



# GROUNDWATER RESOURCES OF ERIE COUNTY, PENNSYLVANIA

**David B. Richards**  
**H. Jack McCoy**  
**John T. Gallaher**  
U.S. Geological Survey

COMMONWEALTH OF PENNSYLVANIA  
DEPARTMENT OF ENVIRONMENTAL RESOURCES  
OFFICE OF RESOURCES MANAGEMENT  
BUREAU OF  
TOPOGRAPHIC AND GEOLOGIC SURVEY  
Donald M. Hoskins, State Geologist

---

PREPARED IN COOPERATION WITH  
U.S. GEOLOGICAL SURVEY

# **GROUNDWATER RESOURCES OF ERIE COUNTY, PENNSYLVANIA**

---

**by David B. Richards, H. Jack McCoy, and  
John T. Gallaher  
U.S. Geological Survey**

---

**Prepared by the United States Geological Survey,  
Water Resources Division, in cooperation with  
the Pennsylvania Geological Survey**

---

**PENNSYLVANIA GEOLOGICAL SURVEY**

**FOURTH SERIES**

**HARRISBURG**

**1987**

Quotations from this report may be published if credit is given to  
the Pennsylvania Geological Survey

ISBN: 0-8182-0085-5

ADDITIONAL COPIES  
OF THIS PUBLICATION MAY BE PURCHASED FROM  
STATE BOOK STORE, P. O. BOX 1365  
HARRISBURG, PENNSYLVANIA 17105

## CONTENTS

|                                                                                | <i>Page</i> |
|--------------------------------------------------------------------------------|-------------|
| Abstract .....                                                                 | 1           |
| Introduction .....                                                             | 1           |
| Purpose and scope .....                                                        | 1           |
| Description of the study area .....                                            | 2           |
| Topography and drainage .....                                                  | 2           |
| Population and water use .....                                                 | 2           |
| Previous studies .....                                                         | 4           |
| Acknowledgements .....                                                         | 5           |
| Groundwater system .....                                                       | 5           |
| Occurrence and movement .....                                                  | 5           |
| Water levels .....                                                             | 7           |
| Availability .....                                                             | 7           |
| Well yield and specific capacity .....                                         | 10          |
| Water-bearing properties .....                                                 | 10          |
| Fracture traces .....                                                          | 12          |
| Water quality .....                                                            | 12          |
| Chloride .....                                                                 | 15          |
| Hardness .....                                                                 | 22          |
| Iron .....                                                                     | 22          |
| Gases .....                                                                    | 22          |
| Description and water-bearing characteristics of consolidated deposits .....   | 23          |
| Devonian .....                                                                 | 23          |
| Northeast Shale .....                                                          | 23          |
| Girard Shale .....                                                             | 24          |
| Chadakoin Formation .....                                                      | 25          |
| Venango Formation .....                                                        | 25          |
| Devonian and Mississippian .....                                               | 26          |
| Riceville Shale, Berea Sandstone, and Corry Sandstone .....                    | 26          |
| Mississippian .....                                                            | 27          |
| Cuyahoga Group .....                                                           | 27          |
| Shenango Formation .....                                                       | 27          |
| Description and water-bearing characteristics of unconsolidated deposits ..... | 28          |
| Thickness of deposits .....                                                    | 28          |
| Glacial-till deposits .....                                                    | 29          |
| Glacial-outwash deposits .....                                                 | 32          |
| Glacial-beach deposits .....                                                   | 33          |
| Sources of additional information .....                                        | 34          |
| Guidelines for developing domestic water supplies .....                        | 34          |
| Summary and conclusions .....                                                  | 35          |
| References .....                                                               | 36          |

|                                                                                      | <i>Page</i> |
|--------------------------------------------------------------------------------------|-------------|
| Factors for converting inch-pound units to International System units (SI) . . . . . | 38          |
| Appendices . . . . .                                                                 | 39          |
| Appendix 1. Aquifer test in Summit Township . . . . .                                | 39          |
| Appendix 2. Representative drillers' logs . . . . .                                  | 41          |

## ILLUSTRATIONS

### FIGURES

|                                                                                                                                             |    |
|---------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1. Map showing the location, physiographic divisions, principal streams, and stream-gaging stations of the study area . . . . .      | 3  |
| 2. Generalized hydrogeologic sections showing the effect of discharging wells in an unconfined aquifer and a confined aquifer . . . . .     | 6  |
| 3. Hydrograph of the water level in well Er-82 and the monthly precipitation at Union City, 1966-80 . . . . .                               | 9  |
| 4. Diagram showing the range of hydraulic-conductivity values for geologic materials . . . . .                                              | 11 |
| 5. Map showing the distribution of specific-conductance values in the wells sampled . . . . .                                               | 16 |
| 6. Map showing the distribution of chloride concentrations in the wells sampled . . . . .                                                   | 17 |
| 7. Map showing the distribution of total-hardness concentrations in the wells sampled . . . . .                                             | 18 |
| 8. Map showing the distribution of total-iron concentrations in the wells sampled . . . . .                                                 | 19 |
| 9. Graph showing the relationship between specific conductance and chloride concentration . . . . .                                         | 20 |
| 10. Graph showing the relationship between specific conductance and dissolved solids, and the classification of salinity of water . . . . . | 20 |
| 11. Map showing the distribution of unconsolidated deposits in Erie County                                                                  | 30 |

### PLATES

(in envelope)

|                                                                                                                              |  |
|------------------------------------------------------------------------------------------------------------------------------|--|
| Plate 1. Geologic map of Erie County, Pennsylvania, showing the locations of selected wells.                                 |  |
| 2. Map showing the thickness of unconsolidated deposits, locations of selected wells, and seismic-refraction cross sections. |  |

### TABLES

|                                                                          | <i>Page</i> |
|--------------------------------------------------------------------------|-------------|
| Table 1. Summary of streamflow data from seven gaging stations . . . . . | 4           |
| 2. Water use in Erie County . . . . .                                    | 5           |
| 3. Summary of well data . . . . .                                        | 8           |

|                                                                                                        | <i>Page</i> |
|--------------------------------------------------------------------------------------------------------|-------------|
| Table 4. Hydraulic conductivities for estimating transmissivity for unconfined alluvial aquifers ..... | 12          |
| 5. Transmissivity estimation for the driller's log of well Er-808 .....                                | 12          |
| 6. Summary of selected groundwater-quality characteristics .....                                       | 14          |
| 7. Summary of selected low-flow water-quality characteristics for the period 1970-78 .....             | 15          |
| 8. Aquifer, well depth, and chloride concentrations greater than 250 mg/L .....                        | 21          |
| 9. Field analyses of groundwater .....                                                                 | 49          |
| 10. Chemical analyses of groundwater from selected wells .....                                         | 53          |
| 11. Selected chemical analyses of low-flow surface water in Erie County .....                          | 54          |
| 12. Record of wells .....                                                                              | 55          |



# GROUNDWATER RESOURCES OF ERIE COUNTY, PENNSYLVANIA

by

David B. Richards, H. Jack McCoy,  
and John T. Gallaher

## ABSTRACT

In Erie County, potable groundwater is available from unconsolidated glacial deposits and from fractured bedrock aquifers. The groundwater is generally of good chemical quality. Locally, however, groundwater ranges from moderately hard to very hard and is high in iron. Water from a few wells exceeds recommended drinking water limits of the U.S. Environmental Protection Agency for iron, chloride, and total dissolved solids. In bedrock wells, the high concentrations of chloride may be caused by connate water at shallow depths in the valleys and locally by brine disposal associated with petroleum exploration and production.

The best aquifers are glacial-outwash and glacial-beach deposits, based upon reported well yields and specific capacities. The outwash deposits are restricted to the major stream (buried) valleys of the central and southern parts of the county. The beach deposits are restricted to the vicinity of the Lake Erie shoreline. Nearly one fourth of all of the wells completed in outwash deposits have reported well yields of more than 20 gallons per minute. The largest reported well yield was 1,000 gallons per minute, from outwash deposits at Waterford. Wells completed in lacustrine and beach deposits are reported to yield as much as 500 to 800 gallons per minute.

The buried-valley deposits consist of stratified sand, gravel, silt, and clay. These deposits have saturated thicknesses commonly exceeding 100 feet and locally ex-

ceeding 400 feet, and are favorable locations for high-yield (400 to 500 gallons per minute) wells. The saturated parts of these deposits can be located, prior to the final well-site selection, by seismic-refraction and gravity surveys.

Glacial-till and bedrock aquifers are widespread in the county. However, the availability of groundwater from these units is significantly less than the availability of groundwater from the glacial-outwash and glacial-beach deposits. The till and bedrock aquifers locally do not provide sufficient groundwater for most domestic uses due to low permeability. The yields of bedrock wells vary according to geologic unit. The median yield for wells located in till and bedrock, for all types of topography, is about 5 gallons per minute. The range of yields for wells in glacial till and bedrock is from 0.1 to about 60 gallons per minute.

## INTRODUCTION

### PURPOSE AND SCOPE

From January 1975 through March 1980, hydrologic data were collected in Erie County, Pennsylvania, as part of a program to appraise the groundwater resources of the state. These data have been compiled and interpreted, and the results are presented in this report.

The purpose of the report is to provide water managers and planners with sufficient data to enable them to provide for the prudent use and protection of an invaluable natural resource. The report is also intended to supply homeowners

with understandable facts and figures that will help them provide for their own water needs.

In this report, the authors describe the occurrence, availability, and quality of groundwater in Erie County, the geology, the water-bearing characteristics of aquifers, and the thickness of unconsolidated deposits. Data are included on the depths, yields, and quality of water from more than 1,700 wells.

## DESCRIPTION OF THE STUDY AREA

Erie County covers 812 square miles in the northwesternmost corner of Pennsylvania (Figure 1). It is bordered on the west by Ohio, on the east by New York and Warren County, on the north by Lake Erie, and on the south by Crawford County. The city of Erie is the county seat, the industrial and cultural center of the area, and Pennsylvania's only freshwater port. About 47 percent of the land in the county is used for agriculture. Orchards and vineyards predominate in the north on the lake plain and escarpment slope. On the upland plateau in the south, cattle raising and agriculture are important activities.

## TOPOGRAPHY AND DRAINAGE

There are three physiographic divisions in the county (Figure 1): the *lake plain* bordering Lake Erie, the *upland plateau* covering the southeastern two thirds of the area, and the *escarpment slope*, which separates the other two (Tomikel and Shepps, 1967). The lake plain begins at the lake level, approximately 572 feet above sea level, and extends inland to an altitude of about 800 feet. The plain is about 2 miles wide in the eastern part of the county and widens to about 5 miles in the west. The surface of the lake plain is flat to very gently sloping except where cut by streams or interrupted by glacial beach ridges. The upland plateau borders the escarpment slope and rises to an altitude of about 1,900 feet above sea level in the Corry area. The surface is generally smooth and rolling except where cut by broad valleys that have relatively steep

walls and flat bottoms. In the Edinboro-Waterford area, much of the land surface consists of long, parallel ridges separated by intervening valleys, which are oriented about N35°W.

Topographic relief differs widely within the county. In the western part, the difference in altitude between the high and low points is on the order of 100 feet or less. The difference increases to the east and southeast, reaching a maximum of about 600 feet in the Corry area.

Two separate drainage systems transport water from the area (Figure 1). North-flowing streams empty into Lake Erie, which is part of the St. Lawrence River drainage system. With the exception of Conneaut Creek, these streams have steep gradients, and flow on, or have cut deeply into, bedrock. The south-flowing streams are part of the French Creek-Allegheny River drainage system. They are much slower moving and flow on the glacial sediments that fill broad valleys.

Also shown in Figure 1 are the stream-gaging stations in the county. Some low-flow data associated with these stations are listed in Table 1. During periods of little or no precipitation, streamflow is maintained by groundwater discharge from the aquifers (base flow). In areas of relatively impermeable bedrock and till, the base flow is very small or zero. In areas of permeable materials, base flow may be sufficient for municipal and industrial supplies, and for maintenance of conditions necessary for aquatic life. The stream characteristic commonly used in planning for low-flow utilization is the 7-day, 10-year low flow, which is defined as the lowest average rate of flow for 7 consecutive days that is likely to occur in 10 years. The maximum 7-day, 10-year low flow per square mile from Table 1 is 0.09 ft<sup>3</sup>/s (cubic foot per second).

## POPULATION AND WATER USE

The population of Erie County in 1980 was 279,780 (U.S. Department of Commerce, 1980). More than half of the people live in the Erie metropolitan area and use water pumped from Lake Erie. The remainder use groundwater, ex-

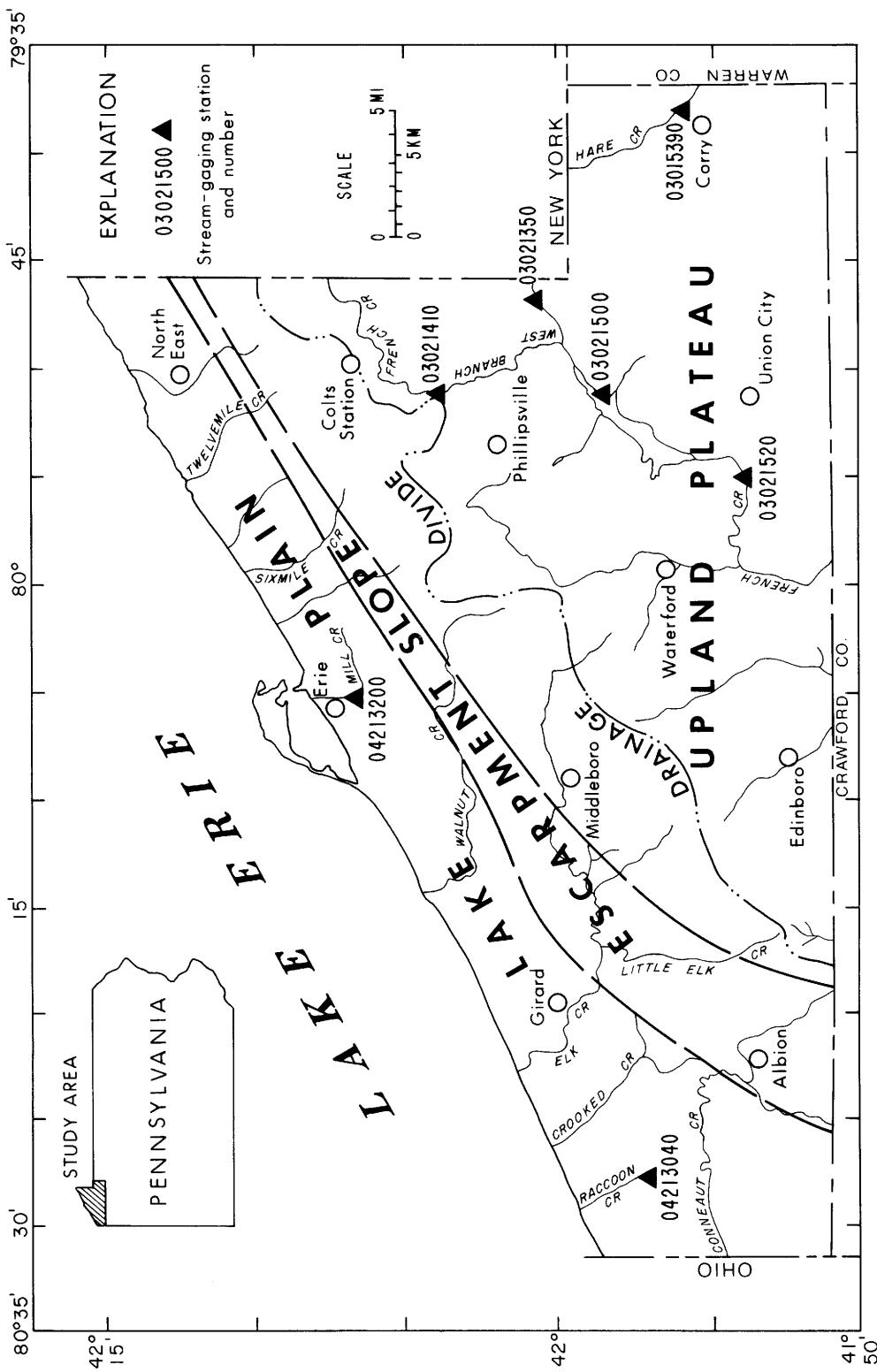



Figure 1. Location, physiographic divisions, principal streams, and stream-gaging stations of the study area.

Table 1. Summary of Streamflow Data from Seven Gaging Stations

| Surface-water gaging station number and name/location | Drainage area (mi <sup>2</sup> ) | Length of record                | 7-day, 10-year low flow (ft <sup>3</sup> /s) and [(ft <sup>3</sup> /s)/mi <sup>2</sup> ] | Remarks |
|-------------------------------------------------------|----------------------------------|---------------------------------|------------------------------------------------------------------------------------------|---------|
| 03015390 Hare Creek near Corry                        | 12.3                             | 1964-80                         | <sup>1</sup> 0.7                                                                         | 0.06    |
| 03021350 French Creek near Wattsburg                  | 92                               | 1974 to current year            | <sup>2</sup> 4                                                                           | .04     |
| 03021410 West Branch French Creek near Lowville       | 52.3                             | 1974 to current year            | 1 estimated                                                                              | .02     |
| 03021500 French Creek at Carters Corners              | 208                              | 1910-71                         | 9.6                                                                                      | .05     |
| 03021520 French Creek near Union City                 | 221                              | 1909 to current year            | NA <sup>3</sup>                                                                          | NA      |
| 04213040 Raccoon Creek near West Springfield          | 2.53                             | 1962-68<br>1968 to current year | NA                                                                                       | NA      |
| 04213200 Mill Creek at Erie                           | 9.16                             | 1964-80                         | <sup>1</sup> .8                                                                          | .09     |

<sup>1</sup>From Page and Shaw (1977).

<sup>2</sup>Calculated from Flippo (1982, Table 11, p. 18).

<sup>3</sup>NA, not applicable.

cept in the boroughs of North East and Union City, where reservoirs are used. Seventeen municipalities and water companies pump an average daily total of about 4 Mgal/d (million gallons per day), mostly from glacial-outwash and glacial-beach deposits. Approximately 57,000 people obtain their water supplies from domestic wells. The estimated consumption rate is about 90 gallons per day per person, which totals more than 5 Mgal/d (Table 2).

Water supplied for cattle and for irrigation is not shown in Table 2 because these data were not available. The dairy industry uses an estimated 1 Mgal/d for watering, milk processing, and sanitary purposes. The total irrigated land area ranges from 400 to 600 acres, depending upon climatological conditions. Irrigation water use ranges from about 50 million to 200 million gallons per year.

## PREVIOUS STUDIES

The groundwater resources of Erie County were described by Leggette (1936) and Mangan and others (1952). The geology and hydrology of western Crawford County, bordering much of Erie County on the south, were discussed by Schiner and Gallaher (1979). Poth (1962) described the occurrence of saline waters (brines) in western Pennsylvania. White (1881), Leggette (1936), and Tomikel and Shepps (1967) presented information on the bedrock, glacial deposits, and groundwater in the area. The stratigraphy of the Lower Mississippian rocks was described by de Witt (1946, 1951), Pepper and others (1954), and Schiner and Kimmel (1972). The glacial geology of Erie County was presented by Leverett (1902), Shepps and others (1959), and White and others (1969).

**Table 2. Water Use in Erie County**

(From Pennsylvania Department of Environmental Resources, Office of Resources Management, Bureau of Resources Planning, written communication, 1980)

| Water supplier                                      | Total gallons per capita used per day in 1970 | Total use in 1970 (Mgal/d) | Water source              |
|-----------------------------------------------------|-----------------------------------------------|----------------------------|---------------------------|
| <i>Surface water</i>                                |                                               |                            |                           |
| City of Erie,<br>Bureau of Water                    | 262                                           | 44.44                      | Lake Erie                 |
| North East Borough<br>Water Department              | 380                                           | 1.799                      | 3 reservoirs;<br>1 spring |
| Union City Borough                                  | 146                                           | .539                       | Reservoir                 |
| <i>Ground water</i>                                 |                                               |                            |                           |
| Albion Borough                                      | 69                                            | .182                       | 3 wells;<br>3 springs     |
| Corry Water Supply Co.                              | 162                                           | 1.229                      | 21 wells                  |
| Borough of Edinboro<br>Water Department             | 94                                            | .458                       | 3 wells                   |
| Fairview Borough                                    | 57                                            | .097                       | 3 wells                   |
| Girard Borough                                      | 67                                            | .174                       | 3 wells                   |
| Lake City Borough                                   | 139                                           | .264                       | 3 wells                   |
| Lake Shore Maintenance<br>Association               | 77                                            | .057                       | 2 wells                   |
| Palmer Shores                                       | 45                                            | .006                       | 1 well                    |
| Pennsylvania Water Co.<br>(Erie Suburban Water Co.) | 87                                            | .614                       | 17 wells                  |
| Ridgeville Water Co.                                | 66                                            | .021                       | 3 wells                   |
| Waterford Borough                                   | 73                                            | .110                       | 1 well                    |

### ACKNOWLEDGEMENTS

The following water-well contractors contributed valuable data on water wells: Alfred Burch, Michael Burch, Max Hickernell, and Moody Drilling Company, Inc. Further acknowledgement is given to other drillers who also submitted clear, accurate well records.

The authors thank F. Peter Haeni, U.S. Geological Survey, New England District, for demonstrating the applicability of the seismic-refraction technique to the indirect definition of buried alluvial channels in the county.

For information on the application of gravity technique to the indirect definition of buried alluvial channels in the county, the authors acknowledge John A. Rhodes, graduate student at Pennsylvania State University, Department of Geosciences, and Dr. Peter M. Lavin (his advisor), and Mark Anthony Ruof, student at Allegheny College, Department of Geology, and Dr. Walter F. Ebaugh (his advisor).

## GROUNDWATER SYSTEM

### OCCURRENCE AND MOVEMENT

The source of potable groundwater supplies in Erie County is precipitation that infiltrates from the land surface. Most of the water of precipitation either flows overland to streams or is returned to the atmosphere by evaporation or transpiration. The remainder moves downward through the soil and rock until it reaches the zone of saturation, within which all pores and fractures are filled with water. The water within this zone of saturation is called groundwater.

Groundwater moves downward and laterally through the soil and rock by gravity, traveling slowly from the areas of intake, at topographic highs, to areas of discharge at lower altitudes. The direction of flow is controlled by the composition and structure of the subsurface materials, but generally is in the direction of the slope of the topography. Groundwater discharges in places as seeps, swamps, and springs along stream valleys and maintains minimal streamflows (base flow) during periods of drought. This groundwater, en route to discharge areas, is available for use when intercepted and tapped by water wells.

The movement of water in unconsolidated materials, such as sand and gravel, is through intergranular openings (primary openings); in bedrock, the movement is mainly through interconnected fractures (secondary openings). The capability of these geologic units to transmit water is referred to as permeability or hydraulic conductivity. Saturated permeable geologic units that yield significant quantities of water to wells and springs are called aquifers (Lohman, 1972, p. 2). In Erie County, the aquifers consist of unconsolidated glacial and alluvial deposits overlying sedimentary bedrock—mainly sandstones, siltstones, and shales of Devonian and Mississippian ages. Groundwater availability is highly variable in both the unconsolidated deposits and the bedrock. Water is stored in and transmitted through the primary and secondary openings. The distribution, interconnection, and number of these openings have a direct relationship to

the yields of the wells penetrating the aquifers. Groundwater may occur under either water-table (unconfined) or artesian (confined under pressure) conditions, as shown in Figure 2. Under water-table conditions, the water surface is at atmospheric pressure, and the water level rises in response to recharge and falls in response to discharge. To a lesser extent, the water level also fluctuates in response to changes in barometric pressure. The water level in a well in an unconfined aquifer is at the top of the zone of saturation and is referred to as the water table. The areal configuration of the water table generally parallels the land surface. Water-table conditions are present in the unconsolidated deposits and in the bedrock units of the upland plateau.

Artesian conditions are a common groundwater occurrence in the county. Under artesian conditions, the water-bearing unit is overlain and underlain by relatively impermeable beds, such as the sandstone between the shales shown in Figure 2; thus, the aquifer is confined. The water level in a well in a confined aquifer rises to the level of hydrostatic pressure in the aquifer, which is above the top of the aquifer. Flowing wells, which represent a special type of artesian well, are also common. These occur when the level of hydrostatic pressure is higher than the land surface (Figure 2). The areal configuration of the water surface for artesian aquifers is known as the potentiometric surface. Within wells tapping artesian aquifers, the water levels fluctuate in

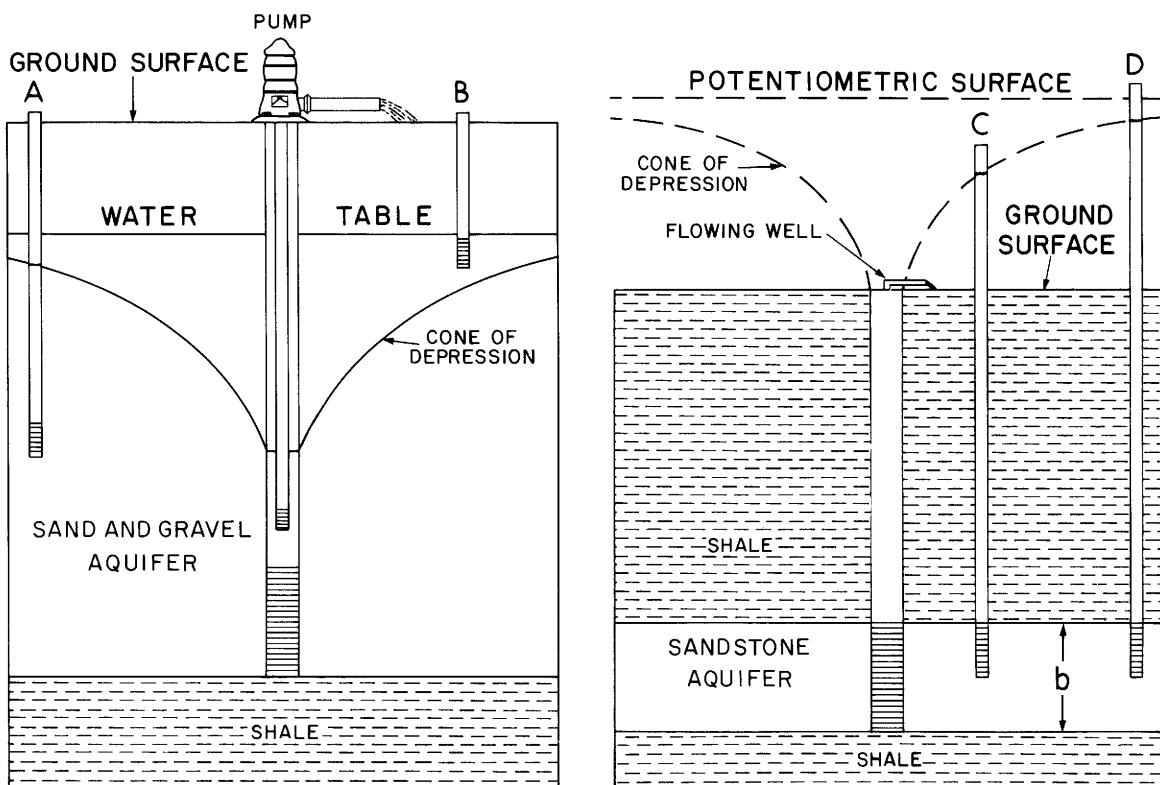



Figure 2. The effect of discharging wells in an unconfined aquifer (left) and a confined aquifer (right) (modified from Lohman, 1972, Figure 8, p. 8). The water level in the deep well A has declined due to the pumping well. The shallow well B is dry due to the pumping well. The hydrostatic pressure in well C has declined more than in well D due to the proximity of the flowing well. (The "b" represents the thickness of the confined aquifer.)

response to changes in barometric pressure. Artesian conditions are present in the unconsolidated deposits and in the interbedded sandstones and shales of the bedrock units in the county.

## WATER LEVELS

Water levels in wells rise and fall according to the relative amounts of recharge (additions to the aquifer) and discharge (losses to springs, streams, and wells). Water levels are generally highest (shallowest) in March and April, and are generally lowest (deepest) in September and October. During the summer months, little infiltrated precipitation recharges the saturated zone due to the high rate of plant water use (evapotranspiration). However, patterns of water-level fluctuations can vary from the normal due to winter thaws, prolonged droughts, and sustained rainfall.

The water levels of wells shown in Tables 3 and 12 were reported by well drillers at the time of completion of the wells. In general, water levels fluctuate less in wells tapping unconfined aquifers than in wells tapping confined aquifers because the unconfined aquifers have a greater capacity to store water. Water levels in both types of aquifers fluctuate less in the discharge areas (valley bottoms and lake plain) than in the recharge areas (uplands).

The summary of well data (Table 3) indicates that the median water levels in wells tapping the different aquifers are quite similar in magnitude. However, water levels in wells in each aquifer range from near or above land surface (flowing) to depths of several tens of feet. The variables that cause this range in water levels include topography, well depths, the number of water-bearing zones penetrated, the depth of hole cased, well construction, the degree of fracturing, the presence of artesian conditions, and the seasonal water-level conditions at the time of drilling. In most instances, the complexity of the hydrologic conditions created by combinations of these variables makes it difficult to predict the water level at any given well site.

Most of the wells tap groundwater that exhibits artesian tendencies to a small degree; therefore, water levels in the wells commonly rise

above the water-bearing zones. Water levels commonly are (1) deepest in wells drilled in hilltops, (2) shallowest in wells drilled in and near valley bottoms and on the lake plain, and (3) intermediate in wells drilled in other topographic sites.

Water levels in wells tapping unconfined aquifers are affected by local precipitation, whereas water levels in wells tapping artesian aquifers may respond to both local and regional precipitation or to only regional precipitation.

The average precipitation in Erie County ranges from 38 inches (at Erie) to 46 inches (at Corry). Long-term data from the Union City Filtration Plant precipitation station (U.S. Department of Commerce, 1950-82) indicate an average annual precipitation of 43.45 inches. The precipitation is fairly evenly distributed throughout the year.

In well Er-82, which is located north of Edinboro and is part of the statewide observation-well network, the artesian water conditions of the fractured shale of the Venango Formation have been monitored continuously since July 1966. The hydrograph record of this well is shown in Figure 3. The monthly precipitation of the Union City station is also synchronously plotted with the water levels of well Er-82. The deepest water levels generally coincide with periods of below normal precipitation, such as in 1968 and 1978. Conversely, the shallowest water levels coincide with periods of above normal precipitation, such as in 1969-70, 1972, and 1977.

More detailed information on basic hydrologic and geologic relationships is given in *Ground Water in Pennsylvania* by Becher (1970), *A Primer on Ground Water*, by Baldwin and McGuinness (1963), and *Ground Water Manual*, by U.S. Department of the Interior (1981).

## AVAILABILITY

The availability of groundwater resources is determined by means of collection and analysis of hydrologic data. These data are both collected in the field and compiled from records of well drillers, well owners, consulting firms, and state, federal, and other government agencies. Other sources of information include water-, gas-, and

## GROUNDWATER RESOURCES OF ERIE COUNTY

Table 3. Summary of Well Data

| Geologic unit                     | Number of wells | Well depth (feet) | Reported yield (gal/min) |       |                 | Specific capacity [gal/min/ft] |       |                 | Water level (feet below land surface) |       |                 |       |
|-----------------------------------|-----------------|-------------------|--------------------------|-------|-----------------|--------------------------------|-------|-----------------|---------------------------------------|-------|-----------------|-------|
|                                   |                 |                   | Median                   | Range | Number of wells | Median                         | Range | Number of wells | Median                                | Range | Number of wells |       |
|                                   |                 |                   |                          |       |                 |                                |       |                 |                                       |       |                 |       |
| Sands of Presque Isle             | 1               | 26                | —                        | 1     | 30              | —                              | —     | 1               | 1                                     | 3     | —               |       |
| Glacial-beach deposits            | 93              | 35                | 9-105                    | 59    | 7               | 0.1-30                         | 24    | 0.8             | 0.05-10                               | 62    | 12              | 1-71  |
| Glacial-outwash deposits          | 441             | 62                | 15-402                   | 395   | 15              | .1-360                         | 170   | 1.2             | .04-30                                | 370   | 20              | F-150 |
| Glacial-till deposits             | 282             | 55                | 17-220                   | 252   | 5               | .1-50                          | 125   | .26             | .009-30                               | 237   | 15              | F-87  |
| Total for glacial drift           | 816             | 56                | 9-402                    | 696   | 10              | .1-360                         | 319   | .7              | .009-30                               | 669   | 18              | F-150 |
| Cuyahoga Group                    | 9               | 69                | 38-102                   | 8     | 13.5            | 5-62                           | 7     | .5              | .18-62                                | 9     | 12              | 1-30  |
| Berea Sandstone through           | 28              | 71                | 40-130                   | 27    | 15              | 2-40                           | 20    | .52             | .12-10                                | 27    | 22              | 1-78  |
| Riceville Formation               | 25              | 72                | 35-150                   | 24    | 15              | 2-50                           | 15    | .75             | .02-20                                | 23    | 20              | 6-52  |
| Corry Sandstone through           |                 |                   |                          |       |                 |                                |       |                 |                                       |       |                 |       |
| Riceville Formation               |                 |                   |                          |       |                 |                                |       |                 |                                       |       |                 |       |
| Berea Sandstone through           | 80              | 52                | 31-112                   | 72    | 7               | .1-46                          | 42    | .21             | .02-20                                | 72    | 8               | 1-20  |
| Venango Formation                 |                 |                   |                          |       |                 |                                |       |                 |                                       |       |                 |       |
| Venango Formation                 | 170             | 65                | 36-250                   | 166   | 8               | .5-50                          | 71    | .2              | .01-30                                | 151   | 10              | F-95  |
| Chadikoon Formation               | 311             | 60                | 33-160                   | 283   | 4               | .1-50                          | 115   | .14             | .01-45                                | 268   | 10              | 1-90  |
| Girard Shale                      | 41              | 60                | 30-140                   | 33    | 2               | .1-50                          | 10    | .06             | .01-4                                 | 29    | 15              | 5-78  |
| Northeast Shale                   | 53              | 40                | 12-250                   | 21    | 4               | .1-25                          | 7     | .36             | .006-25                               | 23    | 12              | 1-60  |
| Total for bedrock                 | 717             | 60                | 12-250                   | 634   | 5               | .1-62                          | 287   | .2              | .006-62                               | 602   | 15              | F-95  |
| Nondomestic wells                 |                 |                   |                          |       |                 |                                |       |                 |                                       |       |                 |       |
| Glacial-beach deposits            | 55              | 32                | 10-96                    | 47    | 75              | 1-850                          | 20    | .17             | .03-270                               | 31    | 8               | F-38  |
| Glacial-outwash deposits          | 50              | 59                | 13-405                   | 39    | 60              | 1-1,000                        | 20    | .9              | .1-140                                | 40    | 11              | F-78  |
| Glacial-till deposits             | 13              | 60                | 33-195                   | 8     | 11.5            | .1-50                          | 3     | 1.5             | .47-3.3                               | 9     | 8               | 0-36  |
| Total for glacial drift, combined | 118             | 45                | 10-405                   | 94    | 56.5            | .1-1,000                       | 43    | 10              | .03-270                               | 80    | 8               | F-78  |
| Total for bedrock, combined       | 25              | 63                | 26-185                   | 18    | 6               | 1-55                           | 6     | .17             | .02-4                                 | 22    | 11              | F-73  |

F, flowing.

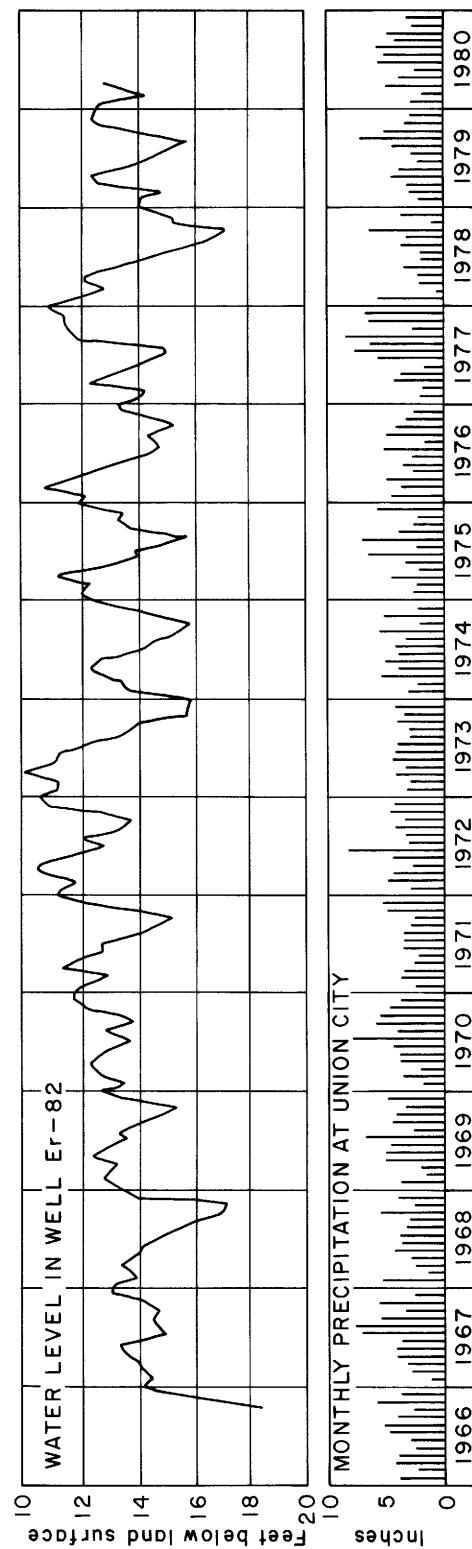



Figure 3. The water level in well Er-82 and the monthly precipitation at Union City, 1966-80.

oil-well records, test wells, highway borings, rock outcrops, and geophysical surveys.

Hydrologic data collected from inventoried wells include static water level below land surface, well depth, depth to water-bearing zones, aquifer definition, well yield, specific capacity, characteristics of well construction (casing and perforations), and chemical quality. Water-well data for more than 1,700 inventoried wells are tabulated in Table 12. The summarization and analysis of selected data from wells, tabulated by geologic unit, are shown in Table 3. The selected data include well depth, reported yield, specific capacity, and water level. Well locations are shown on Plates 1 and 2.

### Well Yield and Specific Capacity

The amount of water available to a well is commonly expressed as the well yield in gallons per minute (gal/min). The yield data given in Tables 3 and 12 are from information provided by well drillers. These yield values are from short-term pumping periods, generally minutes and not hours. Long-term well yields (weeks and months) are significantly lower.

A more reliable index of water availability is specific capacity, which is the well yield divided by the drawdown of water level (in feet) within the well during pumping. Drawdown is the drop in water level from the static level to the pumping level. In poor aquifers, specific capacity decreases with increased pumping rates and time. A well pumped at 10 gal/min, with 5 feet of drawdown (specific capacity = 2 (gal/min)/ft [gallons per minute per foot]) will not necessarily discharge 20 gal/min with 10 feet of drawdown. Ideally, the yield and specific capacity are based on pumping or bailing rates, which lower the water in the well to a level at which the water level is stabilized. That is, the rate of withdrawal equals the flow of water from the aquifer into the borehole. In many instances, especially in wells of low to moderate yield, the rate of withdrawal during the drillers' tests exceeds the rate of flow into the well, and equilibrium is not established. Therefore, the specific-capacity values shown should be considered as maximum and valid only for short-term pumpage.

### Water-Bearing Properties

Wells sited in glacial unconsolidated deposits have higher reported yields and specific capacities than wells sited in bedrock units, as indicated in Table 3. The thickness distribution of these unconsolidated deposits is presented on Plate 2. The areas of greatest saturated thickness have the best potential for groundwater availability. However, in the area of the lake plain and escarpment slope, salty water commonly occurs at shallow depths (see Table 8).

The well yields and specific capacities depend upon the ease of movement of water through the subsurface materials, and upon the amount of water the materials can release from storage. The ability of soil and rock material to transmit water is known as hydraulic conductivity ( $K$ ) and is related to the size, amount, and degree of interconnection of openings in the material. The product of hydraulic conductivity ( $K$ ) and the saturated thickness ( $b$ ) is called transmissivity ( $T$ ); that is,  $T = K \cdot b$ . The larger the value of transmissivity, the greater the availability of groundwater for supply. For example, a large thickness of saturated sand and gravel is an excellent well site. The volume of water released from storage in subsurface materials is called storage coefficient ( $S$ ) for confined aquifers and specific yield for unconfined aquifers and is related to the amount of water-filled openings for a given volume of saturated material. Specific yield may range from 0.02 for clay to 0.22 for coarse gravel (Johnson, 1967, p. D70).

Long-term well yield and the effect of pumpage on the aquifer system can be determined by knowing the water-bearing properties  $K$ ,  $T$ , and  $S$ . Figure 4 shows the range in values of hydraulic conductivity for both rock material and unconsolidated deposits. Table 4 also shows the average hydraulic conductivities for materials of various grain sizes in unconsolidated deposits. For example, the hydraulic conductivity for sand and gravel ranges from about 100 to 10,000 ft/d (feet per day), and about  $1 \times 10^{-8}$  to  $1 \times 10^{-3}$  ft/d for shale.

The hydraulic properties of unconfined and confined aquifers are determined by aquifer tests. These tests are controlled field experiments

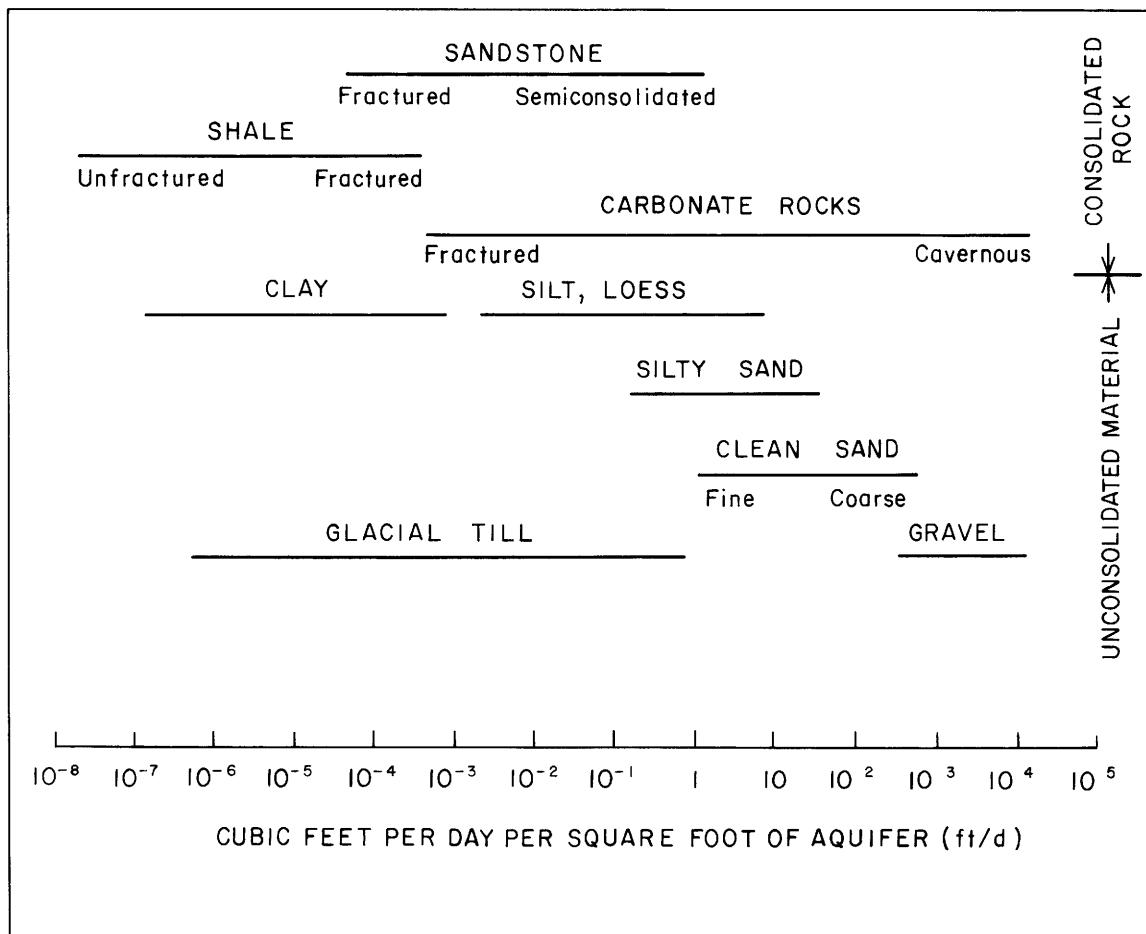



Figure 4. Range of hydraulic-conductivity values for selected geologic materials (modified from Heath, 1983, p. 13).

in which a known quantity of water is withdrawn from (or recharged to) an aquifer by means of a well. Aquifer tests are not discussed in this report. More detailed information on aquifer testing can be found in *Ground-Water Hydraulics* by Lohman (1972), *Applied Hydrogeology* by Fetter (1980), *Theory of Aquifer Tests* by Ferris and others (1962), *Ground Water Manual* by U.S. Department of the Interior (1981), and *Groundwater and Wells* by Driscoll (1986).

An aquifer test was made in Summit Township in the saturated fractured shale of the Venango

Formation. Details of the test are included in Appendix 1. The calculated hydraulic properties were  $1,100$  (gal/d)/ft (gallons per day per foot) for  $K$ ,  $147$  ft $^2$ /d for  $T$ , and  $6 \times 10^{-4}$  for  $S$ .

The greatest potential for groundwater resource development in Erie County is from the saturated, highly permeable unconsolidated deposits. Field aquifer testing is the most accurate and reliable, as well as the most expensive and time consuming, means of determining hydraulic properties. Table 4 and Figure 4, however, can provide some assistance in evaluating and comparing the water-supply potentials of various

**Table 4. Hydraulic Conductivities for Estimating Transmissivity for Unconfined Alluvial Aquifers**

(From Lohman, 1972, Table 17, p. 53)

| Material              | Hydraulic conductivity<br>(ft/d) |
|-----------------------|----------------------------------|
| <b>GRAVEL</b>         |                                  |
| Coarse                | 1,000                            |
| Medium                | 950                              |
| Fine                  | 900                              |
| <b>SAND</b>           |                                  |
| Gravel to very coarse | 800                              |
| Very coarse           | 700                              |
| Very coarse to coarse | 500                              |
| Coarse                | 250                              |
| Coarse to medium      | 100                              |
| Medium                | 50                               |
| Medium to fine        | 30                               |
| Fine                  | 15                               |
| Fine to very fine     | 5                                |
| Very fine             | 3                                |
| CLAY                  | 1                                |

aquifer sites. Inasmuch as  $T = K \cdot b$ , the  $T$  at a potential well site is the sum of the  $K \cdot b$  values for all of the layers, or

$$T = K_1 \cdot b_1 + K_2 \cdot b_2 + \dots + K_n \cdot b_n.$$

Thus, the transmissivity of soil and rock material recorded on drillers' logs or on geologic sections can be estimated by use of this equation. An application of this method is applied to the driller's log of well Er-808, as illustrated in Table 5. At this site, the transmissivity of the glacial-outwash aquifer is estimated to be  $7,000 \text{ ft}^2/\text{d}$ .

### Fracture Traces

In bedrock terrain, groundwater availability (well yield) is generally greatest along fracture traces (Siddiqui and Parizek, 1971). Fracture traces are natural linear features on the land surface that appear as topographic, vegetal, or soil-tonal alignments visible on aerial photographs.

**Table 5. Transmissivity Estimation for the Driller's Log of Well Er-808**

(Reported water level was at 3 feet below land surface; however, the reported water-bearing zones were 12 to 16 feet and 90 to 100 feet. The well construction is disregarded in the estimation.)

| Material                            | Thickness<br>(feet) | Estimated<br>hydraulic<br>conductivity <sup>1</sup><br>(ft/d) | Estimated<br>transmissivity<br>(ft <sup>2</sup> /d) |
|-------------------------------------|---------------------|---------------------------------------------------------------|-----------------------------------------------------|
| Clay and gravel                     | 12                  | —                                                             | —                                                   |
| Gravel and sand,<br>containing clay | 4                   | 800                                                           | 3,200                                               |
| Clay                                | 74                  | 1                                                             | 74                                                  |
| Sand, fine-grained                  | 6                   | 15                                                            | 90                                                  |
| Gravel and sand,<br>coarse          | 4                   | 1,000                                                         | 4,000                                               |
|                                     |                     |                                                               | Total 7,364                                         |

<sup>1</sup>Estimated from Table 4.

Because most water obtained from bedrock aquifers is from fractures, a well located on a fracture trace should have the optimum yield for a given area. Even greater yields would be expected from a well at the intersection of two fracture traces. Locating a well on a fracture trace is more likely to increase yield where the well is drilled in dense and well-cemented rocks such as siltstone and sandstone. According to Lattman (written communication, 1974), locating a well on a fracture trace in shale probably does not increase yield because the plastic quality of the shale allows the fracture to close up and seal itself off.

### WATER QUALITY

As groundwater slowly moves through the aquifer(s), it dissolves chemical constituents from the rock material and carries them in solution. The natural chemical quality of groundwater is determined by the concentrations of the dissolved constituents. These concentrations are determined largely by the type and solubility of the minerals in the rock and by the length of time that the water is in contact with the rock. The measurements of water quality include specific conductance, dissolved solids, hardness, major

anions, and major cations. The major anions include bicarbonate, sulfate, nitrate, and chloride. The major cations include calcium, magnesium, sodium, potassium, manganese, and iron.

The majority of natural groundwater problems are the result of high concentrations of dissolved solids, hardness (compounds of calcium and magnesium), iron, sulfate, nitrate, and chloride. The severity of a groundwater-quality problem is defined by comparing the concentration of a given constituent to the U.S. Environmental Protection Agency (1977) recommended drinking water limit for that constituent.

The chemical type of water is defined from the dominant anion and cation in the water. According to Durfor and Anderson (1963, p. W10), the principal type of low-flow surface water in Erie County is calcium bicarbonate. The chemical analyses published by Mangan and others (1952) for the Lake Erie shore region also indicate that the principal type of most of the low-flow surface water (base flow) and groundwater is calcium bicarbonate. However, water in Twelvemile Creek and Sixteennmile Creek is a calcium sulfate type.

The evaluation of groundwater quality is based on 402 analyses from 371 wells, and on analyses from low-flow stream sites. The results of these analyses, which were made by the U.S. Geological Survey, Pennsylvania state agencies, and private analysts, are shown in Tables 9, 10, and 11. In Table 6, the quality characteristics that generally are important to groundwater users in the area are summarized. Only the principal aquifer is listed in the tables, although in many instances the water entering a well is a mixture from several aquifers. Some wells were sampled several times to determine seasonal or long-term quality changes. Well Er-1481 was sampled at progressively greater depths during drilling to relate changes in water quality to depth.

The chemical analyses of groundwater in Tables 9, 10, and 11 indicate that the principal chemical types are calcium bicarbonate and sodium chloride. Groundwater, especially from the unconsolidated deposits, is commonly hard to very hard (median concentration of 160 mg/L (milligrams per liter) to a maximum concentra-

tion of 720 mg/L) and in places has high iron concentrations (from 0.01 to 30 mg/L). During prolonged periods of no precipitation, the base flow of streams reflects the chemical type of areal groundwater, but the chemical analyses base in Table 11 is insufficient to define the principal chemical types of base flow. The important water-quality characteristics of base flow are summarized in Table 7. For groundwater and for base flow, chloride concentrations, specific conductance, and hardness are higher in the lake plain and escarpment slope than in the upland plateau.

Computer-generated maps show the distribution of specific-conductance values and the concentrations of chloride, hardness, and iron (Figures 5, 6, 7, and 8). The data used are those from groundwater samples, and the interpretation is intended only as a generalization of water-quality conditions in the county.

Chloride concentration and overall water quality may be estimated by measuring specific conductance, which is the measure of the capacity of water to conduct an electric current. Specific conductance varies directly with the concentration of dissolved solids and the degree of ionization of the aquifer material. Figures 9 and 10 show, respectively, the relationship between specific conductance and chloride concentration and between specific conductance and dissolved-solids concentration. Data from northwestern Pennsylvania and nearby areas were used to determine the slopes in the lines representing these relationships. In water containing low dissolved solids, chloride is not a major element and specific conductance is related to other constituents. As shown in Figure 9, the change in slope below a chloride concentration of about 800 mg/L indicates a change in the ratio of specific conductance to chloride concentration.

In Figure 10, the terminology of Krieger and others (1957) has been modified by placing the division between "fresh" and "slightly saline" water at 500 mg/L dissolved solids, rather than at the 1,000 mg/L generally used by the U.S. Geological Survey. This modification was made to conform with local usage. The maximum recommended limit of total dissolved solids for

**Table 6. Summary of Selected Groundwater-Quality Characteristics**

| Geologic unit                     | Iron (Fe)<br>(mg/L) |        |          | Chloride (Cl)<br>(mg/L) |        |           | Hardness as CaCO <sub>3</sub><br>(mg/L) |        |          | Specific conductance<br>( $\mu$ mho/cm at 25 °C) |        |            |
|-----------------------------------|---------------------|--------|----------|-------------------------|--------|-----------|-----------------------------------------|--------|----------|--------------------------------------------------|--------|------------|
|                                   | Number of analyses  | Median | Range    | Number of analyses      | Median | Range     | Number of analyses                      | Median | Range    | Number of determinations                         | Median | Range      |
| Glacial-beach deposits            | 46                  | 0.39   | 0.03-30  | 76                      | 24     | 4-1,000   | 77                                      | 220    | 92-610   | 41                                               | 460    | 281-3,500  |
| Glacial-outwash deposits          | 83                  | .15    | .01-2.6  | 120                     | 10     | 1.5-1,200 | 117                                     | 140    | 5-720    | 97                                               | 422    | 146-4,800  |
| Glacial-illuvial deposits         | 46                  | .19    | .01-2.8  | 54                      | 27     | 2.5-1,110 | 51                                      | 120    | 5-570    | 89                                               | 547    | 251-3,840  |
| Unconsolidated deposits, combined | 175                 | .2     | .01-30   | 250                     | 15     | 1.5-1,200 | 245                                     | 160    | 5-720    | 187                                              | 442    | 146-4,800  |
| Berea Sandstone through           | 5                   | .05    | .02-.7   | 5                       | 3      | 2.5-6.2   | 5                                       | 158    | 120-210  | 4                                                | 400    | 300-480    |
| Riceville Formation               |                     |        |          |                         |        |           |                                         |        |          |                                                  |        |            |
| Corry Sandstone through           | 7                   | .09    | .05-2.5  | 7                       | 10     | 2-22      | 6                                       | 110    | 6-120    | 6                                                | 260    | 190-320    |
| Riceville Formation               |                     |        |          |                         |        |           |                                         |        |          |                                                  |        |            |
| Berea Sandstone through           | 9                   | .15    | .05-.52  | 11                      | 42     | 3.8-716   | 8                                       | 122    | 35-180   | 7                                                | 520    | 300-2,800  |
| Venango Formation                 |                     |        |          |                         |        |           |                                         |        |          |                                                  |        |            |
| Venango Formation                 | 25                  | .13    | .01-.43  | 25                      | 18     | 2.5-600   | 25                                      | 120    | 50-230   | 25                                               | 400    | 280-2,800  |
| Chadakoin Formation               | 37                  | .08    | .01-3.2  | 59                      | 18     | 3-5,200   | 52                                      | 122    | 5-310    | 47                                               | 401    | 220-2,400  |
| Girard Shale                      | 6                   | 1.7    | .21-66   | 12                      | 48     | 12-3,000  | 14                                      | 190    | 13-600   | 12                                               | 778    | 369-9,870  |
| Northeast Shale                   | 8                   | .08    | .025-5.5 | 32                      | 135    | 3-9,500   | 33                                      | 132    | 26-2,500 | 32                                               | 695    | 239-25,800 |
| Bedrock, combined                 | 97                  | .11    | .01-66   | 151                     | 23     | 2-9,500   | 143                                     | 130    | 5-2,500  | 133                                              | 430    | 190-25,800 |

Table 7. Summary of Selected Low-Flow Water-Quality Characteristics for the Period 1970-78

(Data collected by Pennsylvania Department of Environmental Resources)

| Physiographic division                       | Iron (mg/L)        |           |        | Chloride (mg/L)                         |         |        |
|----------------------------------------------|--------------------|-----------|--------|-----------------------------------------|---------|--------|
|                                              | Number of analyses | Range     | Median | Number of analyses                      | Range   | Median |
| Escarpment slope and lake plain <sup>1</sup> | 12                 | 0.05-1.97 | 0.19   | 13                                      | 23-79   | 47     |
| Upland plateau                               | 4                  | .30-1.18  | .70    | 7                                       | 4-11    | 8.0    |
| Hardness as CaCO <sub>3</sub> (mg/L)         |                    |           |        | Specific conductance (μmho/cm at 25 °C) |         |        |
| Physiographic division                       | Number of analyses |           |        | Number of analyses                      |         |        |
|                                              | Range              | Median    | Range  | Median                                  | Median  |        |
| Escarpment slope and lake plain <sup>1</sup> | 13                 | 124-212   | 192    | 13                                      | 260-600 | 460    |
| Upland plateau                               | 6                  | 82-130    | 108    | 7                                       | 182-290 | 218    |

<sup>1</sup>Gaging station data period from 1976 to 1978 only.

drinking water is 500 mg/L (U.S. Environmental Protection Agency, 1977, p. 17146). An approximation of the straight line in Figure 10 may be used for the conversion of specific conductance (SC) to dissolved solids (DS); that is, dissolved solids can be estimated by multiplying specific conductance by 0.6, or, DS = 0.6 x SC. From the data listed in Table 10, the calculated coefficient value is 0.61. According to Hem (1985, p. 67), the coefficient can range from 0.55 to 0.75.

Figure 5 is a computer-generated map showing the general distribution of specific conductance in the county, based on 320 specific-conductance determinations of water from all of the major aquifers. All of the median specific conductances shown for the various aquifers in Table 6 are comparable in magnitude. The higher specific-conductance values were measured from wells that had excessive chloride concentrations. Most of the areas of high specific conductance are in the lake plain and escarpment slope (Figure

5). The specific conductance of water from wells in the upland plateau generally is lower. An exception is in the upland area west and northwest of the borough of Waterford. This lower conductivity of water in the uplands is generally attributed to the circulation of recharge water from precipitation. The lowlands is the discharge area of the more mineralized groundwater.

### Chloride

In many locations in Erie County, the chloride concentration of groundwater exceeds 250 mg/L and increases with depth. This is especially true of the bedrock aquifers where the groundwater containing high chloride concentration is considered to be connate or native water—that is, trapped in the interstices of the sedimentary rocks at the time of deposition. However, some unconsolidated aquifers contain groundwater that has high chloride concentrations. The presence of high chloride concentrations in the

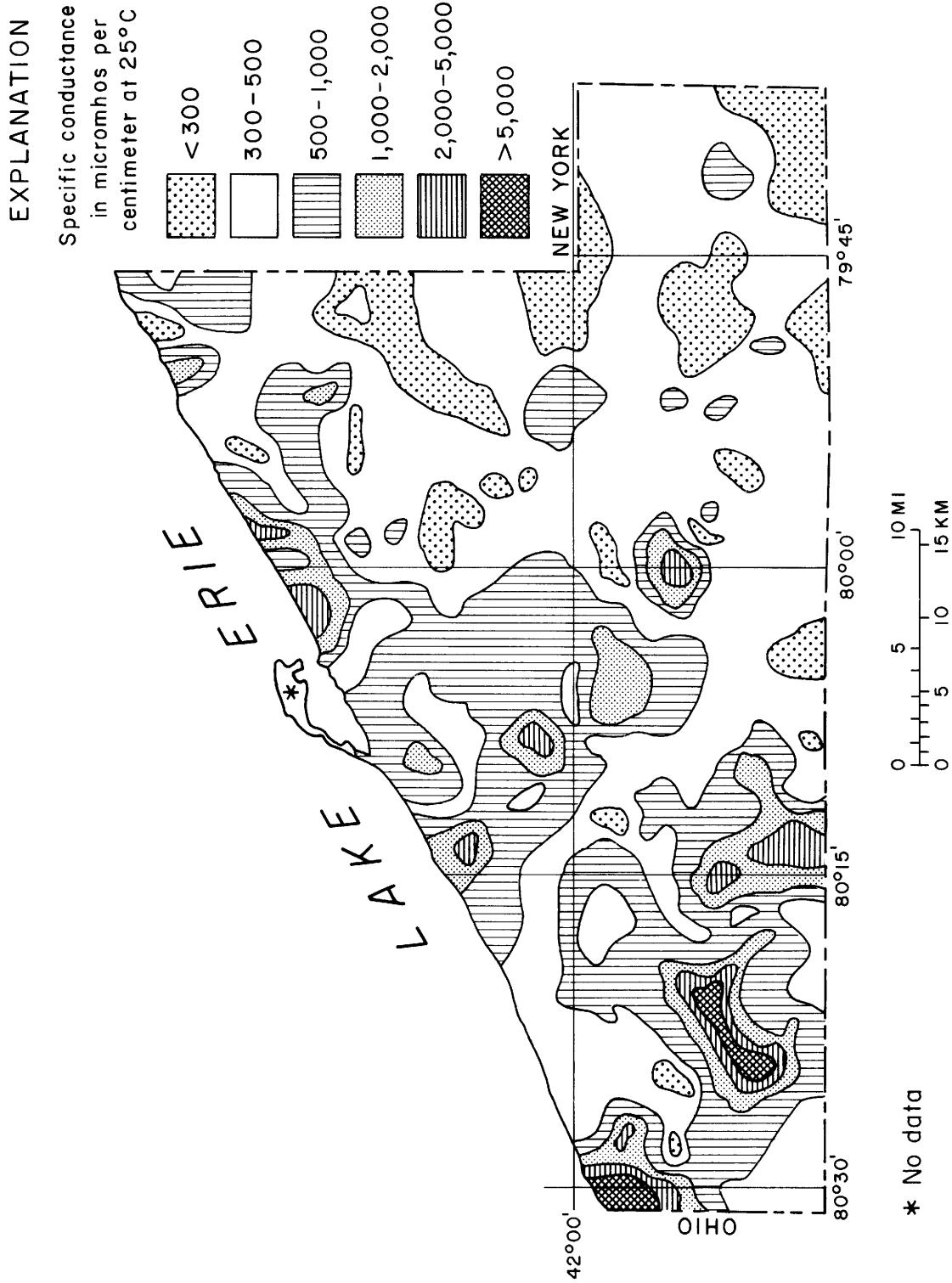



Figure 5. Distribution of specific-conductance values in the wells sampled.

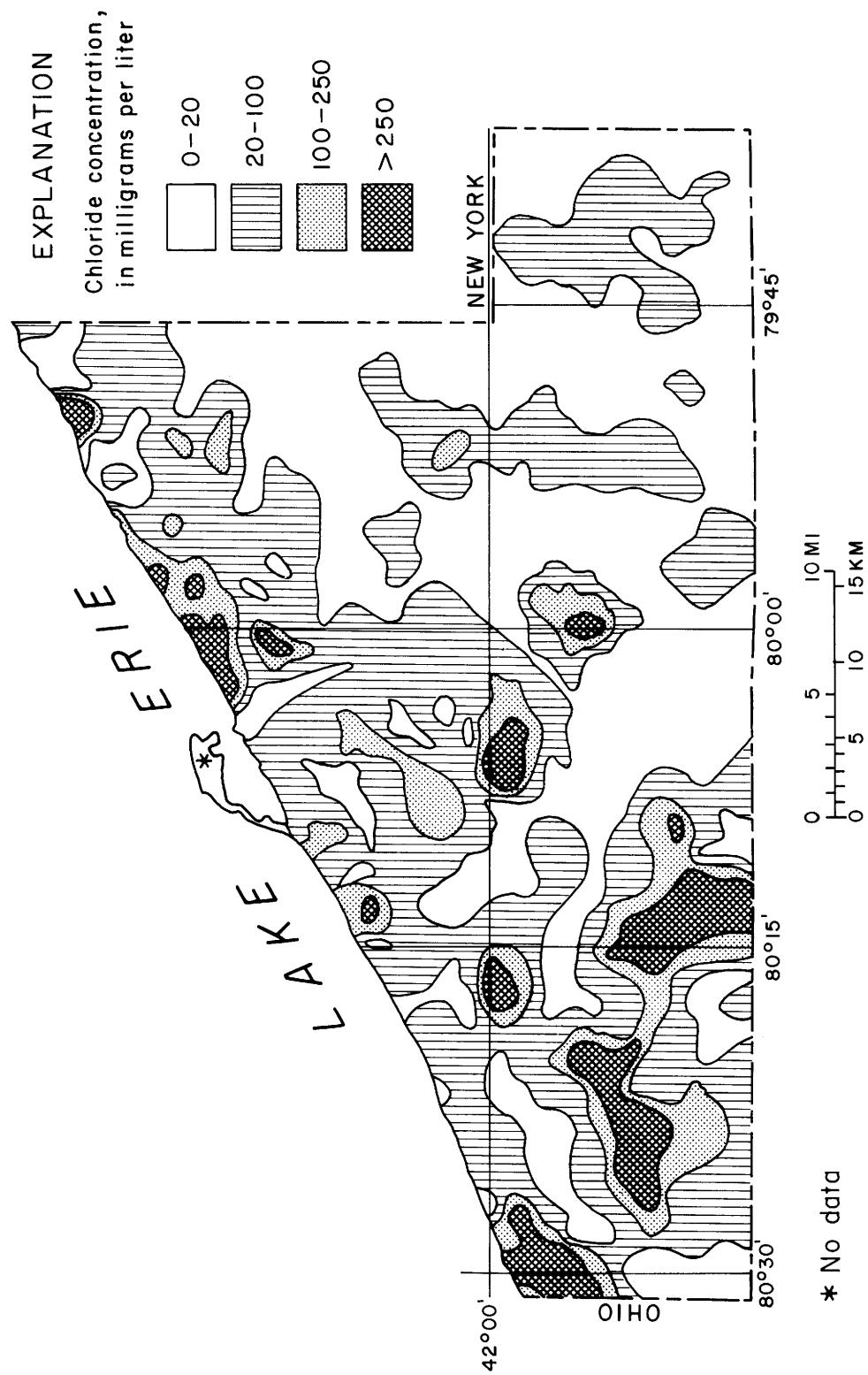



Figure 6. Distribution of chloride concentrations in the wells sampled.

