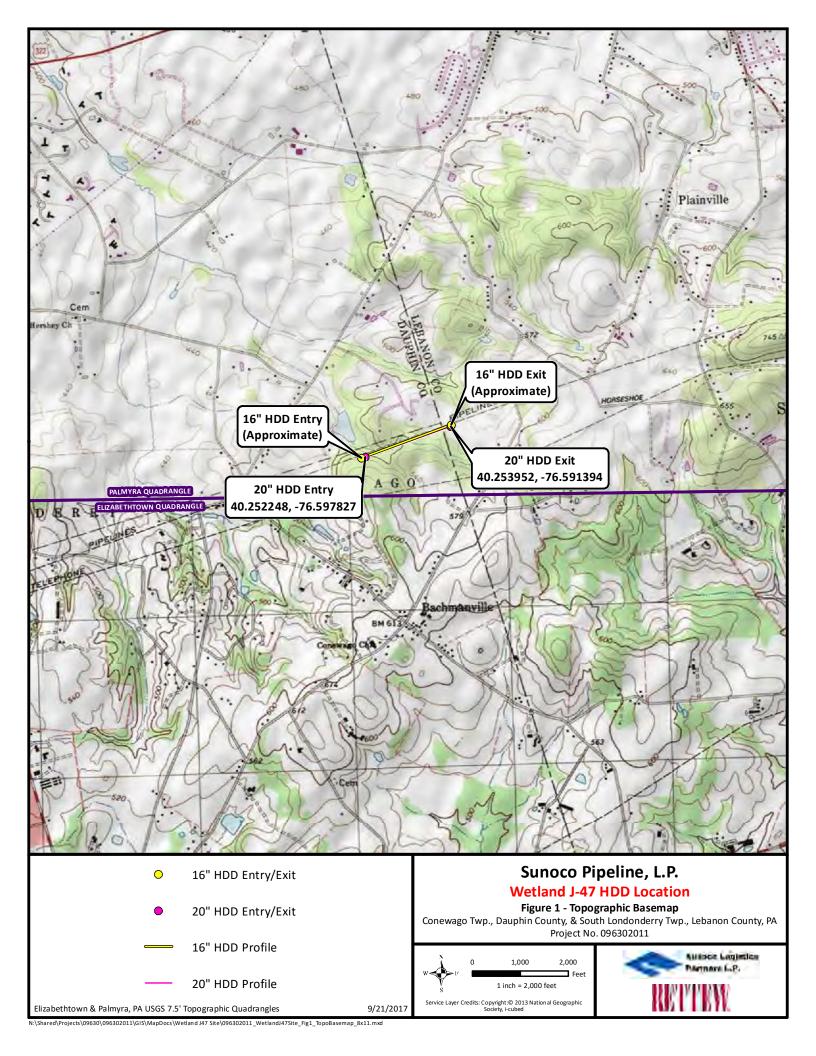
Ethan E. Prout, P.G.
License No. PG003884

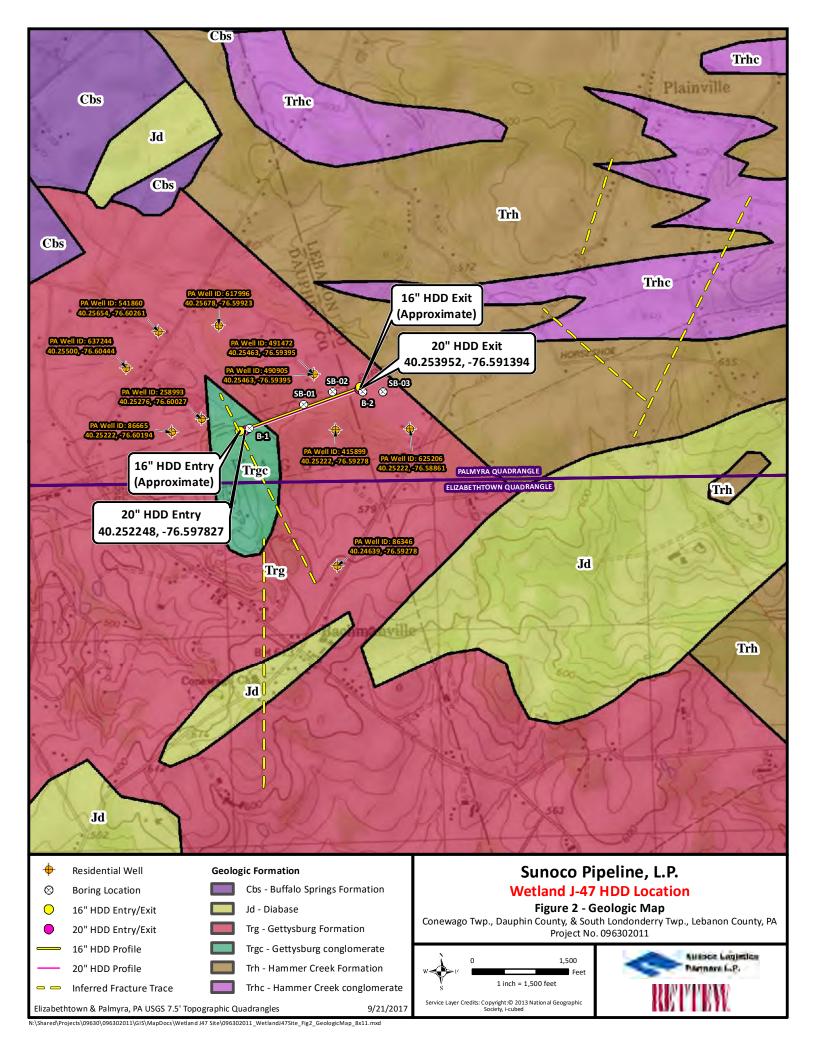
Christopher T. Brixius, P.G.
License No. PG004765

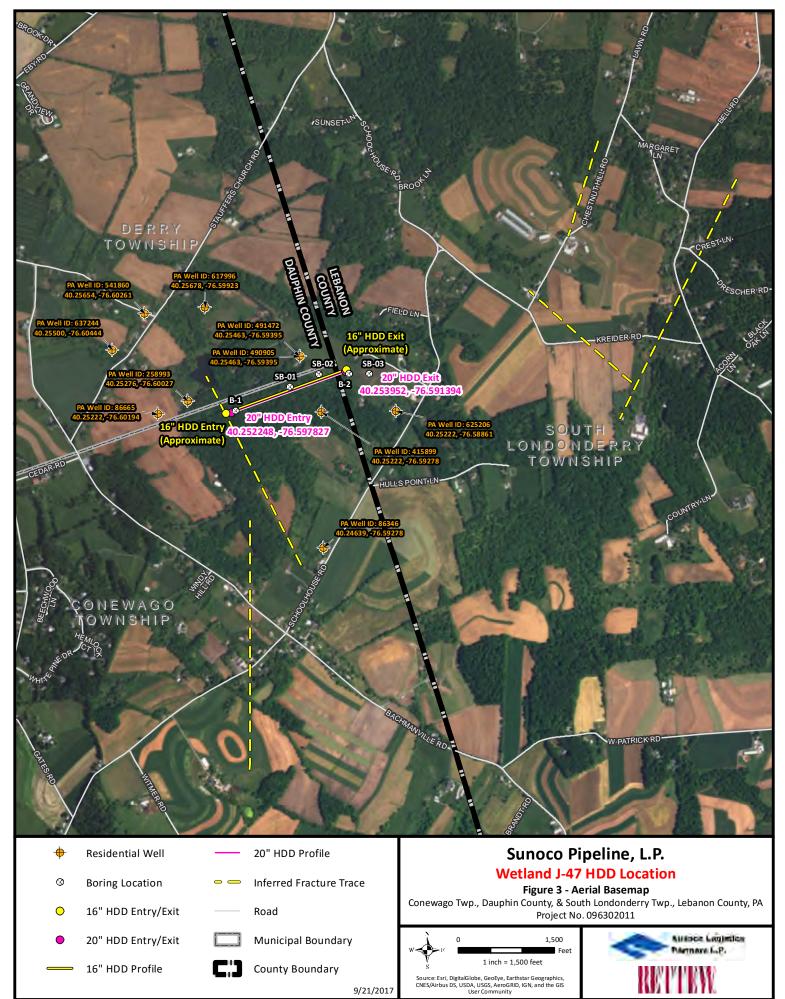
CHRISTOPHER THOMAS BRIXIUS

GEOLOGIST
No. PG004765

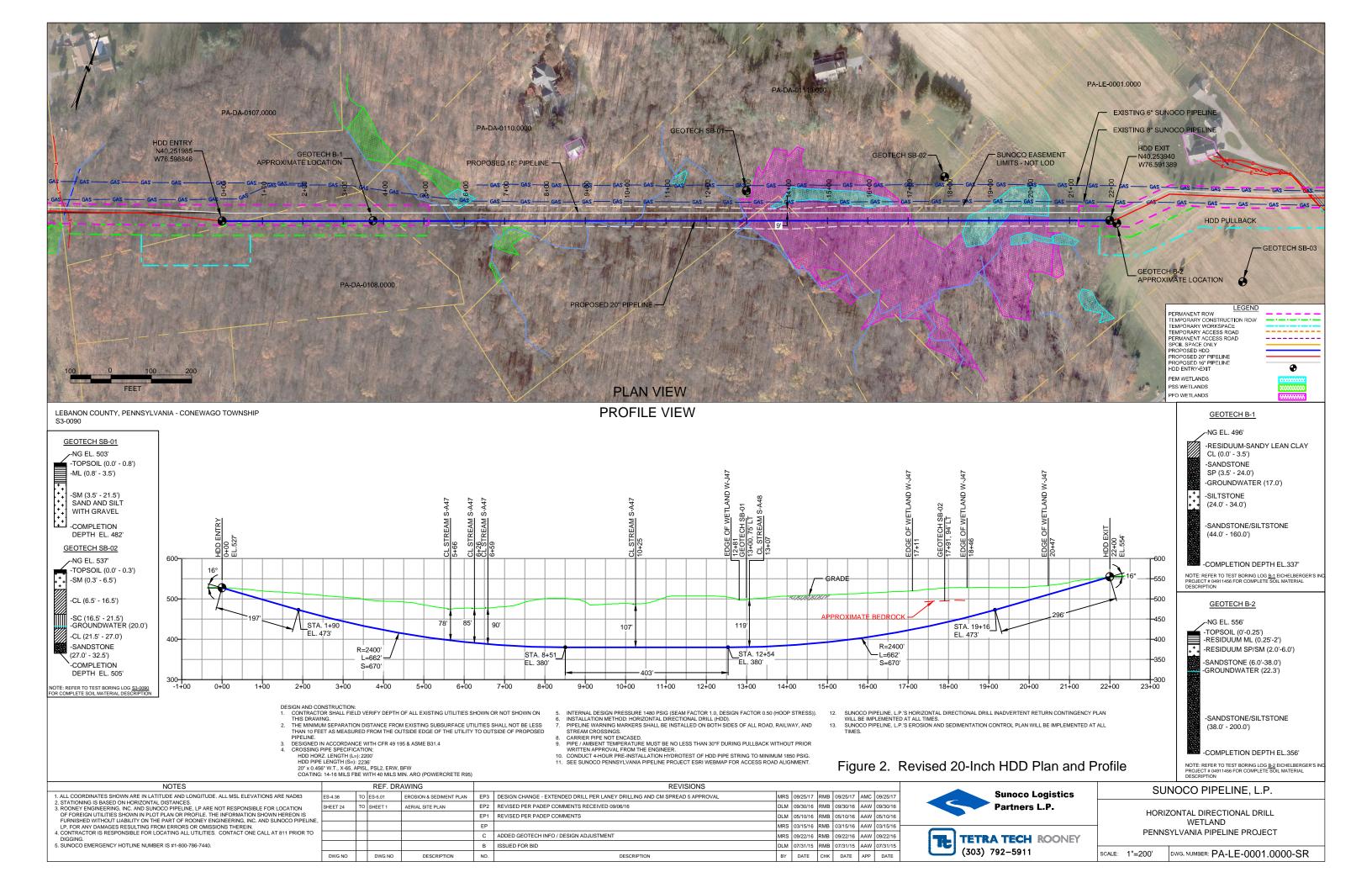
GEOLOGIST
No. PG004765

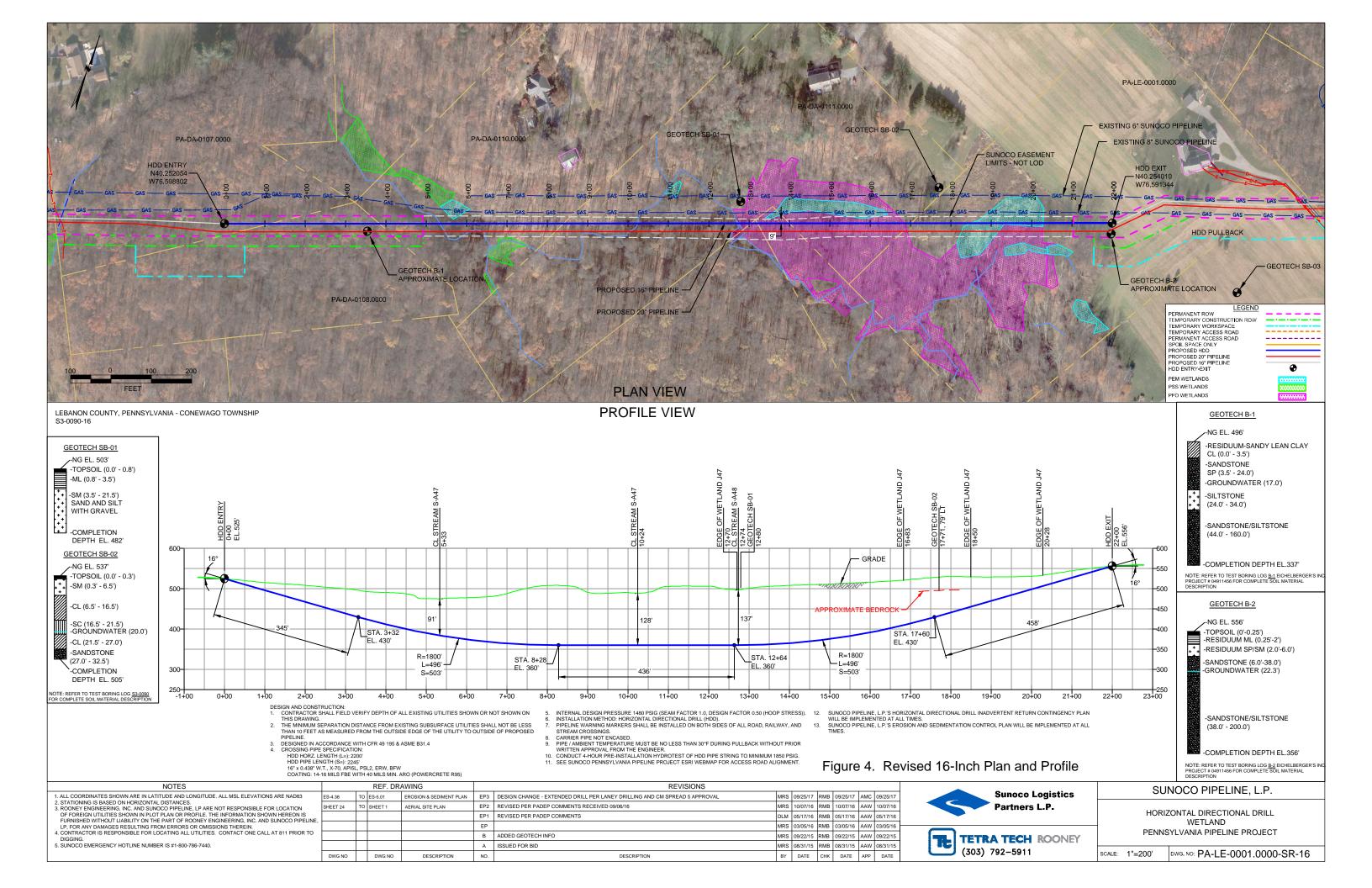

CHRISTOPHER THOMAS BRIXIUS


GEOLOGIST
No. PG004765



FIGURES





ATTACHMENT 1 GEOTECHNICAL BORING LOGS

DATE STARTE			8	8/28/1 <i>7</i> 8/31/17	DRILLER: S. Taylor			ers, Inc. '• I Proczk	_		BO	ORING	6 B-1			
COMPLETION				159.0 ft	DRILL RIG:	Diedric			_	e Z	Z While	e Drilling	Not Enc.			
BENCHMARK:			l	N/A	DRILLING METHOD:	Casir	ng/Ro	ck Coring		Water		Core	17 feet			
ELEVATION:				I/A	SAMPLING METHOD:			374-in Core	_		-					
LATITUDE:			n/a		HAMMER TYPE:		itoma	atic	_		G LOCAT	TION: ation Plan				
LONGITUDE: STATION:	N/A		OFFS	/a° SET: N/A	REVIEWED BY:	EFFICIENCY N/A EVIEWED BY: F. Hoffman						ation i ian				
REMARKS:	13//-3		0110			1.1	101111	idii								
Elevation (feet) Depth, (feet)	Sample Type	Sample No.	Recovery (inches)	MATE	RIAL DESCRIPTION	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %	× 0	NDARD PE TEST I N in blow Moisture 25 STRENGT	øs/ft ⊚ ☑ PL ♣ LL	Additional See Remarks					
0	S	S-1	24	RESIDUUM-Med Sandy Lean CL/	dium Stiff, Gray-brown, AY, moist		CL	1-2-3-3 N=5	15	0	2.0		LL = 26 PL = 19			
- 5		S-2	15		ed SANDSTONE Sampled nse, Silty SAND with Grave	el,	SM 27	7-29-42-50/ ⁻	1" ₇			,	->@Fines=12.2%			
		R-1	32	dark gray-brown Weathered to H to massive, very		en		N=71 RQD=0 Rec=94%	,				FIRES=12.2%			
- 10	· · · · · · · · · · · · · · · · · · ·			dark gray-brown Weathered, very very hard	SANDSTONE-Gray-brown to provide the service of the	ed,										
, , , , , , , , , , , , , , , , , ,	:: :: ::	₹-2	60	brown, Fine to m	ght gray-brown to dark nedium grained, Weathered ed, very broken to massive to very hard			RQD=15 Rec=71%					26 min.			
- 15 		₹-3	12 _	<u></u>				RQD=0 Rec=100%					7 min. 6 min.			
- 20	•••	R-4	37					RQD=0								
- ···				Multiple soil sea 17 to 24 feet.	ms and layers, trace pits fr	rom		Rec=44%								
- 25 - × · · · · · · · · · · · · · · · · · ·	£ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	₹-5	42	SILTSTONE-Bro grained, Highly broken, modera	own to red-brown, Very fine Weathered, very broken to tely hard			RQD=0 Rec=70%					22 min.			
- 30 - *->				(Continued Next Page								20 min.			
**************************************					al Service Industries,					CT NO	-		11456			
interto	2K		25		meron Street, Suite B	3				CT:			r HDD (DPS) 7" (PPP5)			
Total Quality. Assured. 1707 S. Cameron Street, Suite B Harrisburg, PA 17104 Telephone: (717) 230-8622											ATION: Wetland "J47" (PPP5) Dauphin Co., PA					

Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

		RTED: IPLETI	_		3	8/28/1 <i>7</i> 8/31/1		DRILLER: S				ers, inc. /: L. Proczk	_		В	BORI	NG	B-1
		ON DE				159.0		DRILL RIG:		Diedric			_	- G	∠ Wh	ile Drilli	ng	Not Enc.
BENG	CHMAI	RK:				N/A		DRILLING ME	ETHOD:			ock Coring			_	st-Core		17 feet
	ATIOI	_				<u>I/A</u>		SAMPLING N				374-in Core	_	\Box	<u>Z</u>			
	TUDE: SITUD				n/	a° ./a°		HAMMER TYPE: Automatic EFFICIENCY N/A						BORIN See Bo				
STAT	_	_	I/A		OFFS		N/A	REVIEWED B	loffm	nan	_		Jillig Lo	1011				
	ARKS:		.,, .				1471				101111	idii						
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)	MATERIAL DESCRIPTION					USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %	× 0	NDARD F TEST N in blo Moisture STRENG	Additional Remarks		
	- 30 - 	*		R-6	48	grain very hard	ed, Weathe broken to sl	wn to red-brow red to Highly W ightly broken, r	Veathered, moderately			RQD=0 Rec=80%		0		2.0	4.0	17 min.
	- 35 - 			R-7	60	dark Wea	gray-brown, thered to Sli	EANDSTONE-G Fine to very co ghtly Weathere re, hard to very	oarse graine ed, very			RQD=59 Rec=100%					>>4	Q _u = 425.1 tsf 155.7 pcf 14 min.
	- 40 - 			R-8	60	gray- Wea broke	brown, Fine thered to Sli	E-Light gray-bito very coarse ghtly Weathere, hard to very	grained, ed, very			RQD=70 Rec=100%					>>4	Q _u = 379.0 tsf 154.5 pcf
	- 45 - 			R-9	48	gray- Wea	brown, Fine	SANDSTONE-D to coarse grainghly Weathered	ned,	en		RQD=26 Rec=100%						9 min. 4 min. 2 min. 2 min.
	- 50 -			R-10	12	Cong gray- Sligh	glomeratic S brown, Fine	ANDSTONE-G to very coarse ed, slightly brol	grained,			RQD=88 Rec=100%						3 min. 4 min3 min.
	 - 55 -			R-11	60	Fine	to coarse gi broken to m	ght gray to dark ained, Slightly assive, hard to	Weathered,			RQD=98 Rec=100%					>> <u>/</u>	3 min. 3 49iñ pcf 4 min. ♣ min. ♣ min. ♣ min. 149.0 pcf 3 min.
	 - 60 -			R-12	60							RQD=77 Rec=100%						3 min. 3 min. 3 min. 3 min.
	00 -						C	Continued Next	Page									
int Total Qua			k	[i	05	7 17	07 S. Car arrisburg,	l Service Ind meron Stree PA 17104 (717) 230-8	et, Suite B	nc.		PR	OJE	CT NC CT: FION:	Ene	Wetlan		DD (DPS) (PPP5)

Wetland "J47" (PPP5) Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

DATE	_		_			3/28/17	DRILL COMPANY:			jer's, Inc.	_			BO	RIN	١G	B-1			
DATE COMP				ь—		8/31/17 159.0 ft	DRILLER: S. Taylor DRILL RIG:	-	ich D-		.0_ 1	7	<u> </u>	While D			Not Enc.			
BENC				'' -		N/A	DRILLING METHOD:			ock Coring	_	Water		Post-Co	-	5	17 feet			
ELEV		-				1/A	SAMPLING METHOD:			874-in Core	_	≥	$ar{oldsymbol{arVert}}$							
LATIT	UDE:				n/	a°	HAMMER TYPE:		Autom	atic				CATIC						
LONG		E: _			r	n/a°	EFFICIENCY N/A						Boring	Location	on Pl	an				
STATI			N/A		OFF	SET: N/A	REVIEWED BY:	F.	Hoffn	nan										
REMA	RKS:					<u> </u>					I									
Elevation (feet)	Depth, (feet)	Graphic Log Sample Type Sample No. Recovery (inches)					RIAL DESCRIPTION	USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %	× 0	TE N in Moist	ENGTH,	ΓA t ⊚ I F I tsf	PL LL 50	Additional Remarks				
	00									R S		0	Qu	2.0	木	Qp 4.0				
	- 60 - - 65 -			R-13	60	Weathered to S broken to slightl Conglomeratic dark gray-brown Slightly Weathe moderately hard	nly Weathered layer @ 61	to ned,		RQD=63 Rec=100%							4 min. 3 min. 3 min. 3 min. 3 min. 3 min.			
																	4 min.			
-	 	× × ×	·	R-14	60	SILTSTONE-Re	d-brown to dark brown, Ve	ery		RQD=99 Rec=100%							4 min. Q _{ภาทีก} 359.4 tsf 166.5 pcf			
	 - 70 - 	× × × × × × × × × × × × × × × × × × ×	>	R-15	60	massive, moder	·	10		RQD=93 Rec=100%							6 min. 5 min. 5 min. 5 min. 6 min.			
		: : : :					ed-brown, Fine to coarse Weathered, massive, ha								7 min.					
	- 75 - - 75 - 	× × × × × × × × × × × × × × × × × × ×	· · · · · · · · · · · · · · · · · · ·	R-16	60	SILTSTONE-Re Slightly Weathe massive, moder SANDSTONE-R	d-brown, Very fine grained red, slightly broken to ately hard ed-gray-brown to dark e grained, Slightly Weathe	d,		RQD=99 Rec=100%							Zmin Q = 162.8 tsf 895 7 pcf 4 min. 4 min.			
		• • • •	11				ed-gray-brown, Fine			1							4 min.			
-	- 80 -			R-17	21	grained, Weather slightly broken to	ered to Slightly Weathered o massive, hard	J,		RQD=33 Rec=88%			+		+		5 min.			
-		× ×	H	R-18	2	Soil-filled, nearly	vertical fracture from 79.	.3 to /		RQD=0							3 min.			
-	 	X X X X X X X X X X X X X X X X X X X	* *	R-19	34	fine grained, We	d-brown to dark brown, Ve eathered to Slightly y broken to massive, I to hard	ery		Rec=83% RQD=42 Rec=101%							12 min. 7 min. 5 min.			
	- 85 - 	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R-20	18	SILTSTONE/SA dark gray-brown grained, Highly	NDSTONE-Red-brown to			RQD=0 Rec=44%							7 min. 7 min. 5 min.			
		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× × ×	R-21	19	Weathered to S	d-brown, Very fine grained lightly Weathered, very y broken, moderately hard			RQD=65 Rec=99%							7 min. 8 min.			
	- 90 -						Continued Next Page			<u>L</u>										
						Professiona	al Service Industries,	Inc		PR	OJF	CT N	IO.:		n	49114				
int	~	+~	1	Г	76		meron Street, Suite				OJE		_	Energy			DD (DPS)			
int	G	G	K	L	95	Harrisburg,						ION:					(PPP5)			

Telephone: (717) 230-8622

Total Quality. Assured.

Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

DATE STARTED: DATE COMPLETED:	8/28/17 8/31/17	DRILL COMPANY: DRILLER: S. Taylor	Eichelber	-	-	BORING	G B-1						
COMPLETION DEPTH	159.0 ft	DRILL RIG:	Diedrich D		<u> </u>	While Drilling Whil	Not Enc.						
BENCHMARK:	N/A	DRILLING METHOD:	Casing/R	lock Coring		Post-Core	17 feet						
ELEVATION:	N/A	SAMPLING METHOD:		.874-in Core	. — —	_							
LATITUDE: LONGITUDE:	n/a° n/a°	HAMMER TYPE: EFFICIENCY	Autom N/A	natic		IG LOCATION: oring Location Plan	1						
STATION: N/A	OFFSET: N/A	REVIEWED BY:		man									
REMARKS:			1 . 1 10111	nun									
Elevation (feet) 6 Depth, (feet) Graphic Log Sample Type Sample No.	Recovery (inches)	ERIAL DESCRIPTION	USCS Classification		Moisture, %	NDARD PENETRATIC TEST DATA N in blows/ft ③ Moisture	Additional Remarks						
90 R-2	grav. Fine to	c SANDSTONE-Red-brown to coarse grained, Slightly ightly broken to massive, ver		RQD=66 Rec=95%			9 min. 10 min. 20 = 335.9 tsf 765iii.pcf 6 min. 5 min.						
R-2	gray-brown, F Weathered to slightly broker Highly Weath layer @ 96.21 SILTSTONE-F Inne grained, S	ATE-Light gray-brown to dar ine to very coarse grained, Slightly Weathered, broken in the very hard, pits and vugs ered/Completely Weathered feet (~ 4-1/2 inches thick) Red-brown to dark brown, Ve Slightly Weathered, very brok oderately hard	to	RQD=73 Rec=97%			3 min. 3 min. 8 min. 7 min.						
	4 60 SILTSTONE-F Very fine grain Weathered, vi moderately no SANDSTONE gray-brown, F Highly Weath	Red-brown to light gray-browr ned, Weathered to Slightly ery broken to massive,	n,	- RQD=23 Rec=100%			6 min. 6 min. 9 min. 9 min. 5 min.						
R-2	gray-brown, F Weathered to massive, hard SANDSTONE	Brown to gray-brown, Fine to		RQD=38 Rec=100%			5 min. >> Q _u = 511.1 tsf 559i 4 .pcf 8 min. 8 min.						
-110	Weathered, w 6 48 moderately ha			RQD=8 Rec=100%			9 min. 6 min. 6 min. 9 min.						
-115	dark brown, F Slightly Weath hard to extren Developing, s	c SANDSTONE-Light gray to ine to very coarse grained, nered, broken to massive, ve nely hard oil-filled, diagonal fracture @	ry	RQD=58 Rec=100%			>> Qmin 518.7 tsf 160.1 pcf 5 min.						
R-2	8 60 SILTSTONE-F Weathered to	Red-brown, Very fine grained Slightly Weathered, very ssive, moderately hard	,	RQD=68 Rec=100%			4 min. 5 min. 5 min.						
-120-		Continued Next Page		 			- 						
intertek		nal Service Industries, cameron Street, Suite E			JECT NO JECT:	.: 049 Energy Transfe	911456 er HDD (DPS)						

Telephone: (717) 230-8622

LOCATION: Wetland "J47" (PPP5) Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

DATE DATE	_				3	8/28/17 8/31/17	_ DRILL COMPANY: DRILLER: S. Taylor			jer's, Inc.	_			BO	ORI	NG	B-1		
COMP						159.0 ft	DRILL RIG:		ich D-		.0_).	∇	While	Drillir	ng	Not Enc.		
BENCI				_		N/A	DRILLING METHOD:			ock Coring		Water		Post-	Core	•	17 feet		
ELEVA	OITA	۱:			١	I/A	SAMPLING METHOD:			874-in Core		3	Ā						
LATIT		_			n/		HAMMER TYPE:		utom	atic				OCA					
LONG			1/4			/a°	_ EFFICIENCY REVIEWED BY:		N/A Hoffm		_	See	DOIII	y Loca	ation F	rian			
REMA			I/A		OFFS	SET : N/A	_ REVIEWED B1:	г.	ПОПП	ian									
Elevation (feet)	Graphic Log Sample Type Sample No. Recovery (inches)						RIAL DESCRIPTION	USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	ure, %	STANDARD F TEST N in blo X Moisture			ATA		Additional			
Elevatio		Graph	Sampl	Samp	Recovery				USCS CI	SPT Blows p RQD & Rec	Moisture,	0	STI Qu	25 RENG1	ΓH, tsf Ж	Qp 4.0	- Remarks		
	-120- 		F	R-29	60	Slightly Weathe hard Conglomeratic dark brown, Fin	Fine to coarse grained, red, very broken to massive SANDSTONE-Gray-browne to very coarse grained.	i to		RQD=61 Rec=100%						>>4	9 min. Q min 818.5 tsf 162.4 pcf 6 min. 3 min.		
	 -125- 		F	R-30	26	Weathered to H hard	ighly Weathered, hard to v	very		RQD=13 Rec=87%							3 min. 4 min. 3 min.		
-	 	× × × × × × × × × × × × × × × × × × ×	F	₹-31	30	Very fine graine slightly broken,	d-brown to dark red-browr d, Weathered, very broken moderately hard fray-brown, Fine grained,			RQD=0 Rec=100%							7 min. 6 min. 6 min.		
-	-130- 		F	R-32	50	Weathered to S broken to mass fractures throug	lightly Weathered, very ive, moderately hard, mult hout	iple		RQD=73 Rec=83%							5 min. 3 min. 3 min.		
	 -135- 					gray-brown, Fin	ight gray-brown to dark e grained, Weathered to ed, very broken to massive d	e,									3 min. 3 min2 min. 3 min.		
-	 			R-33	42	dark gray-browr	SANDSTONE-Gray-brown n, Fine to medium grained y broken to massive, very	,		RQD=14 Rec=69%						~~	3 min. 3 min. 4 min. Q _u = 801.6 tsf		
-	-140- 		F	₹-34	60	Conglomeratic gray-brown to d to very coarse govery broken to rhard	SANDSTONE-Light ark gray-brown to brown, I grained, Slightly Weatheren nassive, hard to extremely r @ 142.4 feet (~ 7 inches	d, /		RQD=78 Rec=100%							45AirA.pcf 4 min. 3 min. 4 min. 3 min.		
-	-145- 		F	R-35	55	Conglomerate s thick)	eam @ 147.3 feet (~ 3 ind	ches		RQD=58 Rec=92%							3 min. 3 min. 2 min. 3 min. 3 min.		
	-150-						Continued Next Page												
Professional Service Industries, Inc. 1707 S. Cameron Street, Suite B Harrisburg, PA 17104 PROJECT NO.: 04911456 Energy Transfer HDD (DPS) LOCATION: Wetland "J47" (PPP5)												IDD (DPS)							

Telephone: (717) 230-8622

Total Quality. Assured.

Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

		RTED:	_			8/28/17		DRILL CON				er's, Inc.			E	3ORI	NG	B-1				
	COM			_		8/31/ 159.		DRILLER:_ DRILL RIG:	S. Taylor		ich D-		0_	<u>_</u>		nile Drilli		Not Enc.				
	CHMAF			'' -		N/A	O IL	DRILLING I				ock Coring	_	Water		st-Core	9	17 feet				
	ATION	-				V/A			METHOD:			374-in Core	_	¥	$ar{ar{f \Lambda}}$							
	ΓUDE:	_				/a°		HAMMER TYPE: Automatic						BORING LOCATION:								
LONG	SITUDI	E:			1	n/a°		EFFICIENCY N/A						See Boring Location Plan								
STAT	_		N/A		OFF	SET:	N/A	REVIEWED	BY:	F.	Hoffm	nan										
REM/	ARKS:												ı									
Elevation (feet)	- -00 -00 -00 -00 -00 -00 -00 -00 -00 -	Graphic Log	Sample Type	Sample No.	Recovery (inches)	Recovery (inches) WALBIAN SET Blows per 6-inch (SS RQD & Recovery % (NX)						USCS Classification USCS Classification SPT Blows per 6-inch (SS) RQD & Recovery % (NX)				PENETRA T DATA lows/ft		rtomano				
	 	×××	· · · · · · · · · · · · · · · · · · ·	R-36	60	gray to very hard	rglomeratic S y-brown to da ery coarse gr y broken to m d TSTONE-Red	rk gray-browi ained, Slightl assive, hard	n to brown, F ly Weathered to extremely	d,		RQD=86 Rec=100%					>>4	3 min. 2 min 2 = 412.9 tsf 257; pcf 3 min.				
	 -155- 	× × × × × × × × × × × × × × × × × × ×	X	R-37	60	Weato bottom sill grain mass Con red-Silts thick sill grain moo	athered to Higroken, moder FSTONE-Darined, Slightly ssive, modera siglomeratic Subrown, Fine thathered, mas stone seam @	ghly Weather rately hard k red-brown, Weathered, sately hard 6ANDSTONE to coarse gra sive, hard ① 156.9 feet (k red-brown, Weathered, r	Very fine slightly broke -Light gray to ined, Slightly (~ 2-1/2 inche) Very fine massive,	en to		RQD=87 Rec=100%						4 min7 min. 4 min. 4 min. 5 min. 5 min.				
	obactak (DSI) 1707 S. Cameron Street, Suite B												OJE	CT N CT: TION:		Wetlan		(PPP5)				

PA-LE-0001.0000-SR/PO#201770816-2

	COM		D: 9/5/17 DRILL COMPANY: E TED: 9/7/17 DRILLER: T. Growden LO										.OGGED BY: C. Lehman				BORING B-2				
			EPTH 201.0 ft DRILL RIG							_	Clowdo		rich D-		<u> </u>	er	∇	Whi	le Drill	ing	Not Enc.
BENG	CHMAR	RK:				N/A			DRIL	LING M	ETHOD:	Cas	sing/R	ock Corin]	Water	Ţ	Pos	t-Core		22.3 feet
	ATION	1 :				V/A					METHOD			874-in Co	re						
	TUDE: SITUDI					/a° n/a°				MER TY CIENCY			Autom N/A	atic					ATION: cation		
STAT		-	N/A		OFF		N/A			EWED E		F	. Hoffn	nan				90			
	ARKS:																				
Elevation (feet)	O Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)				RIAL	DESC	RIPTIC	DΝ	USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture %	:	I Mo	TEST N in blo pisture 2 TRENC	PENETR DATA Wws/ft © PENETR DATA WS/ft © TH TH TH TH TH TH TH TH TH T	PL LL 50	- remarks
			\mathbb{M}	S-1	14	RES	thes tops IDUUM-I dy SILT,	Mediu					ML	2-2-5-7	14	1	\bigcirc	<			
	 - 5 -			S-2	8	RES	•	Mediu	um De	ense, Re	ed-brown	l,	SM	N=7 12-13-13- N=26	12 10)	×		1 0		Fines=26.8%
				S-3	17	as S dry/r	ioil-Very noist	Dens	se, Re	ed-browr		AND,	SM	33-41-50	[/] 4" 10		×				Fines=17.9%
	- 10 - 			R-1	24	brok	SANDSTONE-Brown to red-brown, Fine to medium grained, Highly Weathered, very broken to broken, moderately hard SANDSTONE-Red-brown, Fine grained,							RQD=0 Rec=56							4 min. 4 min. 4 min.
	- 15 - - 15 - 		•	R-2	76		athered to				d, very b	ıroken		RQD=2 Rec=90						>>,	2 min. 3 min. Q _u = 594.2 tsf 3 min. 3 min. 3 min.
	- 20 - - 20 - 				<u> </u>	Fine		, Slig	htly V	/eathere	d-gray-br ed, very l									>>2	3 min. 3 min. 3 min. 3 min. 3 min. Q _u = 564.7 tsf
	- 25 - 			R-3	110			TONE -Red-gray-brown to wn, Fine grained, Weathered to)		RQD=5 Rec=92							3 min. 3 min. 3 min. 3 min.
	 - 30 -					High	Highly Weathered, very broken to slightly broken, moderately hard to hard Continued Next Page														3 min.
	30							C	ontinu	ed Next	Page										
Professional Service Industries, Inc. 1707 S. Cameron Street, Suite B Harrisburg, PA 17104 Telephone: (717) 230-8622											PROJ	ECT:			Wetlan		IDD (DPS) (PPP5)				

PA-LE-0001.0000-SR/PO#201770816-2

DATE START				9/5/1 <i>7</i> 9/7/17	DRILL COMPANY: DRILLER: T. Growde			gers, Inc. V • C. Lehma	 n		E	BORII	NG	B-2
COMPLETIO				201.0 ft	DRILL RIG:		rich D-		<u></u>	er	∑ Wh	ile Drillin	ıg	Not Enc.
BENCHMARK	K:			N/A	DRILLING METHOD:	: Ca	sing/R	ock Coring		Water	▼ Pos	st-Core		22.3 feet
ELEVATION:				I/A	SAMPLING METHOD			874-in Core		-	Ā			
LATITUDE: LONGITUDE:			n/a	a° n/a°	HAMMER TYPE: EFFICIENCY		Autom N/A	atic			NG LOC	ATION: ocation P	lan	
STATION:			OFFS		REVIEWED BY:	F	. Hoffn	nan	_		Jonnig Ec		1011	
REMARKS:														
<u>ш</u>	Graphic Log Sample Type	Sample No.	Recovery (inches)		ERIAL DESCRIPTION		USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %	× 0	TEST N in ble Moisture STREN	25 GTH, tsf	PL LL 50 Qp 4.0	Additional Remarks
		R-4	96	grained, Wear very broken to	-Brown to gray-brown, Fir thered to Slightly Weathe o massive, hard	red,		RQD=49 Rec=100%						3 min.
- 40 - × × · · ·		R-5	84	broken, mode and layers SILTSTONE-F Very fine grain to massive, m SANDSTONE Fine to mediu slightly broker trace calcite s		pwn, broken rown, nered, hard,		RQD=89 Rec=100%					>>4	3 min. Q ₁ = 43.6 tsf 168.8 pcf -3 min. 3 min. 3 min. 4 min. 3 min.
- 50 - ×	<pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	R-6	120	inches thick) SILTSTONE-E red-gray-brow	oroken layer @ 44.7 feet (Brown to red-brown to red-brown to red-brown to red-brown to rown, Very fine grained, Slightly broken to massive, and	htly		RQD=75 Rec=100%						3 min.
	<	R-7	70	red-gray-brow medium grain broken to mas hard Nearly vertica	-Light gray-brown to n to dark brown, Fine to ed, Slightly Weathered, v ssive, moderately hard to I fracture from 54.4 to 54. ighly Weathered seam @ s thick)	very .8 feet.		RQD=72 - Rec=97%						4 min. 4 min. 4 min. 4 min. 0 min603.0 tsf 161.1 pcf 4 min. 4 min. 4 min.
[] .														4 min.
- 60 -					Continued Next Page							<u> </u>		
				Professio	nal Service Industrie	es, Inc.		PR	OJE	CT N	O.:		049114	156
intect	ck	T.	08	7 1707 S. C	Cameron Street, Suit	e B		PR	OJE	CT:	Ene	ergy Tran	nsfer H	DD (DPS)

Harrisburg, PA 17104 Telephone: (717) 230-8622

LOCATION: _ Wetland "J47" (PPP5) Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

DATE COMPLETED: COMPLETION DEPTH BENCHMARK:		9/7/17 201.0 ft	DRILLER: T. Growden L				<u>''</u> '	-	<u> </u>			
BENCHMARK:			DRILL RIG: Diedrich D-50					ᡖ	$ar{igstyle}$ Wh	ile Drillir	ng	Not Enc.
		/A	DRILLING METHOD:	Casi	ng/Ro	ock Coring		at	▼ Pos	st-Core		22.3 feet
ELEVATION:	N/A		SAMPLING METHOD:		SS1.8	374-in Core			$ar{ar{\Lambda}}$			
LATITUDE:	n/a°		HAMMER TYPE:		utoma	atic			NG LOC		N = =	
LONGITUDE:	n/a		EFFICIENCY		V/A		_	See E	Boring Lo	cation P	rian	
STATION: N/A REMARKS:	_OFFSE	:T:N/A	REVIEWED BY:	F. I	Hoffm	ian	_					
Elevation (feet) Depth, (feet) Graphic Log Sample Type Sample No.	Recovery (inches)	MATER	IAL DESCRIPTION		USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %		N in blo Moisture	DATA ows/ft ⊚	PL LL 50	Additional Remarks
	Rec				nSi	SPT BI RQD 8			Qu	GTH, tsf **	Qp 4.0	
- 60	78	Slightly Weathere very hard to extre SILTSTONE-Red-Very fine grained, Weathered, broke hard SILTSTONE-Dark grained, Highly Wbroken, moderate SILTSTONE-Red-Very fine grained, to massive, mode SILTSTONE-Red-grained, Highly Wslightly broken, m SILTSTONE-Red-Very fine grained, to massive, mode of massive, mode siltstone-Red-Very fine grained, to ma	grained, Weathered to d, very broken to massive mely hard brown to dark red-brown, Weathered to Slightly en to massive, moderately gray-brown, Very fine leathered, very broken to ly hard brown to red-gray-brown, Slightly Weathered, broke gray-brown, Very fine leathered, very broken to oderately hard brown to red-gray-brown, Slightly Weathered, broke leathered, very broken to oderately hard brown to red-gray-brown, Slightly Weathered, broke grately hard	en		RQD=49 Rec=84% RQD=97 Rec=100%				2.0	>>4	4 min. d min.
- 80 R-1	7	Weathered to Sligvery hard, trace of Broken layer @ 8 thick) Weathered seam thick) Broken layer @ 8 thick) SHALE-Red-brow	ay-brown to dark to medium grained, ghtly Weathered, hard to	_/		RQD=62 Rec=100% RQD=88 Rec=100%					→>	46nin. pcf 4 min. 4 min. 4 min. 4 min. 4 min. 6 min.106.1 tsf 163.5 pcf 4 min. 4 min. 4 min. 4 min. 4 min.
90												
	Professional Service Industries, Inc. 1707 S. Cameron Street, Suite B Harrisburg, PA 17104 PROJECT NO.: 04911456 PROJECT: Energy Transfer HDD (DPS) UCCATION: Wetland "J47" (PPP5)											

PA-LE-0001.0000-SR/PO#201770816-2

	E STAR															B	ORI	NG	B-2	
	PLETIC			ι		201.0		DRILL			Diedri			<u> </u>	er	$\bar{\Delta}$	While	e Drillir	ng	Not Enc.
BENG	CHMAF	RK:				N/A		DRILLI	NG METH	OD:	Casi	ng/Ro	ock Coring		Water	Ī	Post-	-Core		22.3 feet
	/ATION	l:				1/A			ING METI				874-in Core		\Box	Ā				
	TUDE: GITUDI					a° ı/a°		HAMM! EFFICII	ER TYPE:			utom: N/A	atic					TION: ation F	Plan	
STAT	_	_	/A		OFFS		N/A		ENCT VED BY:			N/A Hoffn	nan		000	DOIII	ig Loc	ationi	ian	
-	ARKS:		,,,				14// (VLD D 1.			101111	idii							
Elevation (feet)	S Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)				ESCRIP			USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %	× 0	Moi	TEST [in blow sture	vs/ft © TH, tsf	PL LL 50 Qp	rtemarko
	- 90 - - 95 - - 100 -		F	₹-12	120	SHAL Slightl model	n layer @ 6 E-Red-brov ly Weathere rately hard	vn, Very ed, very	fine graine broken to	ed, ´ massive,			RQD=95 Rec=100%						>>4	4 min. 5 min. 5 min. 5 min. Q _u = 161.1 tsf 96418-pcf -5 min. 5 min. 5 min. 5 min. 5 min. C _u = 352.4 tsf 16818-pcf
	 -105-		F	R-13	60	mediu broked hard SAND to med to mas		Slightly re, very hay to dared, Weat	Weathere hard to exto k gray-brown hered, ver	ed, slightly remely own, Fine ry broken	2		RQD=54 Rec=100%	ı						4 min. 3 min. 3 min3 min. 3 min. 3 min. 3 min. 3 min.
	-110-	X X X X X X X X X X X X X X X X X X X	F	₹-14	120	SILTS Very f Weath mode	massive, extremely hard ANDSTONE-Gray to gray-brown, Fine to edium grained, Slightly Weathered, assive, extremely hard ILTSTONE-Gray-brown to dark red-brown, ery fine grained, Weathered to Slightly deathered, very broken to massive, oderately hard						RQD=55 Rec=100%						>>/	3 min. 3 min. 4 min. 4 min. 4 min. 4 min.
	-115-	***				gray-b Slightl hard t Congl dark g Slightl	orown, Fine ly Weathers o extremely comeratic S gray-brown, ly Weathers ve, hard to	-Light gray-brown to dark ine grained, Weathered to hered, broken to massive, very nely hard ic SANDSTONE-Gray-brown to wn, Fine to very coarse grained, hered, slightly broken to d to very hard Continued Next Page												4 min.
	. = 0																			
Professional Service Industries, Inc. 1707 S. Cameron Street, Suite B Harrisburg, PA 17104 Telephone: (717) 230-8622 PROJECT NO.: 04911456 Energy Transfer HDD (DPS) LOCATION: Wetland "J47" (PPP5) Dauphin Co., PA											IDD (DPS) (PPP5)									

Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

DATE STARTED:		9/5/1 <i>7</i> 9/7/17	DRILLER: T. Growden LO	ger's, Inc. V: C. Lehman	-		BORI	NG	B-2	
COMPLETION DEP		201.0 ft		Diedrich D		- 1	ĮΨ	While Drilli	ng	Not Enc.
BENCHMARK:		N/A			ock Coring	Water	Ţ	Post-Core		22.3 feet
ELEVATION:	N	I/A			874-in Core	_	Ī			
LATITUDE:	n/		HAMMER TYPE:	Autom	atic			LOCATION:		
LONGITUDE:		/a°	EFFICIENCY	N/A		_ See	Borir	ng Location F	Plan	
STATION: N//	AOFFS	SET: N/A	REVIEWED BY:	F. Hoffr	nan					
REMARKS:										
Elevation (feet) Depth, (feet) Graphic Log	Sample No. Recovery (inches)	MATER	RIAL DESCRIPTION	USCS Classification		%	N Moi	TRENGTH, tsf	PL LL 50	. Tremano
120	R-15 85	SII TSTONE Dec	Lbrown to dark		RQD=53	0		2.0	4.0	
-130	R-15 85 R-16 60 R-17 120	SILTSTONE-Recgrained, Slightly massive, moderate SANDSTONE-Grained, Slightly massive, moderatic Strace calcite string Conglomeratic Strace properties of the conglomeratic Strace	Very fine grained, Highly broken to slightly broken, I-gray-brown, Very fine Weathered, broken to ately hard ray to red-brown, Fine Weathered, slightly broken to tely hard to extremely hard, agers SANDSTONE-Gray to Fine to very coarse grained, ed, broken to massive, hard		RQD=53 Rec=71% RQD=50 Rec=100%				>>4	4 min. 4 min. 4 min. 3 min. Q. = 496.4 tsf 166.0 pcf 4 min.
-140	R-18 120	Broken/very brok 10-1/2 inches thi SANDSTONE-Lig red-brown, Fine Weathered, brok hard to very hard	ten layer @ 144 feet (~	to					>>4	4 min. 4 min. 4 min. 4 min. 6 mir380.6 tsf 165.6 pcf 4 min. 4 min. 4 min. 4 min. 4 min. 4 min.
		Professiona	I Service Industries, In	IC.	PRO	JECT	NO.:		049114	156
intertek	· Ine		meron Street, Suite B		PROJECT: Energy Transfer HDD (DPS)					
	160				LOC	ATIO	N :	Wetland		, ,
Total Quality. Assured.		Telephone:	(717) 230-8622			Dauphin Co., PA				

