

MODULE 12

Module 12: Erosion and Sedimentation Controls

[§§77.458/77.461/77.466/77.525/77.527/77.531/Chapter 102]

12.1 *Diversion Controls*

Provide a plan for the collection and conveyance to a natural drainageway of the runoff from upslope undisturbed areas. Provide a separate general design for a temporary highwall diversion which limits the amount of runoff which can enter the pit (where applicable). Include design criteria, capacity calculations, profile of proposed channel slopes, typical cross-sections, required channel linings and applicable details on 12.1 Data Sheet.

Temporary diversion ditches are proposed to be installed above the more permanent erosion and sedimentation controls discussed in Section 12.2 below. The configuration of the diversion ditches is presented on the Exhibit 12 drawings. Design calculations for the diversion ditches are attached to Module 12. Additionally, the diversion ditches are presented on Form 12.1 Data Sheets as applicable.

12.2 *Erosion and Sediment Control*

Provide a plan for the control of erosion and sedimentation for lands within the permit area to be disturbed by mining activities. Include a narrative describing the implementation of the plan, and detailed design and construction plans and specifications for structures or facilities used in the plan. The plan must include each phase or phases of mining. Include design criteria, capacity calculations, profile of proposed channel slopes, typical cross-sections, required channel linings and applicable details on 12.1 Diversion/Collection Ditch Data Sheet for collection and interceptor ditches. Provide documentation of the capacity of the existing drainage system and the effect proposed mining activities will have on the drainage. Show discharge points to natural drainageways and culverts that intercept upslope drainage or carry drainage away from the site. Show facilities to scale on Modules 9 and 16 as appropriate.

Detailed, site development plans are presented on the Exhibit 12 permit drawings and overall site plans are provided on the Exhibit 9 permit drawings. The development of the Northern Tract Quarry will consist of three primary phases; including Phase 1, Phase 2, and Phase 3. Erosion and sediment (E&S) controls will be incrementally established during the quarry development. Six E&S plans (Stage 1 through Stage 6) are included in the Exhibit 12 permit drawings which depict the sequenced installation of the E&S controls.

The erosion and sediment controls (E&SCs) installed during Phase 1 of the quarry development, as shown on the E&SC Stage 1 plan, primarily include two collection ditches (CD-1 and CD-2), and adjacent access roads, encompassing the upper hilltop portion of the Northern Tract Quarry site. The ditches are designed to drain south towards the Pitts Quarry with a high point located near the northwest corner of the ditch layouts. The ditches will collect stormwater runoff from the upper portion of the Northern Tract Quarry and outlet into the Pitts Quarry. Once CD-1 and CD-2 are established, overburden soil and cap rock will be removed from the Phase 1 area to facilitate mining of the underlying metabasalt. The working surface of the Phase 1 area will be maintained to drain towards the existing Pitts Quarry.

The E&SCs of Phase 2 of the quarry development will primarily consist of a sedimentation pond (NT Pond No. 1) on the west side of the Northern Tract Quarry area. E&SC Stage 2 consists of an access road with an adjacent collection ditch (CD-3) will provide access to NT Pond No. 1 from the existing access road on the west side of the Pitts Quarry. A diversion ditch (DD-1) will direct runoff from the upstream, undisturbed area to a level spreader, north of NT Pond No. 1. After complete development of NT Pond No. 1 and collection ditch CD-3, diversion ditch, DD-1, will be removed. E&SC Stage 3 will continue the Phase 2 quarry development by adding another access road and associated collection ditch (CD-4) to provide accessibility from the pond area to the Phase 1 access road and ditch. Diversion ditch, DD-2, is established before CD-4 is started and directs undisturbed area runoff into the level spreader from E&SC Stage 2. After completion of CD-4, ditch CD-1 and a portion of CD-2 may be removed as overburden removal and mining in the Northern Tract Quarry is expanded. The top working surface of the overburden soil removal and mining area shall be maintained to drain towards the existing Pitts Quarry such that the watershed tributary to NT Pond No. 1 will be incrementally reduced subsequent to the removal of CD-1 and CD-2. Culverts C-1 and C-2 will convey runoff from CD-3 and CD-4, respectively, under the access roads to NT Pond No. 1. Sequential development of the Phase 2 E&SCs is depicted on the E&SC Stage 2 through Stage 4 plans provided with the Exhibit 12 permit drawings.

A second sedimentation pond (NT No. 2) will be established along the eastern perimeter of the Northern Tract Quarry during Phase 3 of the quarry development. The E&SC Stage 5 and Stage 6 plans depict the incremental installation of the pond and related features. Two diversion ditches, DD-3 and DD-4, will be installed above the proposed Phase 3 area to direct runoff from upstream, undisturbed areas into two temporary slopes pipes which discharge into two level spreaders near the eastern boundary of the site. After the diversion ditches are established, an access road will be established along the northern and southern end of the Phase 3 area, respectively. An access road, and adjacent Ditch CD-5, will provide access to NT No. 2 from the access road adjacent the Phase 2 ditch, CD-4. Ditch CD-6 and the

adjacent access road will connect the existing access road on the east side of the Pitts Quarry to NT Pond No. 2. Culverts C-3 and C-4 will direct runoff under the access roads and into NT No. 2. NT Pond No. 2 will initially be constructed in two chambers connected by a temporary connector ditch. After the access roads and pond chambers are completed, the temporary connector ditch will be removed and the two pond chambers will be connected by establishing the completed NT Pond No. 2.

32-inch diameter compost filter socks will be established along the downstream perimeter of all three phases to control runoff during the initial development of the E&SC structures. The compost filter socks are required until the permanent E&S controls are stabilized.

Permanent E&S controls consisting of collection ditches and sedimentation ponds are designed to safely convey a Soil Conservation Service (SCS) Type II, 100-year recurrence interval, 24-hour duration storm event considering completely disturbed watershed conditions. Designs for the proposed ditches, culverts, and sedimentation ponds are based on the Pennsylvania Department of Environmental Protection (PADEP) Erosion and Sediment Pollution Control Program Manual as applicable. Additional detail regarding the design of the proposed surface drainage controls can be found in the attached calculations. Form 12.1 Diversion/Collection Ditch Data Sheets have been completed for each proposed ditch and are attached to this module. Design calculations for the sedimentation ponds are provided in Module 13.

12.3 Haul Roads

Provide the following information for each haul road to be constructed, reconstructed or used in the operation:

Note: Activities proposed to be conducted under General permit for Temporary Road Crossings (BMR-GP-101) and General Permit for Access Road Crossings (BMR-GP-102) must include a completed Notification Form, with attachments, for the respective General Permit (i.e., Form 5600-FM-MR0054 for BMR-GP-101 and Form 5600-FM-MR0059 for BMR-GP-102). BMR-GP-102 may not be used for haul roads.

- a) Location; show on Exhibit 9 (and Exhibit 18 if road will remain as part of postmining land use);

Haul road locations are shown on Exhibit 9.

- b) Description and typical cross-sections showing the construction of the haul road including existing ground, grades, slopes, culvert locations, outlet protection and other drainage control;

Several roads will be established around the perimeter of the Northern Tract Quarry site to provide access for operation, monitoring, inspections, and maintenance activities. Typical cross-sections of access roads are shown on Exhibit 12. The roads are configured to have longitudinal slopes ranging from 0.01 ft/ft to 0.12 ft/ft. The roads typically outlet into each respective sedimentation pond through a culvert or an engineered road crossing (Texas Crossing). A berm, as required or needed, will be established on the outer perimeter of each road for safety purposes. Alternatively, a post and cable barrier, concrete jersey barrier, or guiderail will be used instead of a berm.

- c) Measures to control and prevent erosion and sedimentation; include proposed spacing of sediment traps, turnouts, culverts, check dams, etc.;

The surface of the proposed haul roads will be covered with an aggregate road surfacing where needed to stabilize the area or facilitate vehicular travel. The adjacent cut/fill slopes will be revegetated, as applicable, incrementally as their development progresses. Additionally, each haul road will be constructed with a cross slope to drain into an adjacent road gutter to control runoff during storm events. Sedimentation ponds will be constructed to collect rainfall runoff from the road gutters and other adjacent areas during construction, normal facility operations, and road removal/reclamation. Refer to Module 13, the permit drawings package, and the Calculation Brief for additional information regarding the sedimentation ponds.

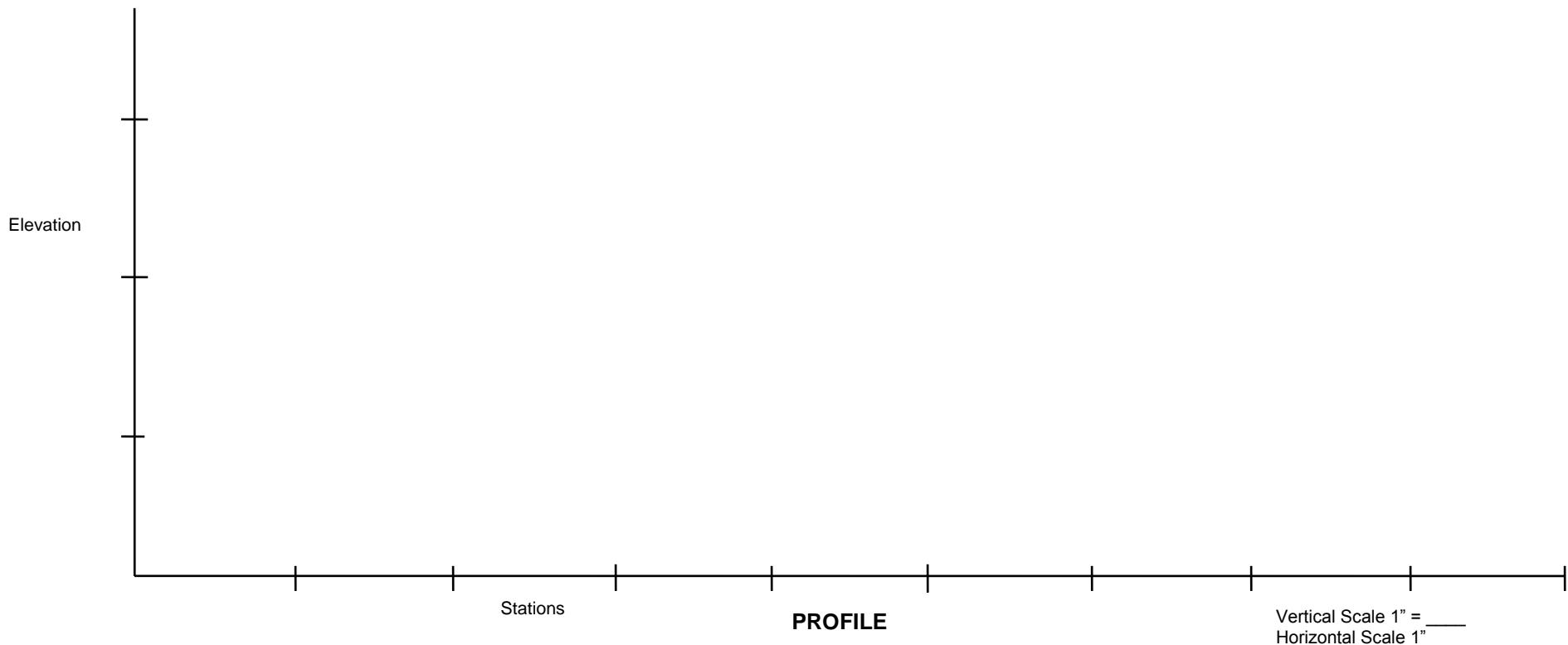
- d) Plan for reclamation after mining is completed;

The roads will generally be backfilled and/or regraded to establish the approximate original contour (AOC).

- e) If the haul road involves the crossing of any intermittent or perennial stream or wetland include Module 14 Streams/Wetlands;

The Northern Tract Quarry haul roads will not impact any streams or wetlands.

- f) Will a PennDOT highway occupancy permit be needed? Yes No


If yes, PennDOT Occupancy Permit number must be submitted prior to permit activation.

12.1 Diversion/Collection Ditch Data Sheet

Title:			Site:			Company:					Permit Number:		
Prepared by:			Telephone Number:			Date:					Sheet _____ of _____		

Design Calculations:

Station		Drainage Area acres	Design Storm (yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q cfs	Channel Bed Slope (%)	Freeboard (ft.)	Channel Lining	Manning's Coefficient (n)	Channel Bottom Width (ft)	Channel Side Slopes	Flow Area (sq.ft.)	Flow Depth (ft.)	Top Flow Width (ft.)	Flow Velocity (ft/sec)	Q Available cfs	With Freeboard		
Start	End																Channel Depth (ft.)	Top Channel Width (ft.)	Q Available cfs	

MODULE 12 - CALCULATION BRIEF

MODULE 12 - CALCULATION BRIEF

DECEMBER 2017

NORTHERN TRACT QUARRY
SPECIALTY GRANULES LLC
HAMILTONBAN AND LIBERTY TOWNSHIPS
ADAMS COUNTY, PENNSYLVANIA

SECTION	TABLE OF CONTENTS	REVISION
A	DIVERSION DITCH DESIGN	0
B	COLLECTION DITCH DESIGN	0
C	DITCH RIGID LINING DESIGN	0
D	COLLECTION AND DIVERSION DITCH FORM 12.1	0
E	CULVERT - HYDRAULIC DESIGN	0
F	CULVERT - STRUCTURAL DESIGN	0
G	LEVEL SPREADER DESIGN	0

SECTION A
DIVERSION DITCH DESIGN

DAPPOLONIA

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development
 N:\2015\152596 - SGI\Northern Tract\Ditch Design\Northern Tract - Diversion Ditch Design.xls

Sheet No.: 1 of 10
 Proj. No.: 152596A

DIVERSION DITCH DESIGN
NORTHERN TRACT QUARRY, CHARMIAN SITE
SPECIALTY GRANULES INC.
ADAMS COUNTY, PENNSYLVANIA

PURPOSE

Design of the channels is based on Pennsylvania Department of Environmental Protection (PADEP) and Mine Safety and Health Administration (MSHA) regulations as applicable. The channels will be designed to divert runoff from upslope undisturbed areas and convey it to level spreaders. Watershed maps are available in Attachment 5.

CHANNEL DESIGN REQUIREMENTS

PADEP Erosion and Sediment Pollution Control Program Manual (Chapter 102)

Channel Type	Design Frequency (years)	Minimum Required Freeboard (ft)
Temporary	2 or 1.6 cfs/acre	0.5
Temporary*	5 or 2.25 cfs/acre	0.5
Permanent	10 or 2.75 cfs/acre	0.5

* Special Protection Watershed

PADEP Engineering Manual for Mining Operations

Design Frequency (years)	Minimum Required Freeboard (ft)
10	0.5

DAPPOLONIA

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design Sheet No.: 2 of 10
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls

Diversion Ditch DD-1

Location: Diversion Ditch DD-1 shall divert runoff upslope of Collection Ditch CD-3 and NT Pond No. 1.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	
Design Criteria		2.75 cfs/acre		
Design Method		Permissible Velocity		
		<i>Units</i>		
Peak Discharge		11.0	cfs	
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	4	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	2	ft	
Lining		Min Slope	Max Slope	
Lining Type		RECM	RECM	
Lining Product		P300	P300	Lining Product
		Unvegetated	Unvegetated	(Liner Design Software Output available in Attachment 4)
Allowable Velocity (fps)		9.0	9.0	
Freeboard				
Freeboard Design Criterion		DEP		
Channel Design Depth		2.0	2.0	ft

DAPPOLONIA

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design Sheet No.: 3 of 10
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls

Diversion Ditch DD-1

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0315	0.0315			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{5}{3}}}$	(Ref. #5)
Critical Depth	0.76	0.76	ft		
Velocity Head	0.27	0.27			
Froude Number	1.01	1.01			
Flow Type	Supercritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	4.15	4.15	ft/sec		
Q Available at Channel Design Depth	84.8	84.8	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	10.0	10.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	5.0	5.0	ft		
Bottom Width:Depth Ratio	2.6	2.6			
Wetted Perimeter	5.4	5.4	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.5	0.5			
Flow Area	2.7	2.7	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	0.76	0.76	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.5	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	1.3	1.3	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	4.15	4.15	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	RECM	RECM			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	P300	P300			
	Unvegetated	Unvegetated			

DAPPOLONIA

Sheet No.: 4 of 10

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls

Diversion Ditch DD-2

Location: Diversion Ditch DD-2 shall divert runoff upslope of Collection Ditch CD-4

INPUT

Hydraulic & Hydrologic		Channel type	Temporary
Design Criteria		2.75 cfs/acre	
Design Method		Permissible Velocity <i>Units</i>	
Peak Discharge		11.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft
	Maximum Channel Bed Slope	0.040	ft/ft
	Area of Tributary Watershed	4	acres
	Condition of Watershed	Disturbed	
	Channel Side Slope (Left)	2	:H:1V
	Channel Side Slope (Right)	2	:H:1V
	Channel Bottom Width	2	ft
Lining		Min Slope	Max Slope
Lining Type		RECM	RECM
Lining Product		P300	P300
Unvegetated		Unvegetated	Lining Product (Liner Design Software Output available in Attachment 4)
Allowable Velocity (fps)		9.0	9.0
Freeboard			
Freeboard Design Criterion		DEP	
Channel Design Depth		2.0	2.0 ft

DAPPOLONIA

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design Sheet No.: 5 of 10
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls

Diversion Ditch DD-2

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0315	0.0654			
Critical Slope	0.02	0.08	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{5}{3}}}$	(Ref. #5)
Critical Depth	0.76	0.76	ft		
Velocity Head	0.27	0.15			
Froude Number	1.01	0.70			
Flow Type	Supercritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	4.15	3.15	ft/sec		
Q Available at Channel Design Depth	84.8	57.8	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	10.0	10.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	5.0	5.6	ft		
Bottom Width:Depth Ratio	2.6	2.2			
Wetted Perimeter	5.4	6.1	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.5	0.6			
Flow Area	2.7	3.5	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	0.76	0.91	ft		
Freeboard					
Stable flow?	No	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.5	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	1.3	1.4	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	4.15	3.15	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	RECM	RECM			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	P300	P300			
	Unvegetated	Unvegetated			

DAPPOLONIA

Sheet No.: 6 of 10

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls

Diversion Ditch DD-3

Location: Diversion Ditch DD-3 shall divert runoff upslope of Collection Ditch CD-5 and NT Pond No. 2.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary
Design Criteria		2.75 cfs/acre	
Design Method		Permissible Velocity <i>Units</i>	
Peak Discharge		13.8	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft
	Maximum Channel Bed Slope	0.040	ft/ft
	Area of Tributary Watershed	5	acres
	Condition of Watershed	Disturbed	
	Channel Side Slope (Left)	2	:H:1V
	Channel Side Slope (Right)	2	:H:1V
	Channel Bottom Width	3.5	ft
Lining		Min Slope	Max Slope
Lining Type		RECM	RECM
Lining Product		P300	P300
Unvegetated		Unvegetated	Lining Product (Liner Design Software Output available in Attachment 4)
Allowable Velocity (fps)		9.0	9.0
Freeboard			
Freeboard Design Criterion		DEP	
Channel Design Depth		2.0	2.0 ft

DAPPOLONIA

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design Sheet No.: 7 of 10
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls

Diversion Ditch DD-3

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0324	0.0276			
Critical Slope	0.02	0.01	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{2}{3}}}$	(Ref. #5)
Critical Depth	0.68	0.68	ft		
Velocity Head	0.27	0.54			
Froude Number	1.00	1.60			
Flow Type	Subcritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	4.14	5.88	ft/sec		
Q Available at Channel Design Depth	110.0	182.4	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	11.5	11.5	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	6.2	5.6	ft		
Bottom Width:Depth Ratio	5.1	6.7			
Wetted Perimeter	6.5	5.8	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.5	0.4			
Flow Area	3.3	2.4	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	0.68	0.52	ft		
Freeboard					
Stable flow?	No	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.5	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	1.2	1.0	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	4.14	5.88	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	RECM	RECM			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	P300	P300			
	Unvegetated	Unvegetated			

DAPPOLONIA

Sheet No.: 8 of 10

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls

Diversion Ditch DD-4

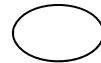
Location: Diversion Ditch DD-4 shall divert runoff upslope of Collection Ditch CD-6 and NT Pond No. 2.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary
Design Criteria		2.75 cfs/acre	
Design Method		Permissible Velocity <i>Units</i>	
Peak Discharge		13.8	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft
	Maximum Channel Bed Slope	0.020	ft/ft
	Area of Tributary Watershed	5	acres
	Condition of Watershed	Disturbed	
	Channel Side Slope (Left)	2	:H:1V
	Channel Side Slope (Right)	2	:H:1V
	Channel Bottom Width	3.5	ft
Lining		Min Slope	Max Slope
Lining Type		RECM	RECM
Lining Product		P300	P300
Unvegetated		Unvegetated	Lining Product (Liner Design Software Output available in Attachment 4)
Allowable Velocity (fps)		9.0	9.0
Freeboard			
Freeboard Design Criterion		DEP	
Channel Design Depth		2.0	2.0 ft

DAPPOLONIA

By: MJD Date: 11/22/16 Subject: Diversion Ditch Design Sheet No.: 9 of 10
 Chkd. By: AMR Date: 12/6/2016 Initial Site Development Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Temporary Diversion Ditch & Sed Trap Design\Diversion Ditch-R1.xls


Diversion Ditch DD-4

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0324	0.0324			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{5}{3}}}$	(Ref. #5)
Critical Depth	0.68	0.68	ft		
Velocity Head	0.27	0.27			
Froude Number	1.00	1.00			
Flow Type	Subcritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	4.14	4.14	ft/sec		
Q Available at Channel Design Depth	110.0	110.0	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	11.5	11.5	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	6.2	6.2	ft		
Bottom Width:Depth Ratio	5.1	5.1			
Wetted Perimeter	6.5	6.5	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.5	0.5			
Flow Area	3.3	3.3	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	0.68	0.68	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.5	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	1.2	1.2	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	4.14	4.14	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	RECM	RECM			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	P300	P300			
	Unvegetated	Unvegetated			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 10 of 10
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Gutters\Northern Tract Gutter.xls

REFERENCES

- 1) Soil Survey of Adams County, United States Department of Agriculture, Soil Conservation Service, September 1983.
- 2) Urban Hydrology for Small Watersheds, 2nd Edition, Technical Release Number 55 (TR-55), United States Department of Agriculture, Soil Conservation Service, June 1986.
- 3) NOAA, Point Precipitation Frequency Estimates
- 4) Design of Erosion Protection Mats, Cowherd, et. al., Bowser-Morner Associates, Inc.
- 5) Erosion and Sediment Pollution Control Program Manual, Pennsylvania Department of Environmental Protection - Office of Water Management, March 2012.
- 6) Engineering Manual for Mining Operations, Pennsylvania Department of Environmental Protection - Bureaus of Mining and Reclamation and District Mining Operations, 1999.
- 7) Standard Specifications for Highway Bridges - 17th Edition, American Association of State Highway and Transportation Officials, 2002.
- 8) Engineering and Design Manual - Coal Refuse Disposal Facilities, Mine Safety and Health Administration
- 9) North American Green Erosion Control Materials Design Software - Version 5.0 North American Green, Inc., 2004.
- 10) Design of Roadside Channels with flexible linings, US Department of Transportation, Federal Highway Administration, September 2005.

VARIABLES

T	= channel top width at the water surface (ft)
P	= wetted perimeter (ft)
R	= hydraulic radius = A/P (ft)
A	= cross-sectional area of the channel (sqft)
n	= Manning's "n"
d	= flow depth
D	= channel depth
V	= velocity
Q	= flow rate
τ_d	= maximum shear stress in straight section
τ_b	= maximum shear stress in a bend
τ_a	= allowable shear stress
$V_{allowable}$	= allowable velocity
D_{50}	= 50th percentile diameter
S_c	= critical slope (ft/ft)
D_m	= mean depth of flow = A/T
R_c	= Radius of channel bend

ATTACHMENT 4
North American Green Software Output

**NORTH
AMERICAN
GREEN®**

SECTION A, Page 13 of 19
 Tensar International Corporation
 5401 St. Wendel-Cynthiana Road
 Poseyville, Indiana 47633
 Tel. 800.772.2040
 Fax 812.867.0247
 www.nagreen.com

**Erosion Control Materials Design Software
Version 5.0**

**Project Name: SGI
Project Number: 84066
Channel Name: DD-1**

Discharge	11
Peak Flow Period	24
Channel Slope	0.02
Channel Bottom Width	2
Left Side Slope	2
Right Side Slope	2
Low Flow Liner	
Retardance Class	C
Vegetation Type	Mix (Sod & Bunch)
Vegetation Density	Fair 50-75%
Soil Type	Silt Loam

P300 - Class C - Mix (Sod & Bunch) - Fair 50-75%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
P300 Unvegetated	Straight	11 cfs	4.15 ft/s	0.76 ft	0.032	2 lbs/ft ²	0.94 lbs/ft ²	2.12	STABLE	E
P300 Reinforced Vegetation	Straight	11 cfs	2.32 ft/s	1.12 ft	0.07	8 lbs/ft ²	1.39 lbs/ft ²	5.74	STABLE	E
Underlying Substrate	Straight	11 cfs	2.32 ft/s	1.12 ft	--	2 lbs/ft ²	0.092 lbs/ft ²	21.82	STABLE	--

North American Green
 5401 St. Wendel-Cynthiana Rd.
 Poseyville, Indiana 47633
 Tel. 800.772.2040
 Fax 812.867.0247
www.nagreen.com

**Control Materials Design Software
 Version 5.0**

**Project Name: Northern Tract
 Project Number: 119351
 Channel Name: DD-2**

Discharge	11.0
Peak Flow Period	24
Channel Slope	.04
Channel Bottom Width	2
Left Side Slope	2
Right Side Slope	2
Low Flow Liner	
Retardance Class	C
Vegetation Type	Mix (Sod & Bunch)
Vegetation Density	Fair 50-75%
Soil Type	Silt Loam

P300 - Class C - Mix (Sod & Bunch) - Fair 50-75%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
P300 Unvegetated	Straight	11 cfs	5.21 ft/s	0.64 ft	0.033	2 lbs/ft ²	1.6 lbs/ft ²	1.25	STABLE	E
P300 Reinforced Vegetation	Straight	11 cfs	3.15 ft/s	0.91 ft	0.065	8 lbs/ft ²	2.28 lbs/ft ²	3.51	STABLE	E
Underlying Substrate	Straight	11 cfs	3.15 ft/s	0.91 ft	--	2 lbs/ft ²	0.194 lbs/ft ²	10.28	STABLE	--

**NORTH
AMERICAN
GREEN®**

SECTION A, Page 15 of 19
 Tensar International Corporation
 5401 St. Wendel-Cynthiana Road
 Poseyville, Indiana 47633
 Tel. 800.772.2040
 Fax 812.867.0247
 www.nagreen.com

**Erosion Control Materials Design Software
Version 5.0**

**Project Name: SGI
Project Number: 84066
Channel Name: DD-3**

Discharge	13.8
Peak Flow Period	24
Channel Slope	0.02
Channel Bottom Width	3.5
Left Side Slope	2
Right Side Slope	2
Low Flow Liner	
Retardance Class	C
Vegetation Type	Mix (Sod & Bunch)
Vegetation Density	Fair 50-75%
Soil Type	Silt Loam

P300 - Class C - Mix (Sod & Bunch) - Fair 50-75%

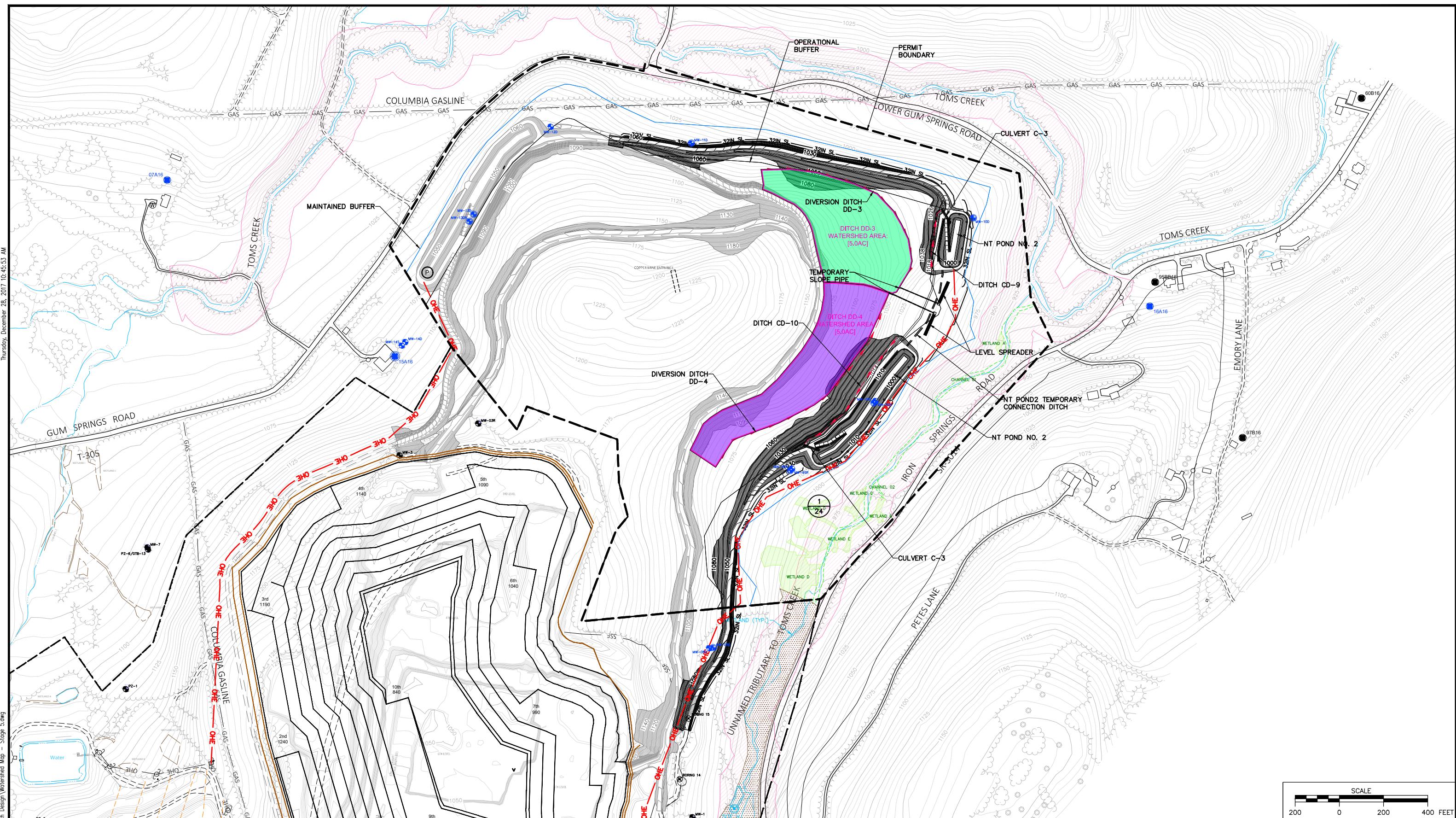
Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
P300 Unvegetated	Straight	13.8 cfs	4.14 ft/s	0.68 ft	0.032	2 lbs/ft ²	0.85 lbs/ft ²	2.34	STABLE	E
P300 Reinforced Vegetation	Straight	13.8 cfs	2.46 ft/s	1.01 ft	0.067	8 lbs/ft ²	1.27 lbs/ft ²	6.32	STABLE	E
Underlying Substrate	Straight	13.8 cfs	2.46 ft/s	1.01 ft	--	2 lbs/ft ²	0.096 lbs/ft ²	20.87	STABLE	--

North American Green
 5401 St. Wendel-Cynthiana Rd.
 Poseyville, Indiana 47633
 Tel. 800.772.2040
 Fax 812.867.0247
www.nagreen.com

**Control Materials Design Software
 Version 5.0**

**Project Name: Northern Tract
 Project Number: 119351
 Channel Name: DD-3**

Discharge	13.8
Peak Flow Period	24
Channel Slope	0.04
Channel Bottom Width	3.5
Left Side Slope	2
Right Side Slope	2
Low Flow Liner	
Retardance Class	C
Vegetation Type	Mix (Sod & Bunch)
Vegetation Density	Fair 50-75%
Soil Type	Silt Loam


P300 - Class C - Mix (Sod & Bunch) - Fair 50-75%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
P300 Unvegetated	Straight	13.8 cfs	5.16 ft/s	0.57 ft	0.033	2 lbs/ft ²	1.43 lbs/ft ²	1.39	STABLE	E
P300 Reinforced Vegetation	Straight	13.8 cfs	3.28 ft/s	0.82 ft	0.064	8 lbs/ft ²	2.05 lbs/ft ²	3.91	STABLE	E
Underlying Substrate	Straight	13.8 cfs	3.28 ft/s	0.82 ft	--	2 lbs/ft ²	0.195 lbs/ft ²	10.28	STABLE	--

ATTACHMENT 5

Watershed Maps

NOTES / REVISIONS

1000

D'APPOLONIA

701 RODI ROAD, FLOOR 2
PITTSBURGH, PENNSYLVANIA 15235-4559
(412) 856-9440 FAX (412) 856-9535

The SGI logo, consisting of the letters "SGI" in a white, bold, sans-serif font, enclosed within a thick white rectangular border on a dark green background.

SPECIALTY GRANULES LLC

CHARMIAN SITE

E&SC PHASE 5 WATERSHED MAP

ISSUED FOR	DATE	REV.	4	REVISION DESCRIPTION	MADE BY	CHKD BY	DATE
			3				
			2				
			1				

DRAWN BY: MJD

BRAUN BT: MOD	DATE: 12/10/2017
CHECKED BY: CHKD BY	DATE: DATE

SEARCHED BY: SERIALIZED BY: DATE: DATE

SCALE: AS SHOWN DRAWING NO. 1 REV 0

© 2019 Pearson Education, Inc.

REV C

SECTION B
COLLECTION DITCH DESIGN

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 1 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northern Tract Ditch Design-R1.xls

**COLLECTION DITCH DESIGN
 NORTHERN TRACT QUARRY, CHARMIAN SITE
 SPECIALTY GRANULES, LLC
 ADAMS COUNTY, PENNSYLVANIA**

PURPOSE

The purpose of this calculation is to design the collection ditches for the three phased, initial site development of the Northern Tract Quarry. Design of the ditches are based on Pennsylvania Department of Environmental Protection (PADEP) regulations as applicable. All ditches will be designed to convey the 100-year, 24-hour storm event while meeting PADEP freeboard requirements.