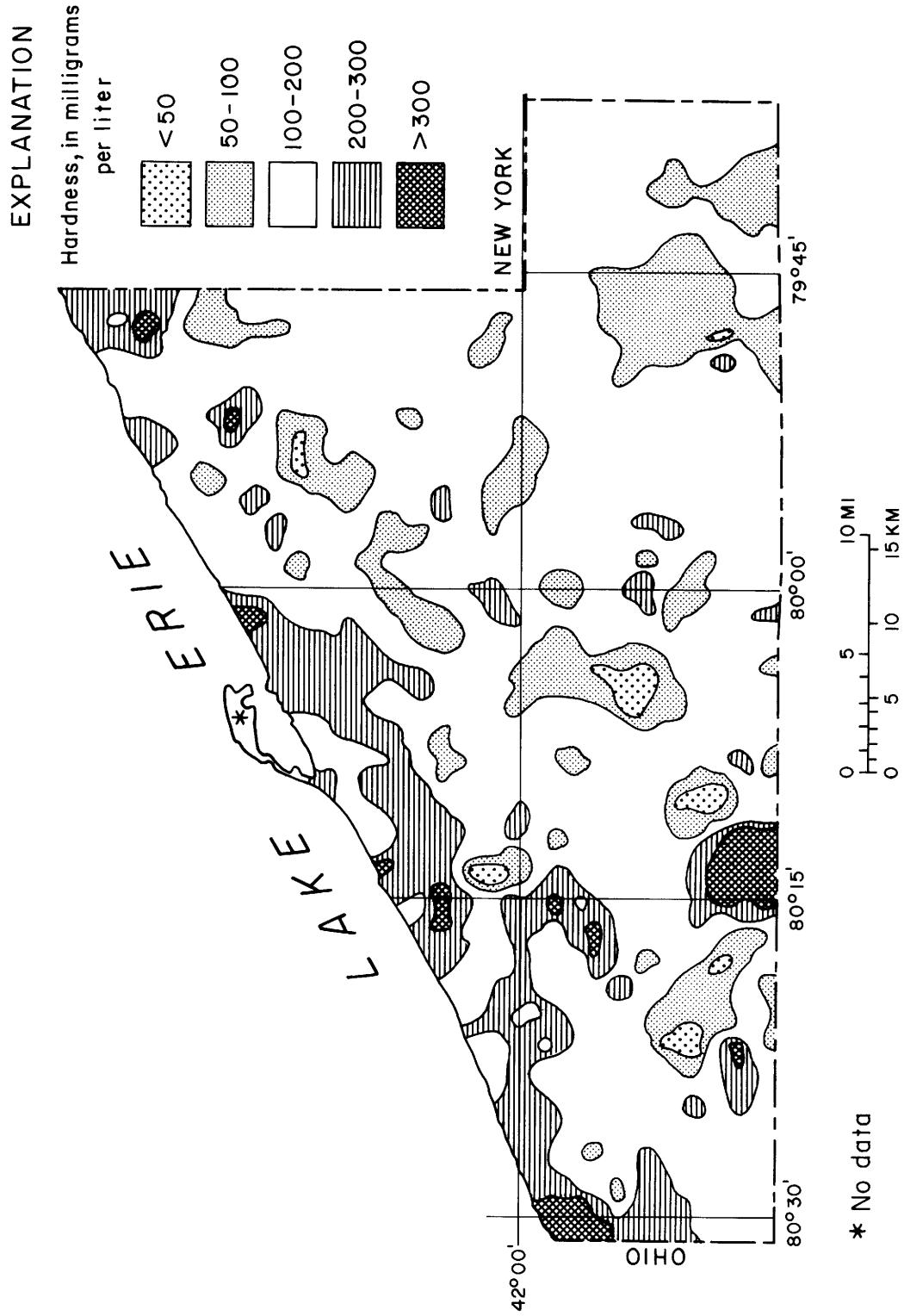



Figure 7. Distribution of total-hardness concentrations in the wells sampled.

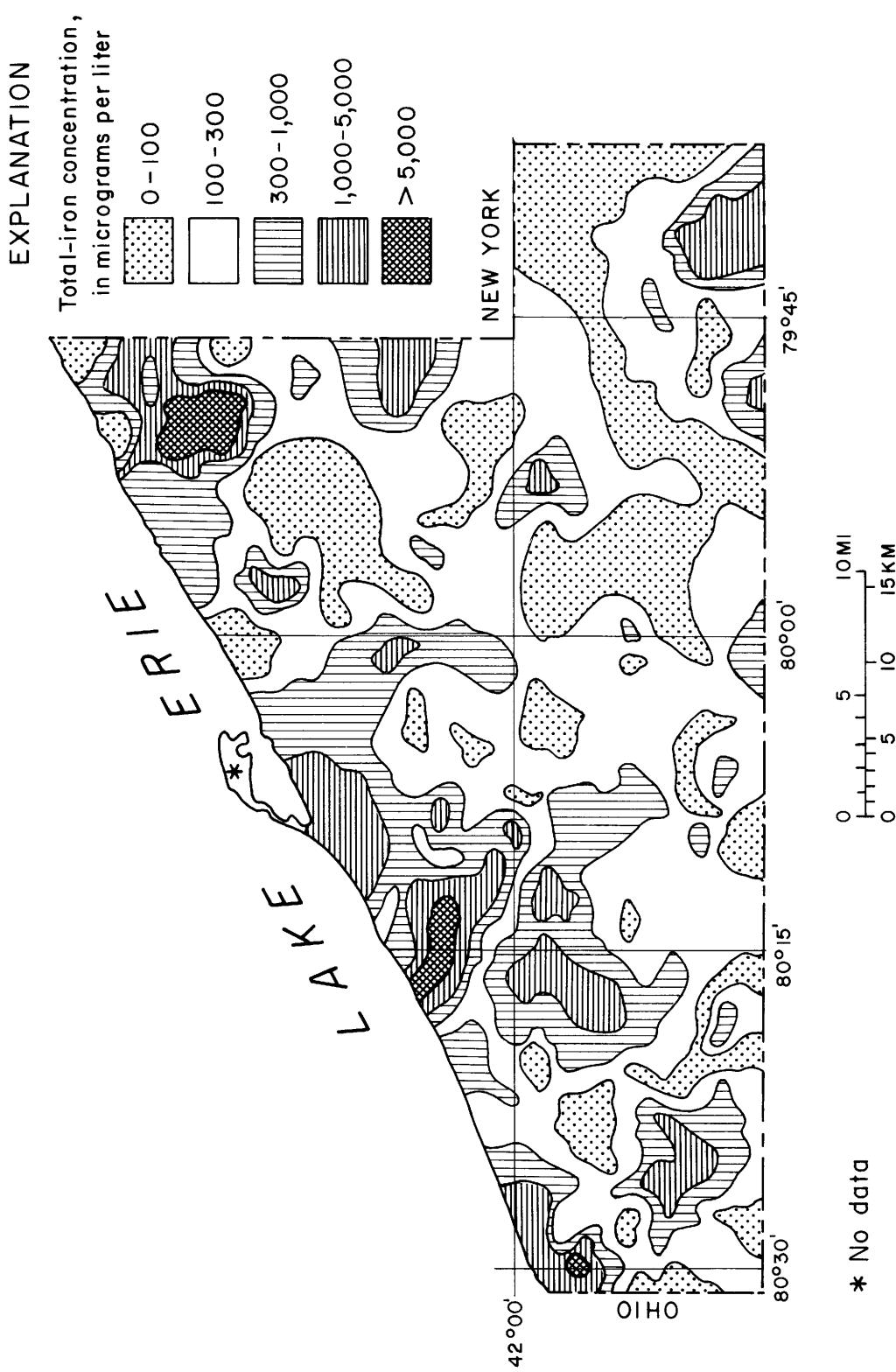



Figure 8. Distribution of total-iron concentrations in the wells sampled.

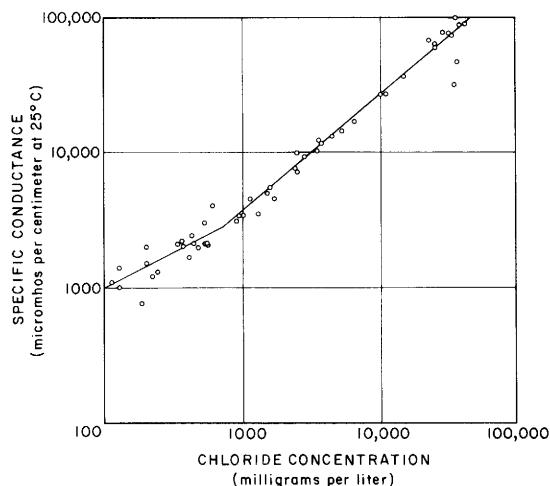



Figure 9. Relationship between specific conductance and chloride concentration (from Schiner and Gallaher, 1979, Figure 2, p. 31).

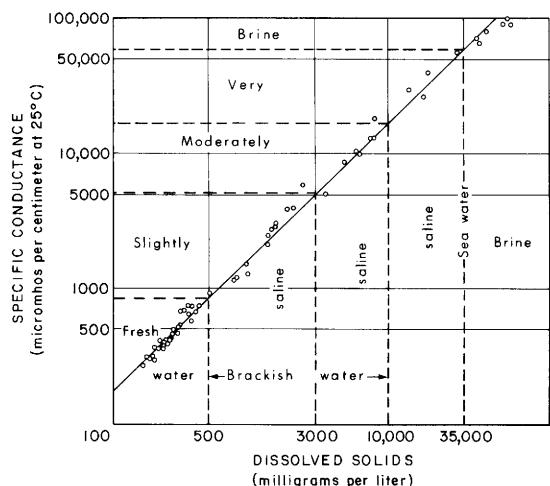



Figure 10. Relationship between specific conductance and dissolved solids, and the classification of salinity of water (from Schiner and Gallaher, 1979, Figure 3, p. 32).

county is probably due to restricted flushing by percolating fresh groundwater.

In the upland plateau, glacial and preglacial valleys have divided much of the upland area into hydrologically isolated "islands" (Poth, 1962).

Before the valleys were filled with glacial drift, these "islands" stood as much as from 400 to 800 feet above the valley floor, creating a hydraulic gradient that permitted the draining and flushing of the units standing above the drainage level. Also, the upland area of the county is capped by sediments that are higher in the stratigraphic column and are generally more permeable than the lower, tighter units. For these reasons, the problem of salinity in bedrock wells in this area is much less common than in similar wells in the lake plain and escarpment slope. Wells Er-1122 and Er-1123, in the upland area about 3 miles east of Edinboro, penetrated more than 400 feet of bedrock, and salt water was not reported by the driller. The bottoms of these wells, at about 1,000 feet above sea level, are probably 300 feet or more above the bedrock floor underlying nearby Conneautee Creek valley. Wells of such depth, drilled beneath the flushing zone, would normally yield water similar to that of sea water. Some exceptions exist in the upland area. A few wells drilled near the centers of some of the areally larger and topographically lower upland "islands" reportedly yield saline water. Wells drilled near the edges of the same upland "islands" generally yield fresh water.

In the lake plain especially, and to some degree in the western end of the escarpment slope, topographic relief is minimal and the connate water has drained from only the uppermost part of the bedrock. In much of the eastern half of the lake plain, the drift overlying the bedrock is very thin and impermeable, and does not yield water to wells. Attempts to obtain adequate household water supplies by drilling into the bedrock often result in saltwater wells, with accompanying natural gas in some places (see Table 9).

In most of the area west and south of Elk Creek, in the western part of the county, the conditions are similar. The drift there is relatively thick, but it generally is composed of clayey, impervious till that commonly yields quantities of water that are inadequate even for domestic supplies. The underlying bedrock consists of shaly units that contain brine at shallow depths (about 100 feet). In the deep, buried valleys of this area, the brines are still slowly draining from the

bedrock into the valley-fill drift, but the movement of water through the drift is too slow to permit complete flushing. Deep wells in the valley-fill drift of preglacial Conneaut Creek yield saline water even in the more permeable outwash deposits near Lake Erie. Well Er-1481, about 3 miles north of Albion, was drilled to determine the thickness and composition of the drift in this buried valley. As recorded in Table 9, the chloride concentration increased gradually to about 100 mg/L at the 120-foot depth, and to about 400 mg/L at the 141-foot depth (top of bedrock).

Tolerance to chloride varies among individuals. The maximum recommended limit for chloride concentration is 250 mg/L (U.S. Environmental Protection Agency, 1977).

Figure 6 is a map showing the distribution of chloride (saline) concentrations in wells sampled and inventoried in the county. Wells that yield excessively saline water normally are destroyed and not reported or are plugged from the bottom of the well to above the salty zone and used, but not recorded as failures. Also, well drillers have learned by experience and word of mouth not to exceed depths at which salt water is known or suspected to be present. Whenever saline water is encountered during drilling, it is pointless to drill deeper. The salinity increases rapidly with depth, and there is no fresh water below the saline zone. Table 8 is a compilation of relevant data on the occurrence of saline water (chloride in excess of 250 mg/L), aquifer, and well depth for the wells inventoried and sampled in the county. This table, together with Tables 9, 10, 11, and 12 and Plates 1 and 2, can provide information to well drillers and potential well owners about the approximate depth to the saline zone.

In areas of shallow salt water, some procedures are available to help minimize the problem. Critical factors include well depth and the occurrence and amount of overlying fresh water available for dilution. During routine well construction, the well depth could be increased a few feet into bedrock to create additional storage. Large-diameter dug wells could be used to provide more area for freshwater entry and more storage volume. Slotted well casing set loosely

at the top of the bedrock would allow the entry of water from the drift into the borehole.

Table 8. *Aquifer, Well Depth, and Chloride Concentrations Greater than 250 mg/L*

(In part from Koester and Miller, 1980)

| Aquifer                                   | Well number | Township location | Well depth (feet) | Chloride concentration (mg/L) |
|-------------------------------------------|-------------|-------------------|-------------------|-------------------------------|
| Glacial-beach deposits                    | Er- 377     | Fairview          | 53                | RS <sup>1</sup>               |
|                                           | 556         | do.               | 73                | 1,000                         |
|                                           | 1220        | Millcreek         | 38                | 300                           |
|                                           | 1415        | Harborcreek       | 17                | 320                           |
|                                           | 1523        | Millcreek         | 34                | 710                           |
| Glacial-outwash deposits                  | 71          | Girard            | 77                | RS                            |
|                                           | 99          | Waterford         | 144               | RS                            |
|                                           | 503         | Elk Creek         | 40                | 720                           |
|                                           | 1061        | Waterford         | 165               | 1,220                         |
|                                           | 1206        | Millcreek         | 48                | 490                           |
|                                           | 1254        | Conneaut          | 120               | 380                           |
| Glacial-till deposits                     | 1423        | Waterford         | 227               | RS                            |
|                                           | 957         | Millcreek         | 70                | 280                           |
|                                           | 1481        | Girard            | 141               | 425                           |
|                                           | 1496        | McKean            | 55                | RS                            |
|                                           | 1651        | Conneaut          | 50                | 250                           |
|                                           | 1686        | Springfield       | 60                | 410                           |
| Berea Sandstone through Venango Formation | 1687        | do.               | 55                | 480                           |
|                                           | 67          | Elk Creek         | 36                | RS                            |
|                                           | 68          | do.               | 54                | 716                           |
|                                           | 69          | do.               | 50                | RS                            |
|                                           | 1280        | Franklin          | 70                | 550                           |
| Venango Formation                         | 562         | do.               | 70                | 250                           |
|                                           | 1495        | McKean            | 61                | 600                           |
| Chadakoin Formation                       | 70          | Franklin          | 72                | RS                            |
|                                           | 72          | Girard            | 100               | RS                            |
|                                           | 306         | Conneaut          | 46                | 616                           |
|                                           | 414         | McKean            | 64                | 450                           |
|                                           | 649         | North East        | 35                | RS                            |
|                                           | 863         | Summit            | 50                | 310                           |
| Girard Shale                              | 872         | do.               | 50                | RS                            |
|                                           | 1222        | Girard            | 84                | 540                           |
|                                           | 1683        | Springfield       | 63                | 1,400                         |
| Northeast Shale                           | 1685        | do.               | 150               | 3,000                         |
|                                           | 15          | Harborcreek       | 36                | 655                           |
|                                           | 16          | do.               | 40                | RS                            |
|                                           | 18          | do.               | 40                | 490                           |
|                                           | 19          | do.               | 34                | 1,170                         |
|                                           | 29          | do.               | 82                | 470                           |
|                                           | 34          | do.               | 41                | 1,540                         |
|                                           | 35          | do.               | 40                | 305                           |
|                                           | 36          | do.               | 35                | 280                           |
|                                           | 41          | do.               | 30                | 255                           |
|                                           | 42          | do.               | 30                | 255                           |
|                                           | 50          | North East        | 60                | 1,110                         |
|                                           | 103         | Harborcreek       | 159               | RS                            |
|                                           | 104         | North East        | 250               | RS                            |
|                                           | 106         | do.               | 128               | RS                            |
|                                           | 1646        | Springfield       | 50                | RS                            |
|                                           | 1684        | do.               | 185               | 9,500                         |

<sup>1</sup>RS, driller reported salty groundwater.

## Hardness

Hardness is a property of water indicating the concentrations of calcium and magnesium ions. Hardness affects the lathering properties of soap, causes scale to form in pipes, in boilers, and on cooking utensils, and may leave a curd on bathtubs and wash basins.

Hardness may be expressed either in milligrams per liter (mg/L) or in grains per gallon (gr/gal) of  $\text{CaCO}_3$  (calcium carbonate). According to the U.S. Environmental Protection Agency (1976, p. 75), a concentration of 0 to 75 mg/L (0 to 4.4 gr/gal) is considered soft, 75 to 150 mg/L (4.4 to 8.8 gr/gal) is moderately hard, 150 to 300 mg/L (8.8 to 17.5 gr/gal) is hard, and more than 300 mg/L (17.5 gr/gal) is very hard.

The range of groundwater hardness in Erie County is from soft to very hard, but the median hardness of all aquifers is hard to very hard. As seen in Table 6, the water from glacial-beach deposits is considerably harder than that from the other aquifers. Also, the water from bedrock wells generally is not as hard as that from alluvium. Water moving through shale units may be partially modified from a calcium bicarbonate type to a sodium bicarbonate type by a natural ion-exchange process not unlike that which takes place in home water-softening units.

The areal distribution of hardness is based on 388 determinations and is shown in Figure 7. As indicated on this map and from the medians in Table 6, the water in most of the area has a hardness ranging from 100 to 200 mg/L as  $\text{CaCO}_3$ . Most of the samples containing the highest hardness concentrations were taken from wells in the western parts of the lake plain and escarpment slope areas.

Hardness in water can be removed with treatment by such processes as lime-soda softening and zeolite or ion-exchange systems.

## Iron

Iron is dissolved from many soil and rock components. Upon exposure to air, the dissolved iron is oxidized and redeposited as a reddish to dark-brown stain. The U.S. Environmental Protection Agency (1977) recommends that iron con-

centrations not exceed 0.3 mg/L. In the quantities usually found in groundwater, iron is objectionable because it may impart an unpleasant taste to the water and stain clothing, utensils, and plumbing fixtures.

Under conditions of high concentration, the iron problem may be complicated by the presence of ferrian (iron) bacteria. This bacterial growth forms a slimy, rust-colored mass, which builds up on plumbing fixtures and may clog water pipes. Chlorine bleach introduced into the water system will temporarily control this growth. Iron concentrations can be reduced by aeration followed by sedimentation and filtration processes.

Iron concentrations in the groundwater of Erie County differ widely, as shown in Figure 8. The aquifers of the upland plateau supply water of lower iron concentration, generally, than those in the lake plain. The summary of water-quality characteristics (Table 6) indicates that water from glacial-beach deposits and the Girard Shale generally has the highest iron concentrations, and water from the glacial-outwash deposits and other bedrock units has the least.

## Gases

Hydrogen sulfide ( $\text{H}_2\text{S}$ ) and natural gas are present in some wells in the county. Hydrogen sulfide is formed by the decomposition of sulfide minerals, and has an odor similar to that of rotten eggs. Heavy concentrations may cause black staining of fixtures and utensils. The odor may be dispelled by allowing the water to sit in an open container at room temperature, or, if the concentration is not too high, it may be eliminated by running the water through an iron-removal filter. The gas can also be released from the water before use by venting the gas to the atmosphere at the well. A hydrogen sulfide odor was observed or reported in water from wells Er-99, 115, 210, 296, 520, 609, 706, 940, 1356, and 1357 (Table 9). These wells tap a variety of bedrock and alluvial aquifers.

Natural or "shale" gas, often accompanied by saline water, was noted in wells Er-67, 70, 71, 103, 104, 107, 109, 210, 218, 272, 317, 365, 377, 608, 609, 668, 683, 694, 702, 744, 863, 919, 1132,

1179, 1232, 1318, 1368, 1397, 1495, 1496, 1578, 1644, and 1646 (Table 9). Most of the gas was in bedrock wells having depths of less than 70 feet, but some was reported in wells drilled in alluvium. In general, these wells were in the lake plain area of the county. The source of the gas may be the thin sandstones in the Northeast Shale that may have been tapped for domestic gas supplies, or, in a few local instances, leaking or abandoned gas wells. To avoid possible excess gas accumulation with resulting explosion hazard, it is recommended that water wells in this area be vented to allow escape of the gas.

## DESCRIPTION AND WATER-BEARING CHARACTERISTICS OF CONSOLIDATED DEPOSITS

The bedrock exposed in the county (Plate 1) is the result of the compaction and cementation of sediments that were deposited in ancient seas. The age of these sedimentary rocks ranges from Late Devonian to Early Mississippian. The outcrops are progressively younger toward the south. The regional dip of the rock units is generally toward the south at a slope of about 15 to 20 feet per mile. In the southern and southeastern parts of the county, contacts between many of the Mississippian and Devonian units are indistinguishable or questionable. For this reason, many of the units have been combined on the map.

In the county, names assigned to many rock units, or combinations of units, have differed greatly since geologic studies began. The nomenclature of Berg and others (1980), which is the nomenclature of the 1980 Pennsylvania state geologic map, is used in this report. The stratigraphic nomenclature for the rocks of Devonian age does not follow the usage of the U.S. Geological Survey.

Generally, the rocks become more coarse grained in the upper units of the stratigraphic sequence. Also, the coarseness of many of the younger aquifer units increases towards the east and southeast.

The drillers' logs of many wells in the upland plateau area indicate that much of the uppermost bedrock surface consists of "broken, soft, or fractured" rock material. The maximum thickness of the fractured zone is about 10 feet.

The description and water-bearing characteristics of the geologic units in the county follow the format below:

*Description*—Includes the composition, geographic occurrence and extent, and general thickness of the geologic unit.

*Water-Bearing Characteristics*—Includes a description of the availability of groundwater from the geologic unit in terms of well yield, specific capacity, and well depth, based on the well inventory. The range of values and the median value for these characteristics, summarized in Table 3, are assumed to be representative of all wells tapping the aquifer.

*Water-Quality Characteristics*—Provides an indication of the chemical quality of groundwater from the geologic unit in terms of concentrations of chloride and iron ions, hardness, and specific conductance. The range of analytical results, and the median value, for these characteristics are summarized for each aquifer in Table 6.

*Evaluation of the Aquifer*—Contains a summary of the significant hydrogeologic characteristics of the geologic unit, including water quantity and quality. The quantity characteristics primarily include well yield and specific capacity. The characteristics for nondomestic wells are assumed to represent maximum aquifer capability. The water-quality characteristics include chloride concentration, hardness, and dissolved-solids concentration.

## DEVONIAN

### Northeast Shale

#### *Description*

The Northeast Shale lies in a band along Lake Erie and is the oldest bedrock exposed in Erie

County. Near the borough of North East, the outcrop area is more than 3 miles wide and the unit is 400 feet thick. The unit thins and narrows toward the west and is not exposed at the Ohio state line. The formation is a gray shale containing layers of fine-grained sandstone which are generally less than 1 foot thick. Locally, shallow wells penetrating the sandstone layers may yield enough natural gas for domestic use. Most of the wells inventoried and sampled were in Harbor-creek and North East Townships in the lake plain physiographic division.

### *Water-Bearing Characteristics*

As shown in Table 3, the median reported yield for 21 inventoried domestic wells sited in the Northeast Shale was 4 gal/min, and the range was 0.1 to 25 gal/min. The median specific capacity for seven inventoried domestic wells in this aquifer was 0.36 (gal/min)/ft, and the range was 0.006 to 25 (gal/min)/ft. The median reported well depth for 53 inventoried wells in this aquifer was 40 feet, and the range was 12 to 250 feet.

### *Water-Quality Characteristics*

Chemical-quality data from the shale aquifer indicate high concentrations of dissolved solids and chloride at shallow depths. As shown in Table 6, the chloride concentration ranged from 3 to 9,500 mg/L, and the median was 135 mg/L. The hardness ranged from 26 to 2,500 mg/L as  $\text{CaCO}_3$  (soft to very hard); the median hardness was 132 mg/L (moderately hard). For eight samples analyzed for iron concentrations, the range was from 0.025 to 5.5 mg/L, and the median was 0.08 mg/L, which does not indicate a serious problem. Specific conductance ranged from 239 to 25,800  $\mu\text{mho}/\text{cm}$  (micromhos per centimeter at 25°C), and the median was 695  $\mu\text{mho}/\text{cm}$ . Values of dissolved solids, estimated from Figure 10, were about 150 to 15,000 mg/L, and the median was about 400 mg/L.

### *Evaluation of the Aquifer*

The Northeast Shale does not have the potential for a good potable water supply due to gener-

ally poor water-bearing characteristics and poor water quality.

The chloride concentrations sampled from this aquifer are the highest in the county (up to 9,500 mg/L), possibly because of the presence of connate water in the aquifer, brine disposal associated with natural gas exploration and production from the sandstone layers of this unit, or the upward movement of saline water from the underlying Upper Devonian shales.

Because this aquifer is in contact with Lake Erie, there is some speculation regarding the infiltration of lake water into the aquifer. However, due to the general impermeable nature of the shale and glacial-drift deposits locally overlying the shale, infiltration is believed to be insignificant. Many water wells drilled along the lake shore were completely dry, even though the depths of some wells were far below the lake level.

## **Girard Shale**

### *Description*

The Girard Shale overlies the Northeast Shale and ranges from 50 to 200 feet in thickness. It forms a band roughly paralleling the Lake Erie shore, and it widens and thickens toward the west. The Girard Shale is very fine grained, uniform in texture, and light gray in color.

### *Water-Bearing Characteristics*

As shown in Table 3, the median reported yield for 33 inventoried domestic wells sited in the Girard Shale was 2 gal/min, and the range was 0.1 to 50 gal/min. The median specific capacity for 10 inventoried domestic wells was 0.06 (gal/min)/ft, and the range was 0.01 to 4 (gal/min)/ft. The median reported well depth for 41 wells was 60 feet, and the range was 30 to 140 feet.

### *Water-Quality Characteristics*

Chemical-quality data indicate excessive dissolved-solids and iron concentrations in some places. As shown in Table 6, the iron concentrations ranged from 0.21 to 66 mg/L, and the

median was 1.7 mg/L; five of the six analyses exceeded the drinking water limit of the U.S. Environmental Protection Agency (1977). The chloride concentrations ranged from 12 to 3,000 mg/L, and the median value was 48 mg/L. The hardness ranged from 13 to 600 mg/L as  $\text{CaCO}_3$  (soft to very hard); the median hardness was 190 mg/L (hard). Specific conductance ranged from 369 to 9,870  $\mu\text{mho}/\text{cm}$ , and the median was 778  $\mu\text{mho}/\text{cm}$ . The range of dissolved solids as estimated from Figure 10 was about 200 to 6,000 mg/L; the estimated median was about 470 mg/L.

#### *Evaluation of the Aquifer*

The Girard Shale is the poorest aquifer in Erie County, as measured by reported well yields and specific capacity.

### Chadakoin Formation

#### *Description*

The Chadakoin Formation is a shale and sandstone unit overlying the Girard Shale, and is about 300 feet thick. This formation is the most common bedrock unit in the county. It underlies most of the valleys of the southward-flowing streams, and, to the north, it is incised by streams tributary to Lake Erie. The Chadakoin Formation is noticeably more coarse grained than the underlying units and contains thicker sandstone beds.

#### *Water-Bearing Characteristics*

As shown in Table 3, the median of reported yields for 283 inventoried domestic wells was 4 gal/min, and the range was 0.1 to 50 gal/min. The median specific capacity for 115 inventoried domestic wells was 0.14 (gal/min)/ft, and the range was 0.01 to 45 (gal/min)/ft. The median of reported well depths for 311 inventoried wells was 60 feet, and the range was 33 to 160 feet.

#### *Water-Quality Characteristics*

As shown in Table 6, the chloride concentration ranged from 3 to 5,200 mg/L, and the median was 18 mg/L. The hardness ranged from

5 to 310 mg/L as  $\text{CaCO}_3$  (soft to very hard); the median hardness was 122 mg/L (moderately hard). The range of iron concentrations was from 0.01 to 3.2 mg/L, and the median was 0.08 mg/L. The specific conductance ranged from 220 to 2,400  $\mu\text{mho}/\text{cm}$ , and the median was 401  $\mu\text{mho}/\text{cm}$ . The estimated range of dissolved solids was about 130 to 1,400 mg/L, and the median was about 240 mg/L.

#### *Evaluation of the Aquifer*

The Chadakoin Formation is an extensive aquifer which is marginally acceptable for water supply. The water quality is better than the quality of the underlying aquifer. The elevated chloride concentrations are a local problem and are considered by some (Harrison, 1983) to be related to the groundwater discharge of the connate water from the underlying aquifers or to brines associated with natural gas exploration and production.

### Venango Formation

#### *Description*

The Venango Formation is nearly 250 feet thick and consists of three coarse-grained sandstones separated by two shales. The shales average 100 feet in thickness and the sandstones average 30 feet. The three sandstone members—the Woodcock, Salamanca, and LeBoeuf—are known to oil-well drillers as the First, Second, and Third Venango oil sands. The lowest of the three, the LeBoeuf Sandstone Member, has been extensively quarried in the southern part of the county. The Venango Formation underlies much of the flat upland surface in the southeastern part of the county.

#### *Water-Bearing Characteristics*

As shown in Table 3, the median of reported yields for 166 domestic wells was 8 gal/min, and the range was 0.5 to 50 gal/min. The median specific capacity for 71 domestic wells was 0.2 (gal/min)/ft, and the range was 0.01 to 30 (gal/min)/ft. The median of reported well depths

for 170 inventoried wells was 65 feet, and the range was 36 to 250 feet.

### *Water-Quality Characteristics*

The chloride concentration ranged from 2.5 to 600 mg/L, and the median was 18 mg/L. The hardness ranged from 50 to 230 mg/L as  $\text{CaCO}_3$  (soft to hard); the median hardness was 120 mg/L (moderately hard). The range of iron concentration was from 0.01 to 0.43 mg/L; the median was 0.13 mg/L. Specific conductance ranged from 280 to 2,800  $\mu\text{mho}/\text{cm}$ , and the median was 400  $\mu\text{mho}/\text{cm}$ . The estimated range of dissolved solids was about 170 to 1,700 mg/L, and the median was about 240 mg/L.

### *Evaluation of the Aquifer*

The Venango Formation is a good aquifer for water supply. The water quantity and quality are generally better than those of the underlying aquifers. As with the Chadakoin Formation, high chloride concentrations are a local problem, and probably indicate restricted natural flushing of the aquifer by fresh water.

## DEVONIAN AND MISSISSIPPIAN

### Riceville Shale, Berea Sandstone, and Corry Sandstone

#### *Description*

The Riceville Shale overlies the Venango Formation and is the uppermost Devonian unit. It is about 80 feet thick, consists primarily of light-gray shales separated by thin layers of siltstone and fine-grained sandstone, and forms much of the upland area in the extreme southern part of the county. The Mississippian Cussewago Sandstone and Bedford Shale, both present in Crawford County to the south, are unidentifiable in Erie County; the Riceville Shale is capped by the Berea Sandstone in western Erie County and the Corry Sandstone in eastern Erie County. On Plate 1, the Mississippian Berea and Corry Sandstones are included with the Devonian Riceville Shale as combined units. In the Albion area,

where the combined Berea and Riceville sequence is indefinite because of the lack of exposures, the mappable unit is the sequence from the Venango upward through the Berea.

The Berea Sandstone is a finer grained facies of the sandstone found at the type locality in Berea, Ohio. The Berea consists primarily of hard siltstone containing interbedded shales and very fine grained sandstones. It is about 15 feet thick in the southwestern part of the county and thins toward the east and north.

The Corry Sandstone is the eastern equivalent of the Berea. It thickens from west to east and is about 20 feet thick at the type locality near Corry. It is a light-buff fine-grained sandstone, locally conglomeratic near its base. The combined Corry and Riceville sequence forms much of the uplands in the southeastern part of Erie County.

### *Water-Bearing Characteristics*

As summarized in Table 3 for the inventoried wells sited in the Berea Sandstone through the Riceville Shale, the median reported yield for 27 domestic wells was 15 gal/min, and the range was 2 to 40 gal/min. The median specific capacity for 20 domestic wells was 0.52 (gal/min)/ft, and the range was 0.12 to 10 (gal/min)/ft. The median reported well depth was 71 feet, and the range was 40 to 130 feet.

For the inventoried wells sited in the Corry Sandstone through the Riceville Shale, the median yield for 24 domestic wells was 15 gal/min, and the range was 2 to 50 gal/min. The median specific capacity for 15 domestic wells was 0.75 (gal/min)/ft, and the range was 0.02 to 20 (gal/min)/ft. The median reported well depth was 72 feet, and the range was 35 to 150 feet.

### *Water-Quality Characteristics*

As shown in Table 6, for the analyzed samples from the Berea Sandstone through the Riceville Shale, the chloride concentration ranged from 2.5 to 6.2 mg/L; the median was 3 mg/L. The hardness ranged from 120 to 210 mg/L as  $\text{CaCO}_3$  (moderately hard to hard); the median hardness was 158 mg/L (hard). The iron concen-

tration ranged from 0.02 to 0.7 mg/L, and the median was 0.05 mg/L. Specific conductance ranged from 300 to 480  $\mu\text{mho}/\text{cm}$ , and the median was 400  $\mu\text{mho}/\text{cm}$ . The estimated range of dissolved solids was about 180 to 290 mg/L, and the median was about 240 mg/L.

For the analyzed samples from the Corry Sandstone through the Riceville Shale, the chloride concentration ranged from 2 to 22 mg/L, and the median was 10 mg/L. The hardness ranged from 6 to 120 mg/L (soft to moderately hard); the median hardness was 110 mg/L (moderately hard). The iron concentration ranged from 0.05 to 2.5 mg/L; the median was 0.09 mg/L. Specific conductance ranged from 190 to 320  $\mu\text{mho}/\text{cm}$ , and the median was 260  $\mu\text{mho}/\text{cm}$ . The estimated range of dissolved solids was about 110 to 190 mg/L, and the median was about 160 mg/L.

#### *Evaluation of the Aquifer*

The Riceville Shale, including the overlying Berea and Corry Sandstones, is the best bedrock aquifer in Erie County, as measured by reported well yields and specific-capacity values. Considering the limited water-quality sampling, the groundwater quality is not significantly different from that of the underlying Venango Formation, as measured by hardness and dissolved solids (specific conductance). However, iron and chloride concentrations are the lowest of all aquifers in the county. This is related to the upland position of the aquifer and the natural flushing of the unit by percolating fresh groundwater.

### MISSISSIPPIAN

The Mississippian-age rocks conformably overlie the Devonian-age rocks in southern Erie County. As previously discussed, the Cussewago Sandstone and Bedford Shale, both found in Crawford County to the south, are unidentifiable in Erie County. Therefore, the lowest recognizable Mississippian units are the Corry and Berea Sandstones, which are discussed in the previous section.

### Cuyahoga Group

#### *Description*

The Cuyahoga Group caps the uplands and lies above the Berea and Corry Sandstones. Where well developed, the group consists of the Orangerville Shale, the Sharpsville Sandstone, and the Meadville Shale, in ascending order. The Orangerville Shale is relatively soft and easily eroded. The Sharpsville Sandstone is composed mostly of sandstone but includes interbedded layers of shale and siltstone. The Meadville Shale is composed mostly of silty shale, thin beds of siltstone, and some sandstone lenses. Erosion has removed much of the Cuyahoga Group and made identification of the individual units difficult. In Erie County, the maximum thickness of the group is about 100 feet.

#### *Water-Bearing Characteristics*

As shown in Table 3, the median reported yield of eight domestic wells was 13.5 gal/min, and the range was 5 to 62 gal/min. The median specific capacity for seven domestic wells was 0.5 (gal/min)/ft; the range was 0.18 to 62 (gal/min)/ft. The median reported well depth was 69 feet, and the range was 38 to 102 feet.

#### *Water-Quality Characteristics*

Samples for chemical analysis were not collected from this aquifer.

#### *Evaluation of the Aquifer*

The areal extent of the Cuyahoga Group is limited to the southern boundary of the county. The presence of the sandstone units near the land surface makes both water-bearing characteristics and water-quality characteristics favorable for groundwater development.

### Shenango Formation

The Shenango Formation overlies the Cuyahoga Group in some of the uplands in the southeastern part of Erie County. The shaly upper member has been removed by erosion, and only

a few feet of the sandstone and siltstone of the lower member remain. No wells were inventoried or sampled in the Shenango Formation because of its limited areal extent.

## DESCRIPTION AND WATER-BEARING CHARACTERISTICS OF UNCONSOLIDATED DEPOSITS

Nearly all bedrock in the county is covered by unconsolidated deposits of glacial origin known as drift. Collectively, the groundwater is more readily available in these deposits than in the underlying bedrock units. Figure 11 shows the general distribution of the unconsolidated deposits in the county. Plate 2 shows the thickness distribution. Although as thick as 450 feet, the deposits differ widely in texture, composition, and degree of particle size sorting. The selected drillers' logs in Appendix 2 illustrate this variable composition.

As described by Shepps and others (1959), Tomikel and Shepps (1967), and White and others (1969), Pleistocene glaciation formed Lake Erie, the lake plain, the present stream-drainage system, inland lakes, swamps, and the various types of unconsolidated deposits—namely till, outwash, and beach sands.

Presque Isle and the mainland extension are known as a sand spit and are postglacial in age. These areas of fine-grained lake sediments were built up by the action of lake currents. The maximum thickness of the lake sediments is about 150 feet.

The topics of discussion for the unconsolidated deposits parallel the topics for the bedrock aquifer units—that is, description, water-bearing characteristics, water-quality characteristics, and evaluation of the aquifer for water supply.

In the discussion of water-bearing characteristics, the analyses for nondomestic wells (industrial and public-supply wells) are separate from the analyses of the domestic wells. The well yields and specific capacities for the domestic wells are significantly less than for the non-domestic wells constructed as part of subsurface

exploratory programs using sophisticated well-construction and completion techniques. The domestic-well owner generally does not use these techniques. The exploratory programs include test drilling and seismic refraction. The objective of these programs is to locate sites where the water-bearing units have the greatest transmissivity. The well-construction and completion techniques include (1) use of large-diameter casing; (2) selection of well screens and gravel packs to maximize infiltration surface; and (3) use of wells that are open to the full saturated thickness of the aquifer. Domestic-well owners generally drill wells to depths only necessary to supply household needs.

## THICKNESS OF DEPOSITS

The general location of outwash channels in northwestern Pennsylvania and the associated thickness of unconsolidated deposits were initially presented by Leggette (1936, Plate 4). Plate 2 shows the thickness of unconsolidated deposits in the county and supports Leggette's original concept of the buried drainage channels. The outwash deposits in these buried channels are very favorable locations for high-yield wells. The thickness data used in contouring Plate 2 were obtained from water-, oil-, and gas-well records, highway test borings, test wells, rock outcrops, and seismic exploration.

The seismic-refraction method was used to define the depth and shape of the major buried river valleys in Erie County. The cross sections resulting from the application of this method are shown on Plate 2. In Erie County, the density of geologic materials increases with depth, and there is a sharp density contrast between unconsolidated saturated deposits and the underlying bedrock, both necessary conditions for the successful application of this method (Eaton and Watkins, 1970).

For example, past seismic surveys north of Corry, near well Er-1536, showed the following seismic velocities of various materials: unsaturated soils, 2,000 ft/s (feet per second); saturated sand and gravel, 5,000 ft/s; dense glacial till,

6,000 ft/s; and bedrock, about 14,000 ft/s. The composition of subsurface material was determined from nearby drill holes in the evaluation of relative seismic velocities. The drill holes that have known material logs are termed drill-hole controls.

The following eight seismic lines, totaling about 30,000 feet, were run:

- (1) *North of Albion (Conneaut Creek valley and vicinity), 16,000 feet of line (sections A-A', B-B', and C-C' on Plate 2)*—The interpreted maximum thickness of 280 feet of unconsolidated deposits may represent the location of the preglacial buried channel for Conneaut Creek (Carll, 1880; Leverett, 1902); drill-hole control for the line was well Er-1481.
- (2) *South of Waterford (French Creek valley), 6,000 feet of line (sections F-F' and G-G' on Plate 2)*—The interpreted maximum thickness of unconsolidated deposits was 240 feet; drill-hole control consisted of wells Er-1041 and 1081.
- (3) *North of Lowville (valley of West Branch of French Creek), 4,500 feet of line (section H-H' on Plate 2)*—The interpreted maximum thickness of unconsolidated deposits was 190 feet; drill-hole control was well Er-808.
- (4) *West of Corry (valley of South Branch of French Creek), 3,000 feet of line (sections D-D' and E-E' on Plate 2)*—The interpreted maximum thickness of unconsolidated deposits was 480 feet; drill-hole control was well Er-971.

Drillers' logs for the numbered wells are in Appendix 2.

The seismic-refraction method and the associated equipment are explained in several reports and texts: Bonini and Hickok (1959), Eaton and Watkins (1970), Zohdy and others (1974), Birch (1976), and Dobrin (1976).

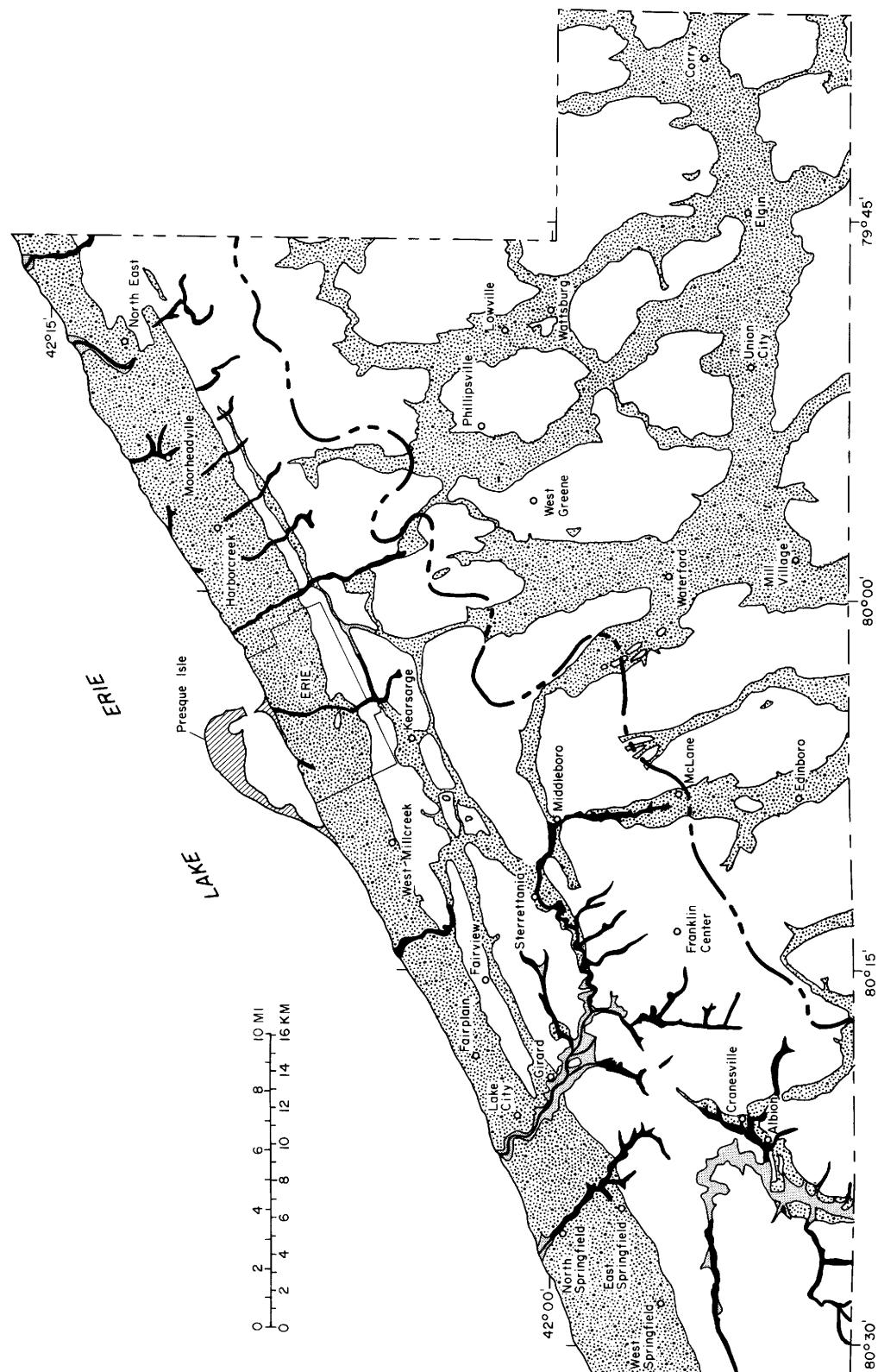
Another indirect method of thickness determination of subsurface deposits is the gravity method. This has also been used with some success in glaciated terrain and was applied in Erie County. In addition to the previous references cited, reports that contain an explanation of this

method include the following: Spangler and Libby (1968), Rankin and Lavin (1970), Ibrahim and Hinze (1972), Calkin and others (1974), and Carmichael and Henry (1977).

The gravity method is commonly used as a reconnaissance tool because it is comparatively quick and inexpensive, provided that equipment is rented or already available, and it does not disrupt the environment.

In conjunction with the geohydrologic investigation of Erie County, two college theses were also undertaken to demonstrate the applicability of the gravity method to the definition of the buried valleys. The unpublished theses were by J. A. Rhodes of Pennsylvania State University (1980) and M. A. Ruof of Allegheny College (1980).

## GLACIAL-TILL DEPOSITS


### Description

Glacial till, which covers the greater part of Erie County, was deposited as ground moraine beneath the main ice mass and as end moraines at the limits of the ice advances. Ground moraines are generally irregular in shape and have little topographic expression. End moraine remnants in the area display some sinuous linearity and a knobby surface.

Glacial till consists of a relatively unstratified, unsorted mixture of clay, silt, sand, gravel, and boulders. Till deposits, especially in the upland areas, almost always overlie either bedrock or the till of an earlier glacial-ice advance. The thickness of the till over most of the county is less than 50 feet; however, well depths in till have exceeded 200 feet.

### Water-Bearing Characteristics

As shown in Table 3, the median reported yield for 252 domestic wells was 5 gal/min, and for eight nondomestic wells was 11.5 gal/min. The range of reported yields for all wells was 0.1 to 50 gal/min. The median specific capacity for 125 domestic wells was 0.26 (gal/min)/ft. The median specific capacity for three nondomestic



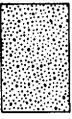

| MAP FEATURE                                                                          | CHARACTER AND DISTRIBUTION               | EXPLANATION                                                                                                                                                                            |                                                                                                           |
|--------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                                                      |                                          | WATER-BEARING CHARACTERISTICS                                                                                                                                                          | UNCONSOLIDATED DEPOSITS                                                                                   |
|   | Presque Isle                             | Fine-grained sand deposited by lake currents.                                                                                                                                          | A good aquifer (limited aquifer information).                                                             |
|   | Bedrock and alluvium                     | Bedrock (black) covered with recent stream alluvium (stipple pattern) of varying thickness.                                                                                            | A good aquifer where fractured and in hydraulic connection with the stream (limited aquifer information). |
|   | Undifferentiated unconsolidated deposits | Stratified deposits of sand, gravel, silt, and clay. Includes glacial-beach, glacial-outwash, kame, and lacustrine deposits, and recent stream alluvium in the French Creek watershed. | A good aquifer; yields range from 0.1 to 1,000 gal/min.                                                   |
|   | Ground moraine and end moraine           | Till consisting of relatively unstratified, unsorted mixture of silt, loam, and silty clay to clay.                                                                                    | A good aquifer; yields range from 0.1 to 50 gal/min, and the median is 5 gal/min.                         |
|  | Drainage divide                          |                                                                                                                                                                                        |                                                                                                           |

Figure 11. Map showing the distribution of unconsolidated deposits in Erie County (modified from Shepps and others, 1959, Plate 1).

wells was 1.5 (gal/min)/ft. The range of specific capacity for all wells was 0.009 to 30 (gal/min)/ft. The median well depth for 282 domestic wells was 55 feet, and the median depth for 13 nondomestic wells was 60 feet. The range of well depths for all wells was 17 to 220 feet.

### Water-Quality Characteristics

As shown in Table 6, the chloride concentration of groundwater from till ranged from 2.5 to 1,110 mg/L, and the median was 27 mg/L. The iron concentration ranged from 0.01 to 2.8 mg/L; the median was 0.19 mg/L. The hardness ranged from 5 to 570 mg/L as  $\text{CaCO}_3$  (soft to very hard), and the median was 120 mg/L (moderately hard). The specific conductance ranged from 251 to 3,840  $\mu\text{mho}/\text{cm}$ , and the median was 547  $\mu\text{mho}/\text{cm}$ . The estimated range for dissolved solids was about 150 to 2,300 mg/L, and the median was about 330 mg/L.

### Evaluation of the Aquifer

Glacial till is a marginally acceptable aquifer but is areally extensive. Considering well yields and water quality, till is the poorest aquifer of the unconsolidated deposits. As indicated in Table 8, chloride concentrations may locally exceed the 250 mg/L recommended limit in wells that are 50 to 141 feet deep. The quality of groundwater from till is generally comparable to that of the underlying bedrock aquifers. Locally, the groundwater in till may be of poorer quality.

## GLACIAL-OUTWASH DEPOSITS

### Description

Glacial outwash is a drift deposit that is transported and deposited by, or in, water. These deposits were carried from the glacial ice by meltwater streams originating below, within, and from the face and sides of the ice sheets of the past glacial epoch. These deposits are known as eskers, kames, kame terraces, kame moraines, valley trains, and lake-type sediments.

Glacial outwash consists of relatively well sorted, stratified deposits of sand, gravel, silt, and clay. The lake-type sediments (silt and clay) generally are found in the lake plain. The other outwash deposits occur in the major stream valleys, as illustrated by Leggette (1936, Plate 4). The composition of these deposits generally remains the same with depth and commonly extends to bedrock, but on the slopes of valley walls, isolated remnants of glacial till are locally present. The thickness of the outwash generally is more than 100 feet and is more than 400 feet in some areas in the French Creek buried valley (see Plate 2). The ponded outwash deposits in much of French Creek valley are uniform in grain size, but generally are so fine that well yields are very small or nonexistent.

### Water-Bearing Characteristics

As shown in Table 3, the median reported yield for 395 domestic wells was 15 gal/min, and for 39 nondomestic wells was 60 gal/min. The range of reported yields for all wells was 0.1 to 1,000 gal/min. The median specific capacity for 170 domestic wells was 1.2 (gal/min)/ft and for 20 nondomestic wells was 9 (gal/min)/ft. The range of specific capacity for all wells was 0.04 to 140 (gal/min)/ft. The median well depth for domestic wells was 62 feet and for nondomestic wells was 59 feet. The range of well depth for all wells was 13 to 405 feet.

### Water-Quality Characteristics

As shown in Table 6, the chloride concentration for groundwater ranged from 1.5 to 1,200 mg/L, and the median was 10 mg/L. The iron concentration ranged from 0.01 to 2.6 mg/L, and the median was 0.15 mg/L. The hardness ranged from 5 to 720 mg/L as  $\text{CaCO}_3$  (soft to very hard); the median was 140 mg/L (moderately hard). The specific conductance ranged from 146 to 4,800  $\mu\text{mho}/\text{cm}$ , and the median was 422  $\mu\text{mho}/\text{cm}$ . The estimated dissolved-solids concentration ranged from about 90 to 2,900 mg/L, and the median was about 250 mg/L.

## Evaluation of the Aquifer

Glacial-outwash deposits are a very good aquifer; however, they are restricted to the major stream valleys and near the shoreline of Lake Erie. Also, the lateral extent of the layers may be limited and unpredictable because of the nature of deposition, erosion, and redeposition related to the multiple advances and retreats of the glaciers.

The greatest saturated thicknesses of outwash deposits can be accurately located through an exploration program that consists of test drilling, supplemented with seismic refraction when possible. The seismic-refraction geophysical technique was demonstrated in four areas of Erie County—near Albion, Waterford, Lowville, and Corry. The seismic lines and thicknesses of deposits are shown on Plate 2. The well sites that have the greatest saturated thickness of sand and gravel will provide the best sustained well yield and the highest specific capacity. Also, those wells that are located near, and hydraulically connected to, streams will sustain the best long-term well discharge.

Groundwater quality in the outwash deposits is the best of any of the unconsolidated aquifers. However, as indicated in Table 8, chloride concentrations may locally exceed the 250 mg/L recommended limit in wells from 40 to 227 feet deep.

## GLACIAL-BEACH DEPOSITS

### Description

Overlying the outwash deposits of the lake plain are remnants of former beach ridges. These were deposited during the various higher stages of ancestral Lake Erie and are similar in texture and composition to modern lake bottoms and ridges. These beach deposits range in composition from sand to gravelly sand.

### Water-Bearing Characteristics

As shown in Table 3, the median reported well yield for 59 inventoried domestic wells was 7

gal/min and for 47 inventoried nondomestic wells was 75 gal/min. The range of reported yields for all wells was 0.1 to 850 gal/min. The median specific capacity for 24 domestic wells was 0.8 (gal/min)/ft, and the median for 20 nondomestic wells was 17 (gal/min)/ft. The range of specific capacity for all wells was 0.03 to 270 (gal/min)/ft. The median depth was 35 feet for 93 domestic wells and 32 feet for 55 nondomestic wells. The range of depths for all wells was 9 to 105 feet.

### Water-Quality Characteristics

As shown in Table 6, the iron concentration of groundwater ranged from 0.03 to 30 mg/L, and the median was 0.39 mg/L. The chloride concentration ranged from 4 to 1,000 mg/L; the median was 24 mg/L. The hardness ranged from 92 to 610 mg/L as  $\text{CaCO}_3$  (moderately hard to very hard), and the median was 220 mg/L (hard). The specific conductance ranged from 281 to 3,500  $\mu\text{mho}/\text{cm}$ , and the median was 460  $\mu\text{mho}/\text{cm}$ . The estimated dissolved-solids concentration ranged from about 170 to 2,100 mg/L, and the median was about 280 mg/L.

## Evaluation of the Aquifer

The glacial-beach deposits constitute the best aquifer in Erie County as measured by the median well yield and the median specific capacity for nondomestic wells. However, these deposits are restricted in areal extent. Careful well-site selection, assisted by a test-drilling program and a seismic exploratory program, can result in a better well than one sited in a bedrock aquifer.

Water quality is about the same as the water quality from the other glacial-drift aquifers. However, groundwater from the beach deposits is notably higher in dissolved iron; more than half of the results exceed the recommended limit of the U.S. Environmental Protection Agency of 0.3 mg/L. The groundwater is also characteristically hard. As indicated in Table 8, the chloride concentration may locally exceed the 250 mg/L recommended limit in wells from 17 to 73 feet deep.

## SOURCES OF ADDITIONAL INFORMATION

In addition to this report, other information on obtaining water for domestic supplies is available from governmental agencies.

The Bureau of Topographic and Geologic Survey, of the Pennsylvania Department of Environmental Resources, systematically maps, describes, and evaluates the geology, mineral resources, physiography, and groundwater resources of the Commonwealth, and the results of these investigations are published for use by the public. The bureau also has reports on recently drilled wells.

The Bureau of Water Quality Management, Pennsylvania Department of Environmental Resources, directs efforts to provide clean water for a variety of uses for the Commonwealth. The bureau, through regional offices, tests domestic water samples (for a fee) for contamination and provides advice on necessary corrective measures. The bureau also supplies information on public water supplies—that is, proper well construction requirements, biological reports, and chemical quality.

The Bureau of Community Environmental Control, Pennsylvania Department of Environmental Resources, administers programs relating to individual sewage and water systems.

The Water Resources Division of the U.S. Geological Survey has the principal responsibility within the federal government for providing water-resources information. The division obtains this information by investigating the occurrence, quantity, quality, distribution, and movement of surface water and groundwater, in cooperation with other federal and state governmental agencies. After collection, the data are analyzed and interpreted and the results are reported in various publications. The Pennsylvania District (P. O. Box 1107, Harrisburg, PA 17108) of the Water Resources Division is responsible for the federal effort in water-resources studies in the Commonwealth.

Basic information on groundwater quantity and quality may be obtained from the pamphlets by Baldwin and McGuinness (1963) and Swen-

son and Baldwin (1965), which are available from the Superintendent of Documents, Government Printing Office, Washington, D. C. 20402. Pennsylvania geological publications, such as *Ground Water in Pennsylvania* by Becher (1970), are available from the Pennsylvania Geological Survey, Department of Environmental Resources, P. O. Box 2357, Harrisburg, PA 17120.

## GUIDELINES FOR DEVELOPING DOMESTIC WATER SUPPLIES

The homeowner generally has little choice in the selection of a well site. Usually, wells are drilled close to the residence, and the only consideration given to well location is for the prevention of possible contamination. However, an understanding of the geologic and hydrologic information given in this report, combined with proper well construction, increases the chances of obtaining a successful well. The following facts should be kept in mind when planning a domestic well system.

1. The depth, yield, water quality, and type of construction of nearby wells commonly indicate what may be expected of a similar well.
2. The drilling and testing of wells during dry periods, when water levels and yields are lowest, permits the optimum setting of pumps. Also, water quality at that time commonly is at its worst.
3. In areas where well yields are marginal, as much reservoir capacity as possible is desirable, either within the well itself or in a reservoir tank at the surface. Underground storage commonly is increased by use of larger diameter well casing and by extending the borehole below the water-bearing zone. Each foot of water in a 6-inch-diameter well represents about 1.5 gallons. In the more commonly used 8-inch-diameter well casing, each foot of water equals about 2.5 gallons. The cost of drilling wells greater than 8 inches in diameter may be prohibitive in deep wells, and the

cost of well storage should be compared with that of ground-level storage.

4. Where water supplies must be developed in relatively thin, poorly permeable drift, consideration should be given to the construction of very large diameter dug or bored wells. Each foot of water in a well 3 feet in diameter represents about 53 gallons. Additionally, the greater circumference adds considerably to the area of entry for water moving into the well. Randall and others (1966) report that a dug well in glacial till can provide enough water for an average family of three. In the construction of dug wells extreme care must be taken to avoid pollution.
5. Where yields from the bedrock are small and water is to be obtained from drilled wells in drift, the well casing should be slotted at the bottom and seated loosely into the top of the rock. This allows inflow of the water, which commonly lies at the drift-bedrock contact.
6. The use of screened wells should be considered in areas where the drift is thick but only fine or very fine sand deposits can be tapped.

A good reference for general information on the construction and development of small well-supply systems is the U.S. Environmental Protection Agency (1975) publication *Manual of Individual Water Supply Systems*. This may be obtained for a nominal fee from the Superintendent of Documents, Washington, D. C. 20402.

## SUMMARY AND CONCLUSIONS

Potable groundwater resources in Erie County are available from unconsolidated deposits and from fractured bedrock aquifers. The aquifers that have the highest well yields and specific capacities are glacial-outwash and glacial-beach deposits. However, these deposits are limited in areal extent, being restricted to the major stream (buried) valleys and near the Lake Erie shoreline. The maximum saturated thickness in these

valleys can be effectively defined prior to final well-site selection by seismic-refraction and gravity techniques. The highest well yields from these deposits are about 1,000 gal/min.

Glacial-till and bedrock aquifers are widespread in the county. However, their ground-water availabilities are significantly less than the availabilities of the glacial-outwash and glacial-beach deposits. Low permeability is responsible for these low well yields, which are suitable only for domestic needs.

The yields of bedrock wells differ according to geologic unit. Yields are lowest in the Northeast and Girard Shales in the lake plain and highest in the coarser, stratigraphically higher units in the upland plateau. There is little difference in yield between domestic bedrock wells and those drilled for public or industrial supplies. There is little variation in yield on the basis of topographic location of the bedrock well sites. The medians of all bedrock wells in all types of topography range from 5 to 6 gal/min. The range of well yields for bedrock wells was 0.1 to 62 gal/min.

Most wells in the area tap more than one water-bearing zone, and the water is usually under artesian conditions. Medians of water levels in bedrock wells average about 10 feet below land surface; those in drift wells are about twice as deep. Water levels are generally deepest at hilltop sites and shallowest (commonly flowing) in wells drilled in the valleys of southward-flowing streams.

Potential sites for high-yielding wells include the kame deposits in the Corry-Union City area, the southward-flowing valleys tributary to French Creek, and the relatively thick northeast-southwest-trending outwash deposits south of Harborcreek. Some of these areas may contain extensive lenses of coarse, permeable drift capable of supplying the water needs of industry and small communities. Problems of low yield exist where the drift is thin or highly impermeable and overlies low-yielding bedrock containing saline water. In parts of the eastern lake plain and in much of the county west of the Albion-East Springfield areas, suitable supplies of potable water may be difficult to find.

The overall quality of groundwater in Erie County is generally satisfactory. However, the water is hard to very hard, and iron and chloride concentrations differ widely. On the basis of median values, only water from the glacial-beach deposits and the Girard Shale exceeds the maximum recommended limits of iron concentration. The major potential water-quality problem is chloride concentrations in excess of the recommended limit. The presence of connate brines is associated directly with topographic relief. Bedrock within the shallow groundwater-flow system has mostly been flushed of its original marine brines. Bedrock at or below the shallow groundwater-flow system, such as the shaly units in the lake plain, contains high chloride concentrations at relatively shallow depths (30 to 100 feet). Saline water is also found in deep impermeable drift below drainage, as in the buried preglacial valley of Conneaut Creek. Generally, salinity in the bedrock decreases upward in the stratigraphic column. The uppermost bedrock units yield water that is very low in chloride. Median chloride concentrations in water from glacial drift range from 10 to 27 mg/L, which approximates the chloride concentrations of surface water during base flow.

## REFERENCES

Baldwin, H. L., and McGuinness, C. L. (1963), *A primer on ground water*, U.S. Geological Survey, 26 p.

Becher, A. E. (1970), *Ground water in Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Educational Series 3, 42 p.

Berg, T. M., Edmunds, W. E., Geyer, A. R., and others, compilers (1980), *Geologic map of Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Map 1, scale 1:250,000, 3 sheets.

Birch, F. S. (1976), *A seismic ground-water survey in New Hampshire*, Ground Water, v. 14, no. 2, p. 94-100.

Bonini, W. E., and Hickok, E. A. (1959), *Seismic-refraction method in ground-water exploration*, American Institute of Mining, Metallurgical, and Petroleum Engineers Transactions 1958, v. 211, p. 485-488.

Calkin, P. E., Hodge, D. S., Champion, D. E., and others (1974), *Gravity delineation of the preglacial Cazenovia River valley, western New York State, U.S.A.*, Zeitschrift fuer Geomorphologie, v. 18, no. 3., p. 247-259.

Carll, J. F. (1880), *The geology of the oil regions of Warren, Venango, Clarion, and Butler Counties, Pennsylvania*, Geological Survey, 2nd ser., Report III, 482 p.

Carmichael, R. S., and Henry, G., Jr. (1977), *Gravity exploration for groundwater and bedrock topography in glaciated areas*, Geophysics, v. 42, no. 4, p. 850-859.

de Witt, Wallace, Jr. (1946), *The stratigraphic relationship of the Berea, Corry, and Cussewago sandstones in northeastern Ohio and northwestern Pennsylvania*, U.S. Geological Survey Oil and Gas Investigations Preliminary Chart 21.

\_\_\_\_\_, (1951), *Stratigraphy of the Berea Sandstone and associated rocks in northeastern Ohio and northwestern Pennsylvania*, Geological Society of America Bulletin, v. 62, p. 1347-1369.

Dobrin, M. B. (1976), *Introduction to geophysical prospecting*, 3rd ed., New York, McGraw-Hill, 630 p.

Driscoll, F. G. (1986), *Groundwater and wells*, St. Paul, Minn., Johnson Division, 1089 p.

Durfor, C. N., and Anderson, P. W. (1963), *Chemical quality of surface waters in Pennsylvania*, U.S. Geological Survey Water-Supply Paper 1619-W, 50 p.

Eaton, G. P., and Watkins, J. S. (1970), *The use of seismic refraction and gravity methods in hydrogeological investigations*, in Morley, L. W., ed., *Mining and groundwater geophysics, 1967*, Geological Survey of Canada Economic Geology Report 26, p. 544-568.

Ferris, J. G., Knowles, D. B., Brown, R. H., and Stallman, R. W. (1962), *Theory of aquifer tests*, U.S. Geological Survey Water-Supply Paper 1536-E, p. 69-174.

Fetter, C. W., Jr. (1980), *Applied hydrogeology*, Columbus, Ohio, Charles E. Merrill, 488 p.

Flippo, H. N., Jr. (1982), *Technical manual for estimating low-flow characteristics of Pennsylvania streams*, Pennsylvania Department of Environmental Resources, Office of Resources Management, Water Resources Bulletin 15, 86 p.

Harrison, S. S. (1983), *Evaluating system for ground-water contamination hazards due to gas-well drilling on the glaciated Appalachian Plateau*, Ground Water, v. 21, p. 689-700.

Heath, R. C. (1983), *Basic ground-water hydrology*, U.S. Geological Survey Water-Supply Paper 2220, 84 p.

Hem, J. D. (1985), *Study and interpretation of the chemical characteristics of natural water*, 3rd ed., U.S. Geological Survey Water-Supply Paper 2254, 264 p.

Ibrahim, Abdelwahid, and Hinze, W. J. (1972), *Mapping buried bedrock topography with gravity*, Ground Water, v. 10, no. 3, p. 18-23.

Johnson, A. I. (1967), *Specific yield—Compilation of specific yields for various materials*, U.S. Geological Survey Water-Supply Paper 1662-D, 74 p.

Koester, H. E., and Miller, D. R. (1980), *Ground-water quality and data on wells and springs in Pennsylvania—Volume 1, Ohio and St. Lawrence River basins*, U.S. Geological Survey Open-File Report 80-1119, 95 p.

Krieger, R. A., Hatchett, J. L., and Poole, J. L. (1957), *Preliminary survey of the saline-water resources of the United States*, U.S. Geological Survey Water-Supply Paper 1374, 172 p.

Leggette, R. M. (1936), *Ground water in northwestern Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 3, 215 p.

Leverett, Frank (1902), *Glacial formations and drainage features of the Erie and Ohio basins*, U.S. Geological Survey Monograph 41, 802 p.

Lohman, S. W. (1972), *Ground-water hydraulics*, U.S. Geological Survey Professional Paper 708, 70 p.

Mangan, J. W., Van Tuyl, D. W., and White, W. F., Jr. (1952), *Water resources of the Lake Erie shore region in Pennsylvania*, U.S. Geological Survey Circular 174, 36 p.

Page, L. V., and Shaw, L. C. (1977), *Low-flow characteristics of Pennsylvania streams*, Pennsylvania Department of Environmental Resources, Office of Resources Management, Water Resources Bulletin 12, 441 p.

Pepper, J. F., de Witt, Wallace, Jr., and Demarest, D. F. (1954), *Geology of the Bedford Shale and Berea Sandstone in the Appalachian basin*, U.S. Geological Survey Professional Paper 259, 111 p.

Poth, C. W. (1962), *The occurrence of brine in western Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Mineral Resource Report 47, 53 p.

Randall, A. D., Thomas, M. P., Thomas, C. E., Jr., and Baker, J. A. (1966), *Water resources inventory of Connecticut—Part 1, Quinebaug River basin*, Connecticut Water Resources Bulletin 8, 102 p.

Rankin, W. E., and Lavin, P. M. (1970), *Analysis of a reconnaissance gravity survey for drift-filled valleys in the Mercer quadrangle, Pennsylvania*, Journal of Hydrology, v. 10, p. 418-435.

Rhodes, J. A. (1980), *The depth interpretation of gravity data for drift-filled valleys in Erie County, Pennsylvania*, University Park, Pennsylvania State University, M. S. thesis, 67 p.