PA-LE-0001.0000-SR/PO#201770816-2

DATE			-D·			9/5/1 <i>7</i> 9/7/1	7	-	COMPANY: R: T. Growde			jers, inc. V· C. Lehma	an			B	ORI	NG	B-2
COMPL				٠_		201.		DRILL			rich D-		<u> </u>	er	$\bar{\Delta}$	While	e Drillir	ng	Not Enc.
BENCH	IMAF	RK:				N/A		DRILLII	NG METHOD:	Cas	sing/R	ock Coring		Water	Ţ	Post-	-Core		22.3 feet
ELEVA		l:				I/A		-	ING METHOD			874-in Core		\Box	Ā				
LATITU		_			n/			-	R TYPE:		Autom	atic					TION: ation F	Dlan	
LONGIT STATIO		-	I/A		OFFS	/a°	N/A	EFFICII	ENCY VED BY:		N/A Hoffm	220	_	<u> </u>	DOIII	ig Loc	alloni	Iaii	
REMAR	_		"/_		_0110	, - 1	IN/A	· IXEVIEV	VLD D1		1101111	Iaii	_						
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)		MATERIAL DESCRIPTION					SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %	× 0	N Moi	TEST [in blow sture	vs/ft © TH, tsf	PL LL 50	rtemano
- - - - - - - - - - - - - - - - - - -	150			₹-20	120	SAN red-l Wea hard fine Wea mod Wea feet High inch. SHA red-l Wea mod Wea thick Wea feet SAN red-l Very Brok inch.	inthered, broken to very hard atthered, very erately hard atthered layer expected by the very erately broken to make the very br	Iv Weathers thick) Is thick to medium Is the to medium Is the to made, trace can In the trace to the trace the trace the trace that the trace trace that the trace	o massive, ered seam @) 158.3 feet (~ o dark grained, Sligh	tely /ery 157.1 157.1 ttly ches 68.4 ered, rd (~ 4		RQD=59 Rec=96% RQD=60 Rec=96% RQD=54 Rec=100%						>> <i>1</i>	4 min. 4 min. Q = 383.3 tsf f63.9 pcf 4 min.
-	180-							Continued	Next Page				L						†
inte	عر	te	k	ſ	osi	Pr 7 17	ofessiona 707 S. Cai	Service meron S	ce Industrie Street, Suite	s, Inc. e B				CT N	IO.:	Ener		049114	456 IDD (DPS)

Harrisburg, PA 17104 Telephone: (717) 230-8622

LOCATION: _ Wetland "J47" (PPP5) Dauphin Co., PA PA-LE-0001.0000-SR/PO#201770816-2

DATE STARTED: 9/5/17 DRILL COMPANY: E DATE COMPLETED: 9/7/17 DRILLER: T. Growden LOG											Eichelberger's, Inc. DGGED BY: C. Lehmar				BORING B-2					
	: COM PLETI			_		201.0		DRILLER: 1 DRILL RIG:		Diedri			an_	ı	<u>\</u>	While Drilli		Not Enc.		
	CHMAR		-	–		N/A	<u> </u>	DRILLING N				ock Coring	_	Water		Post-Core	-3	22.3 feet		
	ATION	-				1/A		SAMPLING				374-in Core	_	⋛	$ar{ar{oldsymbol{\Lambda}}}$					
	TUDE:	_				a°			YPE:		utoma			BOR	ING L	OCATION:				
LONG	SITUD	E:			r	ı/a°		EFFICIENCY			N/A			See	Boring	Location F	Plan			
STAT	_		I/A		OFFS	SET:	N/A	REVIEWED	BY:	F.	Hoffm	ian								
REM	ARKS:																			
Elevation (feet)	Depth, (feet)	Graphic Log	Sample Type	Sample No.	Recovery (inches)		MATEF	RIAL DESC	RIPTION		USCS Classification	SPT Blows per 6-inch (SS) RQD & Recovery % (NX)	Moisture, %	× 0	T N ii Moist	25 EENGTH, tsf	PL LL 50	Additional Remarks		
	-180- -185- -190- - 195- 	× × × × × × × × × × × × × × × × × × ×		R-24	60	gray grair mass Brok SAN med Wea hard Cong dark Sligh to ve SILT fine to m SAN Fine sligh Wea thick	DSTONE-Reium grained, sthered, very glomeratic S red-brown, Fintly Weatherd rery hard sassive, modern strong assive, modern to coarse grained to coarse gratty broken to sathered seams.	180.6 feet (~ ed-gray-brown Weathered to broken to slig SANDSTONE- Fine to very co ed, massive, i wn to dark rec htly Weathere	e to very coar ery broken to 2 inches thick process. Fine to be Highly shiftly broken, Gray-brown to carse grained moderately had been brown, Very ed, very broken when the coarse grained moderately had been brown, Very ed, very broken when the red-brown, y Weathered, do to very hard to very	o o o o o o o o o o o o o o o o o o o		RQD=69 Rec=98% RQD=100 Rec=100%					>> 4	4 min. 4 min. 5 min. 5 min. 3 min.		
int Total Qua			k	_[i	08	7 17	707 S. Car arrisburg,	I Service Ir meron Stre PA 17104	et, Suite B			PF	ROJE	CT N		Energy Tra Wetlan	d "J47"	DD (DPS) (PPP5)		
rotal Qua	y. ressu	.eu.				16	neprione:	(717) 230-	-0022						P <u>A-LE</u>		ohin Co. 0-SR/P	., PA <u>O#201770816</u> -2		

SAMPLE IDENTIFICATION

The Unified Soil Classification System (USCS), AASHTO 1988 and ASTM designations D2487 and D-2488 are used to identify the encountered materials unless otherwise noted. Coarse-grained soils are defined as having more than 50% of their dry weight retained on a #200 sieve (0.075mm); they are described as: boulders, cobbles, gravel or sand. Fine-grained soils have less than 50% of their dry weight retained on a #200 sieve; they are defined as silts or clay depending on their Atterberg Limit attributes. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size.

DRILLING AND SAMPLING SYMBOLS

SFA: Solid Flight Auger - typically 4" diameter

flights, except where noted.

HSA: Hollow Stem Auger - typically 31/4" or 41/4 I.D.

openings, except where noted.

M.R.: Mud Rotary - Uses a rotary head with

Bentonite or Polymer Slurry

R.C.: Diamond Bit Core Sampler

H.A.: Hand Auger

P.A.: Power Auger - Handheld motorized auger

SS: Split-Spoon - 1 3/8" I.D., 2" O.D., except where noted.

ST: Shelby Tube - 3" O.D., except where noted.

RC: Rock Core

TC: Texas Cone BS: Bulk Sample

PM: Pressuremeter

CPT-U: Cone Penetrometer Testing with Pore-Pressure Readings

SOIL PROPERTY SYMBOLS

N: Standard "N" penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2-inch O.D. Split-Spoon.

N₆₀: A "N" penetration value corrected to an equivalent 60% hammer energy transfer efficiency (ETR)

Q.: Unconfined compressive strength, TSF

Q_o: Pocket penetrometer value, unconfined compressive strength, TSF

w%: Moisture/water content, %

LL: Liquid Limit, %

PL: Plastic Limit, %

PI: Plasticity Index = (LL-PL),%

DD: Dry unit weight, pcf

▼,▽,▼ Apparent groundwater level at time noted

RELATIVE DENSITY OF COARSE-GRAINED SOILS ANGULARITY OF COARSE-GRAINED PARTICLES

Relative Density	N - Blows/foot	<u>Description</u>	<u>Criteria</u>
Very Loose Loose	0 - 4 4 - 10	-	Particles have sharp edges and relatively plane sides with unpolished surfaces
Medium Dense	10 - 30	Subangular:	Particles are similar to angular description, but have rounded edges
Dense Very Dense	30 - 50 50 - 80	Subrounded:	Particles have nearly plane sides, but have well-rounded corners and edges
Extremely Dense	80+	Rounded:	Particles have smoothly curved sides and no edges

GRAIN-SIZE TERMINOLOGY

PARTICLE SHAPE

Component	Size Range	<u>Description</u>	Criteria
Boulders:	Over 300 mm (>12 in.)	Flat:	Particles with width/thickness ratio > 3
Cobbles:	75 mm to 300 mm (3 in. to 12 in.)	Elongated:	Particles with length/width ratio > 3
Coarse-Grained Gravel:	19 mm to 75 mm (¾ in. to 3 in.)	Flat & Elongated:	Particles meet criteria for both flat and
Fine-Grained Gravel:	4.75 mm to 19 mm (No.4 to 3/4 in.)		elongated
Coarse-Grained Sand:	2 mm to 4.75 mm (No.10 to No.4)		

Fine-Grained Sand: 0.075 mm to 0.42 mm (No. 200 to No.40)

Silt: 0.005 mm to 0.075 mm

Clay: <0.005 mm

Medium-Grained Sand: 0.42 mm to 2 mm (No.40 to No.10)

RELATIVE PROPORTIONS OF FINES

Descriptive Term % Dry Weight

Trace: < 5% With: 5% to 12% Modifier: >12%

Page 1 of 2

GENERAL NOTES

Continued)

CONSISTENCY OF FINE-GRAINED SOILS

MOISTURE CONDITION DESCRIPTION Description Dry: Absence of moisture, dusty, dry to the touch

Moist: Damp but no visible water

Q _u - TSF	N - Blows/foot	Consistency
0 - 0.25	0 - 2	Very Soft
0.25 - 0.50	2 - 4	Soft
0.50 - 1.00	4 - 8	Firm (Medium Stiff)
1.00 - 2.00	8 - 15	Stiff
2.00 - 4.00	15 - 30	Very Stiff
4.00 - 8.00	30 - 50	Hard
8.00+	50+	Very Hard

Wet: Visible free water, usually soil is below water table

RELATIVE PROPORTIONS OF SAND AND GRAVEL
Descriptive Term % Dry Weight

Trace: < 15%
With: 15% to 30%
Modifier: >30%

STRUCTURE DESCRIPTION

Description	Criteria	Description	Criteria
Stratified:	Alternating layers of varying material or color with	Blocky:	Cohesive soil that can be broken down into small
	layers at least 1/4-inch (6 mm) thick		angular lumps which resist further breakdown
Laminated:	Alternating layers of varying material or color with	Lensed:	Inclusion of small pockets of different soils
	layers less than 1/4-inch (6 mm) thick	Layer:	Inclusion greater than 3 inches thick (75 mm)
Fissured:	Breaks along definite planes of fracture with little	Seam:	Inclusion 1/8-inch to 3 inches (3 to 75 mm) thick
	resistance to fracturing		extending through the sample
Slickensided:	Fracture planes appear polished or glossy, sometimes striated	Parting:	Inclusion less than 1/8-inch (3 mm) thick

SCALE OF RELATIVE ROCK HARDNESS

ROCK BEDDING THICKNESSES

GRAIN-SIZED TERMINOLOGY

DEGREE OF WEATHERING

Q _U - TSF	<u>Consistency</u>	<u>Description</u>	Criteria
-	F	Very Thick Bedded	Greater than 3-foot (>1.0 m)
2.5 - 10	Extremely Soft	Thick Bedded	1-foot to 3-foot (0.3 m to 1.0 m)
10 - 50	Very Soft	Medium Bedded	4-inch to 1-foot (0.1 m to 0.3 m)
50 - 250	Soft	Thin Bedded	11/4-inch to 4-inch (30 mm to 100 mm)
250 - 525	Medium Hard	Very Thin Bedded	1/2-inch to 11/4-inch (10 mm to 30 mm)
525 - 1,050	Moderately Hard	Thickly Laminated	1/8-inch to ½-inch (3 mm to 10 mm)
1,050 - 2,600	Hard	•	1/8-inch or less "paper thin" (<3 mm)
>2,600	Very Hard	,	ус жил ст того рар ст жил (то тим)

ROCK VOIDS

Voids	Void Diameter	(Typically Sedi	mentary Rock)
	<6 mm (<0.25 in)	Component	Size Range
	6 mm to 50 mm (0.25 in to 2	very Coarse Grained	>4.76 mm
0	50 mm to 600 mm (2 in to 24	Coarse Grained	2.0 mm - 4.76 mm
,	>600 mm (>24 in)	Medium Grained	0.42 mm - 2.0 mm
Cave	>600 Hilli (>24 III)	Fine Grained	0.075 mm - 0.42 mm
		Very Fine Grained	<0.075 mm

ROCK QUALITY DESCRIPTION

Rock Mass Description RQD Value Slightly Weathered: Rock generally fresh, joints stained and discoloration extends into rock up to 25 mm (1 in), open joints may Excellent 90 -100 Good 75 - 90 contain clay, core rings under hammer impact. 50 - 75 Fair Poor 25 - 50 Weathered: Rock mass is decomposed 50% or less, significant Very Poor Less than 25 portions of the rock show discoloration and weathering effects, cores cannot be broken by hand or scraped by knife.

Degree of Brokeness

Characteristic	Description	Highly Weathered:	Rock mass is more than 50% decomposed, complete
Less than 1 inch	Very Broken		•
1 inch to 3 inches	Broken		discoloration of rock fabric, core may be extremely
3 inches to 6 inches	Slightly Broken		broken and gives clunk sound when struck by
Greater than 6 inches	Massive		9
			hammer, may be shaved with a knife.

Page 2 of 2

SOIL CLASSIFICATION CHART

B.4		ONE	SYME	BOLS	TYPICAL
IVI	AJOR DIVISI	UNS	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		SC	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
GOILO				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
Н	GHLY ORGANIC S	SOILS	7/2 7/2 7/2 7/2 7/2 7/2 7/2 7/2 7/2 7/2 2/2 7/2 7/2 7/2 7/2	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

Chapter 4	Engineering Classification of Rock	Part 631
	Materials	National Engineering Handbook

Table 4–3 Hardness and unconfined compressive strength of rock materials

Hardness category	Typical range in unconfined compressive strength (MPa)	Strength value selected (MPa)	Field test on sample	Field test on outcrop
Soil*	< 0.60		Use USCS classification	s
Very soft rock or hard, soil- like material	0.60-1.25		Scratched with fingernail. Slight indentation by light blow of point of geologic pick. Requires power tools for excavation. Peels with pocket knife.	
Soft rock	1.25–5.0		Permits denting by moderate pressure of the fingers. Handheld specimen crumbles under firm blows with point of geologic pick.	
Moderately soft rock	5.0–12.5		Shallow indentations (1–3 mm) by firm blows with point of geologic pick. Peels with difficulty with pocket knife. Resists denting by the fingers, but can be abraded and pierced to a shallow depth by a pencil point. Crumbles by rubbing with fingers.	Crumbles by rubbing with fingers.
Moderately hard rock	12.5–50		Cannot be scraped or peeled with pocket knife. Intact handheld specimen breaks with single blow of geologic hammer. Can be distinctly scratched with 20d common steel nail. Resists a pencil point, but can be scratched and cut with a knife blade.	Unfractured outcrop crumbles under light hammer blows.
Hard rock	50–100		Handheld specimen requires more than one hammer blow to break it. Can be faintly scratched with 20d common steel nail. Resistant to abrasion or cutting by a knife blade, but can be easily dented or broken by light blows of a hammer.	Outcrop withstands a few firm blows before breaking.
Very hard rock	100–250		Specimen breaks only by repeated, heavy blows with geologic hammer. Cannot be scratched with 20d common steel nail.	Outcrop withstands a few heavy ringing hammer blows but will yield large frag- ments.
Extremely hard rock	> 250		Specimen can only be chipped, not broken by repeated, heavy blows of geologic hammer.	Outcrop resists heavy ringing hammer blows and yields, with difficulty, only dust and small fragments.

Method used to determine consistency or hardness (check or	ne).	

Field assessment: ____ Uniaxial lab test: ____ Other: ____ Rebound hammer (ASTM D5873): ____ * See NEH631.03 for consistency and density of soil materials. For very stiff soil, SPT N values = 15 to 30. For very soft rock or hard, soil-like material, SPT N values exceed 30 blows per foot.

LEGEND:

© Geotechnical Soil Boring (SB) Locations

TETRA TECH

GEOTECHNICAL BORING LOCATIONS HDD S3-0090 LEBANON COUNTY, SOUTH LONDONDERRY TOWNSHIP & DAUGHIN COUNTY, CONEWAGO TOWNSHIP, PA SUNOCO PENNSYLVANIA PIPELINE PROJECT

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Project Name:	SUNOCO PENNS	SYLVA	NIA PI	PELINE PROJECT		Project	No.: 103IP3406	
Project Location:	95 LAUREL LAN	E, PAL	MYRA	, PA		Page 1	of 1	
HDD No.:	S3-0090			Dates(s) Drilled: 11-18-14	Inspector:	E. WAT	Т	
Boring No.:	SB-01			Drilling Method: SPT - ASTM D1586	Driller:	S. HOF	FER	
Drilling Contractor:	HAD DRILLING			Groundwater Depth (ft): NOT ENCOUNTERED	Total Depth (ft):	21.5		
Boring Location Coord	inates:			40° 15' 11.995" N	76° 35' 40.296" W	V		
	0 5 (0)		_					

	Location						10 10 11:000 11							
Sample	Sample	Sample Depth (ft) Strata Depth		Sample Depth (ft)		Depth (ft)	Recov.	Strata	Description of Materials	6" 1	norom/	ent Blov	NC *	N
No.	From	То	From	То	Rec	(USCS)	Description of Materials	0 11	iciente	iii bioi	143	14		
			0.0	0.8			TOPSOIL (10")							
1	3.0	5.0	0.8	3.5	12	ML	REDDISH BROWN MICACEOUS SILT WITH A LITTLE FINE SAND.	4	11	18	45	29		
			3.5				REDDISH BROWN FINE TO MEDIUM SAND AND SILT.							
2	8.0	8.7			9		REDDISH BROWN FINE SAND AND SILT WITH SOME UNWEATHERED	30	50/2"			>50		
							SANDSTONE GRAVEL.							
3	13.0	13.8			7		REDDISH BROWN FINE SAND AND SILT WITH SOME UNWEATHERED	15	50/3"			>50		
						SM	SANDSTONE GRAVEL.							
4	18.0	19.2			10		REDDISH BROWN FINE SAND AND SILT WITH SOME UNWEATHERED	17	50	50/2"		>50		
							SANDSTONE GRAVEL.							
5	20.0	20.3			4		REDDISH BROWN FINE SAND AND SILT WITH SOME UNWEATHERED	50/4"				>50		
				21.5			SANDSTONE GRAVEL.							
							AUGER GRINDING STARTING AT 12'.							
							AUGER REFUSAL AT 20'. OFFSET BORING AND CONTINUOUSLY							
							AUGERED TO REFUSAL AT 21.5'.							
								+						
							CAVED AND NO WATER AT 17', BOTTOM MUDDY.	+						
							·	+						
							PLACED CONCETE PLUG.	+						
								+						
								+						
								+						
								+	-					
								+	 					
	10											<u> </u>		

Notes/Comments:

Pocket Pentrometer Testing

DR: DECOMPOSED ROCK

Strata (USCS) Designations are approximated based on visual review, except where indicated in Description of Materials.