RAINFALL DATA

The following rainfall depths were adopted from Reference #3 and available in Attachment 1.

24-hr Storm Frequency	Depth (Inches)
2-yr	3.25
100-yr	8.03

CHANNEL DESIGN REQUIREMENTS

PADEP Erosion and Sediment Pollution Control Program Manual (Chapter 6) Reference #5

Channel Type	Minimum Required Freeboard (ft)
Temporary	0.5
Permanent	0.5

WATERSHED AREAS

The collection ditch watersheds were delineated in AutoCAD Civil 3D and summarized in the table below. Refer to Attachment 5 for watershed maps.

Subbasin	Area (acres)
CD-1	11.33
CD-2	33.97
CD-3	4.50
CD-4	7.92
CD-5	6.85
CD-6	8.43
CD-7	1.75
CD-8	1.60
CD-9	4.11
CD-10	4.40

SITE SOILS

The hydrologic soil groups and site soils present in the Northern Tract Quarry was determined using the United States Department of Agriculture, Natural Resources Conservation Service Web Soil Survey. The site soils are classified as Hydrologic Soil Group (HSG) B. The soil survey report is provided in Attachment 2. The entire watershed area was assumed to be disturbed during initial development of the quarry.

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 2 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northern Tract Ditch Design-R1.xls

TIME OF CONCENTRATION

The time of concentration was evaluated using methodology presented in Technical Release No. 55 (TR-55) (Ref. #2). A summary is provided below; complete calculations generated from AutoDesk Storm and Sanitary Analysis are presented Attachment 3.

Subbasin CD-1

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.112	Sheet	0.12	Disturbed	-	4.08	7.68
706	0.093	Shallow Concentrated	-	Unpaved	4.92	2.39	
435	0.020	Channel	0.035	-	-	1.21	

Subbasin CD-2

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.081	Sheet	0.12	Disturbed	-	4.65	10.69
795	0.120	Shallow Concentrated	-	Unpaved	5.59	2.37	
1523	0.020	Channel	0.035	-	-	3.67	

Subbasin CD-3

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.231	Sheet	0.12	Disturbed	-	3.06	4.85
26	0.480	Shallow Concentrated	-	Unpaved	11.18	0.04	
1090	0.100	Channel	0.035	-	-	1.75	

Subbasin CD-4

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.234	Sheet	0.12	Disturbed	-	3.04	4.87
230	0.287	Shallow Concentrated	-	Unpaved	8.64	0.44	
515	0.020	Channel	0.035	-	-	1.39	

Subbasin CD-5

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.370	Sheet	0.12	Disturbed	-	2.53	4.54
100	0.500	Shallow Concentrated	-	Unpaved	11.41	0.15	
745	0.025	Channel	0.035	-	-	1.86	

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 3 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northern Tract Ditch Design-R1.xls

Subbasin CD-6

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.261	Sheet	0.12	Disturbed	-	2.91	5.29
58	0.341	Shallow Concentrated	-	Unpaved	9.42	0.10	
784	0.030	Channel	0.035	-	-	1.76	
295	0.100	Channel	0.035	-	-	0.43	
53	0.060	Channel	0.035	-	-	0.09	

Subbasin CD-7

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.295	Sheet	0.12	Disturbed	-	2.77	3.42
155	0.450	Shallow Concentrated	-	Unpaved	10.82	0.24	
10	1.000	Shallow Concentrated	-	Unpaved	16.13	0.01	
134	0.020	Channel	0.035	-	-	0.40	

Subbasin CD-8

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.270	Sheet	0.12	Disturbed	-	2.87	4.00
259	0.310	Shallow Concentrated	-	Unpaved	8.98	0.48	
219	0.020	Channel	0.035	-	-	0.65	

Subbasin CD-9

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.351	Sheet	0.12	Disturbed	-	2.59	3.79
450	0.235	Shallow Concentrated	-	Unpaved	7.82	0.96	
83	0.020	Channel	0.035	-	-	0.24	

Subbasin CD-10

Length (ft)	Slope (ft/ft)	Flow Type	Mannin g's n	Surface Cover	Est. Vel. (fps)	Flow Time (min)	Total TOC (min)
100	0.337	Sheet	0.12	Disturbed	-	2.63	3.53
226	0.428	Shallow Concentrated	-	Unpaved	10.56	0.36	
186	0.020	Channel	0.035	-	-	0.54	

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 4 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northern Tract Ditch Design-R1.xls

HYDROLOGIC SUMMARY

Peak flow quantities were calculated using Autodesk Storm and Sanitary Analysis. Refer to Attachment 3 for the complete SSA output report.

Subbasin	Peak Discharge (cfs)	Runoff Volume (cf)
CD-1	100.0	261,500
CD-2	285.0	784,500
CD-3	50.0	104,000
CD-4	77.0	183,000
CD-5	70.0	158,000
CD-6	80.0	194,600
CD-7	16.8	40,400
CD-8	15.5	37,000
CD-9	42.0	97,000
CD-10	45.0	102,000

DITCH SUMMARY

Ditches with multiple lining types are both acceptable as options for the specified limits. Where no lining type is addressed, it is assumed the limits of the ditch will be excavated into competent cap rock.

	Limits	Design Depth (ft)	Bottom Width (ft)	Lining Type
CD-1	0+00 to 14+08	2.0	5.0	NAG P550/R-4 Riprap
CD-2	0+00 to 37+73	3.5	5.0	NAG P550/R-4 Riprap
CD-3	0+00 to 7+50 7+50 to 10+80	3.0 3.0	3.0 3.0	R-4 Riprap/Fabriform ---
CD-4	0+00 to 8+00 8+00 to 15+00	3.0 3.0	5.0 5.0	R-4 Riprap/Fabriform ---
CD-5	0+00 to 4+25 4+25 to 16+00	3.0 3.0	5.0 5.0	---
CD-6	0+00 to 12+55 12+55 to 14+70	3.0 3.0	3.5 3.5	R-5 Riprap/Fabriform ---
CD-7	0+00 to 3+06	1.0	2.0	---
CD-8	0+00 to 2+88	1.0	2.0	---
CD-9	0+00 to 5+79	2.0	1.0	---
CD-10	0+00 to 7+02	2.0	1.0	---

DAPPOLONIA

5 of 37

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-1 (P550)

Location: Western side of Phase 1 site development.

The ditch parallels a 15' access road with a 4.0' berm. The soil berm and access road will provide the minimum required freeboard depth.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	100.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	11.3	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		RECM	RECM	
		P550	P550	Lining Product
		Vegetated	Vegetated	(RECM liner is assumed vegetated for hydraulic design.)
Allowable Shear Stress (psf)		12	12	
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	2.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 6 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northen Tract Channel Design.xls

Channel Number CD-1 (P550)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0409	0.0409			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{2}{3}}}$	(Ref. #5)
Critical Depth	1.81	1.81	ft		
Velocity Head	0.55	0.55			
Froude Number	0.91	0.91			
Flow Type	Subcritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.94	5.94	ft/sec		
Q Available at Channel Design Depth	109.4	109.4	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	13.0	13.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	12.6	12.6	ft		
Bottom Width:Depth Ratio	2.6	2.6			
Wetted Perimeter	13.5	13.5	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.2	1.2			
Flow Area	16.8	16.8	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.91	1.91	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.9	0.9		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Freeboard from Soil Berm	4.0	4.0			
Minimum required Channel Depth	1.9	1.9	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	2.38	2.38	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	12.00	12.00	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	RECM	RECM			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	P550	P550			
	Vegetated	Vegetated			

DAPPOLONIA

()

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 7 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-1 (Riprap)

Location: Western side of Phase 1 site development.

The ditch parallels a 15' access road with a 4.0' berm. The soil berm and access road will provide the minimum required freeboard depth.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Permissible Velocity <i>Units</i>	
		Peak Discharge	100.0 cfs	
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	11.3	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Rock	
		Lining Product	Riprap R-4	Riprap R-4 Lining Product
		Allowable Velocity (fps)	9	9
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	2.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 8 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design.xls

Channel Number CD-1 (Riprap)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0418	0.0418			
Critical Slope	0.03	0.03	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{2}{3}}}$	(Ref. #5)
Critical Depth	1.81	1.81	ft		
Velocity Head	0.53	0.53			
Froude Number	0.89	0.89			
Flow Type	Subcritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.84	5.84	ft/sec		
Q Available at Channel Design Depth	106.9	106.9	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	13.0	13.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	12.7	12.7	ft		
Bottom Width:Depth Ratio	2.6	2.6			
Wetted Perimeter	13.6	13.6	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.3	1.3			
Flow Area	17.1	17.1	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.93	1.93	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.8	0.8		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Freeboard from Soil Berm	4.0	4.0			
Minimum required Channel Depth	1.9	1.9	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	5.84	5.84	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Rock	Rock			
D ₅₀	6	6	in		
Lining Product/Retardance Class	Riprap R-4	Riprap R-4			

DAPPOLONIA

Sheet No.: 9 of 37
Proj. No.: 152596A

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry
Chkd. By: AMR Date: 10/22/16 Collection Ditch Design
N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-2 (P550)

Location: Eastern side of Phase 1 site development.

The ditch parallels a 15' access road with a 4.0' berm. The soil berm and access road will provide the minimum required freeboard depth.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	285.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	34	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		RECM	RECM	
		P550	P550	Lining Product
		Vegetated	Vegetated	(RECM liner is assumed vegetated for hydraulic design.)
		Allowable Shear Stress (psf)	12.0	12.0
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.5	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 10 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design.xls

Channel Number CD-2 (P550)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0346	0.0346			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{2}{3}}}$	(Ref. #5)
Critical Depth	3.14	3.14	ft		
Velocity Head	1.22	1.22			
Froude Number	1.13	1.13			
Flow Type	Supercritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	8.85	8.85	ft/sec		
Q Available at Channel Design Depth	418.3	418.3	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	19.0	19.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	16.8	16.8	ft		
Bottom Width:Depth Ratio	1.7	1.7			
Wetted Perimeter	18.2	18.2	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.8	1.8			
Flow Area	32.0	32.0	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	2.95	2.95	ft		
Freeboard					
Stable flow?	Yes	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.7	0.7			
Freeboard	0.7	0.7		$F = 0.25 d \geq 0.5$	(Ref. #6)
Freeboard from Soil Berm	4.0	4.0			
Minimum required Channel Depth	3.0	3.0	ft		
Design Channel Depth	3.5	3.5	ft		
Lining					
Shear Stress at Flow Depth	3.68	3.68	lb/ft ²	$\tau_d = 62.4 d S$	(Ref. #5)
Maximum Permissible Shear Stress	12.00	12.00	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	RECM	RECM			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	P550	P550			
	Vegetated	Vegetated			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 11 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-2 (Riprap)

Location: Eastern side of Phase 1 site development.

The ditch parallels a 15' access road with a 4.0' berm. The soil berm and access road will provide the minimum required freeboard depth.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Permissible Velocity <i>Units</i>	
		Peak Discharge	285.0 cfs	
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	34	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Rock	
		Lining Product	Riprap R-4	Riprap R-4 Lining Product
		Allowable Velocity (fps)	9	9
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.5	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 12 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northen Tract Channel Design.xls

Channel Number CD-2 (Riprap)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0388	0.0388			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{2}{3}}}$	(Ref. #5)
Critical Depth	3.14	3.14	ft		
Velocity Head	1.03	1.03			
Froude Number	1.02	1.02			
Flow Type	Supercritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	8.16	8.16	ft/sec		
Q Available at Channel Design Depth	373.2	373.2	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	19.0	19.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	17.5	17.5	ft		
Bottom Width:Depth Ratio	1.6	1.6			
Wetted Perimeter	18.9	18.9	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.8	1.8			
Flow Area	34.9	34.9	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	3.11	3.11	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.8	0.8			
Freeboard	1.9	1.9		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Freeboard from Soil Berm	4.0	4.0			
Minimum required Channel Depth	3.1	3.1	ft		
Design Channel Depth	3.5	3.5	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	8.16	8.16	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Rock	Rock			
D ₅₀	6	6	in		
Lining Product/Retardance Class	Riprap R-4	Riprap R-4			

DAPPOLONIA

()

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 13 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-3 (Riprap)

Location: Begins at an existing access road on the west side of the Pitts Quarry to N.T. Pond 1.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Permissible Velocity <i>Units</i>	
		Peak Discharge	50.0 cfs	
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	4.5	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	3	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Rock	
		Lining Product	Riprap R-4	Riprap R-4 Lining Product
		Allowable Velocity (fps)	9	9
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 14 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Ditch Design.xls

Channel Number CD-3 (Riprap)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0432	0.0470			
Critical Slope	0.03	0.04	ft/ft	$S_c = 14.56 n^2 \frac{D_m}{R^{\frac{4}{3}}}$	(Ref. #5)
Critical Depth	1.48	1.48	ft		
Velocity Head	0.37	1.05			
Froude Number	0.82	1.62			
Flow Type	Subcritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	4.85	8.24	ft/sec		
Q Available at Channel Design Depth	186.2	383.0	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	15.0	15.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	9.6	7.6	ft		
Bottom Width:Depth Ratio	1.8	2.6			
Wetted Perimeter	10.3	8.1	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.0	0.7			
Flow Area	10.3	6.1	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.64	1.15	ft		
Freeboard					
Stable flow?	Yes	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.5	0.5		$F = 0.25 d \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.1	1.6	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4 d S$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	4.85	8.24	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Rock	Rock			
D ₅₀	6	6	in		
Lining Product/Retardance Class	Riprap R-4	Riprap R-4			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 15 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-3 (Unimat)

Location: Begins at an existing access road on the west side of the Pitts Quarry to N.T. Pond 1.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	50.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	4.5	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	3	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	Other
		Lining Product	Rigid Lined	Rigid Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	28.3	28.3
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 16 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design.xls

Channel Number CD-3 (Unimat)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{5}{3}}}$	(Ref. #5)
Critical Depth	1.48	1.48	ft		
Velocity Head	0.50	1.61			
Froude Number	1.00	2.14			
Flow Type	Supercritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.67	10.20	ft/sec		
Q Available at Channel Design Depth	229.8	513.8	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	15.0	15.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	8.9	6.9	ft		
Bottom Width:Depth Ratio	2.0	3.0			
Wetted Perimeter	9.6	7.4	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.9	0.7			
Flow Area	8.8	4.9	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.48	0.99	ft		
Freeboard					
Stable flow?	No	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.6	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.1	1.5	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	1.85	6.15	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	28.30	28.30	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rigid Lined Channels	Rigid Lined Channels			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 17 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Ditch Design\Northen Tract Ditch Design.xls

Channel Number CD-4 (Riprap)

Location: Begins at northern side of N.T. Pond 1 and continues up to connect to the ditch and access road of Phase 1.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Permissible Velocity	
			<i>Units</i>	
		Peak Discharge	77.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	7.92	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		Rock	Rock	
		Riprap R-4	Riprap R-4	Lining Product
		0.03	0.03	
		Allowable Velocity (fps)	4.58	4.58
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 18 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northen Tract Channel Design.xls

Channel Number CD-4 (Riprap)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0428	0.0467			
Critical Slope	0.03	0.03	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{5}{3}}}$	(Ref. #5)
Critical Depth	1.57	1.57	ft		
Velocity Head	0.44	1.25			
Froude Number	0.86	1.68			
Flow Type	Subcritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.35	8.96	ft/sec		
Q Available at Channel Design Depth	242.6	497.4	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	17.0	17.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	11.8	9.7	ft		
Bottom Width:Depth Ratio	2.9	4.3			
Wetted Perimeter	12.6	10.2	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.1	0.8			
Flow Area	14.4	8.6	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.71	1.17	ft		
Freeboard					
Stable flow?	No	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.7	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.4	1.7	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	5.35	8.96	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Rock	Rock			
D ₅₀	6	6	in		
Lining Product/Retardance Class	Riprap R-4	Riprap R-4			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 19 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-4 (Unimat)

Location: Begins at northern side of N.T. Pond 1 and continues up to connect to the ditch and access road of Phase 1.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	77.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	7.92	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	Other
		Lining Product	Rigid Lined	Rigid Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	28.3	28.3
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 20 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design.xls

Channel Number CD-4 (Unimat)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m}{R^{\frac{4}{3}}}$	(Ref. #5)
Critical Depth	1.57	1.57	ft		
Velocity Head	0.59	1.87			
Froude Number	1.03	2.19			
Flow Type	Supercritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	6.19	10.98	ft/sec		
Q Available at Channel Design Depth	296.8	663.7	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	17.0	17.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	11.2	9.0	ft		
Bottom Width:Depth Ratio	3.2	5.0			
Wetted Perimeter	11.9	9.5	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.0	0.7			
Flow Area	12.4	7.0	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.54	1.00	ft		
Freeboard					
Stable flow?	No	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.7	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.3	1.5	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	1.92	6.25	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	28.30	28.30	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rigid Lined Channels	Rigid Lined Channels			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 21 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-5 (Riprap)

Location: Connects N.T. Pond 1 to north side of N.T. Pond 2.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Permissible Velocity	
		<i>Units</i>		
		Peak Discharge	70.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	6.85	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		Rock	Rock	
		Riprap R-4	Riprap R-4	Lining Product
		0.03	0.03	
		Allowable Velocity (fps)	4.73	4.73
Freeboard				
		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 22 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-5 (Riprap)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0432	0.0473			
Critical Slope	0.03	0.03	ft/ft	$S_c = 14.56 n^2 \frac{D_m}{R^{\frac{4}{3}}}$	(Ref. #5)
Critical Depth	1.49	1.49	ft		
Velocity Head	0.42	1.16			
Froude Number	0.84	1.65			
Flow Type	Subcritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.18	8.64	ft/sec		
Q Available at Channel Design Depth	240.4	491.5	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	17.0	17.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	11.5	9.5	ft		
Bottom Width:Depth Ratio	3.1	4.5			
Wetted Perimeter	12.3	10.0	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.1	0.8			
Flow Area	13.5	8.1	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.64	1.12	ft		
Freeboard					
Stable flow?	Yes	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.5	0.5		$F = 0.25 d \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.1	1.6	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4 d S$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	5.18	8.64	ft/s		
Maximum Permissible Velocity	9	9	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Rock	Rock			
D ₅₀	6	6	in		
Lining Product/Retardance Class	Riprap R-4	Riprap R-4			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 23 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design-R1.xls

Channel Number CD-5 (Unimat)

Location: Connects N.T. Pond 1 to north side of N.T. Pond 2.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	70.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	6.85	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	5	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	
		Lining Product	Rigid Lined	Rigid Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	26.2	26.2
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 24 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design-R1.xls

Channel Number CD-5 (Unimat)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{5}{3}}}$	(Ref. #5)
Critical Depth	1.49	1.49	ft		
Velocity Head	0.56	1.77			
Froude Number	1.03	2.18			
Flow Type	Supercritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	6.03	10.67	ft/sec		
Q Available at Channel Design Depth	296.8	663.7	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	17.0	17.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	10.9	8.8	ft		
Bottom Width:Depth Ratio	3.4	5.3			
Wetted Perimeter	11.6	9.2	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.0	0.7			
Flow Area	11.6	6.6	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.46	0.95	ft		
Freeboard					
Stable flow?	No	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.7	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.1	1.5	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	1.83	5.93	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	26.20	26.20	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rigid Lined Channels	Rigid Lined Channels			

DAPPOLONIA

()

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 25 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Ditch Design\Northen Tract Ditch Design.xls

Channel Number CD-6 (Riprap)

Location: Begins at an existing access road on the east side of the Pitts Quarry to the the Northern Tract Quarry
 N.T. Pond 3.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Permissible Velocity <i>Units</i>	
		Peak Discharge	80.0 cfs	
Geometry	Minimum Channel Bed Slope	0.030	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	8.43	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	3.5	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Rock	
		Lining Product	Riprap R-5	Riprap R-5 Lining Product
		Allowable Velocity (fps)	11.5	
Freeboard	Freeboard Design Criterion	DEP		
	Channel Design Depth	3.0	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 26 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design.xls

Channel Number CD-6 (Riprap)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0490	0.0526			
Critical Slope	0.04	0.04	ft/ft	$S_c = 14.56 n^2 \frac{D_m}{R^{\frac{4}{3}}}$	(Ref. #5)
Critical Depth	1.81	1.81	ft		
Velocity Head	0.52	1.13			
Froude Number	0.91	1.50			
Flow Type	Subcritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.78	8.54	ft/sec		
Q Available at Channel Design Depth	215.5	366.5	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	15.5	15.5	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	11.1	9.3	ft		
Bottom Width:Depth Ratio	1.8	2.4			
Wetted Perimeter	12.0	10.0	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.2	0.9			
Flow Area	13.8	9.4	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.90	1.46	ft		
Freeboard					
Stable flow?	No	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.8	0.5		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.7	2.0	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	N/A	N/A	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	N/A	N/A	lb/ft ²		
Channel Velocity	5.78	8.54	ft/s		
Maximum Permissible Velocity	11.5	11.5	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Rock	Rock			
D ₅₀	9	9	in		
Lining Product/Retardance Class	Riprap R-5	Riprap R-5			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 27 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design.xls

Channel Number CD-6 (Unimat)

Location: Begins at an existing access road on the east side of the Pitts Quarry to the the Northern Tract Quarry
 N.T. Pond 3.

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	80.0	cfs
Geometry	Minimum Channel Bed Slope	0.030	ft/ft	
	Maximum Channel Bed Slope	0.100	ft/ft	
	Area of Tributary Watershed	8.43	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	2	:H:1V	
	Channel Bottom Width	3.5	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	Other
		Lining Product	Rigid Lined	Rigid Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	23.6	23.6
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	3.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 28 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design.xls

Channel Number CD-6 (Unimat)

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{2}{3}}}$	(Ref. #5)
Critical Depth	1.81	1.81	ft		
Velocity Head	0.85	2.05			
Froude Number	1.25	2.20			
Flow Type	Supercritical	Supercritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	7.40	11.48	ft/sec		
Q Available at Channel Design Depth	301.7	550.9	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	15.5	15.5	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	9.9	8.2	ft		
Bottom Width:Depth Ratio	2.2	3.0			
Wetted Perimeter	10.7	8.8	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.0	0.8			
Flow Area	10.8	7.0	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.61	1.19	ft		
Freeboard					
Stable flow?	Yes	Yes		$0.7S_c < S < 1.3S_c$	(Ref. #5)
Minimum Required Freeboard	0.5	0.5			
Freeboard	0.5	0.5		$F = 0.25 d \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.1	1.7	ft		
Design Channel Depth	3.0	3.0	ft		
Lining					
Shear Stress at Flow Depth	3.01	7.40	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	23.60	23.60	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rigid Lined Channels	Rigid Lined Channels			

DAPPOLONIA

Sheet No.: 29 of 37

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design
 Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design-R1.xls

Channel Number CD-7

Location: Above NT Pond No.1, flowing towards culvert C-1 and collection ditch CD-3

*Ditch CD-7 does not account for freeboard, any overtopping flow will be captured in NT Pond No.1

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	16.8	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	1.75	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	1	:H:1V	
	Channel Bottom Width	2	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	
		Lining Product	Rock Lined	Rock Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	10	10
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	1.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 30 of 37
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design-R1.xls

Channel Number CD-7

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{1}{3}}}$	(Ref. #5)
Critical Depth	1.01	1.01	ft		
Velocity Head	0.31	0.31			
Froude Number	0.93	0.93			
Flow Type	Subcritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	4.49	4.49	ft/sec		
Q Available at Channel Design Depth	14.7	14.7	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	5.0	5.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	5.1	5.1	ft		
Bottom Width:Depth Ratio	1.9	1.9			
Wetted Perimeter	5.8	5.8	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.6	0.6			
Flow Area	3.7	3.7	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.05	1.05	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
*Minimum Required Freeboard	0.0	0.0			
*Freeboard	0.0	0.0		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	1.0	1.0	ft		
Design Channel Depth	1.0	1.0	ft		
Lining					
Shear Stress at Flow Depth	1.31	1.31	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	10.00	10.00	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rock Lined Channels	Rock Lined Channels			

DAPPOLONIA

Sheet No.: 31 of 37

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design
 Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design-R1.xls

Channel Number CD-8

Location: Above NT Pond No.1, flowing towards culvert C-2 and collection ditch CD-4

*Ditch CD-8 does not account for freeboard, any overtopping flow will be captured in NT Pond No.1

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
		<i>Units</i>		
		Peak Discharge	15.5	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	1.6	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	1	:H:1V	
	Channel Bottom Width	2	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	
		Lining Product	Rock Lined	Rock Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	10	10
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	1.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 32 of 37
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Ditch Design\Northen Tract Ditch Design-R1.xls

Channel Number CD-8

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{1}{3}}}$	(Ref. #5)
Critical Depth	0.96	0.96	ft		
Velocity Head	0.30	0.30			
Froude Number	0.92	0.92			
Flow Type	Subcritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	4.40	4.40	ft/sec		
Q Available at Channel Design Depth	14.7	14.7	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	5.0	5.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	5.0	5.0	ft		
Bottom Width:Depth Ratio	2.0	2.0			
Wetted Perimeter	5.6	5.6	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.6	0.6			
Flow Area	3.5	3.5	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.00	1.00	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
*Minimum Required Freeboard	0.0	0.0			
*Freeboard	0.0	0.0		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	1.0	1.0	ft		
Design Channel Depth	1.0	1.0	ft		
Lining					
Shear Stress at Flow Depth	1.25	1.25	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	10.00	10.00	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rock Lined Channels	Rock Lined Channels			

DAPPOLONIA

Sheet No.: 33 of 37

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design
 Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design-R1.xls

Channel Number CD-9

Location: Above NT Pond No.2, flowing towards culvert C-4 and collection ditch CD-5

*Ditch CD-9 does not account for freeboard, any overtopping flow will be captured in NT Pond No.2

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
			<i>Units</i>	
		Peak Discharge	42.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	4.11	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	1	:H:1V	
	Channel Bottom Width	1	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	
		Lining Product	Rock Lined	Rock Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	10	10
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	2.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 34 of 37
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Channel Design\Northern Tract Channel Design-R1.xls

Channel Number CD-9

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m^{\frac{4}{3}}}{R^{\frac{2}{3}}}$	(Ref. #5)
Critical Depth	1.87	1.87	ft		
Velocity Head	0.51	0.51			
Froude Number	0.97	0.97			
Flow Type	Subcritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.73	5.73	ft/sec		
Q Available at Channel Design Depth	48.0	48.0	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	7.0	7.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	6.7	6.7	ft		
Bottom Width:Depth Ratio	0.5	0.5			
Wetted Perimeter	7.9	7.9	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	0.9	0.9			
Flow Area	7.3	7.3	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.90	1.90	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
*Minimum Required Freeboard	0.0	0.0			
*Freeboard	0.0	0.0		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	1.9	1.9	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	2.37	2.37	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	10.00	10.00	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rock Lined Channels	Rock Lined Channels			

DAPPOLONIA

Sheet No.: 35 of 37

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design
 Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\Northen Tract Ditch Design-R1.xls

Channel Number CD-10

Location: Above NT Pond No.2, flowing towards culvert C-3 and collection ditch CD-6

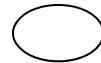
*Ditch CD-10 does not account for freeboard, any overtopping flow will be captured in NT Pond No.2

INPUT

Hydraulic & Hydrologic		Channel type	Temporary	See attached TR-55 Calculations
		Design Criteria	100-year Storm	
		Design Method	Shear Stress	
			<i>Units</i>	
		Peak Discharge	45.0	cfs
Geometry	Minimum Channel Bed Slope	0.020	ft/ft	
	Maximum Channel Bed Slope	0.020	ft/ft	
	Area of Tributary Watershed	4.4	acres	
	Condition of Watershed	Disturbed		
	Channel Side Slope (Left)	2	:H:1V	
	Channel Side Slope (Right)	1	:H:1V	
	Channel Bottom Width	1	ft	
Lining		Min Slope	Max Slope	
		Lining Type	Other	Other
		Lining Product	Rock Lined	Rock Lined
			Channels	Channels
		Manning's Coefficient	0.035	0.035
		Allowable Shear Stress (psf)	10	10
Freeboard		Freeboard Design Criterion	DEP	
		Channel Design Depth	2.0	ft

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 36 of 37
 Chkd. By: QDW Date: 6/1/2017 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Ditch Design\Northen Tract Ditch Design-R1.xls


Channel Number CD-10

OUTPUT

Hydraulic & Hydrologic		Min Slope	Max Slope		
Manning's Coefficient	0.0350	0.0350			
Critical Slope	0.02	0.02	ft/ft	$S_c = 14.56 n^2 \frac{D_m}{R^{\frac{4}{3}}}$	(Ref. #5)
Critical Depth	1.93	1.93	ft		
Velocity Head	0.53	0.53			
Froude Number	0.97	0.97			
Flow Type	Subcritical	Subcritical		$V = \frac{1.486}{n} R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Velocity	5.83	5.83	ft/sec		
Q Available at Channel Design Depth	48.0	48.0	ft ³ /sec	$Q = \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	(Ref. #5)
Geometry		<i>Units</i>			
Channel Top Width @D	7.0	7.0	ft	$T = b + 2zd$	(Ref. #5)
Channel Top Width @d	6.9	6.9	ft		
Bottom Width:Depth Ratio	0.5	0.5			
Wetted Perimeter	8.1	8.1	ft	$P = b + 2d\sqrt{z^2 + 1}$	(Ref. #5)
Hydraulic Radius	1.0	1.0			
Flow Area	7.7	7.7	ft ²	$A = bd + zd^2$	(Ref. #5)
Flow Depth	1.96	1.96	ft		
Freeboard					
Stable flow?	No	No		$0.7S_c < S < 1.3S_c$	(Ref. #5)
*Minimum Required Freeboard	0.0	0.0			
*Freeboard	0.0	0.0		$F = 0.75Vd \geq 0.5$	(Ref. #6)
Minimum required Channel Depth	2.0	2.0	ft		
Design Channel Depth	2.0	2.0	ft		
Lining					
Shear Stress at Flow Depth	2.45	2.45	lb/ft ²	$\tau_d = 62.4dS$	(Ref. #5)
Maximum Permissible Shear Stress	10.00	10.00	lb/ft ²		
Channel Velocity	N/A	N/A	ft/s		
	N/A	N/A	ft/s		
Is Lining Sufficient?	Yes	Yes			
Lining Type	Other	Other			
D ₅₀	N/A	N/A	in		
Lining Product/Retardance Class	Rock Lined Channels	Rock Lined Channels			

DAPPOLONIA

By: MJD Date: 07/01/16 Subject: Northern Tract Quarry Sheet No.: 37 of 37
 Chkd. By: AMR Date: 10/22/16 Collection Ditch Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Gutters\Northern Tract Gutter.xls

REFERENCES

- 1) Soil Survey of Adams County, United States Department of Agriculture, Soil Conservation Service, September 1983.
- 2) Urban Hydrology for Small Watersheds, 2nd Edition, Technical Release Number 55 (TR-55), United States Department of Agriculture, Soil Conservation Service, June 1986.
- 3) NOAA, Point Precipitation Frequency Estimates
- 4) Design of Erosion Protection Mats, Cowherd, et. al., Bowser-Morner Associates, Inc.
- 5) Erosion and Sediment Pollution Control Program Manual, Pennsylvania Department of Environmental Protection - Office of Water Management, March 2012.
- 6) Engineering Manual for Mining Operations, Pennsylvania Department of Environmental Protection - Bureaus of Mining and Reclamation and District Mining Operations, 1999.
- 7) Standard Specifications for Highway Bridges - 17th Edition, American Association of State Highway and Transportation Officials, 2002.
- 8) Engineering and Design Manual - Coal Refuse Disposal Facilities, Mine Safety and Health Administration
- 9) North American Green Erosion Control Materials Design Software - Version 5.0 North American Green, Inc., 2004.
- 10) Design of Roadside Channels with flexible linings, US Department of Transportation, Federal Highway Administration, September 2005.