Ruof, M. A. (1980), *Mapping of a buried drainage basin in the quadrangles of Albion, East Springfield, Fairview, and Fairview, S. W., Erie County, Pennsylvania*, Meadville, Pa., Allegheny College, B. S. thesis, 13 p.

Schiner, G. R., and Gallaher, J. T. (1979), *Geology and groundwater resources of western Crawford County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Water Resource Report 46, 103 p.

Schiner, G. R., and Kimmel, G. E. (1972), *Mississippian stratigraphy of northwestern Pennsylvania*, U.S. Geological Survey Bulletin 1331-A, 27 p.

Shepps, V. C., White, G. W., Droste, J. B., and Sitler, R. F. (1959), *Glacial geology of northwestern Pennsylvania*, Pennsylvania Geological Survey, 4th ser., General Geology Report 32, 59 p.

Siddiqui, S. H., and Parizek, R. R. (1971), *Hydrogeologic factors influencing well yields in folded and faulted carbonate rocks in central Pennsylvania*, Water Resources Research, v. 7, no. 5, p. 1295-1312.

Spangler, D. P., and Libby, F. J. (1968), *Application of the gravity survey method to watershed hydrology*, Ground Water, v. 6, no. 6, p. 21-26.

Swenson, H. A., and Baldwin, H. L. (1965), *A primer on water quality*, U.S. Geological Survey, 27 p.

Tomikel, J. C., and Shepps, V. C. (1967), *The geography and geology of Erie County, Pennsylvania*, Pennsylvania Geological Survey, 4th ser., Information Circular 56, 64 p.

U.S. Department of Commerce, Bureau of the Census (1980), *Statistical abstract of the United States*, 1059 p.

U.S. Department of Commerce, Environmental Data Service (published annually, 1950-82), *Climatological data, Pennsylvania*.

U.S. Department of the Interior, Water and Power Resources Service (1981), *Ground water manual*, 2nd ed., U.S. Government Printing Office, 480 p.

U.S. Environmental Protection Agency (1975), *Manual of individual water supply systems*, Report EPA-430/9-74-007, 155 p.

\_\_\_\_\_(1976), *Quality criteria for water*, U.S. Government Printing Office, 256 p.

\_\_\_\_\_(1977), *National secondary drinking water regulations*, Federal Register, v. 42, no. 62, Thursday, March 31, 1977, Part I, p. 17143-17147.

\_\_\_\_\_(1983), *National interim primary drinking water regulations*, Title 40, Chapter I, Pt. 141, Code of Federal Regulations, p. 230-236.

U.S. Geological Survey (1971), *1970 water resources data for Pennsylvania—Part 1, Surface water records*, U.S. Geological Survey, Water Resources Division, Harrisburg, Pa., 332 p.

\_\_\_\_\_(1972a), *1970 water resources data for Pennsylvania—Part 2, Water quality records*, U.S. Geological Survey, Water Resources Division, Harrisburg, Pa., 293 p.

\_\_\_\_\_(1972b), *1971 water resources data for Pennsylvania—Part 1, Surface water records*, U.S. Geological Survey, Water Resources Division, Harrisburg, Pa., 308 p.

\_\_\_\_\_(1974), *1971 water resources data for Pennsylvania—Part 2, Water quality records*, U.S. Geological Survey, Water Resources Division, Harrisburg, Pa., 330 p.

\_\_\_\_\_(1975a), *1974 water resources data for Pennsylvania—Part 1, Surface water records*, U.S. Geological Survey, Water Resources Division, Harrisburg, Pa., 331 p.

\_\_\_\_\_(1975b), *1974 water resources data for Pennsylvania—Part 2, Water quality records*, U.S. Geological Survey, Water Resources Division, Harrisburg, Pa., 464 p.

\_\_\_\_\_(1976), *Water resources data for Pennsylvania—Water year 1975—Volume 3, Ohio River and St.*

*Lawrence River basins*, U.S. Geological Survey Water-Data Report PA-75-3, 196 p.

\_\_\_\_\_, (1977), *Water resources data for Pennsylvania—Water year 1976—Volume 3, Ohio River and St. Lawrence River basins*, U.S. Geological Survey Water-Data Report PA-76-3, 262 p.

\_\_\_\_\_, (1978), *Water resources data for Pennsylvania—Water year 1977—Volume 3, Ohio River and St. Lawrence River basins*, U.S. Geological Survey Water-Data Report PA-77-3, 272 p.

\_\_\_\_\_, (1979), *Water resources data for Pennsylvania [water year 1978]—Volume 3, Ohio River and St. Lawrence River basins*, U.S. Geological Survey Water-Data Report PA-78-3, 310 p.

White, G. W., Totten, S. M., and Gross, D. L. (1969), *Pleistocene stratigraphy of northwestern Pennsylvania*, Pennsylvania Geological Survey, 4th ser., General Geology Report 55, 88 p.

White, I. C. (1881), *The geology of Erie and Crawford Counties*, Pennsylvania Geological Survey, 2nd ser., Report Q4, 406 p.

Zohdy, A. A., Eaton, G. P., and Mabey, D. R. (1974), *Application of surface geophysics to ground-water investigations*, U.S. Geological Survey Techniques of Water-Resources Investigations, Book 2, Chapter D1, 116 p.

## FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

| <i>Multiply inch-pound units</i>        | <i>By</i>                                | <i>To obtain SI units</i>             |
|-----------------------------------------|------------------------------------------|---------------------------------------|
| inch (in.)                              | 2.540                                    | centimeter (cm)                       |
| foot (ft)                               | .3048                                    | meter (m)                             |
| mile (mi)                               | 1.609                                    | kilometer (km)                        |
| square foot ( $ft^2$ )                  | .09290                                   | square meter ( $m^2$ )                |
| square mile ( $mi^2$ )                  | 2.590                                    | square kilometer ( $km^2$ )           |
| foot per second (ft/s)                  | 3.281                                    | meter per second (m/s)                |
| foot per mile (ft/mi)                   | .1895                                    | meter per kilometer (m/km)            |
| cubic foot ( $ft^3$ )                   | .02832                                   | cubic meter ( $m^3$ )                 |
| gallon (gal)                            | 3.785                                    | liter (L)                             |
| gallon per minute (gal/min)             | .06309                                   | liter per second (L/s)                |
| gallon per day per foot<br>[(gal/d)/ft] | 12.42                                    | liter per day per meter<br>[(L/d)/m]  |
| million gallons per day<br>(Mgal/d)     | .0438                                    | cubic meter per second<br>( $m^3/s$ ) |
| grains per gallon (gr/gal)              | 17.12                                    | milligram per liter (mg/L)            |
| micromhos ( $\mu$ mh)                   | 1.0                                      | microsiemens ( $\mu$ S)               |
| degree Fahrenheit ( $^{\circ}$ F)       | $^{\circ}$ C = $5/9($ $^{\circ}$ F - 32) | degree Celsius ( $^{\circ}$ C)        |

## APPENDICES

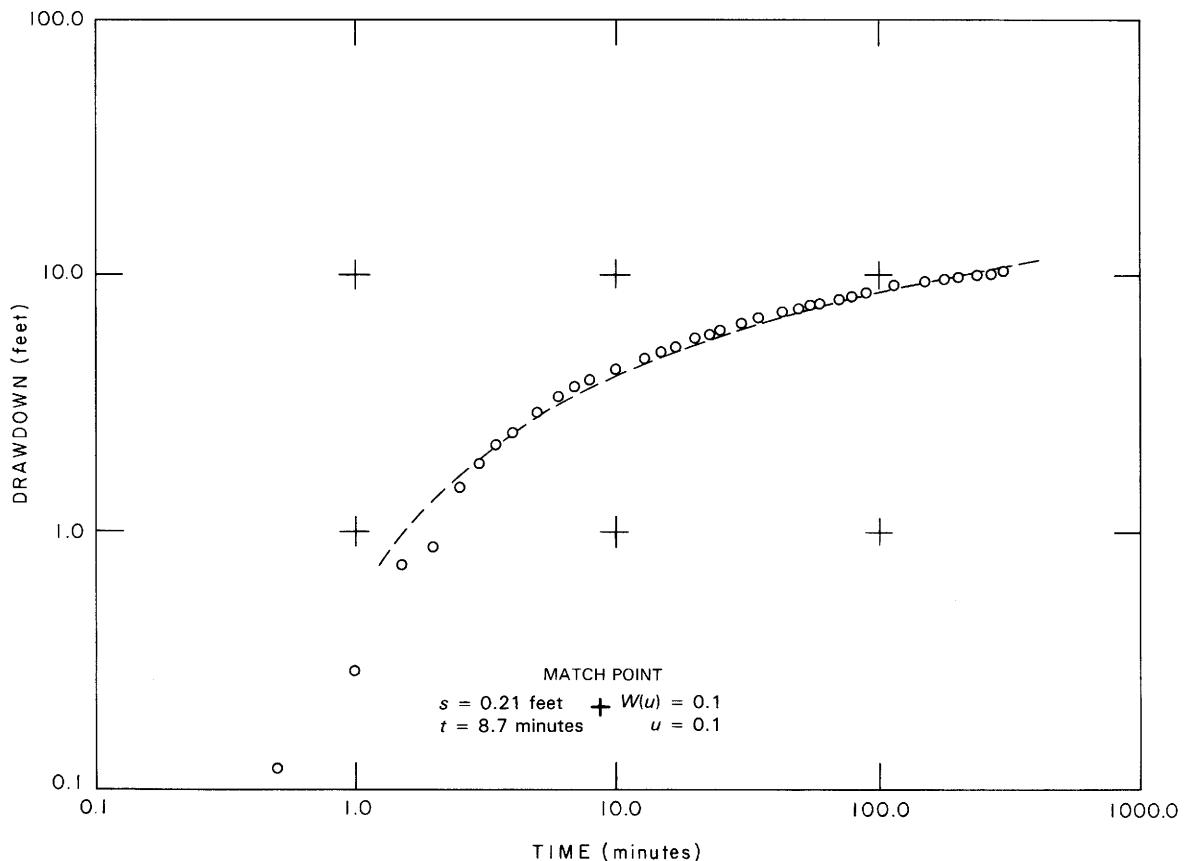
### APPENDIX 1. AQUIFER TEST IN SUMMIT TOWNSHIP

An aquifer test in Summit Township was made by personnel of the U.S. Geological Survey. Well Er-80 was pumped and water levels were measured in an observation well 24 feet to the east. Both wells tapped the saturated fractured shale of the Venango Formation. Well Er-80 was

pumped continuously for 5 hours at 21 gal/min (see table below). The water level in well Er-80 had declined from a static level of 6 feet below land surface to 37 feet below land surface, and only 1 foot of water remained above the pump intake. The base of the saturated fractured shale was at a depth of 44 feet, and the saturated thickness was 38 feet. The specific capacity for this test was 0.68 (gal/min)/ft. A plotting of the drawdown versus time is shown on the following graph. Using the Theis curve-fitting method,

#### *Aquifer Test in Summit Township*

Date: October 5, 1965


Location: Summit Township, Erie County  
Proposed State Police barracks

Hydrologist-in-Charge: Harold Meisler, U.S. Geological Survey, Water Resources Division

East well observation: 24 feet from pumping well

Pumping-well discharge:  $Q = 21$  gallons per minute

| Elapsed time (minutes) | Water level (feet) | Drawdown (feet) | Elapsed time (minutes) | Water level (feet) | Drawdown (feet) |
|------------------------|--------------------|-----------------|------------------------|--------------------|-----------------|
| 0                      | 6.86               | 0               | 30                     | 13.40              | 6.54            |
| .25                    | 6.87               | .01             | 35                     | 13.70              | 6.84            |
| .50                    | 6.98               | .12             | 43                     | 14.08              | 7.22            |
| 1                      | 7.15               | .29             | 50                     | 14.33              | 7.47            |
| 1.5                    | 7.60               | .74             | 55                     | 14.50              | 7.64            |
| 2                      | 7.98               | .88             | 60                     | 14.62              | 7.76            |
| 2.5                    | 8.35               | 1.49            | 71                     | 14.895             | 8.035           |
| 3                      | 8.70               | 1.84            | 80                     | 15.145             | 8.285           |
| 3.5                    | 9.03               | 2.17            | 90                     | 15.45              | 8.59            |
| 4                      | 9.31               | 2.45            | 115                    | 16.065             | 9.20            |
| 5                      | 9.81               | 2.95            | 120                    | 16.14              | 9.28            |
| 6                      | 10.19              | 3.33            | 140                    | 16.33              | 9.47            |
| 7                      | 10.51              | 3.65            | 150                    | 16.41              | 9.55            |
| 8                      | 10.76              | 3.90            | 165                    | 16.53              | 9.67            |
| 10                     | 11.17              | 4.31            | 180                    | 16.62              | 9.76            |
| 13                     | 11.64              | 4.78            | 202                    | 16.75              | 9.89            |
| 15                     | 11.93              | 5.07            | 211                    | 16.81              | 9.95            |
| 17                     | 12.18              | 5.32            | 240                    | 16.95              | 10.09           |
| 20                     | 12.52              | 5.66            | 273                    | 17.21              | 10.35           |
| 23                     | 12.85              | 5.99            | 300                    | 17.46              | 10.60           |
| 25                     | 13.04              | 6.18            |                        |                    |                 |



the hydraulic properties  $T$  and  $S$  are determined to be as follows:

$$T = 114.6 \frac{QW(u)}{s} \quad S = \frac{Tut}{2,693r^2}$$

$$T = 114.6 \times 21 \times \frac{0.1}{0.21} \quad S = \frac{1,146 \times 0.1 \times 8.7}{2,693 \times (24)^2}$$

$$= 1,146 \text{ [(gal/d)/ft]} \quad = 0.0006427$$

where

$s$  = drawdown in an observation well located at a given radius from the pumping well at a specific time since pumping began [in feet];

$Q$  = uniform discharge from the pumping well [in gallons per minute];

$T$  = transmissivity of the aquifer at the test site [in gallons per day per foot];

$r$  = distance from the pumping well to the observation well [in feet];

$S$  = coefficient of storage [no units];

$t$  = time since pumping began [in days];

$$u = \frac{r^2 S}{4 T t}; \text{ and}$$

$W(u)$  = well function of  $u$  (table of values can be found in Ferris and others, 1962; Lohman, 1972; Fetter, 1980; Heath, 1983; and Driscoll, 1986).

The hydraulic conductivity for the fractured shale at this site would be about 4 ft/d [from  $K = T/b = 1,100/(38 \times 7.48)$ ] (7.48 is the conversion factor for the number of gallons per cubic foot).

## APPENDIX 2. REPRESENTATIVE DRILLERS' LOGS

Well Er-80  
(Summit Township)

Latitude: 42°01'56"N  
 Longitude: 80°03'29"W  
 Aquifer: Venango Formation  
 Date drilled: August 20, 1965  
 Well depth: 53 feet  
 Land-surface altitude (LSD): 1,370 feet  
 Depth to water below LSD and date of measurement: 5 feet  
 (October 4, 1965)

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Clay, brown            | 8                   | 8               |
| Shale, black           | 5                   | 13              |
| Shale, black (broken)  | 31                  | 44              |
| Shale, black           | 9                   | 53              |

Well construction: Hole drilled with cable-tool rig; 6-inch casing to depth of 46 feet, 7 inches, and perforated from 12 feet, 7 inches to 46 feet, 7 inches.

Well Er-120  
(Union Township)

Latitude: 41°53'49"N  
 Longitude: 79°51'34"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: Unknown  
 Well depth: 160 feet  
 Land-surface altitude (LSD): 1,272 feet  
 Depth to water below LSD and date of measurement: Flowed in October 1928

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Clay and gravel        | 110                 | 110             |
| Shale                  | 50                  | 160             |

Well construction: Cased to 110 feet and then open hole.

Well Er-82  
(Washington Township)

Latitude: 41°56'07"N  
 Longitude: 80°04'46"W  
 Aquifer: Venango Formation  
 Date drilled: June 15, 1966  
 Well depth: 82 feet  
 Land-surface altitude (LSD): 1,419 feet  
 Depth to water below LSD and date of measurement: 17.0 feet  
 (June 21, 1966)

| Lithologic description                 | Thickness<br>(feet) | Depth<br>(feet) |
|----------------------------------------|---------------------|-----------------|
| Soil                                   | 1                   | 1               |
| Till, brown, with gravel and sand      | 12                  | 13              |
| Till, light-gray, with gravel and sand | 42                  | 55              |
| Shale, dark-gray                       | 27                  | 82              |

Well construction: Hole drilled with air-rotary rig; 6-inch steel casing to 56 feet and then open hole to depth of well.

Well Er-126  
(Union Township)

Latitude: 41°53'49"N  
 Longitude: 79°45'51"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: 1905  
 Well depth: 315 feet  
 Land-surface altitude (LSD): 1,355 feet  
 Depth to water below LSD and date of measurement: 5 feet  
 (1905)

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Gravel and "quicksand" | 310                 | 310             |
| Sand, gray             | 5                   | 315             |

Well construction: Hole drilled with cable-tool rig; cased the full depth of hole and open ended.

Well Er-137  
(City of Corry)

Latitude: 41°55'41"N  
 Longitude: 79°38'28"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: 1926  
 Well depth: 402 feet  
 Land-surface altitude (LSD): 1,410 feet  
 Depth to water below LSD and date of measurement: 5 feet  
 (1926)

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Soil                   | 2                   | 2               |
| Gravel                 | 20                  | 22              |
| "Quicksand"            | 80                  | 102             |
| Clay, blue             | 280                 | 382             |
| Hardpan, gravelly      | 10                  | 392             |
| Shale                  | 10                  | 402             |

Well construction: Hole drilled with cable-tool rig; cased to 392 feet and then open hole; cased with 6-inch casing.

Well Er-370  
(Girard Township)

Latitude: 42°00'37"N  
 Longitude: 80°17'51"W  
 Aquifer: Glacial-beach deposits  
 Date drilled: June 1972  
 Well depth: 61 feet  
 Land-surface altitude (LSD): 785 feet  
 Depth to water below LSD and date of measurement: 2.2 feet  
 (June 19, 1972)

| Lithologic description          | Thickness<br>(feet) | Depth<br>(feet) |
|---------------------------------|---------------------|-----------------|
| Clay and sand, blue, stratified | 10                  | 10              |
| Silt, gray, and sand, fine      | 15                  | 25              |
| Sand, gray, fine, and silt      | 15                  | 40              |
| Sand, medium, and gravel        | 20                  | 60              |
| Till, compact                   | 1                   | 61              |

Well construction: Hole drilled with air-rotary rig; 12-inch and 8-inch steel casing to 49 feet, 8 inches, and then 10 feet of screen.

Well Er-323  
(Springfield Township)

Latitude: 41°58'53"N  
 Longitude: 80°24'26"W  
 Aquifer: Glacial-beach deposits  
 Date drilled: August 17, 1970  
 Well depth: 96 feet  
 Land-surface altitude (LSD): 722 feet  
 Depth to water below LSD and date of measurement: 18 feet  
 (August 17, 1970)

| Lithologic description       | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------------|---------------------|-----------------|
| Sand, brown                  | 11                  | 11              |
| Clay and gravel, brown       | 2                   | 13              |
| Clay and gravel, blue        | 72                  | 85              |
| Sand, fine, silty            | .5                  | 85.5            |
| Clay, blue                   | 5.5                 | 91              |
| Sand, coarse, with silt      | 1                   | 92              |
| Clay and gravel, hard-packed | 8                   | 100             |
| Shale(?)                     | 1                   | 101             |

Well construction: Hole drilled with cable-tool rig; cased the full depth of hole with 8-inch steel casing and open ended.

Well Er-403  
(Fairview Township)

Latitude: 42°00'51"N  
 Longitude: 80°13'02"W  
 Aquifer: Glacial-till deposits  
 Date drilled: April 1974  
 Well depth: 152 feet  
 Land-surface altitude (LSD): 952 feet  
 Depth to water below LSD and date of measurement: 83 feet  
 (April 15, 1974)

| Lithologic description    | Thickness<br>(feet) | Depth<br>(feet) |
|---------------------------|---------------------|-----------------|
| Topsoil                   | 1                   | 1               |
| Clay                      | 49                  | 50              |
| Sand and gravel, cemented | 3                   | 53              |
| Clay, "gummy," blue       | 76                  | 129             |
| Shale                     | 33                  | 152             |

Well construction: Hole drilled with cable-tool rig; 8-inch steel casing to 130 feet and then open hole.

**Well Er-497**  
**(Millcreek Township)**

Latitude: 42°03'57"N  
 Longitude: 80°10'36"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: July 1969  
 Well depth: 44 feet  
 Land-surface altitude (LSD): 804 feet  
 Depth to water below LSD and date of measurement: 5 feet  
 (July 18, 1969)

| Lithologic description            | Thickness<br>(feet) | Depth<br>(feet) |
|-----------------------------------|---------------------|-----------------|
| Clay and gravel, brown            | 12                  | 12              |
| Clay and gravel, blue             | 6                   | 18              |
| Clay and gravel, coarse, and sand | 1                   | 19              |
| Clay and gravel, blue             | 17                  | 36              |
| Gravel, coarse, and sand          | 9                   | 45              |
| Clay, blue                        | 5                   | 50              |
| Shale                             | 5                   | 55              |

Well construction: Hole drilled with cable-tool rig; 10-inch steel casing to 39 feet and then 5 feet of screen.

**Well Er-711**  
**(Harborcreek Township)**

Latitude: 42°11'32"N  
 Longitude: 79°57'13"W  
 Aquifer: Glacial-till deposits  
 Date drilled: April 6, 1968  
 Well depth: 82 feet  
 Land-surface altitude (LSD): 660 feet  
 Depth to water below LSD and date of measurement: 50 feet  
 (April 1968)

| Lithologic description           | Thickness<br>(feet) | Depth<br>(feet) |
|----------------------------------|---------------------|-----------------|
| Clay, brown, sandy               | 14                  | 14              |
| Clay and gravel, blue            | 10                  | 24              |
| Sand, blue, fine (water-bearing) | 1                   | 25              |
| Clay and gravel, hard-packed     | 43                  | 68              |
| Shale, blue                      | 14                  | 82              |

Well construction: Hole drilled with cable-tool rig; 8-inch steel casing to 72 feet and then open hole.

**Well Er-556**  
**(Fairview Township)**

Latitude: 42°04'06"N  
 Longitude: 80°13'38"W  
 Aquifer: Glacial-beach deposits  
 Date drilled: January 15, 1969  
 Well depth: 73 feet  
 Land-surface altitude (LSD): 690 feet  
 Depth to water below LSD and date of measurement: 4 feet  
 (January 15, 1969)

| Lithologic description               | Thickness<br>(feet) | Depth<br>(feet) |
|--------------------------------------|---------------------|-----------------|
| Gravel and sand, brown               | 28                  | 28              |
| Clay and gravel, blue                | 17                  | 45              |
| Sand, fine, and silt (water-bearing) | 3                   | 48              |
| Clay and gravel, blue                | 5                   | 53              |
| Shale, blue                          | 20                  | 73              |

Well construction: No casing.

**Well Er-808**  
**(Venango Township)**

Latitude: 42°04'15"N  
 Longitude: 79°50'31"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: July 20, 1964  
 Well depth: 100 feet  
 Land-surface altitude (LSD): 1,320 feet  
 Depth to water below LSD and date of measurement: 3 feet  
 (July 20, 1964)

| Lithologic description                  | Thickness<br>(feet) | Depth<br>(feet) |
|-----------------------------------------|---------------------|-----------------|
| Clay and gravel, yellow                 | 12                  | 12              |
| Gravel and sand, brown (water-bearing)  | 4                   | 16              |
| Clay, blue                              | 74                  | 90              |
| Sand, blue, fine                        | 6                   | 96              |
| Gravel and sand, coarse (water-bearing) | 4                   | 100             |

Well construction: Hole drilled with cable-tool rig; cased to 95 feet and then 4 feet of perforated casing; cased with 6-inch casing.

**Well Er-947**  
(Millcreek Township)

Latitude: 42°05'17"N  
 Longitude: 80°02'01"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: March 21, 1963  
 Well depth: 119 feet  
 Land-surface altitude (LSD): 1,089 feet  
 Depth to water below LSD and date of measurement: 90 feet  
 (March 21, 1963)

| Lithologic description           | Thickness<br>(feet) | Depth<br>(feet) |
|----------------------------------|---------------------|-----------------|
| Clay and gravel, brown           | 19                  | 19              |
| Clay and gravel, blue            | 9                   | 28              |
| Sand and gravel, brown, cemented | 18                  | 46              |
| "Quicksand"                      | 26                  | 72              |
| Clay and gravel, blue            | 45                  | 117             |
| Gravel, blue, hard               | 1                   | 118             |
| Shale, blue                      | 1                   | 119             |

Well construction: Hole drilled with cable-tool rig; 6-inch steel casing to 115 feet and then 4 feet of perforated casing.

**Well Er-1041**  
(Le Boeuf Township)

Latitude: 41°54'29"N  
 Longitude: 79°55'05"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: October 30, 1969  
 Well depth: 70 feet  
 Land-surface altitude (LSD): 1,214 feet  
 Depth to water below LSD and date of measurement: 35 feet  
 (October 30, 1969)

| Lithologic description    | Thickness<br>(feet) | Depth<br>(feet) |
|---------------------------|---------------------|-----------------|
| Gravel, brown, coarse     | 12                  | 12              |
| Clay and gravel, brown    | 3                   | 15              |
| Clay and gravel, blue     | 15                  | 30              |
| Gravel and clay, hard     | 18                  | 48              |
| Sand, fine                | 1                   | 49              |
| Sand and gravel, cemented | 21                  | 70              |

Well construction: Hole drilled with cable-tool rig; 8-inch steel casing down to 70 feet and then open end.

**Well Er-971**  
(Concord Township)

Latitude: 41°55'08"N  
 Longitude: 79°40'11"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: March 5, 1971  
 Well depth: 220 feet  
 Land-surface altitude (LSD): 1,392 feet  
 Depth to water below LSD and date of measurement: 0 feet  
 (March 1971)

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Clay and gravel        | 10                  | 10              |
| Clay, blue             | 30                  | 40              |
| Clay and gravel        | 20                  | 60              |
| Sand                   | 100                 | 160             |
| Clay and gravel        | 20                  | 180             |
| "Quicksand"            | 10                  | 190             |
| Clay and gravel        | 24                  | 214             |
| Rock                   | 6                   | 220             |

Well construction: Hole drilled with cable-tool rig; 6-inch steel casing to 214 feet and then open hole.

**Well Er-1081**  
(Le Boeuf Township)

Latitude: 41°54'33"N  
 Longitude: 79°58'40"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: October 1966  
 Well depth: 34 feet  
 Land-surface altitude (LSD): 1,175 feet  
 Depth to water below LSD and date of measurement: 10 feet  
 (October 1966)

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Clay and gravel, brown | 10                  | 10              |
| Gravel, brown          | 2                   | 12              |
| Clay and gravel, blue  | 22                  | 34              |

Well construction: Hole drilled with cable-tool rig; 8-inch steel casing to 34 feet and then open end.

**Well Er-1172**  
**(McKean Township)**

Latitude: 41°59'03"N  
 Longitude: 80°03'55"W  
 Aquifer: Venango Formation  
 Date drilled: May 1975  
 Well depth: 160 feet  
 Land-surface altitude (LSD): 1,325 feet  
 Depth to water below LSD and date of measurement: 62 feet  
 (May 2, 1975)

| Lithologic description    | Thickness<br>(feet) | Depth<br>(feet) |
|---------------------------|---------------------|-----------------|
| Clay and gravel, brown    | 8                   | 8               |
| Gravel and clay, blue     | 7                   | 15              |
| Clay, blue                | 8                   | 23              |
| Gravel, blue              | 7                   | 30              |
| Sand, blue                | 1                   | 31              |
| Clay and gravel, blue     | 94                  | 125             |
| Sand and gravel, cemented | 1                   | 126             |
| Shale, rock               | 34                  | 160             |

Well construction: Hole drilled with cable-tool rig; 8-inch casing down to 130 feet and then open hole.

**Well Er-1331**  
**(Greene Township)**

Latitude: 42°04'27"N  
 Longitude: 79°58'06"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: November 1977  
 Well depth: 108 feet  
 Land-surface altitude (LSD): 1,210 feet  
 Depth to water below LSD and date of measurement: 2 feet above LSD (November 1977)

| Lithologic description       | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------------|---------------------|-----------------|
| Clay and gravel, brown       | 12                  | 12              |
| Gravel and clay, blue        | 12                  | 24              |
| Sand and gravel, blue        | 12                  | 36              |
| Clay, gravel, and sand, pink | 8                   | 44              |
| Sand and gravel, blue        | 5                   | 49              |
| Gravel and clay, blue        | 2                   | 51              |
| Clay, blue                   | 24                  | 75              |
| Clay and gravel, blue        | 17                  | 92              |
| Shale                        | 16                  | 108             |

Well construction: Hole drilled with cable-tool rig; 8-inch casing down to 94 feet and then open hole.

**Well Er-1285**  
**(McKean Township)**

Latitude: 42°01'15"N  
 Longitude: 80°11'10"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: April 4, 1977  
 Well depth: 145 feet  
 Land-surface altitude (LSD): 1,100 feet  
 Depth to water below LSD and date of measurement: 78 feet  
 (April 1, 1977)

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Clay, brown            | 8                   | 8               |
| Clay and gravel        | 67                  | 75              |
| Sand                   | 1                   | 76              |
| Clay and cobbles, blue | 58                  | 134             |
| Sand and gravel        | 3                   | 137             |
| Shale                  | 8                   | 145             |

Well construction: Hole drilled with cable-tool rig; 8-inch casing down to 140 feet and then open hole.

**Well Er-1423**  
**(Waterford Township)**

Latitude: 41°56'03"N  
 Longitude: 79°58'46"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: August 13, 1956  
 Well depth: 227 feet  
 Land-surface altitude (LSD): 1,180 feet  
 Depth to water below LSD and date of measurement: 80 feet  
 (no date)

| Lithologic description                     | Thickness<br>(feet) | Depth<br>(feet) |
|--------------------------------------------|---------------------|-----------------|
| Sand and gravel, and clay and gravel, blue | 20                  | 20              |
| "Quicksand"                                | 70                  | 90              |
| Clay and gravel, blue, sandy               | 35                  | 125             |
| Sand and gravel, cemented                  | 10                  | 135             |
| Clay and gravel, blue                      | 20                  | 155             |
| Shale, black(?)                            | 72                  | 227             |

Well construction: Hole drilled with cable-tool rig; 7-inch casing down to 155 feet and then open hole.

**Well Er-1481**  
(Conneaut Township)

Latitude: 41°56'24"N  
 Longitude: 80°21'49"W  
 Aquifer: Glacial-till deposits  
 Date drilled: October 5, 1978  
 Well depth: 141 feet  
 Land-surface altitude (LSD): 850 feet  
 Depth to water below LSD and date of measurement: 35 feet  
 (October 5, 1978)

| Lithologic description | Thickness<br>(feet) | Depth<br>(feet) |
|------------------------|---------------------|-----------------|
| Clay, blue             | 89                  | 89              |
| Sand, brown, very fine | 2                   | 91              |
| Clay, gray             | 13                  | 104             |
| Clay, blue, gray       | 33                  | 137             |
| Shale                  | 3                   | 140             |

Well construction: Hole drilled with cable-tool rig; 8-inch steel casing down to 111 feet and then open hole.

**Well Er-1536**  
(Wayne Township)

Latitude: 41°56'23"N  
 Longitude: 79°38'28"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: August 1974  
 Well depth: 209 feet  
 Land-surface altitude (LSD): 1,415 feet  
 Depth to water below LSD and date of measurement: No data

| Lithologic description         | Thickness<br>(feet) | Depth<br>(feet) |
|--------------------------------|---------------------|-----------------|
| Topsoil                        | 2                   | 2               |
| Gravel                         | 2                   | 4               |
| Sand and gravel                | 4                   | 8               |
| Clay and gravel, brown         | 7                   | 15              |
| Clay, brown; some gravel, fine | 10                  | 25              |
| Gravel, fine                   | 4                   | 29              |
| Clay and gravel, gray          | 8                   | 37              |
| Clay, blue                     | 162                 | 199             |
| Shale, gray, sandy             | 10                  | 209             |

Well construction: Hole drilled with air-rotary rig; 8-inch steel casing down to 200 feet and then open hole.

**Well Er-1484**  
(Conneaut Township)

Latitude: 41°54'18"N  
 Longitude: 80°21'37"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: August 1960  
 Well depth: 111 feet  
 Land-surface altitude (LSD): 892 feet  
 Depth to water below LSD and date of measurement: No data

| Lithologic description         | Thickness<br>(feet) | Depth<br>(feet) |
|--------------------------------|---------------------|-----------------|
| Clay and gravel, yellow, mixed | 15                  | 15              |
| Clay and gravel, blue, mixed   | 7                   | 22              |
| Gravel, coarse                 | 2                   | 24              |
| Clay and gravel, blue          | 1                   | 25              |
| Gravel, coarse                 | 2                   | 27              |
| Clay, blue                     | 22                  | 49              |
| Gravel, coarse                 | 4                   | 53              |
| Clay, blue                     | 1                   | 54              |
| Sand, blue, fine               | 20                  | 74              |
| Clay, blue                     | 36                  | 110             |
| Shale                          | 1                   | 111             |

Well construction: Hole drilled with cable-tool rig; steel casing down to 110 feet and then open end.

**Well Er-1648**  
(Concord Township)

Latitude: 41°55'04"N  
 Longitude: 79°43'29"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: June 26, 1964  
 Well depth: 138 feet  
 Land-surface altitude (LSD): 1,404 feet  
 Depth to water below LSD and date of measurement: Flowed on June 26, 1964

| Lithologic description                | Thickness<br>(feet) | Depth<br>(feet) |
|---------------------------------------|---------------------|-----------------|
| Clay and gravel, yellow               | 12                  | 12              |
| "Quicksand," brown                    | 14                  | 26              |
| Clay, blue                            | 10                  | 36              |
| "Quicksand"                           | 14                  | 50              |
| Clay, blue                            | 40                  | 90              |
| Sand, fine, with trace gravel, coarse | 2                   | 92              |
| Clay, blue                            | 38                  | 130             |
| Gravel                                | 2                   | 132             |
| Clay, blue                            | 4                   | 136             |
| Shale, blue                           | 2                   | 138             |

Well construction: Hole drilled with cable-tool rig; 6-inch steel casing down to 134 feet and then 4 feet of perforated casing.

**Well Er-1661**  
(Wayne Township)

Latitude: 41°56'32"N  
 Longitude: 79°38'39"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: August 1974  
 Well depth: 71 feet  
 Land-surface altitude (LSD): 1,420 feet  
 Depth to water below LSD and date of measurement: 16.3 feet  
 (August 1974)

| Lithologic description           | Thickness<br>(feet) | Depth<br>(feet) |
|----------------------------------|---------------------|-----------------|
| Gravel, fine                     | 22                  | 22              |
| Sand and gravel                  | 15                  | 37              |
| Sand and gravel; some clay       | 15                  | 52              |
| Sand and gravel; some silty clay | 19                  | 71              |

Well construction: Hole drilled with air-rotary rig; 12-inch steel casing down to 59 feet and then screen to bottom of hole.

**Well Er-1680**  
(Wayne Township)

Latitude: 41°55'50"N  
 Longitude: 79°40'10"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: February 1968  
 Well depth: 405 feet  
 Land-surface altitude (LSD): 1,420 feet  
 Depth to water below LSD and date of measurement: 12.2 feet  
 (February 1968)

| Lithologic description      | Thickness<br>(feet) | Depth<br>(feet) |
|-----------------------------|---------------------|-----------------|
| Topsoil                     | 1                   | 1               |
| Clay and gravel             | 6                   | 7               |
| Gravel and sand             | 8                   | 15              |
| Clay and gravel             | 13                  | 28              |
| Gravel with streaks of clay | 16                  | 44              |
| Clay and gravel             | 12                  | 56              |
| Clay                        | 4                   | 60              |
| Sand                        | 11                  | 71              |
| Clay                        | 4                   | 75              |
| "Quicksand"                 | 15                  | 90              |
| Clay and gravel             | 15                  | 105             |
| Clay                        | 293                 | 398             |
| Clay and gravel             | 4                   | 402             |
| Rock                        | 3                   | 405             |

Well construction: Hole drilled with air-rotary rig; 8-inch steel casing.

**Well Er-1719**  
(North East Township)

Latitude: 42°12'51"N  
 Longitude: 79°46'19"W  
 Aquifer: Girard Shale  
 Date drilled: June 21, 1968  
 Well depth: 95 feet  
 Land-surface altitude (LSD): 1,108 feet  
 Depth to water below LSD and date of measurement: 34 feet  
 (June 21, 1968)

| Lithologic description   | Thickness<br>(feet) | Depth<br>(feet) |
|--------------------------|---------------------|-----------------|
| Clay and gravel, yellow  | 8                   | 8               |
| Gravel, coarse, and clay | 9                   | 17              |
| Clay and gravel, blue    | 6                   | 23              |
| Clay and gravel, brown   | 5                   | 28              |
| Clay and gravel, blue    | 1                   | 29              |
| Shale, rock, blue        | 66                  | 95              |

Well construction: Hole drilled with cable-tool rig; 8-inch steel casing down to 32 feet and then open hole.

**Well Er-1723**  
(Amity Township)

Latitude: 41°59'02"N  
 Longitude: 79°50'14"W  
 Aquifer: Glacial-outwash deposits  
 Date drilled: July 1974  
 Well depth: 85 feet  
 Land-surface altitude (LSD): 1,284 feet  
 Depth to water below LSD and date of measurement: No data

| Lithologic description    | Thickness<br>(feet) | Depth<br>(feet) |
|---------------------------|---------------------|-----------------|
| Gravel, brown             | 11                  | 11              |
| Clay, brown-gray          | 17                  | 28              |
| Sand and gravel, cemented | 13                  | 41              |
| Clay and gravel, blue     | 13                  | 54              |
| Clay and gravel, brown    | 1                   | 55              |
| Clay and gravel, blue     | 1                   | 56              |
| Clay, blue                | 13                  | 69              |
| Hardpan                   | 4                   | 73              |
| Clay, blue                | 9                   | 82              |
| Shale, blue               | 3                   | 85              |

Well construction: Hole drilled with cable-tool rig; 8-inch steel casing down to 52 feet and then open hole.



Table 9. Field Analyses of Groundwater

Aquifer: Qb, glacial-beach deposits; Qo, glacial-outwash deposits; Qt, glacial-till deposits; MDbr, Berea Sandstone through Riceville Formation, undivided; MDcr, Corry Sandstone through Riceville Formation, undivided; MDbv, Berea Sandstone through Venango Formation, undivided; Dv, Venango Formation; Dch, Chadakoin Formation; Dg, Girard Shale; Dne, Northeast Shale.

| Well number | Aquifer | Date of analysis or comment | Iron (mg/L) | Chloride (mg/L) | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | Remarks (*indicates driller's comments) |
|-------------|---------|-----------------------------|-------------|-----------------|---------------------------------------|----------------------------------------|-----------------------------------------|
| Er- 45      | Qb      | 6/22/79                     | 0.28        | 20              | 190                                   | 460                                    | ---                                     |
| 67          | MDbv    | 7/26/28                     | ---         | ---             | ---                                   | ---                                    | *Salty; gas.                            |
| 68          | MDbv    | 6/11/29                     | ---         | ---             | ---                                   | ---                                    | *Very salty.                            |
| 69          | MDbv    | 6/11/29                     | ---         | ---             | ---                                   | ---                                    | *Very salty.                            |
| 71          | Qo      | 7/26/28                     | ---         | ---             | ---                                   | ---                                    | *Gas from gravel; salty.                |
| 72          | Dch     | 7/26/28                     | ---         | ---             | ---                                   | ---                                    | *Salty.                                 |
| 91          | Qo      | 9/13/78                     | .01         | 32              | 120                                   | 420                                    | ---                                     |
| 99          | Qo      | 6/30/28                     | ---         | ---             | ---                                   | ---                                    | *Slightly salty; sulfur odor.           |
| 103         | Dne     | 7/ 2/28                     | ---         | ---             | ---                                   | ---                                    | *Slightly salty; gas.                   |
| 104         | Dne     | 7/ 2/28                     | ---         | ---             | ---                                   | ---                                    | *Salty; gas.                            |
| 106         | Dne     | 7/ 2/28                     | ---         | ---             | ---                                   | ---                                    | *Salty.                                 |
| 107         | Qt      | 7/ 2/28                     | ---         | ---             | ---                                   | ---                                    | *Some gas.                              |
| 109         | Dne     | 7/ 2/28                     | ---         | ---             | ---                                   | ---                                    | *Gas.                                   |
| 114         | Qo      | 9/13/78                     | .01         | 2               | 75                                    | 220                                    | ---                                     |
| 115         | Qo      | 7/ 3/28                     | ---         | ---             | ---                                   | ---                                    | *Sulfur odor.                           |
| 128         | Qo      | 6/20/79                     | .09         | 50              | 30                                    | 560                                    | ---                                     |
| 148         | MDbv    | 7/12/79                     | .05         | 120             | 35                                    | 1,100                                  | ---                                     |
| 164         | Qt      | 7/16/79                     | .44         | 22              | 220                                   | 530                                    | ---                                     |
| 185         | Dch     | 6/22/79                     | .75         | 5               | 90                                    | 330                                    | ---                                     |
| 189         | Qo      | 5/10/71                     | ---         | ---             | ---                                   | ---                                    | *Very hard; very high iron.             |
| 210         | Dg      | 7/28/70                     | ---         | ---             | ---                                   | ---                                    | *Gas; sulfur odor.                      |
| 218         | Qo      | 12/ 7/66                    | ---         | ---             | ---                                   | ---                                    | *Gas at 61 feet.                        |
| 241         | Qo      | 7/16/79                     | .05         | 28              | 190                                   | 640                                    | ---                                     |
| 272         | Qo      | 7/ 8/64                     | ---         | ---             | ---                                   | ---                                    | *Gas at bottom.                         |
| 289         | Dch     | 6/ 6/79                     | .11         | 30              | 160                                   | 430                                    | ---                                     |
| 292         | Qo      | 6/13/79                     | .12         | 10              | 130                                   | 500                                    | ---                                     |
| 296         | Qo      | 7/ 9/75                     | ---         | ---             | ---                                   | ---                                    | *Strong sulfur odor.                    |
| 310         | Qt      | 7/ 6/79                     | .28         | 32              | 160                                   | 640                                    | ---                                     |
| 314         | Qo      | 7/ 6/79                     | .05         | 8               | 260                                   | 610                                    | ---                                     |
| 317         | Qo      | 9/20/68                     | ---         | ---             | ---                                   | ---                                    | *Gas at 80 feet.                        |
| 332         | Qt      | 7/ 6/79                     | .59         | 190             | 310                                   | 1,050                                  | ---                                     |
| 339         | Dch     | 9/15/70                     | ---         | ---             | ---                                   | ---                                    | *Iron bacteria.                         |
| 344         | Dch     | 10/19/73                    | ---         | ---             | ---                                   | ---                                    | *Very high iron.                        |
| 345         | Dch     | 7/ 6/79                     | .039        | 22              | 100                                   | 310                                    | ---                                     |
| 347         | Qt      | 7/ 6/79                     | .08         | 28              | 70                                    | 300                                    | ---                                     |
| 365         | Qt      | 6/28/75                     | ---         | ---             | ---                                   | ---                                    | *Gas at 74 feet.                        |
| 375         | Qb      | 7/ 6/79                     | .08         | 15              | 160                                   | 330                                    | ---                                     |
| 377         | Qb      | 8/ 1/72                     | ---         | ---             | ---                                   | ---                                    | *Gas and salt water at 50 feet.         |
| 378         | Qb      | 7/ 6/79                     | .20         | 42              | 180                                   | 550                                    | ---                                     |
| 404         | Qt      | 7/ 6/79                     | .14         | 2               | 20                                    | 390                                    | ---                                     |
| 414         | Dch     | 7/ 6/79                     | .17         | 450             | 140                                   | 2,400                                  | ---                                     |
| 427         | Qo      | 7/ 6/79                     | 2.6         | 20              | 150                                   | 580                                    | ---                                     |
| 429         | Qo      | 7/ 6/79                     | .09         | 15              | 5                                     | 500                                    | ---                                     |
| 455         | Qo      | 7/ 6/79                     | .03         | 60              | 200                                   | 720                                    | ---                                     |
| 503         | Qo      | 7/ 6/79                     | .20         | 550             | 720                                   | 2,700                                  | ---                                     |
| 520         | Qo      | 12/ 8/67                    | ---         | ---             | ---                                   | ---                                    | *Sulfur odor.                           |
| 536         | Qo      | 7/ 6/79                     | .28         | 20              | 190                                   | 460                                    | ---                                     |
| 555         | Qb      | 4/ 6/72                     | ---         | ---             | ---                                   | ---                                    | *Very hard.                             |
| 556         | Qb      | 7/ 6/79                     | .05         | 1,000           | 310                                   | 3,500                                  | Well abandoned.                         |
| 562         | Dv      | 7/ 6/79                     | .32         | 250             | 25                                    | 1,500                                  | ---                                     |
| 591         | MDbv    | 7/ 6/79                     | .15         | 22              | 125                                   | 490                                    | ---                                     |
| 596         | Qo      | 7/ 6/79                     | .60         | 18              | 105                                   | 430                                    | ---                                     |
| 608         | MDbv    | 6/23/76                     | ---         | ---             | ---                                   | ---                                    | *Gassy, oily water.                     |
| 609         | MDbv    | 11/30/68                    | ---         | ---             | ---                                   | ---                                    | *Gas and sulfur odor at 70 feet.        |
| 620         | MDcr    | 6/28/79                     | 1.25        | 5               | 60                                    | 190                                    | ---                                     |
| 622         | MDcr    | 6/28/79                     | .05         | 5               | 110                                   | 305                                    | ---                                     |
| 624         | MDcr    | 6/28/79                     | .05         | 20              | 115                                   | 320                                    | ---                                     |
| 637         | Dv      | 6/25/79                     | .04         | 5               | 105                                   | 280                                    | ---                                     |

Table 9. (Continued)

| Well number | Aquifer | Date of analysis or comment | Iron (mg/L) | Chloride (mg/L) | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | Remarks (*indicates driller's comments) |
|-------------|---------|-----------------------------|-------------|-----------------|---------------------------------------|----------------------------------------|-----------------------------------------|
| Er- 643     | Qt      | 6/25/79                     | .08         | 200             | 90                                    | 1,200                                  | ---                                     |
| 649         | Dch     | 10/12/73                    | ---         | ---             | ---                                   | ---                                    | *Salty.                                 |
| 650         | Dch     | 6/25/79                     | .05         | 15              | 170                                   | 410                                    | ---                                     |
| 654         | Dch     | 6/25/79                     | .04         | 25              | 75                                    | 330                                    | ---                                     |
| 658         | Dch     | 6/25/79                     | .02         | 110             | 310                                   | 840                                    | ---                                     |
| 660         | Qt      | 6/25/79                     | .90         | 72              | 85                                    | 590                                    | ---                                     |
| 663         | Qt      | 6/25/79                     | .08         | 35              | 60                                    | 525                                    | ---                                     |
| 664         | Dg      | 6/25/79                     | 1.19        | 12              | 160                                   | 500                                    | ---                                     |
| 666         | Dne     | 6/25/79                     | .03         | 25              | 150                                   | 400                                    | ---                                     |
| 668         | Dne     | 6/18/73                     | --          | ---             | ---                                   | ---                                    | *Gas at 60 feet.                        |
| 675         | Qo      | 6/25/79                     | .05         | 15              | 70                                    | 330                                    | ---                                     |
| 677         | Qt      | 6/25/79                     | .09         | 70              | 170                                   | 600                                    | ---                                     |
| 680         | Dch     | 6/25/79                     | .06         | 8               | 5                                     | 220                                    | ---                                     |
| 690         | Dch     | 6/25/79                     | .02         | 30              | 170                                   | 460                                    | ---                                     |
| 694         | Dne     | 9/24/72                     | ---         | ---             | ---                                   | ---                                    | *Gas at 48 feet; plugged back.          |
| 702         | Dg      | 12/17/75                    | ---         | ---             | ---                                   | ---                                    | *Gas at 56 feet.                        |
| 704         | Dg      | 6/25/79                     | 2.2         | 62              | 240                                   | 700                                    | ---                                     |
| 706         | Dne     | 8/26/67                     | ---         | ---             | ---                                   | ---                                    | *Sulfur odor.                           |
| 707         | Dne     | 6/25/79                     | .45         | 50              | 140                                   | 560                                    | ---                                     |
| 713         | Qo      | 6/25/79                     | .52         | 28              | 200                                   | 530                                    | ---                                     |
| 714         | Dne     | 6/25/79                     | .04         | 40              | 200                                   | 600                                    | ---                                     |
| 726         | Qt      | 6/28/79                     | .41         | 5               | 100                                   | 260                                    | ---                                     |
| 744         | Dch     | 9/25/72                     | ---         | ---             | ---                                   | ---                                    | *Some natural gas.                      |
| 756         | Dch     | 6/21/79                     | .29         | 8               | 95                                    | 230                                    | ---                                     |
| 766         | Dch     | 6/21/79                     | .08         | 22              | 140                                   | 380                                    | ---                                     |
| 777         | Dv      | 6/21/79                     | .01         | 25              | 140                                   | 400                                    | ---                                     |
| 806         | Qo      | 6/21/79                     | .08         | 3               | 120                                   | 290                                    | ---                                     |
| 810         | Qt      | 4/23/74                     | ---         | ---             | ---                                   | ---                                    | *High iron.                             |
| 822         | Qo      | 6/21/79                     | .25         | 58              | 110                                   | 550                                    | ---                                     |
| 829         | Dv      | 6/21/79                     | .20         | 15              | 115                                   | 620                                    | ---                                     |
| 852         | Qt      | 6/21/79                     | .16         | 22              | 160                                   | 600                                    | ---                                     |
| 863         | Dch     | 6/ 3/76                     | ---         | ---             | ---                                   | ---                                    | *Natural gas at 50 feet.                |
| 872         | Dch     | 7/20/71                     | ---         | ---             | ---                                   | ---                                    | *Salty at 60 feet.                      |
| 879         | Qo      | 6/21/79                     | .06         | 18              | 240                                   | 625                                    | ---                                     |
| 893         | Qo      | 6/21/79                     | .22         | 35              | 120                                   | 565                                    | ---                                     |
| 919         | Qt      | 2/10/73                     | ---         | ---             | ---                                   | ---                                    | *Some natural gas.                      |
| 940         | Qo      | 12/28/76                    | ---         | ---             | ---                                   | ---                                    | *Strong sulfur odor.                    |
| 957         | Qt      | 7/ 9/79                     | .18         | 28              | 140                                   | 540                                    | ---                                     |
| 967         | Qo      | 7/ 9/79                     | .02         | 18              | 140                                   | 370                                    | ---                                     |
| 968         | MDcr    | 7/ 9/79                     | .09         | 10              | 120                                   | 280                                    | ---                                     |
| 969         | Qo      | 7/ 9/79                     | .25         | 2               | 95                                    | 300                                    | ---                                     |
| 971         | Qo      | 7/ 9/79                     | .18         | 68              | 90                                    | 700                                    | ---                                     |
| 1015        | Dch     | 7/ 9/79                     | 2.0         | 5               | 110                                   | 265                                    | ---                                     |
| 1026        | Dch     | 7/ 9/79                     | .05         | 10              | 200                                   | 500                                    | ---                                     |
| 1029        | Qo      | 7/ 9/79                     | .02         | 180             | 400                                   | 1,000                                  | ---                                     |
| 1032        | Dv      | 7/ 9/79                     | .10         | 20              | 120                                   | 420                                    | ---                                     |
| 1041        | Qo      | 7/ 9/79                     | .05         | 5               | 120                                   | 270                                    | ---                                     |
| 1042        | Dch     | 7/ 9/79                     | .03         | 15              | 85                                    | 370                                    | ---                                     |
| 1048        | Dv      | 7/ 9/79                     | .05         | 8               | 120                                   | 300                                    | ---                                     |
| 1061        | Qo      | 6/14/79                     | .23         | 1,220           | 510                                   | 4,800                                  | ---                                     |
| 1064        | Qo      | 8/22/79                     | .12         | 5               | 90                                    | 245                                    | ---                                     |
| 1073        | Dch     | 6/18/79                     | .08         | 8               | 85                                    | 245                                    | ---                                     |
| 1077        | Qo      | 6/18/79                     | .01         | 8               | 140                                   | 320                                    | ---                                     |
| 1085        | Dv      | 6/18/79                     | .04         | 5               | 50                                    | 300                                    | ---                                     |
| 1086        | Qo      | 6/18/79                     | .08         | 5               | 120                                   | 300                                    | ---                                     |
| 1087        | Dv      | 6/18/79                     | .10         | 40              | 230                                   | 600                                    | ---                                     |
| 1091        | Dv      | 6/18/79                     | .17         | 80              | 180                                   | 530                                    | ---                                     |
| 1092        | Qt      | 6/18/79                     | .02         | 8               | 180                                   | 420                                    | ---                                     |
| 1094        | Qo      | 6/18/79                     | .08         | 8               | 90                                    | 290                                    | ---                                     |
| 1096        | MDcr    | 6/18/79                     | .05         | 10              | 85                                    | 240                                    | ---                                     |
| 1100        | Dv      | 6/18/79                     | .15         | 45              | 160                                   | 500                                    | ---                                     |
| 1101        | Dv      | 6/18/79                     | .25         | 8               | 150                                   | 375                                    | ---                                     |
| 1110        | MDbr    | 8/ 8/79                     | .70         | 2               | 210                                   | 480                                    | ---                                     |
| 1113        | Qo      | 8/10/79                     | .11         | 5               | 90                                    | 225                                    | ---                                     |
| 1115        | Dv      | 8/22/79                     | .43         | 6               | 160                                   | 360                                    | ---                                     |
| 1120        | Qo      | 8/23/79                     | .15         | 9               | 100                                   | 220                                    | ---                                     |

Table 9. (Continued)

| Well number | Aquifer | Date of analysis or comment | Iron (mg/L) | Chloride (mg/L) | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | Remarks (*indicates driller's comments) |
|-------------|---------|-----------------------------|-------------|-----------------|---------------------------------------|----------------------------------------|-----------------------------------------|
| Er-1121     | Qt      | 8/15/79                     | .05         | 2               | 110                                   | 300                                    | ---                                     |
| 1129        | Dv      | 8/28/79                     | .26         | 2               | 120                                   | 380                                    | ---                                     |
| 1131        | MDbr    | 8/24/79                     | .02         | 2               | 120                                   | 300                                    | ---                                     |
| 1132        | MDbr    | 7/23/68                     | ---         | ---             | ---                                   | ---                                    | *Natural gas at 75 feet.                |
| 1135        | Dv      | 8/22/79                     | .19         | 5               | 120                                   | 310                                    | ---                                     |
| 1141        | Dv      | 8/ 9/79                     | .18         | 8               | 85                                    | 340                                    | ---                                     |
| 1143        | Dv      | 7/31/79                     | .02         | 8               | 180                                   | 410                                    | ---                                     |
| 1146        | Dv      | 8/10/79                     | .15         | 15              | 20                                    | 580                                    | ---                                     |
| 1153        | Dv      | 8/ 9/79                     | .18         | 18              | 150                                   | 650                                    | ---                                     |
| 1172        | Dv      | 8/ 7/79                     | .02         | 150             | 60                                    | 1,200                                  | ---                                     |
| 1175        | Qo      | 8/ 8/79                     | .02         | 180             | 95                                    | 1,700                                  | ---                                     |
| 1179        | Dv      | 7/29/66                     | ---         | ---             | ---                                   | ---                                    | *Shale gas at 32 feet.                  |
| 1180        | MDbv    | 7/30/79                     | .23         | 32              | 120                                   | 560                                    | ---                                     |
| 1185        | Qo      | 7/24/79                     | .07         | 8               | 140                                   | 340                                    | ---                                     |
| 1230        | Dch     | 6/15/79                     | 3.2         | 8               | 190                                   | 700                                    | ---                                     |
| 1232        | Dv      | ---                         | ---         | ---             | ---                                   | ---                                    | *Natural gas at 83 feet.                |
| 1237        | MDbv    | 6/15/79                     | .05         | 42              | 80                                    | 520                                    | ---                                     |
| 1239        | Dch     | 6/15/79                     | .03         | 5               | 50                                    | 275                                    | ---                                     |
| 1245        | Qt      | 6/15/79                     | .01         | 15              | 5                                     | 650                                    | ---                                     |
| 1254        | Qo      | 6/28/79                     | 1.1         | 380             | 120                                   | 1,850                                  | ---                                     |
| 1256        | Qo      | 6/15/79                     | .03         | 8               | 100                                   | 275                                    | ---                                     |
| 1259        | Qt      | 6/15/79                     | .02         | 5               | 10                                    | 525                                    | ---                                     |
| 1267        | Qt      | 6/15/79                     | 3.0         | 18              | 230                                   | 800                                    | ---                                     |
| 1279        | MDbv    | 6/28/79                     | .19         | 5               | 110                                   | 300                                    | ---                                     |
| 1280        | MDbv    | 6/28/79                     | .15         | 550             | 180                                   | 2,800                                  | ---                                     |
| 1283        | Dch     | 6/28/79                     | .17         | 18              | 200                                   | 520                                    | ---                                     |
| 1291        | Qo      | 6/28/79                     | .1          | 10              | 90                                    | 380                                    | ---                                     |
| 1311        | Dch     | 6/28/79                     | .12         | 5               | 110                                   | 275                                    | ---                                     |
| 1313        | Qt      | 6/28/79                     | .28         | 5               | 100                                   | 270                                    | ---                                     |
| 1316        | Dch     | 6/28/79                     | .02         | 78              | 120                                   | 610                                    | ---                                     |
| 1318        | Qb      | 5/21/76                     | ---         | ---             | ---                                   | ---                                    | *Natural gas at 35 feet.                |
| 1319        | Dne     | 6/28/79                     | .08         | 40              | 120                                   | 420                                    | ---                                     |
| 1321        | Dg      | 6/28/79                     | .21         | 68              | 220                                   | 650                                    | ---                                     |
| 1325        | Dch     | 8/ 9/79                     | 1.6         | 30              | 75                                    | 305                                    | ---                                     |
| 1330        | Dch     | 6/28/79                     | .03         | 48              | 55                                    | 490                                    | ---                                     |
| 1334        | Dch     | 6/28/79                     | .05         | 5               | 80                                    | 260                                    | ---                                     |
| 1343        | Qt      | 6/28/79                     | .02         | 5               | 140                                   | 350                                    | ---                                     |
| 1354        | Dch     | 7/11/79                     | .05         | 20              | 150                                   | 600                                    | ---                                     |
| 1356        | Qt      | 5/31/77                     | ---         | ---             | ---                                   | ---                                    | *Sulfur odor.                           |
| 1357        | Qo      | 5/27/77                     | ---         | ---             | ---                                   | ---                                    | *Sulfur odor.                           |
| 1368        | Dv      | 6/11/64                     | ---         | ---             | ---                                   | ---                                    | *Gas at 60 feet.                        |
| 1372        | Dch     | 7/11/79                     | .15         | 65              | 55                                    | 745                                    | ---                                     |
| 1394        | Qo      | 8/19/79                     | .05         | 50              | 110                                   | 320                                    | ---                                     |
| 1396        | MDbr    | 7/19/79                     | .04         | 6               | 200                                   | 440                                    | ---                                     |
| 1397        | Dv      | 7/19/79                     | .13         | 80              | 55                                    | 780                                    | ---                                     |
| 1397        | Dv      | 9/-/51                      | ---         | ---             | ---                                   | ---                                    | *Gas at 63 feet.                        |
| 1408        | Dch     | 7/19/79                     | .06         | 12              | 35                                    | 420                                    | ---                                     |
| 1411        | Qo      | 7/19/79                     | .14         | 12              | 100                                   | 300                                    | ---                                     |
| 1413        | Dch     | 7/11/79                     | .10         | 18              | 85                                    | 240                                    | ---                                     |
| 1415        | Qb      | 7/19/79                     | .37         | 320             | 160                                   | 1,450                                  | ---                                     |
| 1417        | Dne     | 7/11/79                     | .09         | 38              | 120                                   | 400                                    | ---                                     |
| 1423        | Qo      | 8/13/56                     | ---         | ---             | ---                                   | ---                                    | *Salty water.                           |
| 1424        | Qo      | 7/19/79                     | .18         | 10              | 100                                   | 270                                    | ---                                     |
| 1425        | Qb      | ---                         | ---         | ---             | ---                                   | ---                                    | *Very hard.                             |
| 1431        | Qt      | ---                         | ---         | ---             | ---                                   | ---                                    | *Very hard.                             |
| 1440        | Qt      | 7/11/79                     | .38         | 45              | 240                                   | 830                                    | ---                                     |
| 1443        | Qo      | 7/11/79                     | 1.1         | 75              | ---                                   | 750                                    | ---                                     |
| 1445        | Dch     | 7/11/79                     | .02         | 10              | 80                                    | 405                                    | ---                                     |
| 1448        | Dch     | 7/19/79                     | .03         | 8               | 100                                   | 340                                    | ---                                     |
| 1452        | Qo      | 7/11/79                     | .5          | 8               | 210                                   | 450                                    | ---                                     |
| 1458        | Dch     | 7/19/79                     | .07         | 6               | 120                                   | 300                                    | ---                                     |
| 1460        | Qo      | 9/ 6/78                     | .22         | 2               | 75                                    | 200                                    | ---                                     |
| 1469        | Qo      | 7/19/79                     | .3          | 6               | 95                                    | 260                                    | ---                                     |
| 1474        | Dch     | 7/11/79                     | .1          | 12              | 140                                   | 370                                    | ---                                     |
| 1477        | Qo      | 7/11/79                     | .08         | 18              | 120                                   | 310                                    | ---                                     |

Table 9. (Continued)

| Well number | Aquifer | Date of analysis or comment | Iron (mg/L) | Chloride (mg/L) | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | Remarks (*indicates driller's comments)            |
|-------------|---------|-----------------------------|-------------|-----------------|---------------------------------------|----------------------------------------|----------------------------------------------------|
| Er-1481     | Qt      | 10/ 1/78                    | .03         | 10              | 85                                    | 450                                    | At 89-foot depth.                                  |
| 1481        | Qt      | 10/ 3/78                    | .07         | 75              | 150                                   | 720                                    | At 100-foot depth.                                 |
| 1481        | Qt      | 10/ 5/78                    | .1          | 400             | 185                                   | 2,300                                  | At 141-foot depth.                                 |
| 1481        | Qt      | 7/19/79                     | .1          | 425             | 95                                    | 2,500                                  | ---                                                |
| 1482        | Qt      | 7/19/79                     | .55         | 18              | 120                                   | 600                                    | ---                                                |
| 1488        | Qo      | 9/13/78                     | .05         | 2               | 125                                   | 340                                    | ---                                                |
| 1488        | Qo      | 7/19/79                     | .09         | 5               | 140                                   | 340                                    | ---                                                |
| 1490        | Dv      | 9/13/79                     | .02         | 2               | 145                                   | 390                                    | ---                                                |
| 1495        | Dv      | 4/22/76                     | ---         | ---             | ---                                   | ---                                    | *Salt and gas at 70 feet.                          |
| 1495        | Dv      | 7/19/79                     | .13         | 600             | 160                                   | 2,800                                  | Cemented back to 61 feet.                          |
| 1496        | Qt      | 7/31/76                     | ---         | ---             | ---                                   | ---                                    | *Salt and gas at 59 feet; plugged back to 55 feet. |
| 1512        | Qb      | 7/23/79                     | .10         | 58              | 200                                   | 600                                    | ---                                                |
| 1544        | Qo      | 7/27/79                     | .18         | 10              | 120                                   | 320                                    | ---                                                |
| 1561        | Dch     | 7/16/79                     | .57         | 55              | 210                                   | 635                                    | ---                                                |
| 1564        | Dch     | 7/24/79                     | .60         | 12              | 100                                   | 395                                    | ---                                                |
| 1567        | Qo      | 7/24/79                     | .03         | 25              | 150                                   | 440                                    | ---                                                |
| 1569        | Dv      | 8/29/79                     | .12         | 5               | 120                                   | 310                                    | ---                                                |
| 1574        | MDbr    | 7/24/79                     | .05         | 4               | 140                                   | 360                                    | ---                                                |
| 1575        | Qb      | 7/16/79                     | .08         | 22              | 190                                   | 480                                    | ---                                                |
| 1578        | Qo      | 12/-/51                     | ---         | ---             | ---                                   | ---                                    | *Gas from bedrock.                                 |
| 1579        | Qb      | 7/16/79                     | .20         | 22              | 140                                   | 430                                    | ---                                                |
| 1581        | Qb      | ---                         | ---         | ---             | ---                                   | ---                                    | *Hard; very low iron.                              |
| 1583        | Qo      | 7/24/79                     | .23         | 72              | 240                                   | 560                                    | ---                                                |
| 1587        | Dch     | 7/24/79                     | .11         | 5               | 100                                   | 325                                    | ---                                                |
| 1593        | MDcr    | 11/19/70                    | ---         | ---             | ---                                   | ---                                    | *Hard; high iron.                                  |
| 1599        | Qt      | 7/16/79                     | 3.3         | 28              | 570                                   | 1,400                                  | ---                                                |
| 1605        | Dv      | 7/27/79                     | .05         | 32              | 140                                   | 360                                    | ---                                                |
| 1609        | Qt      | 8/21/79                     | .20         | 2               | 80                                    | 240                                    | ---                                                |
| 1612        | Dch     | 7/27/79                     | .10         | 4               | 110                                   | 280                                    | ---                                                |
| 1614        | Dv      | 7/27/79                     | .05         | 120             | 120                                   | 950                                    | ---                                                |
| 1616        | Qt      | 7/24/79                     | .08         | 32              | 180                                   | 470                                    | ---                                                |
| 1618        | Qt      | 7/16/79                     | .25         | 25              | 110                                   | 400                                    | ---                                                |
| 1619        | Dch     | 7/16/79                     | .05         | 22              | 110                                   | 400                                    | ---                                                |
| 1622        | Qo      | 7/16/79                     | .15         | 5               | 140                                   | 360                                    | ---                                                |
| 1623        | Dv      | 10/ 2/72                    | ---         | ---             | ---                                   | ---                                    | *Hard; very high iron.                             |
| 1626        | Dch     | 7/16/79                     | .02         | 20              | 240                                   | 560                                    | ---                                                |
| 1630        | Qt      | 7/16/79                     | .07         | 5               | 150                                   | 380                                    | ---                                                |
| 1642        | Qt      | 7/27/79                     | .03         | 12              | 120                                   | 440                                    | ---                                                |
| 1643        | Qo      | 7/24/79                     | .01         | 18              | 170                                   | 420                                    | ---                                                |
| 1644        | Qb      | 1/23/67                     | ---         | ---             | ---                                   | ---                                    | *Gas at 25 feet.                                   |
| 1644        | Qb      | 7/24/79                     | 3.3         | 32              | 320                                   | 800                                    | ---                                                |
| 1646        | Dne     | 12/24/66                    | ---         | ---             | ---                                   | ---                                    | *Some gas; very salty.                             |
| 1647        | MDbr    | 7/27/79                     | .52         | 4               | 170                                   | 510                                    | ---                                                |
| 1649        | Dv      | 7/16/79                     | .09         | 30              | 120                                   | 350                                    | ---                                                |
| 1650        | MDcr    | 7/16/79                     | 2.5         | 22              | 85                                    | 230                                    | ---                                                |
| 1651        | Qt      | 7/24/79                     | .43         | 250             | 200                                   | 1,700                                  | ---                                                |
| 1652        | Qo      | 7/24/79                     | .03         | 5               | 110                                   | 280                                    | ---                                                |
| 1666        | Dch     | 7/24/79                     | .16         | 5               | 130                                   | 320                                    | ---                                                |
| 1668        | Qt      | 6/28/77                     | ---         | ---             | ---                                   | ---                                    | *Very high iron.                                   |
| 1693        | Qo      | 9/13/78                     | .20         | 8               | 100                                   | 260                                    | ---                                                |
| 1694        | Qt      | 8/20/79                     | .32         | 2               | 110                                   | 300                                    | ---                                                |
| 1696        | Qt      | 9/ 9/79                     | 1.4         | 15              | 180                                   | 380                                    | ---                                                |
| 1708        | Qo      | 8/19/79                     | .10         | 10              | 125                                   | 320                                    | ---                                                |
| 1722        | Qo      | 9/ 6/78                     | .01         | 15              | 120                                   | 320                                    | ---                                                |

Table 10. Chemical Analyses of Groundwater from Selected Wells<sup>1</sup>

(Results are in milligrams per liter unless otherwise indicated)

Aquifer: Qb, glacial-beach deposits; Qo, glacial-outwash deposits; Qt, glacial-till deposits; MBv, Berea Sandstone through Venango Formation, undivided; Dch, Chadaikoin Formation; Dg, Girard Shale; Dne, Northeast Shale.

| Well number | Aquifer | Date of sampling | Iron (Fe) | Cal-cium (Ca) | Magne-sium (Mg) | Potas-sium (K) | Bicar-bonate (HCO <sub>3</sub> ) | Sul-fate (SO <sub>4</sub> ) | Chlo-ride (Cl) | Dis-solved solids | Hard-ness (as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) |
|-------------|---------|------------------|-----------|---------------|-----------------|----------------|----------------------------------|-----------------------------|----------------|-------------------|-----------------------------------|----------------------------------------|
| Er- 2       | Qb      | 5/23/51          | 0.67      | 61            | 14              | 11             | 1.9                              | 217                         | 37             | 9.0               | 259                               | 210                                    |
| 3           | Dch     | 5/24/51          | 1.3       | 32            | 12              | 132            | 4.4                              | 144                         | 17             | 206               | 491                               | 130                                    |
| 4           | Qo      | 5/25/51          | .42       | 61            | 15              | 5.4            | 1.8                              | 227                         | 30             | 4.0               | 247                               | 210                                    |
| 5           | Qb      | 5/24/51          | .96       | 41            | 20              | 159            | 5.2                              | 386                         | 46             | 110               | 587                               | 190                                    |
| 6           | Qb      | 5/24/51          | 1.3       | 68            | 12              | 4.2            | 1.4                              | 182                         | 69             | 7.0               | 268                               | 220                                    |
| 7           | Dg      | 5/24/51          | 66        | 48            | 14              | 7.8            | 2.1                              | 104                         | 80             | 18                | 241                               | 180                                    |
| 8           | Qo      | 5/23/51          | .29       | 85            | 20              | 4.5            | 1.9                              | 230                         | 88             | 14                | 348                               | 300                                    |
| 67          | MBv     | 9/27/28          | .42       | 32            | 14              | 160            | 6.3                              | 406                         | 3.2            | 115               | 2544                              | 140                                    |
| 73          | Qb      | 7/22/29          | .12       | 58            | 12              | 3.4            | 4.0                              | 171                         | 41             | 6.0               | 2239                              | 190                                    |
| 91          | Qo      | 9/25/28          | .39       | 27            | 7.8             | 26             | 1.6                              | 168                         | 14             | 3.2               | 2119                              | 100                                    |
| 98          | Qo      | 10/ 1/28         | .30       | 25            | 8.3             | 37             | 2.2                              | 162                         | 5.1            | 28                | 2204                              | 97                                     |
| 102         | Dne     | 9/27/28          | .38       | 28            | 6.4             | 4.4            | 1.6                              | 48                          | 48             | 10                | 2133                              | 96                                     |
| 116         | Qo      | 10/ 2/28         | .08       | 30            | 9.6             | 9.1            | 1.1                              | 148                         | 6.4            | 2.8               | 2147                              | 110                                    |
| 132         | Qo      | 9/26/28          | .19       | 27            | 7.7             | 7.7            | 1.4                              | 121                         | 18             | 1.8               | 2137                              | 99                                     |
| 132         | Qo      | 9/30/64          | .22       | 28            | 7.8             | 16             | 3.7                              | 132                         | 19             | 3.8               | 144                               | 100                                    |
| 136         | Qo      | 7/20/29          | .05       | 36            | 6.4             | 3.0            | 3.5                              | 130                         | 19             | 3.6               | 158                               | 120                                    |
| 141         | Qo      | 10/ 5/64         | .49       | 35            | 11              | 27             | 1.1                              | 168                         | 25             | 15                | 207                               | 130                                    |
| 1523        | Qb      | 11/16/73         | .18       | 68            | 17              | 144            | 6.4                              | 228                         | 133            | 165               | 792                               | 240                                    |
| 1523        | Qb      | 5/19/77          | ---       | 125           | 25              | 403            | 5.8                              | ---                         | ---            | 710               | 1,620                             | 420                                    |
| 1683        | Dg      | 4/28/77          | .32       | 190           | 31              | 710            | 10                               | 380                         | 86             | 1,400             | ---                               | 600                                    |
| 1684        | Dne     | 4/27/77          | 5.5       | 660           | 210             | 2,900          | 42                               | 130                         | 3.0            | 9,500             | ---                               | 2,500                                  |
| 1685        | Dg      | 4/14/77          | 5.6       | 140           | 48              | 1,700          | 18                               | 540                         | 6.0            | 3,000             | 550                               | 9,870                                  |
| 1686        | Qt      | 4/27/77          | .04       | 68            | 6.8             | 310            | 4.7                              | 87                          | 230            | 410               | ---                               | 200                                    |
| 1687        | Qt      | 4/27/77          | .01       | 39            | 6.2             | 390            | 3.5                              | 270                         | 11             | 480               | ---                               | 2,110                                  |
| 1688        | Qt      | 4/27/77          | .33       | 33            | 8.5             | 48             | 4.6                              | 120                         | 75             | 170               | ---                               | 120                                    |
| 1689        | Qt      | 4/27/77          | .40       | 30            | 5.5             | 14             | 2.0                              | 160                         | 60             | 53                | 98                                | 613                                    |

<sup>1</sup>From Koester and Miller (1980), p. 12-18.<sup>2</sup>Sum of constituents.