^{*} Number of blows of 140 lb. Hammer dropped 30 in. required to drive 2 in. split-spoon sampler in 6 in. increments. N: Number of blows to drive spoon from 6" to 18" interval.

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Project Name:	SUNOCO PENN	SYLV	ANIA P	IPELINE PROJECT		Project No.: 103IP3406				
Project Location:	95 LAUREL LAN	IE, PA	LMYRA	ı, PA		Page 1 of 1				
HDD No.:	S3-0090			Dates(s) Drilled: 11-18-14	Inspector:	E. WATT				
Boring No.:	SB-02			Drilling Method: SPT - ASTM D1586	Driller:	S. HOFFER				
Drilling Contractor:	HAD DRILLING			Groundwater Depth (ft): 20.0	Total Depth (ft):	(ft): 32.5				
Boring Location Coor	dinates:			40° 15' 13.887" N	76° 35' 34.446" \	46" W				
Carrala Danth ((t) Ctrata Danth (ft)		044-							

builing	ng Location Coordinates.						40 13 13.007 IV 70 33 34.440 VV							
Sample	Sample	Depth (ft)	Strata D	Depth (ft)	To Signal		h (ft)		Description of Materials	6" lı	ocreme	ent Blov	ws *	N
No.	From	То	From	То	Re	(USCS)	·							
			0.0	0.3			TOPSOIL (3")							
1	3.0	5.0	0.3		16	SM	REDDISH BROWN FINE TO MEDIUM SAND WITH SOME SILT, WITH A	4	20	27	45	47		
				6.5		Civi	LITTLE FINE TO COARSE SANDSTONE GRAVEL.							
2	8.0	10.0	6.5		22		REDDISH BROWN MICACEOUS SILTY CLAY WITH A LITTLE FINE SAND, T	3	6	14	18	20		
						0.	TRACE FINE GRAVEL. (USCS: CL)							
3	13.0	15.0			24	CL	MAROON MICACWOUS SILTY CLAYWITH SOME FINE SAND, TRACE	3	8	30	43	38		
				16.5			FINE TO COARSE SANDSTONE GRAVEL.							
4	18.0	20.0	16.5		21		MAROON FINE SAND (TRACE MICA) WITH A LITTLE SILTY CLAY,	5	11	23	40	34		
				21.5		SC	TRACE FINE SANDSTONE GRAVEL.							
5	23.0	24.4	21.5		15		MARRON MICACEOUS SILTY CLAY WITH A LITTLE FINE SAND, WITH	3	7	50/5"		>57		
				27.0		CL	A LITTLE F-C SANDSTONE GRAVEL.							
6	28.0	28.5	27.0		5		PARTIALLY WEATHERED MAROON SANDSTONE.	50/6"				>50		
7	31.0	31.6		32.5	6		PARTIALLY WEATHERED MAROON SANDSTONE.	12	50/2"			>50		
							AUGER REFUSAL AT 31'. OFF-SET BORING AND CONTINUOUSLY							
							AUGERED TO REFUSAL AT 32.5'.							
							WET ON SPOON AT 20'.							
							WATER LEVEL THROUGH AUGERS AT 22'.							
							CAVED AT 27', WATER LEVEL ON CAVE AT 14'.							
							CAVED AT 27, WATER LEVEL ON CAVE AT 14.							
									 		 			
								-		<u> </u>				
						-		<u> </u>	<u> </u>					
								<u> </u>		ļ		<u> </u>		
								<u> </u>		<u> </u>		<u> </u>		
								1						

Notes/Comments:

Pocket Pentrometer Testing

S2: > 4 TSF S3: > 4 TSF DR: DECOMPOSED ROCK

Strata (USCS) Designations are approximated based on visual review, except where indicated in Description of Materials.

* Number of blows of 140 lb. Hammer dropped 30 in. required to drive 2 in. split-spoon sampler in 6 in. increments.

N: Number of blows to drive spoon from 6" to 18" interval.

TETRA TECH

240 Continental Drive, Suite 200 Newark, Delaware 19713 302.738.7551 fax: 302.454.5988

TEST BORING LOG

Project Name:	SUNOCO PENNSYL\	/ANIA P	IPELINE PROJECT		Project No.: 103IP3406				
Project Location:	95 LAUREL LANE, PA	ALMYRA	ı, PA		Page 1 of 1				
HDD No.:	S3-0090		Dates(s) Drilled: 11-18-14	Inspector:	E. WA	ГТ			
Boring No.:	SB-03		Drilling Method: SPT - ASTM D1586	Driller:	S. HOF				
Drilling Contractor:	HAD DRILLING		Groundwater Depth (ft): NOT ENCOUNTERED	Total Depth (ft):	30.0				
Boring Location Coor	dinates:		40° 15' 13.813" N	76° 35' 24.341" \	341" W				
Committee Domath ((4) Ctrata Danth (ft)	C44-							

Boring	Location	ocation Coordinates:					40° 15′ 13.813″ N					
Sample	Sample	Depth (ft)	ŭ ⊆			Strata	Description of Materials	6" lı	ncremi	ent Blov	we *	N
No.	From	То	From	То	Re ₍	(USCS)	Description of Materials	0 "	icremi	JIIL DIO	WS	
			0.0	0.4			TOPSOIL (5")		L			
1	3.0	5.0	0.4		13	CL	REDDISH BROWN SILTY CLAY WITH A TRACE TO A LITTLE FINE SAND	1	6	9	10	15
				6.5		CL	(USCS: CL).					
2	8.0	10.0	6.5		23		MAROON FINE TO MEDIUM MICACEOUS SAND WITH SOME	2	18	26	20	44
							SILTY CLAY.					
3	13.0	15.0			18	SC	MARRON FINE TO MEDIUM SAND WITH A LITTLE SILTY CLAY AND A	4	23	23	50/5"	46
						SC	LITTLE FINE TO COARSE QUARTZ GRAVEL.					
4	18.0	20.0			24		MARRON FINE TO MEDIUM SAND WITH SOME SILTY CLAY AND A	4	21	35	50/6"	56
				21.5			LITTLE FINE TO COARSE SILT OR CLAYSTONE GRAVEL.					
5	23.0	24.4	21.5		11	01	REDDISH BROWN WEATHERED CLAYSTONE (SILTY CLAY WITH SOME	10	27	50/5"		>77
				26.0		CL	FINE SAND).					
6	28.0	28.3	26.0	30.0	4		REDDISH BROWN PARTIALLY WEATHERED SANDSTONE.	50/4"				>50
							CAVED AND DRY AT 28'.					
								-				
					-							
					-							
												<u> </u>

Notes/Comments:

Pocket Pentrometer Testing

DR: DECOMPOSED ROCK

S1: > 4 TSF

Strata (USCS) Designations are approximated based on visual review, except where indicated in Description of Materials.

* Number of blows of 140 lb. Hammer dropped 30 in. required to drive 2 in. split-spoon sampler in 6 in. increments.

N: Number of blows to drive spoon from 6" to 18" interval.

GEOTECHNICAL LABORATORY TESTING SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT HDD \$3-0090

	Test				Water	Percent Atterburg Limits (ASTM D4318)			USCS	
HDD	Boring	Sample	Depth of Sample (ft.)		Content, %	Silts/Clays, %	Liquid	Plastic	Plasticity	Classif.
No.	No.	No.	From To		(ASTM D2216)	(ASTM D1140)	Limit, %	Limit, %	Index, %	(ASTM D2487)
	SB-01	1	3.0	5.0	6.4	41.2	-	-	-	-
		2	8.0	8.7	3.6	39.2	-	-	-	-
		4	18.0	19.2	5.7	39.8	-	-	-	-
		5	20.0	20.3	6.3	41.9	-	-	-	-
	SB-02	1	3.0	5.0	9.2	21.9	-	-	-	-
		2	8.0	10.0	10.4	80.8	30	19	11	CL
00,000		3	13.0	15.0	12.5	75.1	-	-	-	-
S3-0090		4	18.0	20.0	14.2	16.3	-	-	-	-
		5	23.0	24.4	10.5	90.7	-	-	-	-
		6	28.0	28.5	5.7	21.4	-	-	-	-
	SB-03	1	3.0	5.0	14.2	99.2	32	19	13	CL
		2	8.0	10.0	9.2	21.1	-	-	-	-
		4	18.0	20.0	13.7	38.8	-	-	-	-
		5	23.0	24.4	9.6	75.3	-	1	-	-

Notes:

1) Sample depths based on feet below grade at time of exploration.

REGIONAL GEOLOGY SUMMARY SUNOCO PENNSYLVANIA PIPELINE PROJECT HDD \$3-0090

HDD No.	NAME	BORING NO.	REGIONAL GEOLOGY DESCRIPTION	GENERAL TOPOGRAPHIC SETTING	BEDROCK FORMATION	GENERAL ROCK TYPE	APPROX MAX FM THICKNESS (FT)	DEPTH TO ROCK (Ft bgs) based on nearby well drilling logs	NOTES / COMMENTS
S3-0090	Wetland J47	SB-02	Gettysburg Fm - reddish-brown to maroon silty mudstone and shale and soft, red-brown, medium- to fine- grained sandstone, with minor amounts of yellowish-brown shale and sandstone and thin beds of impure limestone.	Gently sloping lowland to forested wetlands	Gettysburg Fm	Silty mudstone- shale-sandstone w/ some impure limestone		12-22	

<u>Note</u>: Source of well log data - http://www.dcnr.state.pa.us/topogeo/groundwater/pagwis/records/index.htm. All other sources as referenced in comments section.

FIELD DESCRIPTION AND LOGGING SYSTEM FOR SOIL EXPLORATION

GRANULAR SOILS

(Sand, Gravel & Combinations)

<u>Density</u>	N (blows)*	Particle S	ize Identifica	tion
Very Loose	5 or less	Boulders	8 in. diame	
Loose	6 to 10			
Medium Dense	11 to 30	Cobbles	3 to 8 in. di	
Dense	31to 50	Gravel	Coarse (C)	3 in. to ¾ in. sieve
Very Dense	51 or more		Fine (F)	¾ in. to No. 4 sieve
very bense	51 01 more	Sand	Coarse (C)	No. 4 to No. 10 sieve
				(4.75mm-2.00mm)
Relative Proporti	ons		Medium	No. 10 to No. 40 sieve
Description Term	<u>Percent</u>		(M)	(2.00mm – 0.425mm)
Trace	1 - 10		Fine (F)	No. 40 to No. 200 sieve
Little	11 - 20		()	(0.425 – 0.074mm)
Some	21 - 35	Silt/Clay	Less Than a	No. 200 sieve (<0.074mm)
And	36 - 50	Sitty ciay	Less man	110.200 3.010 (10.07 11111)

COHESIVE SOILS

(Silt, Clay & Combinations)

Consistency	N (blows)*	Plasticity	
Very Soft	3 or less	<u>Degree of Plasticity</u>	Plasticity Index
Soft	4 to 5	None to Slight	0 - 4
Medium Stiff	6 to 10	Slight	5 - 7
Stiff	11 to 15	Medium	8- 22
Very Stiff	16 to 30	High to Very High	> 22
Hard	31 or more	, ,	

ROCK (Rock Cores)

Rock	Rock			
Quality Designation	Quality <u>Descripti</u>			
(RQD), %	<u>on</u>			
0-25	Very Poor			
25-50	Poor			
50-75	Fair			
75-90	Good			
90-100	Excellent			

*N - Standard Penetration Resistance. Driving a 2.0" O.D., 1-3/8" I.D. sampler a distance of 18 inches into undisturbed soil with a 140 pound hammer free falling a distance of 30.0 inches. The number of hammer blows to drive the sampler through each 6 inch interval is recorded; the number of blows required to drive the sampler through the final 12 inch interval is termed the Standard Penetration Resistance (SPR) N-value. For example, blow counts of 6/8/9 (through three 6-inch intervals) results in an SPR N-value of 17 (8+9).

Groundwater observations were made at the times indicated. Groundwater elevations fluctuate throughout a given year, depending on actual field porosity and variations in seasonal and annual precipitation.

UNIFIED SOIL CLASSIFICATION SYSTEM [Casagrande (1948)]

Major Divisions			Group Symbols	Typical Descriptions		Laboratory Classifications				
	n is larger	Clean gravel (Little or no fines)	GW	Well-graded gravels, gravel- sand mixtures, little or no fines		nbols ⁽¹⁾	$C_{u=\frac{D_{60}}{D_{10}}}$ greater than 4: $C_{c=\frac{(D_{30})2}{D_{10} \times D_{60}}}$ between 1 and 3			
200 sieve)	Gravels More than half of coarse fraction is larger than No. 4 sieve size	Clean (Little or	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	curve. 00 sieve),	ng dual syr	Not meeting C_u or C_c requirements for GW			
		Gravel with fines (Appreciable amount of fines)	GM	Silty gravels, gravel-sand-silt mixtures	grain size (than No. 2	/, SP I, SC ases requiri	Atterberg limits below A Line or I p less than 4	Limits plotting in hatched zone with ! p between 4 and 7 are		
d Soils ger than No			GC	Clayey gravels, gravel-sand-clay mixtures	Determine Percentage of sand and gravel from grain size curve. Depending on Percentage of fines (fraction smaller than No. 200 sieve), coarse-grained soils are classified as follows: Less than 5 percent GW, GP, SW, SP More than 12 percent GM. GC, SM, SC 5 to 12 percent Borderline cases requiring dual symbols ⁽¹⁾	Atterberg limits above A line with I p greater than 7	borderline cases requiring use of dual symbols			
Coarse Grained Soils f material is larger tha	Sands (More than half of coarse fraction is smaller than No. 4 Sieve)	ands ofines)	SW	Well graded sands, gravely sands, little or no fines			$C_{u=\frac{D_{60}}{D_{10}}} \text{ greater than 6:} C_{c=} \frac{(D_{30})2}{D_{10} \times D_{60}} \text{ between 1 and 3}$			
Coarse Grained Soils (More than half of material is larger than No. 200 sieve)		Clean sands (Little or no fines)	SP	Poorly graded sands, gravelly sands, little or no fines	ine Percentage on Percentage coarse-grain	Less than 5 percent More than 12 percent 5 to 12 percent	Not meeting C_u or C_c require	ments for SW		
N)		r fines able fines)	SM	Silty sands, sand- silt mixtures	Determ		Atterberg limits below A Line or I p less than 4	Limits Plotting in hatched		
		Sands with fines (Appreciable amount of fines)	SC	Clayey sands, sand-clay mixtures			Atterberg limits above A line with I p greater than 7	zone with I p between 4 and 7 are borderline cases requiring use of dual symbols		
Major	Divisions	Group Symbols	Typical Descriptions		For soils p When w _L	lotting nearly is near 50 us	on A line use dual symbols i.e ., l p e CL-CH or ML-MH. Take near as	= 29.5, w _L =60 gives CH-MH. ± 2 percent.		
	Silts and clays (Liquid limit less than 50)	ML	sands, rock fl	s and very fine our, silty or clayey clayey silts with y	60	O A Line:				
200 sieve)		CL	plasticity, gra	ys of low to medium velly clays , sandy ays, lean clays	50	U Line:	1	Or Or		
is r than No.		OL	Organic silts clays of low	and organic silty plasticity	% (PI), %	0		, o o d		
Fine-grained soils (More than half of material is smaller than No. 200 sieve)	Silts and Clays (Liquid limit greater than 50)	MH		s, micaceous or s fine sandy or silty silts	Plasticity Index (PI), %		13 15° / 15	MH or OH		
Fin-		СН	Inorganic clay	s of high plasticity,	Plast		Ch do			
(More than	Silts ar 9	ОН	Organic clays plasticity, org	s of medium to high anic silts	7		ML or OL	0 70 80 90 100		
	Highly organic soils	Pt	Peat and othe soils	er highly organic			Liquid Limit (LL			

⁽¹⁾ Borderline classifications, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example: GW-GC. well-graded gravel-sand mixture with clay binder.