VARIABLES

T	= channel top width at the water surface (ft)
P	= wetted perimeter (ft)
R	= hydraulic radius = A/P (ft)
A	= cross-sectional area of the channel (sqft)
n	= Manning's "n"
d	= flow depth
D	= channel depth
V	= velocity
Q	= flow rate
τ_d	= maximum shear stress in straight section
τ_b	= maximum shear stress in a bend
τ_a	= allowable shear stress
$V_{allowable}$	= allowable velocity
D_{50}	= 50th percentile diameter
S_c	= critical slope (ft/ft)
D_m	= mean depth of flow = A/T
R_c	= Radius of channel bend

ATTACHMENT 1
Precipitation Frequency Estimates

NOAA Atlas 14, Volume 2, Version 3
Location name: Fairfield, Pennsylvania, US*
Latitude: 39.7678°, Longitude: -77.4403°
Elevation: 1240 ft*
* source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley

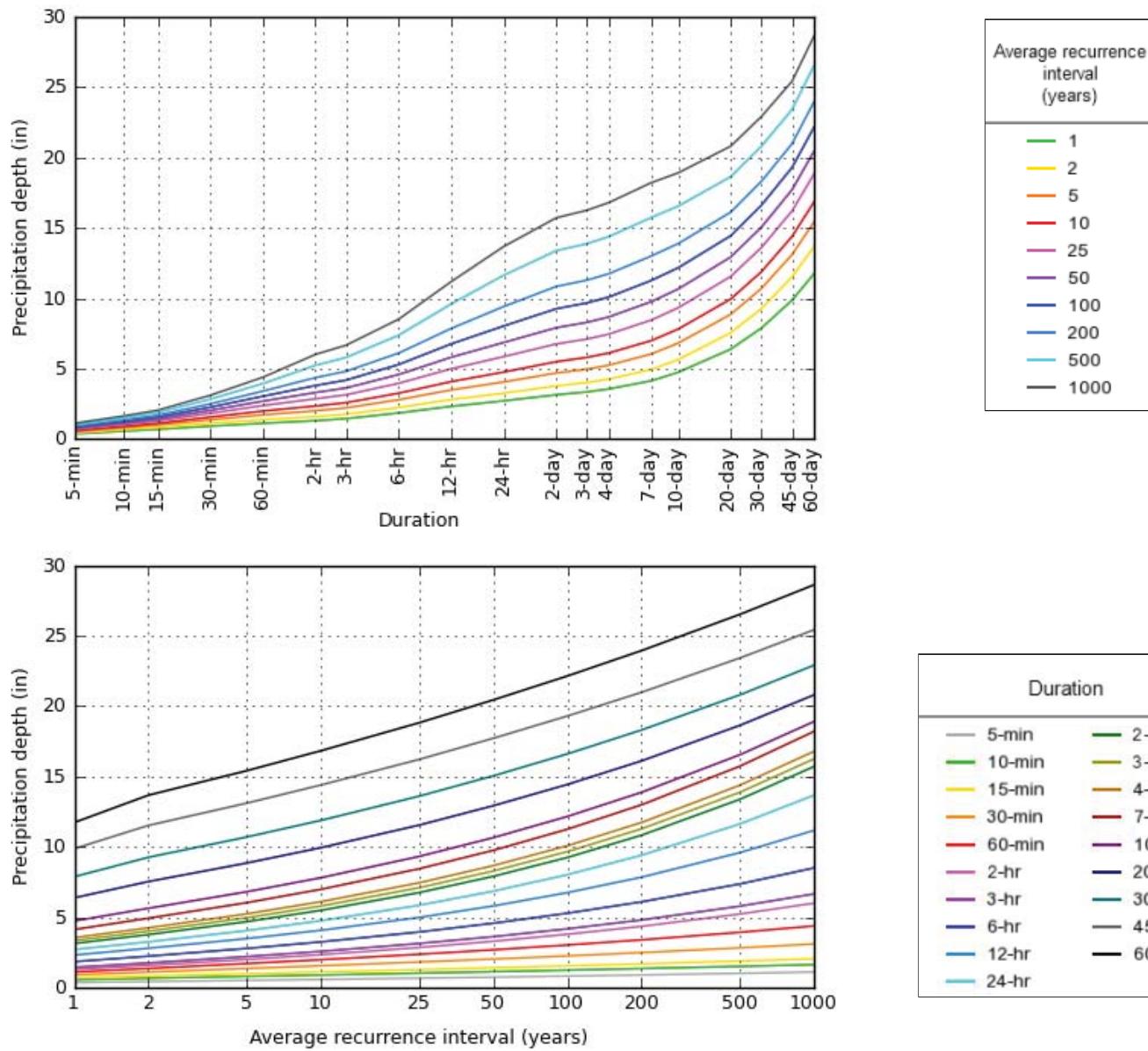
NOAA, National Weather Service, Silver Spring, Maryland

[PF tabular](#) | [PF graphical](#) | [Maps & aerials](#)

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	0.356 (0.319-0.398)	0.427 (0.382-0.477)	0.512 (0.457-0.571)	0.578 (0.516-0.644)	0.670 (0.594-0.745)	0.741 (0.654-0.822)	0.818 (0.717-0.906)	0.899 (0.784-0.996)	1.01 (0.875-1.12)	1.11 (0.948-1.23)
10-min	0.555 (0.498-0.621)	0.670 (0.599-0.748)	0.799 (0.714-0.892)	0.897 (0.801-0.999)	1.03 (0.914-1.14)	1.13 (1.00-1.26)	1.24 (1.09-1.38)	1.35 (1.18-1.50)	1.51 (1.30-1.67)	1.63 (1.40-1.81)
15-min	0.682 (0.612-0.763)	0.822 (0.735-0.918)	0.987 (0.882-1.10)	1.11 (0.990-1.24)	1.28 (1.13-1.42)	1.41 (1.24-1.56)	1.55 (1.36-1.72)	1.69 (1.47-1.87)	1.89 (1.63-2.09)	2.04 (1.75-2.26)
30-min	0.907 (0.814-1.01)	1.10 (0.988-1.23)	1.36 (1.21-1.52)	1.55 (1.38-1.73)	1.82 (1.61-2.02)	2.03 (1.79-2.25)	2.25 (1.98-2.50)	2.49 (2.17-2.75)	2.83 (2.44-3.13)	3.10 (2.65-3.43)
60-min	1.11 (0.998-1.24)	1.36 (1.22-1.52)	1.71 (1.53-1.91)	1.98 (1.77-2.21)	2.37 (2.10-2.63)	2.69 (2.37-2.98)	3.03 (2.66-3.36)	3.39 (2.96-3.76)	3.93 (3.39-4.35)	4.38 (3.75-4.84)
2-hr	1.29 (1.16-1.46)	1.58 (1.41-1.77)	2.00 (1.78-2.24)	2.34 (2.08-2.62)	2.85 (2.52-3.18)	3.29 (2.89-3.67)	3.79 (3.30-4.21)	4.35 (3.76-4.83)	5.23 (4.47-5.79)	6.00 (5.09-6.65)
3-hr	1.44 (1.29-1.64)	1.75 (1.56-1.99)	2.20 (1.96-2.50)	2.57 (2.28-2.91)	3.13 (2.76-3.54)	3.62 (3.17-4.08)	4.18 (3.63-4.69)	4.81 (4.14-5.39)	5.79 (4.93-6.48)	6.66 (5.61-7.46)
6-hr	1.84 (1.65-2.10)	2.23 (1.99-2.54)	2.78 (2.48-3.17)	3.25 (2.88-3.69)	3.95 (3.47-4.47)	4.57 (3.99-5.16)	5.29 (4.58-5.95)	6.10 (5.24-6.86)	7.37 (6.24-8.27)	8.51 (7.13-9.55)
12-hr	2.31 (2.05-2.64)	2.80 (2.48-3.19)	3.48 (3.08-3.96)	4.07 (3.58-4.63)	4.98 (4.35-5.63)	5.80 (5.03-6.55)	6.75 (5.79-7.59)	7.85 (6.66-8.81)	9.59 (8.01-10.7)	11.2 (9.21-12.5)
24-hr	2.71 (2.47-3.00)	3.25 (2.96-3.61)	4.05 (3.68-4.49)	4.75 (4.30-5.26)	5.85 (5.25-6.44)	6.85 (6.11-7.52)	8.03 (7.09-8.77)	9.41 (8.23-10.2)	11.6 (10.0-12.6)	13.7 (11.6-14.8)
2-day	3.14 (2.85-3.51)	3.77 (3.42-4.22)	4.68 (4.24-5.24)	5.49 (4.95-6.12)	6.75 (6.04-7.50)	7.90 (7.02-8.75)	9.25 (8.16-10.2)	10.8 (9.46-11.9)	13.4 (11.5-14.7)	15.7 (13.3-17.3)
3-day	3.34 (3.04-3.73)	4.01 (3.65-4.47)	4.96 (4.50-5.53)	5.80 (5.23-6.45)	7.10 (6.37-7.87)	8.29 (7.38-9.16)	9.66 (8.54-10.7)	11.3 (9.88-12.4)	13.9 (12.0-15.2)	16.3 (13.8-17.8)
4-day	3.55 (3.23-3.95)	4.25 (3.87-4.73)	5.24 (4.76-5.83)	6.10 (5.52-6.77)	7.45 (6.69-8.24)	8.67 (7.74-9.56)	10.1 (8.93-11.1)	11.7 (10.3-12.9)	14.4 (12.4-15.8)	16.8 (14.3-18.4)
7-day	4.13 (3.79-4.55)	4.93 (4.52-5.44)	6.03 (5.52-6.65)	6.98 (6.37-7.68)	8.44 (7.65-9.27)	9.75 (8.79-10.7)	11.3 (10.1-12.3)	13.0 (11.5-14.2)	15.7 (13.8-17.2)	18.2 (15.7-19.9)
10-day	4.73 (4.36-5.20)	5.64 (5.19-6.19)	6.81 (6.25-7.47)	7.81 (7.15-8.55)	9.32 (8.49-10.2)	10.7 (9.66-11.6)	12.2 (11.0-13.3)	13.9 (12.4-15.1)	16.5 (14.6-18.0)	18.9 (16.5-20.6)
20-day	6.38 (5.97-6.87)	7.54 (7.04-8.10)	8.85 (8.26-9.51)	9.94 (9.26-10.7)	11.5 (10.7-12.4)	12.9 (11.9-13.8)	14.4 (13.3-15.4)	16.1 (14.7-17.2)	18.6 (16.9-20.0)	20.8 (18.7-22.3)
30-day	7.88 (7.43-8.41)	9.26 (8.72-9.87)	10.7 (10.1-11.4)	11.9 (11.2-12.6)	13.6 (12.7-14.5)	15.0 (14.1-16.0)	16.6 (15.4-17.6)	18.3 (16.9-19.4)	20.8 (19.1-22.1)	22.9 (20.9-24.4)
45-day	9.87 (9.32-10.5)	11.5 (10.9-12.2)	13.1 (12.4-13.9)	14.4 (13.6-15.3)	16.2 (15.3-17.2)	17.7 (16.7-18.8)	19.3 (18.1-20.4)	21.0 (19.6-22.3)	23.4 (21.8-24.9)	25.4 (23.5-27.0)
60-day	11.7 (11.1-12.4)	13.7 (13.0-14.5)	15.4 (14.6-16.3)	16.8 (16.0-17.8)	18.8 (17.8-19.9)	20.4 (19.3-21.6)	22.1 (20.8-23.4)	24.0 (22.5-25.3)	26.5 (24.7-28.0)	28.6 (26.6-30.3)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

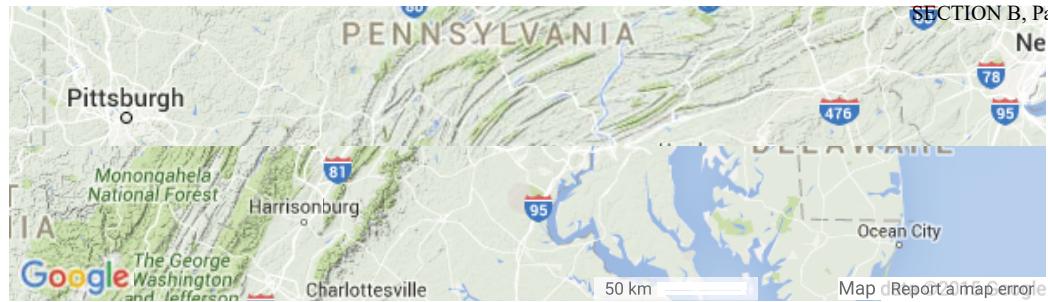
Please refer to NOAA Atlas 14 document for more information.

[Back to Top](#)

PF graphical

PDS-based depth-duration-frequency (DDF) curves
 Latitude: 39.7678°, Longitude: -77.4403°

NOAA Atlas 14, Volume 2, Version 3

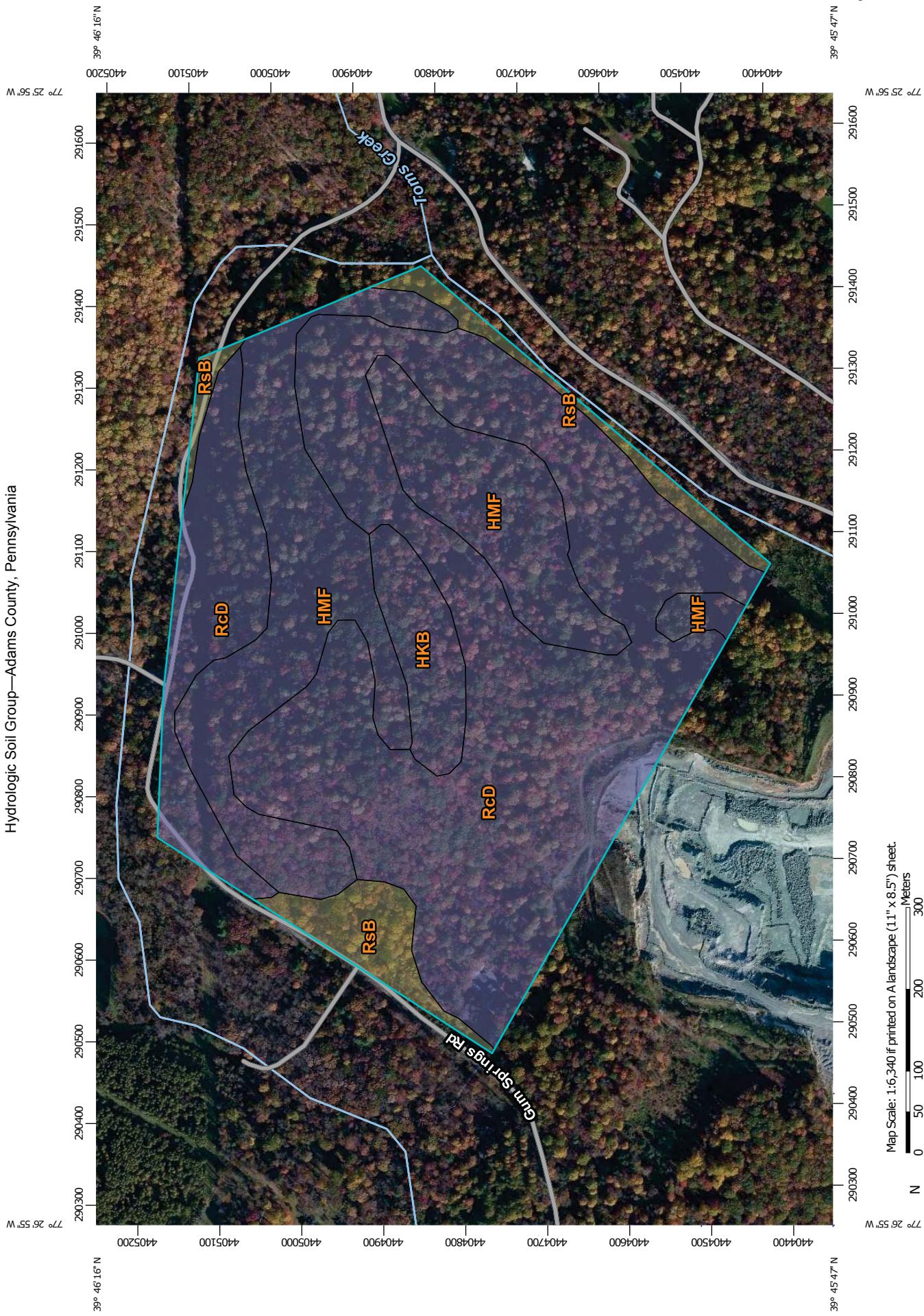

Created (GMT): Wed Dec 16 18:57:04 2015

[Back to Top](#)

Maps & aerials

Small scale terrain

[Back to Top](#)



[US Department of Commerce](#)
[National Oceanic and Atmospheric Administration](#)
[National Weather Service](#)
[National Water Center](#)
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

[Disclaimer](#)

ATTACHMENT 2

Web Soil Survey

MAP LEGEND

Area of Interest (AOI)		C		C/D
Soils		D		Not rated or not available
Soil Rating Polygons		A		A/D
		B		B/D
		C		C/D
		D		Not rated or not available
Water Features				Streams and Canals
Transportation				Rails
				Interstate Highways
				US Routes
				Major Roads
				Local Roads
Soil Rating Lines		A		Background
		A/D		Aerial Photography
		B		
		B/D		
		C		
		C/D		
		D		
		Not rated or not available		
Soil Rating Points		A		A/D
		B		B/D
		Not rated or not available		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service
Web Soil Survey URL: <http://websoilsurvey.nrcs.usda.gov>
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Adams County, Pennsylvania
Survey Area Data: Version 11, Nov 16, 2015

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 14, 2011—Nov 6, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Hydrologic Soil Group— Summary by Map Unit — Adams County, Pennsylvania (PA001)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
HKB	Highfield, Catoctin, and Myersville soils, 0 to 8 percent slopes, very stony	B	5.1	4.5%
HMF	Highfield and Catoctin channery silt loams, 25 to 70 percent slopes, very stony	B	31.0	27.6%
RcD	Ravenrock-Highfield-Rock outcrop complex, 15 to 25 percent slopes	B	69.1	61.4%
RsB	Rohrersville silt loam, 0 to 15 percent slopes, very stony	C/D	7.3	6.5%
Totals for Area of Interest			112.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

ATTACHMENT 3
Storm and Sanitary Analysis Outputs

ATTACHMENT 3
Storm and Sanitary Analysis Outputs

Project Description

File Name Northern Tract Ditch Design.SPF

Project Options

Flow Units CFS
 Elevation Type Elevation
 Hydrology Method SCS TR-55
 Time of Concentration (TOC) Method SCS TR-55
 Link Routing Method Hydrodynamic
 Enable Overflow Ponding at Nodes YES
 Skip Steady State Analysis Time Periods NO

Analysis Options

Start Analysis On Jan 13, 2016 00:00:00
 End Analysis On Jan 15, 2016 00:00:00
 Start Reporting On Jan 13, 2016 00:00:00
 Antecedent Dry Days 0 days
 Runoff (Dry Weather) Time Step 0 01:00:00 days hh:mm:ss
 Runoff (Wet Weather) Time Step 0 00:05:00 days hh:mm:ss
 Reporting Time Step 0 00:01:00 days hh:mm:ss
 Routing Time Step 30 seconds

Rainfall Details

SN	Rain Gage ID	Data Source	Data Source ID	Rainfall Type	Rain Units	State	County	Return Period (years)	Rainfall Depth (inches)	Rainfall Distribution
1	Rain Gage-01	Time Series	100-year	Cumulative	inches	Pennsylvania	Adams	100	8.03	SCS Type II 24-hr

Subbasin Summary

SN ID	Subbasin Number	Area (ac)	Weighted Curve Number	Total Rainfall (in)	Total Runoff (in)	Total Runoff (ac-in)	Peak Runoff (cfs)	Time of Concentration (days hh:mm:ss)
				Total Runoff (in)	Total Runoff (ac-in)	Peak Runoff (cfs)		
1 CD-1	11.33	86.00	8.03	6.36	72.06	100.95	0	00:07:41
2 CD-10	4.40	86.00	8.03	6.36	27.98	42.28	0	00:05:00
3 CD-2	33.97	86.00	8.03	6.36	216.05	280.66	0	00:10:41
4 CD-3	4.50	86.00	8.03	6.36	28.62	43.21	0	00:05:00
5 CD-4	7.92	86.00	8.03	6.36	50.37	76.09	0	00:05:00
6 CD-5	6.85	86.00	8.03	6.36	43.57	65.76	0	00:05:00
7 CD-6	8.43	86.00	8.03	6.36	53.61	80.35	0	00:05:18
8 CD-7	1.75	86.00	8.03	6.36	11.13	16.78	0	00:05:00
9 CD-8	1.60	86.00	8.03	6.36	10.18	15.36	0	00:05:00
10 CD-9	4.20	86.00	8.03	6.36	26.71	40.32	0	00:05:00

Subbasin Hydrology

Subbasin : CD-1

Input Data

Area (ac) 11.33
 Weighted Curve Number 86.00
 Rain Gage ID Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	11.33	-	86.00
Composite Area & Weighted CN	11.33		86.00

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

$$Tc = (0.007 * (n * Lf)^{0.8}) / ((P^{0.5}) * (Sf^{0.4}))$$

Where :

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation :

V = 16.1345 * (Sf^{0.5}) (unpaved surface)

V = 20.3282 * (Sf^{0.5}) (paved surface)

V = 15.0 * (Sf^{0.5}) (grassed waterway surface)

V = 10.0 * (Sf^{0.5}) (nearly bare & untilled surface)

V = 9.0 * (Sf^{0.5}) (cultivated straight rows surface)

V = 7.0 * (Sf^{0.5}) (short grass pasture surface)

V = 5.0 * (Sf^{0.5}) (woodland surface)

V = 2.5 * (Sf^{0.5}) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

Channel Flow Equation :

V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

Where :

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

R = Hydraulic Radius (ft)

Aq = Flow Area (ft²)

Wp = Wetted Perimeter (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

n = Manning's roughness

	Subarea A	Subarea B	Subarea C
Sheet Flow Computations			
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	11.2	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.41	0.00	0.00
Computed Flow Time (min) :	4.08	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	706	0.00	0.00
Slope (%) :	9.3	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	4.92	0.00	0.00
Computed Flow Time (min) :	2.39	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.035	0.00	0.00
Flow Length (ft) :	435	0.00	0.00
Channel Slope (%) :	2.0	0.00	0.00
Cross Section Area (ft ²) :	11.3	0.00	0.00
Wetted Perimeter (ft) :	11.4	0.00	0.00
Velocity (ft/sec) :	5.99	0.00	0.00
Computed Flow Time (min) :	1.21	0.00	0.00
Total TOC (min)	7.69		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	100.95
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:07:41

Subbasin : CD-2**Input Data**

Area (ac)	33.97
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	33.97	-	86.00
Composite Area & Weighted CN	33.97		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	8.1	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.36	0.00	0.00
Computed Flow Time (min) :	4.65	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	795	0.00	0.00
Slope (%) :	12.0	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	5.59	0.00	0.00
Computed Flow Time (min) :	2.37	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	1523	0.00	0.00
Channel Slope (%) :	2.0	0.00	0.00
Cross Section Area (ft ²) :	16.6	0.00	0.00
Wetted Perimeter (ft) :	13.5	0.00	0.00
Velocity (ft/sec) :	6.91	0.00	0.00
Computed Flow Time (min) :	3.67	0.00	0.00
Total TOC (min)	10.69		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	280.66
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:10:41

Subbasin : CD-3**Input Data**

Area (ac) 4.50
 Weighted Curve Number 86.00
 Rain Gage ID Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	4.50	-	86.00
Composite Area & Weighted CN	4.50		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	23.1	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.55	0.00	0.00
Computed Flow Time (min) :	3.06	0.00	0.00

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	26	0.00	0.00
Slope (%) :	48	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	11.18	0.00	0.00
Computed Flow Time (min) :	0.04	0.00	0.00

Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	1090	0.00	0.00
Channel Slope (%) :	10	0.00	0.00
Cross Section Area (ft ²) :	5.1	0.00	0.00
Wetted Perimeter (ft) :	7.5	0.00	0.00
Velocity (ft/sec) :	10.41	0.00	0.00
Computed Flow Time (min) :	1.75	0.00	0.00
Total TOC (min)	4.84		

Subbasin Runoff Results

Total Rainfall (in) 8.03
 Total Runoff (in) 6.36
 Peak Runoff (cfs) 43.21
 Weighted Curve Number 86.00
 Time of Concentration (days hh:mm:ss) 0 00:04:50

Subbasin : CD-4**Input Data**

Area (ac)	7.92
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	7.92	-	86.00
Composite Area & Weighted CN	7.92		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	23.4	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.55	0.00	0.00
Computed Flow Time (min) :	3.04	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	230	0.00	0.00
Slope (%) :	28.7	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	8.64	0.00	0.00
Computed Flow Time (min) :	0.44	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	515	0.00	0.00
Channel Slope (%) :	2	0.00	0.00
Cross Section Area (ft ²) :	12.2	0.00	0.00
Wetted Perimeter (ft) :	11.8	0.00	0.00
Velocity (ft/sec) :	6.16	0.00	0.00
Computed Flow Time (min) :	1.39	0.00	0.00
Total TOC (min)	4.88		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	76.09
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:04:53

Subbasin : CD-5**Input Data**

Area (ac)	6.85
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	6.85	-	86.00
Composite Area & Weighted CN	6.85		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	37	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.66	0.00	0.00
Computed Flow Time (min) :	2.53	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	50	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	11.41	0.00	0.00
Computed Flow Time (min) :	0.15	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	745	0.00	0.00
Channel Slope (%) :	2.5	0.00	0.00
Cross Section Area (ft ²) :	11.3	0.00	0.00
Wetted Perimeter (ft) :	11.4	0.00	0.00
Velocity (ft/sec) :	6.69	0.00	0.00
Computed Flow Time (min) :	1.86	0.00	0.00
Total TOC (min)	4.53		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	65.76
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:04:32

Subbasin : CD-6**Input Data**

Area (ac)	8.43
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	8.43	-	86.00
Composite Area & Weighted CN	8.43		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	26.1	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.57	0.00	0.00
Computed Flow Time (min) :	2.91	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	58	0.00	0.00
Slope (%) :	34.1	0.00	0.00
Surface Type :	Unpaved	ire & until Unpaved	
Velocity (ft/sec) :	9.42	0.00	0.00
Computed Flow Time (min) :	0.10	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	.035	.035
Flow Length (ft) :	784	295	53
Channel Slope (%) :	3	10	6
Cross Section Area (ft ²) :	10.8	6.9	8.4
Wetted Perimeter (ft) :	10.7	8.8	9.5
Velocity (ft/sec) :	7.42	11.45	9.61
Computed Flow Time (min) :	1.76	0.43	0.09
Total TOC (min)	5.30		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	80.35
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:05:18

Subbasin : CD-7**Input Data**

Area (ac)	1.75
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	1.70	-	86.00
Composite Area & Weighted CN	1.70		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	29.5	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.60	0.00	0.00
Computed Flow Time (min) :	2.77	0.00	0.00

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	155	10	0.00
Slope (%) :	45	100	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	10.82	16.13	0.00
Computed Flow Time (min) :	0.24	0.01	0.00

Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	134	0.00	0.00
Channel Slope (%) :	2	0.00	0.00
Cross Section Area (ft ²) :	2	0.00	0.00
Wetted Perimeter (ft) :	2.23	0.00	0.00
Velocity (ft/sec) :	5.60	0.00	0.00
Computed Flow Time (min) :	0.40	0.00	0.00

Total TOC (min)3.42

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	16.78
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:03:25

Subbasin : CD-8**Input Data**

Area (ac)	1.60
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	1.60	-	86.00
Composite Area & Weighted CN	1.60		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	27	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.58	0.00	0.00
Computed Flow Time (min) :	2.87	0.00	0.00

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	259	0.00	0.00
Slope (%) :	31	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	8.98	0.00	0.00
Computed Flow Time (min) :	0.48	0.00	0.00

Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	219	0.00	0.00
Channel Slope (%) :	2	0.00	0.00
Cross Section Area (ft ²) :	2	0.00	0.00
Wetted Perimeter (ft) :	2.23	0.00	0.00
Velocity (ft/sec) :	5.60	0.00	0.00
Computed Flow Time (min) :	0.65	0.00	0.00

Total TOC (min)4.00

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	15.36
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:04:00

Subbasin : CD-9**Input Data**

Area (ac)	4.20
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	4.20	-	86.00
Composite Area & Weighted CN	4.20		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	35.1	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.64	0.00	0.00
Computed Flow Time (min) :	2.59	0.00	0.00

Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	450	0.00	0.00
Slope (%) :	23.5	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	7.82	0.00	0.00
Computed Flow Time (min) :	0.96	0.00	0.00

Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.035	0.00	0.00
Flow Length (ft) :	83	0.00	0.00
Channel Slope (%) :	2	0.00	0.00
Cross Section Area (ft ²) :	7.1	0.00	0.00
Wetted Perimeter (ft) :	7.7	0.00	0.00
Velocity (ft/sec) :	5.70	0.00	0.00
Computed Flow Time (min) :	0.24	0.00	0.00

Total TOC (min)3.79

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	40.32
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:03:47

Subbasin : CD-10**Input Data**

Area (ac)	4.40
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	4.40	-	86.00
Composite Area & Weighted CN	4.40		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	33.7	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.63	0.00	0.00
Computed Flow Time (min) :	2.63	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	226	0.00	0.00
Slope (%) :	42.8	0.00	0.00
Surface Type :	Unpaved	Unpaved	Unpaved
Velocity (ft/sec) :	10.56	0.00	0.00
Computed Flow Time (min) :	0.36	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.035	0.00	0.00
Flow Length (ft) :	186	0.00	0.00
Channel Slope (%) :	2	0.00	0.00
Cross Section Area (ft ²) :	7.4	0.00	0.00
Wetted Perimeter (ft) :	7.9	0.00	0.00
Velocity (ft/sec) :	5.76	0.00	0.00
Computed Flow Time (min) :	0.54	0.00	0.00
Total TOC (min)	3.52		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	42.28
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:03:31

ATTACHMENT 4
North American Green Software Output

**NORTH
AMERICAN
GREEN®**

SECTION B, Page 65 of 70
 Tensar International Corporation
 5401 St. Wendel-Cynthiana Road
 Poseyville, Indiana 47633
 Tel. 800.772.2040
 Fax 812.867.0247
 www.nagreen.com

**Erosion Control Materials Design Software
Version 5.0**

**Project Name: SGI
Project Number: 84066
Channel Name: CD-1**

Discharge	100
Peak Flow Period	24
Channel Slope	0.02
Channel Bottom Width	5
Left Side Slope	2
Right Side Slope	2
Low Flow Liner	
Retardance Class	C
Vegetation Type	Mix (Sod & Bunch)
Vegetation Density	Fair 50-75%
Soil Type	Silt Loam

P550 - Class C - Mix (Sod & Bunch) - Fair 50-75%

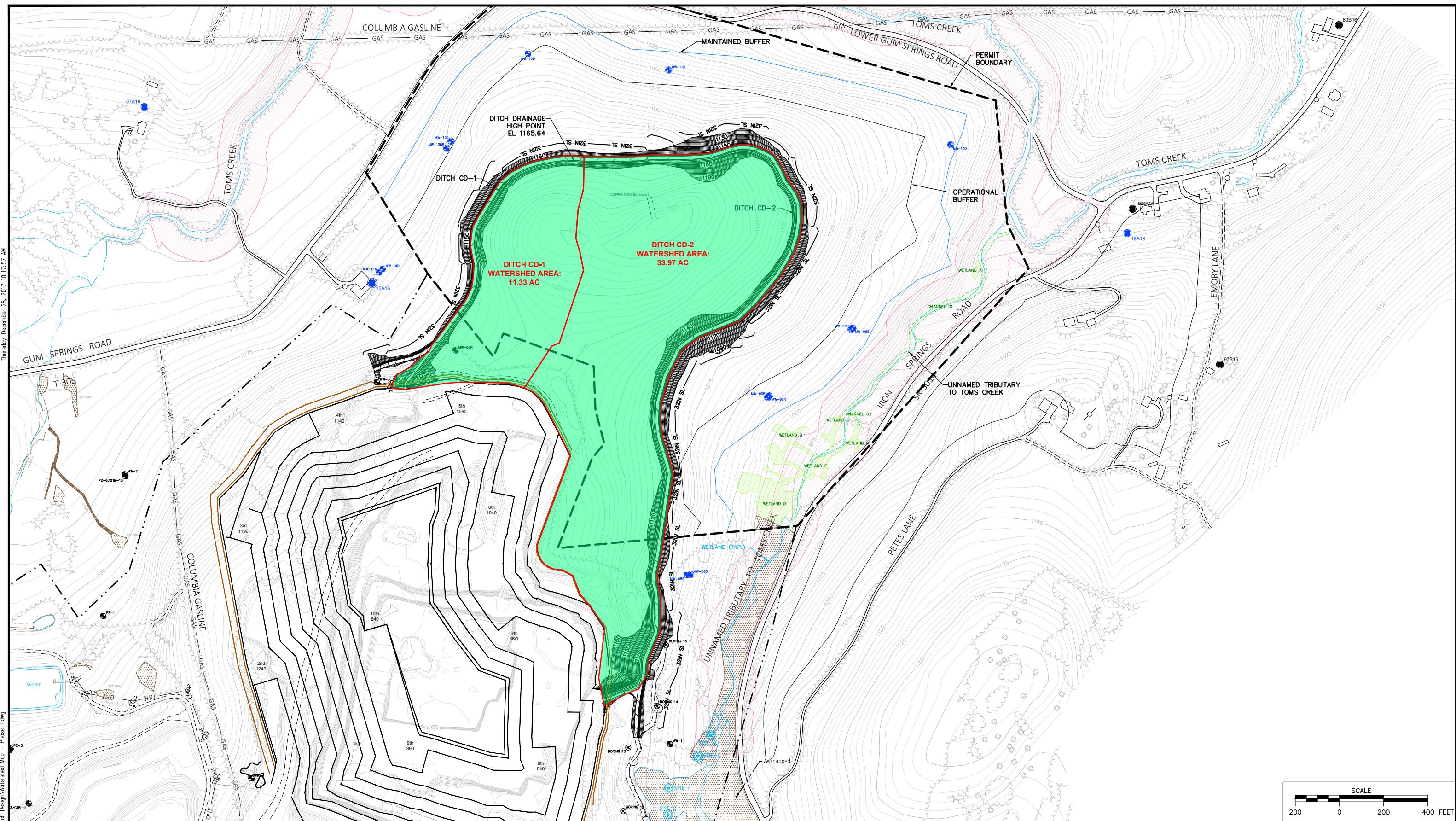
Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
P550 Unvegetated	Straight	100 cfs	8.86 ft/s	1.43 ft	0.024	3.25 lbs/ft ²	1.79 lbs/ft ²	1.82	STABLE	E
P550 Reinforced Vegetation	Straight	100 cfs	5.94 ft/s	1.91 ft	0.041	12 lbs/ft ²	2.38 lbs/ft ²	5.04	STABLE	E
Underlying Substrate	Straight	100 cfs	5.94 ft/s	1.91 ft	--	3.25 lbs/ft ²	0.123 lbs/ft ²	26.38	STABLE	--

**NORTH
AMERICAN
GREEN®**

SECTION B, Page 66 of 70
 Tensar International Corporation
 5401 St. Wendel-Cynthiana Road
 Poseyville, Indiana 47633
 Tel. 800.772.2040
 Fax 812.867.0247
 www.nagreen.com

**Erosion Control Materials Design Software
Version 5.0**

**Project Name: SGI
Project Number: 84066
Channel Name: CD-2**


Discharge	285
Peak Flow Period	24
Channel Slope	0.02
Channel Bottom Width	5
Left Side Slope	2
Right Side Slope	2
Low Flow Liner	
Retardance Class	C
Vegetation Type	Mix (Sod & Bunch)
Vegetation Density	Fair 50-75%
Soil Type	Silt Loam

P550 - Class C - Mix (Sod & Bunch) - Fair 50-75%

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
P550 Unvegetated	Straight	285 cfs	16.8 ft/s	1.92 ft	0.015	3.25 lbs/ft ²	2.4 lbs/ft ²	1.36	STABLE	E
P550 Reinforced Vegetation	Straight	285 cfs	8.85 ft/s	2.95 ft	0.035	12 lbs/ft ²	3.69 lbs/ft ²	3.26	STABLE	E
Underlying Substrate	Straight	285 cfs	8.85 ft/s	2.95 ft	--	3.25 lbs/ft ²	0.206 lbs/ft ²	15.75	STABLE	--