Table 11. Selected Chemical Analyses of Low-Flow Surface Water in Erie County<sup>1</sup>

(Results are in milligrams per liter unless otherwise indicated)

| Low-flow stream site <sup>2</sup>                                                | Date of sampling                          | Iron (Fe)                 | Cal-cium (Ca)         | Magne-sium (Mg)          | Sodium (Na)              | Potas-tium (K)          | Bicar-bonate (HCO <sub>3</sub> ) | Sul-fate (SO <sub>4</sub> ) | Chlo-ride (Cl)           | Dissolved solids         | Hard-ness (as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | Dis-charge (ft <sup>3</sup> /s) |
|----------------------------------------------------------------------------------|-------------------------------------------|---------------------------|-----------------------|--------------------------|--------------------------|-------------------------|----------------------------------|-----------------------------|--------------------------|--------------------------|-----------------------------------|----------------------------------------|---------------------------------|
| 03021400<br>West Branch of French Creek near Hornby (DA = 43.7 mi <sup>2</sup> ) | 5/21/70<br>8/31/71<br>9/26/74<br>9/16/75  | ---<br>---<br>---<br>0.30 | 25<br>40<br>7.2<br>32 | 4.6<br>---<br>---<br>4.4 | ---<br>---<br>---<br>--- | ---<br>---<br>98<br>110 | 105<br>20<br>20<br>12            | 12<br>8.7<br>8.0<br>7.0     | 4.0<br>---<br>---<br>--- | 82<br>130<br>218<br>100  | 182<br>290<br>218<br>200          | 16<br>5.3<br>9.7<br>29                 |                                 |
| 03021500<br>French Creek at Carters Corners (DA = 208 mi <sup>2</sup> )          | 5/17/77<br>8/22/78                        | 1.18<br>.79               | 33<br>37              | 7.7<br>8.3               | ---<br>---               | ---<br>---              | ---<br>---                       | ---<br>20                   | 12<br>10<br>11           | 176<br>116<br>196        | 250<br>225                        | ---                                    |                                 |
| 03021520<br>French Creek at Union City (DA = 211 mi <sup>2</sup> )               | 8/18/76                                   | .62                       | 30                    | 5.8                      | ---                      | ---                     | ---                              | 8.0                         | 8.0                      | 124                      | 100                               | 210                                    | ---                             |
| 04213150<br>Walnut Creek near Erie (DA = 26.9 mi <sup>2</sup> )                  | 8/17/76<br>5/18/77<br>8/16/78             | ---<br>1.97<br>.27        | 55<br>54<br>18        | 13<br>12<br>18           | ---                      | ---                     | ---                              | 40<br>44<br>62              | 79<br>71<br>67           | 378<br>402<br>392        | 194<br>188<br>212                 | 530<br>550<br>540                      | ---                             |
| 04213160<br>Lake Erie at Erie Waterworks intake                                  | 8/19/76<br>5/11/77<br>8/31/78             | .15<br>.50<br>.05         | 24<br>34<br>35        | 35<br>9.2<br>12          | ---                      | ---                     | ---                              | 16<br>16<br>24              | 26<br>23<br>20           | 184<br>204<br>200        | 204<br>124<br>136                 | 320<br>300<br>260                      | NA <sup>3</sup><br>NA<br>NA     |
| 04213294<br>Sixteen-mile Creek near North East (DA = 9.83 mi <sup>2</sup> )      | 10/23/75<br>8/18/76<br>5/19/77<br>8/22/78 | 3.48<br>.19<br>.16<br>.16 | 52<br>56<br>64<br>--- | 15<br>6.2<br>9.7<br>---  | ---                      | ---                     | ---                              | 50<br>34<br>43<br>110       | 48<br>41<br>47<br>56     | 360<br>320<br>366<br>442 | 192<br>166<br>200<br>206          | 490<br>420<br>380<br>600               | ---                             |
| 04233085<br>E1k Creek at Lake City                                               | 8/17/76<br>5/16/77<br>8/15/78             | .19<br>.14<br>.48         | 51<br>44<br>56        | 11<br>12<br>14           | ---                      | ---                     | ---                              | 42<br>42<br>66              | 47<br>35<br>51           | 314<br>294<br>362        | 176<br>160<br>200                 | 460<br>420<br>490                      | ---                             |

<sup>1</sup> From U.S. Geological Survey (1971, 1972a, 1974, 1975a, 1976, 1977, 1978, 1979). Data collected and analyzed by Pennsylvania Department of Environmental Resources.<sup>2</sup> DA, drainage area.<sup>3</sup> NA, not applicable.

**Table 12. Record of Wells**

Well location: The number that is assigned to identify the well. It is prefixed by a two-letter abbreviation of the county. The lat-long is the coordinates, in degrees and minutes, of the southeast corner of a 1-minute quadrangle within which the well is located.

Use: C, commercial; D, dewater; F, fire; H, domestic; I, irrigation; N, industrial; P, public supply; R, recreation; S, stock; T, test; U, unused; Z, other.

Topographic setting: C, stream channel; F, flat; H, hilltop; L, swamp; S, hillside; T, terrace; U, undulating; V, valley flat.

Aquifer: Qs, sands of Presque Isle; Qb, glacial-beach deposits; Qo, glacial-outwash deposits; Qt, glacial-till deposits; Mc, Cuyahoga Group; MDbr, Berea Sandstone through Riceville Formation, undivided; MDcr, Corry Sandstone through Riceville Formation, undivided; MDBv, Berea Sandstone through Venango Formation, undivided; Dv, Venango Formation; Dch, Chadakoin Formation; Dg, Girard Shale; Dne, Northeast Shale.

Lithology: c, clay; clgr, clayey gravel; fsed, fractured sedimentary rock, unclassified; fsh, fractured shale; fss, fractured sandstone; fst, fractured siltstone; gr, gravel; sd, sand; sdgr, sand and gravel; sed, sedimentary rock, unclassified; sh, shale; ss, sandstone; ssh, soft shale; st, siltstone; t, till; u, unconsolidated sediments, unclassified.

Static water level: Depth--F, flows but head is not known.

Date--month/last two digits of year.

Reported yield: gal/min, gallons per minute.

Specific capacity: (gal/min)/ft, gallons per minute per foot of drawdown.

Hardness: mg/L, milligrams per liter.

Specific conductance:  $\mu\text{mho}/\text{cm}$  at 25°C, micromhos per centimeter at 25 degrees Celsius.

Table 12.

| Well location |           | Owner                           | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|---------------------------------|--------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                                 |                          |                |     |                                 |                     |                   |
| Er- 1         | 4157-7952 | G. P. Estes                     | ---                      | 1936           | U   | 1,440                           | S                   | Qt/gr             |
| 2             | 4204-8010 | Kenneth Kallenbach              | Vernon Reed              | 1948           | H   | 790                             | S                   | Qo/gr             |
| 3             | 4205-8001 | C. H. Lyons                     | do.                      | 1950           | H   | 1,030                           | S                   | Dch/sh            |
| 4             | 4206-8001 | H. W. Zillman                   | Oakes and Bennett        | 1949           | H   | 980                             | H                   | Qo/sdgr           |
| 5             | 4211-7957 | C. A. Masso                     | Vircle L. Griffin        | 1947           | H   | 650                             | F                   | Qo/gr             |
| 6             | 4212-7951 | L. L. Parmenter                 | Ralph C. Parmenter       | 1947           | H   | 790                             | F                   | Qb/gr             |
| 7             | 4211-7950 | H. S. Orton                     | do.                      | 1943           | H   | 990                             | S                   | Dg/sh             |
| 8             | 4200-8020 | Lake City Borough               | Vernon Reed              | 1949           | P   | 730                             | F                   | Qo/gr             |
| 9             | 4206-8001 | Frank Schrimper                 | do.                      | 1900           | N   | 1,005                           | T                   | Dch/sh            |
| 10            | 4206-8000 | R. E. Guckes                    | Oakes and Bennett        | 1946           | H   | 1,025                           | S                   | Dch/sh            |
| 11            | 4205-8000 | Joseph Holdsworth, Jr.          | Ralph Freeman            | 1951           | H   | 1,120                           | S                   | Dch/sh            |
| 12            | 4206-8000 | W. E. Brightman                 | Vernon Reed              | 1950           | H   | 1,105                           | H                   | Dch/sh            |
| 13            | 4207-8000 | Clara Black                     | Oakes and Bennett        | 1947           | H   | 805                             | S                   | Dne/sh            |
| 14            | 4208-8000 | Carl Hayward                    | do.                      | 1949           | H   | 778                             | F                   | Dne/sh            |
| 15            | 4209-8000 | William Bendig                  | ---                      | ---            | H   | 652                             | T                   | Qb/u              |
| 16            | 4208-7959 | Ralph Freeman                   | Ralph Freeman            | 1945           | H   | 721                             | F                   | Dne/sh            |
| 17            | 4208-7959 | Glenn Freeman                   | do.                      | 1946           | H   | 718                             | F                   | Dne/sh            |
| 18            | 4208-7959 | Robert Hesch                    | ---                      | 1948           | H   | 720                             | F                   | Dne/sh            |
| 19            | 4208-7959 | Eugene Beliveau                 | Oakes and Bennett        | 1948           | H   | 728                             | F                   | Dne/sh            |
| 20            | 4206-7958 | A. C. Kellogg                   | ---                      | 1938           | H   | 1,190                           | S                   | Dch/sh            |
| 21            | 4206-7957 | Seth Tuttle                     | Oakes and Bennett        | 1947           | H   | 1,255                           | S                   | Dch/sh            |
| 22            | 4206-7956 | Fred Akerly                     | do.                      | ---            | H   | 1,220                           | S                   | Dch/sh            |
| 23            | 4209-7959 | Raymond Fenell                  | Ralph Freeman            | 1946           | H   | 650                             | F                   | Dne/sh            |
| 24            | 4209-7959 | Kenneth Bird                    | do.                      | 1947           | H   | 685                             | F                   | Dne/sh            |
| 25            | 4209-7959 | Clifford Bash                   | ---                      | 1949           | H   | 685                             | F                   | Dne/sh            |
| 26            | 4209-7959 | do.                             | ---                      | 1951           | H   | 685                             | F                   | Dne/sh            |
| 27            | 4210-7956 | M. Richards                     | ---                      | ---            | H   | 725                             | F                   | Dne/sh            |
| 28            | 4210-7956 | D. A. Parker                    | ---                      | ---            | H   | 730                             | F                   | Dne/sh            |
| 29            | 4210-7958 | C. G. Carlson                   | ---                      | 1949           | H   | 640                             | U                   | Dne/sh            |
| 30            | 4215-7947 | G. H. Hartman                   | Ralph C. Parmenter       | 1947           | H   | 590                             | F                   | Dne/sh            |
| 31            | 4214-7946 | John McGaughey                  | do.                      | 1950           | H   | 790                             | F                   | Dne/sh            |
| 32            | 4214-7949 | Howard Post                     | Vircle L. Griffin        | 1945           | H   | 705                             | ---                 | Qo/sdgr           |
| 33            | 4212-7952 | F. W. Allen                     | ---                      | 1930           | H   | 780                             | F                   | Qo/u              |
| 34            | 4209-7958 | Robert Wood                     | Ralph Freeman            | 1949           | H   | 730                             | F                   | Dne/sh            |
| 35            | 4208-7959 | Lawrence Schroll                | do.                      | ---            | N   | 722                             | F                   | Dne/sh            |
| 36            | 4208-7958 | Bernie Rice                     | do.                      | 1949           | H   | 745                             | F                   | Dne/sh            |
| 37            | 4210-7955 | L. N. Field                     | ---                      | 1941           | H   | 730                             | F                   | Dne/sh            |
| 38            | 4211-7953 | Tacoma Pneumatic Foundry        | Oakes and Bennett        | 1947           | H   | 760                             | F                   | Dne/sh            |
| 39            | 4213-7948 | P. R. Thompson                  | Vircle L. Griffin        | 1931           | H   | 820                             | F                   | Dne/sh            |
| 40            | 4209-7959 | Glenn Kauffman                  | Oakes and Bennett        | 1944           | H   | 720                             | F                   | Dne/sh            |
| 41            | 4208-7959 | Fred Edwards                    | do.                      | 1943           | H   | 730                             | F                   | Dne/sh            |
| 42            | 4208-7959 | W. L. Speigelhalter             | ---                      | ---            | H   | 730                             | F                   | Dne/sh            |
| 43            | 4209-7959 | E. Lacheksy                     | Oakes and Bennett        | 1948           | H   | 715                             | F                   | Dne/sh            |
| 44            | 4204-8012 | Leo Garris                      | Vernon Reed              | 1950           | C   | 720                             | F                   | Qb/gr             |
| 45            | 4203-8011 | Colly Shilliff                  | Bernard P. Kuntz         | 1946           | C   | 728                             | S                   | Qb/u              |
| 46            | 4207-7958 | Donald Shepard                  | Oakes and Bennett        | 1950           | H   | 983                             | S                   | Qo/gr             |
| 47            | 4212-7953 | John Archer                     | Vircle L. Griffin        | 1947           | C   | 750                             | F                   | Qo/gr             |
| 48            | 4212-7953 | do.                             | do.                      | 1947           | C   | 750                             | F                   | Qo/gr             |
| 49            | 4212-7953 | Gerald Bemis                    | do.                      | 1951           | H   | 750                             | F                   | Qo/gr             |
| 50            | 4214-7949 | Paul Luke                       | do.                      | 1947           | H   | 605                             | U                   | Qt/u              |
| 52            | 4208-7959 | Lawrence Schroll                | ---                      | ---            | H   | 735                             | F                   | Qb/gr             |
| 54            | 4212-7951 | Cramer Motors Inc.              | Vircle L. Griffin        | 1949           | C   | 780                             | F                   | Qt/u              |
| 55            | 4214-7946 | A. J. Reiman                    | ---                      | 1920           | H   | 790                             | F                   | Qb/gr             |
| 56            | 4214-7946 | David Worster                   | ---                      | ---            | H   | 765                             | F                   | Qb/u              |
| 57            | 4214-7947 | Mrs. Carl Hood                  | ---                      | 1920           | H   | 700                             | S                   | Ob/u              |
| 58            | 4209-7959 | Willard Harman                  | Oakes and Bennett        | 1946           | H   | 732                             | F                   | Qt/u              |
| 60            | 4154-8024 | G. Hagebone                     | J. M. Cole               | 1918           | H   | 900                             | S                   | Dch/fst           |
| 61            | 4154-8022 | Elmer Thompson                  | do.                      | ---            | H   | 860                             | V                   | Qt/gr             |
| 62            | 4153-8021 | Bessemer and Lake Erie Railroad | ---                      | ---            | H   | 910                             | V                   | Qo/sdgr           |
| 63            | 4152-8019 | John Zblecabbage                | J. M. Cole               | 1929           | H   | 1,010                           | S                   | Qt/t              |
| 64            | 4151-8017 | Albion Borough                  | ---                      | 1913           | P   | 1,090                           | T                   | Qo/gr             |
| 65            | 4151-8017 | do.                             | ---                      | 1913           | P   | 1,090                           | T                   | Qo/gr             |
| 66            | 4152-8018 | William Revak                   | J. M. Cole               | 1920           | H   | 1,110                           | S                   | MDbv/sh           |
| 67            | 4154-8017 | F. R. Warner                    | do.                      | 1916           | H   | 1,126                           | U                   | MDbv/st           |
| 68            | 4154-8016 | Andy Sabol                      | ---                      | 1914           | U   | 1,160                           | F                   | MDbv/sh           |
| 69            | 4154-8016 | do.                             | J. M. Cole               | 1914           | U   | 1,160                           | F                   | MDbv/st           |
| 70            | 4154-8014 | Redlis Inc.                     | do.                      | 1913           | H   | 1,248                           | S                   | MDbv/fst          |
| 71            | 4157-8019 | Charles Langdon                 | do.                      | 1918           | H   | 860                             | S                   | Qo/sdgr           |
| 72            | 4257-8017 | Joseph Buren                    | do.                      | 1915           | H   | 930                             | F                   | Dch/fst           |
| 73            | 4201-8018 | Girard Borough                  | ---                      | 1900           | P   | 740                             | S                   | Qb/sdgr           |
| 74            | 4201-8015 | J. T. Raine                     | Vernon Reed              | 1928           | P   | 820                             | F                   | Qb/gr             |
| 75            | 4201-8015 | do.                             | do.                      | 1928           | P   | 820                             | F                   | Qb/gr             |
| 79            | 4201-8003 | Summit Township                 | Moody Drilling Co., Inc. | 1965           | U   | 1,370                           | S                   | Dv/fsh            |

(Continued)

| Total depth below land surface (feet) | Casing |     | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------|-----|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |        |     |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 19                                    | ---    | 48  | ---                                      | 19                              | 8/36                  | ---                      | ---                              | ---                                   | ---                                    | ---        | Er- 1       |
| 18                                    | ---    | 8   | ---                                      | F                               | 5/51                  | 15                       | ---                              | 210                                   | 428                                    | 8.0        | 2           |
| 72                                    | ---    | 6   | ---                                      | 28                              | 1950                  | ---                      | ---                              | 130                                   | 949                                    | 7.4        | 3           |
| 82                                    | 82     | 5   | ---                                      | 64                              | 5/50                  | ---                      | ---                              | 210                                   | 416                                    | 8.0        | 4           |
| 72                                    | 70     | 6   | 30                                       | 5                               | 1947                  | ---                      | ---                              | 190                                   | 1,020                                  | 8.0        | 5           |
| 52                                    | ---    | 4   | ---                                      | ---                             | ---                   | ---                      | ---                              | 220                                   | 434                                    | 8.0        | 6           |
| 49                                    | ---    | 6   | ---                                      | 5                               | 7/51                  | ---                      | ---                              | 180                                   | 395                                    | 7.3        | 7           |
| 36                                    | 36     | 8   | ---                                      | 8                               | 5/51                  | 110                      | ---                              | 300                                   | 559                                    | 7.8        | 8           |
| 32                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 256                                   | 618                                    | 7.8        | 9           |
| 45                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 168                                   | 354                                    | 7.8        | 10          |
| 46                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 98                                    | 348                                    | 8.0        | 11          |
| 75                                    | 65     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 156                                   | 455                                    | 7.9        | 12          |
| 40                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 178                                   | 554                                    | 7.8        | 13          |
| 40                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 126                                   | 533                                    | 7.8        | 14          |
| 36                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 312                                   | 2,310                                  | 7.5        | 15          |
| 40                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 96                                    | 295                                    | 6.6        | 16          |
| 32                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 98                                    | 563                                    | 7.8        | 17          |
| 40                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 132                                   | 1,790                                  | 7.6        | 18          |
| 34                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 258                                   | 3,560                                  | 7.2        | 19          |
| 65                                    | 9      | --- | ---                                      | 9                               | ---                   | ---                      | ---                              | 124                                   | 654                                    | 7.6        | 20          |
| 80                                    | 8      | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 190                                   | 505                                    | 7.7        | 21          |
| 45                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 118                                   | 359                                    | 7.7        | 22          |
| 26                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 98                                    | 262                                    | 6.7        | 23          |
| 35                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 346                                   | 1,000                                  | 7.4        | 24          |
| 39                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 192                                   | 1,170                                  | 7.6        | 25          |
| 12                                    | 12     | 24  | ---                                      | ---                             | ---                   | ---                      | ---                              | 238                                   | 1,160                                  | 7.7        | 26          |
| 30                                    | 22     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 94                                    | 275                                    | 6.5        | 27          |
| 25                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 26                                    | 797                                    | 8.4        | 28          |
| 82                                    | 32     | 6   | 42                                       | 20                              | ---                   | ---                      | ---                              | 184                                   | 2,010                                  | 7.6        | 29          |
| 53                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 364                                   | 750                                    | 7.3        | 30          |
| 51                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 176                                   | 347                                    | 7.5        | 31          |
| 60                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 120                                   | 279                                    | 7.7        | 32          |
| 64                                    | ---    | --- | ---                                      | 27                              | ---                   | ---                      | ---                              | 146                                   | 321                                    | 6.6        | 33          |
| 41                                    | 6      | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 444                                   | 5,060                                  | 6.9        | 34          |
| 40                                    | ---    | --- | 35                                       | ---                             | ---                   | ---                      | ---                              | 236                                   | 1,240                                  | 7.2        | 35          |
| 35                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 158                                   | 1,230                                  | 7.2        | 36          |
| 24                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 124                                   | 566                                    | 6.9        | 37          |
| 39                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 76                                    | 195                                    | 6.5        | 38          |
| 45                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 178                                   | 360                                    | 7.6        | 39          |
| 40                                    | 15     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 38                                    | 641                                    | 7.8        | 40          |
| 30                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 116                                   | 1,140                                  | 7.8        | 41          |
| 30                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 91                                    | 1,170                                  | 7.6        | 42          |
| 48                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 68                                    | 239                                    | 6.3        | 43          |
| 60                                    | 60     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 120                                   | 417                                    | 8.0        | 44          |
| 38                                    | 38     | --- | ---                                      | F                               | ---                   | ---                      | ---                              | 190                                   | 460                                    | 7.6        | 45          |
| 35                                    | ---    | --- | 22                                       | ---                             | ---                   | ---                      | ---                              | 82                                    | 206                                    | 6.8        | 46          |
| 78                                    | 78     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 252                                   | 494                                    | 7.8        | 47          |
| 50                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 258                                   | 497                                    | 7.7        | 48          |
| 79                                    | 79     | --- | ---                                      | 12                              | 7/51                  | ---                      | ---                              | 238                                   | 459                                    | 7.7        | 49          |
| 60                                    | ---    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 190                                   | 3,840                                  | 7.3        | 50          |
| 15                                    | 15     | --- | ---                                      | 8                               | 7/51                  | ---                      | ---                              | 100                                   | 318                                    | 6.3        | 52          |
| 65                                    | 65     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 122                                   | 251                                    | 7.1        | 54          |
| 28                                    | 28     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 310                                   | 568                                    | 7.3        | 55          |
| 20                                    | ---    | 5   | ---                                      | ---                             | ---                   | ---                      | ---                              | 144                                   | 420                                    | 7.5        | 56          |
| 28                                    | 28     | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 136                                   | 315                                    | 7.4        | 57          |
| 30                                    | ---    | --- | 22                                       | ---                             | ---                   | ---                      | ---                              | 88                                    | 303                                    | 6.4        | 58          |
| 103                                   | 83     | 4   | ---                                      | 30                              | 7/28                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 60          |
| 113                                   | 80     | 4   | ---                                      | 6                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 61          |
| 30                                    | 30     | 3   | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | 7.4        | 62          |
| 51                                    | 14     | 4   | ---                                      | 15                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 63          |
| 29                                    | 29     | 8   | ---                                      | F                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | 7.6        | 64          |
| 20                                    | 20     | 10  | ---                                      | 3                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 65          |
| 72                                    | 43     | 4   | ---                                      | 4                               | 9/20                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 66          |
| 36                                    | 17     | 4   | ---                                      | 6                               | ---                   | ---                      | ---                              | 140                                   | ---                                    | 8.1        | 67          |
| 54                                    | ---    | 4   | ---                                      | 6                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 68          |
| 50                                    | ---    | 4   | ---                                      | 6                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 69          |
| 72                                    | 19     | 4   | ---                                      | 16                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 70          |
| 77                                    | 77     | 4   | 55                                       | 40                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 71          |
| 100                                   | 43     | 4   | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 72          |
| 12                                    | 12     | 20  | ---                                      | 8                               | ---                   | ---                      | ---                              | 190                                   | ---                                    | 7.6        | 73          |
| 52                                    | 52     | 8   | 40                                       | 24                              | ---                   | 15                       | ---                              | ---                                   | ---                                    | 8.0        | 74          |
| 51                                    | 51     | 8   | 41                                       | 24                              | ---                   | 15                       | 15                               | ---                                   | ---                                    | 8.0        | 75          |
| 46                                    | 46     | 6   | 13                                       | 5                               | 10/65                 | 4                        | .25                              | ---                                   | ---                                    | ---        | 79          |

Table 12.

| Well location |           | Owner                      | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topo-graphic setting | Aquifer/lithology |
|---------------|-----------|----------------------------|--------------------------|----------------|-----|---------------------------------|----------------------|-------------------|
| Number        | Lat-Long  |                            |                          |                |     |                                 |                      |                   |
| Er- 80        | 4201-8003 | Summit Township            | Moody Drilling Co., Inc. | 1965           | U   | 1,370                           | S                    | Dv/fsh            |
| 82            | 4156-8004 | U.S. Geological Survey     | do.                      | 1966           | U   | 1,419                           | H                    | Dv/sh             |
| 88            | 4151-8009 | J. T. Young                | J. M. Cole               | 1923           | H   | 1,535                           | H                    | Mc/fst            |
| 90            | 4151-8012 | Raymond Hotchkiss          | do.                      | 1929           | H   | 1,260                           | S                    | MDbv/fst          |
| 91            | 4152-8000 | Charles Pollock            | ---                      | ---            | H   | 1,200                           | S                    | Qo/u              |
| 93            | 4155-7959 | T. B. Matchett             | McCray Bros.             | 1923           | H   | 1,190                           | V                    | Qo/gr             |
| 97            | 4156-7959 | Waterford Water Supply Co. | ---                      | 1928           | P   | 1,173                           | V                    | Qo/gr             |
| 98            | 4156-7959 | do.                        | ---                      | 1924           | P   | 1,173                           | V                    | Qo/gr             |
| 99            | 4156-7959 | do.                        | ---                      | 1927           | P   | 1,173                           | S                    | Qo/gr             |
| 102           | 4210-7957 | New York Central Railroad  | Viricle L. Griffin       | 1927           | H   | 730                             | F                    | Dne/sh            |
| 103           | 4212-7953 | R. C. Bard                 | Adgate Marshall          | 1911           | H   | 750                             | F                    | Dne/ss            |
| 104           | 4212-7953 | Louise Trejchel            | do.                      | 1911           | H   | 750                             | F                    | Dne/ss            |
| 105           | 4210-7952 | Roger Marshall             | do.                      | 1911           | H   | 990                             | S                    | Qt/gr             |
| 106           | 4212-7950 | Ross Jones                 | do.                      | 1911           | H   | 800                             | S                    | Dne/ss            |
| 107           | 4212-7950 | North East Borough         | do.                      | 1911           | H   | 800                             | F                    | Qt/u              |
| 108           | 4214-7950 | May MacLachlan             | do.                      | 1911           | H   | 640                             | S                    | Dne/ss            |
| 109           | 4213-7948 | Margaret Pero              | do.                      | 1911           | H   | 830                             | F                    | Dne/ss            |
| 110           | 4210-7948 | Nora Morse                 | do.                      | 1911           | H   | 1,240                           | S                    | Dch/ss            |
| 111           | 4210-7946 | W. R. Desin                | do.                      | 1911           | H   | 1,480                           | S                    | Dch/ss            |
| 112           | 4207-7949 | Josephine Lang             | do.                      | 1911           | S   | 1,440                           | S                    | Dch/ss            |
| 113           | 4207-7949 | do.                        | do.                      | 1911           | H   | 1,440                           | S                    | Dch/ss            |
| 114           | 4201-7949 | Art Conrad                 | ---                      | 1930           | C   | 1,297                           | V                    | Qo/u              |
| 115           | 4201-7948 | A. T. Gilmore              | ---                      | ---            | H   | 1,290                           | V                    | Qo/u              |
| 116           | 4201-7946 | L. J. Jensen               | ---                      | 1913           | H   | 1,340                           | V                    | Qo/gr             |
| 117           | 4156-7946 | Amity Township School      | McCray Bros.             | 1913           | H   | 1,540                           | S                    | Qt/gr             |
| 118           | 4156-7946 | Garry Prebble              | do.                      | 1917           | H   | 1,480                           | T                    | Qo/gr             |
| 119           | 4155-7945 | H. Dunn                    | do.                      | 1913           | H   | 1,420                           | V                    | Qo/gr             |
| 120           | 4153-7951 | Merrill Soul Milk Co.      | ---                      | ---            | N   | 1,272                           | V                    | Qo/gr             |
| 121           | 4154-7951 | Will Gross                 | McCray Bros.             | 1915           | H   | 1,250                           | V                    | Qo/sdgr           |
| 122           | 4154-7951 | ---                        | ---                      | ---            | U   | 1,260                           | V                    | Dv/sh             |
| 123           | 4154-7948 | Union City Borough         | ---                      | 1920           | P   | 1,380                           | S                    | Dv/sh             |
| 126           | 4153-7945 | Crowley                    | McCray Bros.             | 1905           | H   | 1,355                           | V                    | Qo/sd             |
| 127           | 4154-7944 | Harrington                 | ---                      | ---            | H   | 1,385                           | V                    | Qo/gr             |
| 128           | 4154-7944 | Dave Lyons                 | ---                      | ---            | H   | 1,380                           | V                    | Qo/gr             |
| 129           | 4152-7944 | Lilley                     | ---                      | ---            | H   | 1,390                           | S                    | Dv/fss            |
| 130           | 4154-7942 | Charles Gates              | McCray Bros.             | 1916           | H   | 1,380                           | V                    | Qo/gr             |
| 131           | 4151-7943 | Charles Drake              | do.                      | 1913           | H   | 1,460                           | S                    | Qt/gr             |
| 132           | 4155-7940 | State Fish Hatchery        | do.                      | 1921           | Z   | 1,400                           | T                    | Qo/gr             |
| 136           | 4156-7938 | Corry Water Supply Co.     | ---                      | 1927           | Z   | 1,420                           | V                    | Qo/gr             |
| 137           | 4155-7938 | Ed Marsh                   | ---                      | 1926           | H   | 1,410                           | V                    | Qo/u              |
| 138           | 4155-7938 | A. A. Williams             | ---                      | 1926           | H   | 1,420                           | S                    | Dv/fss            |
| 139           | 4155-7938 | Sweet                      | ---                      | 1903           | H   | 1,435                           | F                    | Dv/sh             |
| 140           | 4154-7938 | Corry Water Supply Co.     | ---                      | ---            | N   | 1,680                           | S                    | Dv/fss            |
| 141           | 4156-7959 | Waterford Borough          | Moody Drilling Co., Inc. | 1962           | P   | 1,175                           | V                    | Qo/sdgr           |
| 142           | 4152-8018 | F. L. Kitcey               | Alfred L. Burch          | 1970           | H   | 1,112                           | S                    | Qt/sdgr           |
| 143           | 4152-8018 | Ronald Mayer               | Richard L. Ticknor       | 1975           | H   | 1,162                           | H                    | MDbv/fsh          |
| 144           | 4152-8018 | Daniel Donch               | do.                      | 1975           | H   | 1,130                           | S                    | MDbv/fsh          |
| 145           | 4153-8015 | John Surovick              | B. W. Bateman and Son    | 1966           | H   | 1,250                           | S                    | Qt/u              |
| 146           | 4153-8015 | Jack Baker                 | Donald L. Hermann        | 1972           | H   | 1,220                           | S                    | Qt/u              |
| 147           | 4153-8015 | Francis Surovick           | Moody Drilling Co., Inc. | 1956           | H   | 1,220                           | U                    | MDbv/fsh          |
| 148           | 4153-8018 | R. T. Hallstead            | do.                      | 1957           | H   | 1,150                           | U                    | MDbv/ss           |
| 149           | 4153-8018 | Bliss Miller               | B. W. Bateman and Son    | 1967           | H   | 1,125                           | S                    | MDbv/fsh          |
| 150           | 4153-8018 | Larry Valentine            | Boyd Lee Hall            | 1971           | H   | 1,135                           | S                    | MDbv/fsh          |
| 151           | 4153-8018 | Stanley Rosecky            | Alfred L. Burch          | 1967           | H   | 1,142                           | S                    | MDbv/fsh          |
| 152           | 4153-8019 | Dalton Hammett             | do.                      | 1974           | H   | 1,076                           | T                    | MDbv/fsh          |
| 153           | 4153-8019 | Glenn Hanas                | Michael W. Burch         | 1976           | H   | 1,088                           | S                    | MDbv/fss          |
| 154           | 4153-8019 | W. L. Nelson               | do.                      | 1975           | H   | 1,080                           | S                    | MDbv/fsh          |
| 155           | 4153-8019 | David Timko                | Alfred L. Burch          | 1970           | H   | 1,050                           | S                    | MDbv/fsh          |
| 156           | 4153-8019 | Edwin Sherman              | Moody Drilling Co., Inc. | 1964           | H   | 1,080                           | S                    | MDbv/fsh          |
| 157           | 4153-8020 | Lawrence Steinhoff         | John E. Gage, Jr.        | 1971           | H   | 985                             | T                    | Dch/fsh           |
| 158           | 4153-8020 | Keith Merchants            | Max E. Hickernell        | 1961           | H   | 957                             | V                    | Dch/fsh           |
| 159           | 4153-8020 | Lundy's Lane Church        | Moody Drilling Co., Inc. | 1959           | H   | 938                             | V                    | Dch/fsh           |
| 160           | 4153-8020 | John Dzak                  | B. W. Bateman and Son    | 1967           | H   | 942                             | V                    | Dch/fsh           |
| 161           | 4153-8020 | Archie Dodge               | do.                      | 1967           | H   | 955                             | T                    | Qt/t              |
| 162           | 4153-8020 | Milton Viard               | Richard L. Ticknor       | 1975           | H   | 942                             | T                    | Qt/t              |
| 163           | 4153-8021 | Joseph Bayus               | Boyd Lee Hall            | 1971           | H   | 900                             | T                    | Dch/fsh           |
| 164           | 4154-8015 | J. M. Semple               | B. W. Bateman and Son    | 1969           | H   | 1,202                           | S                    | Qt/t              |
| 165           | 4154-8015 | D. A. Soltis               | Donald L. Hermann        | 1972           | H   | 1,230                           | S                    | Qt/t              |
| 166           | 4154-8016 | J. J. Schanz               | John E. Gage, Jr.        | 1974           | H   | 1,169                           | U                    | MDbv/ssh          |
| 167           | 4154-8016 | A. P. Sabol                | Alfred L. Burch          | 1972           | H   | 1,172                           | U                    | MDbv/ssh          |
| 168           | 4154-8017 | N. D. Martin               | Alfred L. Burch          | 1972           | H   | 1,132                           | U                    | MDbv/ssh          |
| 169           | 4154-8017 | P. R. Crane                | Moody Drilling Co., Inc. | 1957           | H   | 1,110                           | U                    | Dch/fsh           |
| 170           | 4154-8017 | do.                        | Alfred L. Burch          | 1971           | H   | 1,110                           | U                    | MDbv/fsh          |
| 171           | 4154-8018 | Vergil Taylor              | John E. Gage, Jr.        | 1972           | H   | 1,100                           | U                    | Qt/gr             |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 53                                    | 46           | 6                 | ---                                      | 5                               | 10/65                 | 21                       | .06                              | ---                                   | ---                                    | ---        | Er- 80      |
| 82                                    | 56           | 6                 | ---                                      | 17                              | 6/66                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 82          |
| 38                                    | 18           | 4                 | ---                                      | 6                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 88          |
| 60                                    | 60           | 4                 | ---                                      | 15                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 90          |
| 104                                   | 80           | 6                 | 40                                       | 24                              | ---                   | ---                      | ---                              | 120                                   | 420                                    | ---        | 91          |
| 200                                   | 200          | 3                 | 198                                      | 1                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 93          |
| 52                                    | 52           | 8                 | 42                                       | F                               | ---                   | 53                       | ---                              | ---                                   | ---                                    | ---        | 97          |
| 100                                   | 100          | 6                 | 97                                       | F                               | ---                   | 20                       | ---                              | 97                                    | ---                                    | ---        | 98          |
| 114                                   | 114          | 6                 | 38                                       | F                               | ---                   | 90                       | ---                              | ---                                   | ---                                    | ---        | 99          |
| 40                                    | 22           | 6                 | ---                                      | 20                              | ---                   | ---                      | ---                              | 96                                    | ---                                    | ---        | 102         |
| 159                                   | 110          | 6                 | ---                                      | 60                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 103         |
| 250                                   | 150          | 6                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 104         |
| 75                                    | 20           | 6                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 105         |
| 128                                   | 14           | 6                 | ---                                      | 60                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 106         |
| 99                                    | 30           | 6                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 107         |
| 90                                    | 69           | 6                 | ---                                      | 60                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 108         |
| 52                                    | 33           | 6                 | ---                                      | 15                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 109         |
| 85                                    | 19           | 6                 | ---                                      | 3                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 110         |
| 77                                    | 52           | 6                 | ---                                      | 20                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 111         |
| 104                                   | 52           | 6                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 112         |
| 108                                   | 24           | 6                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 113         |
| 305                                   | 300          | 3                 | ---                                      | ---                             | ---                   | ---                      | 75                               | 220                                   | 8.2                                    | ---        | 114         |
| 260                                   | 260          | 4                 | ---                                      | 6                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 115         |
| 120                                   | 120          | 4                 | ---                                      | F                               | ---                   | ---                      | 110                              | ---                                   | ---                                    | ---        | 116         |
| 44                                    | 20           | ---               | ---                                      | 20                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 117         |
| 110                                   | 110          | ---               | ---                                      | 20                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 118         |
| 111                                   | 111          | ---               | ---                                      | 20                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 119         |
| 160                                   | 110          | ---               | ---                                      | F                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 120         |
| 75                                    | 75           | ---               | ---                                      | 20                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 121         |
| ---                                   | ---          | ---               | 225                                      | F                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 122         |
| 100                                   | 20           | 6                 | ---                                      | 16                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 123         |
| 315                                   | 315          | ---               | 310                                      | 5                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 126         |
| 160                                   | 160          | ---               | ---                                      | F                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 127         |
| 250                                   | 250          | ---               | ---                                      | F                               | ---                   | ---                      | 30                               | 560                                   | ---                                    | ---        | 128         |
| 250                                   | ---          | 4                 | 123                                      | F                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 129         |
| 315                                   | 315          | 4                 | 314                                      | F                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 130         |
| 61                                    | 25           | ---               | 19                                       | 30                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 131         |
| 65                                    | 65           | 4                 | ---                                      | F                               | 10/28                 | 15                       | 100                              | 252                                   | 8.0                                    | ---        | 132         |
| 50                                    | 50           | ---               | ---                                      | F                               | ---                   | ---                      | 120                              | ---                                   | ---                                    | ---        | 136         |
| 402                                   | 392          | 6                 | 392                                      | 5                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 137         |
| 120                                   | 22           | 6                 | 80;110                                   | 5                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 138         |
| 120                                   | 100          | ---               | ---                                      | F                               | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 139         |
| 140                                   | 20           | 6                 | ---                                      | 40                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 140         |
| 96                                    | 80           | 12                | 86                                       | 76                              | ---                   | 360                      | ---                              | 130                                   | 340                                    | 7.6        | 141         |
| 32                                    | 32           | 8                 | 24                                       | 4                               | 8/70                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 142         |
| 50                                    | 27           | 8                 | 12;22                                    | 5                               | 6/75                  | 5                        | .23                              | ---                                   | ---                                    | ---        | 143         |
| 50                                    | 17           | 8                 | 14;16                                    | 5                               | 6/75                  | 7                        | .33                              | ---                                   | ---                                    | ---        | 144         |
| 50                                    | 40           | 6                 | 41                                       | 15                              | 10/66                 | 6                        | .24                              | ---                                   | ---                                    | ---        | 145         |
| 52                                    | 21           | 12                | 21                                       | 10                              | 11/72                 | 15                       | .36                              | ---                                   | ---                                    | ---        | 146         |
| 42                                    | 25           | 8                 | ---                                      | 10                              | 6/56                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 147         |
| 70                                    | ---          | 8                 | ---                                      | ---                             | ---                   | .1                       | ---                              | 35                                    | 1,100                                  | ---        | 148         |
| 53                                    | 20           | 6                 | 34                                       | 10                              | 6/67                  | 3                        | .08                              | ---                                   | ---                                    | ---        | 149         |
| 39                                    | 29           | 12                | 28;39                                    | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 150         |
| 49                                    | 27           | 8                 | 24                                       | 10                              | 7/67                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 151         |
| 50                                    | 15           | 12                | 15;20;30                                 | 8                               | 8/74                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 152         |
| 50                                    | 20           | 8                 | 19;42                                    | ---                             | ---                   | 1                        | ---                              | ---                                   | ---                                    | ---        | 153         |
| 50                                    | 14           | 8                 | 10;28                                    | 7                               | 8/75                  | 9                        | .22                              | ---                                   | ---                                    | ---        | 154         |
| 40                                    | 21           | 8                 | 16;20                                    | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 155         |
| 55                                    | 47           | 8                 | 45                                       | 14                              | 4/64                  | 12                       | .39                              | ---                                   | ---                                    | ---        | 156         |
| 47                                    | 23           | 8                 | 12;27                                    | 6                               | 3/71                  | 2                        | .05                              | ---                                   | ---                                    | ---        | 157         |
| 75                                    | 26           | 12                | 60                                       | 24                              | 6/61                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 158         |
| 83                                    | 30           | 8                 | ---                                      | 20                              | 9/59                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 159         |
| 50                                    | 27           | 6                 | 18;30                                    | 12                              | 8/67                  | 3                        | .09                              | ---                                   | ---                                    | ---        | 160         |
| 45                                    | 20           | 6                 | 24                                       | 18                              | 4/67                  | 4                        | .18                              | ---                                   | ---                                    | ---        | 161         |
| 50                                    | 23           | 6                 | 16;25                                    | 6                               | 11/67                 | 8                        | .24                              | ---                                   | ---                                    | ---        | 162         |
| 70                                    | 19           | 8                 | 16                                       | 13                              | 7/75                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 163         |
| 50                                    | 28           | 12                | 28;43                                    | 8                               | 7/71                  | ---                      | .30                              | 220                                   | 530                                    | ---        | 164         |
| 45                                    | 24           | 6                 | 28                                       | 4                               | 10/69                 | 5                        | .14                              | ---                                   | ---                                    | ---        | 165         |
| 70                                    | 29           | 8                 | 26                                       | 3                               | 8/72                  | 25                       | ---                              | ---                                   | ---                                    | ---        | 166         |
| 45                                    | 26           | 8                 | 22                                       | 10                              | 7/74                  | 3                        | .20                              | ---                                   | ---                                    | ---        | 167         |
| 50                                    | 27           | 8                 | 23;48                                    | 5                               | 4/72                  | 5                        | .11                              | ---                                   | ---                                    | ---        | 168         |
| 72                                    | 31           | 8                 | ---                                      | 20                              | 11/57                 | .5                       | ---                              | ---                                   | ---                                    | ---        | 169         |
| 60                                    | 31           | 8                 | 10;14;40                                 | 4                               | 7/71                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 170         |
| 34                                    | 24           | ---               | 12;23                                    | 7                               | 6/72                  | 7                        | .88                              | ---                                   | ---                                    | ---        | 171         |

Table 12.

| Well location |           | Owner                  | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|------------------------|---------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                        |                           |                |     |                                 |                     |                   |
| Er- 172       | 4154-8018 | Jerry Pender           | John E. Gage, Jr.         | 1974           | H   | 1,116                           | H                   | MDbv/sh           |
| 173           | 4154-8018 | do.                    | do.                       | 1974           | H   | 1,116                           | H                   | MDbv/sh           |
| 174           | 4154-8019 | R. L. Jones            | Moody Drilling Co., Inc.  | 1958           | H   | 1,041                           | S                   | Dch/sh            |
| 175           | 4154-8019 | James Klobusnik        | Alfred L. Burch           | 1970           | H   | 1,064                           | S                   | Qt/sdgr           |
| 176           | 4154-8021 | C. W. Summerville      | ---                       | ---            | H   | 895                             | V                   | Qt/t              |
| 177           | 4155-8015 | Erwin Koestel          | B. W. Bateman and Son     | 1967           | H   | 1,146                           | S                   | Qt/t              |
| 178           | 4155-8017 | Roy Lydic              | John E. Gage, Jr.         | 1972           | H   | 1,078                           | T                   | Dch/fsh           |
| 179           | 4155-8018 | Daniel Longstreth      | Michael W. Burch          | 1975           | H   | 1,100                           | S                   | Dch/sh            |
| 180           | 4155-8019 | M. J. Pietrowski       | Robert Anderson           | 1975           | H   | 1,020                           | S                   | Qt/c              |
| 181           | 4155-8019 | William Reiser         | John E. Gage, Jr.         | 1975           | H   | 958                             | S                   | Qt/c              |
| 182           | 4155-8019 | Edith Margetta         | do.                       | 1973           | H   | 1,040                           | S                   | Qt/sd             |
| 183           | 4155-8019 | Lawrence Orr           | B. W. Bateman and Son     | 1968           | H   | 1,026                           | S                   | Dch/sh            |
| 184           | 4155-8017 | John Morrison          | John E. Gage, Jr.         | 1973           | H   | 1,085                           | U                   | Dch/fsh           |
| 185           | 4155-8018 | Donna Burger           | Michael W. Burch          | 1975           | H   | 1,089                           | S                   | Dch/sh            |
| 186           | 4155-8018 | Edward Fletcher        | John E. Gage, Jr.         | 1972           | H   | 1,112                           | F                   | MDbv/fsh          |
| 187           | 4155-8019 | Phillip Garlick        | Richard L. Ticknor        | 1975           | H   | 1,030                           | S                   | Dch/sh            |
| 188           | 4155-8019 | R. J. Thoms            | John E. Gage, Jr.         | 1973           | H   | 960                             | S                   | Qo/sd             |
| 189           | 4155-8019 | Paul Panko             | Alfred L. Burch           | 1971           | H   | 930                             | H                   | Qo/sdgr           |
| 190           | 4155-8020 | Albert Kuzma           | do.                       | 1974           | H   | 930                             | S                   | Qo/gr             |
| 191           | 4155-8020 | E. J. Angellotti       | John E. Gage, Jr.         | 1972           | H   | 930                             | S                   | Qo/sd             |
| 192           | 4155-8022 | W. H. Keith            | do.                       | 1970           | H   | 860                             | H                   | Qt/gr             |
| 193           | 4153-8020 | Elk Creek Township     | Jack Young                | 1976           | H   | 972                             | S                   | Qt/t              |
| 194           | 4156-8017 | Dale Starr             | do.                       | 1976           | H   | 1,068                           | S                   | Dch/fsh           |
| 195           | 4156-8018 | D. L. Platz            | John E. Gage, Jr.         | 1972           | H   | 965                             | T                   | Qo/gr             |
| 196           | 4156-8018 | R. M. Halm             | do.                       | 1972           | H   | 920                             | U                   | Qo/gr             |
| 197           | 4156-8019 | Richard Otteni         | do.                       | 1971           | H   | 940                             | H                   | Qo/gr             |
| 198           | 4156-8019 | Walter Youngs          | George H. Ackerman        | 1972           | H   | 942                             | H                   | Qt/t              |
| 199           | 4156-8019 | T. V. Hunt             | B. W. Bateman and Son     | 1969           | H   | 875                             | S                   | Qt/t              |
| 200           | 4156-8019 | William Hunt           | do.                       | 1969           | H   | 872                             | S                   | Qt/t              |
| 201           | 4156-8020 | Dennis Clendenning     | John E. Gage, Jr.         | 1974           | H   | 873                             | U                   | Dch/sh            |
| 202           | 4156-8020 | Carl Pedano            | do.                       | 1970           | H   | 875                             | S                   | Qt/sd             |
| 203           | 4156-8020 | John Struchen          | B. W. Bateman and Son     | 1969           | H   | 875                             | S                   | Dch/sh            |
| 204           | 4156-8021 | J. B. Shope            | Lowell Halstead           | 1973           | H   | 840                             | H                   | Qo/sd             |
| 205           | 4157-8015 | O. R. Tome             | Alfred L. Burch           | 1972           | H   | 1,142                           | U                   | MDbv/sh           |
| 206           | 4157-8015 | George Bucho           | do.                       | 1975           | H   | 1,071                           | S                   | Dch/sh            |
| 207           | 4157-8015 | Thomas Steinmiller     | do.                       | 1975           | H   | 1,075                           | S                   | Dch/sh            |
| 208           | 4157-8017 | R. P. Krahe            | do.                       | 1973           | H   | 930                             | S                   | Dch/fsh           |
| 209           | 4157-8017 | A. J. Silva            | do.                       | 1974           | H   | 950                             | T                   | Dch/fsh           |
| 210           | 4157-8017 | J. B. Cook             | do.                       | 1970           | H   | 880                             | S                   | Dg/sh             |
| 211           | 4157-8017 | J. A. Olack            | George H. Ackerman        | 1974           | H   | 932                             | H                   | Qo/u              |
| 212           | 4157-8017 | William Felege         | Lowell Halstead           | 1973           | H   | 920                             | S                   | Qo/gr             |
| 213           | 4157-8018 | William Soudan         | Alfred L. Burch           | 1975           | H   | 880                             | S                   | Qo/sdgr           |
| 214           | 4157-8019 | J. L. Borland          | do.                       | 1974           | H   | 860                             | F                   | Qo/u              |
| 215           | 4157-8019 | Muriel Hollenbeck      | do.                       | 1973           | H   | 873                             | H                   | Qo/sd             |
| 216           | 4157-8019 | E. S. Rakowski         | do.                       | 1972           | H   | 882                             | H                   | Qo/sd             |
| 217           | 4157-8019 | Gordon Beers           | B. W. Bateman and Son     | 1968           | H   | 878                             | H                   | Qo/sd             |
| 218           | 4157-8019 | John Shaffer           | Alfred L. Burch           | 1966           | H   | 862                             | T                   | Qo/gr             |
| 219           | 4157-8019 | David Struchen         | Lowell Halstead           | 1973           | H   | 868                             | H                   | Qo/gr             |
| 220           | 4157-8019 | Robert Shepherd        | Alfred L. Burch           | 1975           | H   | 890                             | H                   | Qo/sdgr           |
| 221           | 4157-8019 | G. L. Strobel          | John E. Gage, Jr.         | 1974           | H   | 880                             | H                   | Qo/gr             |
| 222           | 4157-8020 | T. D. Sterrett         | Donald L. Hermann         | 1972           | H   | 880                             | F                   | Qo/sdgr           |
| 223           | 4158-8016 | William Bushelman      | Alfred L. Burch           | 1969           | U   | 755                             | H                   | Dg/sh             |
| 224           | 4158-8017 | Lewis McDonald         | Lowell Halstead           | 1973           | H   | 870                             | F                   | Qo/gr             |
| 225           | 4158-8018 | P. R. Hokanson         | Michael W. Burch          | 1975           | H   | 785                             | S                   | Dg/sh             |
| 226           | 4158-8021 | H. C. Klein            | B. W. Bateman and Son     | 1969           | H   | 815                             | H                   | Qo/gr             |
| 227           | 4158-8021 | Carol Feasler          | do.                       | 1969           | H   | 816                             | F                   | Qo/gr             |
| 228           | 4158-8021 | John Vancise           | John E. Gage, Jr.         | 1974           | H   | 817                             | H                   | Qo/gr             |
| 229           | 4158-8021 | S. F. Gncinski         | Charles J. Richardson III | 1973           | H   | 830                             | F                   | Qo/sdgr           |
| 230           | 4158-8022 | Anshelm Sundberg       | McCray Bros.              | 1972           | H   | 790                             | S                   | Qt/t              |
| 231           | 4159-8016 | R. C. Herhold          | Felix J. Waible           | 1974           | H   | 890                             | H                   | Qo/sdgr           |
| 232           | 4159-8015 | John Eckels            | John E. Gage, Jr.         | 1975           | H   | 945                             | H                   | Qo/sdgr           |
| 233           | 4159-8016 | B. B. Gilmore          | Alfred L. Burch           | ---            | U   | 875                             | H                   | Qo/u              |
| 234           | 4159-8016 | John Spaulding         | Robert Anderson           | 1977           | H   | 880                             | H                   | Qo/gr             |
| 235           | 4159-8016 | B. B. Gilmore          | Alfred L. Burch           | 1969           | H   | 875                             | H                   | Qo/gr             |
| 236           | 4159-8017 | Gerard Schellang       | Michael W. Burch          | 1976           | H   | 864                             | H                   | Dg/sh             |
| 237           | 4159-8017 | Gunnison Bros. Tannery | Moody Drilling Co., Inc.  | 1958           | H   | 750                             | S                   | Dg/sh             |
| 238           | 4157-8019 | John Mitrison          | Alfred L. Burch           | 1973           | H   | 888                             | S                   | Qo/sd             |
| 239           | 4159-8019 | Dennis Bills           | do.                       | 1975           | H   | 828                             | S                   | Qo/sdgr           |
| 240           | 4159-8019 | D. A. Graham           | do.                       | 1975           | H   | 800                             | S                   | Qo/sdgr           |
| 241           | 4159-8019 | Milton Baldwin         | do.                       | 1971           | H   | 790                             | S                   | Qo/gr             |
| 242           | 4159-8019 | Stephen Sorgen         | do.                       | 1974           | H   | 795                             | S                   | Qo/sdgr           |
| 243           | 4159-8019 | Joseph Michalski       | do.                       | 1973           | H   | 826                             | S                   | Qo/sdgr           |
| 244           | 4159-8020 | E. E. Cook             | do.                       | 1975           | H   | 795                             | S                   | Qo/sdgr           |
| 245           | 4159-8020 | Jack Baudau            | do.                       | 1972           | H   | 738                             | V                   | Qo/gr             |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |              |                   |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
|                                       | Depth (feet) | Diameter (inches) |                                          |                                 |                       |                          |                                  |                                       |                                        |            |             |
| 38                                    | 28           | 8                 | 13;22                                    | 5                               | 8/74                  | 8                        | .53                              | ---                                   | ---                                    | ---        | Er- 172     |
| 38                                    | 25           | 8                 | 15;25                                    | 10                              | 7/74                  | 8                        | .40                              | ---                                   | ---                                    | ---        | 173         |
| 75                                    | 19           | 10                | ---                                      | 15                              | 6/58                  | .1                       | ---                              | ---                                   | ---                                    | ---        | 174         |
| 27                                    | 27           | 8                 | 18                                       | 10                              | 8/70                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 175         |
| 30                                    | 30           | 6                 | 29                                       | 20                              | 8/76                  | 3                        | .43                              | ---                                   | ---                                    | ---        | 176         |
| 45                                    | 31           | 6                 | 33                                       | 12                              | 6/67                  | 6                        | .24                              | ---                                   | ---                                    | ---        | 177         |
| 40                                    | 24           | 8                 | 12;24                                    | 4                               | 3/72                  | 8                        | .57                              | ---                                   | ---                                    | ---        | 178         |
| 50                                    | 13           | 8                 | ---                                      | 8                               | 9/75                  | 4                        | .10                              | ---                                   | ---                                    | ---        | 179         |
| 65                                    | 13           | 8                 | 12;25;30                                 | 10                              | 8/75                  | 6                        | .12                              | ---                                   | ---                                    | ---        | 180         |
| 50                                    | 18           | 8                 | 18                                       | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 181         |
| 31                                    | 21           | 8                 | 10;21                                    | 3                               | 5/73                  | 18                       | 1.5                              | ---                                   | ---                                    | ---        | 182         |
| 45                                    | 19           | 6                 | 20                                       | 10                              | 8/68                  | 2                        | .06                              | ---                                   | ---                                    | ---        | 183         |
| 52                                    | 32           | 8                 | 32                                       | 5                               | ---                   | 12                       | .67                              | ---                                   | ---                                    | ---        | 184         |
| 50                                    | 13           | 8                 | 9;28                                     | 2                               | ---                   | 4                        | .09                              | 90                                    | 330                                    | ---        | 185         |
| 38                                    | 34           | 8                 | 11;28                                    | 3                               | 6/72                  | 15                       | .68                              | ---                                   | ---                                    | ---        | 186         |
| 50                                    | 19           | 8                 | 16                                       | 6                               | 7/75                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 187         |
| 46                                    | 29           | 8                 | 9;15;29                                  | 2                               | 5/73                  | 18                       | 1.4                              | ---                                   | ---                                    | ---        | 188         |
| 30                                    | 30           | 8                 | 12;20                                    | ---                             | ---                   | 20                       | .8                               | ---                                   | ---                                    | ---        | 189         |
| 40                                    | 39           | 8                 | 33                                       | 8                               | 10/74                 | 18                       | ---                              | ---                                   | ---                                    | ---        | 190         |
| 26                                    | 26           | 8                 | 16;22                                    | 10                              | 6/72                  | 15                       | 1.5                              | ---                                   | ---                                    | ---        | 191         |
| 62                                    | 62           | 6                 | 59                                       | 20                              | 9/70                  | 3                        | .10                              | ---                                   | ---                                    | ---        | 192         |
| 50                                    | 30           | 8                 | 19;24                                    | 15                              | 9/76                  | 8                        | .27                              | ---                                   | ---                                    | ---        | 193         |
| 50                                    | 17           | 8                 | 14;28;42                                 | 10                              | 9/76                  | 12                       | .34                              | ---                                   | ---                                    | ---        | 194         |
| 30                                    | 24           | ---               | 19                                       | 15                              | 6/72                  | 7                        | .7                               | ---                                   | ---                                    | ---        | 195         |
| 35                                    | 26           | 8                 | 19                                       | 10                              | 6/72                  | 7                        | .7                               | ---                                   | ---                                    | ---        | 196         |
| 43                                    | 43           | 8                 | 43                                       | 28                              | 7/71                  | 12                       | 12                               | ---                                   | ---                                    | ---        | 197         |
| 100                                   | 100          | 8                 | 96                                       | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 198         |
| 80                                    | 25           | 6                 | 30                                       | 15                              | 3/69                  | 1                        | .02                              | ---                                   | ---                                    | ---        | 199         |
| 85                                    | 30           | 6                 | 32                                       | 20                              | 2/69                  | 2                        | .03                              | ---                                   | ---                                    | ---        | 200         |
| 61                                    | 60           | 8                 | 7;54                                     | 30                              | 6/74                  | 3                        | .3                               | ---                                   | ---                                    | ---        | 201         |
| 127                                   | 127          | 8                 | 121                                      | 61                              | 6/70                  | 3                        | .08                              | ---                                   | ---                                    | ---        | 202         |
| 65                                    | 60           | 6                 | 61                                       | 15                              | 9/69                  | 8                        | .23                              | ---                                   | ---                                    | ---        | 203         |
| 98                                    | 98           | 8                 | 90                                       | ---                             | ---                   | 60                       | ---                              | ---                                   | ---                                    | ---        | 204         |
| 60                                    | 10           | 8                 | 11;25;50                                 | 10                              | 9/72                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 205         |
| 45                                    | 16           | 8                 | 15;20                                    | 14                              | 10/75                 | .5                       | ---                              | ---                                   | ---                                    | ---        | 206         |
| 60                                    | 13           | 8                 | 13;30                                    | 9                               | 10/75                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 207         |
| 55                                    | 25           | 8                 | 20;25;43                                 | 12                              | 8/73                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 208         |
| 60                                    | 18           | 8                 | ---                                      | 1                               | 5/74                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 209         |
| 60                                    | 10           | 8                 | 32                                       | 25                              | 7/70                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 210         |
| 135                                   | 121          | 8                 | 114                                      | 102                             | 8/74                  | 35                       | ---                              | ---                                   | ---                                    | ---        | 211         |
| 79                                    | 76           | 8                 | 75                                       | 40                              | 8/73                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 212         |
| 65                                    | 57           | 8                 | 52                                       | 22                              | 5/75                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 213         |
| 89                                    | 89           | 6                 | 89                                       | 72                              | 10/74                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 214         |
| 112                                   | 112          | 8                 | 106                                      | 80                              | ---                   | 18                       | ---                              | ---                                   | ---                                    | ---        | 215         |
| 119                                   | 119          | 8                 | 114                                      | 89                              | 10/72                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 216         |
| 100                                   | 100          | 6                 | 100                                      | 50                              | 4/68                  | 8                        | .19                              | ---                                   | ---                                    | ---        | 217         |
| 85                                    | 73           | 8                 | 69                                       | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 218         |
| 82                                    | 82           | 8                 | 25;78                                    | 20                              | 8/73                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 219         |
| 111                                   | 111          | 8                 | 105                                      | 86                              | 5/75                  | 20                       | 2.0                              | ---                                   | ---                                    | ---        | 220         |
| 118                                   | 118          | 8                 | 112                                      | 60                              | 5/74                  | 12                       | .3                               | ---                                   | ---                                    | ---        | 221         |
| 212                                   | 212          | 8                 | 22;207                                   | 150                             | 8/72                  | 30                       | 1.5                              | ---                                   | ---                                    | ---        | 222         |
| 50                                    | ---          | ---               | 14                                       | 10                              | 5/69                  | .3                       | .06                              | ---                                   | ---                                    | ---        | 223         |
| 65                                    | 65           | 8                 | 65                                       | ---                             | 8/73                  | 50                       | ---                              | ---                                   | ---                                    | ---        | 224         |
| 90                                    | 45           | 5                 | 47                                       | 40                              | 8/75                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 225         |
| 63                                    | 63           | 5                 | 63                                       | 18                              | 11/69                 | 3                        | .08                              | ---                                   | ---                                    | ---        | 226         |
| 68                                    | 68           | 5                 | 68                                       | 33                              | 10/69                 | 4                        | .13                              | ---                                   | ---                                    | ---        | 227         |
| 66                                    | 66           | 8                 | 64                                       | 30                              | 10/74                 | 23                       | 23                               | ---                                   | ---                                    | ---        | 228         |
| 38                                    | 38           | 24                | 38                                       | 18                              | 6/73                  | 6                        | .5                               | ---                                   | ---                                    | ---        | 229         |
| 53                                    | 53           | ---               | 10;20;50                                 | 20                              | 3/72                  | 1                        | .03                              | ---                                   | ---                                    | ---        | 230         |
| 88                                    | 88           | 8                 | 84                                       | 63                              | 6/74                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 231         |
| 44                                    | 44           | 8                 | 26;38                                    | 30                              | 5/75                  | 10                       | 10                               | ---                                   | ---                                    | ---        | 232         |
| 60                                    | 60           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 233         |
| 36                                    | 36           | 8                 | 32                                       | 18                              | 2/77                  | 15                       | 2.1                              | ---                                   | ---                                    | ---        | 234         |
| 32                                    | 32           | 8                 | 27                                       | 17                              | 5/69                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 235         |
| 117                                   | 90           | 8                 | 95                                       | 70                              | 4/76                  | .3                       | .01                              | ---                                   | ---                                    | ---        | 236         |
| 60                                    | 21           | 10                | ---                                      | ---                             | ---                   | 3                        | ---                              | ---                                   | ---                                    | ---        | 237         |
| 60                                    | 44           | 8                 | 37;46                                    | 22                              | 8/73                  | 9                        | ---                              | ---                                   | ---                                    | ---        | 238         |
| 68                                    | 68           | 8                 | 40;60                                    | 34                              | 7/75                  | 20                       | 2.0                              | ---                                   | ---                                    | ---        | 239         |
| 74                                    | 74           | 8                 | 41;50;65                                 | 25                              | 1/75                  | 18                       | .46                              | ---                                   | ---                                    | ---        | 240         |
| 42                                    | 42           | 8                 | 38                                       | 14                              | 4/71                  | 50                       | ---                              | 190                                   | 640                                    | ---        | 241         |
| 60                                    | 60           | 8                 | 55                                       | 20                              | 8/74                  | 30                       | 1.5                              | ---                                   | ---                                    | ---        | 242         |
| 88                                    | 88           | 8                 | 41;44                                    | 45                              | 8/73                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 243         |
| 60                                    | 60           | 8                 | 30;56                                    | 15                              | 11/75                 | 20                       | 1                                | ---                                   | ---                                    | ---        | 244         |
| 20                                    | 20           | 8                 | 15                                       | 8                               | 4/72                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 245         |