ATTACHMENT 2 SOIL RESOURCES MAP AND PROFILE DESCRIPTIONS

MAP LEGEND Area of Interest (AOI) Spoil Area Area of Interest (AOI) Stony Spot Soils Very Stony Spot Soil Map Unit Polygons Wet Spot Soil Map Unit Lines Other Soil Map Unit Points Special Line Features **Special Point Features** Water Features Blowout Streams and Canals Borrow Pit Transportation Clay Spot Rails Closed Depression Interstate Highways Gravel Pit **US Routes Gravelly Spot** Major Roads Landfill Local Roads Lava Flow Background Marsh or swamp Aerial Photography Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at scales ranging from 1:15,800 to 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Dauphin County, Pennsylvania Survey Area Data: Version 10, Sep 19, 2016

Soil Survey Area: Lebanon County, Pennsylvania Survey Area Data: Version 11, Sep 19, 2016

Your area of interest (AOI) includes more than one soil survey area. These survey areas may have been mapped at different scales, with a different land use in mind, at different times, or at different levels of detail. This may result in map unit symbols, soil properties, and interpretations that do not completely agree across soil survey area boundaries.

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

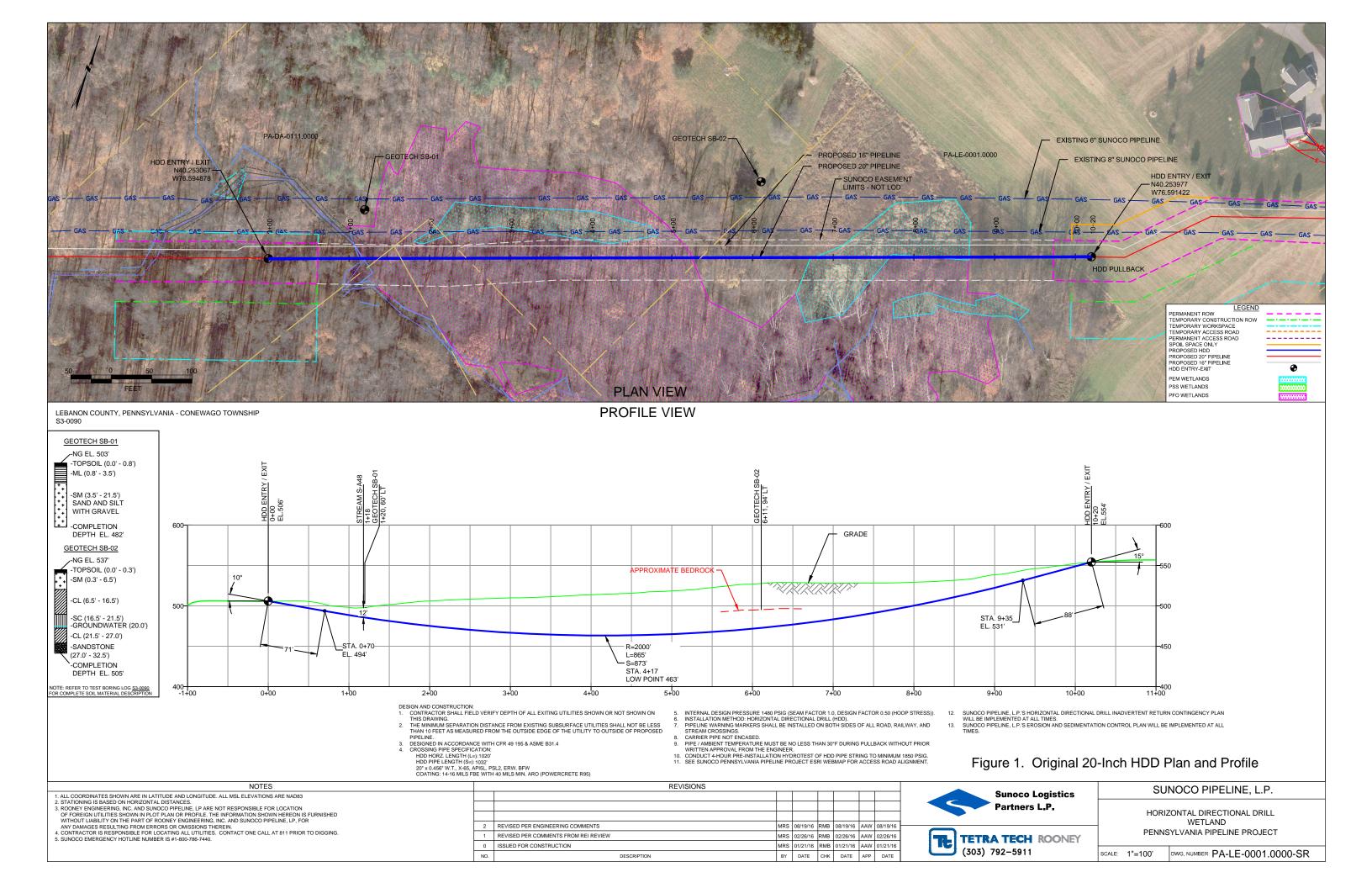
Date(s) aerial images were photographed: Mar 29, 2011—Apr 14, 2011

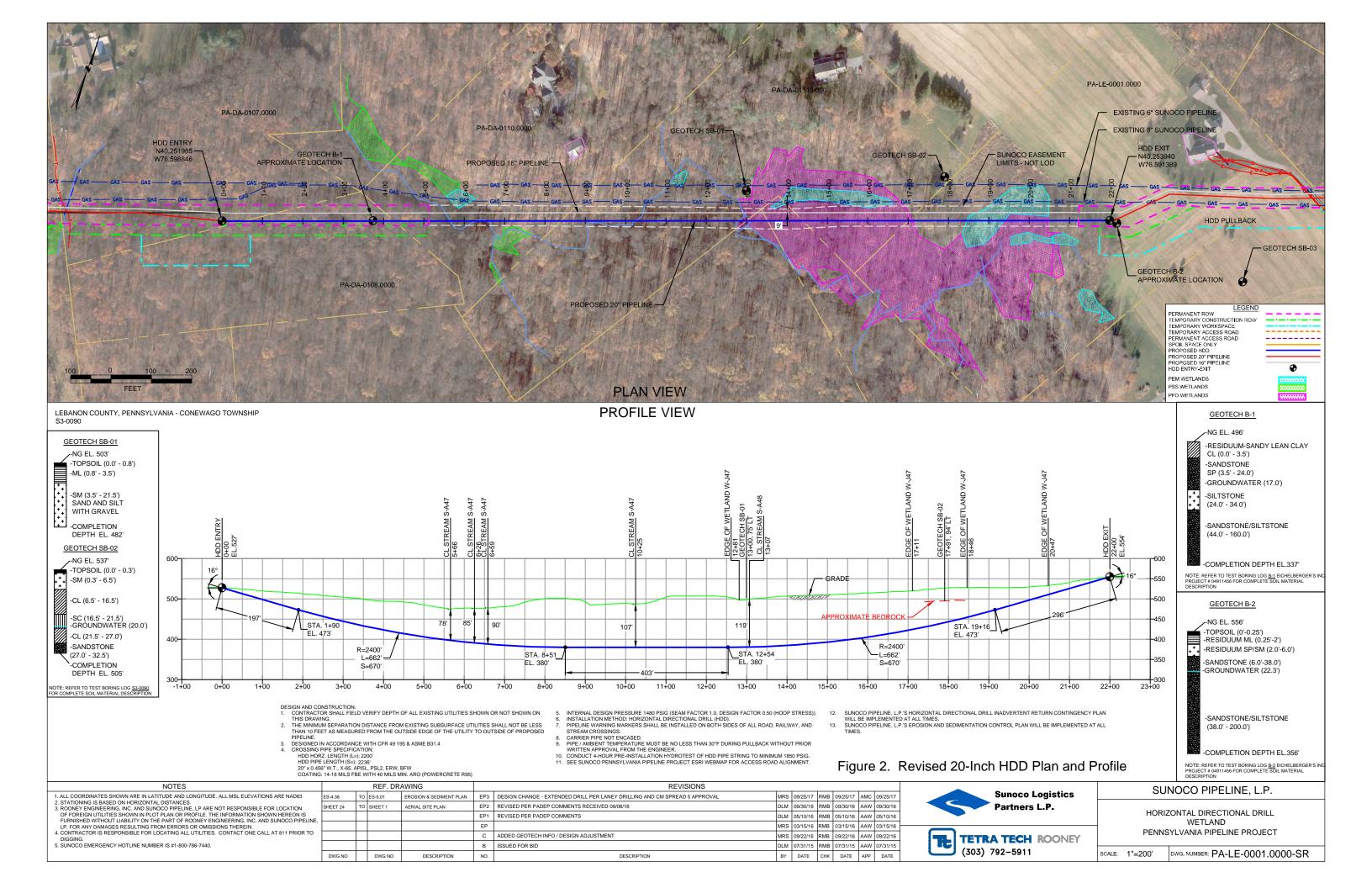
MAP LEGEND

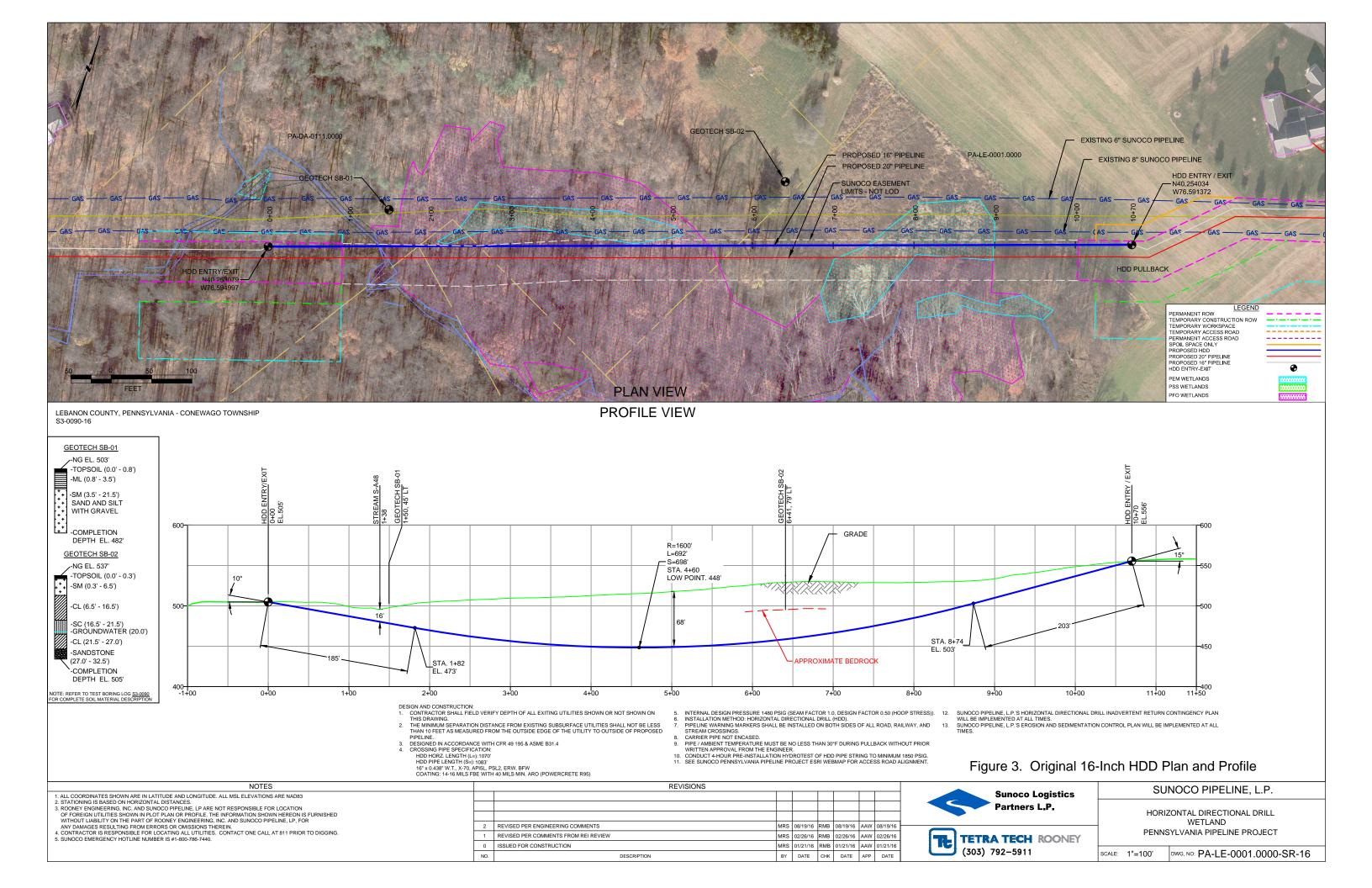
MAP INFORMATION

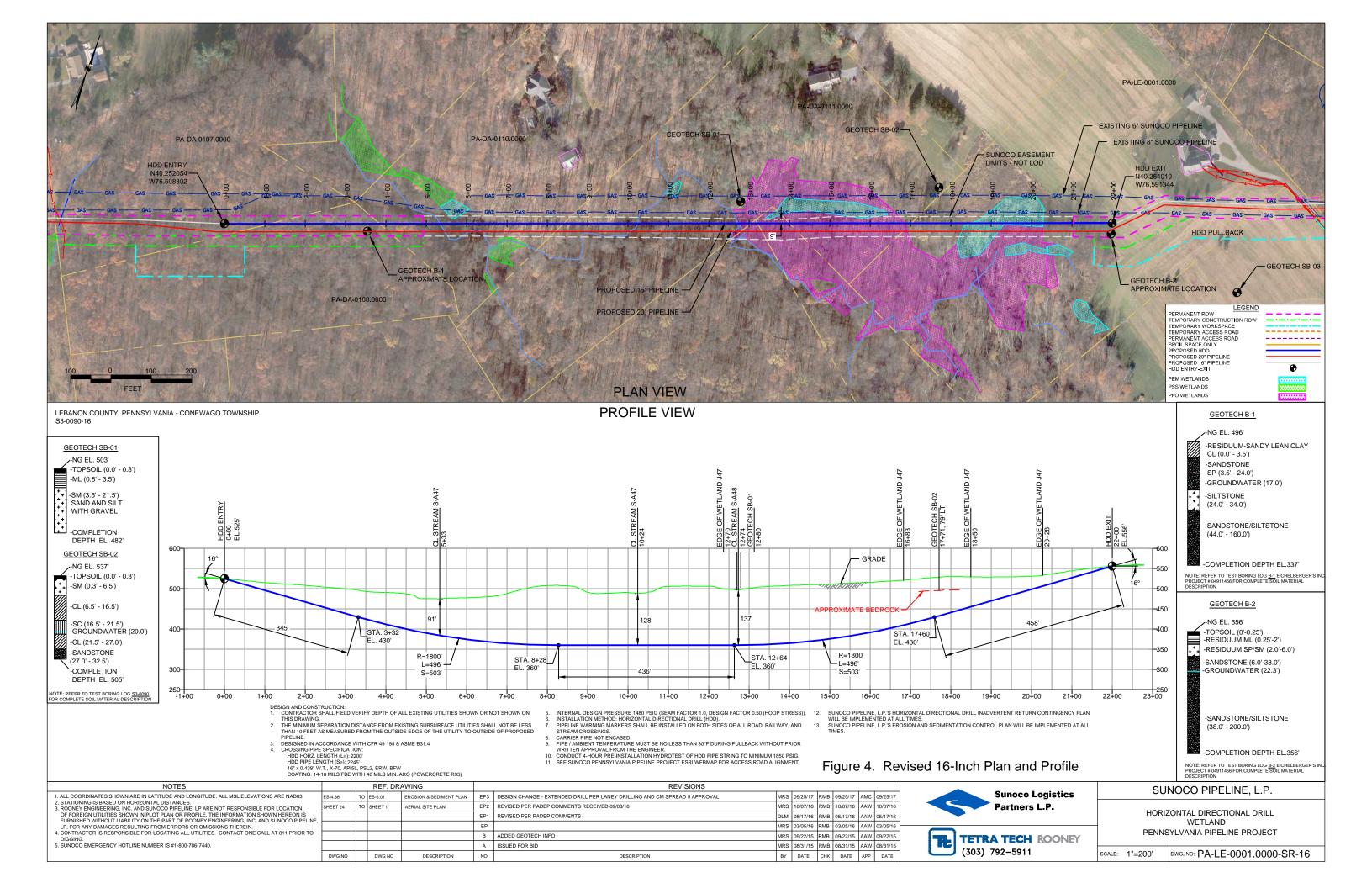
The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend


Dauphin County, Pennsylvania (PA043)							
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI				
Вс	Basher silt loam	7.5	10.9%				
BtA	Brinkerton and Armagh silt loams, 0 to 3 percent slopes	5.4	7.7%				
Cr	Croton silt loam, occasionally ponded, 0 to 3 percent slopes	1.1	1.5%				
LrB2	Lewisberry gravelly sandy loam, 3 to 8 percent slopes, moderately eroded	4.9	7.1%				
LrC2	Lewisberry gravelly sandy loam, 8 to 15 percent slopes, moderately eroded	7.3	10.5%				
LsD	Lewisberry very stony sandy loam, 5 to 25 percent slopes	13.2	18.9%				
LsF	Lewisberry very stony sandy loam, 25 to 60 percent slopes	7.4	10.7%				
PeB2	Penn channery silt loam, 3 to 8 percent slopes	4.1	5.9%				
PeC2	Penn channery silt loam, 8 to 15 percent slopes	5.4	7.7%				
W	Water	0.7	1.0%				
Subtotals for Soil Survey Area		56.9	81.9%				
Totals for Area of Interest		69.5	100.0%				


Lebanon County, Pennsylvania (PA075)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
BrA	Brinkerton silt loam, 0 to 3 percent slopes	0.4	0.5%			
ВуВ	Bucks silt loam, 3 to 8 percent slopes	1.0	1.4%			
PeC	Penn channery silt loam, 8 to 15 percent slopes	1.7	2.4%			
UnB	Ungers loam, 3 to 8 percent slopes	4.4	6.4%			
UnC	Ungers loam, 8 to 15 percent slopes	5.2	7.5%			
Subtotals for Soil Survey A	rea	12.6	18.1%			
Totals for Area of Interest		69.5	100.0%			


WETLAND J-47 CROSSING
PADEP SECTION 105 PERMIT NO.S:
PA-LE-0001.0000-SR & PA-LE-0001.0000-SR-16
(SPLP HDD No. S3-0090)


ATTACHMENT 2

ORIGINAL AND REVISED HORIZONTAL DIRECTIONAL DRILL PLAN AND PROFILES

WETLAND J-47 CROSSING
PADEP SECTION 105 PERMIT NO.S:
PA-LE-0001.0000-SR & PA-LE-0001.0000-SR-16
(SPLP HDD No. S3-0090)

ATTACHMENT 3

ANNULAR PRESSURE AND FRACTURE PRESSURE CALCULATIONS

HORIZONTAL DIRECTIONAL CONCEPTUAL DRILL DESIGN

PROJECT: Sunoco Pipeline, L.P.