ATTACHMENT 5

Watershed Maps

NOTES / REVISIONS

SEAL:

D'APPOLONIA

701 RODI ROAD, FLOOR 2
PITTSBURGH, PENNSYLVANIA 15235-4559
(412) 856-9440 FAX (412) 856-9535

PROJECT NUMBER: 152595
FILE NAME: W-L-1-LM

SGI

SPECIALTY GRANULES LLC

CHARMIAN SITE

PHASE 1 WATERSHED MAP

22415 - 12-GLUCURONIC ACID, MONO-2,3,4,6-TETRA-
O-GLUCOSYL-1-O-GLUCURONIDE

Thursday, December 28, 2017 10:34:50 AM

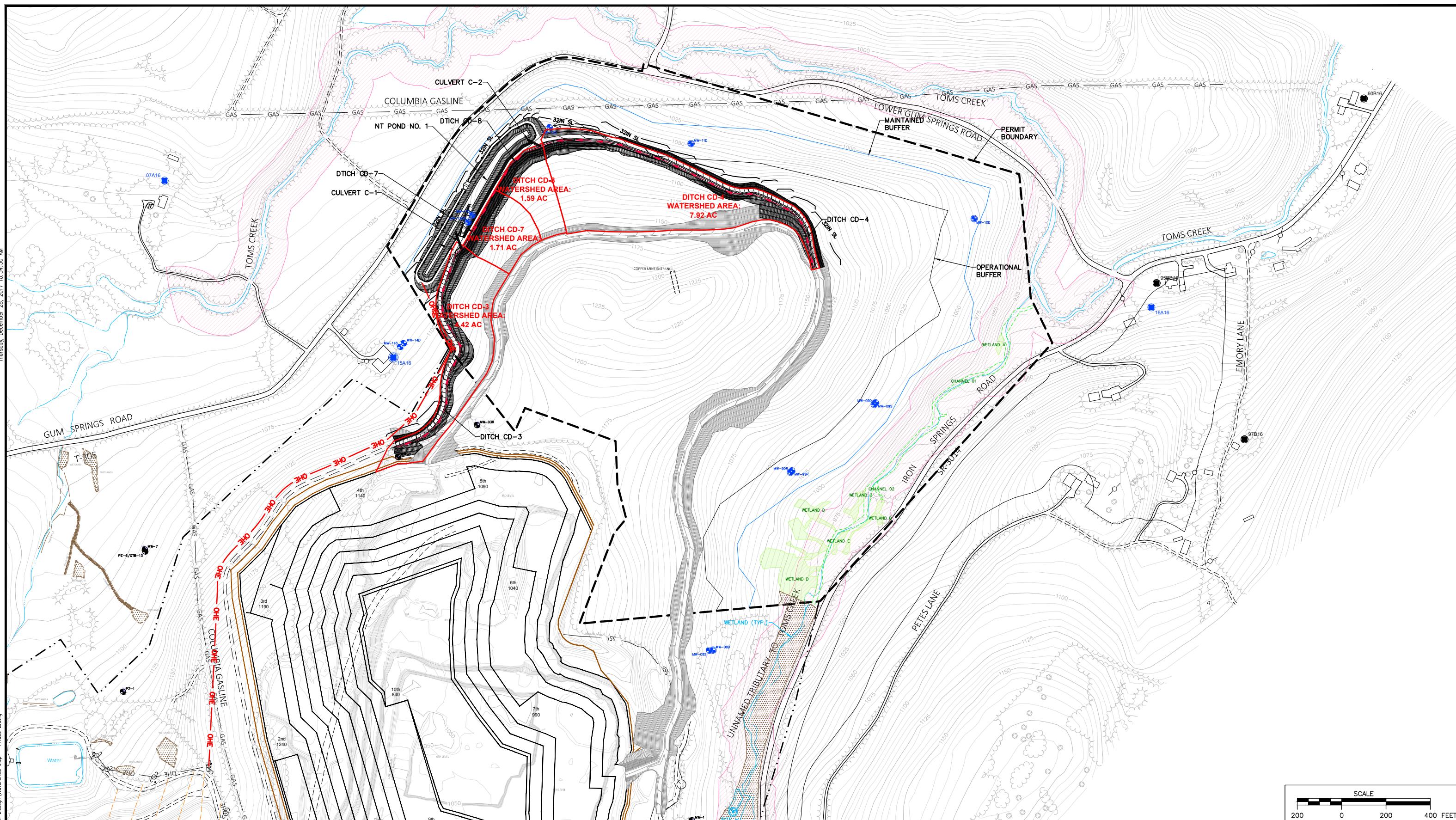
Phase 2.dwg

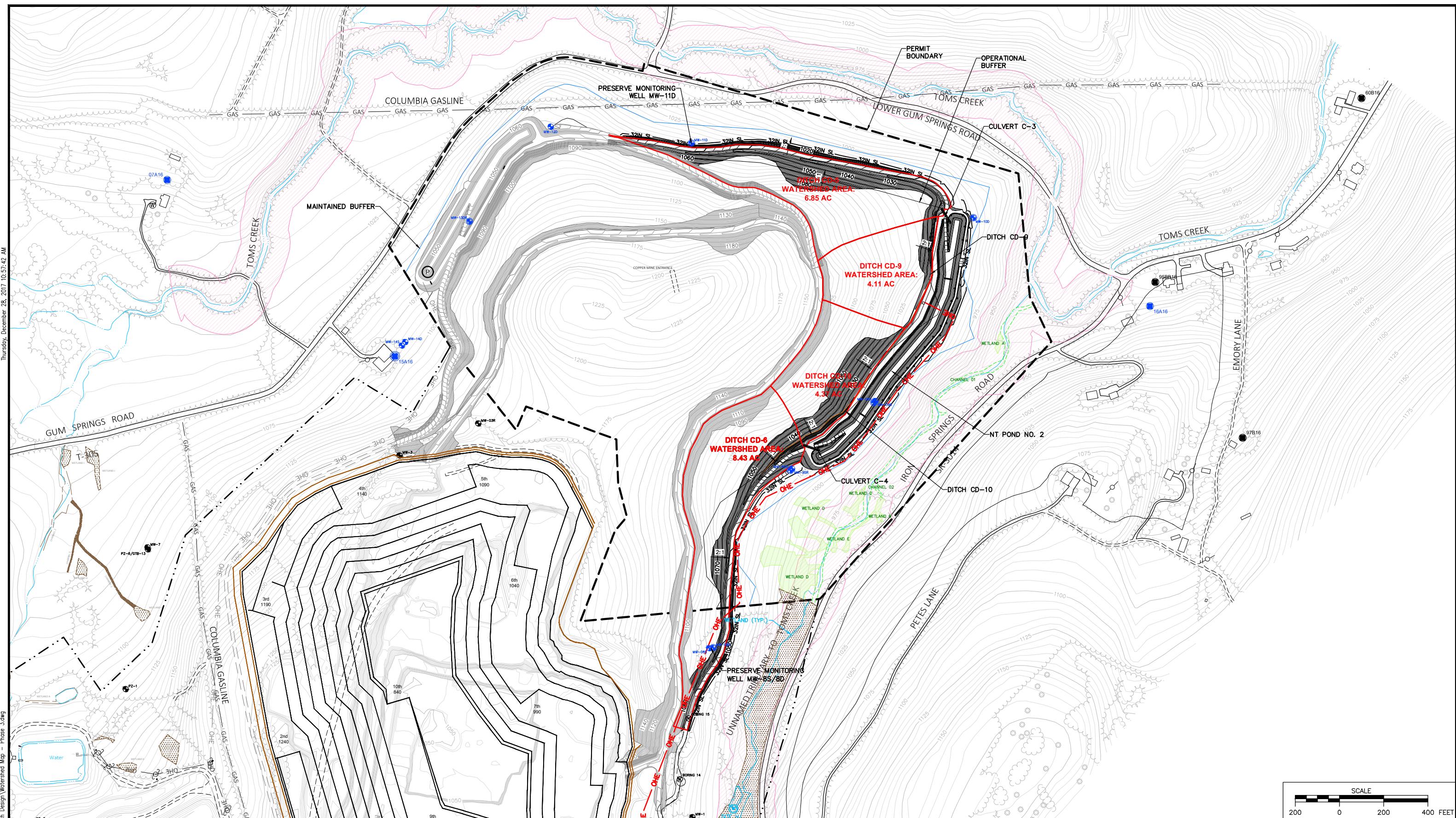
NOTES / REVISIONS

ISSUED FOR	DATE	REV.	REVISION DESCRIPTION	MADE BY	CHKD BY	DATE
		1				
		2				
		3				
		4				

SEAL:

D'APPOLONIA
701 RODI ROAD, FLOOR 2
PITTSBURGH, PENNSYLVANIA 15235-4559
(412) 856-9440 FAX (412) 856-9535


PROJECT NUMBER: 152596
FILE NAME: Watershed Map - Phase 2.dwg



DRAWN BY: MJD DATE: 12/18/2017
CHECKED BY: CHKD BY DATE: DATE
SCALE: AS SHOWN DRAWING NO. 1 REV. 0

SPECIALTY GRANULES LLC**CHARMIAN SITE**

PHASE 2
WATERSHED MAP

NOTES / REVISIONS

N: 2015\52596 -		4				
			3			
			2			
			1			
ISSUED FOR	DATE	REV.	REVISION DESCRIPTION	MADE BY	CHKD BY	DATE

9

D'APPOLONIA

701 RODI ROAD, FLOOR 2
PITTSBURGH, PENNSYLVANIA 15235-4559
(412) 856-9440 FAX (412) 856-9535

PROJECT NUMBER: 152596

The SGI logo, consisting of the letters "SGI" in a white, bold, sans-serif font, enclosed within a thick white rectangular border on a dark green background.

SPECIALTY GRANULES LLC

CHARMIAN SITE

PHASE 3 WATERSHED MAP

113 of 113 | Page | 2021-09-20 | [Report Abuse](#)

SECTION C
DITCH RIGID LINING DESIGN

D'APPOLONIA

By: MJD Date: 10/18/16 Subject: Ditch Rigid Lining Design
 Chkd. By: AMR Date: 10/26/2016 Northern Tract Quarry

Sheet No.: 1 of 5
 Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\[Ditch Rigid Lining Design_R0.xls]Calcs

COLLECTION DITCH RIGID LINING DESIGN NORTHERN TRACT QUARRY, CHARMIAN SITE SPECIALTY GRANULES, INC. ADAMS COUNTY, PENNSYLVANIA

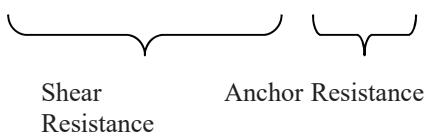
PURPOSE

The purpose of these calculations is to design the rigid lining to be installed in various ditches at the Northern Tract Quarry located in Adams County, Pennsylvania. Fabric-formed concrete (Fabriflorm Unimat) lining, incorporated with steel anchors as applicable, will be used. Design formulas were provided from Fabriflorm's technical data and specification sheets.

DESIGN FORMULAS

Tractive Stress:

$$\tau_b = \gamma_w * R * S \quad \text{where,} \quad (\text{Ref. #1})$$


γ_w = Unit weight of water = 62.4 lb/ft³

R = hydraulic radius of channel flowing at design depth

S = channel bed slope

Resisting Force of Revetment:

$$\tau_{r,b} = \frac{t(\gamma_R - \gamma_w)}{\sqrt{1+S_o^2}} (\tan\delta - S_o) \left(\frac{d}{y} \right) + A_s \phi \frac{f_s}{A_R} \quad \text{where,} \quad (\text{Ref. #1})$$

t = thickness of revetment = 6 inches
 γ_R = unit weight of revetment = 130 pcf
 δ = internal friction angle at subgrade/revetment interface
 S_o = channel bed slope
 A_s = area of steel anchor reinforcement
 Φ = capacity reduction for shear = 0.85
 f_s = yield stress of anchor support
 A_R = area of revetment supported
 d = depth of protected ditch
 y = depth of water in ditch

By: MJDDate: 10/18/16Subject: Ditch Rigid Lining DesignSheet No.: 2 of 5Chkd. By: AMRDate: 10/26/2016

Northern Tract Quarry

Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\[\Ditch Rigid Lining Design_R0.xls]Calcs

LINING STABILITY ANALYSIS

Channel Designation	R ⁽¹⁾ (ft)	S (S = S _o) (ft/ft)	δ ⁽²⁾ (Degrees)	D _{anchor} (inches)	A _S (in ²)	f _s (psi)	Max. Anchor Spacing (ft)	
							Longitudinal	Transverse
CD-3	0.70	0.10	19	0	0.000	0	20	5
CD-4	0.70	0.10	19	0	0.000	0	20	1
CD-5	0.70	0.10	19	0	0.000	0	20	1
CD-6	0.80	0.10	19	0	0.000	0	20	1

Channel Designation	y, Flow Depth (ft)	d, Ditch Depth (ft)	Bottom Width (ft)	Lining Width (ft)	T _b (lb/ft ²)	T _{r,b} (lb/ft ²)	Req'd Factor of Safety	Factor of Safety
CD-3	1.00	3	3	16.4	4.4	24.7	1.5	5.6
CD-4	1.00	3	5	18.4	4.4	24.7	1.5	5.6
CD-5	0.95	3	5	18.4	4.4	25.9	1.5	5.9
CD-6	1.20	3	3.5	16.9	5.0	20.5	1.5	4.1

Notes:

1. The hydraulic radius (R = A/P) of each ditch is presented in the associated ditch design calculation.
2. It is assumed that the fabric-formed concrete lined ditches will be constructed on a subgrade consisting of silty, sandy clay. The subgrade will be compacted and graded to a relatively uniform surface.
3. The side slopes for each ditch are 2 horizontal to 1 vertical (2H:1V).

D'APPOLONIA

By: MJD Date: 10/18/16 Subject: Ditch Rigid Lining Design
Chkd. By: AMR Date: 10/26/2016 Northern Tract Quarry

Sheet No.: 3 of 5
Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\[Ditch Rigid Lining Design_R0.xls]Calcs

SOIL PROPERTIES

The design soil properties were based upon geotechnical boring logs, adopt the following material properties:

Cohesion, c = 125 psf
Internal Friction Angle, Φ = 28 degrees
Unit Weight, γ = 130 pcf

D'APPOLONIA

By: MJD Date: 10/18/16 Subject: Ditch Rigid Lining Design
 Chkd. By: AMR Date: 10/26/2016 Northern Tract Quarry

Sheet No.: 4 of 5
 Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design[Ditch Rigid Lining Design_R0.xls]Calcs

ALLOWABLE BEARING CAPACITY OF SOIL

Considering Terzaghi's Bearing Capacity Theory:

$$q_u = cN_c + \gamma DN_q + 0.5\gamma BN_\gamma \quad \text{where,}$$

c = soil cohesion =	125	psf
N _c = bearing capacity factor =	32.4	Considering $\Phi = 28^\circ$
γ = unit weight of soil =	130	pcf
D = depth of foundation embedment =	0	feet
N _q = bearing capacity factor =	18.6	Considering $\Phi = 28^\circ$
B = footing width =	2.5	inches
N _y = bearing capacity factor =	15.7	Considering $\Phi = 28^\circ$

$$q_u = 4,263 \quad \text{psf}$$

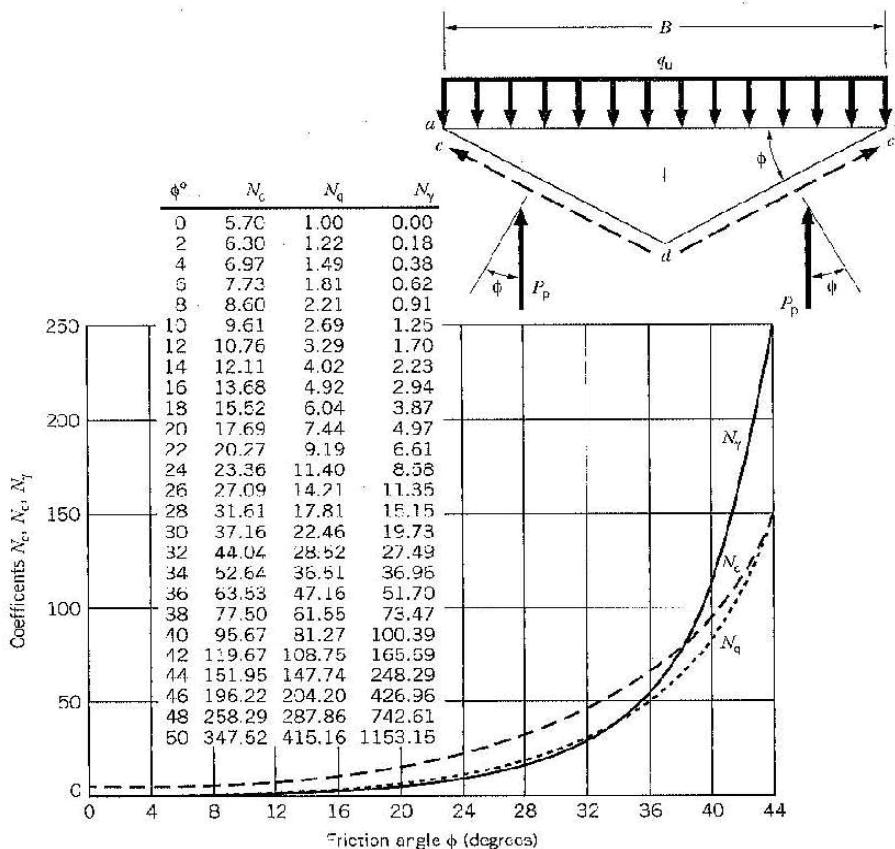
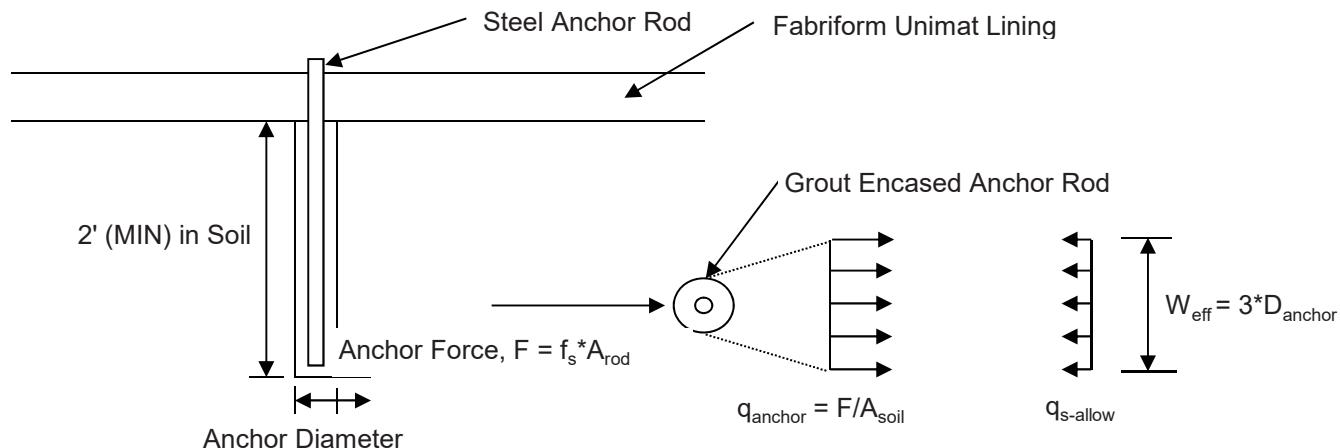


Table 1 - Excerpted From Reference 2

D'APPOLONIA


By: MJD Date: 10/18/16 Subject: Ditch Rigid Lining Design
 Chkd. By: AMR Date: 10/26/2016 Northern Tract Quarry

Sheet No.: 5 of 5
 Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Design\[\Ditch Rigid Lining Design_R0.xls]Calcs

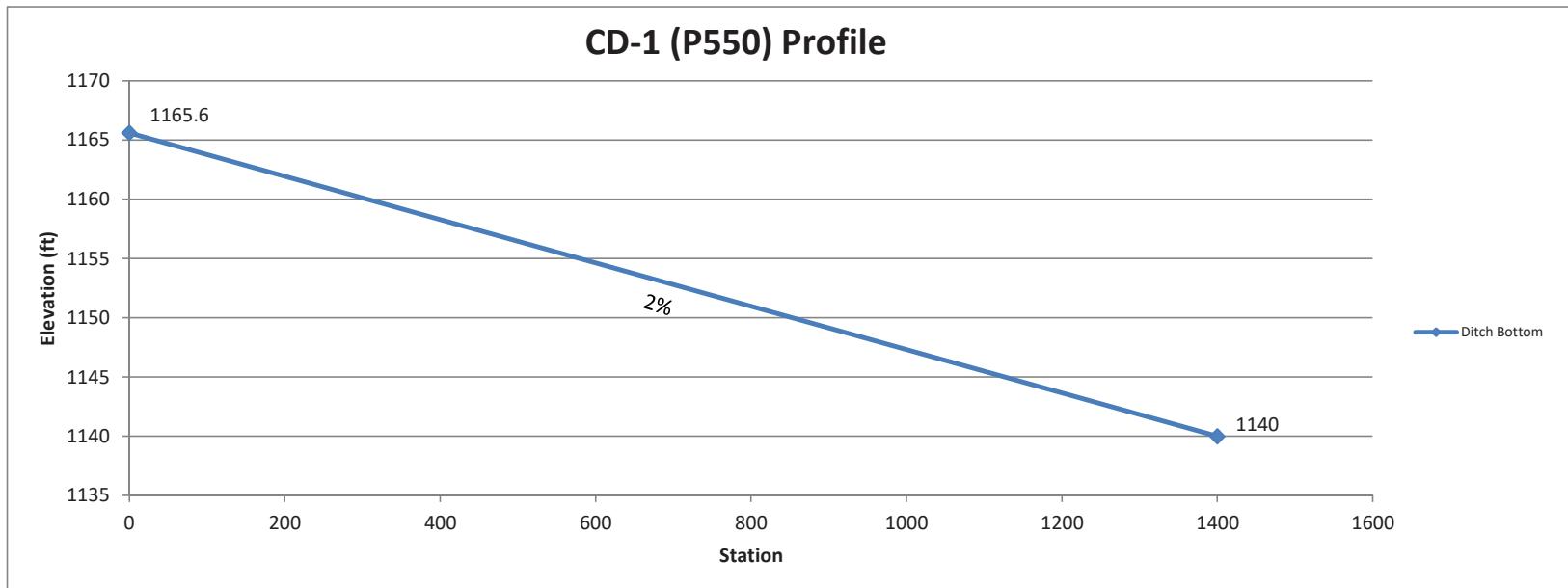
FABRIC-FORMED CONCRETE LINING ANCHOR DESIGN

The following calculation will check the bearing capacity of the fabric-formed concrete lining anchor rods embedded in soil subgrade. (i.e. The bearing resistance of the soil against the horizontal pressure of the anchor rod.)

SECTION

PLAN

Yield Stress of Anchor, f_s =	20,000	psi
Anchor Rod Bar Diameter, D_{rod} =	0.5	inches
Anchor Rod Area, A_{rod} =	0.196	in ² (cross-sectional area)
Anchor Base Diameter, D_{anchor} =	2.5	inches (base including steel anchor and surrounding grout)
Effective Width of Resisting Soil, W_{eff} =	0.625	feet (3 times anchor width per AASHTO 3.11.5.6)
Length of Anchor, L_{anchor} =	2	feet
Area of Resisting Soil, A_{soil} =	1.25	ft ²
Max. Anchor Rod Force, F =	3,927	lb
Soil Pressure Due to Anchor, q_{anchor} =	3,142	psf
Allowable Bearing Capacity of Soil, $q_{s-allow}$ =	4,263	psf
Factor of Safety Against Soil Failure =	1.4	

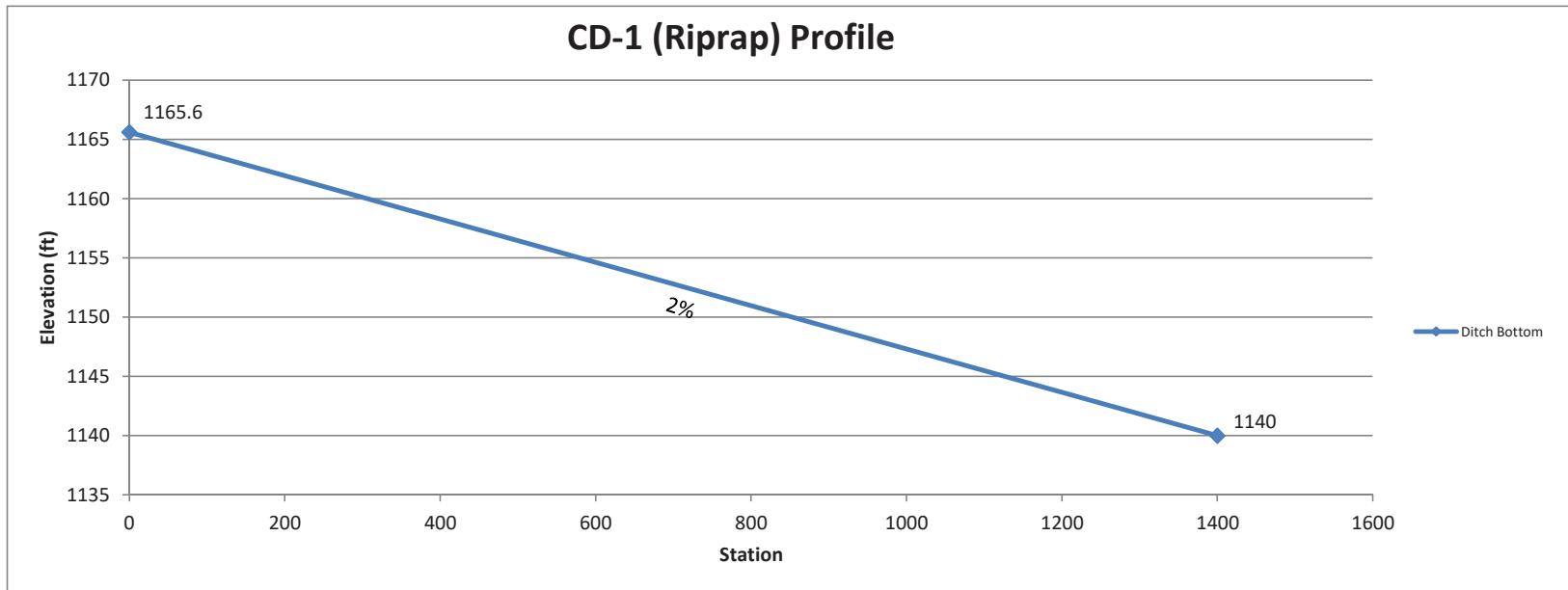

Anchor induced soil pressure less than allowable bearing capacity. OK

SECTION D
COLLECTION AND DIVERSION DITCH FORM 12.1

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-1 (P550)	*Refer to Ditch Profile		11.3	100	10	86	100	0.02	0.1	P550 Vegetated	0.0409	5	2/2	1.91	16.83	12.64	5.94	100	2.00	13.00	109.4
CD-1 (P550)	*Refer to Ditch Profile		11.3	100	10	86	100	0.02	0.1	P550 Vegetated	0.0409	5	2/2	1.91	16.83	12.64	5.94	100	2.00	13.00	109.4	

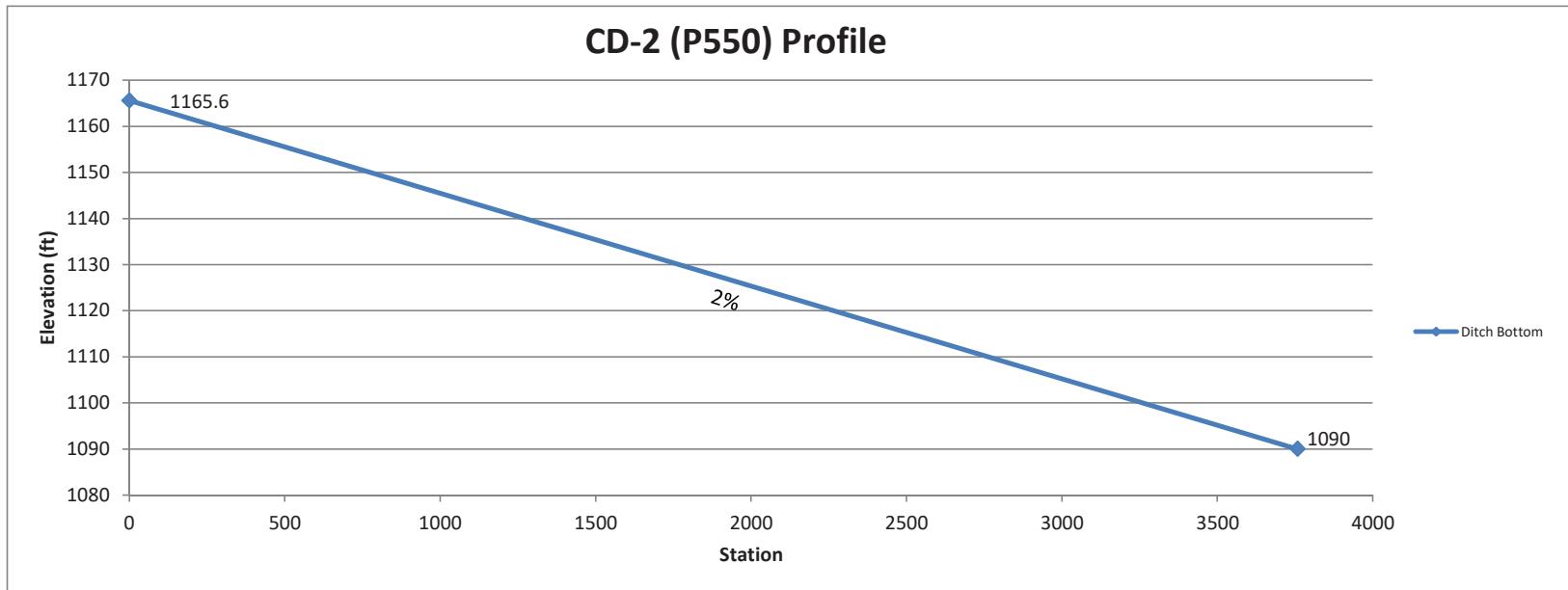


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:						
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:						
Channel Cross-Section Type: Triangular or Trapezoidal																					
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full			
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)
	CD-1 (Riprap)	*Refer to Ditch Profile		11.3	100	10	86	100	0.02	0.1	Riprap R-4	0.0418	5	2/2	1.93	17.11	12.72	5.84	100	2.00	13.00
CD-1 (Riprap)	*Refer to Ditch Profile		11.3	100	10	86	100	0.02	0.1	0.0418		5	2/2	1.93	17.11	12.72	5.84	100	2.00	13.00	106.9

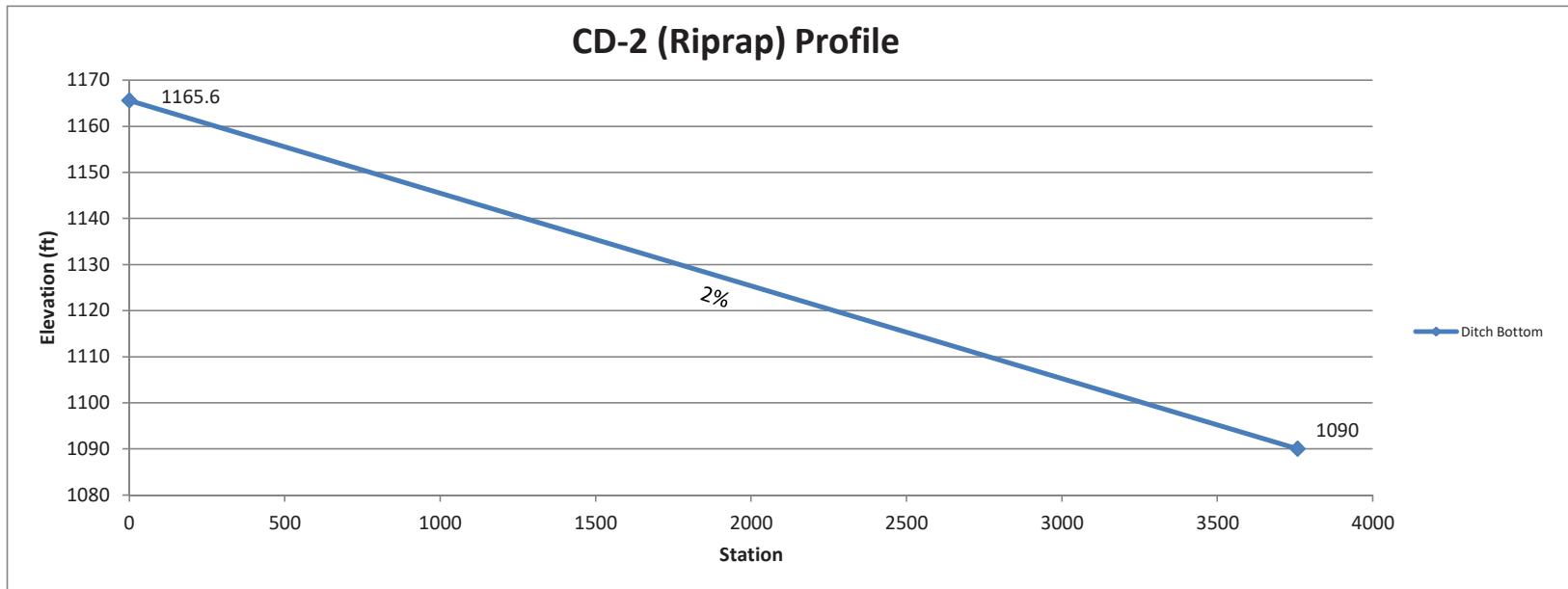


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1:V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-2 (P550)	*Refer to Ditch Profile	34.0	100	10	86	285	0.02	0.6	P550 Vegetated	0.0346	5	2/2	2.95	32.00	16.80	8.85	285	3.50	19.00	418.3	
CD-2 (P550)	*Refer to Ditch Profile	34.0	100	10	86	285	0.02	0.6	P550 Vegetated	0.0346	5	2/2	2.95	32.00	16.80	8.85	285	3.50	19.00	418.3		