Table 12.

| Well location |           | Owner                | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|----------------------|---------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                      |                           |                |     |                                 |                     |                   |
| Er- 246       | 4159-8020 | J. W. Pustelak       | Alfred L. Burch           | 1972           | H   | 736                             | V                   | Qo/gr             |
| 247           | 4159-8021 | D. L. Lance          | do.                       | 1972           | H   | 745                             | S                   | Qo/sdgr           |
| 248           | 4159-8021 | Neil Anderson        | do.                       | 1970           | H   | 742                             | S                   | Qo/sd             |
| 249           | 4159-8021 | D. S. Carey          | do.                       | 1974           | H   | 755                             | H                   | Qo/sd             |
| 250           | 4158-8022 | L. V. Komisarski     | Max E. Hickernell         | 1971           | H   | 754                             | V                   | Qo/gr             |
| 251           | 4154-8023 | Fred Kiedaisch       | Jack Young                | 1976           | H   | 859                             | S                   | Qo/sdgr           |
| 252           | 4151-8024 | W. J. Lawrence       | Alfred L. Burch           | 1971           | H   | 870                             | V                   | Dch/sh            |
| 253           | 4152-8023 | D. C. Byerley        | do.                       | 1971           | H   | 890                             | S                   | Dch/sh            |
| 254           | 4152-8027 | C. M. English        | Richard L. Ticknor        | 1975           | H   | 954                             | T                   | Dch/sh            |
| 255           | 4151-8024 | Kenneth Adams        | Boyd Lee Hall             | 1973           | H   | 850                             | V                   | Qo/sd             |
| 256           | 4152-8028 | Paul Valinsky        | Lorenze Lee Hall          | 1976           | H   | 955                             | T                   | Dch/ssh           |
| 257           | 4151-8024 | William Knapp        | B. W. Bateman and Son     | 1969           | H   | 930                             | S                   | Dch/ssh           |
| 258           | 4151-8023 | Napoleon Lockhart    | do.                       | 1968           | H   | 965                             | H                   | Dch/sh            |
| 259           | 4151-8025 | William Hale         | Lorenze Lee Hall          | 1976           | H   | 952                             | S                   | Dch/fsh           |
| 260           | 4152-8025 | J. A. Harrington     | Alfred L. Burch           | 1973           | H   | 880                             | S                   | Qo/sd             |
| 261           | 4152-8028 | J. J. Frey           | Richard L. Ticknor        | 1975           | H   | 952                             | F                   | Qo/gr             |
| 262           | 4152-8029 | J. A. Lloyd          | do.                       | 1975           | H   | 960                             | U                   | Qo/gr             |
| 263           | 4152-8031 | Roy Huston           | Lowell Halstead           | 1973           | H   | 955                             | F                   | Dch/sh            |
| 264           | 4152-8031 | Barbara Fawcett      | John E. Gage, Jr.         | 1972           | H   | 910                             | U                   | Qt/sd             |
| 265           | 4154-8031 | R. R. Hammer         | Max E. Hickernell         | 1970           | H   | 850                             | H                   | Qo/gr             |
| 266           | 4156-8030 | Richard Reinke       | do.                       | 1968           | H   | 680                             | F                   | Qt/gr             |
| 267           | 4152-8024 | Stanley Loomis       | Moody Drilling Co., Inc.  | 1963           | H   | 861                             | T                   | Qo/gr             |
| 268           | 4152-8026 | A. B. Nearhoof       | John E. Gage, Jr.         | 1970           | H   | 940                             | U                   | Qo/gr             |
| 269           | 4152-8026 | D. P. Blood          | Alfred L. Burch           | 1972           | H   | 950                             | F                   | Qo/sd             |
| 270           | 4152-8028 | George Fronce        | Lorenze Lee Hall          | 1975           | H   | 952                             | F                   | Dch/sh            |
| 271           | 4153-8023 | John Kulyk           | Moody Drilling Co., Inc.  | 1954           | H   | 892                             | U                   | Qo/sdgr           |
| 272           | 4153-8023 | Arturs Eigners       | Alfred L. Burch           | 1964           | H   | 860                             | V                   | Qo/gr             |
| 273           | 4153-8023 | William Greenlee     | Max E. Hickernell         | 1966           | H   | 860                             | V                   | Qo/gr             |
| 274           | 4153-8024 | W. J. Simlick        | Boyd Lee Hall             | 1973           | H   | 856                             | H                   | Qt/c              |
| 275           | 4153-8024 | Thomas Roan          | do.                       | 1970           | H   | 868                             | S                   | Qt/u              |
| 276           | 4153-8024 | Charles English      | Max E. Hickernell         | 1972           | H   | 850                             | S                   | Qt/gr             |
| 277           | 4153-8024 | E. L. Simlick        | John E. Gage, Jr.         | 1974           | H   | 850                             | H                   | Qt/c              |
| 278           | 4153-8025 | William Van Genewitt | Max E. Hickernell         | 1965           | H   | 900                             | H                   | Dch/fsh           |
| 279           | 4153-8025 | Pearl Moyer          | Moody Drilling Co., Inc.  | 1961           | H   | 902                             | F                   | Dch/fsh           |
| 280           | 4153-8026 | Rex Jackson          | John E. Gage, Jr.         | 1972           | H   | 924                             | S                   | Qt/c              |
| 281           | 4153-8026 | Pearl Callahan       | Boyd Lee Hall             | 1970           | H   | 901                             | H                   | Qt/c              |
| 282           | 4153-8026 | Harry Minch          | B. W. Bateman and Son     | 1969           | H   | 910                             | H                   | Dch/fsh           |
| 283           | 4153-8026 | Frank Czulewicz      | Max E. Hickernell         | 1967           | H   | 920                             | H                   | Dch/fsh           |
| 284           | 4153-8028 | Clarence Bricker     | Jack Young                | 1976           | H   | 925                             | U                   | Dch/fsh           |
| 285           | 4153-8028 | A. F. Hemstreet      | John E. Gage, Jr.         | 1974           | H   | 905                             | V                   | Qo/gr             |
| 286           | 4153-8029 | Gordon Hill          | Berkley D. Bossard        | 1967           | H   | 910                             | U                   | Dch/sh            |
| 287           | 4153-8029 | Arnold Hill          | do.                       | 1967           | H   | 918                             | U                   | Dch/fsh           |
| 288           | 4153-8026 | Peter Loepf          | do.                       | 1967           | H   | 935                             | U                   | Dch/sh            |
| 289           | 4153-8026 | John Gable           | do.                       | 1967           | H   | 935                             | U                   | Dch/sh            |
| 290           | 4153-8026 | John Avey            | do.                       | 1967           | H   | 922                             | U                   | Dch/sh            |
| 291           | 4153-8027 | Elmer Randall        | B. W. Bateman and Son     | 1967           | H   | 925                             | U                   | Dch/fsh           |
| 292           | 4153-8029 | Harold Isiminger     | Lowell Halstead           | 1973           | H   | 920                             | H                   | Qo/gr             |
| 293           | 4153-8025 | Bernard Kinney       | B. W. Bateman and Son     | 1966           | H   | 898                             | S                   | Dch/sh            |
| 294           | 4154-8026 | Roy Beckman          | Berkley D. Bossard        | 1967           | H   | 910                             | S                   | Qo/gr             |
| 295           | 4154-8024 | Rodney Klemm         | B. W. Bateman and Son     | 1968           | H   | 915                             | S                   | Qo/gr             |
| 296           | 4154-8023 | D. K. Braddock       | Michael W. Burch          | 1975           | H   | 850                             | S                   | Qo/sdgr           |
| 297           | 4154-8023 | Carl White           | Max E. Hickernell         | 1971           | H   | 890                             | S                   | Qo/gr             |
| 298           | 4154-8023 | Carl Hahn            | Alfred L. Burch           | 1967           | H   | 892                             | H                   | Qt/c              |
| 299           | 4154-8023 | Carlyle Krieg        | John E. Gage, Jr.         | 1974           | H   | 912                             | U                   | Qt/sd             |
| 300           | 4154-8024 | Dale Fobes           | Max E. Hickernell         | 1970           | H   | 920                             | S                   | Qt/c1gr           |
| 301           | 4154-8024 | David Carnes         | U. S. Dean                | 1973           | H   | 905                             | S                   | Qt/gr             |
| 302           | 4154-8025 | T. M. Ryan           | Alfred L. Burch           | 1970           | H   | 908                             | S                   | Qt/c1gr           |
| 303           | 4154-8025 | R. L. Bomboy         | John E. Gage, Jr.         | 1974           | H   | 890                             | V                   | Qt/t              |
| 304           | 4154-8025 | Merle Sterling       | Max E. Hickernell         | 1969           | H   | 900                             | S                   | Qt/c1gr           |
| 305           | 4154-8025 | Michael Rastetter    | Ralph Wayne Grant         | 1974           | H   | 900                             | S                   | Qt/c              |
| 306           | 4154-8026 | Walter Henderson     | Lowell Halstead           | 1973           | H   | 910                             | V                   | Dch/fsh           |
| 307           | 4154-8026 | E. B. Brennan        | Berkley D. Bossard        | 1970           | H   | 910                             | V                   | Qt/c              |
| 308           | 4154-8026 | Roland Zuschlag      | Lowell Halstead           | 1973           | H   | 905                             | S                   | Qt/gr             |
| 309           | 4154-8027 | R. H. White          | Max E. Hickernell         | 1971           | H   | 910                             | S                   | Qt/gr             |
| 310           | 4154-8027 | D. L. Robson         | John E. Gage, Jr.         | 1974           | H   | 910                             | U                   | Qt/gr             |
| 311           | 4154-8025 | Robert Dorchester    | do.                       | 1974           | H   | 904                             | S                   | Qt/sd             |
| 312           | 4155-8022 | Joseph Iesue         | Lorenze Lee Hall          | 1975           | H   | 862                             | H                   | Qo/sdgr           |
| 313           | 4155-8027 | Anson Thornton       | Max E. Hickernell         | 1969           | H   | 882                             | H                   | Qo/gr             |
| 314           | 4155-8027 | R. H. Henck          | Charles J. Richardson III | 1973           | H   | 867                             | H                   | Qo/sdgr           |
| 315           | 4155-8028 | W. J. Elliott        | John E. Gage, Jr.         | 1974           | H   | 855                             | S                   | Qo/sd             |
| 316           | 4156-8024 | Earl Born            | do.                       | 1975           | H   | 826                             | S                   | Qo/gr             |
| 317           | 4156-8027 | G. W. Hills          | Alfred L. Burch           | 1968           | H   | 784                             | S                   | Qo/sdgr           |
| 318           | 4157-8024 | Donald Adams         | Max E. Hickernell         | 1970           | H   | 790                             | S                   | Qt/sd             |
| 319           | 4157-8025 | William Marino       | John E. Gage, Jr.         | 1970           | H   | 735                             | F                   | Qb/sd             |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 22                                    | 22           | 8                 | 16                                       | 7                               | 7/72                  | 20                       | ---                              | ---                                   | ---                                    | ---        | Er- 246     |
| 34                                    | 34           | 8                 | 21                                       | 19                              | 11/72                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 247         |
| 40                                    | 40           | 8                 | ---                                      | 21                              | 12/70                 | 6                        | 6                                | ---                                   | ---                                    | ---        | 248         |
| 26                                    | 26           | 8                 | 18;21                                    | 14                              | 8/74                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 249         |
| 38                                    | 38           | 8                 | 34                                       | 24                              | 11/71                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 250         |
| 60                                    | 60           | 8                 | 12;58                                    | 10                              | 7/76                  | 10                       | .33                              | ---                                   | ---                                    | ---        | 251         |
| 60                                    | 23           | 8                 | 21;33                                    | 10                              | 10/71                 | 8                        | ---                              | ---                                   | ---                                    | ---        | 252         |
| 50                                    | 25           | 8                 | 13;20;37                                 | 10                              | 4/71                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 253         |
| 45                                    | 24           | 8                 | 14;20                                    | 4                               | 7/75                  | 11                       | .48                              | ---                                   | ---                                    | ---        | 254         |
| 124                                   | 124          | 8                 | 95;110                                   | 14                              | 10/73                 | 25                       | 1.8                              | ---                                   | ---                                    | ---        | 255         |
| 49                                    | 24           | 8                 | 20;30                                    | 3                               | 6/76                  | 6                        | .14                              | ---                                   | ---                                    | ---        | 256         |
| 45                                    | 12           | 6                 | 14                                       | 8                               | 3/69                  | 3                        | .09                              | ---                                   | ---                                    | ---        | 257         |
| 50                                    | 12           | 6                 | 16                                       | 8                               | 10/68                 | 2                        | .05                              | ---                                   | ---                                    | ---        | 258         |
| 64                                    | 21           | 8                 | 25                                       | ---                             | ---                   | 5                        | ---                              | ---                                   | ---                                    | ---        | 259         |
| 37                                    | 37           | 8                 | 10;30                                    | 19                              | 10/73                 | 30                       | 5                                | ---                                   | ---                                    | ---        | 260         |
| 40                                    | 22           | 8                 | 12;18                                    | 5                               | 5/75                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 261         |
| 50                                    | 24           | 8                 | 20                                       | 6                               | 6/75                  | 7                        | .2                               | ---                                   | ---                                    | ---        | 262         |
| 55                                    | 25           | 8                 | 25                                       | ---                             | ---                   | 5                        | ---                              | ---                                   | ---                                    | ---        | 263         |
| 48                                    | 24           | 8                 | 12;17                                    | 15                              | 10/72                 | 7                        | 7                                | ---                                   | ---                                    | ---        | 264         |
| 76                                    | 57           | 8                 | 53;68                                    | 48                              | 8/70                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 265         |
| 65                                    | 54           | 8                 | 56                                       | 20                              | 11/68                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 266         |
| 108                                   | 104          | 8                 | 65                                       | 35                              | 10/63                 | 8                        | 8                                | ---                                   | ---                                    | ---        | 267         |
| 38                                    | 38           | 6                 | 34                                       | 10                              | 9/70                  | 3                        | .14                              | ---                                   | ---                                    | ---        | 268         |
| 50                                    | 38           | 8                 | 30                                       | 13                              | 6/72                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 269         |
| 50                                    | 29           | 8                 | 26;43                                    | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 270         |
| 48                                    | 45           | 12                | ---                                      | 35                              | 3/54                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 271         |
| 128                                   | 105          | 6                 | 100;102                                  | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 272         |
| 130                                   | 101          | 6                 | 103                                      | 80                              | 9/66                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 273         |
| 52                                    | 50           | 8                 | 50                                       | 5                               | 10/73                 | 3                        | .06                              | ---                                   | ---                                    | ---        | 274         |
| 36                                    | 36           | 5                 | 36                                       | 16                              | 10/70                 | 5                        | 5                                | ---                                   | ---                                    | ---        | 275         |
| 80                                    | 69           | 8                 | 74                                       | 60                              | 6/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 276         |
| 51                                    | 40           | 8                 | 43                                       | 15                              | 9/74                  | 5                        | .2                               | ---                                   | ---                                    | ---        | 277         |
| 42                                    | 21           | 8                 | 36;41                                    | 20                              | 7/65                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 278         |
| 50                                    | ---          | 8                 | ---                                      | 12                              | 12/61                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 279         |
| 40                                    | 22           | 8                 | 12;22                                    | 10                              | 9/72                  | 12                       | 12                               | ---                                   | ---                                    | ---        | 280         |
| 44                                    | 23           | 8                 | 39                                       | 15                              | 10/70                 | 5                        | .62                              | ---                                   | ---                                    | ---        | 281         |
| 40                                    | 21           | 5                 | 25                                       | 2                               | 8/69                  | 10                       | .36                              | ---                                   | ---                                    | ---        | 282         |
| 60                                    | 23           | 8                 | 25;39                                    | 2                               | 10/67                 | 3                        | ---                              | ---                                   | ---                                    | ---        | 283         |
| 35                                    | 22           | 8                 | 9;20                                     | 5                               | 7/76                  | 7                        | .28                              | ---                                   | ---                                    | ---        | 284         |
| 35                                    | 35           | 8                 | 31                                       | 15                              | 10/74                 | 8                        | ---                              | ---                                   | ---                                    | ---        | 285         |
| 50                                    | 23           | 8                 | 17                                       | 9                               | 7/67                  | 2                        | .05                              | ---                                   | ---                                    | ---        | 286         |
| 50                                    | 20           | 8                 | 14;20                                    | 1                               | 9/67                  | 15                       | 1.1                              | ---                                   | ---                                    | ---        | 287         |
| 47                                    | 24           | 8                 | 18                                       | 8                               | 6/67                  | 4                        | .45                              | ---                                   | ---                                    | ---        | 288         |
| 44                                    | ---          | 6                 | 12;18                                    | 4                               | 6/67                  | 2                        | .18                              | 160                                   | 430                                    | ---        | 289         |
| 44                                    | 27           | 6                 | 22                                       | 6                               | 7/67                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 290         |
| 40                                    | 13           | 6                 | 14;22                                    | 1                               | 8/67                  | 8                        | .3                               | ---                                   | ---                                    | ---        | 291         |
| 88                                    | 88           | 8                 | 80                                       | 58                              | 6/73                  | 6                        | ---                              | 130                                   | 500                                    | ---        | 292         |
| 40                                    | 24           | 6                 | 26                                       | 10                              | 9/66                  | 3                        | .12                              | ---                                   | ---                                    | ---        | 293         |
| 65                                    | 61           | 6                 | 56;65                                    | 14                              | 7/67                  | 12                       | .33                              | ---                                   | ---                                    | ---        | 294         |
| 80                                    | 78           | 6                 | 80                                       | 15                              | 6/68                  | 3                        | .05                              | ---                                   | ---                                    | ---        | 295         |
| 105                                   | 105          | 8                 | 11;83;103                                | 50                              | 7/75                  | 15                       | .50                              | ---                                   | ---                                    | ---        | 296         |
| 81                                    | 81           | 6                 | 77                                       | 40                              | 1971                  | 7                        | ---                              | ---                                   | ---                                    | ---        | 297         |
| 110                                   | 99           | 8                 | 21                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 298         |
| 113                                   | 113          | 8                 | 113                                      | 40                              | 8/74                  | 4                        | .20                              | ---                                   | ---                                    | ---        | 299         |
| 80                                    | 68           | 8                 | ---                                      | 20                              | 8/70                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 300         |
| 71                                    | 71           | 8                 | 68                                       | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 301         |
| 75                                    | 44           | 8                 | 40;52                                    | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 302         |
| 34                                    | 34           | 8                 | 19;21                                    | 15                              | 10/74                 | 7                        | ---                              | ---                                   | ---                                    | ---        | 303         |
| 40                                    | 27           | 8                 | 31                                       | 12                              | 7/69                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 304         |
| 55                                    | 35           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 305         |
| 46                                    | 40           | 8                 | 35;42                                    | ---                             | ---                   | 5                        | ---                              | ---                                   | ---                                    | 8.3        | 306         |
| 53                                    | 43           | 6                 | 38                                       | 7                               | 9/70                  | 16                       | .47                              | ---                                   | ---                                    | ---        | 307         |
| 57                                    | 57           | 8                 | 57                                       | 35                              | 9/73                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 308         |
| 70                                    | 70           | 8                 | 67                                       | 50                              | 11/71                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 309         |
| 72                                    | 72           | 8                 | 68                                       | 30                              | 10/74                 | 5                        | ---                              | 160                                   | 640                                    | ---        | 310         |
| 48                                    | 48           | 8                 | 18;41                                    | 18                              | 4/74                  | 7                        | 7                                | ---                                   | ---                                    | ---        | 311         |
| 97                                    | 95           | 6                 | 97                                       | 32                              | 6/75                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 312         |
| 55                                    | 55           | 8                 | 51                                       | 39                              | 10/69                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 313         |
| 36                                    | 36           | 30                | 24                                       | 24                              | 6/73                  | 5                        | .50                              | 255                                   | 610                                    | ---        | 314         |
| 93                                    | 93           | 8                 | 29;86                                    | 53                              | 4/74                  | 22                       | 22                               | ---                                   | ---                                    | ---        | 315         |
| 50                                    | 50           | 8                 | 44                                       | 14                              | 2/75                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 316         |
| 80                                    | 64           | 8                 | 60                                       | 55                              | 9/68                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 317         |
| 86                                    | 86           | 8                 | 78                                       | 55                              | 7/70                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 318         |
| 39                                    | 39           | 6                 | 33                                       | 10                              | 9/70                  | 2                        | .2                               | ---                                   | ---                                    | ---        | 319         |

Table 12.

| Well location |           | Owner                            | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|----------------------------------|---------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                                  |                           |                |     |                                 |                     |                   |
| Er- 320       | 4157-8026 | C. E. Ryen                       | John E. Gage, Jr.         | 1971           | H   | 711                             | F                   | Qb/gr             |
| 321           | 4157-8023 | Charles Schmidt                  | Max E. Hickernell         | 1968           | H   | 812                             | S                   | Qt/sd             |
| 322           | 4157-8025 | Steven Lascak                    | B. W. Bateman and Son     | 1967           | H   | 735                             | F                   | Qb/sd             |
| 323           | 4158-8024 | H. L. Althouse                   | Alfred L. Burch           | 1970           | P   | 722                             | F                   | Qb/sd             |
| 324           | 4157-8023 | Merle English                    | B. W. Bateman and Son     | 1967           | H   | 830                             | F                   | Qt/u              |
| 325           | 4156-8027 | Leonard Coleman                  | do.                       | 1966           | H   | 750                             | H                   | Qb/sd             |
| 326           | 4152-8023 | Earl Davis                       | do.                       | 1968           | H   | 890                             | S                   | Dch/sh            |
| 327           | 4152-8023 | Esther Brooks                    | do.                       | 1968           | H   | 912                             | S                   | Dch/sh            |
| 328           | 4153-8022 | Alex Bennett                     | Max E. Hickernell         | 1973           | H   | 875                             | S                   | Dch/sh            |
| 329           | 4155-8028 | Timothy Kupetz                   | Michael W. Burch          | 1976           | H   | 850                             | H                   | Dg/sh             |
| 330           | 4154-8021 | Lynn Drury                       | B. W. Bateman and Son     | 1967           | H   | 890                             | S                   | Qo/gr             |
| 331           | 4154-8022 | John Gage                        | do.                       | 1968           | H   | 890                             | H                   | Qo/sd             |
| 332           | 4152-8022 | Alex Pankion                     | do.                       | 1969           | H   | 1,010                           | V                   | Qt/t              |
| 333           | 4151-8019 | Norman Stevens                   | do.                       | 1968           | H   | 1,088                           | S                   | Qt/t              |
| 334           | 4152-8019 | Sylvester Graczek                | Boyd Lee Hall             | 1973           | H   | 985                             | S                   | Qt/t              |
| 335           | 4152-8019 | Gerald Ulan                      | Max E. Hickernell         | 1968           | H   | 1,021                           | S                   | Dch/st            |
| 336           | 4151-8016 | Ronald Kimmy                     | Alfred L. Burch           | 1968           | H   | 1,245                           | S                   | MDbv/fsh          |
| 337           | 4151-8016 | James Loughner                   | do.                       | 1966           | H   | 1,245                           | S                   | MDbv/fsh          |
| 338           | 4151-8018 | Paul Uram                        | Max E. Hickernell         | 1973           | H   | 1,090                           | S                   | Dch/st            |
| 339           | 4152-8022 | Stephen Duda                     | Alfred L. Burch           | 1970           | H   | 1,008                           | F                   | Dch/fsh           |
| 340           | 4151-8021 | A. B. McAddo                     | Max E. Hickernell         | 1970           | H   | 1,083                           | H                   | MDbv/st           |
| 341           | 4152-8022 | George Rendulic                  | Alfred L. Burch           | 1967           | H   | 987                             | U                   | Dch/fsh           |
| 342           | 4151-8019 | R. F. Main                       | Max E. Hickernell         | 1975           | H   | 1,080                           | U                   | Qo/gr             |
| 343           | 4151-8018 | Violet Rath                      | do.                       | 1970           | H   | 1,088                           | U                   | Qt/gr             |
| 344           | 4152-8022 | George Watral                    | Alfred L. Burch           | 1973           | H   | 1,005                           | V                   | Dch/sh            |
| 345           | 4152-8020 | D. E. Terry                      | John E. Gage, Jr.         | 1975           | H   | 1,030                           | S                   | Dch/fsh           |
| 346           | 4151-8018 | Gordon Neal                      | Boyd Lee Hall             | 1971           | H   | 1,095                           | U                   | Dch/sh            |
| 347           | 4151-8007 | Ward Hamby                       | Alfred L. Burch           | 1966           | H   | 1,200                           | V                   | Qt/clgr           |
| 349           | 4151-8008 | Ronald Larson                    | Boyd Lee Hall             | 1969           | H   | 1,340                           | S                   | MDbr/sh           |
| 350           | 4151-8008 | S. W. Bowne                      | Alfred L. Burch           | 1966           | H   | 1,325                           | S                   | MDbr/fsh          |
| 351           | 4151-8009 | J. C. Snyder                     | Boyd Lee Hall             | ---            | H   | 1,485                           | S                   | Mc/fsh            |
| 352           | 4151-8009 | Casimer Yeast                    | Moody Drilling Co., Inc.  | 1965           | H   | 1,525                           | S                   | Mc/sh             |
| 353           | 4151-8009 | R. A. Davis                      | Boyd Lee Hall             | 1967           | H   | 1,525                           | S                   | Mc/sh             |
| 354           | 4151-8009 | L. K. Harned                     | Max E. Hickernell         | 1966           | H   | 1,455                           | S                   | MDbr/fsh          |
| 355           | 4151-8009 | Gordon Flood                     | Boyd Lee Hall             | 1971           | H   | 1,515                           | S                   | Mc/fsh            |
| 356           | 4151-8012 | H. G. Hardman                    | Boyd Lee Hall             | do.            | S   | 1,378                           | S                   | MDbv/fsh          |
| 357           | 4151-8013 | Robert Ward                      | do.                       | 1975           | H   | 1,225                           | S                   | MDbv/fsh          |
| 358           | 4152-8008 | Bruce Hackensmith                | Max E. Hickernell         | 1967           | H   | 1,250                           | S                   | Dv/sed            |
| 359           | 4152-8009 | T. K. Rowland                    | John E. Gage, Jr.         | 1973           | H   | 1,450                           | S                   | Qt/u              |
| 360           | 4152-8011 | Boyd Nelson                      | Alfred L. Burch           | 1969           | H   | 1,445                           | V                   | Qt/sdgr           |
| 361           | 4152-8013 | Steve Watrol                     | Max E. Hickernell         | 1971           | H   | 1,243                           | V                   | Qo/gr             |
| 362           | 4152-8013 | Steve Panko, Jr.                 | Loren Lee Hall            | 1973           | H   | 1,250                           | S                   | Qo/sdgr           |
| 363           | 4200-8015 | R. S. Pustelak                   | Lowell Halstead           | 1973           | H   | 885                             | S                   | Qo/sd             |
| 364           | 4200-8015 | Richard Gill                     | George H. Ackerman        | 1968           | H   | 910                             | T                   | Qo/gr             |
| 365           | 4200-8015 | Joseph Lamberton                 | Alfred L. Burch           | 1975           | U   | 880                             | V                   | Qt/t              |
| 366           | 4200-8015 | do.                              | do.                       | 1975           | H   | 870                             | V                   | Qo/sdgr           |
| 367           | 4200-8016 | Louis Kolarick                   | Max E. Hickernell         | 1963           | H   | 845                             | U                   | Qo/gr             |
| 368           | 4200-8016 | --                               | Donald L. Hermann         | 1972           | H   | 880                             | U                   | Qo/t              |
| 369           | 4200-8016 | Patrick Filzete                  | Felix J. Waible           | 1977           | H   | 840                             | S                   | Qo/gr             |
| 370           | 4200-8017 | Lucman Land Corp.                | Moody Drilling Co., Inc.  | 1972           | P   | 785                             | F                   | Qb/gr             |
| 371           | 4200-8017 | do.                              | do.                       | 1972           | P   | 790                             | F                   | Qb/gr             |
| 372           | 4200-8021 | L. H. Laborde                    | B. W. Bateman and Son     | 1969           | H   | 660                             | S                   | Dne/sh            |
| 373           | 4201-8015 | Fairview Borough                 | Alfred L. Burch           | 1974           | P   | 815                             | T                   | Qb/gr             |
| 374           | 4201-8016 | George Wiser                     | Michael W. Burch          | 1975           | H   | 760                             | S                   | Qb/gr             |
| 375           | 4201-8021 | P. A. Burger                     | Charles J. Richardson III | 1974           | H   | 640                             | F                   | Qb/sdgr           |
| 376           | 4203-8016 | W. H. Neason                     | do.                       | 1973           | H   | 660                             | F                   | Qb/sdgr           |
| 377           | 4203-8016 | A. E. Narducci                   | Alfred L. Burch           | 1972           | H   | 640                             | F                   | Qb/clgr           |
| 378           | 4203-8016 | do.                              | Charles J. Richardson III | 1973           | H   | 600                             | S                   | Qb/sdgr           |
| 379           | 4203-8015 | E. J. Seppala                    | Alfred L. Burch           | 1976           | H   | 655                             | F                   | Qb/sd             |
| 380           | 4200-8015 | G. W. Kunz                       | Donald L. Hermann         | 1972           | H   | 900                             | F                   | Qo/sdgr           |
| 381           | 4200-8015 | W. H. Williams, Jr.              | George H. Ackerman        | 1974           | H   | 840                             | S                   | Qo/sd             |
| 382           | 4200-8015 | W. H. Williams                   | do.                       | 1973           | H   | 840                             | S                   | Qo/sd             |
| 383           | 4200-8015 | R. J. Carter                     | do.                       | 1972           | H   | 862                             | H                   | Qo/u              |
| 384           | 4200-8016 | R. C. Weed, Jr.                  | Charles J. Richardson III | 1973           | H   | 852                             | S                   | Qo/sdgr           |
| 385           | 4200-8017 | A. A. Bartfai                    | Lowell Halstead           | 1973           | H   | 860                             | H                   | Qo/gr             |
| 386           | 4200-8017 | D. P. Cassell                    | do.                       | 1973           | H   | 880                             | H                   | Qo/gr             |
| 387           | 4200-8020 | Frederick Leffingwell            | Alfred L. Burch           | 1972           | H   | 640                             | V                   | Qo/u              |
| 388           | 4201-8015 | Fairview Borough Water Authority | do.                       | 1970           | P   | 815                             | T                   | Qo/gr             |
| 389           | 4201-8019 | Michael Sakuta                   | Charles J. Richardson III | 1973           | H   | 723                             | F                   | Qb/sdgr           |
| 390           | 4202-8015 | D. C. Schaper                    | George H. Ackerman        | 1972           | H   | 676                             | F                   | Qb/u              |
| 391           | 4202-8015 | Y. G. Rice                       | Donald L. Hermann         | 1973           | H   | 690                             | F                   | Qb/sdgr           |
| 392           | 4202-8015 | Richard Wheeler                  | Charles J. Richardson III | 1973           | H   | 688                             | T                   | Qb/sdgr           |
| 393           | 4202-8018 | J. O. Evans                      | Robert Anderson           | 1974           | H   | 615                             | S                   | Qb/c              |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 38                                    | 38           | 8                 | 32;35                                    | 25                              | 6/71                  | 5                        | 5                                | ---                                   | ---                                    | ---        | Er- 320     |
| 91                                    | 91           | 8                 | 85                                       | 50                              | 5/68                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 321         |
| 50                                    | 50           | 6                 | 23;50                                    | 15                              | 3/67                  | 3                        | .09                              | ---                                   | ---                                    | ---        | 322         |
| 96                                    | 96           | 8                 | 11;85;91                                 | 18                              | 8/70                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 323         |
| 65                                    | 65           | 6                 | 65                                       | 25                              | 7/67                  | 2                        | .06                              | ---                                   | ---                                    | ---        | 324         |
| 46                                    | 46           | 6                 | 32                                       | 2                               | 9/66                  | 2                        | .05                              | ---                                   | ---                                    | ---        | 325         |
| 40                                    | 18           | 6                 | 20                                       | 10                              | 8/68                  | 2                        | .07                              | ---                                   | ---                                    | ---        | 326         |
| 45                                    | 11           | 6                 | 12                                       | 6                               | 7/68                  | 2                        | .06                              | ---                                   | ---                                    | ---        | 327         |
| 75                                    | 43           | 8                 | 48                                       | 14                              | 2/73                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 328         |
| 55                                    | 17           | 8                 | 21                                       | 11                              | 6/76                  | 2                        | .05                              | ---                                   | ---                                    | ---        | 329         |
| 22                                    | 21           | 6                 | 20                                       | 12                              | 4/67                  | 3                        | .38                              | ---                                   | ---                                    | ---        | 330         |
| 102                                   | 102          | 6                 | 46;102                                   | 40                              | 11/68                 | 4                        | .09                              | ---                                   | ---                                    | ---        | 331         |
| 40                                    | 15           | 6                 | 16                                       | 3                               | 5/69                  | 10                       | .59                              | 310                                   | 1,050                                  | ---        | 332         |
| 85                                    | 35           | 6                 | 45;75                                    | 25                              | 1/68                  | 2                        | .08                              | ---                                   | ---                                    | ---        | 333         |
| 40                                    | 29           | 8                 | 18                                       | 10                              | 7/73                  | 5                        | .36                              | ---                                   | ---                                    | ---        | 334         |
| 80                                    | 32           | 6                 | 60                                       | 25                              | 7/68                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 335         |
| 50                                    | 31           | 8                 | 31;40                                    | 20                              | 8/68                  | 20                       | 1                                | ---                                   | ---                                    | ---        | 336         |
| 50                                    | 25           | 8                 | 22;33;42                                 | 8                               | 7/66                  | 30                       | 2.5                              | ---                                   | ---                                    | ---        | 337         |
| 68                                    | 37           | 8                 | 42                                       | 12                              | 3/73                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 338         |
| 47                                    | 32           | 8                 | 12;13;17;32                              | 8                               | 9/70                  | 9                        | ---                              | ---                                   | ---                                    | ---        | 339         |
| 62                                    | 62           | 8                 | 41;58                                    | 10                              | 8/70                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 340         |
| 40                                    | 21           | 8                 | 8;15;30                                  | 2                               | 3/67                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 341         |
| 60                                    | 52           | 6                 | 45;55                                    | 45                              | 10/75                 | 30                       | 30                               | ---                                   | ---                                    | ---        | 342         |
| 70                                    | 41           | 6                 | ---                                      | 34                              | 5/70                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 343         |
| 50                                    | 28           | 8                 | 14;18;29                                 | 10                              | 10/73                 | 3                        | ---                              | ---                                   | ---                                    | ---        | 344         |
| 47                                    | 8            | 8                 | 12;14;17                                 | ---                             | ---                   | 7                        | ---                              | 100                                   | 310                                    | ---        | 345         |
| 71                                    | 31           | 8                 | 35                                       | 12                              | 8/71                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 346         |
| 50                                    | 30           | 8                 | 15;25;40                                 | 8                               | 7/66                  | 15                       | ---                              | 70                                    | 300                                    | ---        | 347         |
| 101                                   | ---          | 8                 | 69;97                                    | 50                              | 5/69                  | 11                       | .9                               | ---                                   | ---                                    | ---        | 349         |
| 45                                    | 39           | 8                 | 35;40                                    | 27                              | 9/66                  | 30                       | 10                               | ---                                   | ---                                    | ---        | 350         |
| 69                                    | 38           | 8                 | 44;64                                    | 8                               | ---                   | 12                       | .3                               | ---                                   | ---                                    | ---        | 351         |
| 102                                   | 20           | 7                 | 28;91                                    | 30                              | 9/65                  | 7                        | ---                              | ---                                   | ---                                    | ---        | 352         |
| 41                                    | 27           | 8                 | ---                                      | 1                               | ---                   | 20                       | 1.4                              | ---                                   | ---                                    | ---        | 353         |
| 130                                   | 34           | 6                 | 60;85;110                                | 30                              | 9/66                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 354         |
| 69                                    | 38           | 12                | 44;66                                    | 20                              | 7/71                  | 62                       | 62                               | ---                                   | ---                                    | ---        | 355         |
| 40                                    | 20           | 8                 | 15;35                                    | 10                              | 1973                  | 20                       | 1                                | ---                                   | ---                                    | ---        | 356         |
| 74                                    | 21           | 10                | 20;65                                    | 11                              | 5/75                  | 10                       | .17                              | ---                                   | ---                                    | ---        | 357         |
| 52                                    | 25           | 6                 | 29;39;45                                 | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 358         |
| 36                                    | 28           | 8                 | 16;24                                    | 8                               | 8/73                  | 15                       | 15                               | ---                                   | ---                                    | ---        | 359         |
| 60                                    | 45           | 8                 | 14;30;41                                 | 7                               | 3/69                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 360         |
| 40                                    | 26           | 8                 | 19                                       | 7                               | 9/71                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 361         |
| 40                                    | 38           | 8                 | 35                                       | 8                               | 7/63                  | 40                       | 3.3                              | ---                                   | ---                                    | ---        | 362         |
| 84                                    | 84           | 8                 | 38;81                                    | ---                             | ---                   | 30                       | ---                              | ---                                   | ---                                    | ---        | 363         |
| 38                                    | 38           | 6                 | 38                                       | 6                               | 5/68                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 364         |
| 74                                    | 62           | 8                 | 8;58                                     | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 365         |
| 17                                    | 17           | 8                 | 7                                        | 4                               | 6/75                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 366         |
| 41                                    | 41           | 7                 | ---                                      | 10                              | 3/63                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 367         |
| 96                                    | 92           | 8                 | 22;92                                    | 18                              | 7/72                  | 5                        | .07                              | ---                                   | ---                                    | ---        | 368         |
| 49                                    | 49           | 8                 | 45                                       | 7                               | 3/77                  | 40                       | ---                              | ---                                   | ---                                    | ---        | 369         |
| 61                                    | 61           | 8                 | 40                                       | 2                               | 6/72                  | 600                      | 25                               | ---                                   | ---                                    | ---        | 370         |
| 51                                    | 32           | 8                 | 30                                       | F                               | 6/72                  | 490                      | 22                               | ---                                   | ---                                    | ---        | 371         |
| 40                                    | 26           | 6                 | 12;26                                    | 6                               | 6/69                  | 6                        | .23                              | ---                                   | ---                                    | ---        | 372         |
| 40                                    | 35           | 12                | ---                                      | 24                              | 5/74                  | 100                      | 7.7                              | ---                                   | ---                                    | ---        | 373         |
| 45                                    | 45           | 8                 | 38                                       | 35                              | 8/75                  | 13                       | 1.6                              | ---                                   | ---                                    | ---        | 374         |
| 34                                    | 34           | 30                | 20                                       | 20                              | 6/74                  | 6                        | .5                               | 160                                   | 330                                    | ---        | 375         |
| 20                                    | 20           | 24                | 8                                        | 8                               | 10/73                 | 7                        | .7                               | ---                                   | ---                                    | ---        | 376         |
| 53                                    | ---          | 8                 | 15;53                                    | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 377         |
| 34                                    | 34           | 30                | 24                                       | 16                              | 9/73                  | 5                        | .4                               | 180                                   | 550                                    | ---        | 378         |
| 70                                    | 64           | 8                 | 28;59                                    | 15                              | 5/76                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 379         |
| 113                                   | 113          | 8                 | 105;110                                  | 83                              | 8/72                  | 16                       | 2.3                              | ---                                   | ---                                    | ---        | 380         |
| 70                                    | 60           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 381         |
| 110                                   | 60           | 8                 | 100                                      | ---                             | ---                   | 0                        | ---                              | ---                                   | ---                                    | ---        | 382         |
| 66                                    | ---          | 8                 | 62                                       | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 383         |
| 23                                    | 23           | 24                | 10                                       | 8                               | 8/73                  | 6                        | .43                              | ---                                   | ---                                    | ---        | 384         |
| 78                                    | 78           | 8                 | 70                                       | ---                             | ---                   | 6                        | ---                              | ---                                   | ---                                    | ---        | 385         |
| 74                                    | 74           | 8                 | 74                                       | 19                              | 9/73                  | 80                       | ---                              | ---                                   | ---                                    | ---        | 386         |
| 40                                    | 13           | 8                 | 7                                        | 8                               | 10/72                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 387         |
| 50                                    | 37           | 8                 | 19;30;42                                 | 24                              | 3/70                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 388         |
| 16                                    | 16           | 30                | 7                                        | 7                               | 7/73                  | 12                       | 4                                | ---                                   | ---                                    | ---        | 389         |
| 50                                    | 16           | 8                 | 16                                       | 5                               | 6/72                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 390         |
| 32                                    | 32           | 8                 | 29                                       | 13                              | 1/73                  | 20                       | 2.2                              | ---                                   | ---                                    | ---        | 391         |
| 18                                    | 18           | 30                | 7                                        | 8                               | 11/73                 | 7                        | .9                               | ---                                   | ---                                    | ---        | 392         |
| 20                                    | 10           | 12                | 2                                        | 1                               | 6/74                  | 6                        | .35                              | ---                                   | ---                                    | ---        | 393         |

Table 12.

| Well location |           | Owner                        | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|------------------------------|---------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                              |                           |                |     |                                 |                     |                   |
| Er- 394       | 4203-8016 | Hugh McClelland              | Charles J. Richardson III | 1973           | H   | 662                             | F                   | Qb/gr             |
| 395           | 4200-8007 | Stanley Tecza                | Donald L. Hermann         | 1973           | H   | 1,080                           | H                   | Dch/ssh           |
| 396           | 4200-8008 | A. J. Hoehn                  | Lowell Halstead           | 1973           | H   | 1,082                           | H                   | Qt/gr             |
| 397           | 4200-8009 | R. A. Jaworowicz             | Robert Anderson           | 1975           | H   | 1,060                           | S                   | Qt/t              |
| 398           | 4200-8009 | F. E. Hammer                 | Donald L. Hermann         | 1972           | H   | 1,032                           | S                   | Qt/clgr           |
| 399           | 4200-8010 | Ronald Waisley               | do.                       | 1976           | H   | 1,018                           | S                   | Dch/sh            |
| 400           | 4200-8010 | J. A. Spaulding              | Robert Anderson           | 1974           | H   | 1,005                           | S                   | Dch/fsh           |
| 401           | 4200-8010 | James Toner                  | do.                       | 1974           | H   | 1,022                           | S                   | Dch/fst           |
| 402           | 4200-8011 | Spartan Inns of America Inc. | Felix J. Waible           | 1975           | P   | 1,000                           | H                   | Qo/sdgr           |
| 403           | 4200-8013 | Paul Bacik, Jr.              | Robert Anderson           | 1974           | H   | 952                             | H                   | Qt/t              |
| 404           | 4200-8013 | Thomas Terella               | ---                       | ---            | H   | 950                             | H                   | Qt/u              |
| 405           | 4200-8013 | David Pollock                | Alfred L. Burch           | 1966           | H   | 950                             | T                   | Qo/sd             |
| 406           | 4200-8014 | W. R. Meyer                  | do.                       | 1964           | H   | 920                             | H                   | Qo/sdgr           |
| 407           | 4200-8014 | J. M. Walsh                  | ---                       | ---            | H   | 920                             | S                   | Qo/u              |
| 408           | 4200-8014 | J. D. Baker                  | Alfred L. Burch           | 1971           | H   | 930                             | S                   | Qt/sd             |
| 409           | 4201-8007 | J. A. Bernet                 | do.                       | 1969           | H   | 1,076                           | F                   | Dch/fsh           |
| 410           | 4201-8007 | Allan Otteni                 | do.                       | 1970           | H   | 1,082                           | F                   | Dch/fsh           |
| 411           | 4201-8007 | W. H. Heath                  | Robert Anderson           | 1972           | H   | 1,080                           | S                   | Dch/fsh           |
| 412           | 4201-8007 | Robert Broussard             | Michael W. Burch          | 1976           | H   | 1,075                           | F                   | Dch/fsh           |
| 413           | 4201-8008 | P. J. Zukowski               | Harlan and Fenical        | 1974           | H   | 1,062                           | F                   | Qo/u              |
| 414           | 4201-8008 | H. D. Taylor                 | Lorenze Lee Hall          | 1973           | H   | 1,063                           | S                   | Dch/fsh           |
| 415           | 4201-8008 | Ross Wyman                   | John A. Quarino, Jr.      | 1976           | H   | 1,055                           | S                   | Qo/sdgr           |
| 416           | 4201-8008 | Happy Homes Enterprises Inc. | Michael W. Burch          | 1975           | P   | 1,080                           | F                   | Dch/fsh           |
| 417           | 4201-8010 | Paul Malinchak               | Alfred L. Burch           | 1975           | H   | 970                             | H                   | Qo/sdgr           |
| 418           | 4201-8010 | Lloyd Hickey                 | George H. Ackerman        | 1976           | H   | 990                             | T                   | Qo/sdgr           |
| 419           | 4201-8010 | Lucien Lawson                | Robert Anderson           | 1976           | H   | 1,000                           | S                   | Dch/fsh           |
| 420           | 4201-8010 | D. E. Nash                   | Bernard P. Kuntz          | 1945           | H   | 975                             | S                   | Qo/gr             |
| 421           | 4201-8011 | J. R. Rinderle               | Robert Anderson           | 1974           | H   | 890                             | S                   | Qo/gr             |
| 422           | 4201-8011 | F. R. Chernek                | do.                       | 1974           | H   | 1,002                           | H                   | Qo/gr             |
| 424           | 4201-8012 | Steve Hetz                   | Alfred L. Burch           | 1973           | H   | 930                             | S                   | Qo/sdgr           |
| 425           | 4201-8012 | Donald Bartosik              | Donald L. Hermann         | 1973           | H   | 900                             | S                   | Qo/sdgr           |
| 426           | 4201-8012 | Steve Gurak                  | John E. Gage, Jr.         | 1974           | H   | 945                             | S                   | Qo/gr             |
| 427           | 4201-8012 | E. S. Lindenberger           | George H. Ackerman        | 1973           | H   | 948                             | S                   | Qo/sd             |
| 428           | 4201-8013 | J. T. Heinlein               | Alfred L. Burch           | 1972           | H   | 826                             | V                   | Qo/sdgr           |
| 429           | 4201-8013 | Donald Vogt                  | Boyd Lee Hall             | 1968           | H   | 848                             | S                   | Qo/u              |
| 430           | 4201-8014 | J. A. Spaulding              | Robert Anderson           | 1974           | H   | 822                             | S                   | Qo/sdgr           |
| 431           | 4201-8014 | James Benson                 | Alfred L. Burch           | 1973           | H   | 855                             | S                   | Qo/sd             |
| 432           | 4201-8014 | G. A. Shallenberger          | do.                       | 1971           | H   | 832                             | S                   | Qo/sdgr           |
| 433           | 4202-8007 | R. D. Biley                  | Max E. Hickernell         | 1975           | H   | 1,087                           | H                   | Dch/sh            |
| 434           | 4202-8007 | W. H. Bachmann               | Alfred L. Burch           | 1974           | H   | 1,020                           | T                   | Qo/u              |
| 435           | 4202-8007 | Ray Yosten                   | Michael W. Burch          | 1976           | H   | 1,010                           | T                   | Dch/fsh           |
| 436           | 4202-8008 | W. C. Dunlavy                | Alfred L. Burch           | 1974           | H   | 1,015                           | S                   | Dch/fsh           |
| 437           | 4202-8008 | T. R. Brown                  | George H. Ackerman        | 1973           | H   | 1,030                           | T                   | Qt/u              |
| 438           | 4202-8008 | K. J. Sauers                 | Robert Anderson           | 1974           | H   | 1,020                           | T                   | Qt/u              |
| 439           | 4202-8008 | M. D. Dunlavy                | do.                       | 1975           | H   | 1,010                           | S                   | Qo/gr             |
| 440           | 4202-8008 | Roy Korrell                  | George H. Ackerman        | 1974           | H   | 1,022                           | T                   | Qo/u              |
| 441           | 4202-8008 | Keith Holland                | Alfred L. Burch           | 1972           | H   | 1,025                           | T                   | Qo/sdgr           |
| 442           | 4202-8008 | P. M. Mead                   | do.                       | 1973           | H   | 1,010                           | T                   | Qo/sdgr           |
| 443           | 4202-8008 | A. J. Hartleb                | Donald L. Hermann         | 1972           | H   | 945                             | S                   | Dch/sh            |
| 444           | 4202-8008 | J. E. Zietler                | do.                       | 1973           | H   | 975                             | S                   | Dch/sh            |
| 445           | 4202-8008 | J. J. Grimaldi               | do.                       | 1972           | H   | 955                             | S                   | Dch/fsh           |
| 446           | 4202-8008 | A. L. Massey                 | do.                       | 1972           | H   | 940                             | S                   | Qo/sdgr           |
| 447           | 4202-8010 | Harrison Putnam              | Alfred L. Burch           | 1972           | H   | 846                             | V                   | Qo/gr             |
| 448           | 4202-8010 | Ernest Barber                | do.                       | 1971           | H   | 840                             | V                   | Qo/gr             |
| 449           | 4202-8011 | J. E. Nelsen                 | George H. Ackerman        | 1975           | H   | 875                             | S                   | Qo/gr             |
| 450           | 4202-8010 | Darcy Whitman                | Michael W. Burch          | 1976           | I   | 902                             | F                   | Qo/gr             |
| 451           | 4202-8011 | G. G. Ellsworth              | George H. Ackerman        | 1973           | H   | 814                             | S                   | Qo/u              |
| 452           | 4202-8011 | H. K. Bierer                 | Alfred L. Burch           | 1973           | H   | 832                             | S                   | Qo/sdgr           |
| 453           | 4202-8011 | J. P. Lantzy                 | do.                       | 1973           | H   | 852                             | U                   | Qo/gr             |
| 454           | 4202-8011 | G. E. Beck                   | Donald L. Hermann         | 1972           | H   | 844                             | U                   | Qo/sdgr           |
| 455           | 4202-8011 | Methodist Church             | Alfred L. Burch           | 1968           | H   | 854                             | F                   | Qo/sdgr           |
| 456           | 4202-8011 | Ronald Till                  | Michael W. Burch          | 1977           | H   | 860                             | S                   | Qo/sdgr           |
| 457           | 4202-8011 | Peter Czernyicky             | Alfred L. Burch           | 1967           | H   | 853                             | F                   | Qo/sdgr           |
| 458           | 4202-8011 | Lillian Berarducci           | George H. Ackerman        | 1975           | H   | 852                             | F                   | Qo/sdgr           |
| 459           | 4202-8012 | Thomas Gleason               | Felix J. Waible           | 1976           | H   | 820                             | U                   | Qo/gr             |
| 460           | 4202-8012 | Richard Carson               | Alfred L. Burch           | 1967           | H   | 825                             | F                   | Qo/sdgr           |
| 461           | 4202-8013 | W. F. Hafner                 | George H. Ackerman        | 1975           | H   | 750                             | F                   | Qb/clgr           |
| 462           | 4202-8013 | Gerald Allender              | Felix J. Waible           | 1976           | H   | 810                             | U                   | Qo/gr             |
| 463           | 4202-8013 | Edwin Sopp                   | George H. Ackerman        | 1974           | H   | 800                             | T                   | Qo/gr             |
| 464           | 4202-8014 | Jarecki Industries, Ltd.     | Alfred L. Burch           | 1973           | N   | 800                             | T                   | Qb/clgr           |
| 465           | 4202-8014 | Leslie Shafer                | George H. Ackerman        | 1974           | H   | 810                             | T                   | Qb/gr             |
| 466           | 4202-8014 | David Keck                   | Alfred L. Burch           | 1975           | H   | 820                             | H                   | Qb/sdgr           |

(Continued)

| Total depth below land surface (feet) | Casing |     | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------|-----|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |        |     |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 14                                    | 14     | 24  | 4                                        | 4                               | 6/73                  | 6                        | .67                              | ---                                   | ---                                    | ---        | Er- 394     |
| 60                                    | 20     | 12  | 20                                       | 16                              | 6/73                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 395         |
| 60                                    | 50     | 12  | 50                                       | ---                             | ---                   | 3                        | ---                              | ---                                   | ---                                    | ---        | 396         |
| 49                                    | 27     | 8   | 26;31                                    | 16                              | ---                   | 5                        | .17                              | ---                                   | ---                                    | ---        | 397         |
| 72                                    | 42     | 12  | 37                                       | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 398         |
| 50                                    | 23     | 8   | 10;18                                    | 3                               | 4/76                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 399         |
| 47                                    | 16     | 8   | 16;36                                    | 10                              | 3/74                  | 7                        | .2                               | ---                                   | ---                                    | ---        | 400         |
| 75                                    | 16     | 8   | 16;25                                    | 11                              | 7/74                  | 2                        | .03                              | ---                                   | ---                                    | ---        | 401         |
| 113                                   | 113    | 8   | 109                                      | 47                              | 8/75                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 402         |
| 152                                   | 130    | 8   | 130                                      | 83                              | 4/74                  | 1                        | .02                              | ---                                   | ---                                    | ---        | 403         |
| 105                                   | 105    | 6   | 106                                      | 38                              | 3/76                  | 18                       | ---                              | 20                                    | 390                                    | ---        | 404         |
| 96                                    | 96     | 8   | 59;96                                    | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 405         |
| 127                                   | 127    | 6   | 44;70;115;123                            | 85                              | 11/64                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 406         |
| 105                                   | 90     | 5   | 90                                       | 58                              | 9/76                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 407         |
| 115                                   | ---    | 8   | 72;103                                   | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 408         |
| 60                                    | 19     | 8   | 8;20;43                                  | 1                               | 7/69                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 409         |
| 60                                    | 18     | 8   | 16;18                                    | 8                               | 4/70                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 410         |
| 50                                    | 17     | 12  | 22;28                                    | 11                              | 8/72                  | 1                        | .03                              | ---                                   | ---                                    | ---        | 411         |
| 60                                    | 21     | 8   | 17;45                                    | 9                               | 8/76                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 412         |
| 67                                    | ---    | 8   | 16;42                                    | ---                             | ---                   | 25                       | ---                              | ---                                   | ---                                    | ---        | 413         |
| 64                                    | ---    | 12  | 23;40                                    | 8                               | 7/73                  | 9                        | .2                               | 140                                   | 2,400                                  | ---        | 414         |
| 60                                    | 40     | 8   | 34                                       | 21                              | 11/76                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 415         |
| 50                                    | 13     | 8   | 14;18                                    | 3                               | 10/75                 | 6                        | .14                              | ---                                   | ---                                    | ---        | 416         |
| 73                                    | 73     | 8   | 62;68                                    | 58                              | 2/75                  | 24                       | 12                               | ---                                   | ---                                    | ---        | 417         |
| 65                                    | 65     | 8   | 61                                       | 42                              | 6/76                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 418         |
| 72                                    | 12     | 8   | 35;45                                    | 24                              | 10/76                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 419         |
| 122                                   | 122    | --- | ---                                      | ---                             | ---                   | ---                      | ---                              | 150                                   | 430                                    | 7.7        | 420         |
| 42                                    | 42     | 8   | 28;40                                    | 8                               | 8/74                  | 15                       | .5                               | ---                                   | ---                                    | ---        | 421         |
| 49                                    | 49     | 8   | 47                                       | 36                              | 3/74                  | 15                       | 3.7                              | ---                                   | ---                                    | ---        | 422         |
| 68                                    | 68     | 8   | 18;62                                    | 56                              | 8/73                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 424         |
| 75                                    | 75     | 8   | 52;72                                    | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 425         |
| 58                                    | 58     | 8   | 51                                       | 36                              | 7/74                  | 28                       | 28                               | ---                                   | ---                                    | ---        | 426         |
| 82                                    | 82     | 8   | 58;80                                    | 58                              | 10/73                 | 8                        | ---                              | 150                                   | 580                                    | ---        | 427         |
| 41                                    | 41     | 8   | 38                                       | 23                              | 9/72                  | 18                       | 1                                | ---                                   | ---                                    | ---        | 428         |
| 70                                    | 70     | 8   | ---                                      | 40                              | 9/68                  | 20                       | 3.3                              | 5                                     | 500                                    | ---        | 429         |
| 41                                    | 41     | 8   | 29;41                                    | 26                              | 11/74                 | 15                       | 1.5                              | ---                                   | ---                                    | ---        | 430         |
| 103                                   | 103    | 8   | 24;98                                    | 35                              | 9/73                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 431         |
| 62                                    | 62     | 8   | 57                                       | 29                              | 7/71                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 432         |
| 48                                    | 14     | 16  | 18                                       | 8                               | 8/75                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 433         |
| 78                                    | 50     | 5   | 46                                       | 40                              | 12/74                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 434         |
| 40                                    | 13     | 8   | 11;30                                    | 7                               | 10/76                 | 5                        | .16                              | ---                                   | ---                                    | ---        | 435         |
| 60                                    | 26     | 8   | 24;48                                    | 28                              | 4/74                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 436         |
| 75                                    | ---    | 8   | 54                                       | 20                              | 4/73                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 437         |
| 67                                    | 46     | 8   | 45                                       | 35                              | 7/74                  | 3                        | .1                               | ---                                   | ---                                    | ---        | 438         |
| 57                                    | 57     | 8   | 56                                       | 43                              | ---                   | 14                       | 1.4                              | ---                                   | ---                                    | ---        | 439         |
| 62                                    | ---    | 8   | ---                                      | ---                             | ---                   | 22                       | ---                              | ---                                   | ---                                    | ---        | 440         |
| 61                                    | 61     | 8   | 55;61                                    | 46                              | 8/72                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 441         |
| 60                                    | 55     | 8   | 38;47;55                                 | 34                              | 9/73                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 442         |
| 82                                    | 73     | 8   | 73                                       | 36                              | 6/72                  | 4                        | .08                              | ---                                   | ---                                    | ---        | 443         |
| 60                                    | 53     | 8   | 40;46                                    | 21                              | 1/73                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 444         |
| 65                                    | 52     | 8   | 48                                       | 23                              | 9/72                  | 8                        | .25                              | ---                                   | ---                                    | ---        | 445         |
| 55                                    | 40     | 8   | 37;42                                    | 18                              | 12/72                 | 15                       | .75                              | ---                                   | ---                                    | ---        | 446         |
| 28                                    | 28     | 8   | 12                                       | 12                              | 6/72                  | 50                       | ---                              | ---                                   | ---                                    | ---        | 447         |
| 28                                    | 28     | 8   | 14                                       | 8                               | 10/71                 | 50                       | ---                              | ---                                   | ---                                    | ---        | 448         |
| 58                                    | 58     | 8   | 53                                       | 18                              | 9/75                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 449         |
| 29                                    | 29     | 8   | 24                                       | 22                              | 9/76                  | 10                       | 3.3                              | ---                                   | ---                                    | ---        | 450         |
| 90                                    | ---    | 8   | 34                                       | 16                              | 5/73                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 451         |
| 40                                    | ---    | 8   | 14;34                                    | 20                              | 5/73                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 452         |
| 33                                    | 33     | 8   | 20;28                                    | 17                              | 5/73                  | 20                       | 1.8                              | ---                                   | ---                                    | ---        | 453         |
| 40                                    | 40     | 8   | 36                                       | 20                              | 6/72                  | 30                       | 15                               | ---                                   | ---                                    | ---        | 454         |
| 41                                    | 41     | 8   | 20;31                                    | 20                              | 11/68                 | 30                       | 30                               | 200                                   | 720                                    | ---        | 455         |
| 80                                    | 65     | 8   | 20;36;56;72                              | 22                              | 3/77                  | 10                       | .2                               | ---                                   | ---                                    | ---        | 456         |
| 35                                    | 35     | 8   | 22;30;35                                 | 16                              | 9/67                  | 30                       | 3.3                              | ---                                   | ---                                    | ---        | 457         |
| 40                                    | 40     | 8   | 28;34                                    | 10                              | 5/75                  | 50                       | ---                              | ---                                   | ---                                    | ---        | 458         |
| 43                                    | 43     | 8   | 39                                       | 23                              | 5/76                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 459         |
| 26                                    | 26     | 8   | 6;16;22                                  | 2                               | 8/67                  | 40                       | 5                                | ---                                   | ---                                    | ---        | 460         |
| 40                                    | 40     | 8   | 36                                       | 33                              | 7/75                  | 25                       | ---                              | ---                                   | ---                                    | ---        | 461         |
| 52                                    | 52     | 8   | 48                                       | 30                              | 5/76                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 462         |
| 70                                    | 60     | 8   | 59                                       | 42                              | 11/74                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 463         |
| 54                                    | 54     | 10  | 45                                       | 38                              | 1/73                  | 20                       | 10                               | ---                                   | ---                                    | ---        | 464         |
| 95                                    | 95     | 8   | 92                                       | 62                              | 11/74                 | 12                       | ---                              | ---                                   | ---                                    | ---        | 465         |
| 86                                    | 86     | 8   | 80                                       | 71                              | 7/75                  | 20                       | 4                                | ---                                   | ---                                    | ---        | 466         |

Table 12.