Mariner East Pipeline

Lebanon County, Pennsylvania

CROSSING: WETLAND J47 - West to East R1

20-INCH STEEL PIPE

ISSUE: APC/FPC DESIGN

Contents:

00111011101	
	Figure 1 - Annular Pressure and Formation Pressure Capacity Curves
	Table 1 - Design Summary, Assumptions, Conditions
	Table 2 - Design Drill Path Calculation
	Table 3 - Estimated Annular Pressure Curve Example Calculation
	Table 4 - Estimated Formation Pressure Curve Example Calculation

Prepared For: Sunoco Logistics Partners L.P.

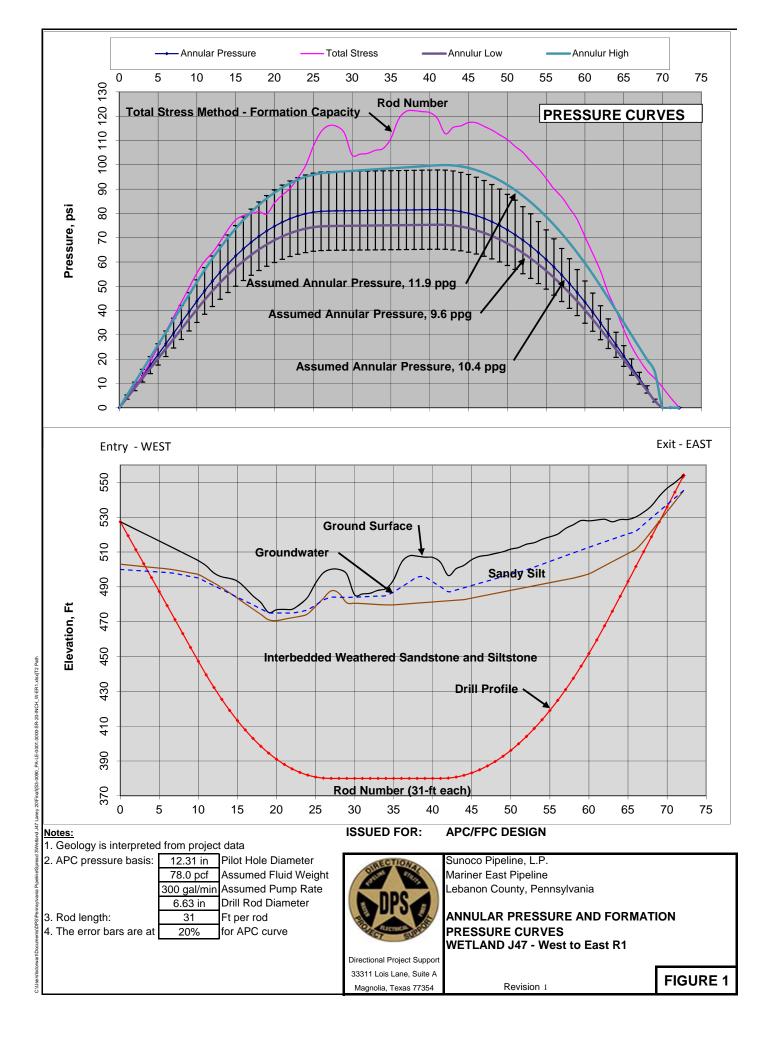
525 Fritztown Road

Sinking Spring, PA 19608

855-430-4491

Prepared By: Directional Project Support

33311 Lois Lane, Suite A Magnolia, Texas 77354


281.259.7819 (O) 617.510.8090 (C)

B. Dorwart

Project No: 0

Print Date: 22-Sep-2017

Revision	D	DESCRIPTION	BY
9/21/2017	0	APC/FPC Design	BCD
9/22/2017	1	Moved entry 300 feet back, chg angle & radius	bcd

PATH DESIGN CALCULATIONS

Entry Station 0+00.00 Exit Station 21+99.25 FT

Entry and Exit Design Coordinates & Elevations (Ft) (Note 2)

East North Elevation Entry 2289803.5501 336743.7681 527.40 ft Horizontal Curve PI 2290837.9745 337116.7845

337489.8010 Exit 2291872.3990 554.00 ft Depth to Mudline 42.40 ft Clearance Depth = 105.00 ft Measured Plan Length at ties = 2199.2501 ft

> Coordinate Length = 2199.2501 ft **OK-HORIZONTAL CURVE**

VEDTICI E DATH DESIGNICAL CIII ATIONS (ET)

485.30 ft Water Surface Elev. 485.00 ft Mudline Elev. Lowest centerline Elev. 380.00 ft

SUMMARY HORIZONTAL CURVE CALCULATIONS

	Start End										
	Station	Easting	Northing	Station		Easting	Northing	Azimuth	Length	Radius	Angle
Tangent	0+00.00	2289803.5501	336743.7681		10+99.63	2290837.9745	337116.7845	E 019.82945 N	1099.63		
Curve	10+99.63	2290837.9745	337116.7845		10+99.63	2290837.9745	337116.7845	E 019.82945 N	0.00	0.00	0.000 deg.
Tangent	10+99.63	2290837.9745	337116.7845		21+99.25	2291872.3990	337489.8010	E 019.82945 N	1099.63		

		HORIZ	ONTAL PLA	AN CALCU	ILATIONS (F	T)		
	Entry Tangent Segment		Horizontal Curve S	egment	Exit Tangent Segm	ent		T
	Plan Length, ft.	1099.63	Input Radius, ft.	0.00	Plan Length, ft.	1099.63		
	Entry Azimuth, deg.5	E 019.82945 N	Curve, deg	0.000 deg.	Exit Azimuth, deg.5	E 019.82945 N		
_	Entry Azimuth, rad.5	0.34609	Curve, rad	0.00000	Exit Azimuth, rad.5	0.34609		Er
Path			Calculate PTH		Calculate Exit			Er
	Calculate PCH		Chord Length, ft.	0.00	Easting	2291872.3990	Check	В
1000-SR-20-INCH_W-ER1.xlsx]T2	PCH Easting	2290837.9745	Arc Length, ft.	0.00	Northing	337489.8010	Delta	E
11.x	PCH Northing	337116.7845	Chord Azimuth, deg	19.8295			0.0000	E
-ER			PI Easting =	2291452.2366			0.0000	Г
Λ.			PI Northing =	337338.2892			OK CALC	1
호			PTH Easting =	2290837.9745				
1-0			PTH Northing =	337116.7845			Exit Station	1
Ŗ-7							21+99.25	1
S-0	Cum Plan Length	1099.63	Cum Plan Length	1099.63	Cum Plan Length	2199.250096	OK STA	
0								_

Pull Geometry										
Pipe Entry	Pipe Entry EXIT Enter the pipe entry location into the hole: Entry/Exit									
	Elev	ations	Vertical	Angle, (-) = Cloc	kwise	Path	Curve			
Segment	Start	End	Start	End	∆ Angle	Length	Radius			
Entry Tangent	554.00 ft	472.97 ft	16.00 deg	16.00 deg	0.00 deg	293.97 ft	0.00 ft			
Entry Curve	472.97 ft	380.00 ft	16.00 deg	0.00 deg	-16.00 deg	670.21 ft	2400.00 ft			
Bottom Tangent	380.00 ft	380.00 ft	0.00 deg	0.00 deg	0.00 deg	441.73 ft	0.00 ft			
Exit Curve	380.00 ft	448.15 ft	0.00 deg	-15.00 deg	-15.00 deg	523.60 ft	2000.00 ft			
Exit Tangent	448.15 ft	527.40 ft	-15.00 deg	-15.00 deg	0.00 deg	306.20 ft	0.00 ft			
					Total Check =	2235.71 ft	OK			

Compound Curve Assessment

	Vert. Plan	Horiz. Plan	
Entry	813.41	1099.63	No, Horiz > Entry V(Tan+Curve)
Exit	944.11	1099.63	No, Horiz > Entry V(Tan+Curve)

VERTICLE PATH DESIGN CALCULATIONS (FT)										
Entry Tangent Segment	1	Entry Vert. Curve Seg	gment 2	Middle Tangent Seg	ment 3	Exit Vert. Curve Se	egment 4	Exit Tangent Segme	nt 5	
Entry Angle	-15.000 deg.	Vertical Radius	2000.00	Rod Length	441.73270	Radius	2400.00	Exit Elevation	554.00	
Entry Angle, rad.	-0.2618 rad	Vert. Curve, deg.	15.000 deg.	Inclined Bottom Tan	NO	Design Exit Angle	16.000 deg.			
Rod/Path Length	306.20	Vert. Curve, rad.	0.2618 rad	_		Vert. Curve, rad.	0.2793 rad			
Calculate Vertical PCV		Calculate Vertical PT	V	Calculate Vertical P	CV	Calculate Vertical	PTV	Calculate Exit		
Plan Length	295.77	Plan Length	517.64	Plan Length	441.7326957	Vert. Curve, deg	16.000 deg.	Plan Length	282.58	
Path Length	306.20	Arc Path Length	523.60	Path Length	441.73	Vert. Curve, rad.	0.27925268	Path Length	293.97	
Tangent Depth	-79.25	Curve Vert Depth	-68.15	End Elevation	380.00	Plan Length	661.53	Elevation	554.00	
End Elevation	448.15	End Elevation	380.00	Rise/drop	0.00	Path Arc Length	670.21	Rise/drop	81.03	
		Lowest Elevation	380.00			Lowest Elevation	380.00			
2		End Vert Angle	0.000 deg.	End Vert Angle	0.000 deg.	Elevation	472.97			
		End Vert Angle, rad	0.0000 rad	End Vert Angle, rad	0.0000 rad	Curve Vert Depth	92.97	Prop. Plan Length	2199.250096	
SUMMARY VERTICLE C	JRVE CALCU	LATIONS								
Start Station	0+00.00	Start Station	2+95.77	Start Station	8+13.41	Start Station	12+55.14	Start Station	19+16.67	
PVC Station	2+95.77	PTV Station	8+13.41	PCV Station	12+55.14	PTV Station	19+16.67	Exit Station	21+99.250	

Cum Plan Length

Cum Path Length

Summary of Drill Calculations	
Entry to Exit Elevation Change =	26.60 ft
Minimum Design Elevation =	380.00 ft
Invert Depth below exit =	174.00 ft
Invert Depth below entry =	147.40 ft
Path Length =	2,235.71 ft
Plan Length =	2,199.25 ft
Minimum Plan Length (No Tangent) =	1,757.52 ft
Entry Angle =	-15.00 deg
Exit Angle =	16.00 deg
Compound Curve at Entry =	NO
Compound Curve at Exit =	NO

Stationing Check
OK STATIONING
Plan Length Check
OK CALCULATION

1. Sign convention for angles - positive (+) angles are counterclockwise.

295.77

306.20

-79.25

Cum Plan Length

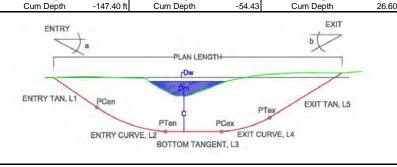
Cum Path Length

Cum Depth

813.41

829.80

-147.40


Due East is defined as 0 degrees.

Cum Depth

Cum Plan Length

Cum Path Length

- 2. Coordinates are in feet and reference NAD 83 Pennsylvania South State Plane
- 3. Elevations are in feet and reference NAVD 88.
- 4. All calculation locations represent the center of the drill hole.

1916.67

1941.74

Cum Plan Length

Cum Path Length

2199.250096

2235.708991

1255.14 ft Cum Plan Length

1271.54 ft Cum Path Length

Indicates inputs Indicates status on internal design checks

ISSUE: APC/FPC DESIGN

Sunoco Pipeline, L.P. Mariner East Pipeline Lebanon County, Pennsylvania

TABLE 2 DESIGN DRILL PATH CALCULATION WETLAND J47 - West to East R1

Directional Project Support 20-INCH STEEL PIPE 33311 Lois Lane, Suite A Magnolia, Texas 77354

Revision 1

1/0/1900

TABLE 3 ESTIMATED ANNULAR PRESSURE CURVE (APC) EXAMPLE CALCULATION

Sunoco Pipeline, L.P. **Mariner East Pipeline**

Lebanon County, Pennsylvania

WETLAND J47 - West to East R1 **20-INCH STEEL PIPE INPUT**

1. Drill path data

	Measured					
	Distance	Elevations	Angles	Lengths	Angle Change	
Drill Entry	0.000 ft	527.4	-15	Entry to PC	306.205 ft	
PC	306.205 ft			PC to PT	523.599 ft	-0.029 deg/ft
PT	829.804 ft			Invert Tangent	441.733 ft	
PC	1271.536 ft			PC to PT	670.206 ft	0.024 deg/ft
PT	1941.743 ft			PT to Exit	293.966 ft	
Drill Exit	2235.709 ft	554.00 ft	16		2235.709 ft	
					Length Ck	OK

2. Drill Fluid Hydraulic Assumptions

	Assumed	
Density, γ_f =	78	10.43 lb/gal
Dynamic annulus pressure P _d =	0.0014 psi/ft	
Drill fluid viscosity, $\mu_p =$	2 cp	
Yield point of drill fluid, YP =	41	

Low	
72	9.62 lb/gal
0.0013 psi/ft	
6 cp	
19	

I	High	•
	89	11.90 lb/gal
	0.0068 psi/ft	
	13 cp	·
	5	•

3. Drill Data Assumptions

DD660					
Avg Rod length =					
Diameter of hole, $D_h =$					
Drill Rod Tube Diameter, $D_r =$					
Drilling Pump rate, gpm =					
	g Rod length = er of hole, D _h = Diameter, D _r =				

Max Rig Pump =	1200 gpm
Number of drill rods =	
Estimated annular pilot uphole drill fluid velocity, V_{ha} =	68.29 ft/min
•	

4. Calculate Annular Pressure, P

Method A - (API RP) 13D

 $P_A = [\gamma_f (Y_{entry} - Y)/144] + (P_d)(MD)$

Method B - HDD Good Practices Cavity Expansion Annular Pressure

 $P_{B} = \left[\gamma_{f} * (Y_{entry} - Y)/144 \right] + MD* \left[\mu_{p} * (V_{ha}/60)/(1000*(D_{h} - D_{r})^{2}) + YP/[200*(D_{h} - D_{r})] \right]$

0+00.00 Start Station 1 **Low Return Density Assumed Return Density High Return Density Drill Path** Density, γ_{fE} = Density, γ_{fL} = Density, γ_{fH} = Rod Annular Fluid Annular Fluid Annular Fluid Annular Fluid **Annular Fluid** Measured Station Elevation **Annular Fluid** Pressure **Pressure** Pressure Pressure PA Pressure PA Distance Χ Υ Pressure P_A P_{R} P_{R} P_{B} MD ft ft ft psi psi psi psi psi psi 0+00.00 527.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 31.00 0 + 29.94519.38 4.39 5.47 4.05 4.54 5.17 5.11 62.00 0 + 59.89511.35 8.78 10.93 8.10 9.07 10.34 10.22 0+89.83 503.33 13.16 16.40 12.15 13.61 15.51 15.33 93.00 124.00 495.31 1+19.77 17.55 21.86 16.21 18.14 20.68 20.44 487.28 21.94 20.26 22.68 25.86 25.55 155.00 1+49.72 27.33 186.00 1+79.66 479.26 26.33 32.79 24.31 27.21 31.03 30.66 471.24 38.26 28.36 217.00 2+09.61 30.72 31.75 36.20 35.77 248.00 2+39.55 463.21 35.10 43.73 32.41 36.29 41.37 40.88 279.00 2+69.49 455.19 39.49 49.19 36.46 40.82 46.54 45.98 310.00 2+99.44 447.19 43.86 54.64 40.50 45.34 51.69 51.08 341.00 3+29.46 439.46 48.09 59.95 44.41 49.74 56.69 56.01 432.19 52.07 65.01 48.08 53.89 61.39 60.65 372.00 3+59.60 403.00 3+89.85 425.39 55.80 69.81 51.52 57.82 65.81 65.00 434.00 4+20.19 419.06 59.27 74.36 54.73 61.51 69.93 69.07