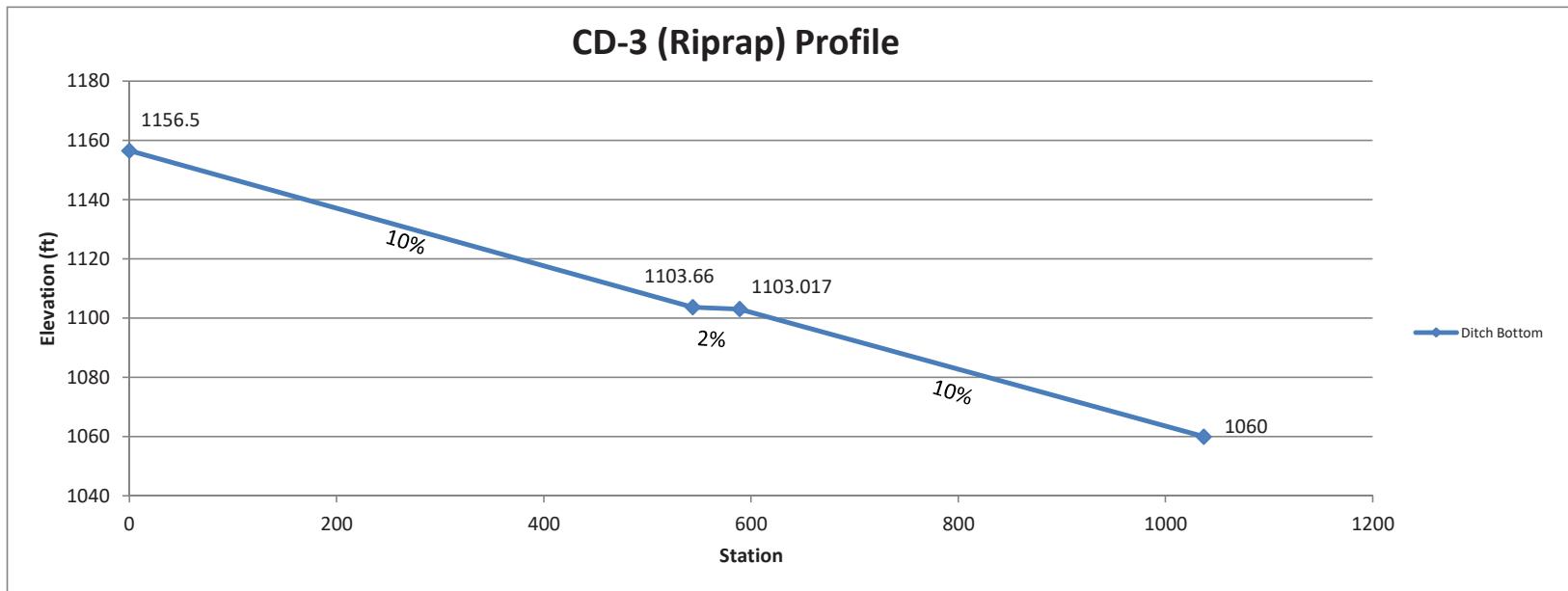


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:						
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:						
Channel Cross-Section Type: Triangular or Trapezoidal																					
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1:V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full			
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)
	CD-2 (Riprap)	*Refer to Ditch Profile		34.0	100	10	86	285	0.02	0.4	Riprap R-4	0.0388	5	2/2	3.11	34.94	17.45	8.16	285	3.50	19.00
CD-2 (Riprap)	*Refer to Ditch Profile		34.0	100	10	86	285	0.02	0.4	Riprap R-4		0.0388	5	2/2	3.11	34.94	17.45	8.16	285	3.50	19.00

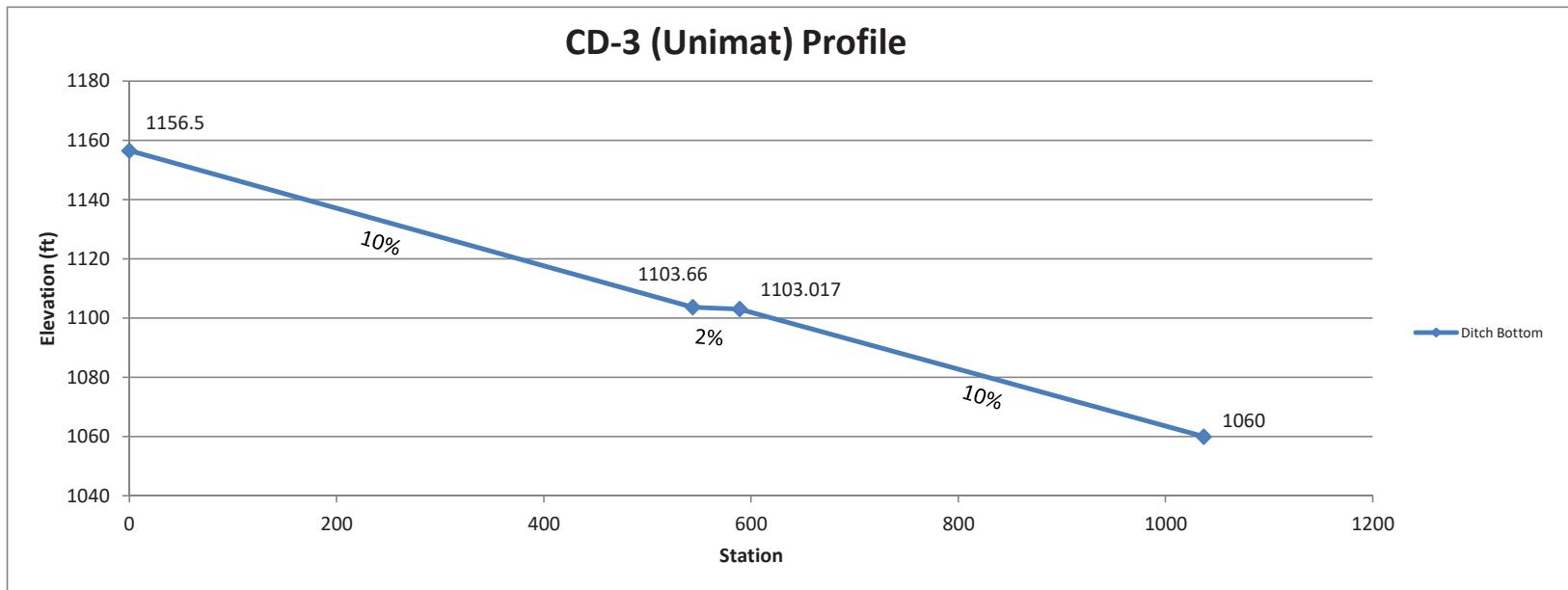


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:						
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:						
Channel Cross-Section Type: Triangular or Trapezoidal																					
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full			
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)
	CD-3 (Riprap)	*Refer to Ditch Profile		4.5	100	36	86	50	0.02	1.4	Riprap R-4	0.0432	3	2/2	1.64	10.30	9.56	4.85	50	3.00	15.00
CD-3 (Riprap)	*Refer to Ditch Profile		4.5	100	36	86	50	0.1	1.9	Riprap R-4	0.0470	3	2/2	1.15	6.07	7.59	8.24	50	3.00	15.00	383.0

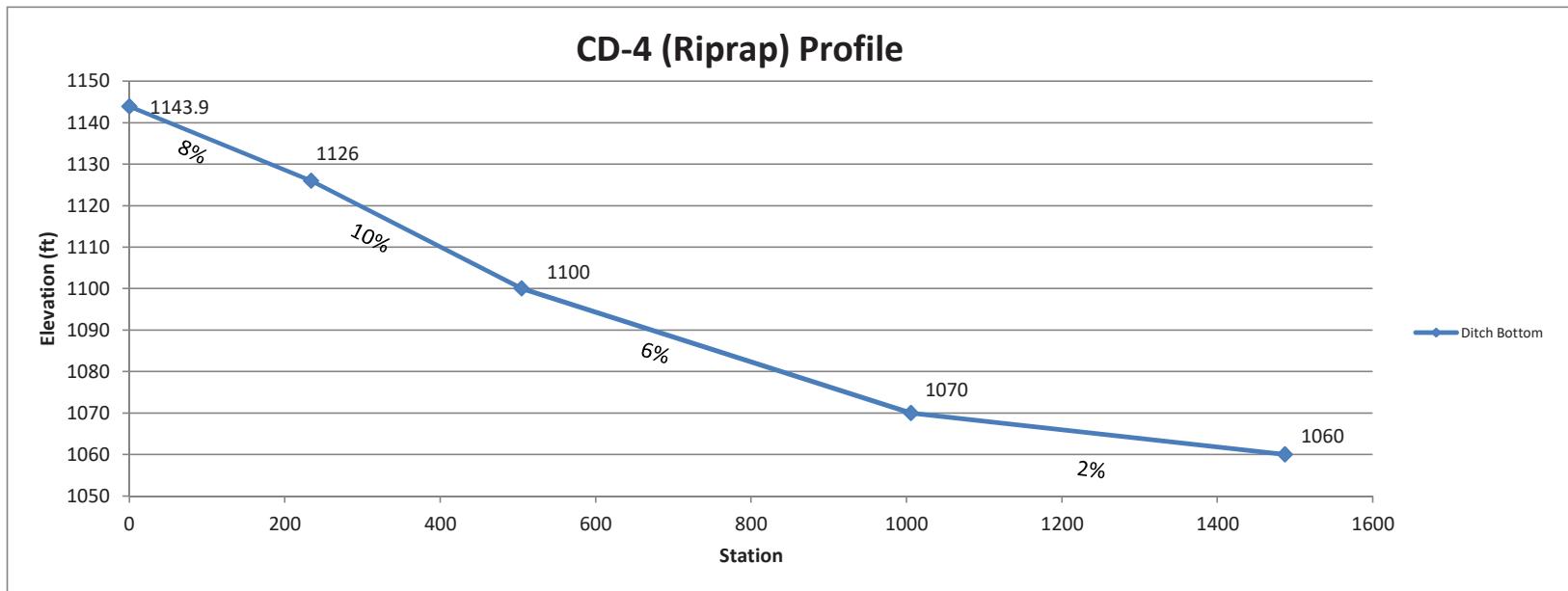


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes (L/R(H:1V))	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-3 (Unimat)	*Refer to Ditch Profile		4.5	100	36	86	50	0.02	1.5	Rigid Lined Channels	0.0350	3	2/2	1.48	8.82	8.92	5.67	50	3.00	15.00	229.8
CD-3 (Unimat)	*Refer to Ditch Profile		4.5	100	36	86	50	0.1	2.0	0.0350		3	2/2	0.99	4.90	6.94	10.20	50	3.00	15.00	513.8	

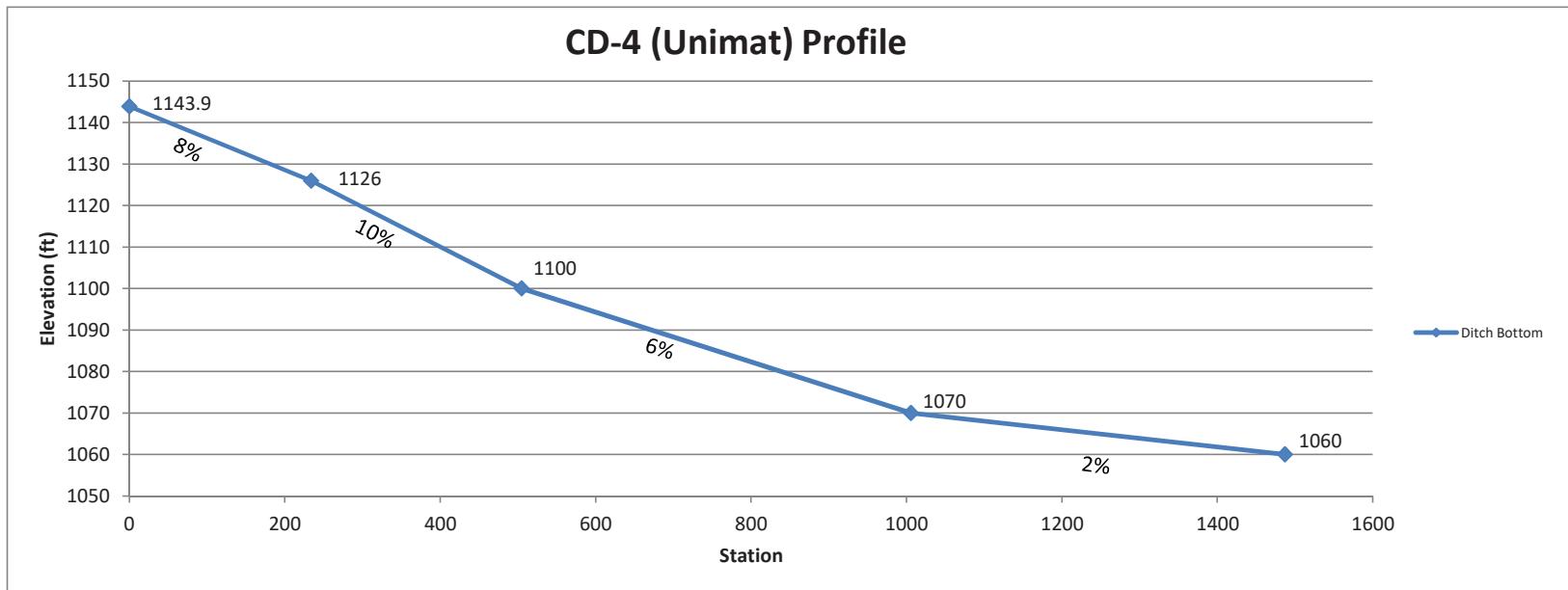


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1)V	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-4 (Riprap)	*Refer to Ditch Profile		7.9	100	25	86	77	0.02	1.3	Riprap R-4	0.0428	5	2/2	1.71	14.39	11.84	5.35	77	3.00	17.00	242.6
CD-4 (Riprap)	*Refer to Ditch Profile		7.9	100	25	86	77	0.1	1.8	Riprap R-4	0.0467	5	2/2	1.17	8.60	9.68	8.96	77	3.00	17.00	497.4	

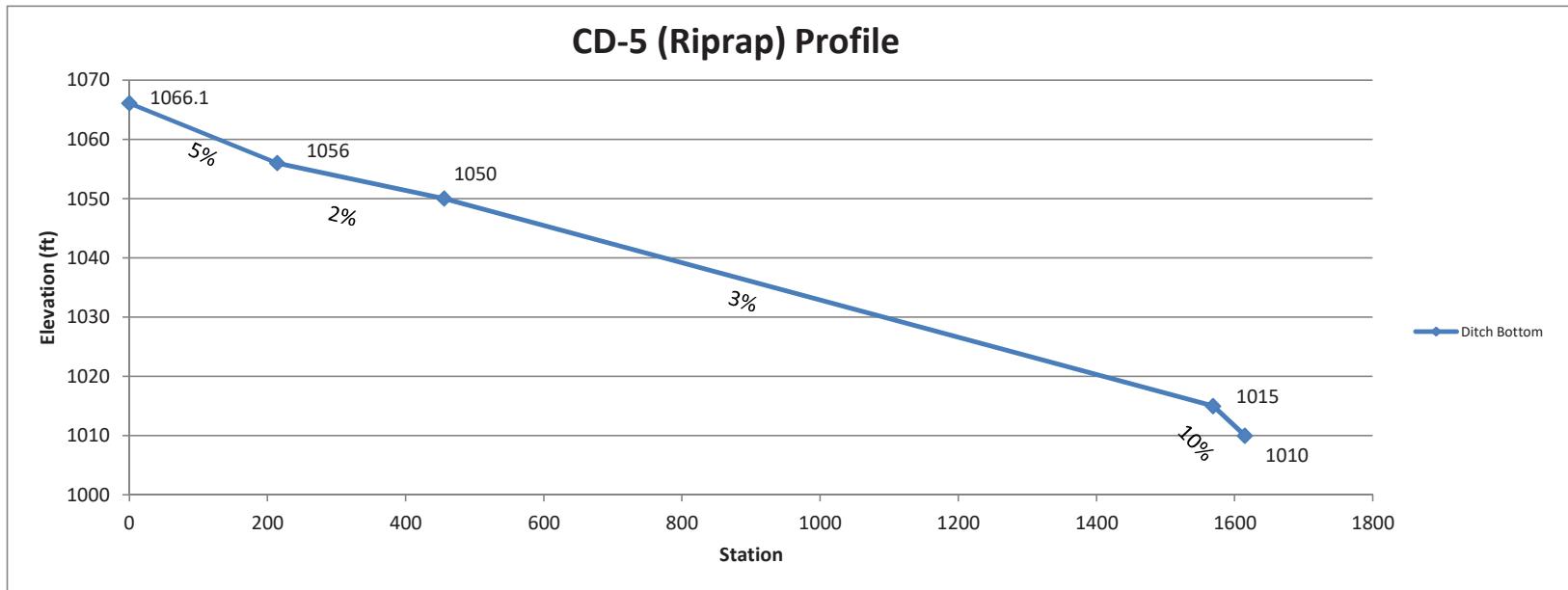


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1)V	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-4 (Unimat)	*Refer to Ditch Profile		7.9	100	25	86	77	0.02	1.5	Rigid Lined Channels	0.0350	5	2/2	1.54	12.44	11.16	6.19	77	3.00	17.00	296.8
CD-4 (Unimat)	*Refer to Ditch Profile		7.9	100	25	86	77	0.1	2.0	0.0350		5	2/2	1.00	7.01	9.01	10.98	77	3.00	17.00	663.7	

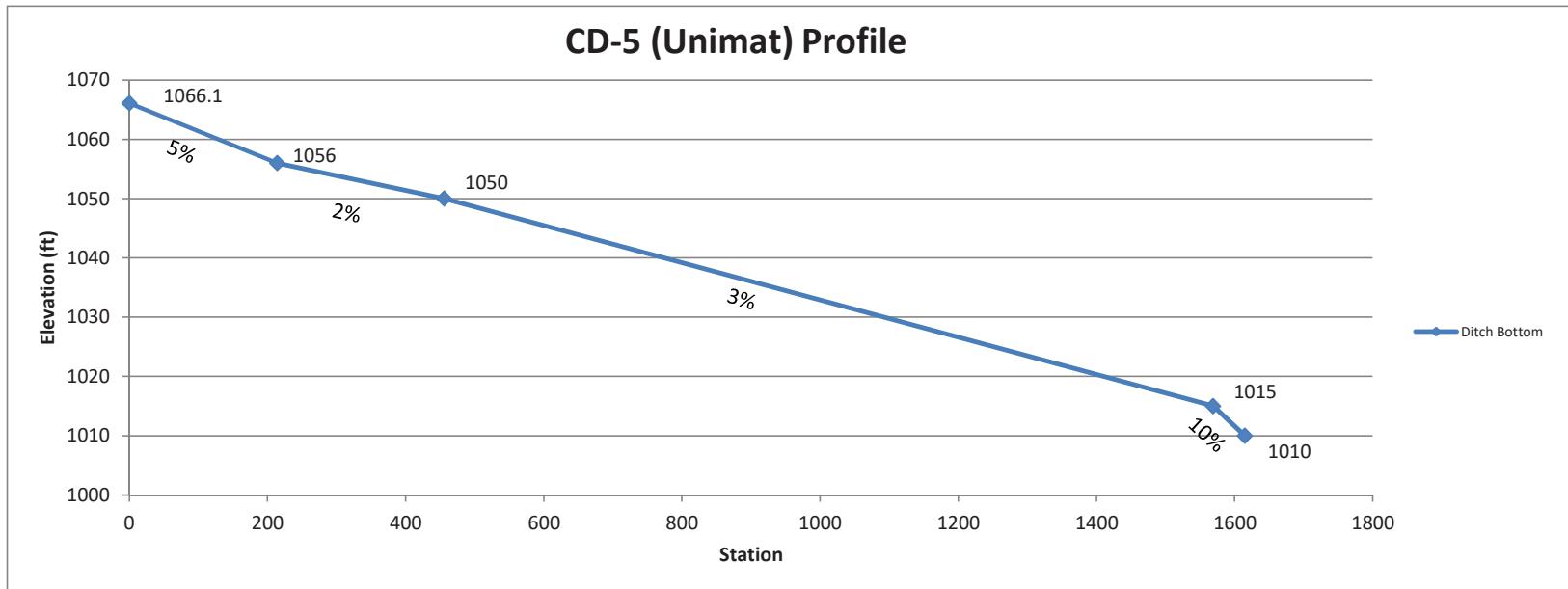


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-5 (Riprap)	*Refer to Ditch Profile		6.9	100	40	86	70	0.02	1.4	Riprap R-4	0.0432	5	2/2	1.64	13.52	11.54	5.18	70	3.00	17.00	240.4
CD-5 (Riprap)	*Refer to Ditch Profile		6.9	100	40	86	70	0.1	1.9	Riprap R-4		0.0473	5	2/2	1.12	8.10	9.48	8.64	70	3.00	17.00	491.5

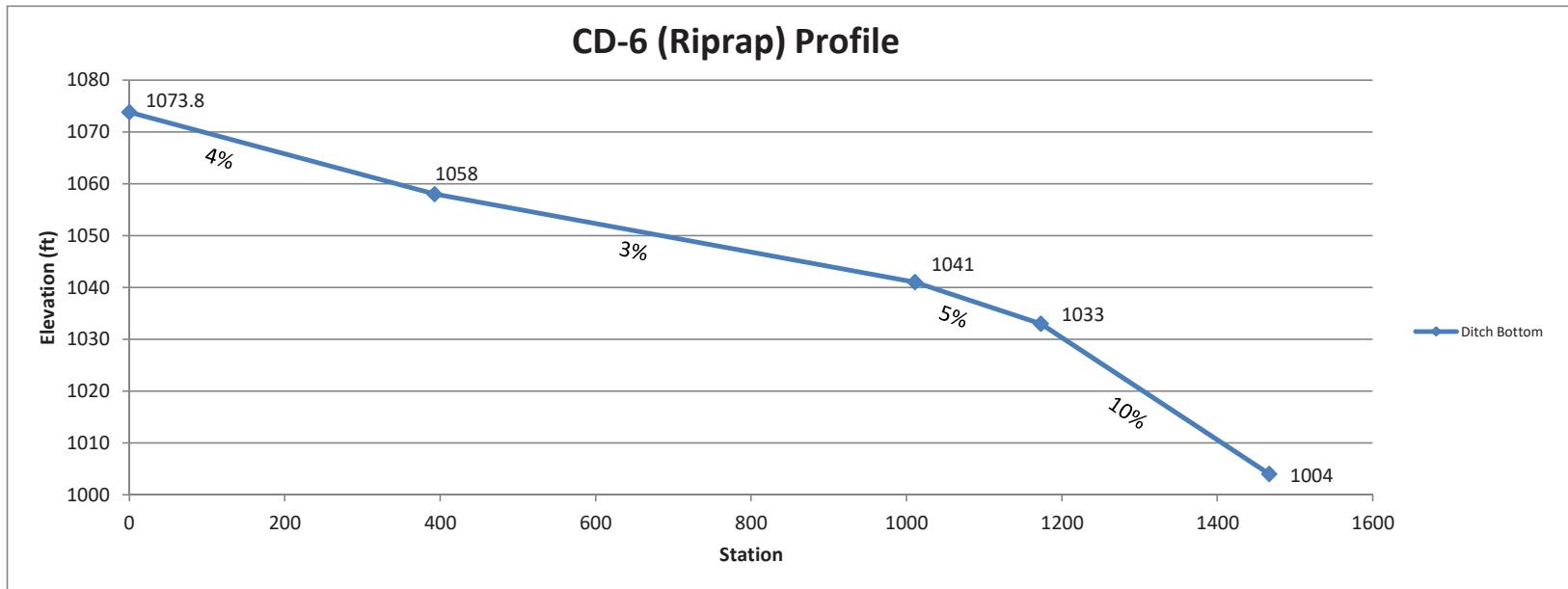


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-5 (Unimat)	*Refer to Ditch Profile		6.9	100	40	86	70	0.02	1.5	Rigid Lined Channels	0.0350	5	2/2	1.46	11.61	10.86	6.03	70	3.00	17.00	296.8
CD-5 (Unimat)	*Refer to Ditch Profile		6.9	100	40	86	70	0.1	2.0	0.0350		5	2/2	0.95	6.56	8.80	10.67	70	3.00	17.00	663.7	

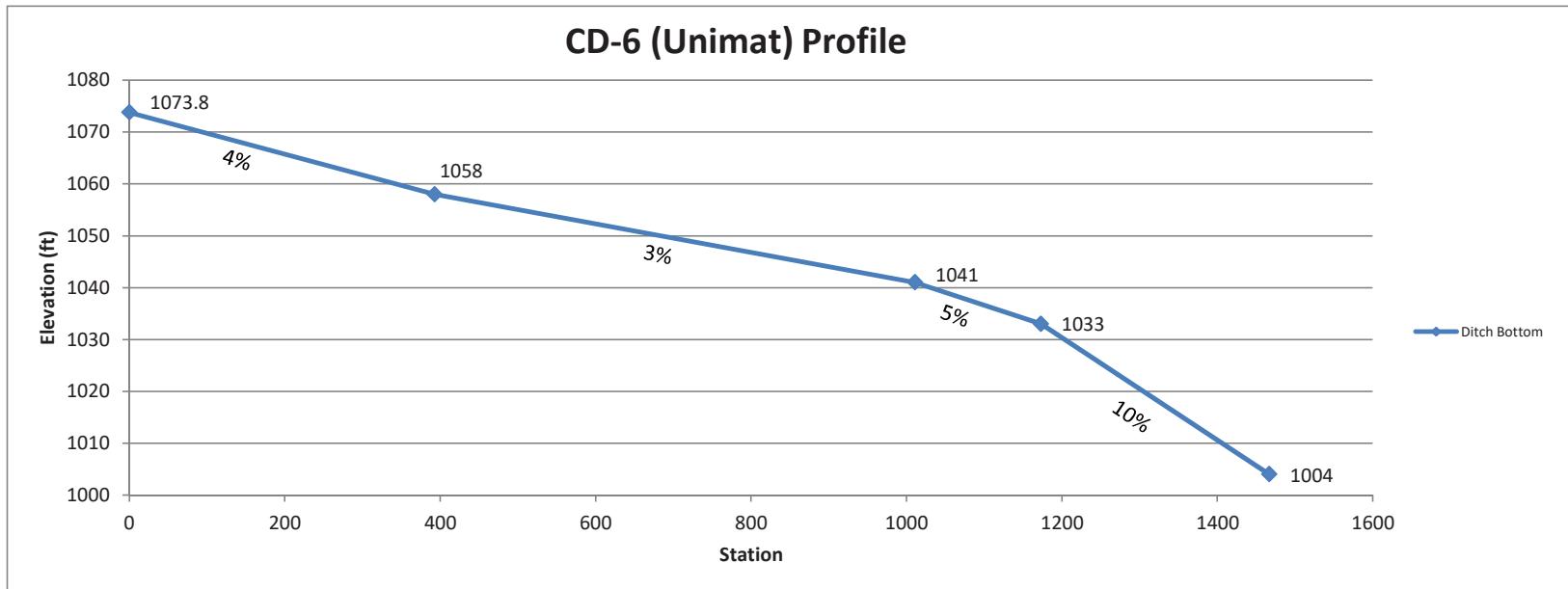


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:						
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:						
Channel Cross-Section Type: Triangular or Trapezoidal																					
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full			
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)
	CD-6 (Riprap)	*Refer to Ditch Profile		8.4	100	30	86	80	0.03	1.1	Riprap R-5	0.0490	3.5	2/2	1.90	13.84	11.09	5.78	80	3.00	15.50
CD-6 (Riprap)	*Refer to Ditch Profile		8.4	100	30	86	80	0.1	1.5	Riprap R-5	0.0526	3.5	2/2	1.46	9.37	9.34	8.54	80	3.00	15.50	366.5

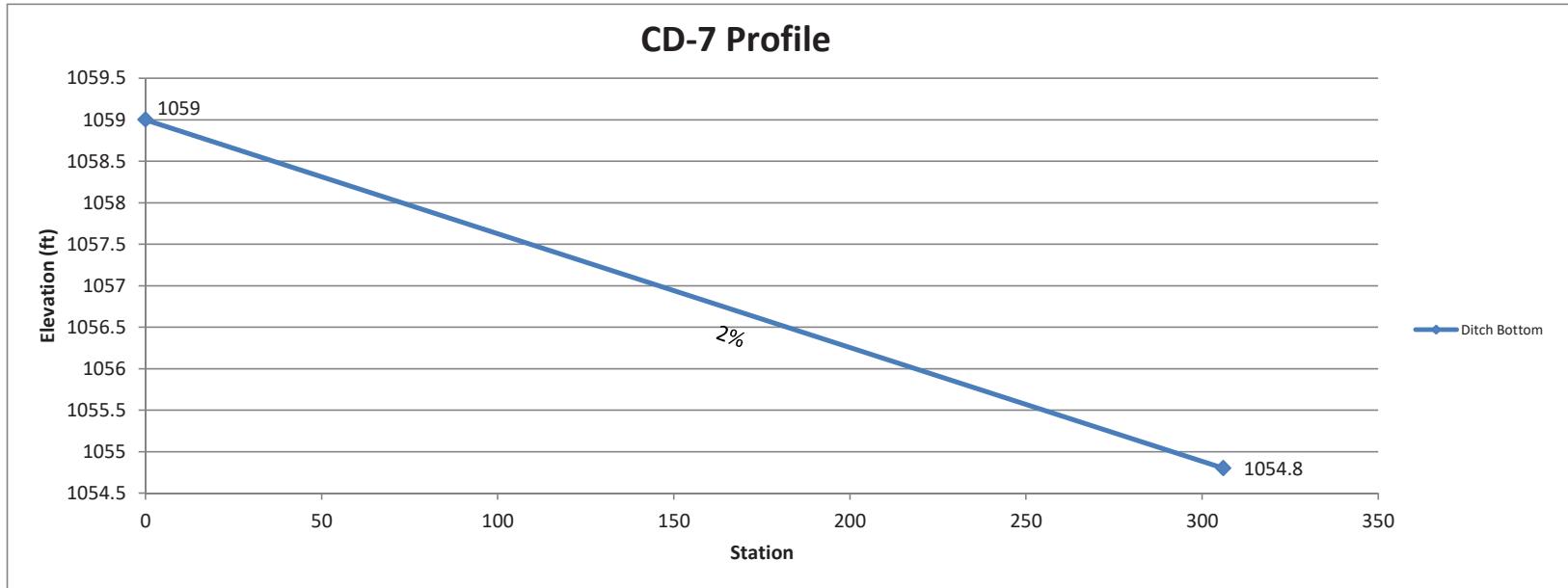


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-6 (Unimat)	*Refer to Ditch Profile		8.4	100	30	86	80	0.03	1.4	Rigid Lined Channels	0.0350	3.5	2/2	1.61	10.80	9.93	7.40	80	3.00	15.50	301.7
CD-6 (Unimat)	*Refer to Ditch Profile		8.4	100	30	86	80	0.1	1.8	0.0350		3.5	2/2	1.19	6.97	8.24	11.48	80	3.00	15.50	550.9	

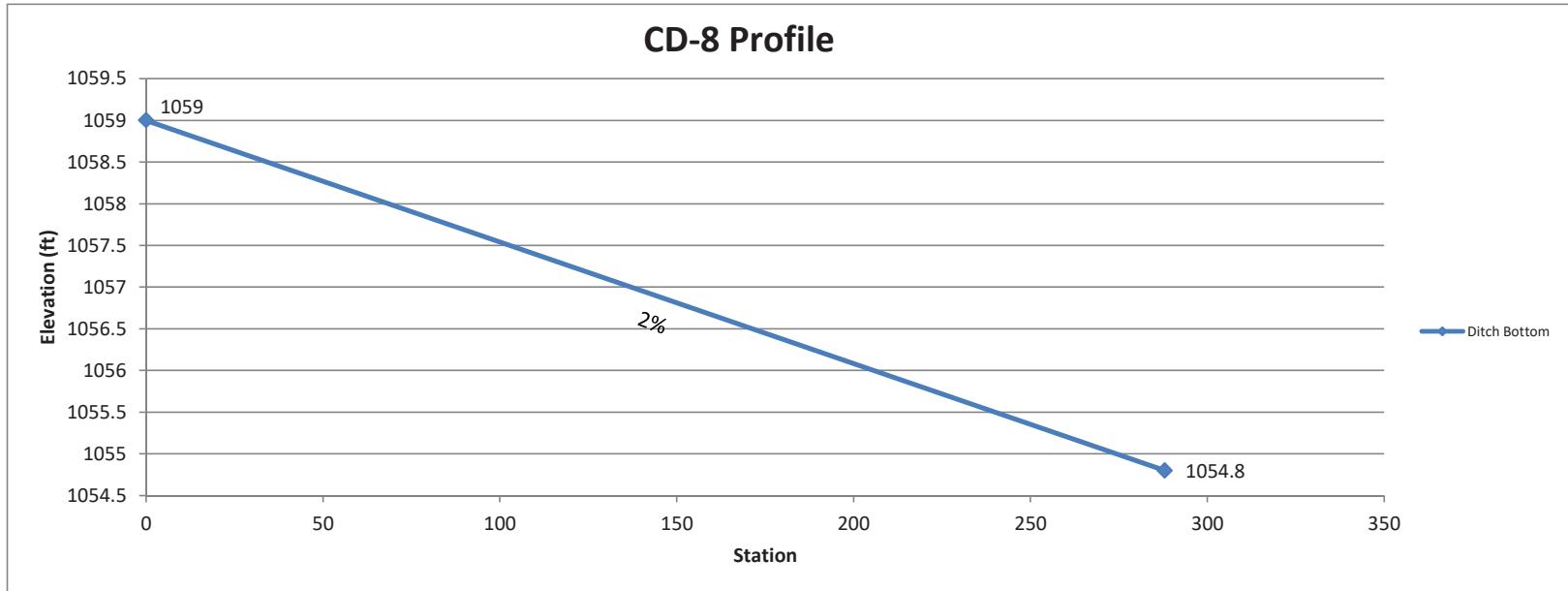


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-7	Refer to Ditch Profile		1.8	100	50	86	16.8	0.02	0.0	Rock Lined Channels	0.0350	2	2/1	1.05	3.74	5.14	4.49	16.8	1.00	5.00	14.7
CD-7	Refer to Ditch Profile		1.8	100	50	86	16.8	0.02	0.0	0.0350		2	2/1	1.05	3.74	5.14	4.49	16.8	1.00	5.00	14.7	