| Well location |           | Owner                        | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|------------------------------|---------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                              |                           |                |     |                                 |                     |                   |
| Er- 467       | 4152-8012 | Frederick Swift              | Boyd Lee Hall             | 1970           | H   | 1,349                           | S                   | Qt/u              |
| 468           | 4202-8014 | T. E. Fitzgerald             | Alfred L. Burch           | 1974           | H   | 804                             | T                   | Qo/gr             |
| 469           | 4202-8014 | Peter Wokk                   | George H. Ackerman        | 1976           | H   | 815                             | S                   | Qo/clgr           |
| 470           | 4203-8007 | David Shallenberger          | Robert Anderson           | 1973           | H   | 975                             | S                   | Qt/t              |
| 471           | 4203-8007 | C. R. Shallenberger          | do.                       | 1972           | H   | 1,010                           | H                   | Qt/t              |
| 472           | 4203-8007 | J. A. Reitz                  | Donald L. Hermann         | 1973           | H   | 900                             | S                   | Qo/sdgr           |
| 473           | 4203-8007 | W. B. Conner                 | do.                       | 1973           | H   | 905                             | S                   | Dg/ssh            |
| 474           | 4203-8007 | C. D. Artz                   | Alfred L. Burch           | 1965           | H   | 1,028                           | H                   | Qo/gr             |
| 475           | 4203-8007 | James Papucci                | do.                       | 1964           | H   | 915                             | U                   | Qo/gr             |
| 476           | 4203-8008 | R. E. Brucker                | George H. Ackerman        | 1972           | H   | 910                             | S                   | Dg/fsh            |
| 477           | 4203-8008 | J. J. Sarback                | do.                       | 1973           | H   | 870                             | S                   | Dg/fsh            |
| 478           | 4203-8008 | A. R. Malena                 | Alfred L. Burch           | 1973           | H   | 886                             | S                   | Qo/sdgr           |
| 479           | 4203-8008 | C. F. Onorato                | George H. Ackerman        | 1972           | H   | 825                             | S                   | Dg/fsh            |
| 480           | 4203-8008 | H. M. Love                   | Felix J. Waible           | 1974           | H   | 850                             | S                   | Qt/clgr           |
| 481           | 4203-8008 | R. D. Lutsch                 | Alfred L. Burch           | 1971           | H   | 835                             | S                   | Qt/sd             |
| 482           | 4203-8008 | J. D. Clouser                | do.                       | 1974           | H   | 865                             | S                   | Qo/sdgr           |
| 483           | 4203-8009 | Robert Vogel                 | George H. Ackerman        | 1976           | H   | 830                             | S                   | Dg/fsh            |
| 485           | 4203-8009 | J. H. Wittman                | Donald L. Hermann         | 1972           | H   | 855                             | S                   | Qo/sdgr           |
| 486           | 4203-8009 | W. L. Green                  | Felix J. Waible           | 1975           | H   | 862                             | S                   | Qo/gr             |
| 487           | 4203-8009 | Baldwin Brothers Inc.        | do.                       | 1975           | H   | 875                             | S                   | Qo/sdgr           |
| 488           | 4203-8009 | James Edgett                 | George H. Ackerman        | 1976           | H   | 876                             | S                   | Qo/sdgr           |
| 489           | 4203-8009 | Henry Truchanowicz           | Felix J. Waible           | 1975           | H   | 865                             | S                   | Qo/gr             |
| 491           | 4203-8009 | Thomas McLaughlin            | do.                       | 1976           | H   | 880                             | S                   | Qo/gr             |
| 492           | 4203-8010 | Richard Blose                | B. W. Bateman and Son     | 1968           | H   | 832                             | T                   | Qt/t              |
| 493           | 4203-8010 | D. M. Schlabach              | Alfred L. Burch           | 1971           | H   | 835                             | H                   | Qo/sdgr           |
| 494           | 4203-8010 | D. J. Strong                 | do.                       | 1971           | H   | 815                             | S                   | Qo/sd             |
| 495           | 4203-8010 | B. R. Phillips               | do.                       | 1971           | H   | 815                             | S                   | Qo/gr             |
| 496           | 4203-8009 | Winston Warren               | George H. Ackerman        | 1976           | H   | 828                             | S                   | Qo/gr             |
| 497           | 4203-8010 | Westminster Water Co.        | Alfred L. Burch           | 1969           | P   | 804                             | S                   | Qo/sdgr           |
| 498           | 4203-8010 | Richard Samsel               | do.                       | 1969           | H   | 862                             | H                   | Qo/gr             |
| 499           | 4203-8011 | M. E. Vonbuseck              | Donald L. Hermann         | 1972           | H   | 805                             | S                   | Qo/gr             |
| 500           | 4203-8011 | G. L. Locke                  | Alfred L. Burch           | 1972           | H   | 840                             | H                   | Qo/sdgr           |
| 501           | 4203-8011 | James Glazier                | Robert Anderson           | 1972           | H   | 818                             | S                   | Qo/gr             |
| 502           | 4203-8011 | Mykola Kuvshinikov           | George H. Ackerman        | 1973           | H   | 750                             | S                   | Qb/sdgr           |
| 503           | 4152-8013 | James Kearney                | B. W. Bateman and Son     | 1968           | H   | 1,264                           | S                   | Qo/gr             |
| 504           | 4203-8011 | David Shontz                 | Felix J. Waible           | 1976           | H   | 795                             | S                   | Qo/gr             |
| 505           | 4152-8013 | Frank Connell                | Max E. Hickernell         | 1966           | H   | 1,275                           | S                   | MDBv/fst          |
| 506           | 4203-8011 | L. R. Ritts                  | Bernard P. Kuntz          | 1950           | H   | 798                             | S                   | Qo/gr             |
| 507           | 4203-8012 | George Simotski              | Alfred L. Burch           | 1967           | H   | 795                             | S                   | Qo/sdgr           |
| 508           | 4203-8012 | Swanville Development Co.    | do.                       | 1974           | H   | 800                             | S                   | Qo/sdgr           |
| 509           | 4203-8012 | Erie Bronze and Aluminum Co. | do.                       | 1972           | N   | 748                             | T                   | Qb/sdgr           |
| 510           | 4203-8012 | Anna Lazarow                 | George H. Ackerman        | 1973           | H   | 786                             | S                   | Qb/u              |
| 511           | 4153-8014 | Cyril Ley, Jr.               | Max E. Hickernell         | 1966           | H   | 1,273                           | S                   | MDBv/fst          |
| 512           | 4203-8014 | D. J. Hart                   | Charles J. Richardson III | 1973           | H   | 735                             | T                   | Qb/sdgr           |
| 513           | 4203-8014 | R. E. Erven                  | Alfred L. Burch           | 1964           | H   | 704                             | T                   | Qt/t              |
| 514           | 4154-8013 | Joseph Shepegi               | John E. Gage, Jr.         | 1972           | H   | 1,300                           | S                   | MDBv/sh           |
| 515           | 4154-8014 | H. R. Grill                  | Alfred L. Burch           | 1967           | H   | 1,300                           | H                   | Qt/c1gr           |
| 516           | 4204-8008 | Rose Bock                    | Robert Anderson           | 1975           | H   | 918                             | H                   | Qo/gr             |
| 517           | 4204-8008 | David Czarnecki              | Max E. Hickernell         | 1963           | H   | 910                             | U                   | Qt/gr             |
| 518           | 4204-8008 | P. E. Wright                 | Robert Anderson           | 1975           | H   | 900                             | H                   | Qo/gr             |
| 519           | 4204-8008 | W. G. Shepard                | do.                       | 1974           | H   | 900                             | S                   | Qo/gr             |
| 520           | 4204-8008 | Leroy Peterson               | Alfred L. Burch           | 1967           | H   | 820                             | S                   | Qo/sd             |
| 521           | 4204-8008 | Robert Brudnock              | Michael W. Burch          | 1976           | H   | 840                             | S                   | Qt/t              |
| 522           | 4204-8008 | Springhurst Inc.             | do.                       | 1977           | H   | 866                             | S                   | Qo/gr             |
| 523           | 4204-8008 | R. E. Peterson               | Robert Anderson           | 1972           | H   | 866                             | H                   | Qo/gr             |
| 524           | 4204-8008 | Walter Gorney                | George H. Ackerman        | 1975           | H   | 876                             | S                   | Qo/sdgr           |
| 525           | 4204-8009 | J. J. Sturgeon               | do.                       | 1973           | H   | 838                             | S                   | Qo/u              |
| 526           | 4204-8009 | William Walker               | Alfred L. Burch           | 1967           | H   | 835                             | S                   | Qo/sdgr           |
| 527           | 4204-8008 | Robert Brudnock              | Michael W. Burch          | 1976           | H   | 850                             | S                   | Dg/fsh            |
| 528           | 4204-8009 | C. F. Kingston               | Donald L. Hermann         | 1972           | H   | 850                             | S                   | Qo/sdgr           |
| 529           | 4204-8009 | John Williams                | Felix J. Waible           | 1976           | H   | 882                             | S                   | Qo/gr             |
| 530           | 4204-8009 | Donald Fabian                | Michael W. Burch          | 1975           | H   | 860                             | S                   | Qo/u              |
| 531           | 4204-8009 | J. E. Walaconis              | Alfred L. Burch           | 1972           | H   | 844                             | S                   | Qo/sd             |
| 532           | 4204-8009 | Richard Estock               | do.                       | 1964           | H   | 815                             | S                   | Qo/sd             |
| 533           | 4204-8009 | Raymond Burns                | do.                       | 1964           | H   | 820                             | S                   | Qo/sdgr           |
| 534           | 4204-8009 | N. C. Calvano                | Charles Rumsey            | 1973           | H   | 850                             | S                   | Qo/sdgr           |
| 535           | 4204-8009 | A. A. Krista                 | Felix J. Waible           | 1974           | H   | 820                             | S                   | Qt/t              |
| 536           | 4204-8009 | Theodore Stolz               | Max E. Hickernell         | 1966           | H   | 844                             | S                   | Qo/gr             |
| 537           | 4204-8010 | Stanley Clark                | Alfred L. Burch           | 1966           | H   | 778                             | S                   | Qb/gr             |
| 539           | 4204-8010 | Eighty-Four Lumber Co.       | Felix J. Waible           | 1975           | H   | 738                             | F                   | Qb/sdgr           |
| 540           | 4204-8010 | Reginald Payne               | Max E. Hickernell         | 1971           | H   | 767                             | S                   | Qb/c1gr           |
| 541           | 4204-8011 | R. J. Dieter                 | Alfred L. Burch           | 1974           | H   | 736                             | F                   | Qb/sd             |
| 542           | 4204-8011 | G. J. Blattenberger          | do.                       | 1974           | H   | 734                             | F                   | Qb/sd             |
| 543           | 4204-8011 | J. F. Mahoney                | do.                       | 1972           | H   | 734                             | F                   | Qb/sd             |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 54                                    | 29           | 6                 | 29;51                                    | 10                              | 11/70                 | 45                       | 4.5                              | ---                                   | ---                                    | ---        | Er- 467     |
| 57                                    | 57           | 8                 | 51                                       | 37                              | 7/74                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 468         |
| 42                                    | 42           | 8                 | 36                                       | 20                              | 6/76                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 469         |
| 123                                   | 95           | 8                 | 75                                       | 69                              | 1/73                  | 4                        | .08                              | ---                                   | ---                                    | ---        | 470         |
| 120                                   | 87           | 8                 | 87                                       | 66                              | 10/72                 | 1                        | .02                              | ---                                   | ---                                    | ---        | 471         |
| 41                                    | 41           | 8                 | 35;40                                    | 12                              | 7/63                  | 30                       | 3                                | ---                                   | ---                                    | ---        | 472         |
| 70                                    | 29           | 8                 | 18;27                                    | 18                              | 7/73                  | 8                        | .18                              | ---                                   | ---                                    | ---        | 473         |
| 80                                    | 68           | 8                 | 65                                       | 60                              | 9/65                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 474         |
| 61                                    | 61           | 6                 | 37;53                                    | 30                              | 6/64                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 475         |
| 75                                    | ---          | ---               | 52                                       | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 476         |
| 85                                    | ---          | 8                 | ---                                      | 5                               | 7/73                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 477         |
| 32                                    | 32           | 8                 | 17;23                                    | 10                              | 5/73                  | 50                       | 7.1                              | ---                                   | ---                                    | ---        | 478         |
| 55                                    | ---          | 8                 | 16;32                                    | ---                             | 10/72                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 479         |
| 70                                    | 17           | 8                 | 13                                       | 14                              | 8/74                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 480         |
| 26                                    | 26           | 8                 | 22;26                                    | 15                              | 8/71                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 481         |
| 50                                    | 50           | 8                 | 38;44                                    | 28                              | 6/74                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 482         |
| 60                                    | 30           | 8                 | 25;55                                    | 18                              | 8/76                  | 50                       | 4                                | ---                                   | ---                                    | ---        | 483         |
| 35                                    | 35           | 8                 | 31                                       | 12                              | 8/72                  | 7                        | .39                              | ---                                   | ---                                    | ---        | 485         |
| 66                                    | 66           | 8                 | 62                                       | 48                              | 5/75                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 486         |
| 73                                    | 73           | 8                 | 69                                       | 50                              | 8/75                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 487         |
| 101                                   | 101          | 8                 | 95                                       | 65                              | 8/76                  | 50                       | 3.8                              | ---                                   | ---                                    | ---        | 488         |
| 66                                    | 66           | 8                 | 62                                       | ---                             | 6/75                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 489         |
| 80                                    | 80           | 8                 | 76                                       | 57                              | 10/76                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 491         |
| 65                                    | 20           | 6                 | 21                                       | 15                              | 8/68                  | 1                        | .02                              | ---                                   | ---                                    | ---        | 492         |
| 50                                    | 39           | 8                 | 32                                       | 28                              | 10/71                 | 30                       | 2.5                              | ---                                   | ---                                    | ---        | 493         |
| 28                                    | 28           | 8                 | 22                                       | 16                              | 10/71                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 494         |
| 40                                    | 22           | 8                 | 12                                       | 1                               | 10/71                 | 30                       | ---                              | ---                                   | ---                                    | ---        | 495         |
| 50                                    | 38           | 8                 | 34                                       | 6                               | 3/76                  | 50                       | 8.3                              | ---                                   | ---                                    | ---        | 496         |
| 44                                    | 39           | 10                | 18;36                                    | 13                              | 7/69                  | 180                      | 7.5                              | 250                                   | ---                                    | 7.7        | 497         |
| 46                                    | 46           | 8                 | 25;42                                    | 22                              | 1/69                  | 9                        | ---                              | ---                                   | ---                                    | ---        | 498         |
| 43                                    | 43           | 8                 | 42                                       | 23                              | 8/72                  | 15                       | 1.5                              | ---                                   | ---                                    | ---        | 499         |
| 80                                    | 80           | 8                 | 39;70;73                                 | 50                              | 1/72                  | 30                       | 3                                | ---                                   | ---                                    | ---        | 500         |
| 55                                    | 55           | 8                 | 55                                       | 32                              | 8/72                  | 15                       | 2.5                              | ---                                   | ---                                    | ---        | 501         |
| 31                                    | 31           | 8                 | ---                                      | 3                               | 8/73                  | 16                       | ---                              | ---                                   | ---                                    | ---        | 502         |
| 40                                    | 20           | 6                 | 17;33                                    | 8                               | 9/68                  | 6                        | .27                              | 720                                   | 2,700                                  | ---        | 503         |
| 45                                    | 45           | 8                 | 40                                       | 12                              | 8/76                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 504         |
| 41                                    | 22           | 8                 | 26;33;38                                 | 6                               | 1966                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 505         |
| 46                                    | 46           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 230                                   | 418                                    | 7.5        | 506         |
| 46                                    | 46           | 6                 | 25;38                                    | ---                             | ---                   | 30                       | ---                              | ---                                   | ---                                    | ---        | 507         |
| 55                                    | 55           | 8                 | 49                                       | 30                              | 12/74                 | 30                       | 4.3                              | ---                                   | ---                                    | ---        | 508         |
| 19                                    | 14           | 8                 | 7                                        | +2                              | 9/72                  | 75                       | ---                              | ---                                   | ---                                    | ---        | 509         |
| 49                                    | 49           | 8                 | 44                                       | 7                               | 7/73                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 510         |
| 44                                    | 33           | 6                 | 29;37                                    | 6                               | 10/66                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 511         |
| 23                                    | 23           | 24                | 11                                       | 11                              | 5/73                  | 16                       | 8                                | ---                                   | ---                                    | ---        | 512         |
| 44                                    | 44           | 6                 | 14;32                                    | 12                              | 11/64                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 513         |
| 61                                    | 47           | 8                 | 12;48                                    | 10                              | 6/72                  | 3                        | .08                              | ---                                   | ---                                    | ---        | 514         |
| 50                                    | 36           | 8                 | 31                                       | 11                              | 7/67                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 515         |
| 87                                    | 87           | ---               | 85                                       | 77                              | 7/75                  | 6                        | 6                                | ---                                   | ---                                    | ---        | 516         |
| 95                                    | 95           | 6                 | 91                                       | 70                              | 8/63                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 517         |
| 75                                    | 75           | 8                 | 72                                       | 60                              | 7/75                  | 25                       | 5                                | ---                                   | ---                                    | ---        | 518         |
| 76                                    | 76           | 8                 | 58;76                                    | 55                              | 8/74                  | 15                       | 3.8                              | ---                                   | ---                                    | ---        | 519         |
| 67                                    | 67           | 8                 | 44;55                                    | 34                              | 12/67                 | 10                       | .3                               | ---                                   | ---                                    | ---        | 520         |
| 60                                    | 60           | 8                 | 31                                       | 26                              | 4/76                  | 1                        | .03                              | ---                                   | ---                                    | ---        | 521         |
| 65                                    | 65           | 8                 | 57                                       | 22                              | 3/77                  | 30                       | 30                               | ---                                   | ---                                    | ---        | 522         |
| 51                                    | 51           | 8                 | 51                                       | 29                              | 8/72                  | 15                       | 7.5                              | ---                                   | ---                                    | ---        | 523         |
| 83                                    | 83           | 8                 | 74                                       | 50                              | 5/75                  | 40                       | ---                              | ---                                   | ---                                    | ---        | 524         |
| 60                                    | 60           | 8                 | 54                                       | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 525         |
| 57                                    | 55           | 6                 | 33;37                                    | 25                              | 5/67                  | 9                        | 1.8                              | ---                                   | ---                                    | ---        | 526         |
| 97                                    | 72           | 8                 | 35;46;71                                 | 20                              | 4/76                  | .2                       | ---                              | ---                                   | ---                                    | ---        | 527         |
| 46                                    | 46           | 8                 | 34                                       | 12                              | 12/72                 | 7                        | .24                              | ---                                   | ---                                    | ---        | 528         |
| 80                                    | 80           | 8                 | 70                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 529         |
| 68                                    | 68           | 8                 | 27;62                                    | 50                              | 11/75                 | 15                       | 1                                | ---                                   | ---                                    | ---        | 530         |
| 80                                    | 69           | 8                 | 12;25;62                                 | 40                              | 6/72                  | .8                       | ---                              | ---                                   | ---                                    | ---        | 531         |
| 72                                    | 65           | 8                 | 22;54;61                                 | 30                              | 6/64                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 532         |
| 42                                    | 40           | 6                 | 36                                       | 29                              | 10/64                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 533         |
| 75                                    | 55           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 534         |
| 70                                    | 54           | 12                | 50                                       | 29                              | 11/74                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 535         |
| 40                                    | 40           | 9                 | 36                                       | 10                              | 5/66                  | 17                       | ---                              | 190                                   | 460                                    | ---        | 536         |
| 50                                    | 48           | 8                 | 30;44                                    | 24                              | 11/66                 | 6                        | .23                              | ---                                   | ---                                    | ---        | 537         |
| 29                                    | 29           | 8                 | 25                                       | 8                               | 4/75                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 539         |
| 60                                    | 60           | 8                 | 56                                       | 50                              | 9/71                  | 10                       | 10                               | ---                                   | ---                                    | ---        | 540         |
| 36                                    | 36           | 8                 | 19;30                                    | 8                               | 11/74                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 541         |
| 77                                    | 77           | 8                 | 17;46;71                                 | 14                              | 9/74                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 542         |
| 35                                    | 35           | 8                 | 21;33                                    | 10                              | 7/72                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 543         |

Table 12.

| Well location |           | Owner                                | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|--------------------------------------|--------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                                      |                          |                |     |                                 |                     |                   |
| Er- 544       | 4204-8011 | B. A. Brocious                       | Alfred L. Burch          | 1972           | H   | 733                             | F                   | Qb/sdgr           |
| 545           | 4204-8011 | A. G. Youngquist                     | do.                      | 1971           | H   | 734                             | F                   | Qb/sd             |
| 546           | 4204-8012 | R. M. Knelley                        | George H. Ackerman       | 1972           | H   | 732                             | F                   | Qb/u              |
| 547           | 4204-8012 | C. W. Bennett                        | Alfred L. Burch          | 1973           | H   | 734                             | F                   | Qb/sdgr           |
| 548           | 4204-8012 | Edward Bogert                        | do.                      | 1968           | H   | 728                             | F                   | Qb/sd             |
| 549           | 4204-8012 | P. S. Rathmell                       | do.                      | 1970           | H   | 738                             | F                   | Qb/sd             |
| 550           | 4204-8012 | Russell Wright                       | Bernard P. Kuntz         | 1948           | H   | 730                             | F                   | Qb/gr             |
| 551           | 4204-8012 | D. R. Bliese                         | George H. Ackerman       | 1974           | H   | 731                             | F                   | Qb/sdgr           |
| 552           | 4204-8011 | Bruce Rogers                         | Alfred L. Burch          | 1966           | H   | 738                             | F                   | Qb/t              |
| 553           | 4204-8012 | Lake Shore Volunteer Fire Department | do.                      | 1967           | F   | 730                             | F                   | Qb/sdgr           |
| 554           | 4204-8012 | D. S. Brougham                       | do.                      | 1974           | H   | 733                             | F                   | Qb/sdgr           |
| 555           | 4204-8012 | Roy Dean                             | do.                      | 1972           | H   | 737                             | F                   | Qb/gr             |
| 556           | 4204-8013 | J. N. Reed                           | do.                      | 1969           | H   | 690                             | F                   | Qb/sd             |
| 557           | 4205-8008 | Elmer Shorts                         | do.                      | 1969           | H   | 764                             | S                   | Qb/sdgr           |
| 558           | 4152-8009 | Thomas Kirdahy                       | Lorenze Lee Hall         | 1975           | H   | 1,275                           | S                   | Dv/fsh            |
| 559           | 4152-8009 | Culbertson Co.                       | Boyd Lee Hall            | 1976           | H   | 1,313                           | S                   | Dv/fsh            |
| 560           | 4152-8009 | The Country Villa                    | Max E. Hickernell        | 1972           | P   | 1,300                           | S                   | Dv/fsh            |
| 561           | 4153-8007 | F. F. Curtze                         | do.                      | 1971           | H   | 1,230                           | S                   | Qt/gr             |
| 562           | 4153-8009 | John Yatzor, Jr.                     | Alfred L. Burch          | 1966           | H   | 1,325                           | S                   | Dv/sh             |
| 563           | 4153-8009 | Daniel Overheim                      | Boyd Lee Hall            | 1968           | H   | 1,280                           | S                   | Qt/u              |
| 564           | 4153-8009 | Orville Porterfield                  | do.                      | 1968           | H   | 1,248                           | S                   | Qt/u              |
| 565           | 4153-8009 | Daniel Horn                          | do.                      | 1968           | H   | 1,258                           | S                   | Qt/u              |
| 566           | 4153-8009 | P. A. Smith                          | Max E. Hickernell        | 1967           | H   | 1,255                           | S                   | Dv/fsh            |
| 567           | 4153-8009 | P. S. Smith                          | Boyd Lee Hall            | 1971           | H   | 1,260                           | S                   | Dv/fsh            |
| 568           | 4153-8009 | D. H. Karrfalt                       | Robert Anderson          | 1974           | H   | 1,260                           | S                   | Dv/fsh            |
| 569           | 4153-8008 | T. D. Hutchison                      | Boyd Lee Hall            | 1971           | H   | 1,235                           | S                   | Dv/fsh            |
| 570           | 4153-8008 | Gertrude McCracken                   | Felix J. Waible          | 1977           | H   | 1,225                           | S                   | Qo/gr             |
| 571           | 4153-8008 | Richard Goodenow                     | Boyd Lee Hall            | 1976           | H   | 1,261                           | S                   | Dv/fsh            |
| 572           | 4153-8008 | John Hebert                          | Moody Drilling Co., Inc. | 1965           | H   | 1,200                           | V                   | Qo/sdgr           |
| 573           | 4153-8008 | M. L. Smith                          | Boyd Lee Hall            | 1970           | H   | 1,264                           | S                   | Dv/fsh            |
| 574           | 4153-8008 | T. N. Davies                         | Alfred L. Burch          | 1971           | H   | 1,240                           | S                   | Dv/fsh            |
| 575           | 4153-8008 | Glen Harned                          | do.                      | 1968           | H   | 1,222                           | S                   | Qt/gr             |
| 576           | 4153-8011 | James Pfadt                          | do.                      | 1968           | H   | 1,416                           | S                   | MDbv/fsh          |
| 577           | 4153-8012 | David Bucko                          | Lorenze Lee Hall         | 1975           | H   | 1,355                           | S                   | MDbv/fsh          |
| 578           | 4153-8012 | Finley Horn                          | Max E. Hickernell        | 1962           | H   | 1,340                           | S                   | MDbv/fsh          |
| 579           | 4154-8007 | John Lovett                          | Alfred L. Burch          | 1967           | P   | 1,268                           | S                   | Qo/gr             |
| 580           | 4154-8009 | Martha Chernichky                    | Robert Anderson          | 1977           | H   | 1,390                           | S                   | Dv/fsh            |
| 581           | 4154-8012 | Frank Reichart                       | Boyd Lee Hall            | 1972           | H   | 1,310                           | S                   | MDbv/fsh          |
| 582           | 4154-8012 | W. L. Harman                         | do.                      | 1974           | H   | 1,330                           | S                   | MDbv/fsh          |
| 583           | 4154-8012 | D. E. Lohr                           | do.                      | 1973           | H   | 1,322                           | S                   | Qt/u              |
| 584           | 4154-8012 | Ella Weed                            | do.                      | 1966           | H   | 1,323                           | S                   | Qt/u              |
| 585           | 4154-8013 | Harold Fritzges                      | B. W. Bateman and Son    | 1967           | H   | 1,338                           | S                   | MDbv/fsh          |
| 586           | 4154-8013 | L. E. Pieper                         | Boyd Lee Hall            | 1970           | H   | 1,322                           | S                   | MDbv/fsh          |
| 587           | 4155-8007 | Ronald Coleman                       | Donald E. Hall           | 1976           | H   | 1,264                           | S                   | Qt/u              |
| 588           | 4155-8008 | H. E. Allen                          | Max E. Hickernell        | 1967           | H   | 1,290                           | S                   | Dv/fst            |
| 589           | 4155-8008 | R. P. Baxter                         | Boyd Lee Hall            | 1973           | H   | 1,274                           | S                   | Qt/u              |
| 590           | 4155-8012 | Gloria Bochert                       | B. W. Bateman and Son    | 1966           | H   | 1,304                           | S                   | MDbv/fsh          |
| 591           | 4155-8012 | Woodrow Mooney                       | do.                      | 1967           | H   | 1,308                           | S                   | MDbv/fsh          |
| 592           | 4155-8012 | I. W. Hardman                        | Boyd Lee Hall            | 1971           | H   | 1,268                           | S                   | MDbv/fsh          |
| 593           | 4155-8013 | William Sheffer                      | Max E. Hickernell        | 1976           | H   | 1,240                           | S                   | MDbv/fsh          |
| 594           | 4155-8014 | Bernard Vincent                      | Felix J. Waible          | 1975           | H   | 1,178                           | S                   | Qt/u              |
| 595           | 4156-8007 | Ronald Price                         | Boyd Lee Hall            | 1974           | H   | 1,360                           | S                   | Dv/fsh            |
| 596           | 4156-8008 | C. M. Bolla                          | do.                      | 1975           | H   | 1,205                           | S                   | Qo/gr             |
| 597           | 4156-8008 | T. M. Ponting                        | Robert Anderson          | 1974           | H   | 1,208                           | S                   | Qt/c1gr           |
| 598           | 4156-8008 | J. B. Mares                          | Max E. Hickernell        | 1967           | H   | 1,315                           | S                   | Dv/fsh            |
| 599           | 4156-8009 | C. D. Irwin                          | Alfred L. Burch          | 1968           | H   | 1,372                           | S                   | Qt/gr             |
| 600           | 4156-8009 | Raymond Scalise                      | do.                      | 1968           | H   | 1,328                           | S                   | Dv/sh             |
| 601           | 4156-8011 | R. P. Beck                           | do.                      | 1966           | H   | 1,300                           | S                   | Dv/fsh            |
| 602           | 4156-8011 | do.                                  | do.                      | 1966           | H   | 1,295                           | S                   | Dv/fsh            |
| 603           | 4156-8012 | Albert Vogt                          | Max E. Hickernell        | 1974           | H   | 1,282                           | S                   | Qt/gr             |
| 604           | 4156-8012 | C. F. Krautter                       | do.                      | 1970           | H   | 1,265                           | S                   | MDbv/fsh          |
| 605           | 4156-8013 | George Gresh                         | Alfred L. Burch          | 1968           | H   | 1,224                           | S                   | MDbv/fsh          |
| 606           | 4156-8013 | Franklin Center Church               | Max E. Hickernell        | 1964           | H   | 1,228                           | S                   | MDbv/fst          |
| 607           | 4156-8013 | Robert Farmer                        | Alfred L. Burch          | 1967           | H   | 1,224                           | S                   | Qt/sdgr           |
| 608           | 4156-8013 | Timothy Broderick                    | Robert Anderson          | 1976           | H   | 1,184                           | S                   | MDbv/fsh          |
| 609           | 4156-8014 | Alice Fernandes                      | Alfred L. Burch          | 1968           | H   | 1,206                           | S                   | MDbv/fsh          |
| 610           | 4156-8014 | D. M. Lewis                          | Donald L. Hermann        | 1972           | H   | 1,193                           | S                   | MDbv/ssh          |
| 611           | 4156-8014 | Paul Homchenko                       | Felix J. Waible          | 1975           | H   | 1,191                           | S                   | Qt/t              |
| 612           | 4156-8014 | Edward Pulinski                      | do.                      | 1975           | H   | 1,182                           | S                   | Qt/t              |
| 613           | 4157-8008 | Edward Willey                        | Alfred L. Burch          | 1969           | H   | 1,158                           | S                   | Qt/gr             |
| 614           | 4157-8008 | Michael Wilkoz                       | Donald L. Hermann        | 1972           | H   | 1,120                           | V                   | Dch/ssh           |
| 615           | 4157-8009 | D. E. Osterberg                      | do.                      | 1973           | H   | 1,248                           | S                   | Dv/ssh            |
| 616           | 4157-8009 | K. R. Gnagi                          | Alfred L. Burch          | 1973           | H   | 1,294                           | H                   | Dv/sh             |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 51                                    | 51           | 8                 | 36;46                                    | 29                              | 7/72                  | 10                       | ---                              | ---                                   | ---                                    | ---        | Er- 544     |
| 65                                    | 65           | 8                 | 18;28                                    | 10                              | 10/71                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 545         |
| 90                                    | ---          | 8                 | 86                                       | 12                              | 6/72                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 546         |
| 77                                    | 77           | 8                 | 21;72                                    | 12                              | 4/73                  | 20                       | .7                               | ---                                   | ---                                    | ---        | 547         |
| 90                                    | 90           | 8                 | 44;84                                    | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 548         |
| 36                                    | 36           | 8                 | 13;29                                    | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 549         |
| 32                                    | 32           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 130                                   | 400                                    | 7.8        | 550         |
| 105                                   | 92           | 8                 | 85                                       | 17                              | 11/74                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 551         |
| 63                                    | 53           | 8                 | 12;25;49                                 | 8                               | 8/66                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 552         |
| 32                                    | 32           | 8                 | 24                                       | 20                              | 5/67                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 553         |
| 61                                    | 61           | 8                 | 17;34;41                                 | 8                               | 6/74                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 554         |
| 31                                    | 31           | 8                 | 16;25                                    | 7                               | 4/72                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 555         |
| 73                                    | ---          | 45;53             | 48                                       | 1/69                            | .1                    | ---                      | 310                              | 3,500                                 | ---                                    | ---        | 556         |
| 50                                    | 27           | 8                 | 32                                       | 14                              | 4/69                  | 7                        | ---                              | ---                                   | ---                                    | ---        | 557         |
| 50                                    | 20           | 8                 | 28;45                                    | 5                               | 5/75                  | 23                       | .57                              | ---                                   | ---                                    | ---        | 558         |
| 68                                    | 48           | 8                 | 48;55                                    | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 559         |
| 70                                    | 25           | 10                | 27;39                                    | 6                               | 3/72                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 560         |
| 32                                    | 32           | 8                 | 28                                       | 21                              | 10/71                 | 10                       | 10                               | ---                                   | ---                                    | ---        | 561         |
| 70                                    | 19           | 8                 | 19                                       | 10                              | 9/66                  | 1                        | ---                              | 25                                    | 1,500                                  | ---        | 562         |
| 60                                    | 60           | 8                 | 60                                       | 5                               | 12/68                 | 10                       | 10                               | ---                                   | ---                                    | ---        | 563         |
| 60                                    | 60           | 8                 | 60                                       | 4                               | 12/68                 | 10                       | 10                               | ---                                   | ---                                    | ---        | 564         |
| 52                                    | 52           | 8                 | 50                                       | 10                              | 12/68                 | 10                       | 10                               | ---                                   | ---                                    | ---        | 565         |
| 80                                    | 46           | 6                 | 51;62;79                                 | 20                              | 6/67                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 566         |
| 63                                    | 50           | 8                 | 60                                       | ---                             | ---                   | 5                        | .6                               | ---                                   | ---                                    | ---        | 567         |
| 68                                    | 44           | 8                 | 44;52                                    | 14                              | 4/74                  | 6                        | .11                              | ---                                   | ---                                    | ---        | 568         |
| 53                                    | 22           | 8                 | 30;50                                    | 8                               | 4/71                  | 30                       | 30                               | ---                                   | ---                                    | ---        | 569         |
| 37                                    | 37           | 8                 | 33                                       | 15                              | 3/77                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 570         |
| 60                                    | 37           | 8                 | 36;57                                    | 15                              | 5/76                  | 10                       | .25                              | ---                                   | ---                                    | ---        | 571         |
| 47                                    | 47           | 7                 | 21                                       | 4                               | 11/65                 | 20                       | 2.5                              | ---                                   | ---                                    | ---        | 572         |
| 52                                    | 30           | 8                 | 32;47                                    | 10                              | 10/70                 | 22                       | 1.8                              | ---                                   | ---                                    | ---        | 573         |
| 60                                    | 41           | 8                 | 21;50                                    | 7                               | 5/71                  | 19                       | ---                              | ---                                   | ---                                    | ---        | 574         |
| 39                                    | 39           | 8                 | 22                                       | 20                              | 12/68                 | 10                       | 1                                | ---                                   | ---                                    | ---        | 575         |
| 53                                    | 17           | 8                 | 14;40                                    | 5                               | 6/68                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 576         |
| 55                                    | 33           | 8                 | 21;49                                    | 2                               | 5/75                  | 46                       | 1.6                              | ---                                   | ---                                    | ---        | 577         |
| 48                                    | 26           | 7                 | ---                                      | 20                              | 5/62                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 578         |
| 50                                    | ---          | 8                 | 17;43                                    | 12                              | 4/67                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 579         |
| 87                                    | 15           | 8                 | 20;75                                    | 7                               | 3/77                  | 30                       | 1.5                              | ---                                   | ---                                    | ---        | 580         |
| 55                                    | 14           | 8                 | 21;51                                    | 4                               | 5/72                  | 7                        | .15                              | ---                                   | ---                                    | ---        | 581         |
| 68                                    | 21           | 10                | 28;61                                    | 5                               | 1974                  | 15                       | .3                               | ---                                   | ---                                    | ---        | 582         |
| 70                                    | 24           | 8                 | 24                                       | 10                              | 10/73                 | 10                       | .2                               | ---                                   | ---                                    | ---        | 583         |
| 65                                    | 30           | 6                 | 51;63                                    | 14                              | 8/66                  | 20                       | 20                               | ---                                   | ---                                    | ---        | 584         |
| 40                                    | 22           | 6                 | 24                                       | 15                              | 5/67                  | 4                        | .2                               | ---                                   | ---                                    | ---        | 585         |
| 92                                    | 24           | 8                 | 45                                       | 12                              | 11/70                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 586         |
| 37                                    | 37           | 8                 | 21;37                                    | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 587         |
| 46                                    | 24           | 8                 | 28;42                                    | 8                               | 1/67                  | 7                        | ---                              | ---                                   | ---                                    | ---        | 588         |
| 48                                    | 48           | 8                 | 18                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 589         |
| 38                                    | 31           | 6                 | 33                                       | 12                              | 8/66                  | 6                        | .3                               | ---                                   | ---                                    | ---        | 590         |
| 52                                    | 38           | 6                 | 40                                       | 8                               | 6/67                  | 3                        | .07                              | 125                                   | 490                                    | ---        | 591         |
| 52                                    | 30           | 8                 | ---                                      | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 592         |
| 42                                    | 29           | 8                 | 29;38                                    | 1                               | 5/76                  | 7                        | .2                               | ---                                   | ---                                    | ---        | 593         |
| 40                                    | 13           | 8                 | 9                                        | 1                               | 5/75                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 594         |
| 110                                   | 54           | 8                 | 90;105                                   | 6                               | 8/74                  | 50                       | .7                               | ---                                   | ---                                    | ---        | 595         |
| 110                                   | 110          | 8                 | 53;110                                   | 12                              | 7/75                  | 10                       | .14                              | 105                                   | 430                                    | ---        | 596         |
| 44                                    | 44           | 8                 | 22                                       | 2                               | 3/74                  | 7                        | .17                              | ---                                   | ---                                    | ---        | 597         |
| 46                                    | 16           | 8                 | 16;35                                    | 4                               | 1/67                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 598         |
| 40                                    | 24           | 8                 | 20;38                                    | 3                               | 6/68                  | 50                       | 3.3                              | ---                                   | ---                                    | ---        | 599         |
| 55                                    | 21           | 8                 | 8;20                                     | 10                              | 9/68                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 600         |
| 50                                    | 12           | 8                 | 11;20;28                                 | 10                              | 6/66                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 601         |
| 60                                    | 28           | 8                 | 22;40                                    | 6                               | 6/66                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 602         |
| 50                                    | 40           | 8                 | 37                                       | 12                              | 4/74                  | 7                        | ---                              | ---                                   | ---                                    | ---        | 603         |
| 64                                    | 36           | 8                 | 38                                       | ---                             | ---                   | 5                        | ---                              | ---                                   | ---                                    | ---        | 604         |
| 60                                    | 37           | 8                 | 34;40                                    | 9                               | 8/68                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 605         |
| 43                                    | 27           | 8                 | 27;40                                    | 8                               | 7/64                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 606         |
| 40                                    | 20           | 6                 | 15;19;32                                 | 8                               | 3/67                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 607         |
| 61                                    | 25           | 8                 | 38                                       | 8                               | 6/76                  | 1                        | .02                              | ---                                   | ---                                    | ---        | 608         |
| 70                                    | 55           | 8                 | 18;65                                    | 15                              | 11/68                 | 3                        | ---                              | ---                                   | ---                                    | ---        | 609         |
| 35                                    | 15           | 8                 | 12;15                                    | 4                               | 6/72                  | 2                        | .07                              | ---                                   | ---                                    | ---        | 610         |
| 40                                    | 13           | 8                 | 9                                        | 1                               | 5/75                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 611         |
| 40                                    | 13           | 8                 | 9                                        | 1                               | 5/75                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 612         |
| 86                                    | 86           | 8                 | 33                                       | 20                              | 3/69                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 613         |
| 80                                    | 73           | 8                 | 73                                       | 32                              | 9/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 614         |
| 41                                    | 37           | 8                 | 37                                       | 12                              | 2/73                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 615         |
| 80                                    | 38           | 8                 | 21;33;74                                 | 16                              | 6/73                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 616         |

Table 12.

| Well location |           | Owner                      | Driller            | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|----------------------------|--------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                            |                    |                |     |                                 |                     |                   |
| Er- 617       | 4157-8012 | William Bland              | Robert Anderson    | 1974           | H   | 1,196                           | S                   | MDbv/fsh          |
| 618           | 4151-7946 | Hattie Miles               | McCray Bros.       | 1974           | H   | 1,558                           | S                   | MDcr/fsh          |
| 619           | 4151-7946 | R. M. Fuller               | do.                | 1974           | H   | 1,615                           | S                   | MDcr/fsh          |
| 620           | 4151-7948 | Leo Kusik                  | Harold F. Anderson | 1975           | H   | 1,609                           | S                   | MDcr/fsh          |
| 621           | 4151-7949 | L. E. Sorenson             | Donald L. Hermann  | 1973           | H   | 1,582                           | V                   | Mc/fsh            |
| 622           | 4151-7951 | Delmont Taylor             | McCray Bros.       | 1973           | H   | 1,535                           | S                   | MDcr/fsh          |
| 623           | 4152-7945 | Robert Crandall            | do.                | 1972           | H   | 1,522                           | S                   | MDcr/sh           |
| 624           | 4152-7945 | John Edwards               | do.                | 1972           | H   | 1,515                           | H                   | MDcr/fsh          |
| 625           | 4152-7952 | Clarence Baker             | Robert Rindfuss    | 1974           | H   | 1,450                           | S                   | MDcr/fsh          |
| 626           | 4151-7953 | E. J. Brown                | Alfred L. Burch    | 1972           | H   | 1,590                           | S                   | MDcr/fsh          |
| 627           | 4151-7953 | Paul Mongera               | do.                | 1970           | H   | 1,602                           | S                   | MDcr/fsh          |
| 628           | 4151-7954 | W. J. Wurst, Jr.           | Donald L. Hermann  | 1973           | H   | 1,618                           | S                   | Mc/fsh            |
| 629           | 4151-7957 | R. P. Cole                 | Robert Rindfuss    | 1972           | H   | 1,516                           | S                   | MDcr/fsh          |
| 630           | 4151-7957 | M. L. Blum                 | do.                | 1972           | H   | 1,390                           | S                   | MDcr/fsh          |
| 631           | 4152-7957 | J. T. Kerr                 | Alfred L. Burch    | 1970           | H   | 1,262                           | S                   | Dv/fsh            |
| 632           | 4152-7958 | R. A. Marzka               | Robert Rindfuss    | 1977           | H   | 1,275                           | S                   | Dv/fsh            |
| 633           | 4152-7958 | W. C. Blum                 | Alfred L. Burch    | 1969           | H   | 1,248                           | S                   | Dv/fsh            |
| 634           | 4158-7937 | Terry Darnofall            | McCray Bros.       | 1972           | H   | 1,520                           | S                   | Qt/clgr           |
| 635           | 4207-7951 | Robert Sedeimyer           | George H. Ackerman | 1976           | H   | 1,449                           | S                   | Qt/sdgr           |
| 636           | 4208-7951 | Nick Woznicki              | Michael W. Burch   | 1976           | H   | 1,480                           | S                   | Qt/sdgr           |
| 637           | 4207-7951 | J. P. Heyer                | Robert Anderson    | 1972           | H   | 1,468                           | S                   | Dv/fsh            |
| 638           | 4208-7947 | David Ihrig                | George H. Ackerman | 1976           | H   | 1,425                           | S                   | Qt/u              |
| 639           | 4208-7950 | A. F. Barnett              | Harold F. Anderson | 1974           | H   | 1,480                           | H                   | Qo/gr             |
| 640           | 4208-7951 | Richard Cass               | Robert Rindfuss    | 1975           | H   | 1,419                           | S                   | Dch/fsh           |
| 641           | 4208-7951 | J. W. Sienicki             | George H. Ackerman | 1973           | H   | 1,485                           | S                   | Qt/u              |
| 642           | 4208-7951 | R. B. Abbey                | Alfred L. Burch    | 1972           | H   | 1,488                           | S                   | Qt/t              |
| 643           | 4208-7951 | Paul Mosher                | George H. Ackerman | 1975           | H   | 1,430                           | S                   | Qt/clgr           |
| 644           | 4209-7949 | W. R. Brooks               | Robert F. Rumball  | 1973           | H   | 1,415                           | S                   | Dch/sh            |
| 645           | 4209-7950 | C. J. Babcock              | Alfred L. Burch    | 1968           | H   | 1,360                           | S                   | Dch/fst           |
| 646           | 4209-7950 | R. E. Snyder               | do.                | 1974           | H   | 1,350                           | S                   | Dch/fsh           |
| 647           | 4209-7950 | do.                        | do.                | 1973           | H   | 1,345                           | S                   | Dch/fst           |
| 648           | 4209-7950 | do.                        | do.                | 1973           | H   | 1,353                           | S                   | Dch/fsh           |
| 649           | 4209-7951 | T. L. Fuller               | Donald L. Hermann  | 1973           | H   | 1,333                           | S                   | Dch/fsh           |
| 650           | 4209-7950 | John Ferko                 | Ralph Wayne Grant  | 1973           | H   | 1,270                           | S                   | Dch/fst           |
| 651           | 4209-7951 | David Edwards              | Robert Anderson    | 1976           | H   | 1,335                           | S                   | Dch/ssh           |
| 652           | 4209-7951 | Jerry Burkett              | do.                | 1976           | H   | 1,338                           | S                   | Dch/sh            |
| 653           | 4210-7946 | Raymond Manning            | Ralph C. Parmenter | 1974           | H   | 1,432                           | S                   | Qt/gr             |
| 654           | 4210-7947 | Raymond Way                | do.                | 1972           | H   | 1,295                           | S                   | Dch/fsh           |
| 655           | 4210-7947 | Gerald Wilcher             | do.                | 1975           | H   | 1,325                           | S                   | Dch/fsh           |
| 656           | 4210-7949 | D. W. Gregory              | George H. Ackerman | 1975           | H   | 1,230                           | S                   | Qt/clgr           |
| 657           | 4210-7949 | Charles Herman             | Ralph C. Parmenter | 1976           | H   | 1,302                           | S                   | Dch/fsh           |
| 658           | 4210-7951 | G. V. McCumber             | Robert Anderson    | 1972           | H   | 1,230                           | S                   | Dch/fsh           |
| 659           | 4211-7946 | J. D. Genet                | George H. Ackerman | 1972           | H   | 1,354                           | S                   | Dch/fsh           |
| 660           | 4211-7947 | R. L. Newton               | do.                | 1973           | H   | 1,165                           | S                   | Qt/u              |
| 661           | 4211-7950 | N. F. Hubert               | do.                | 1973           | H   | 1,025                           | S                   | Qt/u              |
| 662           | 4211-7951 | W. C. Walker, Jr.          | Alfred L. Burch    | 1975           | H   | 815                             | S                   | Dg/sh             |
| 663           | 4211-7951 | James Cook                 | Harold F. Anderson | 1975           | H   | 864                             | S                   | Qt/t              |
| 664           | 4211-7952 | J. R. Culver               | Alfred L. Burch    | 1971           | H   | 855                             | S                   | Dg/sh             |
| 665           | 4212-7948 | D. C. McClelland           | Robert Anderson    | 1974           | H   | 960                             | S                   | Dg/sh             |
| 666           | 4213-7948 | J. M. Phillips-Fruit Acres | Ralph C. Parmenter | 1974           | H   | 820                             | U                   | Dne/fsh           |
| 667           | 4213-7950 | Bernard Duda               | do.                | 1974           | H   | 670                             | S                   | Dne/fsh           |
| 668           | 4213-7950 | G. J. Otto                 | Alfred L. Burch    | 1973           | H   | 680                             | S                   | Dne/sh            |
| 669           | 4213-7951 | William Edder              | do.                | 1976           | H   | 720                             | S                   | Qt/sdgr           |
| 670           | 4213-7952 | George Crittendon          | Ralph C. Parmenter | 1974           | H   | 732                             | F                   | Qt/u              |
| 671           | 4214-7946 | Edward Orton               | George H. Ackerman | 1974           | H   | 743                             | F                   | Qo/gr             |
| 672           | 4214-7946 | John Verakis               | do.                | 1974           | H   | 744                             | F                   | Qo/u              |
| 673           | 4214-7947 | Dennis Geraci              | do.                | 1976           | H   | 795                             | S                   | Qo/gr             |
| 674           | 4214-7949 | Harry Schiemer             | McCray Bros.       | 1974           | H   | 625                             | H                   | Dne/fsh           |
| 675           | 4214-7950 | E. E. Kent                 | Alfred L. Burch    | 1973           | H   | 710                             | F                   | Qo/sdgr           |
| 676           | 4215-7948 | Thomas McCoy               | do.                | 1975           | H   | 610                             | H                   | Qt/sdgr           |
| 677           | 4215-7946 | Catherine Weyers           | do.                | 1968           | H   | 704                             | S                   | Qt/gr             |
| 678           | 4215-7947 | T. C. Jones                | Michael W. Burch   | 1976           | H   | 600                             | S                   | Dne/ssh           |
| 679           | 4215-7947 | do.                        | do.                | 1976           | H   | 620                             | S                   | Dne/sh            |
| 680           | 4207-7953 | D. G. Bliley               | Robert Anderson    | 1972           | H   | 1,390                           | S                   | Dch/fsh           |
| 681           | 4207-7957 | James Carroll              | Alfred L. Burch    | ---            | U   | 994                             | V                   | Qt/clgr           |
| 682           | 4208-7958 | Dean Etzel                 | do.                | 1968           | H   | 920                             | S                   | Qo/sdgr           |
| 683           | 4208-7958 | Joseph Garner              | do.                | 1968           | H   | 775                             | S                   | Dg/sh             |
| 684           | 4207-7958 | R. H. Lapenz               | Robert Anderson    | 1974           | H   | 1,010                           | H                   | Qt/t              |
| 685           | 4207-7958 | Monte Collier              | do.                | 1976           | H   | 1,020                           | H                   | Qo/sdgr           |
| 686           | 4207-7958 | ---                        | Michael W. Burch   | 1977           | H   | 1,022                           | H                   | Dch/fsh           |
| 687           | 4207-7958 | K. F. Bellotti             | Alfred L. Burch    | 1971           | H   | 1,000                           | H                   | Qo/sdgr           |
| 688           | 4208-7958 | R. P. Overdorff            | do.                | 1969           | H   | 845                             | S                   | Dg/sh             |
| 689           | 4208-7954 | Graydon Dougan             | Ralph C. Parmenter | 1974           | H   | 1,165                           | U                   | Dch/fsh           |
| 690           | 4208-7954 | William Gindy              | Robert Anderson    | 1975           | H   | 1,140                           | S                   | Dch/fsh           |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 62                                    | 13           | 8                 | 20;25                                    | 4                               | 7/74                  | 5                        | .09                              | ---                                   | ---                                    | ---        | Er- 617     |
| 105                                   | 41           | 6                 | 45;63;79;100                             | 37                              | 4/74                  | 12                       | .3                               | ---                                   | ---                                    | ---        | 618         |
| 65                                    | 20           | 6                 | 28;40;60                                 | 25                              | 4/74                  | 15                       | .75                              | ---                                   | ---                                    | ---        | 619         |
| 60                                    | 21           | 8                 | 21;55                                    | 6                               | 10/75                 | 5                        | ---                              | 60                                    | 190                                    | ---        | 620         |
| 45                                    | 20           | 8                 | 15;32                                    | 12                              | 8/73                  | 5                        | .18                              | ---                                   | ---                                    | ---        | 621         |
| 65                                    | 30           | 6                 | 40;50;60                                 | 20                              | 4/73                  | 10                       | .33                              | 110                                   | 305                                    | ---        | 622         |
| 120                                   | 60           | 6                 | 70;80;90                                 | 20                              | 7/72                  | 2                        | .02                              | ---                                   | ---                                    | ---        | 623         |
| 70                                    | 20           | 6                 | 40;50;60                                 | 20                              | 5/72                  | 20                       | 20                               | 115                                   | 320                                    | ---        | 624         |
| 57                                    | 40           | 8                 | 48                                       | 25                              | 1974                  | 30                       | 1.3                              | ---                                   | ---                                    | ---        | 625         |
| 80                                    | 14           | 8                 | 12;14;70                                 | 30                              | 12/72                 | 30                       | 1.5                              | ---                                   | ---                                    | ---        | 626         |
| 80                                    | 35           | 8                 | 13;17;32                                 | 13                              | 12/70                 | 14                       | ---                              | ---                                   | ---                                    | ---        | 627         |
| 75                                    | 27           | 12                | 27;65                                    | 15                              | 11/73                 | 10                       | .22                              | ---                                   | ---                                    | ---        | 628         |
| 65                                    | 35           | 8                 | 55                                       | 22                              | 7/72                  | 8                        | .2                               | ---                                   | ---                                    | ---        | 629         |
| 48                                    | ---          | 8                 | 38                                       | 15                              | 6/72                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 630         |
| 55                                    | ---          | 8                 | 17                                       | 5                               | 9/70                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 631         |
| 71                                    | 45           | 8                 | 42;61                                    | ---                             | ---                   | 5                        | .1                               | ---                                   | ---                                    | ---        | 632         |
| 60                                    | 24           | 8                 | 30;40                                    | 22                              | 8/69                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 633         |
| 100                                   | 90           | 6                 | 90                                       | 5                               | 7/72                  | 20                       | 20                               | ---                                   | ---                                    | ---        | 634         |
| 50                                    | 22           | 8                 | 17                                       | 3                               | 8/76                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 635         |
| 80                                    | 56           | 8                 | 36;53                                    | 45                              | 7/76                  | 3                        | .12                              | ---                                   | ---                                    | ---        | 636         |
| 50                                    | 25           | 8                 | 25;30                                    | 6                               | 10/72                 | 6                        | .15                              | 105                                   | 280                                    | ---        | 637         |
| 55                                    | 28           | 8                 | 21                                       | +2                              | 5/76                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 638         |
| 82                                    | 62           | 8                 | 62;70                                    | ---                             | ---                   | 7                        | ---                              | ---                                   | ---                                    | ---        | 639         |
| 75                                    | 35           | 8                 | 42                                       | 9                               | 8/75                  | 4                        | .07                              | ---                                   | ---                                    | ---        | 640         |
| 50                                    | 34           | 8                 | 30                                       | ---                             | ---                   | 12                       | ---                              | ---                                   | ---                                    | ---        | 641         |
| 50                                    | 41           | 8                 | 37;45                                    | 21                              | 6/72                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 642         |
| 60                                    | 35           | 8                 | 29;54                                    | 5                               | 9/75                  | 2                        | ---                              | 90                                    | 1,200                                  | ---        | 643         |
| 69                                    | 14           | 8                 | 35;60                                    | ---                             | ---                   | 1                        | ---                              | ---                                   | ---                                    | ---        | 644         |
| 60                                    | 22           | 8                 | 22;40;50                                 | 2                               | 1/68                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 645         |
| 60                                    | 18           | 8                 | 13                                       | 4                               | 6/74                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 646         |
| 60                                    | 17           | 8                 | 17;38                                    | 6                               | 11/73                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 647         |
| 55                                    | 19           | 8                 | 8;20;35                                  | 5                               | 11/73                 | 4                        | ---                              | ---                                   | ---                                    | ---        | 648         |
| 35                                    | 10           | 8                 | 30                                       | 3                               | 10/73                 | 4                        | .15                              | ---                                   | ---                                    | ---        | 649         |
| 50                                    | 25           | 8                 | 30;45                                    | 12                              | 2/73                  | ---                      | ---                              | 170                                   | 410                                    | ---        | 650         |
| 35                                    | 11           | 12                | 14                                       | 4                               | 2/76                  | 1                        | .03                              | ---                                   | ---                                    | ---        | 651         |
| 40                                    | 12           | 12                | 16;20                                    | 40                              | 9/76                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 652         |
| 168                                   | 168          | 5                 | ---                                      | 60                              | 7/74                  | 3                        | .05                              | ---                                   | ---                                    | ---        | 653         |
| 55                                    | 20           | 5                 | ---                                      | 35                              | 6/72                  | 3                        | .3                               | 75                                    | 330                                    | ---        | 654         |
| 50                                    | 15           | 6                 | 20                                       | 7                               | 9/75                  | 4                        | .11                              | ---                                   | ---                                    | ---        | 655         |
| 70                                    | 24           | 12                | 21;34;56                                 | 10                              | 4/75                  | 14                       | ---                              | ---                                   | ---                                    | ---        | 656         |
| 40                                    | 15           | 6                 | ---                                      | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 657         |
| 51                                    | 12           | 8                 | 26                                       | 16                              | 10/72                 | 7                        | .23                              | 310                                   | 840                                    | 7.0        | 658         |
| 78                                    | 22           | 8                 | 16;38;46                                 | 6                               | 7/72                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 659         |
| 62                                    | 21           | 8                 | 21                                       | ---                             | ---                   | 2                        | ---                              | 85                                    | 590                                    | ---        | 660         |
| 60                                    | 22           | 8                 | 20                                       | ---                             | ---                   | 12                       | ---                              | ---                                   | ---                                    | ---        | 661         |
| 50                                    | 19           | 8                 | 5;18;20;32                               | 8                               | 6/75                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 662         |
| 30                                    | 16           | 12                | 14;28                                    | ---                             | ---                   | 6                        | ---                              | 60                                    | 525                                    | ---        | 663         |
| 35                                    | 10           | 8                 | 12;14                                    | 9                               | 9/71                  | .5                       | ---                              | 160                                   | 500                                    | ---        | 664         |
| 50                                    | 18           | 8                 | ---                                      | 34                              | 10/74                 | .1                       | ---                              | ---                                   | ---                                    | ---        | 665         |
| 43                                    | 20           | 6                 | ---                                      | 20                              | 7/74                  | 5                        | .41                              | 150                                   | 400                                    | ---        | 666         |
| 40                                    | 20           | 8                 | ---                                      | 12                              | 10/74                 | 5                        | .36                              | ---                                   | ---                                    | ---        | 667         |
| 65                                    | 22           | 8                 | 17;30                                    | 5                               | 6/73                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 668         |
| 150                                   | 120          | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 669         |
| 47                                    | 47           | 5                 | 3                                        | 30                              | 7/74                  | 5                        | .5                               | ---                                   | ---                                    | ---        | 670         |
| 70                                    | 42           | 12                | 36;62                                    | 23                              | 11/74                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 671         |
| 87                                    | 31           | 8                 | 30                                       | 12                              | 2/74                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 672         |
| 30                                    | 30           | 8                 | ---                                      | 22                              | 4/76                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 673         |
| 80                                    | 30           | 8                 | 37;45;60                                 | 35                              | 1/74                  | 3                        | .08                              | ---                                   | ---                                    | ---        | 674         |
| 94                                    | 94           | 8                 | 45;86                                    | 60                              | 6/73                  | 10                       | ---                              | 70                                    | 330                                    | ---        | 675         |
| 50                                    | 33           | 8                 | 23;48                                    | 30                              | 10/75                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 676         |
| 50                                    | 16           | 8                 | 9;15                                     | 7                               | 6/68                  | 2                        | ---                              | 170                                   | 600                                    | ---        | 677         |
| 89                                    | 12           | 8                 | 9                                        | 7                               | 1/76                  | .5                       | .006                             | ---                                   | ---                                    | ---        | 678         |
| 60                                    | 23           | 8                 | 16;20                                    | 4                               | 1/76                  | .5                       | .009                             | ---                                   | ---                                    | ---        | 679         |
| 53                                    | 10           | 8                 | 12                                       | 12                              | 10/72                 | 7                        | .18                              | 5                                     | 220                                    | ---        | 680         |
| 60                                    | ---          | 8                 | 30                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 681         |
| 55                                    | 37           | 8                 | 26;32;48                                 | 5                               | 7/68                  | 20                       | .5                               | ---                                   | ---                                    | ---        | 682         |
| 50                                    | 14           | 8                 | 14;27                                    | 6                               | 2/68                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 683         |
| 75                                    | 74           | 8                 | 67;74                                    | 37                              | 9/74                  | 8                        | .27                              | ---                                   | ---                                    | ---        | 684         |
| 66                                    | 66           | 8                 | 65                                       | 45                              | 3/76                  | 17                       | 2.4                              | ---                                   | ---                                    | ---        | 685         |
| 110                                   | 97           | 8                 | 99                                       | 52                              | 3/77                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 686         |
| 70                                    | 64           | 10                | 10;59                                    | 15                              | 4/71                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 687         |
| 60                                    | ---          | 8                 | 30                                       | 19                              | 9/69                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 688         |
| 60                                    | 20           | 5                 | 31                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 689         |
| 40                                    | 27           | 8                 | 27                                       | 7                               | 11/75                 | 8                        | .29                              | 170                                   | 460                                    | ---        | 690         |

Table 12.

| Well location |           | Owner                | Driller            | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|----------------------|--------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                      |                    |                |     |                                 |                     |                   |
| Er- 691       | 4208-7956 | Gary Anderson        | Donald E. Hall     | 1976           | H   | 1,000                           | S                   | Qo/sdgr           |
| 692           | 4208-7957 | R. T. Becker         | Alfred L. Burch    | 1971           | H   | 1,020                           | H                   | Qo/gr             |
| 693           | 4208-7957 | Clara Merritt        | do.                | 1969           | H   | 982                             | H                   | Qo/gr             |
| 694           | 4209-7959 | Lena Asel            | do.                | 1972           | H   | 720                             | V                   | Dne/sh            |
| 695           | 4208-7959 | J. M. Trinoski       | do.                | 1973           | H   | 735                             | V                   | Dne/sh            |
| 696           | 4209-7953 | R. M. Di Santi       | Ralph C. Parmenter | 1973           | H   | 1,295                           | S                   | Dch/sh            |
| 697           | 4209-7953 | J. S. Darby          | Robert Rindfuss    | 1972           | H   | 1,275                           | S                   | Dch/sh            |
| 698           | 4209-7956 | Edward Jackson       | Harold F. Anderson | 1975           | H   | 826                             | S                   | Dne/fsh           |
| 699           | 4209-7956 | Robert Maison        | Alfred L. Burch    | 1975           | H   | 818                             | S                   | Dne/ssh           |
| 700           | 4209-7956 | James Sider          | Michael W. Burch   | 1976           | H   | 795                             | S                   | Dne/ssh           |
| 701           | 4209-7956 | L. D. Sweatman       | Donald L. Hermann  | 1972           | H   | 810                             | S                   | Dne/ssh           |
| 702           | 4209-7956 | Charles Bauer        | Michael W. Burch   | 1975           | H   | 892                             | S                   | Dg/ssh            |
| 703           | 4209-7956 | do.                  | do.                | 1975           | H   | 872                             | C                   | Dg/fsh            |
| 704           | 4209-7956 | C. J. Dill           | Alfred L. Burch    | 1970           | H   | 872                             | S                   | Dg/fsh            |
| 705           | 4209-7957 | Robert Gindlespeger  | do.                | 1969           | P   | 727                             | V                   | Qb/clgr           |
| 706           | 4209-7959 | John Lipchik         | do.                | 1967           | H   | 685                             | V                   | Dne/ssh           |
| 707           | 4210-7953 | Mary Gelsie          | Ralph C. Parmenter | 1974           | H   | 880                             | S                   | Dne/sh            |
| 708           | 4210-7953 | D. A. Meehl          | Robert Anderson    | 1974           | H   | 867                             | S                   | Dne/fsh           |
| 709           | 4210-7956 | D. F. Langer         | Michael W. Burch   | ---            | H   | 732                             | V                   | Dne/fsh           |
| 710           | 4211-7956 | Louise Yaggie        | George H. Ackerman | 1976           | H   | 674                             | V                   | Qo/sdgr           |
| 711           | 4211-7957 | Susan Bossart        | Alfred L. Burch    | 1968           | H   | 660                             | F                   | Qt/sd             |
| 712           | 4211-7957 | A. D. Bencivenga     | Michael W. Burch   | 1975           | H   | 664                             | F                   | Qt/sdgr           |
| 713           | 4212-7953 | W. J. Filipkowski    | Alfred L. Burch    | 1972           | H   | 740                             | V                   | Qo/sdgr           |
| 714           | 4209-7958 | John Waterhouse      | J. W. Waterhouse   | 1975           | H   | 715                             | F                   | Dne/sh            |
| 715           | 4208-7959 | Gridler Builders     | Donald L. Hermann  | 1972           | H   | 864                             | S                   | Dch/fsh           |
| 716           | 4200-7953 | D. R. Morey          | George H. Ackerman | 1974           | H   | 1,475                           | S                   | Dv/fsh            |
| 717           | 4200-7953 | Charles Leisure      | do.                | 1976           | H   | 1,412                           | S                   | Qt/u              |
| 718           | 4200-7953 | Stephen Dylewski     | Harold F. Anderson | 1973           | H   | 1,498                           | H                   | Dv/fsh            |
| 719           | 4201-7958 | Penny Dias           | Donald L. Hermann  | 1975           | H   | 1,250                           | S                   | Dch/fsh           |
| 720           | 4201-7957 | Carol Weiser         | Robert Anderson    | 1976           | H   | 1,370                           | S                   | Qo/gr             |
| 721           | 4202-7956 | Raymond Peplinski    | do.                | 1976           | H   | 1,280                           | S                   | Qo/sdgr           |
| 722           | 4202-7959 | Charles Schendar     | Alfred L. Burch    | 1972           | H   | 1,358                           | S                   | Dch/fsh           |
| 723           | 4202-7959 | Michael Paris        | Robert Anderson    | 1974           | H   | 1,350                           | S                   | Dv/sh             |
| 724           | 4203-7953 | James Giles          | do.                | 1976           | H   | 1,360                           | H                   | Qo/gr             |
| 725           | 4203-7954 | James Schreiber      | George H. Ackerman | 1976           | H   | 1,343                           | S                   | Qo/gr             |
| 726           | 4203-7955 | August Newcamp       | Alfred L. Burch    | 1970           | H   | 1,340                           | S                   | Qt/u              |
| 727           | 4203-7954 | David Spaeder        | Harold F. Anderson | 1975           | H   | 1,370                           | S                   | Dch/fsh           |
| 728           | 4203-7955 | Ralph King           | George H. Ackerman | 1967           | H   | 1,310                           | S                   | Qo/gr             |
| 729           | 4203-7957 | Donald Johnston      | Robert Anderson    | 1972           | H   | 1,370                           | S                   | Dch/fsh           |
| 730           | 4203-7957 | George Nellis        | Donald L. Hermann  | 1972           | H   | 1,385                           | S                   | Dch/sch           |
| 731           | 4203-7957 | Carl Rose            | Robert Anderson    | 1973           | H   | 1,352                           | S                   | Qt/gr             |
| 732           | 4204-7953 | Charles Malliard     | Harold F. Anderson | 1973           | H   | 1,363                           | S                   | Qo/gr             |
| 733           | 4204-7957 | Steven Hoover        | Donald L. Hermann  | 1975           | H   | 1,393                           | S                   | Dch/fsh           |
| 734           | 4204-7957 | Duane Rose           | Alfred L. Burch    | 1971           | H   | 1,390                           | S                   | Dch/sh            |
| 735           | 4204-7957 | William Seelinger    | George H. Ackerman | 1973           | H   | 1,358                           | S                   | Dch/fsh           |
| 736           | 4204-7957 | E. C. Steele         | Alfred L. Burch    | 1966           | H   | 1,392                           | S                   | Dch/sh            |
| 737           | 4204-7957 | William Ducz         | Lowell Halstead    | 1973           | H   | 1,370                           | S                   | Dch/fsh           |
| 738           | 4204-7957 | Lloyd Baldwin        | George H. Ackerman | 1977           | H   | 1,375                           | S                   | Qt/clgr           |
| 739           | 4204-7957 | John Douglas         | Michael W. Burch   | ---            | H   | 1,370                           | S                   | Dch/fsh           |
| 740           | 4204-7958 | James Kelllogg       | Harold F. Anderson | 1972           | H   | 1,232                           | S                   | Dch/fsh           |
| 741           | 4204-7959 | Richard Nies         | Alfred L. Burch    | 1966           | H   | 1,370                           | S                   | Dch/fsh           |
| 742           | 4204-7959 | Joseph Jendrack      | Robert Anderson    | 1976           | H   | 1,340                           | S                   | Qt/t              |
| 743           | 4204-7959 | Edward Plonsky       | do.                | 1972           | H   | 1,348                           | S                   | Dch/sh            |
| 744           | 4204-7959 | Marcelline Gibbs     | Alfred L. Burch    | 1972           | H   | 1,320                           | S                   | Dch/fsh           |
| 745           | 4204-7959 | Walter Pieniazek     | Harold F. Anderson | 1974           | H   | 1,300                           | S                   | Dch/fsh           |
| 746           | 4205-7952 | Donald Spinks        | George H. Ackerman | 1976           | H   | 1,504                           | S                   | Qt/u              |
| 747           | 4205-7954 | Richard Page         | Michael W. Burch   | 1975           | H   | 1,260                           | H                   | Qo/sdgr           |
| 748           | 4205-7957 | Robert Hunt          | Alfred L. Burch    | 1975           | H   | 1,340                           | S                   | Dch/fsh           |
| 749           | 4205-7957 | Joseph Sharkey       | do.                | 1971           | H   | 1,350                           | S                   | Dch/fsh           |
| 750           | 4205-7958 | William Hughes       | do.                | 1975           | H   | 1,215                           | S                   | Dch/sh            |
| 751           | 4205-7958 | Walter Nowarowsky    | George H. Ackerman | 1974           | H   | 1,212                           | S                   | Qt/u              |
| 752           | 4205-7958 | Donald Kidder        | Harold F. Anderson | 1973           | H   | 1,278                           | S                   | Dch/fsh           |
| 753           | 4205-7958 | Richard Kirby        | Donald L. Hermann  | 1973           | H   | 1,200                           | S                   | Qo/sdgr           |
| 754           | 4205-7958 | James Praetzel       | Alfred L. Burch    | 1973           | H   | 1,195                           | S                   | Qo/sd             |
| 755           | 4205-7959 | Edward Bukowski      | do.                | 1967           | H   | 1,298                           | S                   | Dch/fss           |
| 756           | 4205-7959 | Lynn Hofius          | Michael W. Burch   | 1976           | H   | 1,160                           | S                   | Dch/sh            |
| 757           | 4205-7959 | J. R. Young          | Donald L. Hermann  | 1972           | H   | 1,295                           | S                   | Dch/sh            |
| 758           | 4206-7953 | Alfred Grzegorzewski | Alfred L. Burch    | 1974           | H   | 1,350                           | S                   | Qo/clgr           |
| 759           | 4206-7954 | Ronald White         | Ralph C. Parmenter | 1975           | H   | 1,370                           | S                   | Qt/u              |
| 760           | 4206-7955 | D. L. Cosner         | Robert Anderson    | 1975           | H   | 1,300                           | S                   | Dch/fsh           |
| 761           | 4206-7955 | R. G. Stelle         | do.                | 1975           | H   | 1,182                           | S                   | Dch/sh            |
| 762           | 4206-7955 | J. B. Urbaniac       | do.                | 1973           | H   | 1,195                           | S                   | Dch/fsh           |
| 763           | 4206-7955 | Richard Suscheck     | do.                | 1976           | H   | 1,207                           | S                   | Dch/fsh           |
| 764           | 4206-7956 | T. J. Wood           | Alfred L. Burch    | 1974           | H   | 1,346                           | S                   | Dch/fsh           |