	Drill Both		Assumed Re	eturn Density	Low Retu	rn Density	High Retu	rn Density	
	Drill Path		Density, γ _{fE} =	78	Density, γ _{fL} =	72	Density, γ _{fH} =	89	
Rod Measured Distance MD	Station X	Elevation Y	Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	Annular Fluid Pressure P _A		Annular Fluid Pressure P _A	Annular Fluid Pressure P _B	
ft	ft	ft	psi	psi	psi	psi	psi	psi	
465.00	4+50.63	413.20	62.48	78.65	57.70	64.96	73.76	72.84	
496.00	4+81.16	407.82	65.44	82.69	60.43	68.18	77.31	76.32	
527.00 558.00	5+11.77 5+42.45	402.90 398.47	68.15 70.59	86.47 90.00	62.92 65.18	71.16 73.90	80.56 83.51	79.50 82.40	
589.00	5+73.20	394.50	72.78	93.26	67.20	76.41	86.17	85.00	
620.00	6+04.00	391.02	74.71	96.27	68.99	78.67	88.54	87.30	
651.00	6+34.85	388.01	76.38	99.02	70.53	80.70	90.61	89.31	
682.00	6+65.75	385.48	77.79	101.51	71.83	82.49	92.38	91.02	
713.00	6+96.68	383.43	78.94 79.84	103.74 105.71	72.90 73.72	84.04	93.86 95.04	92.44	
744.00 775.00	7+27.64 7+58.62	381.86 380.78	80.47	105.71	74.31	85.35 86.42	95.04	93.56 94.38	
806.00	7+89.62	380.17	80.84	108.87	74.65	87.24	96.52	94.91	
837.00	8+20.62	379.98	80.98	110.09	74.78	87.86	96.85	95.18	
868.00	8+51.62	379.98	81.02	111.21	74.82	88.39	97.06	95.33	
899.00	8+82.62	379.98	81.07	112.33	74.86	88.91	97.27	95.48	
930.00	9+13.62	379.98	81.11	113.45	74.90 74.94	89.43	97.48	95.63	
961.00 992.00	9+44.62 9+75.62	379.98 379.98	81.15 81.19	114.57 115.69	74.94	89.96 90.48	97.69 97.91	95.78 95.93	
1023.00	10+06.62	379.98	81.23	116.80	75.02	91.01	98.12	96.08	
1054.00	10+37.62	379.98	81.27	117.92	75.06	91.53	98.33	96.23	
1085.00	10+68.62	379.98	81.32	119.04	75.10	92.05	98.54	96.38	
1116.00	10+99.62	379.98	81.36	120.16	75.14	92.58	98.76	96.53	
1147.00	11+30.62	379.98	81.40	121.28	75.18	93.10	98.97	96.68	
1178.00 1209.00	11+61.62 11+92.62	379.98 379.98	81.44 81.48	122.40 123.52	75.22 75.26	93.63 94.15	99.18 99.39	96.83 96.98	
1240.00	12+23.62	379.98	81.53	124.64	75.30	94.67	99.61	97.13	
1271.00	12+54.62	379.98	81.57	125.76	75.34	95.20	99.82	97.28	
1302.00	12+85.62	380.18	81.50	126.78	75.28	95.62	99.91	97.31	
1333.00	13+16.61	380.77	81.22	127.57	75.02	95.85	99.75	97.09	
1364.00	13+47.59	381.77	80.73	128.16	74.57	95.88 95.71	99.35 98.70	96.63	
1395.00 1426.00	13+78.56 14+09.51	383.16 384.95	80.01 79.08	128.52 128.67	73.91 73.05	95.71	97.81	95.92 94.96	
1457.00	14+40.43	387.15	77.94	128.60	72.00	94.76	96.66	93.76	
1488.00	14+71.33	389.74	76.57	128.32	70.74	93.99	95.27	92.30	
1519.00	15+02.18	392.73	75.00	127.82	69.28	93.02	93.64	90.61	
1550.00	15+32.99	396.12	73.20	127.10	67.63	91.85	91.75	88.66	
1581.00 1612.00	15+63.76 15+94.48	399.91 404.09	71.19 68.97	126.17 125.02	65.77 63.72	90.48 88.91	89.62 87.25	86.47 84.04	
1643.00	16+25.14	404.09	66.53	123.66	61.47	87.14	84.63	81.35	
1674.00	16+55.74	413.65	63.87	122.08	59.02	85.18	81.77	78.43	
1705.00	16+86.27	419.02	61.01	120.29	56.38	83.02	78.66	75.26	
1736.00	17+16.73	424.79	57.93	118.29	53.53	80.66	75.31	71.85	
1767.00	17+47.11	430.95	54.63	116.07	50.49	78.10	71.72	68.19	
1798.00 1829.00	17+77.41 18+07.62	437.50 444.44	51.13 47.41	113.65 111.01	47.26 43.83	75.35 72.41	67.88 63.80	64.29 60.15	
1860.00	18+37.74	451.77	43.48	108.15	40.20	69.26	59.48	55.77	
1891.00	18+67.77	459.49	39.34	105.09	36.38	65.93	54.93	51.15	
1922.00	18+97.69	467.59	34.99	101.82	32.37	62.40	50.13	46.29	
1953.00	19+27.52	476.02	30.47	98.38	28.20	58.71	45.13	41.24	
1984.00 2015.00	19+57.32 19+87.12	484.56 493.11	25.88 21.30	94.87 91.36	23.96 19.73	54.96 51.22	40.07 35.00	36.11 30.98	
2015.00	20+16.92	501.65	16.71	87.85	15.50	47.47	29.93	25.85	
2077.00	20+46.72	510.19	12.12	84.35	11.27	43.72	24.86	20.72	
2108.00	20+76.52	518.74	7.54	80.84	7.03	39.97	19.79	15.59	
2139.00	21+06.32	527.28	2.95	77.33	2.80	36.22	14.72	10.45	
2170.00	21+36.12	535.83	0.00	0.00	0.00	0.00	0.00	0.00	
2201.00	21+65.91	544.37	0.00	0.00	0.00	0.00	0.00	0.00	
2232.00	21+95.71	552.92	0.00	0.00	0.00	0.00	0.00	0.00	

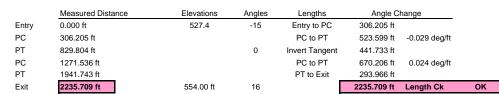

Ī		Drill Path		Assumed Re	eturn Density	Low Retu	rn Density	High Retu	rn Density
		Dilli Fatti		Density, γ_{fE} =	78	Density, γ_{fL} =	72	Density, γ_{fH} =	89
	Rod Measured Distance MD	Station X	Elevation Y	Annular Fluid Pressure P _A	Pressure	Annular Fluid Pressure P _A	Pressure	Annular Fluid Pressure P _A	Praecura
Ī	ft	ft	ft	psi	psi	psi	psi	psi	psi
ſ	2235.71	21+99.28	553.94	0.00	0.00	0.00	0.00	0.00	0.00

TABLE 4 ESTIMATED FORMATION PRESSURE CURVE (FPC) EXAMPLE CALCULATION Sunoco Pipeline, L.P. Mariner East Pipeline

Lebanon County, Pennsylvania

WETLAND J47 - West to East R1 20-INCH STEEL PIPE INPUT

1. Drill path data from vertical path calculations

2. Drill Fluid Hydraulic Data for Estimated Drill Fluid

Dynamic annulus pressure =	0.00135 psi/LF	
Uphole Drill Fluid Density =	78	10.4 lb/gal
Drill fluid viscosity, cp =	2 cp	
Up hole drill fluid velocity, ft/sec =	68.29 ft/sec	
Pump rate, gpm =	300 gal/min	
Diameter of hole D _H , in =	12.31125	
Diameter of Drill Rod D_R , in =	6.625	
Yield point of drill fluid, lb/100 ft^2 =	41.00 Lb/100FT	^2

Radius 6.156 in 3.313 in

3. Soil Profile Data

Technical approach to generate data as no testing available

Material Layer	Dry Density γ (pcf)	Moisture Content %	Insitu Saturated Density (pcf)	Effective UW (pcf)	Phi, Φ	Undrained Cohesion c, psf	Poisson Ratio μ	Slow Shear Modulus, G psf	OCR Cohessive (Use 0 if non- cohessive)	Model Material Layer Description	Cohesive
1	110	15.0%	126.5	47.60 pcf	32	500	0.3	7,727	1	Sandy Silt	Υ
2	130	10.0%	143	67.60 pcf	55	0.01	0.3	121,763	1	Sandstone	N
3								0			
4								0			
5								0			
6								0			
7								0			
8								0			
9								0			
10								0			
Water	62.4			62.40 pcf							

Dynamic Shear Velocity, $V_s = 61.4*N_{60}^{-1/2}$ Based on Seed and Idris approximation Dynamic Shear Modulus, $G_{max} = (\gamma/g)^*Vs^2$ g = acceleration of gravity = ft/s² 32.2 Select Reduction Factor, RF = 10% Ref 1 Extended Strain Shear Modulus G is typically between 5% and 20% of $\ensuremath{G_{\text{max}}}$

4 Select Controlling Location and list properties (Based on inspection of Figure 1 plot

Depth of Cover = 52.13 ft

Joint =	9	Away Distar	nce from Entry =	269.49 ft	D	epth of Cover =	52.13 ft				
Layers	Surface 1-2	Surface 2-3	Surface 3-4	Surface 4-5	Surface 5-6	Surface 6-7	Surface 7-8	Surface 8-9	Surface 9-10	TOTAL	
Soil Type in Layer =	1	2	2								
Dry Density in Layer, γ_d =	110.00 pcf	130.00 pcf	130.00 pcf								
Insitu Density in Layer, γ_s =	126.50 pcf	143.00 pcf	143.00 pcf								
Effective Weight in Layer, γ' _e =	47.60 pcf	67.60 pcf	67.60 pcf								Total CK
Total Layer Thickness over drill, h _s =	9.35 ft	42.78 ft	0.00 ft							52.13 ft	52.13 ft
Saturated Thickness over drill, h _{sat} =	0.00 ft	40.73 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	40.73 ft	·
Dry Thickness over drill, h _{dry} =	9.35 ft	2.06 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	11.40 ft	•
Contribution Effective Stress, $\sigma' =$	1,028.17 psf	3,549.81 psf	0.00 psf								
Contribution Total Stress, $\sigma = h_s^* \gamma_s$	1,028.17 psf	6,091.09 psf	0.00 psf								
Shear Modulus, G =	7,727 psf	121,763 psf	121,763 psf								
•							Height of	Water above S	oil Surface, h _w =	0.00 ft	1

Properties At Drill Depth for Selected Joint

R_H : 0.51 ft Radius of drill hole

Maximum allowable radius of plastic zone = Height of soil above Drill Path (hs) divided by Delft & Queens Equation FSD $R_{max} = h_s/FS_D =$ 34.75 ft

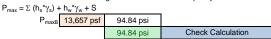
9/22/2017 Page 1 of 2

165.36

Total soil and water height above drill path, H_T = 52.13 ft Total water height above drill path, H_W =

	2	il Layer At Drill Depth							
$G_w =$	121,763 psf	rge Strain Shear Modulus at drill depth							
$u = c = q_u/2$	0 psf	Cohessive material: cohession c = unconfined compressive strength ($q_{\rm u}$) divided by 2							
φ =	55 deg	0.9599 rad Granular Soil: Angle of internal friction of layer at drill path depth							
$H_W =$	40.73 ft	Total water height above drill path							
FS _D =	1.5	Factor of Safety for Delft & Queens Equation soil type: Use 1.5 for Sand and 2 for Clay at Drill Depth - Apply to R max and P max							
μ =	0.3	pisson ration of layer at drill path depth							
OCR =	1	ver Consolidation Ratio							
$K_o =$	0.429	Deficient of lateral earth pressure at rest. For OCR = 1 use relation $K_o = \mu/(1 - \mu)$; For OCR >1 use $K_o = (K_{onormally consolidated}) * OCR^{-1/2}$							
$\sigma_{o} =$	7,119 psf	otal Stress at drill depth, $\sigma = \gamma_d$ (above water)*hdry + γ_s (saturated)*h _{sat}							
u =	2,541 psf	ater pressure at drill depth, $u = \gamma_W * H_W$							
σ' =	4,578 psf	fective Stress at drill depth, $\sigma' = \sigma - u$							

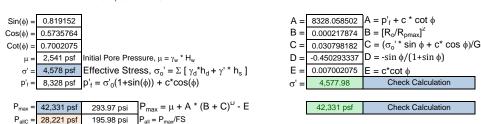
5. Method A - Total Stress Method (Conservative)


Su

Calculate Allowable Controlling Formation Pressure Capacity

 $P_{\text{max}} = \sigma_{\text{o}} = \sum (h_{\text{s}}^* \gamma_{\text{s}}) + h_{\text{w}}^* \gamma_{\text{w}}$ $P_{\text{maxA}} = \begin{bmatrix} 7,119 \text{ psf} & 49.44 \text{ psi} \\ 49.44 \text{ psi} & \text{Check Calculation} \end{bmatrix}$

6. Method B - Total Stress Method + Local Formation Strength


Calculate Allowable Controlling Formation Pressure Capacity

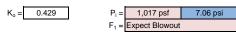
Based on Mohr-Coulomb

Strength = $c + \sigma' * tan(\phi)$					
6,538 psf	45.40 psi				

 $\begin{array}{ll} \textbf{7. Method C - Delft Equation for cavity expansion} & \textbf{(Assumes drained properties)} \\ P_{max} = \mu + \left[p'_{1} + c * \cot \varphi\right] * \left\{\left[R_{o}/R_{pmax}\right]^{2} + \left[\left(\sigma_{o}^{'} * \sin \varphi + c^{*} \cos \varphi\right)/G\right]\right\}^{-\sin \varphi(1+\sin \varphi)} - c^{*} \cot(\varphi) \\ \end{array}$

Checks 8328.058502 0.000217872 0.030798182 -0.450293337 0.007002075

8. Method D - Queens Equation (Cohessive Soils Only) better for softer clay soils


(Assumes undrained properties)

$$\begin{split} K_o < 1 & P_i = S_u + (1/2)^* (3K_o \text{-} 1)^* \sigma_o - S_u \text{*} \ln[(R_o / R_{pmax})^2 + (S_u / G)] \\ K_o > 1 & P_i = S_u + (1/2)^* (3 \cdot K_o)^* \sigma_o - S_u \text{*} \ln[(R_o / R_{pmax})^2 + S_u / G] \end{split}$$

To Determine if hydraulic fracturing or blowout occurs

(<2Su) indicates hydraulic fracturing; (>2Su) indicates blowout

$$\begin{split} K_o < 1 & F_1(K_o, \sigma_o, S_u) = (3^*K_o - 1)^*\sigma_o \\ K_o > 1 & F_1(K_o, \sigma_o, S_u) = (3 - K_o)^*\sigma_o \end{split}$$

7.06 psi	Check Calculation			

9. SUMMARY and Assessment of Estimated Drilling Annular Pressure and Formation Capacity

(See Annular Pressure Calculations for joint by joint calculations)

Method A - (API RP) 13D

Method B - HDD Good Practices Cavity Expansion Annular Pressure

P _{annularA} =	39.49 psi	$P_A = [\gamma_f (Y_{entry} - Y_{entry} - Y_{e$	/)/144] + (P _d)(M	D)				
P _{annularB} =	49.19 psi	$P_B = [\gamma_f * (Y_{entry})]$	- Y)/144] + MD*	$[\mu_p^* V_{ha}/(1000^* (Dh-Dr)^2)] + YP/[200^* (D_h-D_r)]$				
Method A	49.44 psi	FS =	1	Total Stress				
Method B	94.84 psi	FS =	1	Total Stress + Strength				
Method C	195.98 psi	At FS _D =	1.5	Delft Equation				
Method D	7.06 psi	At FS _D =	1.5	Queens Equation				
and the Francis Octobra and an Delli Florid Lanca of Octobra Later								

Comparitive Factor of Safety against Drill Fluid Loss at Critical Joint

iparitive ractor of carety against Drin rada 2005 at Orlacar Conte										
Critical Joint =	9	D	epth of Cover =	52.1 ft						
Confining Pressure Calculation Method		Method A	Method B	Method C	Method D					
Method (X)/P _{annularA}		1.25	2.40	4.96	0.18					
Mei	thod (X)/PannularB	1.01	1.93	3.98	0.14					

Acceptable if Factor of Safety >=1.0

9/22/2017 Page 2 of 2