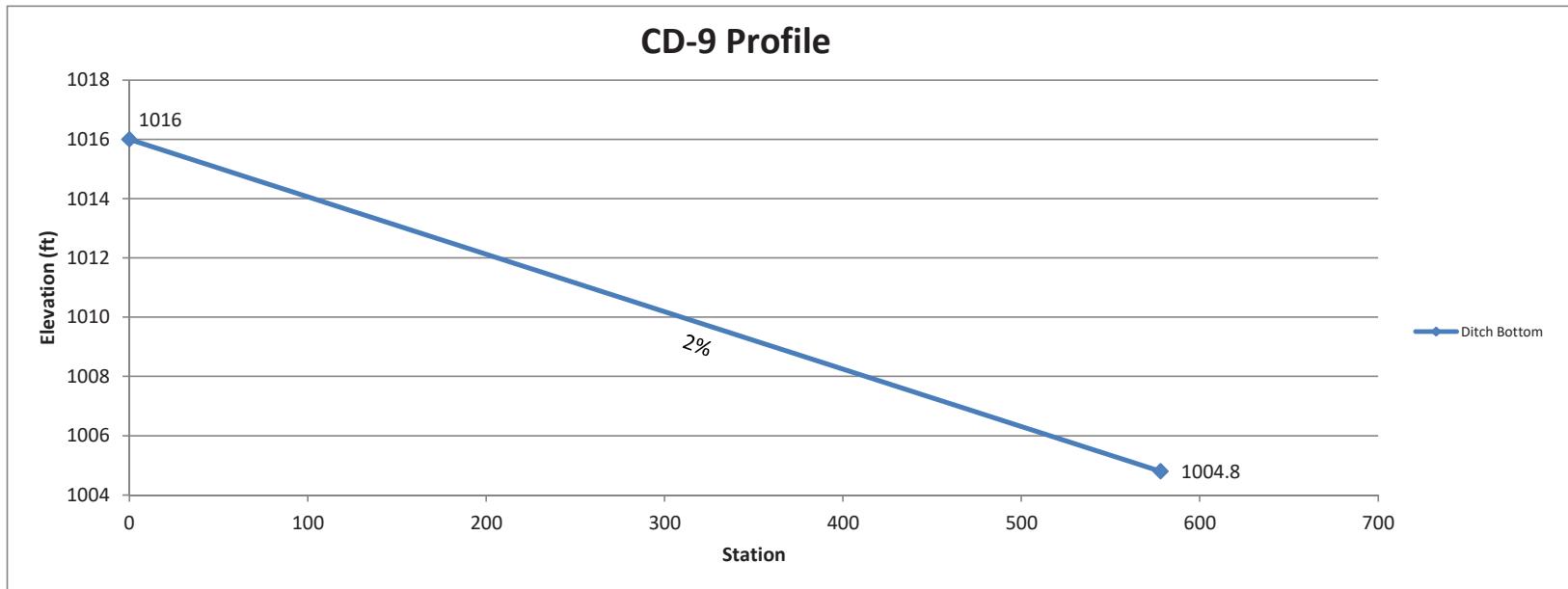


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:							
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:							
Channel Cross-Section Type: Triangular or Trapezoidal																						
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1)V	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full				
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)	
	CD-8	Refer to Ditch Profile		1.6	100	30	86	15.5	0.02	0.0	Rock Lined Channels	0.0350	2	2/1	1.00	3.52	5.01	4.40	15.5	1.00	5.00	14.7
CD-8	Refer to Ditch Profile		1.6	100	30	86	15.5	0.02	0.0	0.0350		2	2/1	1.00	3.52	5.01	4.40	15.5	1.00	5.00	14.7	

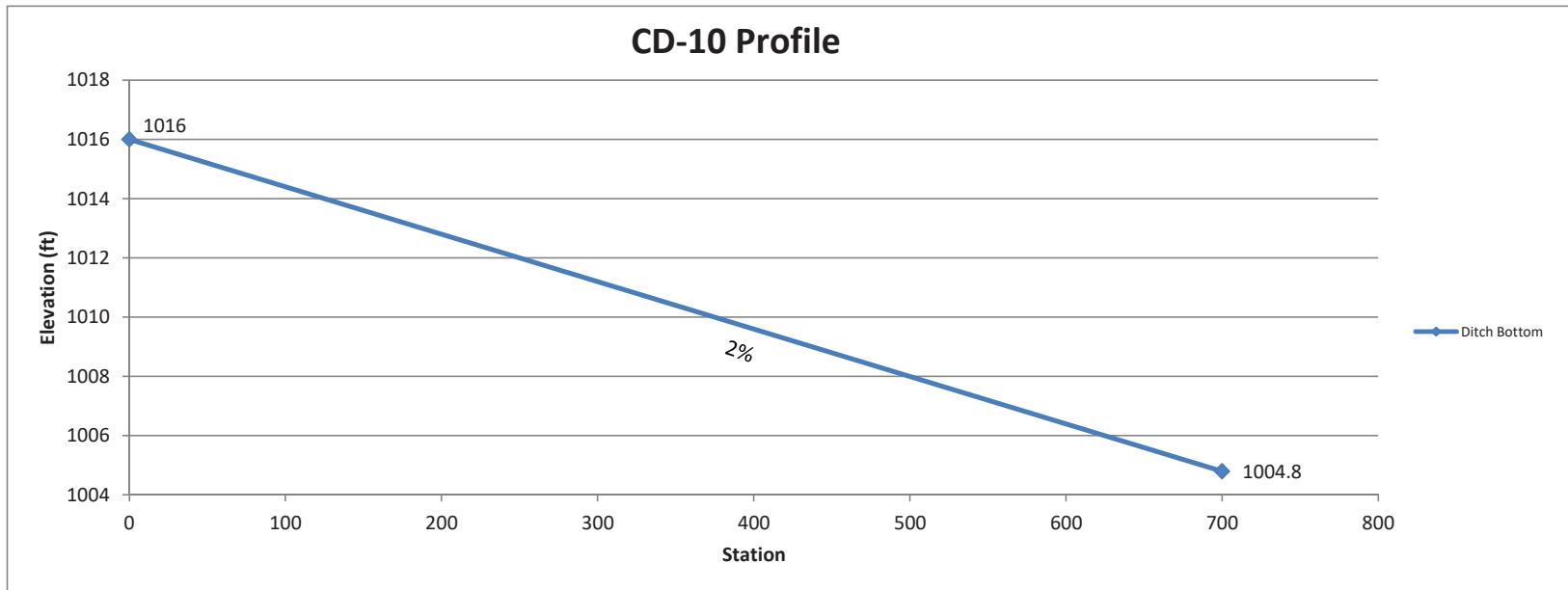


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:									
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:									
Channel Cross-Section Type: Triangular or Trapezoidal																								
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes	Flow Characteristics for Channel Flowing at Design Depth					Flow Characteristics for Channel Flowing Full					
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)			
	CD-9	Refer to Ditch Profile		4.1	100	29	86	42	0.02	0.1	Rock Lined Channels	0.0350	1	2/1	1.90	7.33	6.71	5.73	42	2.00	7.00	48.0		
CD-9	Refer to Ditch Profile		4.1	100	29	86	42	0.02	0.1	0.0350		1	2/1	1.90	7.33	6.71	5.73	42	2.00	7.00	48.0			

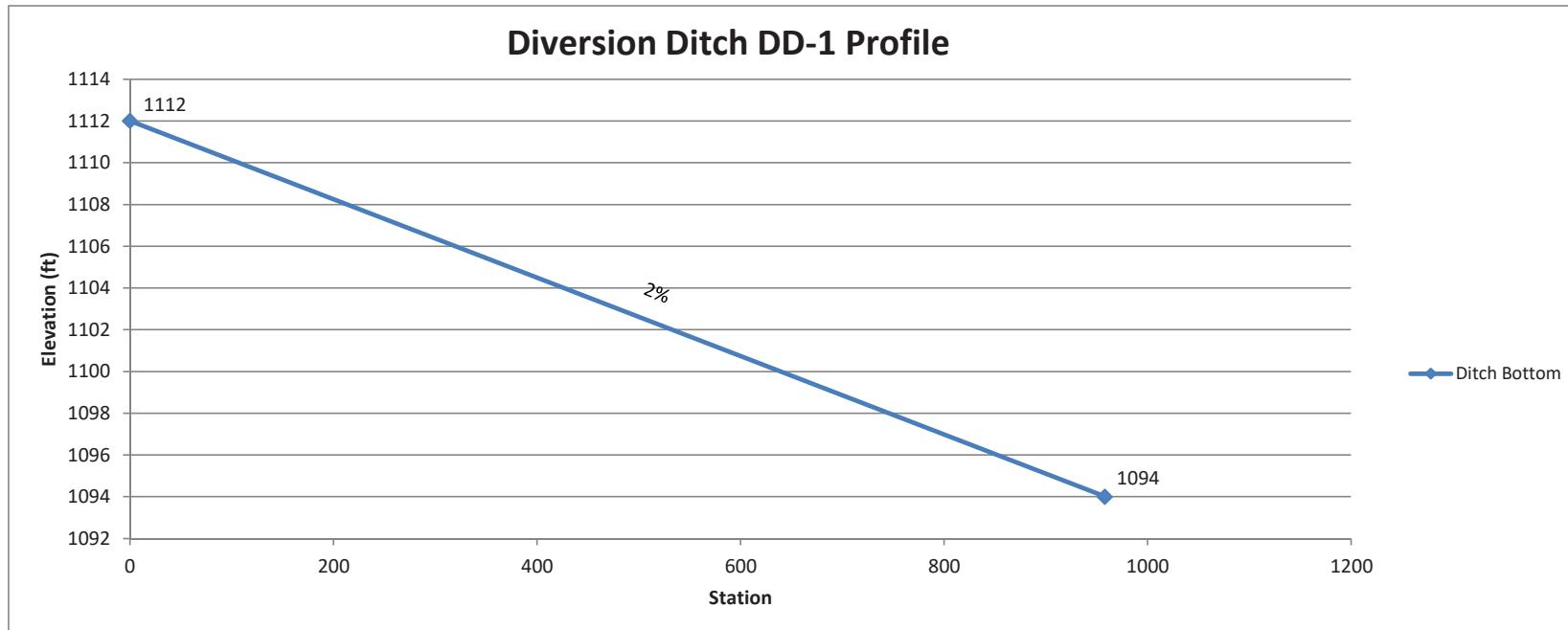


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules LLC (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:									
Prepared By: MJD					Telephone Number: 412-856-9440					Date: 7/1/2016					Sheet:									
Channel Cross-Section Type: Triangular or Trapezoidal																								
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope (ft/ft)	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes	Flow Characteristics for Channel Flowing at Design Depth					Flow Characteristics for Channel Flowing Full					
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)			
	CD-10	Refer to Ditch Profile		4.4	100	40	86	45	0.02	0.0	Rock Lined Channels	0.0350	1	2/1	1.96	7.72	6.88	5.83	45	2.00	7.00	48.0		
CD-10	Refer to Ditch Profile		4.4	100	40	86	45	0.02	0.0	0.0350		1	2/1	1.96	7.72	6.88	5.83	45	2.00	7.00	48.0			

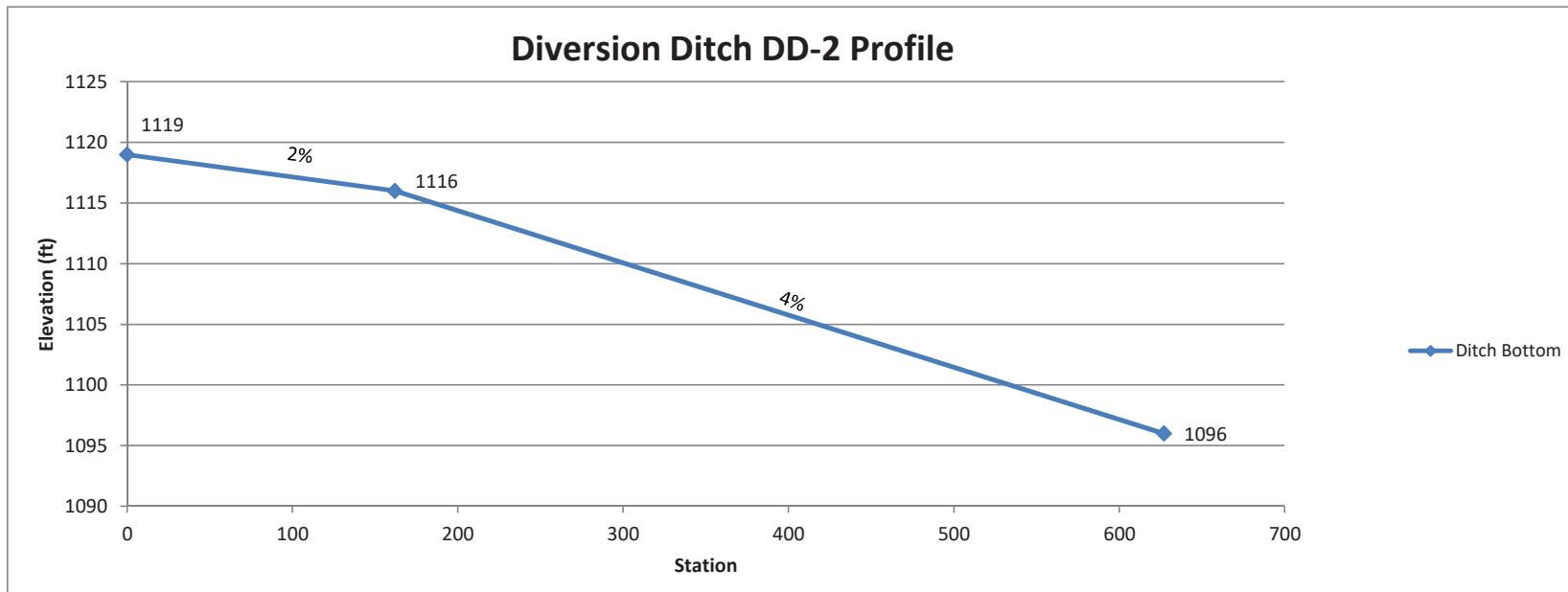


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules Inc. (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:					
Prepared By: DBB					Telephone Number: 412-856-9440					Date: 2/3/2017					Sheet:					
Channel Cross-Section Type: Triangular or Trapezoidal																				
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope ft/ft	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full		
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)
	Diversion Ditch DD-1	Refer to Ditch Profile	4.0	2.75 cfs/acre	36	86	11	0.02	1.2	P300 Unvegetated	0.0315	2	2/2	0.76	2.65	5.04	4.15	11	2.00	10.00
Diversion Ditch DD-1	Refer to Ditch Profile	4.0	2.75 cfs/acre	36	86	11	0.02	1.2	P300 Unvegetated	0.0315	2	2/2	0.76	2.65	5.04	4.15	11	2.00	10.00	84.8

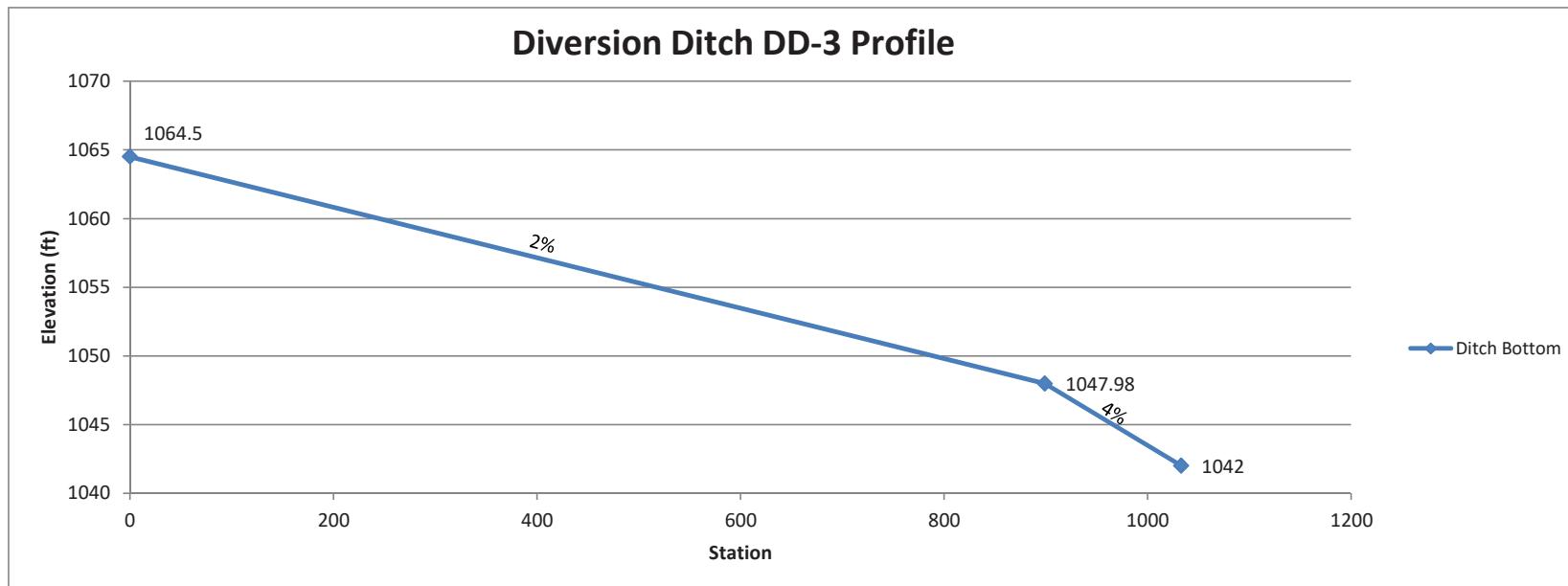


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules Inc. (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:					
Prepared By: DBB					Telephone Number: 412-856-9440					Date: 2/3/2017					Sheet:					
Channel Cross-Section Type: Triangular or Trapezoidal																				
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope ft/ft	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n' (ft)	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full		
	Start End	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)
	Diversion Ditch DD-2	Refer to Ditch Profile	4.0	2.75 cfs/acre	25	86	11	0.02	1.2	P300 Unvegetated	0.0315	2	2/2	0.76	2.65	5.04	4.15	11	2.00	10.00
Diversion Ditch DD-2	Refer to Ditch Profile	4.0	2.75 cfs/acre	25	86	11	0.04	1.1	0.0654		2	2/2	0.91	3.50	5.64	3.15	11	2.00	10.00	57.8

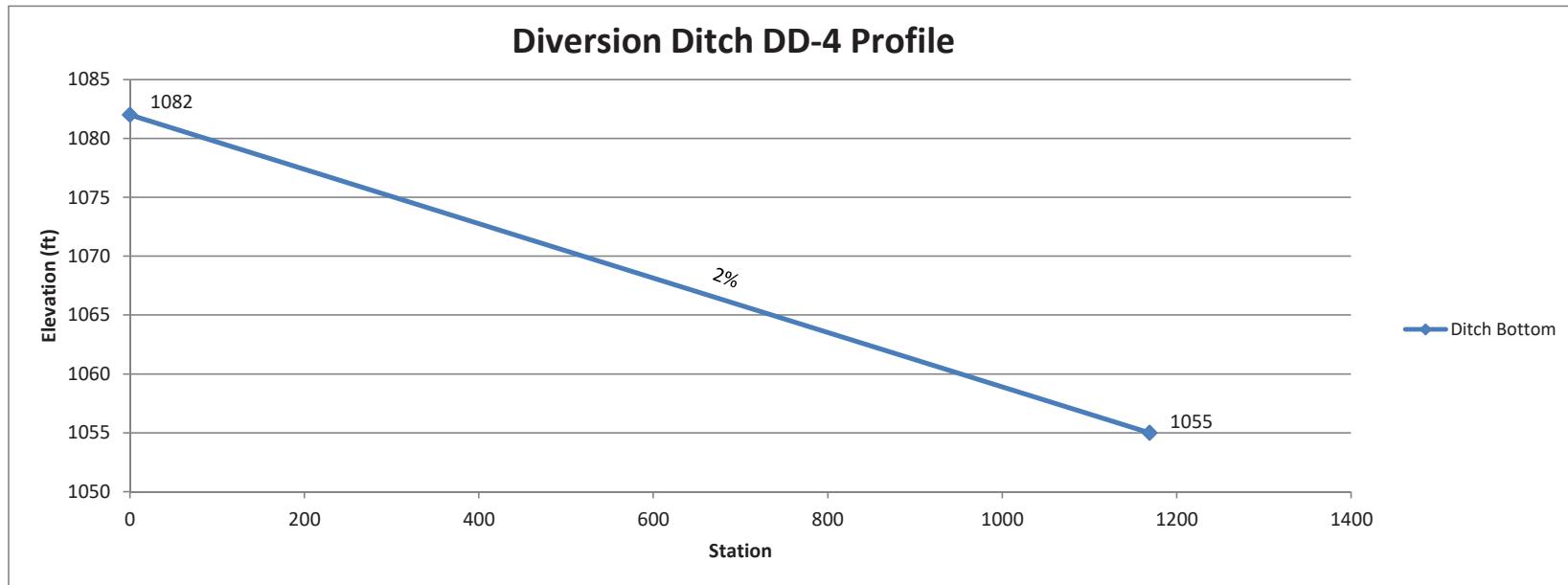


*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules Inc. (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:						
Prepared By: DBB					Telephone Number: 412-856-9440					Date: 2/3/2017					Sheet:						
Channel Cross-Section Type: Triangular or Trapezoidal																					
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope ft/ft	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth					Flow Characteristics for Channel Flowing Full		
	Start End	Elevation												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)	Q Available (cfs)
	Diversion Ditch DD-3	Refer to Ditch Profile	5.0	2.75 cfs/acre	40	86	13.75	0.02	1.3	P300 Unvegetated	0.0324	3.5	2/2	0.68	3.33	6.22	4.14	13.75	2.00	11.50	110.0
Diversion Ditch DD-3	Refer to Ditch Profile	5.0	2.75 cfs/acre	40	86	13.75	0.04	1.5	P300 Unvegetated	0.0276	3.5	2/2	0.52	2.35	5.58	5.88	13.75	2.00	11.50	182.4	



*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

Form 12.1

Diversion/Collection Ditch Data Sheet

Title: Northern Tract Quarry Specialty Granules Inc. (SGI)					Site: Charmian Site					Company: D'Appolonia Engineering					Permit Number:					
Prepared By: DBB					Telephone Number: 412-856-9440					Date: 2/3/2017					Sheet:					
Channel Cross-Section Type: Triangular or Trapezoidal																				
Channel Designation	Station		Drainage Area (Acres)	Design Storm (Yrs.)	Average Watershed Slope (%)	Curve Number	Peak Discharge Q (cfs)	Channel Bed Slope ft/ft	Free-board (ft)	Channel Lining (Specify Average Rock Size) (inches)	Manning's 'n'	Channel Bottom Width (ft)	Channel Side Slopes L/R(H:1V)	Flow Characteristics for Channel Flowing at Design Depth				Flow Characteristics for Channel Flowing Full		
	Start	End												Flow Depth (ft)	Flow Area (ft ²)	Top Flow Width (ft)	Flow Velocity (ft/s)	Q Design (cfs)	Flow Depth (ft)	Top Flow Width (ft)
	Diversion Ditch DD-4	Refer to Ditch Profile	5.0	2.75 cfs/acre	30	86	13.75	0.02	1.3	P300 Unvegetated	0.0324	3.5	2/2	0.68	3.33	6.22	4.14	13.75	2.00	11.50
Diversion Ditch DD-4	Refer to Ditch Profile	5.0	2.75 cfs/acre	30	86	13.75	0.02	1.3	P300 Unvegetated	0.0324	3.5	2/2	0.68	3.33	6.22	4.14	13.75	2.00	11.50	110.0

*DITCH DESIGN CALCS WERE BASED ON MIN/MAX SLOPES. ACTUAL DITCH SLOPES MAY VARY WITHIN THIS RANGE AS SHOWN ON DITCH PROFILE.

SECTION E
CULVERT - HYDRAULIC DESIGN

DAPPOLONIA

By: MJD Date: 06/09/16 Subject: Northern Tract Quarry Sheet No.: 1 of 3
 Chkd. By: AMR Date: 10/19/16 Culvert Hydraulic Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Culvert Design\Northern Tract Culverts - Hydraulics.xlsx

CULVERT HYDRAULIC DESIGN
NORTHERN TRACT QUARRY (PHASE 2 & PHASE 3)
CHARMAIN SITE, SPECIALTY GRANULES, LLC.
ADAMS COUNTY, PENNSYLVANIA

PURPOSE

The purpose of these calculations is to design the culverts that will convey runoff from the collection ditches, under the access roads and into N.T. Pond 1 and N.T. Pond 2 during the initial development of the Northern Tract Quarry. The culverts will convey the SCS 100-year storm event. The culverts are designed to have dual-walled, smooth interior, high density polyethylene (HDPE) pipes with a minimum 1-foot cover.

PEAK DISCHARGE

The peak discharges from the ditch design will be used for the culvert design. The peak flows were determined using Autodesk Storm & Sanitary Analysis 2016. The outputs are provided in Attachment 2.

CD-3 Peak Discharge:	50.0	cfs
CD-4 Peak Discharge:	77.0	cfs
CD-5 Peak Discharge:	70.0	cfs
CD-6 Peak Discharge:	80.0	cfs

CULVERT BARREL PIPE HYDRAULIC DESIGN (INLET CONTROL)

The Nomograph Calculator for FHWA HDS 5: Hydraulic Design of Highway Culverts computer program was used to determine the appropriate pipe size for the following culverts (Attachment 1).

	C-1	C-2	C-3	C-4
Peak Discharge (cfs)	25.0	38.5	35.0	40.0
Allowable Headwater Elevation	1060.0	1060.0	1010.0	1010.0
Inlet Invert Elevation	1054.8	1054.8	1004.8	1004.8
Culvert Length (ft)	63	66	75	76
Outlet Invert Elevation	1054.2	1054.1	1004.1	1004.0
Culvert Slope (ft/ft)	0.010	0.011	0.009	0.011
Pipe Diameter (inches)	30	36	36	36
Calculated Headwater, HW (ft)	2.6	3.0	2.8	3.1
Headwater Elevation	1057.4	1057.8	1007.6	1007.9

(Since there are dual pipes conveying the runoff, the peak discharge is divided between both barrels)

DAPPOLONIA

By: MJD Date: 06/09/16 Subject: Northern Tract Quarry Sheet No.: 2 of 3
 Chkd. By: AMR Date: 10/19/16 Culvert Hydraulic Design Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\Culvert Design\Northern Tract Culverts - Hydraulics.xlsx

CULVERT BARREL PIPE HYDRAULIC DESIGN (OUTLET CONTROL)

The following is a summary of hydraulic calculations concerning culvert outlet control.

	C-1	C-2	C-3	C-4
Peak Discharge (cfs)	25.0	38.5	35.0	40.0
Allowable Headwater Elevation	1060.0	1060.0	1010.0	1010.0
Inlet Invert Elevation	1054.8	1054.8	1004.8	1004.8
Culvert Length (ft)	63	66	75	76
Outlet Invert Elevation	1054.2	1054.1	1004.1	1004.0
Culvert Slope (ft/ft)	0.010	0.011	0.009	0.011
Pipe Diameter, d (feet)	2.5	3.0	3.0	3.0
Tailwater, TW (ft)	4.3	4.3	4.3	4.3
Critical Depth, D _c (ft)	1.7	2.0	1.9	2.1
Culvert Manning's Coefficient, n	0.012	0.012	0.012	0.012
Entrance Loss Coefficient, K _e	0.90	0.90	0.90	0.90
Normal Headlosses, H (ft)	1.0	1.1	0.9	1.2
Estimated Culvert Velocity, V (ft/s)	7.0	7.6	7.3	7.7
Bend Loss Coefficient, K _B	----	----	----	----
Bend Headlosses, H _B (ft)	----	----	----	----
Calculated Headwater, HW (ft)	5.3	5.4	5.2	5.5
Headwater Elevation	1059.5	1059.5	1009.3	1009.5

Notes:

1. See Chapter 7 and Appendix B of Reference 5 for an explanation of the hydraulic design of outlet controlled culverts. (HW = [(D_c+d or TW)/2 or TW, whichever is greater] + H + H_B)
2. Refer to Attachment 1 for the FHWA Nomograph calculator output for the normal headlosses in the culvert.
3. Assume the culvert outlet inundated with 4.3 feet of tailwater measured from the outlet invert elevation to emergency spillway invert elevation (1058.5/1008.5).

DAPPOLONIA

By: MJD Date: 06/09/16 Subject: Northern Tract Quarry Sheet No.: 3 of 3
 Chkd. By: AMR Date: 10/19/16 Culvert Hydraulic Design Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\Culvert Design\Northern Tract Culverts - Hydraulics.xlsx

REFERENCES

- 1) Erosion and Sediment Pollution Control Program Manual, Pennsylvania Department of Environmental Protection - Office of Water Management, 2012.
- 2) Engineering Manual for Mining Operations, Pennsylvania Department of Environmental Protection - Bureaus of Mining and Reclamation and District Mining Operations, 1999.
- 3) Engineering and Design Manual - Coal Refuse Disposal Facilities, Mine Safety and Health Administration, May 2009
- 4) Nomograph Calculator for FHWA HDS 5: Hydraulic Design of Highway Culverts - Beta Version 1.5.B, Grenney, William J., Utah State University.
- 5) Introduction to Hydraulics and Hydrology with Applications for Stormwater Management, Gribbin, John E., Delmar - A Division of Thomson Learning, 2002.
- 6) Hydraulic Design Series Number 5: Hydraulic Design of Highway Culverts - Publication No. FHWA-NHI-01-020, U.S. Department of Transportation, Federal Highway Administration, 2001.