## RECORD OF WELLS

75

(Continued)

| Total depth below land surface (feet) | Casing |    | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------|----|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |        |    |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 50                                    | 50     | 8  | 50                                       | ---                             | ---                   | 17                       | ---                              | ---                                   | ---                                    | ---        | Er- 691     |
| 56                                    | 56     | 8  | 45;52                                    | 42                              | 9/71                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 692         |
| 54                                    | 54     | 8  | 40;54                                    | 25                              | 9/69                  | 10                       | .53                              | ---                                   | ---                                    | ---        | 693         |
| 35                                    | 11     | 8  | 38                                       | ---                             | ---                   | .1                       | ---                              | ---                                   | ---                                    | ---        | 694         |
| 50                                    | 11     | 8  | 8;38                                     | 10                              | 5/73                  | .4                       | ---                              | ---                                   | ---                                    | ---        | 695         |
| 50                                    | 22     | 5  | 4                                        | 40                              | 6/73                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 696         |
| 38                                    | 25     | 8  | 27                                       | 10                              | 9/72                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 697         |
| 38                                    | 13     | 8  | 18;30                                    | ---                             | ---                   | .9                       | ---                              | ---                                   | ---                                    | ---        | 698         |
| 50                                    | 16     | 8  | 15;20                                    | 12                              | 10/75                 | 4                        | ---                              | ---                                   | ---                                    | ---        | 699         |
| 50                                    | 25     | 8  | 8;10;12;19                               | 3                               | 4/76                  | 19                       | .5                               | ---                                   | ---                                    | ---        | 700         |
| 32                                    | 18     | 12 | 18                                       | 6                               | 6/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 701         |
| 60                                    | 24     | 8  | 26                                       | 26                              | 12/75                 | 26                       | ---                              | ---                                   | ---                                    | ---        | 702         |
| 50                                    | 10     | 8  | 15;28                                    | 6                               | 12/73                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 703         |
| 50                                    | 23     | 8  | 13;17;25                                 | 8                               | 8/70                  | 5                        | ---                              | 240                                   | 700                                    | ---        | 704         |
| 40                                    | 20     | 8  | 12;14;28                                 | 6                               | 12/69                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 705         |
| 50                                    | 14     | 8  | 14;30                                    | 6                               | 8/67                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 706         |
| 40                                    | 15     | 8  | 25                                       | ---                             | ---                   | ---                      | 140                              | 560                                   | ---                                    | ---        | 707         |
| 40                                    | 8      | 12 | 11                                       | 6                               | 1/74                  | 3                        | .09                              | ---                                   | ---                                    | ---        | 708         |
| 30                                    | ---    | 6  | 14;17                                    | 10                              | ---                   | .6                       | ---                              | ---                                   | ---                                    | ---        | 709         |
| 42                                    | 30     | 8  | 24                                       | 2                               | 2/76                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 710         |
| 82                                    | 72     | 8  | 24;68                                    | 50                              | 4/68                  | .3                       | ---                              | ---                                   | ---                                    | ---        | 711         |
| 70                                    | 49     | 8  | 14;45                                    | 10                              | 7/75                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 712         |
| 32                                    | 32     | 8  | 16;27                                    | 8                               | 8/72                  | 20                       | .9                               | 200                                   | 530                                    | ---        | 713         |
| 30                                    | 20     | 8  | 20                                       | 15                              | 7/75                  | 1                        | ---                              | 200                                   | 600                                    | ---        | 714         |
| 50                                    | 25     | 8  | 22;30                                    | 8                               | 11/72                 | 8                        | ---                              | ---                                   | ---                                    | ---        | 715         |
| 70                                    | 28     | 8  | 26;45                                    | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 716         |
| 55                                    | 31     | 8  | 25                                       | 10                              | 7/76                  | 40                       | ---                              | ---                                   | ---                                    | ---        | 717         |
| 72                                    | ---    | 8  | 70                                       | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 718         |
| 66                                    | 50     | 8  | 40;60                                    | 12                              | 6/75                  | 20                       | 4                                | ---                                   | ---                                    | ---        | 719         |
| 69                                    | 69     | 8  | 67                                       | 58                              | 8/76                  | 15                       | 3                                | ---                                   | ---                                    | ---        | 720         |
| 66                                    | 66     | 8  | 18;63                                    | 2                               | 4/76                  | 4                        | .06                              | ---                                   | ---                                    | ---        | 721         |
| 50                                    | 33     | 8  | 26;32;40                                 | 5                               | 7/72                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 722         |
| 65                                    | 27     | 8  | 28                                       | 4                               | 1/74                  | .5                       | .01                              | ---                                   | ---                                    | ---        | 723         |
| 128                                   | 128    | 8  | 75;127                                   | 30                              | 6/76                  | 6                        | .12                              | ---                                   | ---                                    | ---        | 724         |
| 94                                    | 94     | 8  | 45;90                                    | 54                              | 9/76                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 725         |
| 106                                   | 70     | 5  | 70                                       | 31                              | 5/70                  | 2                        | ---                              | 100                                   | 260                                    | ---        | 726         |
| 72                                    | 29     | 8  | 30;50                                    | 30                              | 8/75                  | 2                        | .09                              | ---                                   | ---                                    | ---        | 727         |
| 69                                    | 69     | 6  | ---                                      | F                               | 5/67                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 728         |
| 95                                    | 73     | 8  | 75                                       | 31                              | 11/72                 | 7                        | .12                              | ---                                   | ---                                    | ---        | 729         |
| 80                                    | 47     | 8  | ---                                      | 12                              | 7/72                  | 4                        | .07                              | ---                                   | ---                                    | ---        | 730         |
| 70                                    | 70     | 8  | 68                                       | 47                              | 1/73                  | 7                        | .4                               | ---                                   | ---                                    | ---        | 731         |
| 60                                    | 60     | 8  | 49;60                                    | ---                             | ---                   | 12                       | ---                              | ---                                   | ---                                    | ---        | 732         |
| 50                                    | 32     | 8  | 26;28                                    | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 733         |
| 70                                    | 15     | 12 | 13;48                                    | 7                               | 7/71                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 734         |
| 75                                    | 35     | 8  | 31;52                                    | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 735         |
| 80                                    | 26     | 8  | 10;35                                    | 6                               | 5/26                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 736         |
| 50                                    | 23     | 8  | 20;24                                    | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 737         |
| 72                                    | 56     | 8  | 52                                       | 37                              | 3/77                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 738         |
| 90                                    | ---    | 8  | 60;75                                    | 20                              | 5/75                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 739         |
| 110                                   | 28     | 8  | 50;80                                    | 10                              | 8/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 740         |
| 80                                    | 28     | 8  | 23;30                                    | 15                              | 10/66                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 741         |
| 25                                    | 24     | 8  | 16;25                                    | 12                              | 10/76                 | 30                       | 10                               | ---                                   | ---                                    | ---        | 742         |
| 50                                    | 14     | 12 | 30                                       | 25                              | 8/72                  | .2                       | .01                              | ---                                   | ---                                    | ---        | 743         |
| 60                                    | 14     | 8  | 14;25                                    | 18                              | 9/72                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 744         |
| 60                                    | 23     | 12 | 43;50;58                                 | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 745         |
| 45                                    | 28     | 8  | 23                                       | 20                              | 7/76                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 746         |
| 58                                    | 58     | 8  | 24;45;53                                 | 21                              | 9/75                  | 30                       | 15                               | ---                                   | ---                                    | ---        | 747         |
| 70                                    | 30     | 8  | 22;42                                    | 10                              | 5/75                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 748         |
| 60                                    | 15     | 8  | 17                                       | 13                              | 7/71                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 749         |
| 75                                    | 22     | 8  | 20;28;62                                 | 18                              | 7/75                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 750         |
| 40                                    | 20     | 8  | 20                                       | ---                             | ---                   | 1                        | ---                              | ---                                   | ---                                    | ---        | 751         |
| 150                                   | 42     | 8  | 54;75;114                                | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 752         |
| 152                                   | 152    | 8  | 90;120;150                               | 70                              | 3/73                  | 20                       | .7                               | ---                                   | ---                                    | ---        | 753         |
| 114                                   | 114    | 8  | 11;87                                    | 62                              | 8/73                  | 14                       | ---                              | ---                                   | ---                                    | ---        | 754         |
| 80                                    | 19     | 8  | 20;55                                    | 23                              | 10/67                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 755         |
| 55                                    | 17     | 8  | 12                                       | 8                               | 6/76                  | 15                       | .5                               | 95                                    | 230                                    | ---        | 756         |
| 72                                    | 21     | 8  | 18;22                                    | 10                              | 9/72                  | 2                        | .03                              | ---                                   | ---                                    | ---        | 757         |
| 72                                    | 34     | 8  | 28;40                                    | 24                              | 6/74                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 758         |
| 45                                    | 15     | 6  | 4                                        | 8                               | 9/75                  | 3                        | .1                               | ---                                   | ---                                    | ---        | 759         |
| 60                                    | 11     | 8  | 20;41                                    | 5                               | 10/75                 | 6                        | ---                              | ---                                   | ---                                    | ---        | 760         |
| 60                                    | 17     | 12 | 22                                       | 7                               | 5/75                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 761         |
| 55                                    | 17     | 8  | 17;22;30                                 | 4                               | 3/73                  | 3                        | .06                              | ---                                   | ---                                    | ---        | 762         |
| 61                                    | 16     | 8  | 16;19                                    | 14                              | 4/76                  | 6                        | .11                              | ---                                   | ---                                    | ---        | 763         |
| 50                                    | 20     | 8  | 12;38;40                                 | 6                               | 5/74                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 764         |

Table 12.

| Well location |           | Owner                      | Driller                | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|----------------------------|------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                            |                        |                |     |                                 |                     |                   |
| Er- 765       | 4206-7956 | M. K. Simmons              | Michael W. Burch       | 1975           | H   | 1,274                           | S                   | Qt/clgr           |
| 766           | 4206-7956 | Vince Pepicello            | Alfred L. Burch        | 1973           | H   | 1,263                           | S                   | Dch/fsh           |
| 767           | 4205-7957 | Arthur Jenson              | Harold F. Anderson     | 1973           | H   | 1,360                           | S                   | Qo/gr             |
| 768           | 4204-7957 | Rodney Riblett             | George H. Ackerman     | 1973           | H   | 1,422                           | S                   | Qt/u              |
| 769           | 4205-7958 | Daryl Waldinger            | Robert Anderson        | 1976           | H   | 1,100                           | S                   | Qt/gr             |
| 770           | 4206-7958 | L. J. Rodler               | Alfred L. Burch        | 1972           | H   | 1,243                           | S                   | Dch/fsh           |
| 771           | 4206-7956 | Jerry Lindenberg           | do.                    | 1972           | H   | 1,250                           | S                   | Dch/fsh           |
| 772           | 4206-7956 | Atlas Homes Inc.           | do.                    | 1967           | H   | 1,240                           | S                   | Dch/fsh           |
| 773           | 4205-7959 | Bernard Hill               | Robert Anderson        | 1976           | H   | 1,135                           | H                   | Qt/clgr           |
| 774           | 4206-7958 | William De Platchett       | Michael W. Burch       | 1976           | H   | 1,175                           | S                   | Dch/ssh           |
| 775           | 4206-7958 | Paul Daube                 | do.                    | 1976           | H   | 1,190                           | S                   | Dch/fsh           |
| 776           | 4206-7959 | Nick Mindek                | do.                    | ---            | H   | 995                             | S                   | Qt/u              |
| 777           | 4207-7952 | Eugene Trayner             | Alfred L. Burch        | 1969           | H   | 1,480                           | S                   | Dv/fsh            |
| 778           | 4207-7953 | C. F. Merhar               | George H. Ackerman     | 1974           | H   | 1,412                           | S                   | Qt/t              |
| 779           | 4205-7955 | Rosemary Preece            | Alfred L. Burch        | 1968           | H   | 1,433                           | H                   | Dch/fsh           |
| 780           | 4206-7957 | C. M. Young                | Ralph Wayne Grant      | 1974           | H   | 1,270                           | S                   | Dch/fst           |
| 781           | 4204-7959 | Edward Monkowski           | Alfred L. Burch        | 1972           | H   | 1,343                           | S                   | Qt/t              |
| 782           | 4206-7958 | W. D. Martin               | do.                    | 1968           | H   | 1,295                           | S                   | Qt/t              |
| 783           | 4207-7958 | James Moser                | Ralph Wayne Grant      | 1974           | H   | 1,120                           | S                   | Dch/fst           |
| 784           | 4200-7953 | Phillip Carlson            | Donald L. Hermann      | 1973           | H   | 1,430                           | S                   | Dch/ssh           |
| 785           | 4204-7958 | William Schick             | do.                    | 1972           | H   | 1,210                           | S                   | Dch/fsh           |
| 786           | 4205-7959 | Ralph Shaw                 | Alfred L. Burch        | 1968           | H   | 1,140                           | H                   | Dch/fsh           |
| 787           | 4204-7957 | Otto Stablein              | do.                    | 1973           | H   | 1,400                           | S                   | Dv/fsh            |
| 788           | 4205-7958 | Parmney Sprouse            | do.                    | 1973           | H   | 1,296                           | S                   | Dch/fsh           |
| 789           | 4205-7954 | Joseph Stubbenhofer        | do.                    | 1968           | H   | 1,350                           | H                   | Qo/sdgr           |
| 790           | 4205-7954 | Kenneth Heed               | do.                    | 1968           | H   | 1,350                           | S                   | Qo/sdgr           |
| 791           | 4203-7956 | W. W. Yaple                | McCrory Bros.          | 1974           | H   | 1,310                           | S                   | Qo/sd             |
| 792           | 4205-7958 | Thomas Kirsch              | Donald L. Hermann      | 1972           | H   | 1,220                           | S                   | Qo/sdgr           |
| 793           | 4206-7959 | George Church              | Alfred L. Burch        | 1971           | H   | 970                             | S                   | Dch/fsh           |
| 794           | 4205-7955 | Gary Cage                  | do.                    | 1973           | H   | 1,433                           | H                   | Dch/fsh           |
| 795           | 4205-7957 | Charles Lander             | do.                    | 1973           | H   | 1,372                           | S                   | Dch/fsh           |
| 796           | 4201-7957 | David Kaschak              | Robert Rindfuss        | 1974           | H   | 1,310                           | S                   | Qo/gr             |
| 797           | 4205-7956 | J. W. Houpt                | George H. Ackerman     | 1973           | H   | 1,450                           | H                   | Dv/fsh            |
| 798           | 4203-7956 | George Burbules            | Michael W. Burch       | 1976           | H   | 1,356                           | T                   | Dch/fsh           |
| 799           | 4203-7957 | William Lapenz             | Robert Anderson        | 1977           | H   | 1,405                           | H                   | Qt/t              |
| 800           | 4202-7959 | Terry Ottaway              | Alfred L. Burch        | 1975           | H   | 1,398                           | S                   | Dv/ssh            |
| 801           | 4203-7958 | Edward Kearney             | do.                    | 1975           | H   | 1,350                           | U                   | Dch/fsh           |
| 802           | 4204-7958 | Al Kirsch                  | Robert Anderson        | 1976           | H   | 1,260                           | S                   | Qt/t              |
| 803           | 4204-7958 | James Saltsman             | Alfred L. Burch        | 1966           | H   | 1,274                           | S                   | Qt/t              |
| 804           | 4204-7958 | Edward Vallimont           | Donald L. Hermann      | 1975           | H   | 1,270                           | S                   | Qo/sdgr           |
| 805           | 4205-7955 | Walter Kuhl                | Robert Anderson        | 1977           | H   | 1,418                           | S                   | Qt/t              |
| 806           | 4200-7948 | Ronald Huiznec             | Harold F. Anderson     | 1975           | H   | 1,302                           | S                   | Qo/sdgr           |
| 807           | 4202-7949 | Roy Huntley                | Ralph C. Parmenter     | 1974           | H   | 1,350                           | V                   | Qo/u              |
| 808           | 4204-7950 | Leslie Burlingham          | Alfred L. Burch        | 1964           | H   | 1,320                           | V                   | Qo/sd             |
| 809           | 4206-7951 | G. W. Dana                 | Felix J. Waible        | 1975           | H   | 1,420                           | S                   | Qo/gr             |
| 810           | 4206-7951 | E. D. Boyd                 | Alfred L. Burch        | 1974           | H   | 1,470                           | S                   | Qt/u              |
| 811           | 4206-7951 | L. A. Wescott              | Raymond L. Butterfield | 1970           | H   | 1,400                           | S                   | Dch/fsh           |
| 812           | 4206-7951 | Louis Ganza                | Alfred L. Burch        | 1973           | H   | 1,490                           | S                   | Dv/fsh            |
| 813           | 4206-7951 | John Pomorski              | George H. Ackerman     | 1976           | H   | 1,415                           | S                   | Qt/sdgr           |
| 814           | 4207-7947 | Ralph Neal                 | Ralph C. Parmenter     | 1974           | H   | 1,425                           | H                   | Qt/u              |
| 815           | 4207-7951 | R. E. Snyder               | Alfred L. Burch        | 1970           | H   | 1,455                           | S                   | Dv/fsh            |
| 816           | 4207-7951 | Betty Angerer              | Michael W. Burch       | 1975           | H   | 1,467                           | S                   | Dv/fsh            |
| 817           | 4200-8002 | R. D. Beals                | Donald L. Hermann      | 1972           | H   | 1,445                           | S                   | Dv/fsh            |
| 818           | 4200-8002 | Shaul Equipment and Supply | Alfred L. Burch        | 1969           | H   | 1,428                           | S                   | Dv/fsh            |
| 819           | 4200-8004 | John Brozell               | do.                    | 1972           | H   | 1,434                           | H                   | Dv/fsh            |
| 820           | 4200-8004 | C. C. Moore                | Ralph Wayne Grant      | 1974           | H   | 1,115                           | V                   | Qo/sdgr           |
| 821           | 4200-8005 | Anthony Pastore            | Alfred L. Burch        | 1972           | H   | 1,140                           | S                   | Qo/sdgr           |
| 822           | 4200-8006 | R. P. Eck                  | Tony Simonetti         | 1972           | H   | 1,058                           | V                   | Qo/sdgr           |
| 823           | 4200-8006 | W. W. Spires               | Max E. Hickernell      | 1969           | H   | 1,070                           | V                   | Qo/gr             |
| 824           | 4200-8007 | F. J. Dylewski             | Donald L. Hermann      | 1972           | H   | 1,035                           | S                   | Dch/ssh           |
| 825           | 4200-8007 | Lauren Krautter            | Alfred L. Burch        | 1967           | H   | 1,040                           | S                   | Qt/gr             |
| 826           | 4201-8000 | L. R. Kulik                | Robert Anderson        | 1972           | H   | 1,240                           | V                   | Qo/sdgr           |
| 827           | 4201-8002 | Jerry Dunn                 | do.                    | 1974           | H   | 1,405                           | S                   | Qt/t              |
| 828           | 4201-8002 | Gene Groenendaal           | do.                    | 1974           | H   | 1,415                           | S                   | Qt/t              |
| 829           | 4201-8002 | Walter Lego                | Alfred L. Burch        | 1967           | H   | 1,400                           | S                   | Dv/fsh            |
| 830           | 4201-8002 | John Chojnacki             | do.                    | 1976           | H   | 1,388                           | H                   | Dch/fsh           |
| 831           | 4201-8003 | J. K. Robinson             | Donald L. Hermann      | 1972           | H   | 1,358                           | S                   | Dv/fsh            |
| 832           | 4201-8003 | Lovittie Schaffer          | do.                    | 1973           | H   | 1,374                           | S                   | Dv/fsh            |
| 833           | 4201-8003 | J. F. Donahue              | George H. Ackerman     | ---            | H   | 1,375                           | S                   | Qt/u              |
| 834           | 4201-8003 | Robert Huffman             | Tony Simonetti         | 1973           | H   | 1,362                           | S                   | Dv/fsh            |
| 835           | 4201-8003 | Gartner Hart Co.           | Donald L. Hermann      | 1972           | S   | 1,434                           | S                   | Dv/fsh            |
| 836           | 4201-8004 | Larry Lucas                | do.                    | 1974           | H   | 1,412                           | S                   | Dv/fsh            |
| 837           | 4201-8005 | J. C. Lander               | do.                    | 1972           | H   | 1,260                           | S                   | Dch/fsh           |
| 838           | 4201-8006 | J. F. Regan                | Alfred L. Burch        | 1972           | H   | 1,132                           | S                   | Dch/fsh           |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 50                                    | 18           | 8                 | 16;19                                    | 4                               | 10/75                 | 30                       | ---                              | ---                                   | ---                                    | ---        | Er- 765     |
| 60                                    | 17           | 8                 | 14;22;48                                 | 8                               | 7/73                  | 2                        | ---                              | 140                                   | 380                                    | ---        | 766         |
| 40                                    | 22           | 8                 | 20;35                                    | ---                             | 6/73                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 767         |
| 100                                   | ---          | 8                 | 18;48                                    | 6                               | 3/73                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 768         |
| 92                                    | 92           | 8                 | 90                                       | 74                              | 5/76                  | 20                       | 2                                | ---                                   | ---                                    | ---        | 769         |
| 50                                    | 19           | 10                | 12;18;36                                 | 5                               | 10/72                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 770         |
| 50                                    | 19           | 8                 | 16;19;36                                 | 8                               | 10/72                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 771         |
| 50                                    | 30           | 8                 | 15;20                                    | 8                               | 6/67                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 772         |
| 60                                    | 17           | 8                 | ---                                      | 4                               | 7/76                  | 5                        | .09                              | ---                                   | ---                                    | ---        | 773         |
| 65                                    | 14           | 12                | 10;16                                    | 7                               | 5/76                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 774         |
| 60                                    | 12           | 8                 | 12;21                                    | 8                               | 10/76                 | 2                        | .04                              | ---                                   | ---                                    | ---        | 775         |
| 47                                    | 22           | 10                | 18                                       | 11                              | 12/76                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 776         |
| 60                                    | 14           | 8                 | 14;40                                    | 10                              | 9/69                  | 1                        | ---                              | 140                                   | 400                                    | ---        | 777         |
| 65                                    | 28           | 8                 | 26                                       | 8                               | 6/74                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 778         |
| 140                                   | 16           | 8                 | 10;130                                   | 4                               | 5/68                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 779         |
| 50                                    | 19           | 8                 | ---                                      | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 780         |
| 60                                    | 40           | 8                 | 30;52                                    | 27                              | 8/72                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 781         |
| 50                                    | 20           | 8                 | 16;40                                    | 8                               | 10/68                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 782         |
| 55                                    | 25           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 783         |
| 60                                    | 24           | 8                 | 20;23                                    | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 784         |
| 80                                    | 42           | 8                 | 45                                       | 28                              | 12/72                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 785         |
| 50                                    | 15           | 8                 | 12;14;20                                 | 1                               | 5/68                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 786         |
| 90                                    | 18           | 8                 | 17;20;50                                 | 3                               | 11/73                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 787         |
| 60                                    | 33           | 8                 | 25;28;57                                 | 2                               | 6/73                  | 17                       | ---                              | ---                                   | ---                                    | ---        | 788         |
| 67                                    | 67           | 8                 | 40;63;67                                 | 57                              | 10/68                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 789         |
| 58                                    | 58           | 8                 | 48                                       | 43                              | 5/68                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 790         |
| 140                                   | 140          | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 791         |
| 129                                   | 129          | 8                 | 126                                      | 90                              | 7/72                  | 15                       | .75                              | ---                                   | ---                                    | ---        | 792         |
| 54                                    | 21           | 12                | ---                                      | 19                              | 12/71                 | 4                        | ---                              | ---                                   | ---                                    | ---        | 793         |
| 150                                   | 16           | 8                 | 12;130                                   | 8                               | 7/73                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 794         |
| 95                                    | 28           | 8                 | 24;80                                    | 18                              | 8/73                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 795         |
| 78                                    | 78           | 8                 | 75                                       | 20                              | 5/74                  | 30                       | .8                               | ---                                   | ---                                    | ---        | 796         |
| 50                                    | 24           | 8                 | 24                                       | ---                             | 8/73                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 797         |
| 50                                    | 29           | 8                 | 13;24;42                                 | 4                               | 11/76                 | 9                        | .22                              | ---                                   | ---                                    | ---        | 798         |
| 125                                   | 91           | 8                 | 95                                       | 52                              | 3/77                  | 2                        | .01                              | ---                                   | ---                                    | ---        | 799         |
| 65                                    | 26           | 8                 | 24;52                                    | 24                              | 9/75                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 800         |
| 75                                    | 57           | 8                 | 58                                       | 25                              | 9/75                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 801         |
| 54                                    | 26           | 8                 | 25;35                                    | 9                               | 3/76                  | 11                       | .27                              | ---                                   | ---                                    | ---        | 802         |
| 60                                    | 30           | 6                 | 15;30                                    | 20                              | 5/66                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 803         |
| 149                                   | 149          | 6                 | 59;148                                   | 1                               | 10/75                 | 10                       | .08                              | ---                                   | ---                                    | ---        | 804         |
| 78                                    | 14           | 8                 | 16;25                                    | 6                               | 1/77                  | 30                       | 3                                | ---                                   | ---                                    | ---        | 805         |
| 45                                    | 32           | 8                 | 25;35                                    | 9                               | 7/75                  | 5                        | ---                              | 120                                   | 290                                    | ---        | 806         |
| 110                                   | 110          | 5                 | ---                                      | 30                              | 6/74                  | 8                        | .16                              | ---                                   | ---                                    | ---        | 807         |
| 100                                   | 100          | 6                 | 12;90                                    | 3                               | 7/64                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 808         |
| 43                                    | 43           | 8                 | 39                                       | 9                               | 5/75                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 809         |
| 43                                    | 5            | 15                | 15                                       | 4/74                            | 9                     | ---                      | ---                              | ---                                   | ---                                    | ---        | 810         |
| 68                                    | 37           | 6                 | 40;64                                    | 15                              | 7/70                  | 15                       | 1                                | ---                                   | ---                                    | ---        | 811         |
| 60                                    | 27           | 8                 | 15;24;35                                 | 10                              | 7/73                  | 9                        | ---                              | ---                                   | ---                                    | ---        | 812         |
| 60                                    | 32           | 8                 | 27;55                                    | 15                              | 8/76                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 813         |
| 43                                    | 43           | 5                 | ---                                      | 12                              | 6/74                  | 3                        | .12                              | ---                                   | ---                                    | ---        | 814         |
| 70                                    | 22           | 8                 | 20                                       | 1                               | 1/70                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 815         |
| 73                                    | 22           | 8                 | 30                                       | 7                               | 5/75                  | 1                        | .02                              | ---                                   | ---                                    | ---        | 816         |
| 50                                    | 37           | 8                 | 35;37                                    | 8                               | 10/72                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 817         |
| 65                                    | 30           | 8                 | 20;30                                    | 6                               | 11/69                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 818         |
| 50                                    | 37           | 8                 | 32;40                                    | 8                               | 7/72                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 819         |
| 71                                    | 62           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 820         |
| 46                                    | 46           | 8                 | 40;46                                    | 7                               | ---                   | 70                       | ---                              | ---                                   | ---                                    | ---        | 821         |
| 65                                    | 65           | 8                 | 46;65                                    | 10                              | 9/72                  | 10                       | .25                              | 110                                   | 550                                    | ---        | 822         |
| 80                                    | 80           | 8                 | 77                                       | ---                             | ---                   | 15                       | ---                              | ---                                   | ---                                    | ---        | 823         |
| 50                                    | 22           | 8                 | 18                                       | ---                             | ---                   | .3                       | ---                              | ---                                   | ---                                    | ---        | 824         |
| 31                                    | 31           | 8                 | 5;21;31                                  | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 825         |
| 20                                    | 20           | 8                 | 17                                       | 5                               | 9/72                  | 6                        | .46                              | ---                                   | ---                                    | ---        | 826         |
| 62                                    | 28           | 8                 | 28                                       | 2                               | 2/74                  | .6                       | .01                              | ---                                   | ---                                    | ---        | 827         |
| 63                                    | 31           | 8                 | 31                                       | 8                               | 6/74                  | .5                       | .01                              | ---                                   | ---                                    | ---        | 828         |
| 50                                    | 24           | 8                 | 12;18;40                                 | 8                               | 5/67                  | 14                       | ---                              | 115                                   | 620                                    | ---        | 829         |
| 100                                   | 57           | 8                 | 75                                       | 37                              | 4/76                  | .7                       | ---                              | ---                                   | ---                                    | ---        | 830         |
| 48                                    | 38           | 8                 | 35;45                                    | 10                              | 10/72                 | 10                       | .36                              | ---                                   | ---                                    | ---        | 831         |
| 50                                    | 23           | 8                 | 20                                       | 20                              | 7/73                  | 3                        | .1                               | ---                                   | ---                                    | ---        | 832         |
| 55                                    | 30           | 8                 | 30                                       | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 833         |
| 43                                    | 42           | 8                 | 38                                       | 8                               | 8/73                  | 20                       | 1.2                              | ---                                   | ---                                    | ---        | 834         |
| 60                                    | 41           | 8                 | 36;41;45                                 | 15                              | 9/72                  | 20                       | .6                               | ---                                   | ---                                    | ---        | 835         |
| 60                                    | 26           | 8                 | 25;45                                    | 16                              | 5/74                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 836         |
| 50                                    | 22           | 12                | 22                                       | 8                               | 6/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 837         |
| 70                                    | 15           | 8                 | 7;15;62                                  | 2                               | 5/72                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 838         |

Table 12.

| Well location |           | Owner                | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|----------------------|---------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                      |                           |                |     |                                 |                     |                   |
| Er- 839       | 4201-8006 | Donna Barrows        | Alfred L. Burch           | 1967           | H   | 1,185                           | S                   | Dch/fsh           |
| 840           | 4201-8007 | Robert Griffith      | do.                       | 1974           | H   | 1,073                           | V                   | Dch/fsh           |
| 841           | 4201-8007 | C. E. Nelson         | Donald L. Hermann         | 1972           | H   | 1,084                           | F                   | Dch/fsh           |
| 842           | 4202-8001 | P. A. Laughery       | Alfred L. Burch           | 1970           | H   | 1,230                           | S                   | Dch/fsh           |
| 843           | 4202-8001 | R. A. Hodas          | Donald L. Hermann         | 1973           | H   | 1,275                           | S                   | Dch/fsh           |
| 844           | 4202-8001 | N. P. Pederson       | do.                       | 1972           | H   | 1,312                           | S                   | Dch/fsh           |
| 845           | 4202-8001 | Gary Osborne         | do.                       | 1975           | H   | 1,266                           | V                   | Qo/sdgr           |
| 846           | 4202-8001 | Robert Kightlinger   | Michael W. Burch          | 1976           | H   | 1,212                           | S                   | Dch/fsh           |
| 847           | 4202-8002 | Eugene Bosch         | Alfred L. Burch           | 1968           | H   | 1,332                           | S                   | Dch/sh            |
| 848           | 4202-8002 | Summit Township      | Donald L. Hermann         | 1975           | H   | 1,280                           | S                   | Dch/sh            |
| 849           | 4202-8002 | Melvin Davis         | Charles J. Richardson III | 1974           | H   | 1,295                           | S                   | Qt/sdgr           |
| 850           | 4202-8002 | Lee Strain           | Donald L. Hermann         | 1972           | H   | 1,270                           | S                   | Dch/fsh           |
| 851           | 4202-8003 | William Winkleman    | do.                       | 1972           | H   | 1,360                           | H                   | Dv/fsh            |
| 852           | 4202-8003 | Carl Gentile         | do.                       | 1974           | H   | 1,358                           | H                   | Qt/t              |
| 853           | 4202-8003 | John Mospan          | Alfred L. Burch           | 1975           | H   | 1,342                           | S                   | Dv/fsh            |
| 854           | 4202-8004 | WUET Television      | do.                       | 1971           | H   | 1,305                           | S                   | Qt/clgr           |
| 855           | 4202-8004 | Virgil Lawson        | do.                       | 1967           | H   | 1,212                           | S                   | Dch/fsh           |
| 856           | 4202-8004 | R. C. Herman         | Donald L. Hermann         | 1972           | H   | 1,270                           | S                   | Qt/t              |
| 857           | 4202-8004 | Paul Wetzel          | Robert Anderson           | 1975           | C   | 1,309                           | S                   | Dch/fsh           |
| 858           | 4202-8005 | Alex Horwath         | Alfred L. Burch           | 1974           | H   | 1,235                           | S                   | Dch/fsh           |
| 859           | 4202-8006 | Norman Grode         | do.                       | 1965           | H   | 1,070                           | T                   | Dch/fsh           |
| 860           | 4202-8006 | C. F. Sult           | George H. Ackerman        | 1973           | H   | 1,133                           | S                   | Dch/fsh           |
| 861           | 4202-8006 | George Havican       | Lorenze Lee Hall          | 1973           | H   | 1,124                           | S                   | Dch/fsh           |
| 862           | 4202-8006 | Emil Kesselring      | Michael W. Burch          | 1976           | S   | 1,096                           | S                   | Dch/fsh           |
| 863           | 4202-8006 | do.                  | do.                       | ---            | H   | 1,103                           | S                   | Dch/fsh           |
| 864           | 4203-8001 | E. C. Hull           | Ralph Wayne Grant         | 1974           | H   | 1,175                           | S                   | Dch/fsh           |
| 865           | 4203-8001 | Joseph Ferraro       | Donald L. Hermann         | 1973           | H   | 1,190                           | S                   | Dch/fsh           |
| 866           | 4203-8001 | Frank Starvaggi      | do.                       | 1974           | H   | 1,140                           | S                   | Dch/fsh           |
| 867           | 4203-8001 | Gerald Leib          | do.                       | 1972           | S   | 1,220                           | S                   | Qt/t              |
| 868           | 4203-8002 | Joseph Kula          | do.                       | 1974           | H   | 1,245                           | S                   | Dch/fsh           |
| 869           | 4203-8002 | W. E. Klick          | Alfred L. Burch           | 1972           | H   | 1,170                           | S                   | Dch/sh            |
| 870           | 4203-8002 | M. L. Small          | Robert Anderson           | 1972           | H   | 1,128                           | S                   | Dch/fsh           |
| 871           | 4203-8002 | Ruby Snyder          | Donald L. Hermann         | 1973           | H   | 1,155                           | S                   | Dch/fsh           |
| 872           | 4203-8002 | Judge Lawson         | Alfred L. Burch           | 1971           | H   | 1,105                           | S                   | Dch/fsh           |
| 873           | 4203-8002 | W. M. Curtis         | Donald L. Hermann         | 1973           | H   | 1,115                           | S                   | Dch/fsh           |
| 874           | 4203-8003 | John Ollarek         | do.                       | 1972           | H   | 1,188                           | S                   | Dch/fsh           |
| 875           | 4203-8004 | Merton Wilson        | Alfred L. Burch           | 1975           | H   | 1,110                           | S                   | Qo/sdgr           |
| 876           | 4203-8004 | Gregory Gehlein      | do.                       | 1972           | H   | 1,110                           | H                   | Qt/clgr           |
| 877           | 4203-8004 | T. A. DeGeorge       | Robert Anderson           | 1974           | H   | 1,100                           | H                   | Qt/clgr           |
| 878           | 4203-8004 | J. M. McCreary       | Donald L. Hermann         | 1972           | H   | 1,110                           | H                   | Dch/fsh           |
| 879           | 4203-8004 | Leonard Niederriter  | Robert Anderson           | 1974           | H   | 1,095                           | H                   | Qo/gr             |
| 880           | 4203-8004 | Lee Schaaf           | Donald L. Hermann         | 1973           | H   | 1,104                           | H                   | Qo/gr             |
| 881           | 4203-8004 | Leo Ranowiecki       | Robert Rindfuss           | 1972           | H   | 1,013                           | S                   | Dch/fsh           |
| 882           | 4203-8004 | H. T. Welka          | Donald L. Hermann         | 1973           | H   | 1,070                           | S                   | Dch/fsh           |
| 883           | 4203-8004 | Dale Kibbe           | Robert Anderson           | 1976           | H   | 1,015                           | S                   | Dch/fsh           |
| 884           | 4203-8004 | L. A. Wurst          | Alfred L. Burch           | 1972           | H   | 1,050                           | S                   | Qo/clgr           |
| 885           | 4203-8004 | Paul Lorei           | do.                       | 1968           | H   | 1,065                           | S                   | Dch/fsh           |
| 886           | 4203-8005 | Robert Hutchinson    | Donald L. Hermann         | 1972           | H   | 990                             | S                   | Dch/fsh           |
| 887           | 4203-8005 | Rose Mozur           | do.                       | 1972           | H   | 1,050                           | S                   | Dch/fsh           |
| 888           | 4203-8005 | Jerry Lindenberger   | Alfred L. Burch           | 1967           | H   | 1,063                           | S                   | Qo/gr             |
| 889           | 4203-8005 | Richard Camphausen   | do.                       | 1967           | H   | 1,070                           | H                   | Qt/gr             |
| 890           | 4203-8005 | P. B. Balkovic       | do.                       | 1972           | H   | 1,052                           | S                   | Dch/fsh           |
| 891           | 4203-8005 | E. A. Rohan          | do.                       | 1973           | H   | 1,070                           | H                   | Qt/clgr           |
| 892           | 4203-8005 | Ivan Yaple           | do.                       | 1966           | H   | 1,070                           | S                   | Dch/fsh           |
| 893           | 4203-8006 | R. E. McNaughton     | Donald L. Hermann         | 1973           | H   | 1,030                           | V                   | Qo/sdgr           |
| 894           | 4203-8006 | Raymond Feikls       | do.                       | 1974           | H   | 1,085                           | S                   | Qt/clgr           |
| 895           | 4203-8006 | J. J. Desser         | do.                       | 1973           | H   | 1,060                           | H                   | Qt/sd             |
| 896           | 4203-8006 | J. P. Dedinsky       | do.                       | 1972           | H   | 972                             | S                   | Qt/sdgr           |
| 897           | 4203-8007 | Charles Ives         | Robert Anderson           | 1976           | H   | 888                             | S                   | Dg/fsh            |
| 898           | 4203-8007 | Dolores Reitz        | Donald L. Hermann         | 1972           | H   | 906                             | U                   | Qt/clgr           |
| 899           | 4203-8007 | Thomas Bujnowski     | Lorenze Lee Hall          | 1973           | H   | 1,013                           | F                   | Dch/fsh           |
| 900           | 4204-8000 | Donald Harrrah       | Harold F. Anderson        | 1973           | H   | 1,255                           | S                   | Dch/fsh           |
| 901           | 4204-8000 | Richard Lakari       | Michael W. Burch          | 1976           | H   | 1,266                           | S                   | Dch/fsh           |
| 902           | 4204-8000 | Robert Amendola      | Alfred L. Burch           | 1970           | H   | 1,360                           | S                   | Dch/fsh           |
| 903           | 4204-8001 | William Koppes       | Michael W. Burch          | 1976           | H   | 1,206                           | S                   | Dch/fsh           |
| 904           | 4204-8001 | Roger Baker          | Felix J. Waible           | 1975           | H   | 1,160                           | S                   | Qt/t              |
| 905           | 4204-8002 | Deibert Shopene      | Donald L. Hermann         | 1972           | H   | 1,100                           | U                   | Qo/sdgr           |
| 906           | 4204-8002 | Derrick Rossaire     | Robert Anderson           | 1972           | H   | 1,445                           | S                   | Dv/fsh            |
| 907           | 4204-8003 | David Lawrence       | George H. Ackerman        | 1976           | H   | 1,070                           | S                   | Dch/sh            |
| 908           | 4204-8003 | Theodore Nowak       | do.                       | 1973           | H   | 1,050                           | H                   | Dch/fsh           |
| 909           | 4204-8003 | A. S. Ferrallli, Jr. | do.                       | 1975           | H   | 1,042                           | S                   | Qt/clgr           |
| 910           | 4204-8003 | Douglas Courter      | Alfred L. Burch           | 1974           | H   | 922                             | S                   | Qt/clgr           |
| 911           | 4204-8003 | Edward Kuhn          | do.                       | 1973           | H   | 960                             | S                   | Qo/gr             |
| 912           | 4204-8003 | D. A. Hill           | Michael W. Burch          | 1975           | H   | 972                             | S                   | Qo/clgr           |

(Continued)

| Total depth below land surface (feet) | Casing |    | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------|----|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |        |    |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 52                                    | 21     | 8  | ---                                      | 10                              | 8/67                  | 2                        | ---                              | ---                                   | ---                                    | ---        | Er- 839     |
| 50                                    | 16     | 8  | 14;35                                    | 3                               | 1/74                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 840         |
| 90                                    | 20     | 8  | 20                                       | 18                              | 8/72                  | .4                       | ---                              | ---                                   | ---                                    | ---        | 841         |
| 70                                    | 30     | 6  | 30;45                                    | 13                              | 5/70                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 842         |
| 52                                    | 34     | 8  | 23;28                                    | 15                              | 2/73                  | 10                       | .37                              | ---                                   | ---                                    | ---        | 843         |
| 80                                    | 49     | 8  | 49                                       | 32                              | 7/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 844         |
| 30                                    | 30     | 8  | 27                                       | 12                              | 12/75                 | 10                       | 1.2                              | ---                                   | ---                                    | ---        | 845         |
| 55                                    | 25     | 8  | 20                                       | 10                              | 10/76                 | 22                       | .5                               | ---                                   | ---                                    | ---        | 846         |
| 50                                    | 33     | 8  | 11;34                                    | 2                               | 3/68                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 847         |
| 62                                    | 61     | 12 | 29;61                                    | 12                              | 9/75                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 848         |
| 20                                    | 20     | 30 | 8                                        | 8                               | 7/74                  | 5                        | .5                               | ---                                   | ---                                    | ---        | 849         |
| 60                                    | 46     | 8  | 46                                       | 20                              | 7/72                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 850         |
| 46                                    | 40     | 8  | 32;35;40                                 | 10                              | 10/72                 | 6                        | .25                              | ---                                   | ---                                    | ---        | 851         |
| 50                                    | 39     | 8  | 36                                       | 8                               | 6/74                  | 6                        | .19                              | 160                                   | 600                                    | ---        | 852         |
| 50                                    | 37     | 8  | 13;20;32;45                              | 8                               | 4/75                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 853         |
| 60                                    | 23     | 12 | 16;19;20                                 | 8                               | 9/71                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 854         |
| 50                                    | 15     | 8  | 3;20                                     | 1                               | 12/67                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 855         |
| 46                                    | 18     | 12 | 18                                       | 12                              | 10/72                 | 2                        | .06                              | ---                                   | ---                                    | ---        | 856         |
| 59                                    | 21     | 8  | 23;30                                    | 1                               | ---                   | 1                        | .02                              | ---                                   | ---                                    | ---        | 857         |
| 60                                    | 15     | 8  | 13;24                                    | 5                               | 11/74                 | 4                        | ---                              | ---                                   | ---                                    | ---        | 858         |
| 50                                    | 20     | 12 | 18;30;40                                 | 13                              | 3/65                  | .3                       | ---                              | ---                                   | ---                                    | ---        | 859         |
| 35                                    | 20     | 12 | 20                                       | ---                             | ---                   | 1                        | ---                              | ---                                   | ---                                    | ---        | 860         |
| 63                                    | 20     | 8  | 23                                       | 9                               | 7/73                  | 8                        | .16                              | ---                                   | ---                                    | ---        | 861         |
| 37                                    | 17     | 8  | 9;32                                     | 9                               | 6/76                  | 2                        | .07                              | ---                                   | ---                                    | ---        | 862         |
| 50                                    | 20     | 8  | ---                                      | 16                              | 6/76                  | 1                        | .03                              | 76                                    | 7.8                                    | 863        |             |
| 55                                    | 20     | 8  | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 864         |
| 68                                    | 18     | 12 | 25                                       | 25                              | 12/73                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 865         |
| 70                                    | 22     | 12 | 20;40                                    | 18                              | 3/74                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 866         |
| 40                                    | 22     | 8  | 22                                       | 15                              | 10/72                 | .5                       | .02                              | ---                                   | ---                                    | ---        | 867         |
| 50                                    | 20     | 8  | 18;26                                    | 15                              | 6/74                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 868         |
| 50                                    | 17     | 12 | 17;42                                    | 17                              | 8/72                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 869         |
| 40                                    | 14     | 12 | 14;21                                    | 5                               | 8/72                  | 2                        | .05                              | ---                                   | ---                                    | ---        | 870         |
| 48                                    | 25     | 8  | 19;25                                    | 8                               | 1/73                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 871         |
| 50                                    | 17     | 8  | 12;23                                    | 10                              | 7/71                  | .8                       | .08                              | ---                                   | ---                                    | ---        | 872         |
| 50                                    | 28     | 8  | 23;28                                    | 8                               | 1/73                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 873         |
| 65                                    | 20     | 8  | 20;45                                    | 12                              | 6/72                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 874         |
| 65                                    | 18     | 8  | 13;55                                    | 6                               | 3/75                  | 6                        | .43                              | ---                                   | ---                                    | ---        | 875         |
| 70                                    | 45     | 8  | 39                                       | 35                              | 9/72                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 876         |
| 24                                    | 24     | 12 | 22                                       | 12                              | 8/74                  | 9                        | 1.1                              | ---                                   | ---                                    | ---        | 877         |
| 70                                    | 40     | 8  | 35                                       | 28                              | 6/72                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 878         |
| 23                                    | 23     | 8  | 10;22                                    | 6                               | 5/74                  | 30                       | ---                              | 240                                   | 625                                    | ---        | 879         |
| 38                                    | 38     | 8  | 32;35                                    | 18                              | 4/73                  | 15                       | 1.1                              | ---                                   | ---                                    | ---        | 880         |
| 60                                    | 30     | 8  | 33                                       | 25                              | 6/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 881         |
| 60                                    | 32     | 12 | 21;32                                    | 18                              | 4/73                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 882         |
| 51                                    | 15     | 8  | 15;20                                    | 12                              | 7/76                  | 1                        | .04                              | ---                                   | ---                                    | ---        | 883         |
| 56                                    | 42     | 8  | 37;42                                    | 8                               | 7/72                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 884         |
| 50                                    | 24     | 8  | 20;30                                    | 14                              | 4/68                  | 7                        | ---                              | ---                                   | ---                                    | ---        | 885         |
| 70                                    | 58     | 8  | 62;68                                    | 30                              | 7/72                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 886         |
| 83                                    | 76     | 8  | 70;76                                    | 45                              | 7/72                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 887         |
| 95                                    | 81     | 8  | 76                                       | 70                              | 5/67                  | 18                       | 1.8                              | ---                                   | ---                                    | ---        | 888         |
| 120                                   | 65     | 8  | 12;64;80                                 | 66                              | 10/67                 | .5                       | ---                              | ---                                   | ---                                    | ---        | 889         |
| 95                                    | 58     | 8  | 55                                       | 50                              | 1/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 890         |
| 36                                    | 36     | 8  | 29                                       | 18                              | 5/73                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 891         |
| 105                                   | 69     | 8  | 70                                       | 70                              | 10/66                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 892         |
| 35                                    | 26     | 8  | 24                                       | 12                              | 9/73                  | 10                       | 1.7                              | 120                                   | 565                                    | ---        | 893         |
| 50                                    | 20     | 8  | 18;25                                    | 15                              | 4/74                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 894         |
| 80                                    | 74     | 8  | 69                                       | 40                              | 9/73                  | 4                        | .12                              | ---                                   | ---                                    | ---        | 895         |
| 78                                    | 63     | 8  | 58                                       | 40                              | 6/72                  | 8                        | .32                              | ---                                   | ---                                    | ---        | 896         |
| 65                                    | 22     | 8  | 29                                       | 17                              | 10/76                 | .7                       | .01                              | ---                                   | ---                                    | ---        | 897         |
| 36                                    | 36     | 8  | 33                                       | 6                               | 10/72                 | 20                       | 1                                | ---                                   | ---                                    | ---        | 898         |
| 57                                    | 14     | 12 | 28                                       | 10                              | 7/73                  | 6                        | .12                              | ---                                   | ---                                    | ---        | 899         |
| 50                                    | 14     | 12 | 30;40                                    | ---                             | ---                   | 4                        | ---                              | ---                                   | ---                                    | ---        | 900         |
| 50                                    | 17     | 8  | 8;24                                     | 7                               | 1/76                  | 5                        | .12                              | ---                                   | ---                                    | ---        | 901         |
| 50                                    | 23     | 8  | 7;15;33                                  | 8                               | 9/70                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 902         |
| 51                                    | 20     | 6  | 30                                       | 20                              | 6/76                  | 2                        | .08                              | ---                                   | ---                                    | ---        | 903         |
| 50                                    | 20     | 12 | 16                                       | 5                               | 3/75                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 904         |
| 103                                   | 103    | 8  | 60;95                                    | 63                              | 6/72                  | 30                       | 2.5                              | ---                                   | ---                                    | ---        | 905         |
| 67                                    | 37     | 8  | 38                                       | 21                              | 12/72                 | 2                        | .04                              | ---                                   | ---                                    | ---        | 906         |
| 70                                    | 23     | 12 | 18                                       | 22                              | 7/76                  | .8                       | ---                              | ---                                   | ---                                    | ---        | 907         |
| 118                                   | 108    | 8  | ---                                      | 90                              | 6/73                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 908         |
| 120                                   | 102    | 8  | 97                                       | ---                             | ---                   | .6                       | ---                              | ---                                   | ---                                    | ---        | 909         |
| 55                                    | 20     | 8  | 16;19                                    | 16                              | 2/74                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 910         |
| 31                                    | 31     | 8  | 22;25                                    | 20                              | 3/73                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 911         |
| 50                                    | 25     | 8  | 24                                       | 18                              | 8/75                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 912         |

Table 12.

| Well location |           | Owner                     | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topo-graphic setting | Aquifer/lithology |
|---------------|-----------|---------------------------|---------------------------|----------------|-----|---------------------------------|----------------------|-------------------|
| Number        | Lat-Long  |                           |                           |                |     |                                 |                      |                   |
| Er- 913       | 4204-8003 | Hamilton Lumber Co.       | Donald L. Hermann         | 1972           | H   | 1,005                           | S                    | Qt/sd             |
| 914           | 4204-8003 | Cyrus Lee                 | do.                       | 1972           | H   | 990                             | S                    | Qt/sd             |
| 915           | 4204-8003 | H. E. Camp                | George H. Ackerman        | 1973           | H   | 990                             | S                    | Qo/u              |
| 916           | 4204-8003 | L. H. Carnicelli          | Alfred L. Burch           | 1971           | H   | 1,045                           | H                    | Qo/gr             |
| 917           | 4204-8003 | E. R. Greenfield, Jr.     | George H. Ackerman        | 1973           | H   | 1,040                           | U                    | Qt/u              |
| 918           | 4204-8003 | D. M. Granahan            | Alfred L. Burch           | 1972           | H   | 1,032                           | S                    | Qt/clgr           |
| 919           | 4204-8003 | do.                       | do.                       | 1973           | H   | 1,025                           | S                    | Qt/sd             |
| 920           | 4204-8003 | M. J. Cipicchio           | do.                       | 1973           | H   | 1,037                           | S                    | Qo/gr             |
| 921           | 4204-8003 | Robert Wally              | Robert Anderson           | 1974           | H   | 1,048                           | H                    | Dch/fsh           |
| 922           | 4204-8004 | M. C. Wolfe               | Alfred L. Burch           | 1967           | H   | 990                             | S                    | Qo/sdgr           |
| 923           | 4204-8004 | D. B. Siggins             | Robert Anderson           | 1973           | H   | 1,032                           | S                    | Qt/t              |
| 924           | 4204-8004 | R. W. Heidt               | Tony Simonetti            | 1972           | H   | 1,050                           | H                    | Dch/fsh           |
| 925           | 4204-8005 | La Nar Corp.              | Alfred L. Burch           | 1967           | N   | 905                             | V                    | Qo/gr             |
| 926           | 4204-8005 | J. L. Shauberger          | Donald L. Hermann         | 1972           | H   | 924                             | U                    | Qo/sdgr           |
| 927           | 4204-8005 | Texaco Oil Co.            | Max E. Hickernell         | 1971           | C   | 920                             | S                    | Dg/fsh            |
| 928           | 4204-8005 | Frank Roscher             | Michael W. Burch          | 1975           | H   | 958                             | S                    | Qt/u              |
| 929           | 4204-8005 | Atlas Homes Co.           | Alfred L. Burch           | 1968           | H   | 1,020                           | H                    | Qt/gr             |
| 930           | 4204-8005 | David Spath               | Donald L. Hermann         | 1973           | H   | 924                             | U                    | Qt/sd             |
| 931           | 4204-8006 | Donald Morrison           | George H. Ackerman        | 1974           | H   | 920                             | S                    | Qo/gr             |
| 932           | 4204-8006 | Harry Wagner              | Robert Anderson           | 1972           | H   | 885                             | V                    | Qo/gr             |
| 933           | 4204-8006 | G. W. Schermer            | do.                       | 1975           | H   | 900                             | S                    | Qt/clgr           |
| 934           | 4204-8007 | Kenneth Fohrt             | Felix J. Waible           | 1976           | H   | 937                             | U                    | Qo/gr             |
| 935           | 4204-8007 | E. A. Nicholson           | Michael W. Burch          | 1975           | H   | 922                             | U                    | Qt/u              |
| 936           | 4205-8000 | Robert Praetzel           | Alfred L. Burch           | 1971           | H   | 1,118                           | U                    | Qo/gr             |
| 937           | 4205-8000 | Ted Gray                  | do.                       | 1970           | H   | 1,100                           | S                    | Qo/sdgr           |
| 938           | 4205-8000 | Charles Huff              | do.                       | 1968           | H   | 1,258                           | S                    | Dch/fsh           |
| 939           | 4205-8000 | Ramada Inn                | Max E. Hickernell         | 1971           | P   | 1,110                           | U                    | Qo/gr             |
| 940           | 4205-8001 | Ernest Simpson            | Robert Anderson           | 1976           | H   | 1,102                           | S                    | Qo/t              |
| 941           | 4205-8001 | E. C. Onorato             | Harold F. Anderson        | 1973           | H   | 1,100                           | S                    | Qo/gr             |
| 942           | 4205-8001 | Paul Martin               | Alfred L. Burch           | 1969           | H   | 1,010                           | S                    | Qo/gr             |
| 943           | 4205-8001 | do.                       | do.                       | 1969           | H   | 1,080                           | S                    | Qo/sdgr           |
| 944           | 4205-8002 | John Becker               | Michael W. Burch          | 1976           | H   | 978                             | S                    | Qo/clgr           |
| 945           | 4205-8002 | Norman Rapela             | George H. Ackerman        | 1974           | H   | 975                             | S                    | Qo/u              |
| 946           | 4205-8002 | Ronald Walter             | Robert Anderson           | 1977           | H   | 925                             | S                    | Dch/fsh           |
| 947           | 4205-8002 | Kenneth Boyles            | Max E. Hickernell         | 1963           | H   | 1,089                           | S                    | Qo/gr             |
| 948           | 4205-8002 | Richard Bilski            | Alfred L. Burch           | 1970           | H   | 1,082                           | S                    | Qo/sdgr           |
| 949           | 4205-8002 | M. J. Szajdner            | Michael W. Burch          | 1975           | H   | 955                             | S                    | Qo/u              |
| 950           | 4205-8003 | Arthur Whiteman           | do.                       | 1975           | H   | 960                             | H                    | Qo/u              |
| 951           | 4205-8003 | Harry Shaffer             | Alfred L. Burch           | 1971           | H   | 928                             | S                    | Dg/fsh            |
| 952           | 4205-8003 | P. R. Amendola            | do.                       | 1972           | H   | 970                             | S                    | Qo/clgr           |
| 953           | 4205-8003 | Max Stankowski            | do.                       | 1964           | H   | 835                             | S                    | Dg/fsh            |
| 954           | 4205-8001 | P. J. Martin              | do.                       | 1971           | H   | 1,000                           | S                    | Qo/clgr           |
| 955           | 4205-8007 | Frederick Steger          | ---                       | ---            | U   | 775                             | F                    | Qt/u              |
| 956           | 4205-8000 | Robert Halmuth            | Alfred L. Burch           | 1976           | H   | 1,124                           | S                    | Qo/sdgr           |
| 957           | 4206-8000 | E. C. Messenger           | George H. Ackerman        | 1975           | H   | 1,002                           | S                    | Qt/clgr           |
| 958           | 4206-8000 | Robert Hostetler          | Michael W. Burch          | 1976           | H   | 1,108                           | S                    | Qt/gr             |
| 959           | 4206-8000 | Andreas Zafiroopoulos     | do.                       | 1975           | P   | 1,068                           | S                    | Qt/clgr           |
| 960           | 4206-8000 | do.                       | do.                       | 1976           | P   | 1,105                           | S                    | Qt/clgr           |
| 961           | 4206-8000 | do.                       | do.                       | 1975           | P   | 1,115                           | S                    | Qt/gr             |
| 962           | 4206-8001 | John Schertzer            | Ralph Wayne Grant         | 1973           | H   | 1,002                           | S                    | Dg/fsh            |
| 963           | 4206-8001 | George Bennett            | Harold F. Anderson        | 1974           | H   | 975                             | S                    | Qt/t              |
| 964           | 4206-8001 | Millcreek School District | Robert Anderson           | 1974           | T   | 960                             | V                    | Dg/fsh            |
| 965           | 4206-8001 | M. M. Phillips            | Donald L. Hermann         | 1972           | H   | 925                             | S                    | Dg/fsh            |
| 966           | 4206-8001 | George Jackson            | Alfred L. Burch           | 1968           | H   | 945                             | V                    | Qt/sdgr           |
| 967           | 4153-7943 | Blaine Geddes             | Harold F. Anderson        | 1974           | H   | 1,522                           | S                    | Qo/sdgr           |
| 968           | 4154-7937 | Joseph Sanders            | Alfred L. Burch           | 1964           | H   | 1,725                           | S                    | MDcr/fsh          |
| 969           | 4154-7942 | Gerald Parsons            | Harry Bros.               | 1968           | H   | 1,372                           | V                    | Qo/t              |
| 970           | 4154-7943 | Paul Bialek               | McCray Bros.              | 1974           | H   | 1,380                           | V                    | Qo/gr             |
| 971           | 4155-7940 | Gerald Krasa              | do.                       | 1971           | H   | 1,392                           | V                    | Qo/clgr           |
| 972           | 4155-7944 | Hughpert Dawdy            | Max E. Hickernell         | 1977           | H   | 1,387                           | V                    | Qo/gr             |
| 973           | 4155-7943 | Ferdinand Mihalus         | Harold F. Anderson        | 1974           | H   | 1,395                           | V                    | Qo/gr             |
| 974           | 4156-7939 | Keppel Tiffany            | Alfred L. Burch           | 1964           | H   | 1,462                           | U                    | Qo/sd             |
| 975           | 4159-7943 | Cash Szymanski            | Boyd Lee Hall             | 1973           | H   | 1,826                           | H                    | Qo/gr             |
| 976           | 4152-8014 | R. F. Felix               | John E. Gage, Jr.         | 1974           | H   | 1,265                           | S                    | MDbv/fsh          |
| 977           | 4203-8016 | Michael Bond              | Charles J. Richardson III | 1974           | H   | 652                             | F                    | Qb/sd             |
| 978           | 4202-8016 | George Dohanic            | do.                       | 1973           | H   | 694                             | S                    | Qb/sdgr           |
| 979           | 4204-8009 | L. C. Penna               | George H. Ackerman        | 1972           | H   | 920                             | S                    | Qo/u              |
| 980           | 4209-8000 | M. H. Harriger            | Alfred L. Burch           | 1971           | H   | 647                             | U                    | Dne/fsh           |
| 981           | 4209-8000 | E. D. Campbell            | Robert F. Rumball         | 1973           | H   | 612                             | U                    | Qo/sdgr           |
| 982           | 4204-8009 | R. W. Mills               | George H. Ackerman        | 1972           | H   | 855                             | S                    | Qt/u              |
| 983           | 4203-8013 | Louis Kulczycke           | McCray Bros.              | 1972           | H   | 712                             | S                    | Qo/gr             |
| 984           | 4202-8007 | Theodore Zelinski         | Alfred L. Burch           | 1967           | H   | 1,018                           | F                    | Qo/sdgr           |
| 985           | 4202-8016 | Betty Kinsinger           | do.                       | 1967           | H   | 670                             | F                    | Qb/u              |
| 986           | 4202-8013 | Laverne Brace             | George H. Ackerman        | 1973           | H   | 802                             | F                    | Qo/u              |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 105                                   | 95           | 8                 | 92                                       | 45                              | 8/72                  | 2                        | ---                              | ---                                   | ---                                    | ---        | Er- 913     |
| 76                                    | 76           | 8                 | 73                                       | 38                              | 10/72                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 914         |
| 90                                    | 86           | 8                 | 76                                       | ---                             | ---                   | 25                       | ---                              | ---                                   | ---                                    | ---        | 915         |
| 103                                   | 103          | 8                 | 98;103                                   | 90                              | 8/71                  | 19                       | ---                              | ---                                   | ---                                    | ---        | 916         |
| 120                                   | 94           | 8                 | 94                                       | ---                             | ---                   | 3                        | ---                              | ---                                   | ---                                    | ---        | 917         |
| 110                                   | 79           | 8                 | 75;80                                    | 60                              | 11/72                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 918         |
| 115                                   | 84           | 8                 | 51;78                                    | 59                              | 2/73                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 919         |
| 100                                   | 100          | 8                 | 50;95                                    | 86                              | 4/73                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 920         |
| 130                                   | 106          | 8                 | 108                                      | 88                              | 8/74                  | .5                       | .01                              | ---                                   | ---                                    | ---        | 921         |
| 105                                   | 90           | 8                 | 94                                       | 60                              | 1/67                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 922         |
| 52                                    | 19           | 12                | 19                                       | 17                              | 1/73                  | 2                        | .06                              | ---                                   | ---                                    | ---        | 923         |
| 63                                    | 48           | 8                 | 44;48                                    | 32                              | 9/72                  | 10                       | .5                               | ---                                   | ---                                    | ---        | 924         |
| 45                                    | 27           | 8                 | 15;19                                    | 6                               | 7/67                  | 75                       | 8                                | ---                                   | ---                                    | ---        | 925         |
| 52                                    | 52           | 8                 | 47                                       | 22                              | 9/72                  | 20                       | 2                                | ---                                   | ---                                    | ---        | 926         |
| 70                                    | 27           | 10                | 30                                       | 20                              | 12/71                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 927         |
| 45                                    | 45           | 5                 | 45                                       | 30                              | 5/75                  | 10                       | 3.3                              | ---                                   | ---                                    | ---        | 928         |
| 91                                    | 87           | 8                 | 84                                       | 66                              | 3/68                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 929         |
| 60                                    | 57           | 8                 | 54                                       | ---                             | ---                   | 8                        | ---                              | ---                                   | ---                                    | ---        | 930         |
| 87                                    | 87           | 8                 | ---                                      | 57                              | 7/74                  | 40                       | ---                              | ---                                   | ---                                    | ---        | 931         |
| 25                                    | 22           | 8                 | 18;21                                    | 7                               | 8/72                  | 15                       | 5                                | ---                                   | ---                                    | ---        | 932         |
| 53                                    | 24           | 8                 | 22                                       | 14                              | 4/75                  | 9                        | .26                              | ---                                   | ---                                    | ---        | 933         |
| 98                                    | 98           | 8                 | 90                                       | 53                              | 7/76                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 934         |
| 98                                    | 98           | 6                 | ---                                      | 87                              | 6/75                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 935         |
| 30                                    | 30           | 8                 | 22;26                                    | 18                              | 7/71                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 936         |
| 57                                    | 53           | 8                 | 10;18;52                                 | 12                              | 3/70                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 937         |
| 55                                    | 18           | 8                 | 14;37;48                                 | 10                              | ---                   | 5                        | ---                              | ---                                   | ---                                    | ---        | 938         |
| 42                                    | ---          | 16                | 36                                       | 26                              | 5/71                  | 60                       | 6                                | ---                                   | ---                                    | ---        | 939         |
| 131                                   | 116          | 8                 | 115                                      | 100                             | 12/76                 | 5                        | .17                              | ---                                   | ---                                    | ---        | 940         |
| 130                                   | 115          | 8                 | 115;125                                  | ---                             | ---                   | 6                        | ---                              | ---                                   | ---                                    | ---        | 941         |
| 60                                    | ---          | 8                 | 16;29                                    | 3                               | 7/69                  | 50                       | 2.5                              | ---                                   | ---                                    | ---        | 942         |
| 50                                    | ---          | 8                 | 40                                       | 32                              | 7/69                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 943         |
| 45                                    | 45           | 8                 | 45                                       | 24                              | 9/76                  | 7                        | .37                              | ---                                   | ---                                    | ---        | 944         |
| 65                                    | 52           | 8                 | 48                                       | 30                              | 4/74                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 945         |
| 57                                    | 11           | 8                 | 12;24                                    | 5                               | 3/77                  | 10                       | .22                              | ---                                   | ---                                    | ---        | 946         |
| 119                                   | 118          | 6                 | 119                                      | 90                              | 3/63                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 947         |
| 96                                    | 96           | 8                 | 92                                       | 84                              | 6/70                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 948         |
| 43                                    | 30           | 6                 | ---                                      | 21                              | 3/75                  | 10                       | 1.1                              | ---                                   | ---                                    | ---        | 949         |
| 48                                    | 48           | 8                 | 48                                       | 30                              | 11/75                 | 9                        | .9                               | ---                                   | ---                                    | ---        | 950         |
| 75                                    | 25           | 8                 | 25;58                                    | 22                              | 11/71                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 951         |
| 40                                    | 40           | 8                 | 32;35                                    | 28                              | 5/72                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 952         |
| 56                                    | 16           | 8                 | 14;36                                    | 10                              | 6/64                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 953         |
| 60                                    | 34           | 10                | 16;27                                    | 4                               | 3/71                  | 20                       | 6.6                              | ---                                   | ---                                    | ---        | 954         |
| 44                                    | ---          | 6                 | ---                                      | 21                              | 7/51                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 955         |
| 43                                    | 43           | 8                 | 32                                       | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 956         |
| 70                                    | 30           | 8                 | 24                                       | 17                              | 7/75                  | 2                        | ---                              | 140                                   | 540                                    | ---        | 957         |
| 45                                    | 45           | 8                 | 21;30                                    | 21                              | 7/76                  | 28                       | 3.1                              | ---                                   | ---                                    | ---        | 958         |
| 50                                    | 37           | 8                 | 29                                       | 0                               | 8/75                  | 50                       | 3.3                              | ---                                   | ---                                    | ---        | 959         |
| 80                                    | 72           | 8                 | 30;68                                    | 52                              | 6/76                  | 30                       | 1.5                              | ---                                   | ---                                    | ---        | 960         |
| 96                                    | 95           | 8                 | 90                                       | 56                              | 6/75                  | 15                       | .47                              | ---                                   | ---                                    | ---        | 961         |
| 50                                    | 30           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 962         |
| 50                                    | 22           | 8                 | 22;45                                    | ---                             | ---                   | 12                       | ---                              | ---                                   | ---                                    | ---        | 963         |
| 63                                    | 20           | 8                 | 23;33;60                                 | 20                              | 8/74                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 964         |
| 75                                    | 66           | 8                 | 62;65                                    | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 965         |
| 30                                    | 14           | 12                | 10;14;27                                 | 2                               | 1/68                  | 6                        | 1.5                              | ---                                   | ---                                    | ---        | 966         |
| 55                                    | 26           | 8                 | ---                                      | 7/74                            | 3                     | ---                      | 140                              | 370                                   | ---                                    | ---        | 967         |
| 72                                    | 19           | 6                 | 40                                       | 30                              | 4/64                  | 15                       | ---                              | 120                                   | 280                                    | ---        | 968         |
| 70                                    | 70           | 6                 | 70                                       | F                               | 1/68                  | 24                       | 1                                | 95                                    | 300                                    | ---        | 969         |
| 246                                   | 246          | 6                 | ---                                      | 0                               | 9/74                  | 15                       | .6                               | ---                                   | ---                                    | ---        | 970         |
| 220                                   | 214          | 6                 | 110;200;220                              | 0                               | 3/71                  | 20                       | 1                                | 90                                    | 700                                    | ---        | 971         |
| 126                                   | 126          | 6                 | 122                                      | F                               | 3/77                  | 12                       | 12                               | ---                                   | ---                                    | ---        | 972         |
| 112                                   | 112          | 6                 | 60;90                                    | F                               | 10/74                 | 6                        | 6                                | ---                                   | ---                                    | ---        | 973         |
| 50                                    | ---          | ---               | 15;40                                    | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 974         |
| 71                                    | 19           | 8                 | 14;30;58                                 | 10                              | 8/73                  | 20                       | .5                               | ---                                   | ---                                    | ---        | 975         |
| 60                                    | 17           | 8                 | 16;28                                    | 12                              | 6/74                  | 4                        | .22                              | ---                                   | ---                                    | ---        | 976         |
| 30                                    | 30           | 30                | 22                                       | 12                              | 7/74                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 977         |
| 14                                    | 14           | 24                | 8                                        | 8                               | 10/73                 | 8                        | 2                                | ---                                   | ---                                    | ---        | 978         |
| 92                                    | ---          | 8                 | 88                                       | 15                              | 7/72                  | 16                       | ---                              | ---                                   | ---                                    | ---        | 979         |
| 30                                    | ---          | ---               | 8;14                                     | 1                               | 1/71                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 980         |
| 66                                    | 66           | 8                 | ---                                      | ---                             | ---                   | 23                       | ---                              | ---                                   | ---                                    | ---        | 981         |
| 100                                   | 100          | 8                 | 96                                       | 18                              | 9/72                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 982         |
| 72                                    | ---          | 8                 | 20;30;50                                 | 20                              | 5/72                  | 2                        | .08                              | ---                                   | ---                                    | ---        | 983         |
| 42                                    | 22           | 12                | 16;18                                    | 12                              | 3/67                  | 30                       | 3                                | ---                                   | ---                                    | ---        | 984         |
| 14                                    | 14           | 24                | ---                                      | 0                               | 11/67                 | 5                        | 2.5                              | ---                                   | ---                                    | ---        | 985         |
| 55                                    | 55           | 8                 | 51                                       | 18                              | 8/73                  | 25                       | ---                              | ---                                   | ---                                    | ---        | 986         |