ATTACHMENT 1
Nomograph Calculator Output

CULVERT C-1

Headwater Depth for Concrete Pipe Culverts with Inlet Control

- Square Edge with Headwall
- Groove End with Headwall
- Groove End Projecting

<input type="text" value="1.703"/> Critical Depth (ft) <input type="text" value="7.017"/> Critical Velocity (ft/s) <input type="text" value="25"/> Q = Discharge (cfs) <input type="text" value="0.01"/> Culvert Barrel Slope (ft/ft) <input type="text" value="2.5"/> Culvert diameter (ft) <input type="text" value="2.572"/> Headwater (ft)

Units

 English Metric

Head for Pipe Culverts Flowing Full

Suggested Mannings n values for:

- Chart 5: $n = 0.012$
- Chart 6: $n = 0.024$
- Chart 7: $n = 0.0328$ to 0.0302

<input type="text" value="63.1"/> Length of culvert barrel (ft) <input type="text" value="2.5"/> Culvert diameter (ft) <input type="text" value="25"/> Q = Discharge (cfs) <input type="text" value="0.9"/> Entrance loss coefficient (Ke) <input type="text" value="0.012"/> Mannings (n) <input type="text" value="0.965"/> Head (ft)
--

Units

 English Metric

CULVERT C-2

Headwater Depth for Concrete Pipe Culverts with Inlet Control

- Square Edge with Headwall
- Groove End with Headwall
- Groove End Projecting

<	2.019	}>	Critical Depth (ft)
<	7.608	>	Calc Critical Velocity (ft/s)
<	38.5	>	Q = Discharge (cfs)
<	0.01	>	Culvert Barrel Slope (ft/ft)
<	3	>	Culvert diameter (ft)
<	3.037	>	Headwater (ft)

Calc Units
 English Metric

Head for Pipe Culverts Flowing Full

Suggested Mannings n values for:

- Chart 5: $n = 0.012$
- Chart 6: $n = 0.024$
- Chart 7: $n = 0.0328$ to 0.0302

<	65.5	}>	Length of culvert barrel (ft)
<	3	>	Culvert diameter (ft)
<	38.5	>	Q = Discharge (cfs)
<	0.9	>	Entrance loss coefficient (Ke)
<	0.012	>	Mannings (n)
<	1.061	>	Head (ft)

Calc Units
 English Metric

CULVERT C-3

Headwater Depth for Concrete Pipe Culverts with Inlet Control

- Square Edge with Headwall
- Groove End with Headwall
- Groove End Projecting

<input type="text" value="1.922"/> Critical Depth (ft) <input type="text" value="7.315"/> Critical Velocity (ft/s) <input type="text" value="35"/> Q = Discharge (cfs) <input type="text" value="0.01"/> Culvert Barrel Slope (ft/ft) <input type="text" value="3"/> Culvert diameter (ft) <input type="text" value="2.849"/> Headwater (ft)

Calc Units
 English Metric

Head for Pipe Culverts Flowing Full

Suggested Mannings n values for:

- Chart 5: $n = 0.012$
- Chart 6: $n = 0.024$
- Chart 7: $n = 0.0328$ to 0.0302

<input type="text" value="74.8"/> Length of culvert barrel (ft) <input type="text" value="3"/> Culvert diameter (ft) <input type="text" value="35"/> Q = Discharge (cfs) <input type="text" value="0.9"/> Entrance loss coefficient (Ke) <input type="text" value="0.012"/> Mannings (n) <input type="text" value="0.899"/> Head (ft)
--

Calc Units
 English Metric

CULVERT C-4

Headwater Depth for Concrete Pipe Culverts with Inlet Control

- Square Edge with Headwall
- Groove End with Headwall
- Groove End Projecting

<input type="button" value="<"/> <input type="text" value="2.059"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="7.734"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="40"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="0.01"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="3"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="3.117"/> <input type="button" value=">"/>
} Calc		Critical Depth (ft)			
		Critical Velocity (ft/s)			
		Q = Discharge (cfs)			
		Culvert Barrel Slope (ft/ft)			
		Culvert diameter (ft)			
		Headwater (ft)			

Units
 English Metric

Calc

Head for Pipe Culverts Flowing Full

Suggested Mannings n values for:

- Chart 5: $n = 0.012$
- Chart 6: $n = 0.024$
- Chart 7: $n = 0.0328$ to 0.0302

<input type="button" value="<"/> <input type="text" value="76"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="3"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="40"/> <input type="button" value=">"/>	<input type="button" value="<"/> <input type="text" value="0.9"/> <input type="button" value=">"/>
Length of culvert barrel (ft)		Culvert diameter (ft)	
		Q = Discharge (cfs)	
		Entrance loss coefficient (K_e)	
		Mannings (n)	
		Head (ft)	

Units
 English Metric

Calc

ATTACHMENT 2

Storm and Sanitary Analysis

Project Description

File Name Northern Tract Ditch Design.SPF

Project Options

Flow Units CFS
 Elevation Type Elevation
 Hydrology Method SCS TR-55
 Time of Concentration (TOC) Method SCS TR-55
 Link Routing Method Hydrodynamic
 Enable Overflow Ponding at Nodes YES
 Skip Steady State Analysis Time Periods NO

Analysis Options

Start Analysis On Jan 13, 2016 00:00:00
 End Analysis On Jan 15, 2016 00:00:00
 Start Reporting On Jan 13, 2016 00:00:00
 Antecedent Dry Days 0 days
 Runoff (Dry Weather) Time Step 0 01:00:00 days hh:mm:ss
 Runoff (Wet Weather) Time Step 0 00:05:00 days hh:mm:ss
 Reporting Time Step 0 00:01:00 days hh:mm:ss
 Routing Time Step 30 seconds

Number of Elements

	Qty
Rain Gages	1
Subbasins.....	6
Nodes.....	6
Junctions	0
Outfalls	6
Flow Diversions	0
Inlets	0
Storage Nodes	0
Links.....	0
Channels	0
Pipes	0
Pumps	0
Orifices	0
Weirs	0
Outlets	0
Pollutants	0
Land Uses	0

Rainfall Details

SN	Rain Gage	Data	Data Source	Rainfall	Rain	State	County	Return	Rainfall	Rainfall
ID	ID	Source	ID	Type	Units			Period	Depth	Distribution
1	Rain Gage-01	Time Series	100-year	Cumulative	inches	Pennsylvania	Adams	100	8.03	SCS Type II 24-hr

Subbasin Summary

SN	Subbasin ID	Area (ac)	Weighted Curve Number	Total Rainfall (in)	Total Runoff (in)	Total Runoff (ac-in)	Peak Runoff (cfs)	Time of Concentration (days hh:mm:ss)
1	CD-1	11.33	86.00	8.03	6.36	72.06	97.17	0 00:09:09
2	CD-2	33.97	86.00	8.03	6.36	216.05	272.28	0 00:12:09
3	CD-3	4.50	86.00	8.03	6.36	28.62	43.21	0 00:05:00
4	CD-4	7.92	86.00	8.03	6.36	50.37	75.82	0 00:05:09
5	CD-5	6.85	86.00	8.03	6.36	43.57	65.76	0 00:05:00
6	CD-6	8.43	86.00	8.03	6.36	53.61	80.21	0 00:05:21

Subbasin Hydrology

Subbasin : CD-1

Input Data

Area (ac) 11.33
 Weighted Curve Number 86.00
 Rain Gage ID Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	11.33	-	86.00
Composite Area & Weighted CN	11.33		86.00

Time of Concentration

TOC Method : SCS TR-55

Sheet Flow Equation :

$$Tc = (0.007 * (n * Lf)^{0.8}) / ((P^{0.5}) * (Sf^{0.4}))$$

Where :

Tc = Time of Concentration (hr)

n = Manning's roughness

Lf = Flow Length (ft)

P = 2 yr, 24 hr Rainfall (inches)

Sf = Slope (ft/ft)

Shallow Concentrated Flow Equation :

V = 16.1345 * (Sf^{0.5}) (unpaved surface)

V = 20.3282 * (Sf^{0.5}) (paved surface)

V = 15.0 * (Sf^{0.5}) (grassed waterway surface)

V = 10.0 * (Sf^{0.5}) (nearly bare & untilled surface)

V = 9.0 * (Sf^{0.5}) (cultivated straight rows surface)

V = 7.0 * (Sf^{0.5}) (short grass pasture surface)

V = 5.0 * (Sf^{0.5}) (woodland surface)

V = 2.5 * (Sf^{0.5}) (forest w/heavy litter surface)

Tc = (Lf / V) / (3600 sec/hr)

Where:

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

Channel Flow Equation :

V = (1.49 * (R^{(2/3)}) * (Sf^{0.5})) / n

R = Aq / Wp

Tc = (Lf / V) / (3600 sec/hr)

Where :

Tc = Time of Concentration (hr)

Lf = Flow Length (ft)

R = Hydraulic Radius (ft)

Aq = Flow Area (ft²)

Wp = Wetted Perimeter (ft)

V = Velocity (ft/sec)

Sf = Slope (ft/ft)

n = Manning's roughness

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	11.2	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.41	0.00	0.00
Computed Flow Time (min) :	4.08	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	706	0.00	0.00
Slope (%) :	9.3	0.00	0.00
Surface Type :	Bare & untilled	Unpaved	Unpaved
Velocity (ft/sec) :	3.05	0.00	0.00
Computed Flow Time (min) :	3.86	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.035	0.00	0.00
Flow Length (ft) :	435	0.00	0.00
Channel Slope (%) :	2.0	0.00	0.00
Cross Section Area (ft ²) :	11.3	0.00	0.00
Wetted Perimeter (ft) :	11.4	0.00	0.00
Velocity (ft/sec) :	5.99	0.00	0.00
Computed Flow Time (min) :	1.21	0.00	0.00
Total TOC (min)	9.15		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	97.17
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:09:09

Subbasin : CD-2**Input Data**

Area (ac)	33.97
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	33.97	-	86.00
Composite Area & Weighted CN	33.97		86.00

Time of Concentration

Sheet Flow Computations	Subarea	Subarea	Subarea
	A	B	C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	8.1	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.36	0.00	0.00
Computed Flow Time (min) :	4.65	0.00	0.00
Shallow Concentrated Flow Computations	Subarea	Subarea	Subarea
	A	B	C
Flow Length (ft) :	795	0.00	0.00
Slope (%) :	12.0	0.00	0.00
Surface Type :	Bare & untilled	Unpaved	Unpaved
Velocity (ft/sec) :	3.46	0.00	0.00
Computed Flow Time (min) :	3.83	0.00	0.00
Channel Flow Computations	Subarea	Subarea	Subarea
	A	B	C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	1523	0.00	0.00
Channel Slope (%) :	2.0	0.00	0.00
Cross Section Area (ft ²) :	16.6	0.00	0.00
Wetted Perimeter (ft) :	13.5	0.00	0.00
Velocity (ft/sec) :	6.91	0.00	0.00
Computed Flow Time (min) :	3.67	0.00	0.00
Total TOC (min)	12.15		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	272.28
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:12:09

Subbasin : CD-3**Input Data**

Area (ac)	4.50
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	4.50	-	86.00
Composite Area & Weighted CN	4.50		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	23.1	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.55	0.00	0.00
Computed Flow Time (min) :	3.06	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	26	0.00	0.00
Slope (%) :	48	0.00	0.00
Surface Type :	Bare & untilled	Unpaved	Unpaved
Velocity (ft/sec) :	6.93	0.00	0.00
Computed Flow Time (min) :	0.06	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	1090	0.00	0.00
Channel Slope (%) :	10	0.00	0.00
Cross Section Area (ft ²) :	5.1	0.00	0.00
Wetted Perimeter (ft) :	7.5	0.00	0.00
Velocity (ft/sec) :	10.41	0.00	0.00
Computed Flow Time (min) :	1.75	0.00	0.00
Total TOC (min)	4.86		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	43.21
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:04:52

Subbasin : CD-4**Input Data**

Area (ac)	7.92
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	7.92	-	86.00
Composite Area & Weighted CN	7.92		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	23.4	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.55	0.00	0.00
Computed Flow Time (min) :	3.04	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	230	0.00	0.00
Slope (%) :	28.7	0.00	0.00
Surface Type :	Bare & untilled	Unpaved	Unpaved
Velocity (ft/sec) :	5.36	0.00	0.00
Computed Flow Time (min) :	0.72	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	515	0.00	0.00
Channel Slope (%) :	2	0.00	0.00
Cross Section Area (ft ²) :	12.2	0.00	0.00
Wetted Perimeter (ft) :	11.8	0.00	0.00
Velocity (ft/sec) :	6.16	0.00	0.00
Computed Flow Time (min) :	1.39	0.00	0.00
Total TOC (min)	5.15		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	75.82
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:05:09

Subbasin : CD-5**Input Data**

Area (ac) 6.85
 Weighted Curve Number 86.00
 Rain Gage ID Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	6.85	-	86.00
Composite Area & Weighted CN	6.85		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	37	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.66	0.00	0.00
Computed Flow Time (min) :	2.53	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	50	0.00	0.00
Surface Type :	Bare & untilled	Unpaved	Unpaved
Velocity (ft/sec) :	7.07	0.00	0.00
Computed Flow Time (min) :	0.24	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	0.00	0.00
Flow Length (ft) :	745	0.00	0.00
Channel Slope (%) :	2.5	0.00	0.00
Cross Section Area (ft ²) :	11.3	0.00	0.00
Wetted Perimeter (ft) :	11.4	0.00	0.00
Velocity (ft/sec) :	6.69	0.00	0.00
Computed Flow Time (min) :	1.86	0.00	0.00
Total TOC (min)	4.62		

Subbasin Runoff Results

Total Rainfall (in) 8.03
 Total Runoff (in) 6.36
 Peak Runoff (cfs) 65.76
 Weighted Curve Number 86.00
 Time of Concentration (days hh:mm:ss) 0 00:04:37

Subbasin : CD-6**Input Data**

Area (ac)	8.43
Weighted Curve Number	86.00
Rain Gage ID	Rain Gage-01

Composite Curve Number

Soil/Surface Description	Area (acres)	Soil Group	Curve Number
-	8.43	-	86.00
Composite Area & Weighted CN	8.43		86.00

Time of Concentration

Sheet Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	0.12	0.00	0.00
Flow Length (ft) :	100	0.00	0.00
Slope (%) :	26.1	0.00	0.00
2 yr, 24 hr Rainfall (in) :	3.25	0.00	0.00
Velocity (ft/sec) :	0.57	0.00	0.00
Computed Flow Time (min) :	2.91	0.00	0.00
Shallow Concentrated Flow Computations	Subarea A	Subarea B	Subarea C
Flow Length (ft) :	58	0.00	0.00
Slope (%) :	34.1	0.00	0.00
Surface Type :	Bare & untilled	dry & untilled	Unpaved
Velocity (ft/sec) :	5.84	0.00	0.00
Computed Flow Time (min) :	0.17	0.00	0.00
Channel Flow Computations	Subarea A	Subarea B	Subarea C
Manning's Roughness :	.035	.035	.035
Flow Length (ft) :	784	295	53
Channel Slope (%) :	3	10	6
Cross Section Area (ft ²) :	10.8	6.9	8.4
Wetted Perimeter (ft) :	10.7	8.8	9.5
Velocity (ft/sec) :	7.42	11.45	9.61
Computed Flow Time (min) :	1.76	0.43	0.09
Total TOC (min)	5.36		

Subbasin Runoff Results

Total Rainfall (in)	8.03
Total Runoff (in)	6.36
Peak Runoff (cfs)	80.21
Weighted Curve Number	86.00
Time of Concentration (days hh:mm:ss)	0 00:05:22

SECTION F
CULVERT - STRUCTURAL DESIGN

DAAPPOLONIA

By	AMR	Date	10/21/2016	Subject	Northern Tract Quarry	Sheet No.	1 of 20
Chkd. By	MJD	Date	10/26/2016	Culvert Structural Design	Proj. No.	152596A	

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

**PHASE 2 & 3 CULVERT STRUCTURAL DESIGN
NORTHERN TRACT QUARRY
CHARMAIN SITE, SPECIALTY GRANULES, LLC.
ADAMS COUNTY, PENNSYLVANIA**

PURPOSE

The following calculations were performed to determine the cover thickness for the proposed pipe culverts for the culverts of the Phase 2 and Phase 3 Initial Site Development for the Northern Tract Quarry. The culverts are a set of two 30-inch or 36-inch diameter, dual-wall corrugated polyethylene pipes (CPEP).

The culverts are designed to experience live loading from a Caterpillar 740 Articulated Dump Truck (Refer to Attachment #1 for truck specifications). Due to the relatively shallow burial of all the pipes, the live load for the most shallow cover depths dictates the pipe design. The live load distribution and pressure with depth for the CAT 740 were determined in accordance with the American Association of State Highway Transportation Officials (AASHTO) Bridge Design Specifications based on the fully loaded specifications and Advanced Drainage Systems, Inc. (ADS) Drainage Handbook.

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 2 of 20
 Proj. No. 152596A

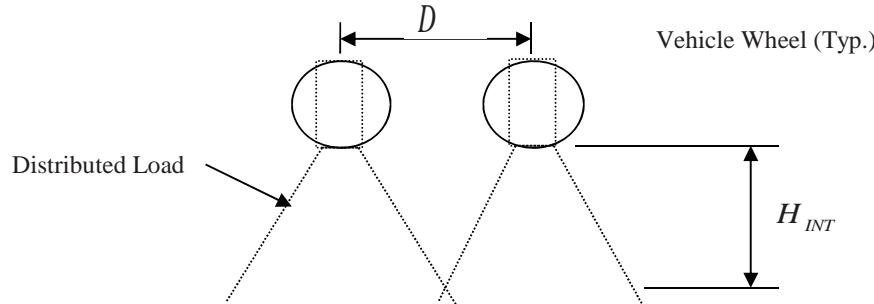
N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\Northern Tract Culverts - Structural Design.xls]C-1

Culvert C-1

Proposed Culvert Inside Diameter 30 in
 Culvert Length 63 ft
 Minimum Cover in Road Area 2 ft

Culvert Type: Corrugated, Dual-walled Polyethylene Pipe
 Design Vehicular Traffic: CAT 740, 40-Ton Articulated Dumptruck

STRUCTURAL ANALYSIS


The culvert will be designed using methods prescribed in the Advanced Drainage Systems, Inc. (ADS) Drainage Handbook (Reference 1) and the American Association of State Highway and Transportation Officials (AASHTO) Load Resistance and Factor Design (LRFD) Bridge Specifications with 2015 Interim Revisions (Reference 2).

Design Case CAT 740 Articulated Truck
 Loading Conditions Short Term
 Minimum Cover 2.0 ft

Live Load Determination

Dimensions of the design vehicle are presented in Attachment #1. The design live load for the culvert is calculated below:

Depth of Wheel Load Interaction:

H_{INT} = depth of wheel load interaction = $(D - L_T)/LLFD$ where,

D = minimum distance between wheels =	<u>8.8</u>	ft (Front Wheel Set - Front Right to Front Left)
D = minimum distance between wheels =	<u>6.4</u>	ft (Rear Wheel Set - Center Axle to Rear Axle)
LLFD = live load distribution factor =	<u>1.15</u>	(Per AASHTO 3.6.1.2.6)

Tire Contact Area (29.5R25 OTR Tire)

Consider a single wheel,

Gross Contact Area, A_T =	<u>505</u> in^2	(Refer to Attachment #1)
Loaded Tire Width, W_T =	<u>34.6</u> in	
Tire Length, L_T =	<u>14.6</u> in	$(L_T = A_T/W_T)$

H_{INT} (Front Wheel Set) = 6.6 ft
 H_{INT} (Rear Wheel Set) = 4.5 ft

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 3 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

Distribution of Wheel Loads to Culvert (AASHTO 3.6.1.2.6):

D_E = minimum depth of cover above the culvert

Distributed Length of Loaded Area, $L_D = [L_T + D_E \text{ (LLFD)}]$

Distributed Width of Loaded Area, $W_D = [W_T + D_E \text{ (LLFD)}]$ if $D_E \leq H_{INT}$ or $W_D = W_T + D + D_E(1.15)$ if $D_E > H_{INT}$

Distributed Loaded Area, $A_D = L_D \times W_D$

Design Live Load (AASHTO 3.6.1.3.1):

Design Wheel Load, $P = m * (1 + (IM/100)) * p$ where,

Multiple Presence Factor, $m = 1.2$ (Based upon anticipated traffic conditions - AASHTO 3.6.1.1.2-1)

Impact Factor, $IM = 33 (1.0 - 0.125D_E) \geq 0\%$ (AASHTO 3.6.2.2-1)

p = Wheel Load

Consider Front Wheel Set:

Front Axle Loaded Weight= 54,234 lb (Refer to Attachment #1)

p (lb)	D _E (ft)	Distributed Tire Contact Area			IM (%)	P (lb)	P/A _D (psi)
		L _D (ft)	W _D (ft)	A _D (ft ²)			
27,117	0.0	1.2	2.9	3.5	33	43,279	85.70
27,117	1.0	2.4	4.0	9.5	29	41,936	30.51
27,117	2.0	3.5	5.2	18.2	25	40,594	15.47
27,117	3.0	4.7	6.3	29.6	21	39,252	9.22
27,117	4.0	5.8	7.5	43.5	17	37,910	6.05

*Front wheels do not interact at the depths considered

Consider Rear Wheel Set:

Rear Axle Loaded Weight= 53,683 lb (Refer to Attachment #1)

p (lb)	D _E (ft)	Distributed Tire Contact Area			IM (%)	P (lb)	P/A _D (psi)
		L _D (ft)	W _D (ft)	A _D (ft ²)			
26,842	0.0	1.2	2.9	3.5	33	42,839	84.83
26,842	1.0	2.4	4.0	9.5	29	41,510	30.20
26,842	2.0	3.5	5.2	18.2	25	40,182	15.31
26,842	3.0	4.7	6.3	29.6	21	38,853	9.13
26,842	4.0	5.8	7.5	43.5	17	37,524	5.99

*Rear wheels do not interact at the depths considered

Therefore, the front wheel set loads will control the culvert design.

DIAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 4 of 20
 Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

Dead Load Determination

$P_{sp} = \text{geostatic load} = [\gamma_s(H + 0.11OD/12)]/144$ where,

H = burial depth

γ_s = unit weight of soil

OD = outside diameter of pipe culvert (See Table 2-1)

VAF = vertical arching factor = 0.76-0.71[(S_h -1.17)/(S_h +2.92)] where,

S_h = hoop stiffness factor = $\Phi_s M_s R / (EA)$ where,

Φ_s = capacity modification factor for soil = 0.9

M_s = secant constrained modulus of soil (See Tables 2-7)

R = effective radius of pipe = ID/2+c where,

ID = inside diameter of pipe

c = distance from ID to neutral axis of pipe (See Table 2-1)

E = modulus of elasticity of polyethylene (Table 2-5)

110,000 psi for short term conditions

22,000 psi for long term conditions

A = section area (See Table 2-1)

$$W_{sp} = P_{sp}(VAF)$$

$$P_w = \gamma_w H_g / 144$$
 where,

γ_w = unit weight of water = 62.4 pcf

H_g = height of groundwater above pipe

Design Case	Truck Load, Min Cover
Design Conditions	Short Term
H (ft)	2.0
γ_s (pcf)	125
OD (in)	35.1
P_{sp} (psi)	2.015
ID (in)	30
c (in)	0.891
R (in)	15.891
M_s (psi)	2607
E (psi)	110,000
A (in ² /in)	0.371
S_h	0.914
VAF	0.807
W_{sp} (psi)	1.627
H_g (ft)	0.0
P_w (psi)	0.000

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 5 of 20
 Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

Calculated Wall Thrust

$T_L = \text{Calculated Wall Thrust} = [n_{EV}(\gamma_{EV}W_{sp} + 1.3\gamma_{WA}P_w) + n_{LL}\gamma_{LL}P_lC_l](OD/2)$ where,

W_{sp} = soil arch load

n_{EV} = load modifier for earth fill (See Table 2-13)

γ_{EV} = load factor for vertical earth pressure (See Table 2-11)

γ_{WA} = load factor for water load (See Table 2-11)

n_{LL} = load modifier for live load (See Table 2-13)

γ_{LL} = load factor for live load (See Table 2-11)

P_l = live load transferred to pipe

C_l = live load distribution coefficient = $L_w/OD \leq 1.0$ where,

L_w = live load distribution width at the pipe crown (See Table 2-10)

OD = outside diameter of pipe (See Table 2-1)

P_w = hydrostatic pressure at the springline of the pipe

	Strength Limit I	Strength Limit II	Service Limit I
W_{sp} (psi)	1.627	1.627	1.627
n_{EV}	1.05	1.05	1.05
γ_{EV}	1.95	1.95	1
γ_{WA}	1	1	1
n_{LL}	1	1	1
γ_{LL}	1.75	1.35	1
P_l (psi)	15.467	15.467	15.467
C_l	1	1	1
L_w (in)	57.1	57.1	57.1
OD (in)	35.1	35.1	35.1
P_w (psi)	0.000	0.000	0.000
T_L (lb/in)	534	425	301

Tensile Resistance to Wall Thrust

T_{cr} (tension) = tensile resistance to thrust = $(F_y)(A)(\Phi_p)$ where,

F_y = tensile strength of polyethylene = (Table 2-5)

3,000 psi for short term conditions

900 psi for long term conditions

A = section area (See Table 2-1)

Φ_p = capacity modification factor for pipe = 1.0

Design Case	Truck Load, Min Cover
Design Conditions	Short Term
F_y (psi)	3,000
A (in ² /in)	0.371
T_{cr} (tension) (lb/in)	1,113

> Calculated Wall Thrust OK

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 6 of 20
 Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

Compressive Resistance to Wall Thrust

T_{cr} (compression) = compressive resistance to thrust = $(F_y)(A_{eff})(\Phi_p)$ where,

A_{eff} = effective wall area = $A_s - [\sum(1-p_i)w_i t_i/w]$ where,

A_s = wall area (See Table 2-1)

w_i = length of each individual profile element

t_i = thickness of each individual profile element

w = profile pitch (Table 2-11)

p_i = effective width factor = $(1-0.22/\lambda)/\lambda \leq 1$ where,

λ = slenderness factor = $w_i/t_i(\epsilon/k)^{0.5} > 0.673$

w_i = length of each individual profile element

t_i = thickness of each individual profile element

k = edge support coefficient = 4.0

ϵ = strain in element

	Element	Crest	Web	Valley	Liner
	t_i (in)	0.127	0.165	0.257	0.110
Strength Limit 1	w_i (in)	1.345	2.046	0.844	2.850
	λ	0.673	0.709	0.673	1.481
	p_i	1.000	0.973	1.000	0.575
Strength Limit II	$(1-p_i)w_i t_i$	0.000	0.009	0.000	0.133
	λ	0.673	0.673	0.673	1.322
	p_i	1.000	1.000	1.000	0.631
Service Limit 1	$(1-p_i)w_i t_i$	0.000	0.000	0.000	0.116
	λ	0.673	0.673	0.673	1.113
	p_i	1.000	1.000	1.000	0.721
	$(1-p_i)w_i t_i$	0.000	0.000	0.000	0.088

Design Case	Truck Load, Min Cover			
Design Conditions	Short Term			
	Strength Limit 1	Strength Limit II	Service Limit 1	
w (in)	4.02	4.02		4.02
T_L (lb/in)	533.5	424.9		301.4
A_s (in ² /in)	0.371	0.371		0.371
E (psi)	110,000	110,000		110,000
ϵ (in/in)	0.013	0.010		0.007
A_{eff} (in ² /in)	0.336	0.342		0.349
F_y (psi)	3,000	3,000		3,000
T_{cr} (comp.) (lb/in)	1,007	1,027		1,048

$T_{cr} > \text{Calculated Wall Thrust}$ OK

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 7 of 20
 Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

Critical Buckling Stress

$f_{CR} = \text{critical buckling stress} = 9.24 (R/A_{eff})[(B'R_w\Phi_s M_s EI)/0.149R^3]^{0.5}$ where,

M_s = secant constrained soil modulus

R = effective radius of pipe = $ID/2 + c$ where,

ID = inside diameter of pipe

c = distance from inside diameter to neutral axis

E = modulus of elasticity of polyethylene

110,000 psi for short term conditions

22,000 psi for long term conditions

A_{eff} = effective area

I = moment of inertia (See Table 2-1)

R_w = water buoyancy factor = $1 - 0.33h_g/H$ where,

h_g = height of groundwater above pipe crown

H = burial depth

Φ_s = resistance factor for soil stiffness (See Table 2-9)

B' = nonuniform stress distribution factor = $1/(1 + 4e^{-0.065H})$

Design Case	Truck Load, Min Cover		
	Short Term		
Design Conditions	Strength Limit I	Strength Limit II	Service Limit I
M_s (psi)	2,607	2,607	2,607
ID (in)	30	30	30
c (in)	0.891	0.891	0.891
R (in)	15.891	15.891	15.891
E (psi)	110,000	110,000	110,000
A_{eff} (in ² /in)	0.336	0.342	0.349
I (in ⁴ /in)	0.276	0.276	0.276
h_g (ft)	0.0	0.0	0.0
H (ft)	2.0	2.0	2.0
R_w	1.000	1.000	1.000
Φ_s	0.9	0.9	0.9
B'	0.222	0.222	0.222
f_{CR} (psi)	71,103	69,727	68,324

fcr > Fy Use Fy for compressive resistance to thrust calculation

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 8 of 20
 Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\Northern Tract Culverts - Structural Design.xls]C-1

Bending Strain

Δ = deflection of pipe = $\Delta_c D_m - (T_L D_m) / (A_{eff} E \gamma_p)$ where,

T_L = factored wall thrust

Δ_c = deflection of pipe induced by construction = 0.05 in/in

γ_p = load factor for vertical earth pressure

A_{eff} = effective area

E = long term modulus of elasticity = 22,000 psi

D_m = mean pipe diameter = ID + 2c where,

ID = inside diameter of pipe

c = distance from inside diameter to neutral axis

	Strength Limit I	Strength Limit II	Service Limit I
T_L	534	425	301
γ_p	0.9	0.9	1.0
A_{eff} (in ² /in)	0.336	0.342	0.349
ID (in)	30	30	30
c (in)	0.891	0.891	0.891
D_m (in)	31.782	31.782	31.782
Δ (in)	-0.963	-0.404	0.342

ϵ_{bu} = factored bending strain = $\gamma_B D_f (c/R) (\Delta/D_m)$ where,

D_f = shape factor (See Table 2-5) = 4.4

Δ = deflection

γ_B = load factor for combined strain = 1.5

R = effective radius of pipe = ID/2 + c where,

ID = inside diameter of pipe

c = distance from inside diameter to neutral axis

D_m = mean pipe diameter = ID + 2c where,

	Strength Limit I	Strength Limit II	Service Limit I
Δ (in)	-0.963	-0.404	0.342
R (in)	15.891	15.891	15.891
ID (in)	30	30	30
c (in)	0.891	0.891	0.891
D_m (in)	31.782	31.782	31.782
ϵ_{bu} (in/in)	-0.011	-0.005	0.004

Bending strain is less than 5%. OK

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 9 of 20
 Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

Combined Strain

ϵ_{cu} = factored compressive strain = $\epsilon_{bu} + (T_L/A_{eff}E)(\gamma_B/\gamma_p)$ where,

ϵ_{bu} = factored bending strain

T_L = factored wall thrust

γ_p = load factor for vertical earth pressure

γ_B = load factor for combined strain = 1.5

A_{eff} = effective wall area

E = modulus of elasticity of polyethylene

110,000	psi for short term conditions
22,000	psi for long term conditions

Design Case	Truck Load, Min Cover		
Design Conditions	Short Term		
	Strength Limit I	Strength Limit II	Service Limit I
ϵ_{bu} (in/in)	-0.011	-0.005	0.004
T_L (lb/in)	534	425	301
γ_p	0.9	0.9	1.0
γ_B	1.5	1.5	1.5
A_{eff} (in ² /in)	0.336	0.342	0.349
E (psi)	110,000	110,000	110,000
ϵ_{cu} (in/in)	0.013	0.014	0.016

ϵ_{cl} = limiting combined compressive strain = $1.5F_y/E$ where,

F_y = tensile strength of polyethylene = 900 psi for long term conditions

E = long term modulus of elasticity = 22,000 psi

ϵ_{cl} = **0.061** in/in

Factored compressive strain is less than the limiting combined compressive strain. OK

DAAPPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 10 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-1

ϵ_{tu} = factored combined tension strain = $\epsilon_{bu} - (T_L/A_{eff}E)(\gamma_B/\gamma_p)$ where,

ϵ_{bu} = factored bending strain

T_L = factored wall thrust

γ_p = load factor for vertical earth pressure

γ_B = load factor for combined strain =

1.5

A_{eff} = effective area

E = modulus of elasticity of polyethylene

110,000 psi for short term conditions

22,000 psi for long term conditions

Design Case	Truck Load, Min Cover		
Design Conditions	Short Term		
	Strength Limit I	Strength Limit II	Service Limit 1
ϵ_{bu} (in/in)	-0.011	-0.005	0.004
T_L (lb/in)	534	425	301
γ_p	0.9	0.9	1.0
γ_B	1.5	1.5	1.5
A_{eff} (in ² /in)	0.336	0.342	0.349
E (psi)	110,000	110,000	110,000
ϵ_{tu} (in/in)	-0.035	-0.024	-0.008

ϵ_{tl} = limiting combined tension strain = $\gamma_B \cdot \epsilon_t$ where,

γ_B = load factor for combined strain =

1.5

ϵ_t = allowable tension strain =

0.05 in/in

ϵ_{tl} = **0.075** in/in

Factored tension strain is less than the limiting combined tension strain. OK

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Sheet No. 11 of 20
 Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

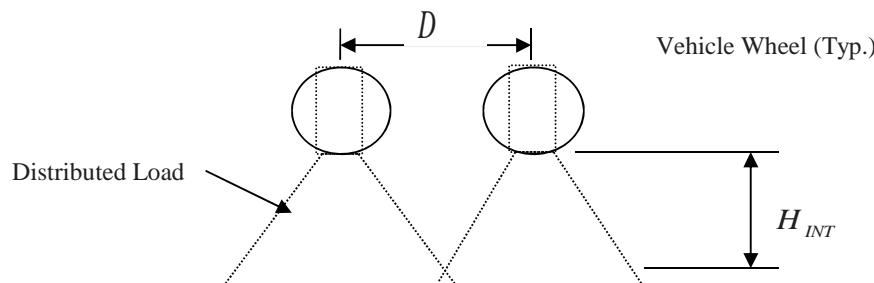
Culverts C-2, C-3, and C-4

Proposed Culvert Inside Diameter 36 in
 Culvert Length 62 ft
 Minimum Cover in Road Area 2 ft

Culvert Type: Corrugated, Dual-walled Polyethylene Pipe

Design Vehicular Traffic: CAT 740, 40-Ton Articulated Dumptruck

STRUCTURAL ANALYSIS


The culvert will be designed using methods prescribed in the Advanced Drainage Systems, Inc. (ADS) Drainage Handbook (Reference 1) and the American Association of State Highway and Transportation Officials (AASHTO) Load Resistance and Factor Design (LRFD) Bridge Specifications with 2015 Interim Revisions (Reference 2).

Design Case CAT 740 Articulated Truck
 Loading Conditions Short Term
 Minimum Cover 2.0 ft

Live Load Determination

Dimensions of the design vehicle are presented in Attachment #1. The design live load for the culvert is calculated below:

Depth of Wheel Load Interaction:

H_{INT} = depth of wheel load interaction = $(D - L_T)/LLFD$ where,

D = minimum distance between wheels =	8.8 ft (Front Wheel Set - Front Right to Front Left)
D = minimum distance between wheels =	6.4 ft (Rear Wheel Set - Center Axle to Rear Axle)
LLFD = live load distribution factor =	1.15 (Per AASHTO 3.6.1.2.6)

Tire Contact Area (29.5R25 OTR Tire)

Consider a single wheel,

Gross Contact Area, A_T =	505 in ²	(Refer to Attachment #1)
Loaded Tire Width, W_T =	34.6 in	
Tire Length, L_T =	14.6 in	$(L_T = A_T/W_T)$

H_{INT} (Front Wheel Set) = 6.6 ft
 H_{INT} (Rear Wheel Set) = 4.5 ft

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 12 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

Distribution of Wheel Loads to Culvert (AASHTO 3.6.1.2.6):

D_E = minimum depth of cover above the culvert

Distributed Length of Loaded Area, $L_D = [L_T + D_E \text{ (LLFD)}]$

Distributed Width of Loaded Area, $W_D = [W_T + D_E \text{ (LLFD)}]$ if $D_E \leq H_{INT}$ or $W_D = W_T + D + D_E(1.15)$ if $D_E > H_{INT}$

Distributed Loaded Area, $A_D = L_D \times W_D$

Design Live Load (AASHTO 3.6.1.3.1):

Design Wheel Load, $P = m * (1 + (IM/100)) * p$ where,

Multiple Presence Factor, $m = 1.2$ (Based upon anticipated traffic conditions - AASHTO 3.6.1.1.2-1)

Impact Factor, $IM = 33 (1.0 - 0.125D_E) \geq 0\%$ (AASHTO 3.6.2.2-1)

p = Wheel Load

Consider Front Wheel Set:

Front Axle Loaded Weight= 54,234 lb (Refer to Attachment #1)

p (lb)	D _E (ft)	Distributed Tire Contact Area			IM (%)	P (lb)	P/A _D (psi)
		L _D (ft)	W _D (ft)	A _D (ft ²)			
27,117	0.0	1.2	2.9	3.5	33	43,279	85.70
27,117	1.0	2.4	4.0	9.5	29	41,936	30.51
27,117	2.0	3.5	5.2	18.2	25	40,594	15.47
27,117	3.0	4.7	6.3	29.6	21	39,252	9.22
27,117	4.0	5.8	7.5	43.5	17	37,910	6.05

*Front wheels do not interact at the depths considered

Consider Rear Wheel Set:

Rear Axle Loaded Weight= 53,683 lb (Refer to Attachment #1)

p (lb)	D _E (ft)	Distributed Tire Contact Area			IM (%)	P (lb)	P/A _D (psi)
		L _D (ft)	W _D (ft)	A _D (ft ²)			
26,842	0.0	1.2	2.9	3.5	33	42,839	84.83
26,842	1.0	2.4	4.0	9.5	29	41,510	30.20
26,842	2.0	3.5	5.2	18.2	25	40,182	15.31
26,842	3.0	4.7	6.3	29.6	21	38,853	9.13
26,842	4.0	5.8	7.5	43.5	17	37,524	5.99

*Rear wheels do not interact at the depths considered

Therefore, the front wheel set loads will control the culvert design.

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 13 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

Dead Load Determination

$P_{sp} = \text{geostatic load} = [\gamma_s(H + 0.11OD/12)]/144$ where,

H = burial depth

γ_s = unit weight of soil

OD = outside diameter of pipe culvert (See Table 2-1)

VAF = vertical arching factor = 0.76-0.71[(S_h -1.17)/(S_h +2.92)] where,

S_h = hoop stiffness factor = $\Phi_s M_s R / (EA)$ where,

Φ_s = capacity modification factor for soil = 0.9

M_s = secant constrained modulus of soil (See Tables 2-7)

R = effective radius of pipe = ID/2+c where,

ID = inside diameter of pipe

c = distance from ID to neutral axis of pipe (See Table 2-1)

E = modulus of elasticity of polyethylene (Table 2-5)

110,000 psi for short term conditions

22,000 psi for long term conditions

A = section area (See Table 2-1)

$$W_{sp} = P_{sp}(VAF)$$

$$P_w = \gamma_w H_g / 144$$
 where,

γ_w = unit weight of water = 62.4 pcf

H_g = height of groundwater above pipe

Design Case	Truck Load, Min Cover
Design Conditions	Short Term
H (ft)	2.0
γ_s (pcf)	125
OD (in)	41.1
P_{sp} (psi)	2.063
ID (in)	36
c (in)	1.069
R (in)	19.069
M_s (psi)	2620
E (psi)	110,000
A (in^2/in)	0.403
S_h	1.014
VAF	0.788
W_{sp} (psi)	1.626
H_g (ft)	0.0
P_w (psi)	0.000

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 14 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

Calculated Wall Thrust

$T_L = \text{Calculated Wall Thrust} = [n_{EV}(\gamma_{EV}W_{sp} + 1.3\gamma_{WA}P_w) + n_{LL}\gamma_{LL}P_lC_l](OD/2)$ where,

W_{sp} = soil arch load

n_{EV} = load modifier for earth fill (See Table 2-13)

γ_{EV} = load factor for vertical earth pressure (See Table 2-11)

γ_{WA} = load factor for water load (See Table 2-11)

n_{LL} = load modifier for live load (See Table 2-13)

γ_{LL} = load factor for live load (See Table 2-11)

P_l = live load transferred to pipe

C_l = live load distribution coefficient = $L_w/OD \leq 1.0$ where,

L_w = live load distribution width at the pipe crown (See Table 2-10)

OD = outside diameter of pipe (See Table 2-1)

P_w = hydrostatic pressure at the springline of the pipe

	Strength Limit I	Strength Limit II	Service Limit I
W_{sp} (psi)	1.626	1.626	1.626
n_{EV}	1.05	1.05	1.05
γ_{EV}	1.95	1.95	1
γ_{WA}	1	1	1
n_{LL}	1	1	1
γ_{LL}	1.75	1.35	1
P_l (psi)	15.467	15.467	15.467
C_l	1	1	1
L_w (in)	50.6	50.6	50.6
OD (in)	41.1	41.1	41.1
P_w (psi)	0.000	0.000	0.000
T_L (lb/in)	625	498	353

Tensile Resistance to Wall Thrust

T_{cr} (tension) = tensile resistance to thrust = $(F_y)(A)(\Phi_p)$ where,

F_y = tensile strength of polyethylene = (Table 2-5)

3,000 psi for short term conditions

900 psi for long term conditions

A = section area (See Table 2-1)

Φ_p = capacity modification factor for pipe = 1.0

Design Case	Truck Load, Min Cover
Design Conditions	Short Term
F_y (psi)	3,000
A (in ² /in)	0.403
T_{cr} (tension) (lb/in)	1,209

> Calculated Wall Thrust OK

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 15 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

Compressive Resistance to Wall Thrust

T_{cr} (compression) = compressive resistance to thrust = $(F_y)(A_{eff})(\Phi_p)$ where,

A_{eff} = effective wall area = $A_s - [\sum(1-p_i)w_i t_i / w]$ where,

A_s = wall area (See Table 2-1)

w_i = length of each individual profile element

t_i = thickness of each individual profile element

w = profile pitch (Table 2-11)

p_i = effective width factor = $(1-0.22/\lambda)/\lambda \leq 1$ where,

λ = slenderness factor = $w_i/t_i(\epsilon/k)^{0.5} > 0.673$

w_i = length of each individual profile element

t_i = thickness of each individual profile element

k = edge support coefficient = 4.0

ϵ = strain in element

	Element	Crest	Web	Valley	Liner
	t_i (in)	0.127	0.165	0.257	0.110
Strength Limit 1	w_i (in)	1.345	2.046	0.844	2.850
	λ	0.673	0.736	0.673	1.538
	p_i	1.000	0.953	1.000	0.557
Strength Limit II	$(1-p_i)w_i t_i$	0.000	0.016	0.000	0.139
	λ	0.673	0.673	0.673	1.372
	p_i	1.000	1.000	1.000	0.612
Service Limit 1	$(1-p_i)w_i t_i$	0.000	0.000	0.000	0.122
	λ	0.673	0.673	0.673	1.156
	p_i	1.000	1.000	1.000	0.700
	$(1-p_i)w_i t_i$	0.000	0.000	0.000	0.094

Design Case	Truck Load, Min Cover			
Design Conditions	Short Term			
	Strength Limit 1	Strength Limit II	Service Limit 1	
w (in)	4.02	4.02		4.02
T_L (lb/in)	624.6	497.5		352.9
A_s (in ² /in)	0.403	0.403		0.403
E (psi)	110,000	110,000		110,000
ϵ (in/in)	0.014	0.011		0.008
A_{eff} (in ² /in)	0.364	0.373		0.380
F_y (psi)	3,000	3,000		3,000
T_{cr} (comp.) (lb/in)	1,093	1,118		1,139

$T_{cr} > \text{Calculated Wall Thrust}$ OK

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 16 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

Critical Buckling Stress

f_{CR} = critical buckling stress = $9.24 (R/A_{eff})[(B'R_w\Phi_s M_s EI)/0.149R^3]^{0.5}$ where,

M_s = secant constrained soil modulus

R = effective radius of pipe = $ID/2 + c$ where,

ID = inside diameter of pipe

c = distance from inside diameter to neutral axis

E = modulus of elasticity of polyethylene

110,000 psi for short term conditions

22,000 psi for long term conditions

A_{eff} = effective area

I = moment of inertia (See Table 2-1)

R_w = water buoyancy factor = $1 - 0.33h_g/H$ where,

h_g = height of groundwater above pipe crown

H = burial depth

Φ_s = resistance factor for soil stiffness (See Table 2-9)

B' = nonuniform stress distribution factor = $1/(1 + 4e^{-0.065H})$

Design Case	Truck Load, Min Cover		
	Short Term		
Design Conditions	Strength Limit I	Strength Limit II	Service Limit I
M_s (psi)	2,620	2,620	2,620
ID (in)	36	36	36
c (in)	1.069	1.069	1.069
R (in)	19.069	19.069	19.069
E (psi)	110,000	110,000	110,000
A_{eff} (in ² /in)	0.364	0.373	0.380
I (in ⁴ /in)	0.319	0.319	0.319
h_g (ft)	0.0	0.0	0.0
H (ft)	2.0	2.0	2.0
R_w	1.000	1.000	1.000
Φ_s	0.9	0.9	0.9
B'	0.222	0.222	0.222
f_{CR} (psi)	64,399	62,976	61,829

$f_{CR} > F_y$ Use F_y for compressive resistance to thrust calculation

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 17 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

Bending Strain

Δ = deflection of pipe = $\Delta_c D_m - (T_L D_m) / (A_{eff} E \gamma_p)$ where,

T_L = factored wall thrust

Δ_c = deflection of pipe induced by construction = 0.05 in/in

γ_p = load factor for vertical earth pressure

A_{eff} = effective area

E = long term modulus of elasticity = 22,000 psi

D_m = mean pipe diameter = ID + 2c where,

ID = inside diameter of pipe

c = distance from inside diameter to neutral axis

	Strength Limit I	Strength Limit II	Service Limit I
T_L	625	498	353
γ_p	0.9	0.9	1.0
A_{eff} (in ² /in)	0.364	0.373	0.380
ID (in)	36	36	36
c (in)	1.069	1.069	1.069
D_m (in)	38.138	38.138	38.138
Δ (in)	-1.394	-0.664	0.295

ϵ_{bu} = factored bending strain = $\gamma_B D_f (c/R) (\Delta/D_m)$ where,

D_f = shape factor (See Table 2-5) = 4.4

Δ = deflection

γ_B = load factor for combined strain = 1.5

R = effective radius of pipe = ID/2 + c where,

ID = inside diameter of pipe

c = distance from inside diameter to neutral axis

D_m = mean pipe diameter = ID + 2c where,

	Strength Limit I	Strength Limit II	Service Limit I
Δ (in)	-1.394	-0.664	0.295
R (in)	19.069	19.069	19.069
ID (in)	36	36	36
c (in)	1.069	1.069	1.069
D_m (in)	38.138	38.138	38.138
ϵ_{bu} (in/in)	-0.014	-0.006	0.003

Bending strain is less than 5%. OK

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 18 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

Combined Strain

ϵ_{cu} = factored compressive strain = $\epsilon_{bu} + (T_L/A_{eff}E)(\gamma_B/\gamma_p)$ where,

ϵ_{bu} = factored bending strain

T_L = factored wall thrust

γ_p = load factor for vertical earth pressure

γ_B = load factor for combined strain = 1.5

A_{eff} = effective wall area

E = modulus of elasticity of polyethylene

110,000	psi for short term conditions
22,000	psi for long term conditions

Design Case	Truck Load, Min Cover		
Design Conditions	Short Term		
	Strength Limit I	Strength Limit II	Service Limit I
ϵ_{bu} (in/in)	-0.014	-0.006	0.003
T_L (lb/in)	625	498	353
γ_p	0.9	0.9	1.0
γ_B	1.5	1.5	1.5
A_{eff} (in ² /in)	0.364	0.373	0.380
E (psi)	110,000	110,000	110,000
ϵ_{cu} (in/in)	0.012	0.014	0.016

ϵ_{cl} = limiting combined compressive strain = $1.5F_y/E$ where,

F_y = tensile strength of polyethylene = 900 psi for long term conditions

E = long term modulus of elasticity = 22,000 psi

ϵ_{cl} = **0.061 in/in**

Factored compressive strain is less than the limiting combined compressive strain. OK

D'APPOLONIA

By AMR Date 10/21/2016 Subject Northern Tract Quarry Sheet No. 19 of 20
 Chkd. By MJD Date 10/26/2016 Culvert Structural Design Proj. No. 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]C-2, C-3, C-4

ϵ_{tu} = factored combined tension strain = $\epsilon_{bu} - (T_L/A_{eff}E)(\gamma_B/\gamma_p)$ where,

ϵ_{bu} = factored bending strain

T_L = factored wall thrust

γ_p = load factor for vertical earth pressure

γ_B = load factor for combined strain =

1.5

A_{eff} = effective area

E = modulus of elasticity of polyethylene

110,000 psi for short term conditions

22,000 psi for long term conditions

Design Case	Truck Load, Min Cover		
Design Conditions	Short Term		
	Strength Limit I	Strength Limit II	Service Limit 1
ϵ_{bu} (in/in)	-0.014	-0.006	0.003
T_L (lb/in)	625	498	353
γ_p	0.9	0.9	1.0
γ_B	1.5	1.5	1.5
A_{eff} (in ² /in)	0.364	0.373	0.380
E (psi)	110,000	110,000	110,000
ϵ_{tu} (in/in)	-0.039	-0.027	-0.010

ϵ_{tl} = limiting combined tension strain = $\gamma_B \cdot \epsilon_t$ where,

γ_B = load factor for combined strain =

1.5

ϵ_t = allowable tension strain =

0.05 in/in

ϵ_{tl} = **0.075** in/in

Factored tension strain is less than the limiting combined tension strain. OK

D'APPOLONIA

By: AMR Date: 10/21/2016 Subject: Northern Tract Quarry Sheet No.: 20 of 20
Chkd. By: MJD Date: 10/26/2016 Culvert Structural Design Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract E&S\Culvert Design\[Northern Tract Culverts - Structural Design.xls]References

REFERENCES

- 1) Drainage Handbook - Structures, Advanced Drainage Systems, Inc. (ADS), 2011.
- 2) AASHTO LRFD Bridge Design Specifications, Customary Units, 7th Edition, 2016 Interim Revisions, American Association of State Highway and Transportation Officials (AASHTO), 2014.
- 3) Drainage Handbook - Structures, Hancor, Inc., 2009.

ATTACHMENT #1

740

Articulated Truck

SECTION F, Page 23 of 29

CATERPILLAR®

Engine

Engine Model	Cat® C15 ACERT™	
Gross Power – SAE J1995	350 kW	469 hp
Net Power – SAE J1349	338 kW	453 hp

Weights

Rated Payload	39.5 tonnes	43.5 tons
Body Capacities	24 m ³	31.4 yd ³

Engine

Engine Model	Cat® C15 ACERT™	
Gross Power – SAE J1995	350 kW	469 hp
Net Power – SAE J1349	338 kW	453 hp
Net Power – ISO 9249	342 kW	458 hp
Net Power – EEC 80/1269	342 kW	458 hp
Bore	137 mm	5.4 in
Stroke	171.5 mm	6.75 in
Displacement	15.2 L	926 in³

- The power ratings apply at rated speed of 1,800 rpm when tested under the conditions for the specified standard.
- The net power advertised is the power available at the flywheel when the engine is equipped with alternator, air cleaner, muffler and fan at minimum speed.
- Net power when the fan is at maximum speed is 330 kW (442 hp) per the SAE reference conditions.
- The 740 meets EPA Tier 3/EU Stage 3a emission specifications for the U.S. and Europe through 2010.
- No engine derating required below 2438 m (8,000 ft.).

Weights

Rated Payload	39.5 tonnes	43.5 tons
---------------	-------------	-----------

Body Capacities

Heaped SAE 2:1	24 m³	31.4 yd³
Struck	18.5 m³	24.2 yd³
Tailgate Struck	19.5 m³	25.5 yd³
Tailgate Heaped 2:1	25.5 m³	33.5 yd³

Transmission

Forward 1	8.9 km/h	5.5 mph
Forward 2	12.1 km/h	7.5 mph
Forward 3	16.4 km/h	10.2 mph
Forward 4	22 km/h	13.7 mph
Forward 5	30 km/h	18.6 mph
Forward 6	40 km/h	25.1 mph
Forward 7	54.7 km/h	34 mph
Reverse 1	8.4 km/h	5.2 mph
Reverse 2	11.6 km/h	7.2 mph

Sound Levels

Interior Cab	79 dB(A)	
• The operator sound exposure Leq (equivalent sound pressure level) measured according to the work cycle procedures specified in ANSI/SAE J1166 OCT 98 is 79 dB(A), for the cab offered by Caterpillar, when properly installed and maintained and tested with the doors and windows closed.		
• Hearing protection may be needed when operating with an open operator station and cab (when not properly maintained or doors/windows open) for extended periods or in noisy environments.		

Operating Weights

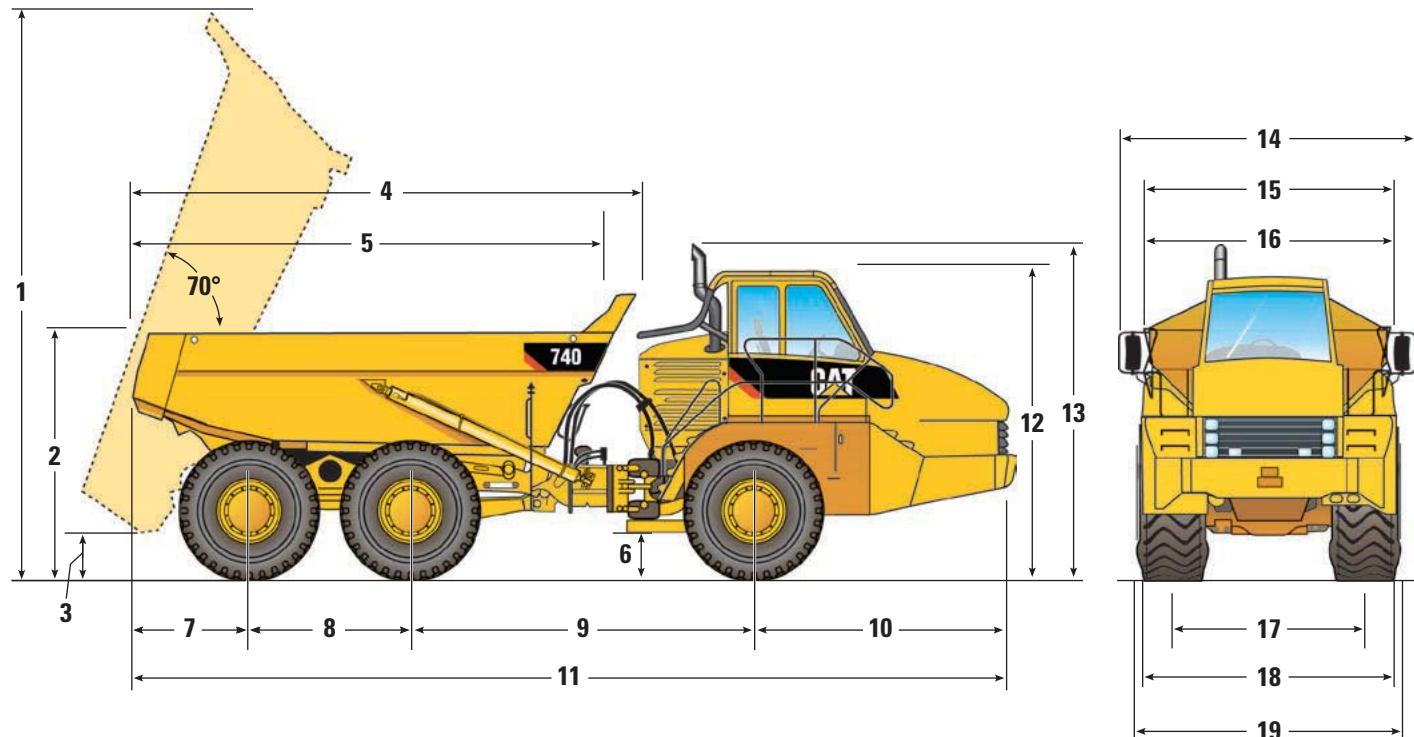
Front Axle – Empty	19 400 kg	42,770 lb
Center Axle – Empty	7200 kg	15,873 lb
Rear Axle – Empty	6500 kg	14,330 lb
Total – Empty	33 100 kg	72,973 lb
Front Axle – Rated Load	5200 kg	11,464 lb
Center Axle – Rated Load	17 150 kg	37,809 lb
Rear Axle – Rated Load	17 150 kg	37,809 lb
Total – Rated Load	39 500 kg	87,083 lb
Front Axle – Loaded	24 600 kg	54,234 lb
Center Axle – Loaded	24 350 kg	53,683 lb
Rear Axle – Loaded	23 650 kg	52,139 lb
Total – Loaded	72 600 kg	160,055 lb

Body Plate Thickness

Front	8 mm	0.31 in
Scow	16 mm	0.63 in
Side	12 mm	0.47 in
Base	16 mm	0.63 in

Service Refill Capacities

Fuel Tank	532 L	140.5 gal
Cooling System	80 L	21.1 gal
Hydraulic System	328 L	86.6 gal
Engine Crankcase	38 L	9.5 gal
Transmission	72 L	19 gal
Final Drives/ Differential	72 L	19 gal
Output Transfer Gear Box	18 L	4.8 gal


Body Hoist

Raise time	12 Seconds
Lower time	7 Seconds

Standards

Brakes	ISO 3450 – 1996
Cab/FOPS	ISO 3449 Level II – 2005
Cab/ROPS	ISO 3471 – 2008
Steering	ISO 5010 – 2007

Dimensions

	mm	ft
1	7092	23.4
2	3239	10.6
3	697	2.3
4	6288	20.6
5*	5734	18.8
6	577	1.8
7	1458	4.7
8	1966	6.4
9	4244	13.9
10	3221	10.5

	mm	ft
11	10 889	35.7
12	3745	12.3
13**	4049	13.3
14	3823	12.5
15***	3705	12.14
16	3418	11.2
17	2687	8.8
18	3430	11.2
19****	3520	11.5

*Inside of body.

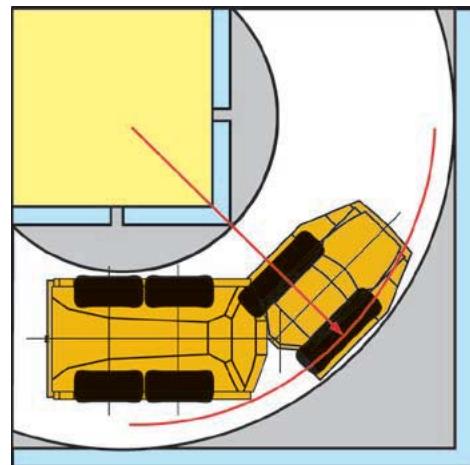
**Exhaust stack can be removed for transportation.

***If equipped with a scissor tailgate.

****Max-unladen over tire bulge.

Turning Circle

Dimensions are for machines equipped with 29.5R25 tires.


Turning dimensions

Steer angle – left/right	45°	
SAE turning radius	8138 mm	320.4 in
Clearance radius	8595 mm	338.4 in
Inside radius	4101 mm	161.5 in
Aisle width	5694 mm	224.2 in

Steering

Lock to Lock

4.6 seconds @ 60 rpm

Optimal Loader/Truck Pass Matching

Hydraulic Excavators

	385C	365C	345D
Loader Capacity (Tonnes) – 50 min hr	954-1193	750-1100	665-805
Loader Capacity (Tons) – 50 min hr	1049-1314	825-1210	735-885
Passes	3-4	5	6

Wheel Loaders

	988H	980H	972H	966H
Loader Capacity (Tonnes) – 50 min hr	565-790	590-650	490-565	400-535
Loader Capacity (Tons) – 50 min hr	625-870	650-717	540-625	440-590
Passes	3-4	4	5	5-6

An optimum system match gives you a major productivity advantage. The 740 is an excellent match for the Cat 385C, 365C and 345D Hydraulic Excavators; and 966H, 972H, 980H and 988H Wheel Loaders. This results in increased production and lower system costs per unit of volume moved.

LOAD LIMITS AT COLD INFLATION PRESSURES

30 MPH (50 KM/H) MAXIMUM SPEED OFF-THE-ROAD HAULAGE SERVICE

		PSI	40	44	47	51	54	58	62	65	69	73	76
		KPA	275	300	325	350	375	400	425	450	475	500	525
29.5R25	LBS	18700	20400	21500	22700	24000 *	25400	26000	27600	28300	30000	30900**	
	KG	8500	9250	9750	10300	10900 *	11500	11800	12500	12850	13600	14000 **	
BIAS	PSI	25	29	33	36	40	44	47	51	54	58		
	KPA	175	200	225	250	275	300	325	350	375	400		
29.5-25	LBS	17600	19300	20400	22000(22)	23400	24000	25400(28)	26800	27600	29100(34)		
	KG	8000	8750	9250	10000(22)	10600	10900	11500(28)	12150	12500	13200(34)		

30 MPH (50 KM/H) MAXIMUM SPEED OFF-THE-ROAD ARTICULATED DUMP SERVICE

		PSI	29	33	36	40	44	47	51	54	58	62	65
		KPA	200	225	250	275	300	325	350	375	400	425	450
29.5R25	LBS	16500	18200	19800	20900	22700	24000*	25400	26800	28300	29100	30900**	
	KG	7500	8250	9000	9500	10300	10900*	11500	12150	12850	13200	14000**	

5 MPH (10 KM/H) MAXIMUM SPEED OFF-THE-ROAD SLOW SPEED SERVICE

		PSI	58	62	65	69	73	76	80	83	87	91	94	116
		KPA	400	425	450	475	500	525	550	575	600	625	650	800
29.5R25	LBS	34200	35300	37500	38600	39700 *	41900	43000	44100	45400	46700	49400**	56800***	
	KG	15500	16000	17000	17500	18000 *	19000	19500	20000	20600	21200	22400**	25750***	
BIAS	PSI	33	36	40	44	47	51	54	58	62	65	69	73	76
	KPA	225	250	275	300	325	350	375	400	425	450	475	500	525
29.5-25	LBS	26800	28300(16)	30000	32000	33100(22)	35300	36400	37500	38600(28)	40800	41900	43000	44100(34)
	KG	12150	12850(16)	13600	14500	15000(22)	16000	16500	17000	17500(28)	18500	19000	19500	20000(34)

40 MPH (65 KM/H) MAXIMUM SPEED OFF-THE-ROAD SAND SERVICE

		PSI	11	15	18	22	25	29	33	36	
		KPA	75	100	125	150	175	200	225	250	
29.5-25	LBS	8540	10200	11680	12790	14330	15210	16530	17640		
	KG	3875	4625	5300	5800	6500	6900	7500	8000		

30 MPH (50 KM/H) MAXIMUM SPEED OFF-THE-ROAD SAND SERVICE

		PSI	11	15	18	22	25	29	33	36	
		KPA	75	100	125	150	175	200	225	250	
29.5-25	LBS	10470	12350	13890	15650	17090	18190	19840	20940		
	KG	4750	5600	6300	7100	7750	8250	9000	9500		

GP-2B

AT-2A

GP-3D

GP-4D

RL-2+

RL-3F

Size	Type	Ind Code	Current In Line Location	Rim Width & Flange (1)	INFLATED DIMENSIONS		LOADED DIMENSIONS		Revol Per	Gross Contact Area	Tire Volume	Tread Depth 32nds	PERFORMANCE CAPABILITY#					
					Overall Width in mm	Overall Diameter in mm	Load Sect & Growth in mm	Static Load Rad in mm					mi km	in2 cm2	gal ltrs	in mm	2S mph tkph	4S mph tkph
650/55R25 (25/55R25)	GP-2A	L-2	E	17.00-2.0	24.6 625	54.2 1378	26.5 673	23.4 594	387 241	330 2130	121.4 459.8	34	27					
	GP-2B	L-2	E															
22/65R25 (55/65R25)	AT-2A	E-2	N A	14.00-1.5	21.5 546	54.5 1384	23.9 607	24.3 617	385 240	278 1794	110.1 416.6	27	22	195 280				
	AT-2A	L-2	N		21.5 546	54.5 1384	24.6 625	23.9 607	389 243	284 1848	110.1 416.6	27	22		^90	^130	^75	^110
550/65R25	GP-3D	E/L-3T	N E	14.00-1.5	21.4 544	54.4 1362	23.9 607	24.3 617	386 240	290 1874	100.0 379.0	37	29	115 170	86	130	58	80
600/65R25	GP-3D	L-3T	N E	17.00-2.0	23.4 594	56.7 1439	26.7 678	25.4 646	369 229	308 1984	128.0 485.4	40	32	132 190	99	140	66	100
25/65R25	RL-3F	E-3	N A	19.50-2.0	25.5 647	58.5 1486	27.4 696	26.6 676	359 223	270 1740	161.4 611.0	40	32		125	180		59
650/65R25	GP-3D	E/L-3T	N E	19.50-2.5	26.3 668	58.7 1491	29.5 749	26.2 665	357 222	355 2290	150.0 568.0	44	35	144 210	108	160	73	110
750/65R25 (30/65R25)	RL-2+	E-3T+	N E	24.00-3.0	30.2 767	64.1 1628	33.4 848	28.8 732	328 204	466 3004	219.9 833.1	54	43	155 230	115	170	75	110
	RL-2+	L-3T+	N E		30.2 767	64.1 1628	34.0 864	28.4 721	328 204	450 2903	219.9 833.1	54	43					
	GP-3D	E/L-3T	N E		30.3 769	64.1 1628	33.9 862	28.9 735	328 204	461 2976	225.0 852.0	47	37	162 240	120	180	78	110
775/65R29 (800/65R29)	GP-4D	E-4	N E	24.00-3.0	31.2 792	68.9 1749	34.5 876	30.4 772	305 190	556 3585	250.0 946.0	67	53	169 250	125	180	105	150
	GP-4D	L-4	E		31.2 792	68.9 1749	34.5 876	29.8 758	305 190	640 4130	250.0 946.0	67	53					
875/65R29	GP-4D	E-4	N E A	27.00-3.0	33.9 861	74.0 1880	37.0 939	32.7 830	282 176	552E 3561#	325.0 1230.0	72	57	189 280	150	220	121	180
	GP-4D	L-4	N E	27.00-3.0	33.9 861	74.0 1880	37.0 939	32.7 830	282 176	676E 4362#	325.0 1230.0	72	57					

65 Series vs. Wide Base (Equivalent OD)

550/65R25 ~ 17.5R25 750/65R25 ~ 23.5R25
 600/65R25 ~ NA 800/65R29 ~ 26.5R25
 650/65R25 ~ 20.5R25 875/65R29 ~ 29.5R25

Estimated Data

Italicized sizes (light type) not currently in line this location.

Sizes in bold type can be obtained in locations in bold.

Extended lead time may be needed in other locations.

In Line: **N** = North America
L = Latin America

E = Europe / Africa / Mid East
A = Asia / Australia

^ Indicates WCF Work Capability Factor

SECTION G
LEVEL SPREADER DESIGN

DAPPOLONIA

152596A

By: AMB Date: 10/10/17 Subject: Northern Tract Quarry Sheet No.: 1 of 3
 Chkd. By: AMR Date: 11/15/17 Submerged Outlet Level Spreader Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\NT Pond Design\NT 2 Temp Slope Pipe\Submerged Outlet Level Spreader Calc.xls]Calcs

TEMPORARY SUBMERGED LEVEL SPREADER DESIGN
NORTHERN TRACT QUARRY - E&S CONTROL STAGES 2 AND 5
CHARMIAN SITE, SPECIALTY GRANULES, LLC
ADAMS COUNTY, PENNSYLVANIA

PURPOSE

The purpose of these calculations is to design a temporary submerged outlet level spreader to be used during Erosion and Sedimentation Control Stages 2 and 5 for the Northern Tract Quarry. The temporary submerged outlet level spreader will receive runoff from the western portion of the site during Stage 2 and the eastern portion of the site during Stage 5 via temporary diversion ditches. The drain pipes will be designed with AASHTO Class II perforations, and surrounded by a non-woven geotextile and AASHTO No. 57 aggregate. The drain pipes will be connected to the conveyance pipes via a PennDOT Type 4 box, and will be installed in a 4 ft. wide by 4 ft. deep trench that will be backfilled with AASHTO No. 57 aggregate after the installation of the level spreader.

INFLOWS

Each level spreader will receive inflows from a separate temporary diversion ditch. The level spreaders will be designed to handle the largest of the three inflows (13.8 cfs). The temporary diversion ditch peak flows are tabulated below (Ref. #4).

Ditch Name	Peak Flow (cfs)
DD-1	11.0
DD-3	13.8
DD-4	13.8

Temporary diversion ditch DD-1 will end at the PennDOT Type 4 box.. Temporary diversion ditches DD-3 and DD-4 will end at a temporary slope pipe, which will convey the runoff to the PennDOT Type 4 boxes. The Type 4 boxes will then convey the runoff to the drain pipes.

AGGREGATE DRAIN CAPACITY

Length of Aggregate Zone =	102	ft	
Width of Aggregate Zone =	4	ft	
Area of Aggregate Zone =	408	ft ²	(Exposed aggregate area)
Coefficient of Permeability of Aggregate =	10.0	cm/s	(Typical value for AASHTO #57)
Assumed Hydraulic Gradient =	0.3	ft/ft	
Aggregate Q _{available} =	44.173	cfs	
Collection Pipe Inside Diameter =	24	in	
Total Q _{required} =	13.80	cfs (Ref. #6)	
Drain Capacity Adequate ?	YES		

D'APPOLONIA

2 of 3

By: AMB Date: 10/10/17 Subject: Northern Tract Quarry Sheet No.:

Chkd. By: AMR Date: 11/15/17 Submerged Outlet Level Spreader Proj. No.: 152596A

N:\2015\152596 - SGI\Northern Tract\NT Pond Design\NT 2 Temp Slope Pipe\Submerged Outlet Level Spreader Calc.xls]Calcs

PIPE PERFORATION CAPACITY CHECK

The collection pipe for the drain will consist of a perforated, corrugated 24 inch ID High Density Polyethylene (HDPE) pipe, with AASHTO Class II perforations. These calculations will determine the required length of perforated collection pipe to convey the design discharge.

Perforated HDPE Capacity:

Flow through Perforations, $Q = CA(2gh)^{1/2}$ where,

C = Orifice Coefficient =	0.6	(Conservatively assume lowest typical value - Ref. #5)
Minimum Inlet Area, A =	2.0	in ² /ft (AASHTO Type II perforations for 24 inch ID pipe)
g = acceleration due to gravity =	32.2	ft/s ²
h = hydraulic head =	5.0	ft
Pipe Capacity, Q =	0.150	cfs/ft
Required Total Capacity =	13.80	cfs (Ref. #6)
Required Length of Perforated Pipe =	92	ft
Total Pipe Length for F.S. of 1.1 =	102	ft
Actual Length of Perforated Pipe =	102	ft
Actual F.S. =	1.1	ft

D'APPOLONIA

By: AMB Date: 10/10/17 Subject: Northern Tract Quarry Sheet No.: 3 of 3
 Chkd. By: AMR Date: 11/15/17 Submerged Outlet Level Spreader Proj. No.: 152596A
 N:\2015\152596 - SGI\Northern Tract\NT Pond Design\NT 2 Temp Slope Pipe\Submerged Outlet Level Spreader Calc.xls]Calcs

REFERENCES

1. Erosion and Sediment Pollution Control Program Manual, Department of Environmental Protection, Bureau of Waterways Engineering and Wetlands, March 2012.
2. Introduction to Hydraulics and Hydrology with Applications for Stormwater Management - 2nd Edition, Gribbin, John E., Delmar - A Division of Thomson Learning, 2002.
3. Pennsylvania Stormwater Best Practices Manual, Pennsylvania Department of Environmental Protection, Bureau of Watershed Management, December 30, 2006.
4. Diversion Ditch Design, D'Appolonia Engineering Division of Ground Technology, Inc. November 22, 2016.
5. Fundamentals of Fluid Mechanics, Khan, 1987
6. Temporary Slope Pipe Sizing, D'Appolonia Engineering Division of Ground Technology, Inc.
10 October 2017.