Table 12.

| Well location |           | Owner                       | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|-----------------------------|---------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                             |                           |                |     |                                 |                     |                   |
| Er- 987       | 4203-8007 | Richard Harrington          | Donald L. Hermann         | 1973           | H   | 913                             | S                   | Qt/sd             |
| 988           | 4200-8008 | Harborcreek School for Boys | Felix J. Waible           | 1974           | H   | 1,025                           | S                   | Qt/u              |
| 989           | 4205-8008 | Henry Woodworth             | Boyd Lee Hall             | ---            | H   | 714                             | F                   | Dne/fsh           |
| 990           | 4152-8013 | Richard Koob                | Michael W. Burch          | 1976           | H   | 1,340                           | S                   | Qt/clgr           |
| 991           | 4154-8008 | Ralph Scrafford             | George H. Ackerman        | 1967           | H   | 1,255                           | S                   | Qo/gr             |
| 992           | 4159-8008 | Eleanor Musica              | ---                       | ---            | H   | 1,145                           | S                   | Dch/fsh           |
| 993           | 4158-8011 | Edward Chernichky           | Robert Anderson           | 1974           | H   | 1,153                           | S                   | Dch/fsh           |
| 994           | 4157-8012 | J. D. Parker                | do.                       | 1974           | H   | 1,193                           | S                   | MDbv/fsh          |
| 995           | 4157-8012 | Bernard Franks              | Max E. Hickernell         | 1968           | H   | 1,225                           | S                   | MDbv/fst          |
| 996           | 4155-8012 | Stanley Hudy                | B. W. Bateman and Son     | 1967           | H   | 1,290                           | S                   | MDbv/sh           |
| 997           | 4155-8011 | Richard Lewandowski         | Lorenze Lee Hall          | 1976           | H   | 1,290                           | S                   | Dv/fsh            |
| 998           | 4155-8011 | Louis Beck                  | Alfred L. Burch           | 1967           | H   | 1,308                           | U                   | MDbv/fsh          |
| 999           | 4155-8011 | do.                         | do.                       | 1975           | H   | 1,313                           | U                   | MDbv/sh           |
| 1000          | 4153-8014 | Bernard Rosenberg           | B. W. Bateman and Son     | 1968           | H   | 1,275                           | S                   | MDbv/fsh          |
| 1001          | 4154-8014 | Henry Brown                 | Lowell Halstead           | 1975           | H   | 1,264                           | U                   | Qt/clgr           |
| 1002          | 4154-8010 | Makco Manufacturing Co.     | Max E. Hickernell         | 1968           | N   | 1,300                           | S                   | MDbv/fst          |
| 1003          | 4158-8012 | Donovan Rounds              | Boyd Lee Hall             | 1971           | H   | 1,180                           | S                   | MDbv/fsh          |
| 1004          | 4157-8012 | Edward Kuzma                | Max E. Hickernell         | 1962           | H   | 1,206                           | U                   | MDbv/fsh          |
| 1005          | 4157-8013 | Thomas Noble                | Alfred L. Burch           | 1968           | H   | 1,170                           | U                   | MDbv/fsh          |
| 1006          | 4157-8013 | T. J. Kitcsey               | do.                       | 1972           | H   | 1,172                           | U                   | MDbv/fsh          |
| 1007          | 4157-8013 | Marvin Wilkinson            | Robert Anderson           | 1972           | H   | 1,183                           | S                   | Qt/clgr           |
| 1008          | 4157-8013 | F. L. Heibel                | do.                       | 1974           | H   | 1,180                           | S                   | Qt/gr             |
| 1009          | 4157-8014 | S. E. Thornton              | Lowell Halstead           | 1973           | H   | 1,124                           | S                   | Dch/fsh           |
| 1010          | 4158-8009 | R. E. Griffith              | Donald L. Hermann         | 1973           | H   | 1,242                           | S                   | Dv/sh             |
| 1011          | 4158-8009 | Robert Osterberg            | do.                       | 1973           | H   | 1,215                           | S                   | Dv/ssh            |
| 1012          | 4158-8011 | M. M. Sharpe                | Robert Anderson           | 1974           | H   | 1,223                           | S                   | Dv/fsh            |
| 1013          | 4158-8012 | Marion Russell              | George H. Ackerman        | 1976           | H   | 1,138                           | S                   | Dch/fsh           |
| 1014          | 4158-8012 | Thomas Kozlowski            | do.                       | 1976           | H   | 1,125                           | S                   | Dch/fsh           |
| 1015          | 4158-8013 | J. A. Tupitsa               | do.                       | 1975           | H   | 995                             | S                   | Dch/sh            |
| 1016          | 4159-8008 | Edwin Sterrett              | Alfred L. Burch           | 1971           | H   | 1,103                           | S                   | Qt/sdgr           |
| 1017          | 4159-8008 | Paul Keller                 | Robert Anderson           | 1975           | H   | 1,102                           | S                   | Dch/fsh           |
| 1018          | 4159-8008 | Theodore Stossmeister       | Donald L. Hermann         | 1973           | H   | 1,028                           | S                   | Dch/fsh           |
| 1019          | 4159-8008 | B. J. Clapper               | do.                       | 1972           | H   | 1,013                           | S                   | Dch/ssh           |
| 1020          | 4159-8008 | F. F. Harrison              | Robert Anderson           | 1975           | H   | 1,050                           | S                   | Dch/fsh           |
| 1021          | 4159-8008 | B. J. Clapper               | Donald L. Hermann         | 1972           | H   | 1,022                           | S                   | Dch/fsh           |
| 1022          | 4159-8008 | D. A. Meyer                 | Alfred L. Burch           | 1974           | H   | 1,070                           | S                   | Dch/fsh           |
| 1023          | 4159-8008 | Clarence Baker              | do.                       | 1966           | H   | 1,102                           | S                   | Dch/fsh           |
| 1024          | 4159-8009 | Daniel Corwin               | Ralph Wayne Grant         | 1974           | H   | 975                             | V                   | Dch/fsh           |
| 1025          | 4159-8009 | M. J. Ferrick               | Donald L. Hermann         | 1974           | H   | 990                             | V                   | Dch/fsh           |
| 1026          | 4159-8011 | Kenneth Neuberger           | do.                       | 1975           | H   | 958                             | U                   | Dch/fsh           |
| 1027          | 4159-8012 | Thomas Kaliszewsky          | Herbert G. Orr            | 1976           | H   | 923                             | F                   | Dch/fsh           |
| 1028          | 4159-8012 | Anthony Milano              | Robert Anderson           | 1972           | H   | 897                             | S                   | Dg/fsh            |
| 1029          | 4159-8014 | A. L. Farley                | Charles J. Richardson III | 1973           | H   | 897                             | F                   | Qo/sdgr           |
| 1030          | 4159-8014 | L. J. Nelson                | Alfred L. Burch           | 1971           | H   | 933                             | U                   | Qo/clgr           |
| 1031          | 4152-7953 | Walter Bujnowski            | do.                       | 1974           | H   | 1,352                           | S                   | Dv/fsh            |
| 1032          | 4152-7953 | Kenneth Ignasiak            | Donald L. Hermann         | 1972           | H   | 1,377                           | S                   | Dv/fsh            |
| 1033          | 4152-7953 | Gordon Ward                 | Alfred L. Burch           | 1972           | H   | 1,358                           | S                   | Dv/fsh            |
| 1034          | 4152-7955 | R. P. Langdon               | Robert Rindfuss           | ---            | H   | 1,377                           | S                   | Dv/fsh            |
| 1035          | 4152-7957 | Steven Lesik                | Max E. Hickernell         | 1973           | H   | 1,350                           | S                   | Dv/fsh            |
| 1036          | 4152-7958 | Nathan Carr                 | McCray Bros.              | 1972           | H   | 1,180                           | V                   | Qo/sdgr           |
| 1037          | 4153-7959 | Ronald Bennett              | Robert Rindfuss           | 1974           | H   | 1,180                           | S                   | Dv/fsh            |
| 1038          | 4153-7959 | J. A. Bennett               | do.                       | 1972           | H   | 1,182                           | V                   | Qo/gr             |
| 1039          | 4153-7959 | A. J. Eckard                | do.                       | 1974           | H   | 1,225                           | S                   | Dv/fsh            |
| 1040          | 4153-7959 | H. D. Williams              | do.                       | 1972           | H   | 1,180                           | S                   | Dch/fsh           |
| 1041          | 4154-7955 | George Hall                 | Alfred L. Burch           | 1969           | H   | 1,214                           | V                   | Qo/sdgr           |
| 1042          | 4154-7959 | Elizabeth Wilkins           | Robert Rindfuss           | 1972           | H   | 1,225                           | S                   | Dch/sh            |
| 1043          | 4154-7959 | B. F. Holewski              | do.                       | 1974           | H   | 1,308                           | S                   | Dv/fsh            |
| 1044          | 4155-7953 | Lester Swain                | Max E. Hickernell         | 1966           | H   | 1,332                           | S                   | Dv/ss             |
| 1045          | 4155-7955 | Thomas Holman               | Alfred L. Burch           | 1967           | H   | 1,368                           | S                   | Dv/fsh            |
| 1046          | 4155-7955 | do.                         | do.                       | 1973           | H   | 1,392                           | S                   | Dv/fsh            |
| 1047          | 4155-7955 | William Weber               | Michael W. Burch          | 1976           | H   | 1,380                           | S                   | Dv/fsh            |
| 1048          | 4155-7954 | Ormal Brown                 | Alfred L. Burch           | 1972           | H   | 1,409                           | S                   | Dv/sh             |
| 1049          | 4155-7955 | Paul Wester                 | Robert Rindfuss           | 1973           | H   | 1,324                           | S                   | Dv/fsh            |
| 1050          | 4155-7956 | Thomas Post                 | do.                       | 1972           | H   | 1,233                           | S                   | Qo/gr             |
| 1051          | 4156-7954 | Robert Verga                | Alfred L. Burch           | 1974           | H   | 1,355                           | S                   | Dv/fsh            |
| 1052          | 4157-7953 | Thomas Davies               | do.                       | 1975           | H   | 1,290                           | S                   | Qo/sdgr           |
| 1053          | 4156-7955 | Joseph Borczon              | George H. Ackerman        | 1967           | H   | 1,354                           | S                   | Qo/gr             |
| 1054          | 4156-7955 | Dennis Alloway              | Lorenze Lee Hall          | 1973           | H   | 1,350                           | S                   | Qt/u              |
| 1055          | 4156-7956 | Patricia Adams              | Robert Rindfuss           | 1975           | H   | 1,380                           | S                   | Qt/t              |
| 1056          | 4156-7955 | T. S. Salusky               | Donald E. Hall            | 1973           | H   | 1,312                           | S                   | Qo/gr             |
| 1057          | 4156-7957 | H. E. Ruckman               | Boyd Lee Hall             | 1971           | H   | 1,205                           | S                   | Dch/fsed          |
| 1058          | 4156-7958 | J. R. Goldsmith             | Robert Rindfuss           | 1972           | H   | 1,222                           | S                   | Qo/gr             |
| 1059          | 4155-7958 | Raymond Hershey             | Lowell Halstead           | 1973           | H   | 1,190                           | T                   | Qo/gr             |
| 1060          | 4156-7959 | Cynthia Lane                | Michael W. Burch          | 1976           | H   | 1,190                           | V                   | Qo/sdgr           |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH  | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|-----|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |     |             |
| 60                                    | 57           | 8                 | 54                                       | ---                             | ---                   | 8                        | ---                              | ---                                   | ---                                    | --- | Er- 987     |
| 50                                    | 22           | 12                | 18                                       | 14                              | 6/74                  | 3                        | ---                              | ---                                   | ---                                    | --- | 988         |
| 70                                    | 45           | 8                 | 60;69                                    | ---                             | ---                   | 25                       | 25                               | ---                                   | ---                                    | --- | 989         |
| 23                                    | 23           | 8                 | 8;17                                     | 1                               | 12/76                 | 9                        | .5                               | ---                                   | ---                                    | --- | 990         |
| 98                                    | 98           | 8                 | 98                                       | 24                              | 6/67                  | 3                        | ---                              | ---                                   | ---                                    | --- | 991         |
| 82                                    | 40           | 8                 | 42                                       | 40                              | 10/76                 | .5                       | ---                              | ---                                   | ---                                    | --- | 992         |
| 53                                    | 12           | 8                 | 15;30                                    | 15                              | 6/74                  | 5                        | .15                              | ---                                   | ---                                    | --- | 993         |
| 60                                    | 17           | 8                 | 23;28                                    | 4                               | 7/74                  | 4                        | .07                              | ---                                   | ---                                    | --- | 994         |
| 53                                    | 15           | 6                 | 23;48                                    | 6                               | 5/68                  | 7                        | ---                              | ---                                   | ---                                    | --- | 995         |
| 100                                   | 30           | 6                 | 18                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | --- | 996         |
| 49                                    | 30           | 8                 | 34;46                                    | 8                               | 11/76                 | 25                       | 2                                | ---                                   | ---                                    | --- | 997         |
| 60                                    | 15           | 8                 | 15;40                                    | 7                               | 8/67                  | 1                        | ---                              | ---                                   | ---                                    | --- | 998         |
| 40                                    | 19           | 8                 | 19;22                                    | 15                              | 7/75                  | 1                        | ---                              | ---                                   | ---                                    | --- | 999         |
| 65                                    | 42           | 6                 | 45                                       | 10                              | 7/68                  | 10                       | .04                              | ---                                   | ---                                    | --- | 1000        |
| 50                                    | 30           | 8                 | 26                                       | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | --- | 1001        |
| 90                                    | 44           | 6                 | 54;68;85                                 | 17                              | 5/68                  | 10                       | ---                              | ---                                   | ---                                    | --- | 1002        |
| 58                                    | 18           | 8                 | 40;50                                    | 12                              | 3/71                  | 6                        | .16                              | ---                                   | ---                                    | --- | 1003        |
| 41                                    | 26           | 7                 | 28                                       | 20                              | 5/62                  | 20                       | 4                                | ---                                   | ---                                    | --- | 1004        |
| 50                                    | 22           | 8                 | 20;30                                    | 8                               | 6/68                  | 20                       | .5                               | ---                                   | ---                                    | --- | 1005        |
| 50                                    | 15           | 8                 | 12;30                                    | 1                               | 1/72                  | ---                      | ---                              | ---                                   | ---                                    | --- | 1006        |
| 21                                    | 21           | 8                 | 21                                       | 8                               | 10/72                 | 18                       | .9                               | ---                                   | ---                                    | --- | 1007        |
| 25                                    | 24           | 8                 | 21;24                                    | 12                              | 9/74                  | 28                       | 5.6                              | ---                                   | ---                                    | --- | 1008        |
| 40                                    | 18           | 8                 | 21                                       | 35                              | 7/73                  | 6                        | ---                              | ---                                   | ---                                    | --- | 1009        |
| 50                                    | 18           | 12                | 18                                       | 8                               | 9/73                  | 2                        | .05                              | ---                                   | ---                                    | --- | 1010        |
| 45                                    | 29           | 8                 | 24;29                                    | 10                              | 3/73                  | 10                       | ---                              | ---                                   | ---                                    | --- | 1011        |
| 67                                    | 11           | 8                 | 18                                       | 2                               | 6/74                  | 1                        | .01                              | ---                                   | ---                                    | --- | 1012        |
| 70                                    | 16           | 12                | ---                                      | 11                              | 7/76                  | 1                        | ---                              | ---                                   | ---                                    | --- | 1013        |
| 75                                    | 18           | 12                | 17;28                                    | 17                              | 6/76                  | 1                        | ---                              | ---                                   | ---                                    | --- | 1014        |
| 35                                    | 20           | 8                 | 14;22                                    | 10                              | 5/75                  | 9                        | ---                              | 110                                   | 265                                    | --- | 1015        |
| 50                                    | 31           | 12                | 16;22                                    | 10                              | 9/71                  | 4                        | ---                              | ---                                   | ---                                    | --- | 1016        |
| 51                                    | 20           | 8                 | ---                                      | 12                              | 6/75                  | 5                        | .14                              | ---                                   | ---                                    | --- | 1017        |
| 50                                    | 29           | 8                 | 22;27                                    | 11                              | 1/73                  | 15                       | ---                              | ---                                   | ---                                    | --- | 1018        |
| 80                                    | 53           | 8                 | 49;52                                    | 18                              | 8/72                  | 4                        | ---                              | ---                                   | ---                                    | --- | 1019        |
| 65                                    | ---          | 12                | 15;25                                    | 4                               | 4/75                  | .7                       | ---                              | ---                                   | ---                                    | --- | 1020        |
| 60                                    | 43           | 8                 | 38;44                                    | 10                              | 8/72                  | 10                       | ---                              | ---                                   | ---                                    | --- | 1021        |
| 60                                    | 20           | 12                | 22;35;48                                 | 20                              | 8/74                  | 4                        | ---                              | ---                                   | ---                                    | --- | 1022        |
| 65                                    | 28           | 8                 | 21;40                                    | 20                              | 7/66                  | 4                        | ---                              | ---                                   | ---                                    | --- | 1023        |
| 50                                    | 30           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | --- | 1024        |
| 55                                    | 20           | 12                | 15                                       | 3                               | 5/74                  | 3                        | ---                              | ---                                   | ---                                    | --- | 1025        |
| 50                                    | 21           | 8                 | 17;20                                    | 8                               | 5/75                  | 2                        | ---                              | 200                                   | 500                                    | --- | 1026        |
| 80                                    | 38           | 8                 | 35                                       | 30                              | 5/76                  | 9                        | .22                              | ---                                   | ---                                    | --- | 1027        |
| 47                                    | 10           | 8                 | 24                                       | 13                              | 6/72                  | 2                        | .08                              | ---                                   | ---                                    | --- | 1028        |
| 25                                    | 25           | 24                | 23                                       | 12                              | 5/73                  | 6                        | .75                              | 400                                   | 1,000                                  | --- | 1029        |
| 105                                   | 93           | 8                 | 60;80;87                                 | 25                              | 3/71                  | 4                        | ---                              | ---                                   | ---                                    | --- | 1030        |
| 60                                    | 20           | 8                 | 15;22;47                                 | 5                               | 5/74                  | 10                       | ---                              | ---                                   | ---                                    | --- | 1031        |
| 70                                    | 37           | 8                 | ---                                      | 14                              | 8/72                  | 5                        | .1                               | 120                                   | 420                                    | --- | 1032        |
| 100                                   | 17           | 8                 | 18;20;23;70                              | 6                               | 12/72                 | 6                        | .06                              | ---                                   | ---                                    | --- | 1033        |
| 65                                    | ---          | 8                 | 27                                       | ---                             | ---                   | 15                       | ---                              | ---                                   | ---                                    | --- | 1034        |
| 93                                    | 34           | 6                 | 54;84                                    | 40                              | 2/73                  | 15                       | ---                              | ---                                   | ---                                    | --- | 1035        |
| 51                                    | 51           | 8                 | 10;20;50                                 | 1                               | 6/72                  | 5                        | .11                              | ---                                   | ---                                    | --- | 1036        |
| 83                                    | 73           | 8                 | 76                                       | 40                              | 7/74                  | 30                       | 6                                | ---                                   | ---                                    | --- | 1037        |
| 48                                    | 48           | 8                 | 48                                       | 25                              | 6/72                  | 13                       | .65                              | ---                                   | ---                                    | --- | 1038        |
| 87                                    | 20           | 8                 | 25                                       | 12                              | 1974                  | 2                        | ---                              | ---                                   | ---                                    | --- | 1039        |
| 73                                    | 45           | 8                 | 55                                       | 35                              | 10/72                 | 3                        | ---                              | ---                                   | ---                                    | --- | 1040        |
| 70                                    | 70           | 8                 | 48;64                                    | 35                              | 10/69                 | 4                        | ---                              | 120                                   | 220                                    | --- | 1041        |
| 100                                   | 25           | 8                 | 25                                       | 20                              | 7/72                  | 2                        | ---                              | 85                                    | 370                                    | --- | 1042        |
| 75                                    | 45           | 8                 | 62                                       | ---                             | ---                   | 15                       | .27                              | ---                                   | ---                                    | --- | 1043        |
| 54                                    | 43           | 6                 | 51                                       | 33                              | 10/66                 | 7                        | ---                              | ---                                   | ---                                    | --- | 1044        |
| 45                                    | 25           | 8                 | 21;25                                    | 11                              | 7/67                  | 6                        | ---                              | ---                                   | ---                                    | --- | 1045        |
| 36                                    | 18           | 8                 | 20;25                                    | 10                              | 12/73                 | 8                        | ---                              | ---                                   | ---                                    | --- | 1046        |
| 80                                    | 13           | 8                 | 12;60                                    | 10                              | 9/76                  | 2                        | .04                              | ---                                   | ---                                    | --- | 1047        |
| 45                                    | 25           | 8                 | 12;34                                    | 15                              | 6/72                  | 10                       | ---                              | 120                                   | 300                                    | --- | 1048        |
| 73                                    | 25           | 8                 | 55                                       | 25                              | 3/73                  | 12                       | ---                              | ---                                   | ---                                    | --- | 1049        |
| 210                                   | 190          | 8                 | 190                                      | 14                              | 11/72                 | .2                       | ---                              | ---                                   | ---                                    | --- | 1050        |
| 145                                   | 130          | 8                 | 17;110;130                               | 37                              | 7/74                  | 4                        | ---                              | ---                                   | ---                                    | --- | 1051        |
| 52                                    | 52           | 8                 | 31;47                                    | 25                              | 9/75                  | 9                        | ---                              | ---                                   | ---                                    | --- | 1052        |
| 68                                    | 68           | 8                 | 12                                       | 4                               | 10/67                 | 10                       | ---                              | ---                                   | ---                                    | --- | 1053        |
| 90                                    | 86           | 8                 | 76;86                                    | 14                              | 11/73                 | 2                        | .03                              | ---                                   | ---                                    | --- | 1054        |
| 53                                    | 29           | 8                 | 29;56                                    | 12                              | 9/75                  | 12                       | .36                              | ---                                   | ---                                    | --- | 1055        |
| 32                                    | 32           | 8                 | 32                                       | ---                             | ---                   | 8                        | ---                              | ---                                   | ---                                    | --- | 1056        |
| 82                                    | 72           | 8                 | 79                                       | 20                              | 9/71                  | 22                       | .55                              | ---                                   | ---                                    | --- | 1057        |
| 43                                    | 43           | 8                 | 40                                       | 32                              | 9/72                  | 6                        | .86                              | ---                                   | ---                                    | --- | 1058        |
| 130                                   | 130          | 8                 | 130                                      | 110                             | 11/73                 | 30                       | 2                                | ---                                   | ---                                    | --- | 1059        |
| 33                                    | 33           | 8                 | 3;28                                     | 1                               | 8/76                  | 9                        | .33                              | ---                                   | ---                                    | --- | 1060        |

Table 12.

| Well location |           | Owner             | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|-------------------|--------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                   |                          |                |     |                                 |                     |                   |
| Er-1061       | 4156-7959 | Victor Malinowski | Robert Rindfuss          | 1974           | H   | 1,200                           | V                   | Qo/gr             |
| 1062          | 4157-7955 | Charles Whitney   | do.                      | 1975           | H   | 1,394                           | S                   | Dv/fsh            |
| 1063          | 4157-7956 | David Risjan      | do.                      | 1975           | H   | 1,458                           | S                   | Dv/fsh            |
| 1064          | 4155-7958 | Frank Ethridge    | ---                      | ---            | H   | 1,092                           | V                   | Qo/gr             |
| 1065          | 4157-7956 | Joseph Krol       | Harold F. Anderson       | 1972           | H   | 1,506                           | H                   | Dv/fsh            |
| 1066          | 4157-7957 | J. G. Risjan      | Robert Rindfuss          | 1974           | H   | 1,210                           | S                   | Dch/fsh           |
| 1067          | 4157-7958 | S. T. Chase       | do.                      | 1972           | H   | 1,310                           | H                   | Qo/gr             |
| 1068          | 4157-7958 | M. C. Vogt        | Alfred L. Burch          | 1973           | H   | 1,310                           | S                   | Qo/sdgr           |
| 1069          | 4157-7958 | R. S. Petko       | Robert Anderson          | 1974           | H   | 1,290                           | S                   | Qo/gr             |
| 1070          | 4158-7957 | R. A. Hull        | Max E. Hickernell        | 1967           | H   | 1,280                           | S                   | Qo/gr             |
| 1071          | 4159-7957 | Arnold Burlingham | do.                      | 1967           | H   | 1,282                           | S                   | Qo/gr             |
| 1072          | 4158-7959 | L. G. McClamans   | Donald L. Hermann        | 1972           | H   | 1,220                           | S                   | Qo/gr             |
| 1073          | 4158-7959 | D. K. Coon        | Robert Rindfuss          | 1973           | H   | 1,238                           | U                   | Dch/fsh           |
| 1074          | 4159-7957 | J. J. Capenos     | Robert Anderson          | 1974           | H   | 1,385                           | S                   | Dch/fsh           |
| 1075          | 4159-7953 | D. A. Kirik       | Max E. Hickernell        | 1971           | H   | 1,340                           | S                   | Dch/fsh           |
| 1076          | 4158-7953 | George Lowe       | Harold F. Anderson       | 1975           | H   | 1,310                           | V                   | Qo/sd             |
| 1077          | 4158-7957 | Daniel Haibach    | George H. Ackerman       | 1968           | H   | 1,340                           | S                   | Qo/sd             |
| 1078          | 4157-7958 | Raymond Baker     | Alfred L. Burch          | 1975           | H   | 1,310                           | S                   | Qo/sdgr           |
| 1079          | 4154-7954 | Glenn Troyer      | do.                      | 1975           | H   | 1,390                           | S                   | Dv/ss             |
| 1080          | 4154-7954 | Marian Lopus      | do.                      | 1967           | H   | 1,400                           | S                   | Dv/fsh            |
| 1081          | 4154-7958 | Portia Lewis      | Max E. Hickernell        | 1966           | H   | 1,175                           | V                   | Qo/gr             |
| 1082          | 4152-7948 | V. C. Akam        | Harold F. Anderson       | 1973           | H   | 1,360                           | S                   | Dv/fsh            |
| 1084          | 4152-7951 | J. E. Musiek      | Max E. Hickernell        | 1966           | H   | 1,412                           | S                   | Qo/sdgr           |
| 1085          | 4153-7947 | W. G. Champ       | Harold F. Anderson       | 1973           | H   | 1,346                           | S                   | Dv/fsh            |
| 1086          | 4153-7949 | Thomas Shayko     | Alfred L. Burch          | 1964           | H   | 1,312                           | S                   | Qo/gr             |
| 1087          | 4153-7949 | Connie Ainsworth  | Max E. Hickernell        | 1974           | H   | 1,380                           | S                   | Dv/fst            |
| 1088          | 4153-7951 | N. G. Troyer      | do.                      | 1973           | H   | 1,355                           | S                   | Dv/fsed           |
| 1089          | 4153-7951 | do.               | do.                      | 1972           | H   | 1,367                           | S                   | Dv/fsed           |
| 1090          | 4154-7949 | Gladys Chase      | do.                      | 1971           | H   | 1,338                           | S                   | Qo/gr             |
| 1091          | 4154-7951 | James Edwards     | do.                      | 1971           | H   | 1,460                           | S                   | Dv/fsh            |
| 1092          | 4155-7950 | Paul Gregor       | Alfred L. Burch          | 1969           | H   | 1,485                           | S                   | Ot/clgr           |
| 1093          | 4155-7952 | G. L. Hinkson     | Donald L. Hermann        | 1973           | H   | 1,500                           | U                   | Dv/fsh            |
| 1094          | 4156-7947 | Walter Ingalls    | Lorenze Lee Hall         | 1975           | H   | 1,538                           | S                   | Qo/gr             |
| 1095          | 4156-7947 | Floyd McClellan   | Harold F. Anderson       | 1973           | H   | 1,524                           | S                   | Dv/fsh            |
| 1096          | 4156-7949 | Herman Manross    | do.                      | 1974           | H   | 1,610                           | H                   | MDcr/fsh          |
| 1097          | 4156-7949 | Melan Seltzer     | Max E. Hickernell        | 1971           | H   | 1,590                           | T                   | MDcr/fsh          |
| 1098          | 4156-7949 | George Kirik      | do.                      | 1971           | H   | 1,610                           | S                   | MDcr/fsh          |
| 1099          | 4155-7950 | Rulaf Chapin      | do.                      | 1971           | H   | 1,440                           | S                   | Dv/fsh            |
| 1100          | 4157-7951 | S. H. Capela      | Robert Rindfuss          | 1972           | H   | 1,508                           | H                   | Dv/fsh            |
| 1101          | 4158-7947 | Harold Amann      | Alfred L. Burch          | 1966           | H   | 1,564                           | S                   | Dv/fsh            |
| 1102          | 4157-7949 | Robert Harrison   | Harold F. Anderson       | 1973           | H   | 1,355                           | S                   | Qo/gr             |
| 1103          | 4154-7950 | Donald Thomas     | McCray Bros.             | 1974           | H   | 1,485                           | H                   | Dv/fsh            |
| 1104          | 4155-7950 | Victor Cross      | George H. Ackerman       | 1976           | H   | 1,432                           | S                   | Dv/fsh            |
| 1105          | 4155-7950 | Larry Beezub      | Harold F. Anderson       | 1975           | H   | 1,478                           | H                   | Dv/fsh            |
| 1106          | 4156-7951 | Thomas Sebald     | Robert Rindfuss          | 1975           | H   | 1,468                           | S                   | Dv/fsh            |
| 1107          | 4154-7951 | Cross and Co.     | George H. Ackerman       | 1976           | H   | 1,243                           | V                   | Qo/sdgr           |
| 1108          | 4201-7950 | Robert Waite      | McCray Bros.             | 1972           | H   | 1,326                           | V                   | Ot/clgr           |
| 1109          | 4155-7937 | Viking Plastics   | do.                      | 1972           | N   | 1,400                           | V                   | Qo/sd             |
| 1110          | 4151-8000 | Kathryn Van Zandt | Robert Rindfuss          | 1973           | H   | 1,485                           | H                   | MDbr/fsh          |
| 1111          | 4152-8000 | Marvin Armogost   | Alfred L. Burch          | 1964           | H   | 1,310                           | S                   | Dv/fsh            |
| 1112          | 4151-8001 | P. A. Davis       | Robert Rindfuss          | 1974           | H   | 1,480                           | S                   | MDbr/fsh          |
| 1113          | 4151-8003 | G. E. Collier     | Boyd Lee Hall            | 1975           | H   | 1,168                           | V                   | Qo/gr             |
| 1114          | 4151-8005 | G. E. Vierkorn    | Robert Anderson          | 1972           | H   | 1,370                           | S                   | MDbr/fsh          |
| 1115          | 4151-8006 | G. P. Woods       | Boyd Lee Hall            | 1973           | H   | 1,220                           | S                   | Dv/fsh            |
| 1116          | 4152-8003 | D. L. Klakamp     | Robert Rindfuss          | 1972           | H   | 1,175                           | V                   | Qo/gr             |
| 1117          | 4151-8005 | Ralph Burger      | Alfred L. Burch          | 1968           | H   | 1,404                           | S                   | Qo/sdgr           |
| 1118          | 4151-8004 | N. L. Sauers      | B. W. Bateman and Son    | 1969           | H   | 1,450                           | S                   | Qo/sd             |
| 1119          | 4152-8001 | Eugene Wright     | Max E. Hickernell        | 1969           | H   | 1,560                           | S                   | MDbr/fst          |
| 1120          | 4152-8003 | D. A. Trowbridge  | Boyd Lee Hall            | 1971           | H   | 1,200                           | V                   | Qo/gr             |
| 1121          | 4152-8004 | Gary Kuffer       | Felix J. Waible          | 1976           | H   | 1,400                           | S                   | Ot/t              |
| 1122          | 4152-8005 | Lucman Land Corp. | Moody Drilling Co., Inc. | 1972           | P   | 1,465                           | S                   | MDbr/fst          |
| 1123          | 4152-8005 | do.               | do.                      | 1972           | P   | 1,450                           | S                   | MDbr/fst          |
| 1124          | 4152-8005 | Edward Yurcak     | B. W. Bateman and Son    | 1969           | H   | 1,485                           | S                   | MDbr/fst          |
| 1125          | 4152-8006 | David Davis       | Donald E. Hall           | 1973           | H   | 1,380                           | S                   | MDbr/fst          |
| 1126          | 4153-8001 | Jack Hoffman      | Donald L. Hermann        | 1976           | H   | 1,550                           | S                   | MDbr/fsh          |
| 1127          | 4153-8001 | Edward Kovschak   | Lorenze Lee Hall         | 1972           | H   | 1,443                           | H                   | MDbr/fst          |
| 1128          | 4153-8001 | Beatrice May      | do.                      | 1973           | H   | 1,480                           | S                   | MDbr/fst          |
| 1129          | 4153-8002 | Richard Babbitt   | Max E. Hickernell        | 1968           | H   | 1,423                           | H                   | Dv/fsh            |
| 1130          | 4153-8002 | Terry Hall        | John E. Gage, Jr.        | 1971           | H   | 1,309                           | S                   | Ot/t              |
| 1131          | 4153-8005 | David Sundean     | Max E. Hickernell        | 1971           | H   | 1,495                           | S                   | MDbr/fsh          |
| 1132          | 4153-8005 | Alton Huntley     | Alfred L. Burch          | 1968           | H   | 1,432                           | S                   | MDbr/fsh          |
| 1133          | 4153-8008 | Edward Meinert    | Max E. Hickernell        | 1969           | H   | 1,210                           | V                   | Qo/sdgr           |
| 1134          | 4154-8000 | Herbert Yaple     | Robert Rindfuss          | 1975           | H   | 1,260                           | S                   | Dv/fsh            |
| 1135          | 4154-8003 | George Smith      | Alfred L. Burch          | 1967           | H   | 1,400                           | S                   | Dv/ssh            |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |              |                   |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
|                                       | Depth (feet) | Diameter (inches) |                                          |                                 |                       |                          |                                  |                                       |                                        |            |             |
| 165                                   | 135          | 8                 | 135                                      | 45                              | 8/74                  | 2                        | ---                              | 510                                   | 4,800                                  | ---        | Er-1061     |
| 133                                   | 85           | 8                 | 123                                      | 35                              | 4/75                  | 5                        | .06                              | ---                                   | ---                                    | ---        | 1062        |
| 75                                    | 25           | 8                 | 26;58                                    | 3                               | 1/75                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1063        |
| 201                                   | 201          | 4                 | ---                                      | 24                              | ---                   | ---                      | ---                              | 90                                    | 245                                    | ---        | 1064        |
| 70                                    | 41           | 8                 | 40;45;50                                 | ---                             | ---                   | 6                        | ---                              | ---                                   | ---                                    | ---        | 1065        |
| 77                                    | 45           | 8                 | 62                                       | 8                               | 5/74                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1066        |
| 51                                    | 51           | 8                 | 50                                       | 35                              | 7/72                  | 12                       | 1.2                              | ---                                   | ---                                    | ---        | 1067        |
| 45                                    | 45           | 8                 | 34                                       | 28                              | 5/73                  | 30                       | 4.3                              | ---                                   | ---                                    | ---        | 1068        |
| 46                                    | 46           | 8                 | 43                                       | 31                              | 2/74                  | 20                       | 1.5                              | ---                                   | ---                                    | ---        | 1069        |
| 82                                    | 82           | 8                 | 76                                       | 40                              | 3/67                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1070        |
| 41                                    | 41           | 8                 | 35                                       | 20                              | 3/67                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1071        |
| 52                                    | 52           | 8                 | 49                                       | 6                               | 6/72                  | 12                       | .5                               | ---                                   | ---                                    | ---        | 1072        |
| 95                                    | 83           | 8                 | 85                                       | 35                              | 12/73                 | 23                       | .42                              | 85                                    | 245                                    | ---        | 1073        |
| 69                                    | 25           | 8                 | 25;35;50                                 | 12                              | 8/74                  | 6                        | .11                              | ---                                   | ---                                    | ---        | 1074        |
| 68                                    | ---          | 6                 | 35;52;64                                 | 23                              | 9/71                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1075        |
| 55                                    | 29           | 8                 | 30;50                                    | ---                             | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 1076        |
| 142                                   | 142          | 6                 | 142                                      | 60                              | 4/68                  | 4                        | ---                              | 140                                   | 320                                    | ---        | 1077        |
| 58                                    | 58           | 8                 | 40;50                                    | 34                              | 9/75                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1078        |
| 200                                   | 24           | 8                 | 15;65;120                                | 59                              | 9/75                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1079        |
| 125                                   | 18           | 8                 | 30;95                                    | 95                              | 2/67                  | 10                       | .33                              | ---                                   | ---                                    | ---        | 1080        |
| 34                                    | 34           | 8                 | 10;12                                    | 10                              | 10/66                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 1081        |
| 116                                   | 74           | 8                 | 100;116                                  | ---                             | ---                   | 5                        | ---                              | ---                                   | ---                                    | ---        | 1082        |
| 28                                    | 28           | 8                 | 24                                       | 18                              | 10/66                 | 6                        | ---                              | ---                                   | ---                                    | ---        | 1084        |
| 71                                    | 35           | 8                 | 53;61;66                                 | ---                             | ---                   | 15                       | ---                              | 50                                    | 300                                    | ---        | 1085        |
| 123                                   | 122          | 6                 | 21;121                                   | 9                               | 10/64                 | 20                       | ---                              | 120                                   | 300                                    | ---        | 1086        |
| 92                                    | 19           | 6                 | 64;87                                    | 15                              | 8/74                  | 20                       | ---                              | 230                                   | 600                                    | ---        | 1087        |
| 116                                   | 56           | 6                 | 89                                       | 32                              | 9/73                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1088        |
| 130                                   | 26           | 8                 | 75;118                                   | 14                              | 7/72                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1089        |
| 105                                   | 105          | 6                 | 102                                      | 20                              | 11/71                 | 20                       | 1.3                              | ---                                   | ---                                    | ---        | 1090        |
| 76                                    | 37           | 8                 | 46;59;68                                 | 16                              | 4/71                  | 20                       | ---                              | 180                                   | 530                                    | ---        | 1091        |
| 50                                    | 36           | 8                 | 25;34                                    | 23                              | 8/69                  | 20                       | 2.9                              | 180                                   | 420                                    | ---        | 1092        |
| 50                                    | 29           | 8                 | 25;27;29                                 | 6                               | 4/73                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1093        |
| 35                                    | 34           | 6                 | 32                                       | 22                              | 6/75                  | 6                        | 1                                | 90                                    | 290                                    | ---        | 1094        |
| 50                                    | 39           | 8                 | 45                                       | ---                             | ---                   | 7                        | ---                              | ---                                   | ---                                    | ---        | 1095        |
| 40                                    | 21           | 8                 | 22;30                                    | ---                             | ---                   | 33                       | ---                              | 85                                    | 240                                    | ---        | 1096        |
| 85                                    | 24           | 6                 | 46;76                                    | 47                              | 9/71                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1097        |
| 67                                    | 26           | 8                 | 32;46;59                                 | 12                              | 3/71                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1098        |
| 44                                    | 25           | 6                 | 29;39                                    | 6                               | 11/71                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 1099        |
| 84                                    | 35           | 8                 | 40;70                                    | 20                              | 1972                  | 10                       | ---                              | 160                                   | 500                                    | ---        | 1100        |
| 50                                    | 16           | 6                 | 18;40                                    | 8                               | 6/66                  | 5                        | ---                              | 150                                   | 375                                    | ---        | 1101        |
| 30                                    | 28           | 8                 | 30                                       | ---                             | ---                   | 6                        | ---                              | ---                                   | ---                                    | ---        | 1102        |
| 85                                    | 40           | 6                 | 75;80;85                                 | 20                              | 5/74                  | 10                       | .2                               | ---                                   | ---                                    | ---        | 1103        |
| 80                                    | 60           | 8                 | 54;72                                    | 32                              | 6/76                  | 50                       | 3                                | ---                                   | ---                                    | ---        | 1104        |
| 55                                    | 25           | 8                 | 29;50                                    | 10                              | 10/75                 | 12                       | ---                              | ---                                   | ---                                    | ---        | 1105        |
| 41                                    | 22           | 8                 | 32                                       | 6                               | 7/75                  | 10                       | .4                               | ---                                   | ---                                    | ---        | 1106        |
| 76                                    | 76           | 8                 | 72                                       | 7                               | 6/76                  | 70                       | 5.4                              | ---                                   | ---                                    | ---        | 1107        |
| 180                                   | 96           | 6                 | 90                                       | 20                              | 8/72                  | 2                        | .01                              | ---                                   | ---                                    | ---        | 1108        |
| 20                                    | 20           | ---               | 20                                       | 10                              | 6/72                  | 50                       | 50                               | ---                                   | ---                                    | ---        | 1109        |
| 115                                   | ---          | 8                 | 110                                      | 60                              | 3/73                  | 10                       | .2                               | 210                                   | 480                                    | ---        | 1110        |
| 95                                    | 56           | 8                 | 54;85                                    | ---                             | 3/64                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 1111        |
| 84                                    | 45           | 8                 | 73                                       | 30                              | 6/74                  | 18                       | .53                              | ---                                   | ---                                    | ---        | 1112        |
| 45                                    | 45           | 8                 | 45                                       | 10                              | 5/75                  | 7                        | ---                              | 90                                    | 225                                    | ---        | 1113        |
| 56                                    | 13           | 8                 | 35                                       | 13                              | 9/72                  | 17                       | .46                              | ---                                   | ---                                    | ---        | 1114        |
| 45                                    | 35           | 8                 | 32                                       | 10                              | 10/73                 | 20                       | .8                               | 160                                   | 360                                    | ---        | 1115        |
| 60                                    | 60           | 8                 | 58                                       | 13                              | 6/72                  | 25                       | 2.1                              | ---                                   | ---                                    | ---        | 1116        |
| 50                                    | 46           | 8                 | 42                                       | 35                              | 10/68                 | 8                        | ---                              | ---                                   | ---                                    | ---        | 1117        |
| 50                                    | 42           | 5                 | 12;43                                    | 8                               | 10/69                 | 10                       | 1.2                              | ---                                   | ---                                    | ---        | 1118        |
| 51                                    | ---          | 8                 | 34;47                                    | ---                             | ---                   | 15                       | ---                              | ---                                   | ---                                    | ---        | 1119        |
| 49                                    | 49           | 8                 | 44                                       | 30                              | 11/71                 | 12                       | 1.2                              | 100                                   | 220                                    | ---        | 1120        |
| 55                                    | 19           | 8                 | 15                                       | 12                              | 4/76                  | 20                       | ---                              | 110                                   | 300                                    | ---        | 1121        |
| 442                                   | 19           | 12                | 62;77;377                                | F                               | 4/72                  | 25                       | .12                              | 158                                   | ---                                    | 7.8        | 1122        |
| 407                                   | 14           | 12                | 77;167                                   | 5                               | 4/72                  | 15                       | .19                              | ---                                   | ---                                    | ---        | 1123        |
| 40                                    | 20           | 5                 | 27                                       | 16                              | 10/69                 | 8                        | 1                                | ---                                   | ---                                    | ---        | 1124        |
| 60                                    | 23           | 8                 | 34;55                                    | ---                             | ---                   | 16                       | ---                              | ---                                   | ---                                    | ---        | 1125        |
| 60                                    | 35           | 8                 | 32;36                                    | 21                              | 3/76                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 1126        |
| 70                                    | 31           | 8                 | 40;63                                    | 8                               | 6/72                  | 25                       | .64                              | ---                                   | ---                                    | ---        | 1127        |
| 58                                    | 28           | 6                 | 26;47                                    | 8                               | 10/73                 | 15                       | .4                               | ---                                   | ---                                    | ---        | 1128        |
| 104                                   | 97           | 6                 | 99                                       | 20                              | 11/68                 | 10                       | ---                              | 120                                   | 380                                    | ---        | 1129        |
| 50                                    | 40           | 8                 | 40                                       | 6                               | 7/71                  | 3                        | .09                              | ---                                   | ---                                    | ---        | 1130        |
| 73                                    | 32           | 6                 | 49;61;68                                 | 14                              | 10/71                 | 15                       | ---                              | 120                                   | 300                                    | ---        | 1131        |
| 75                                    | 12           | 8                 | 14;30;50                                 | 20                              | 7/68                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 1132        |
| 68                                    | 68           | 6                 | 15;68                                    | 16                              | 8/69                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1133        |
| 100                                   | 78           | 8                 | 90                                       | 45                              | 5/75                  | 8                        | .18                              | ---                                   | ---                                    | ---        | 1134        |
| 43                                    | 30           | 8                 | 30;40                                    | 25                              | 6/67                  | 20                       | ---                              | 120                                   | 310                                    | ---        | 1135        |

Table 12.

| Well location |           | Owner                 | Driller            | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|-----------------------|--------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                       |                    |                |     |                                 |                     |                   |
| Er-1136       | 4154-8004 | I. O. Murphy          | Alfred L. Burch    | 1970           | H   | 1,422                           | S                   | Dv/fsh            |
| 1137          | 4154-8005 | Joseph Kuhn           | Robert Anderson    | 1976           | H   | 1,495                           | S                   | MDbr/fsh          |
| 1138          | 4154-8007 | John Lovett           | Alfred L. Burch    | 1967           | P   | 1,330                           | H                   | Dv/fsh            |
| 1139          | 4154-8007 | do.                   | do.                | 1967           | P   | 1,282                           | S                   | Qo/gr             |
| 1140          | 4154-8007 | do.                   | do.                | 1967           | P   | 1,319                           | S                   | Qt/clgr           |
| 1141          | 4155-8000 | R. J. Schroeck        | do.                | 1971           | H   | 1,370                           | S                   | Dv/fsh            |
| 1142          | 4155-8000 | James Wolfe           | do.                | 1969           | H   | 1,360                           | S                   | Dv/fsh            |
| 1143          | 4155-8000 | Dominick Cisson       | Robert Rindfuss    | 1972           | H   | 1,403                           | H                   | Dv/fsh            |
| 1144          | 4155-8001 | Stanley Orbanick      | Max E. Hickernell  | 1967           | H   | 1,410                           | S                   | Dv/fst            |
| 1145          | 4155-8003 | Emil Loesel           | Donald L. Hermann  | 1972           | H   | 1,580                           | S                   | MDbr/ssh          |
| 1146          | 4155-8004 | Jerry Fellows         | do.                | 1975           | H   | 1,386                           | H                   | Dv/sh             |
| 1147          | 4156-8004 | Merle Kifer           | do.                | 1975           | H   | 1,425                           | S                   | Qt/gr             |
| 1148          | 4156-8000 | W. A. Flook           | Alfred L. Burch    | 1970           | H   | 1,310                           | S                   | Dv/fsh            |
| 1149          | 4156-8000 | Alfred Miles          | Boyd Lee Hall      | 1972           | H   | 1,320                           | S                   | Dv/fsed           |
| 1150          | 4156-8000 | Joseph Yakulis        | Alfred L. Burch    | 1970           | H   | 1,300                           | S                   | Qo/gr             |
| 1151          | 4156-8003 | William Fetzner       | Robert Rindfuss    | 1973           | H   | 1,595                           | H                   | MDbr/fsh          |
| 1152          | 4156-8007 | F. J. Soboski         | Boyd Lee Hall      | ---            | H   | 1,350                           | S                   | Dv/fsed           |
| 1153          | 4156-8007 | W. J. Keith, Sr.      | Robert Anderson    | 1974           | H   | 1,408                           | S                   | Dv/ssh            |
| 1154          | 4156-8007 | Chester Kutz          | Alfred L. Burch    | 1966           | H   | 1,298                           | S                   | Dv/fsh            |
| 1155          | 4156-8007 | Robert Eastman        | do.                | 1964           | H   | 1,395                           | S                   | Dv/ssh            |
| 1156          | 4157-8000 | Raymond Paproski      | Robert Rindfuss    | 1974           | H   | 1,294                           | S                   | Dv/fsh            |
| 1157          | 4157-8002 | T. W. Arneman         | Alfred L. Burch    | 1973           | H   | 1,270                           | S                   | Qo/gr             |
| 1158          | 4157-8003 | John Beres            | Max E. Hickernell  | 1967           | H   | 1,408                           | S                   | Dv/ss             |
| 1159          | 4157-8003 | Ralph Klapthor        | Donald L. Hermann  | 1975           | H   | 1,550                           | S                   | MDbr/fsh          |
| 1160          | 4158-8003 | David Winkelbauer     | Alfred L. Burch    | 1966           | H   | 1,360                           | S                   | Dv/fsh            |
| 1161          | 4157-8005 | Richard Babo          | do.                | 1967           | H   | 1,465                           | S                   | Qo/sdgr           |
| 1162          | 4157-8006 | Philip Wilkosz        | Boyd Lee Hall      | 1973           | H   | 1,435                           | S                   | Dv/fsh            |
| 1163          | 4158-8002 | Robert Behrendt       | Alfred L. Burch    | 1968           | H   | 1,333                           | H                   | Qo/sdgr           |
| 1164          | 4158-8005 | C. N. Villa, Jr.      | do.                | 1974           | H   | 1,418                           | U                   | Dv/fsh            |
| 1165          | 4158-8006 | Theo Scarlett         | Michael W. Burch   | 1976           | H   | 1,384                           | U                   | Dv/fsh            |
| 1166          | 4159-8001 | Elmer Johnson         | Donald L. Hermann  | 1975           | H   | 1,470                           | H                   | Dv/fsh            |
| 1167          | 4159-8001 | Harry Rearick         | Alfred L. Burch    | 1967           | H   | 1,495                           | H                   | Dv/fsh            |
| 1168          | 4159-8002 | A. C. Haibach         | Donald L. Hermann  | 1972           | H   | 1,282                           | S                   | Qo/sdgr           |
| 1169          | 4159-8002 | do.                   | do.                | 1972           | H   | 1,254                           | S                   | Dch/ssh           |
| 1170          | 4159-8002 | do.                   | do.                | 1972           | H   | 1,284                           | S                   | Dch/fsh           |
| 1171          | 4159-8003 | Robert Shupala        | Alfred L. Burch    | 1968           | H   | 1,228                           | S                   | Qt/t              |
| 1172          | 4159-8003 | Jeffrey Young         | do.                | 1975           | H   | 1,325                           | S                   | Dv/fsh            |
| 1173          | 4159-8004 | Herbert Hafemaijer    | do.                | 1975           | H   | 1,280                           | S                   | Qo/sdgr           |
| 1174          | 4156-8016 | Edward Marhola        | Lowell Halstead    | 1973           | H   | 1,080                           | S                   | Qt/gr             |
| 1175          | 4155-8020 | Eugene Brooks         | Max E. Hickernell  | 1965           | H   | 920                             | V                   | Qo/u              |
| 1176          | 4156-8015 | Richard Agresti       | Robert Anderson    | 1974           | H   | 1,120                           | S                   | Dch/fsh           |
| 1177          | 4156-8019 | Kenneth Baker         | Lowell Halstead    | 1973           | H   | 930                             | V                   | Qo/gr             |
| 1178          | 4153-8008 | John Walsh            | Max E. Hickernell  | 1964           | H   | 1,288                           | S                   | Dv/fst            |
| 1179          | 4156-8009 | George Smith          | Alfred L. Burch    | 1966           | H   | 1,345                           | S                   | Dv/fsh            |
| 1180          | 4157-8011 | Michael Kavelish      | Boyd Lee Hall      | 1974           | H   | 1,254                           | S                   | MDbv/fsh          |
| 1181          | 4157-8014 | Ronald Farmer         | Michael W. Burch   | 1975           | H   | 1,090                           | S                   | Dch/fsh           |
| 1182          | 4154-8026 | James Case, Jr.       | Richard L. Ticknor | 1975           | H   | 924                             | V                   | Qt/gr             |
| 1183          | 4210-7956 | Mary O'Brien          | Michael W. Burch   | 1975           | H   | 733                             | T                   | Dne/fst           |
| 1184          | 4153-8029 | Wilber Brown          | Max E. Hickernell  | 1963           | H   | 922                             | V                   | Qt/clgr           |
| 1185          | 4202-7954 | Charles Cottrell      | Robert Rindfuss    | 1972           | H   | 1,382                           | H                   | Qo/gr             |
| 1186          | 4205-7959 | Thomas Welsh          | George H. Ackerman | ---            | H   | 1,134                           | H                   | Qt/u              |
| 1187          | 4206-7959 | Joseph Helsley        | do.                | 1973           | H   | 1,134                           | H                   | Dch/fsh           |
| 1188          | 4208-8000 | Whipple and Allen Co. | Michael W. Burch   | 1975           | H   | 715                             | T                   | Qb/sdgr           |
| 1189          | 4159-8027 | Robert Dumars         | ---                | ---            | H   | 642                             | T                   | Qb/gr             |
| 1190          | 4154-8030 | Sulo Mackey           | ---                | 1921           | H   | 833                             | S                   | Qo/gr             |
| 1191          | 4155-8027 | Harold Thayer         | ---                | ---            | H   | 873                             | T                   | Qo/gr             |
| 1192          | 4157-8024 | Emery Sherman         | ---                | ---            | H   | 730                             | T                   | Qb/u              |
| 1193          | 4159-8014 | George Luther         | ---                | ---            | H   | 810                             | S                   | Dch/sed           |
| 1194          | 4159-8012 | Ralph Leopold         | ---                | ---            | H   | 948                             | S                   | Qo/sdgr           |
| 1195          | 4202-8016 | Hazel Soule           | ---                | ---            | H   | 672                             | F                   | Qb/gr             |
| 1196          | 4202-8018 | Joseph Ziesenhein     | ---                | 1948           | C   | 683                             | F                   | Qb/gr             |
| 1197          | 4200-8017 | John Borsukoff        | ---                | 1941           | H   | 790                             | F                   | Qb/u              |
| 1198          | 4157-8017 | John Wagner           | ---                | ---            | H   | 900                             | S                   | Dg/sh             |
| 1199          | 4159-8020 | Eugene Miller         | ---                | 1930           | H   | 868                             | H                   | Qo/u              |
| 1200          | 4156-8019 | John Kuvik            | ---                | 1930           | H   | 876                             | U                   | Dch/fsh           |
| 1201          | 4202-8008 | Ernest Abbott         | Vernon Reed        | ---            | H   | 1,000                           | S                   | Dch/fsh           |
| 1202          | 4204-8007 | Harold Stiles         | Bernard P. Kuntz   | 1949           | H   | 950                             | H                   | Qo/gr             |
| 1203          | 4203-8009 | John Kort             | Vernon Reed        | 1950           | H   | 870                             | U                   | Qo/sdgr           |
| 1204          | 4210-7954 | James Bernt           | ---                | ---            | H   | 784                             | S                   | Qb/gr             |
| 1205          | 4204-8005 | George Smith          | Bernard P. Kuntz   | 1949           | H   | 933                             | U                   | Qo/gr             |
| 1206          | 4204-8005 | Leroy Grossholz       | do.                | 1948           | H   | 915                             | U                   | Qo/gr             |
| 1207          | 4205-8007 | Harry Kuhns           | do.                | 1946           | H   | 850                             | S                   | Qo/gr             |
| 1208          | 4204-8005 | Frank Swalley         | do.                | 1938           | H   | 915                             | U                   | Qo/sdgr           |
| 1209          | 4204-8002 | Arthur Schultz        | do.                | ---            | H   | 1,090                           | S                   | Qo/sdgr           |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 110                                   | 70           | 8                 | 65;96                                    | 32                              | 11/70                 | 12                       | .17                              | ---                                   | ---                                    | ---        | Er-1136     |
| 64                                    | 28           | 12                | 28;32                                    | 16                              | 1/76                  | 40                       | 1.2                              | ---                                   | ---                                    | ---        | 1137        |
| 57                                    | 34           | 8                 | 32;40                                    | 21                              | 4/67                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 1138        |
| 40                                    | ---          | ---               | 12                                       | ---                             | ---                   | 1                        | ---                              | ---                                   | ---                                    | ---        | 1139        |
| 40                                    | 11           | 8                 | 11                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1140        |
| 60                                    | 28           | 8                 | 12;34                                    | 10                              | 4/71                  | 10                       | ---                              | 85                                    | 340                                    | ---        | 1141        |
| 50                                    | 24           | 8                 | 30;40                                    | 4                               | 6/69                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1142        |
| 60                                    | 30           | 8                 | 45                                       | 14                              | 6/72                  | 2                        | ---                              | 180                                   | 410                                    | ---        | 1143        |
| 70                                    | 31           | 8                 | 33;45;60                                 | 12                              | 3/67                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1144        |
| 60                                    | 49           | 8                 | 49                                       | 30                              | 6/72                  | 5                        | .2                               | ---                                   | ---                                    | ---        | 1145        |
| 145                                   | 75           | 8                 | 74                                       | 45                              | 5/75                  | 1                        | ---                              | 20                                    | 580                                    | ---        | 1146        |
| 70                                    | 57           | 8                 | 46                                       | 12                              | 7/75                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1147        |
| 50                                    | 17           | 8                 | 13;25                                    | 10                              | 5/70                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1148        |
| 52                                    | 22           | 8                 | 26;46                                    | 9                               | 4/72                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 1149        |
| 24                                    | 24           | 8                 | 16;20                                    | 5                               | 5/70                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1150        |
| 73                                    | 55           | 8                 | 65                                       | 25                              | 3/73                  | 11                       | ---                              | ---                                   | ---                                    | ---        | 1151        |
| 70                                    | 32           | 8                 | 63;70                                    | 8                               | ---                   | 15                       | 1.2                              | ---                                   | ---                                    | ---        | 1152        |
| 51                                    | 25           | 8                 | 26                                       | 6                               | 4/74                  | 15                       | .37                              | 150                                   | 650                                    | ---        | 1153        |
| 70                                    | 18           | 8                 | 40                                       | 12                              | 12/66                 | 5                        | .09                              | ---                                   | ---                                    | ---        | 1154        |
| 110                                   | 47           | 8                 | 16;45                                    | 15                              | 7/64                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1155        |
| 83                                    | 62           | 8                 | 65                                       | 30                              | 5/74                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1156        |
| 46                                    | 46           | 8                 | 20;38                                    | 19                              | 4/73                  | 30                       | 2.7                              | ---                                   | ---                                    | ---        | 1157        |
| 69                                    | 38           | 6                 | 48;57                                    | 8                               | 6/67                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1158        |
| 72                                    | 56           | 8                 | 53;59                                    | 23                              | 9/75                  | 5                        | .12                              | ---                                   | ---                                    | ---        | 1159        |
| 70                                    | 36           | 8                 | 30;50                                    | 42                              | 10/66                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 1160        |
| 50                                    | 47           | 8                 | 23;47                                    | 18                              | 6/67                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1161        |
| 52                                    | 45           | 8                 | 18;45                                    | 3                               | ---                   | 12                       | .3                               | ---                                   | ---                                    | ---        | 1162        |
| 200                                   | 162          | 6                 | 20;145;158                               | 85                              | 11/68                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 1163        |
| 60                                    | 33           | 8                 | 28;33                                    | 9                               | 6/74                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1164        |
| 50                                    | 20           | 8                 | 15;38                                    | 4                               | 12/76                 | 5                        | .11                              | ---                                   | ---                                    | ---        | 1165        |
| 55                                    | 35           | 8                 | 27;33                                    | 8                               | 7/75                  | 6                        | .14                              | ---                                   | ---                                    | ---        | 1166        |
| 55                                    | 30           | 8                 | ---                                      | 6                               | 2/67                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1167        |
| 35                                    | 35           | 8                 | 31                                       | 18                              | 6/72                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1168        |
| 50                                    | 41           | 8                 | 38;41                                    | 24                              | 6/72                  | 15                       | .8                               | ---                                   | ---                                    | ---        | 1169        |
| 50                                    | 38           | 8                 | 35;42                                    | 24                              | 6/72                  | 8                        | .4                               | ---                                   | ---                                    | ---        | 1170        |
| 45                                    | 45           | 8                 | ---                                      | 26                              | 8/68                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1171        |
| 160                                   | 130          | 8                 | 30;126;145                               | 62                              | 5/75                  | 10                       | ---                              | 60                                    | 1,200                                  | ---        | 1172        |
| 87                                    | 87           | 8                 | 64                                       | 25                              | 1/75                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1173        |
| 100                                   | 26           | 8                 | 23                                       | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 1174        |
| 55                                    | 25           | 8                 | ---                                      | 11                              | 8/65                  | 3                        | ---                              | 95                                    | 1,700                                  | ---        | 1175        |
| 35                                    | 10           | 8                 | 13                                       | 2                               | 4/74                  | 5                        | .18                              | ---                                   | ---                                    | ---        | 1176        |
| 43                                    | 43           | 8                 | 38                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1177        |
| 57                                    | 27           | 6                 | 29;41;48                                 | 7                               | 9/64                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 1178        |
| 60                                    | 18           | 8                 | 14;40                                    | 8                               | 7/66                  | .6                       | ---                              | ---                                   | ---                                    | ---        | 1179        |
| 50                                    | 33           | 8                 | 42                                       | ---                             | ---                   | 11                       | ---                              | 120                                   | 560                                    | ---        | 1180        |
| 60                                    | 18           | 8                 | 12;18                                    | 2                               | ---                   | 3                        | .05                              | ---                                   | ---                                    | ---        | 1181        |
| 55                                    | 55           | 8                 | 35                                       | 20                              | 5/75                  | 25                       | 1.7                              | ---                                   | ---                                    | ---        | 1182        |
| 30                                    | 26           | 5                 | 18                                       | 12                              | 5/75                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1183        |
| 52                                    | 52           | 8                 | ---                                      | 5                               | 3/63                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1184        |
| 80                                    | 80           | 8                 | 80                                       | 20                              | 9/72                  | 30                       | 1.5                              | 140                                   | 340                                    | ---        | 1185        |
| 65                                    | 19           | 12                | 19                                       | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 1186        |
| 70                                    | 44           | 8                 | 44;50                                    | ---                             | ---                   | 6                        | ---                              | ---                                   | ---                                    | ---        | 1187        |
| 45                                    | 13           | 8                 | 6;18                                     | 15                              | 5/75                  | 4                        | .14                              | ---                                   | ---                                    | ---        | 1188        |
| 15                                    | 15           | ---               | ---                                      | 10                              | 7/51                  | ---                      | ---                              | 160                                   | 340                                    | 7.0        | 1189        |
| 20                                    | 20           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 220                                   | 433                                    | 6.9        | 1190        |
| 18                                    | 18           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1191        |
| 20                                    | 20           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 230                                   | 747                                    | 7.1        | 1192        |
| 15                                    | 15           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 48                                    | 146                                    | 6.2        | 1194        |
| 18                                    | 18           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 290                                   | 661                                    | 7.3        | 1195        |
| 30                                    | 30           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 200                                   | ---                                    | 7.0        | 1196        |
| 72                                    | 72           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 140                                   | 558                                    | 7.8        | 1197        |
| 50                                    | 6            | ---               | 20                                       | 7/51                            | ---                   | ---                      | ---                              | 340                                   | 655                                    | 7.4        | 1198        |
| 80                                    | ---          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 230                                   | 445                                    | 7.7        | 1199        |
| 47                                    | ---          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 200                                   | 1,110                                  | 7.6        | 1200        |
| 60                                    | ---          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 70                                    | 228                                    | 7.6        | 1201        |
| 121                                   | 121          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 200                                   | 394                                    | 7.6        | 1202        |
| 80                                    | 80           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 180                                   | 337                                    | 7.8        | 1203        |
| 28                                    | 28           | ---               | 24                                       | ---                             | ---                   | ---                      | ---                              | 170                                   | 493                                    | 7.7        | 1204        |
| 57                                    | 57           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 240                                   | 1,810                                  | 6.9        | 1205        |
| 48                                    | 48           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 230                                   | 449                                    | 7.4        | 1207        |
| 44                                    | 44           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 72                                    | 160                                    | 6.6        | 1208        |
| 40                                    | 40           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 170                                   | 517                                    | ---        | 1209        |
| 97                                    | 97           | ---               | ---                                      | ---                             | ---                   | 12                       | ---                              | ---                                   | ---                                    | ---        | ---         |

Table 12.

| Well location |           | Owner                              | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|------------------------------------|--------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                                    |                          |                |     |                                 |                     |                   |
| Er-1210       | 4205-8003 | Otto Meyer, Jr.                    | Bernard P. Kuntz         | ---            | H   | 980                             | H                   | Qo/sdgr           |
| 1211          | 4157-8017 | Donald Lewis                       | ---                      | 1948           | H   | 905                             | H                   | Dch/fsh           |
| 1212          | 4204-8011 | Port Erie Airport                  | Vernon Reed              | ---            | C   | 732                             | F                   | Qo/sdgr           |
| 1213          | 4205-8007 | Jack Kilpatrick                    | do.                      | 1949           | H   | 784                             | T                   | Qb/u              |
| 1214          | 4204-8009 | Robert Becker                      | Bernard P. Kuntz         | 1949           | H   | 780                             | T                   | Qb/gr             |
| 1215          | 4204-8009 | George Singer                      | Vernon Reed              | 1950           | H   | 824                             | T                   | Qo/sdgr           |
| 1216          | 4205-8008 | Byrd Tool and Mold Co.             | do.                      | 1949           | H   | 712                             | F                   | Qb/gr             |
| 1217          | 4204-8011 | Daniel Wiley                       | do.                      | 1944           | H   | 730                             | F                   | Qo/gr             |
| 1218          | 4204-8011 | August Hohnke                      | ---                      | ---            | H   | 730                             | F                   | Qb/u              |
| 1219          | 4204-8011 | Jay Nelson                         | Oakes and Bennett        | 1947           | H   | 734                             | F                   | Dne/fsh           |
| 1220          | 4204-8011 | do.                                | ---                      | ---            | H   | 734                             | F                   | Qb/gr             |
| 1221          | 4204-8005 | Calvin Johnson                     | Bernard P. Kuntz         | 1947           | H   | 925                             | T                   | Dg/---            |
| 1222          | 4158-8016 | William Bushelman                  | ---                      | ---            | H   | 755                             | H                   | Dg/fsh            |
| 1223          | 4156-7958 | Charles Gardner                    | ---                      | ---            | H   | 1,209                           | V                   | Qo/gr             |
| 1224          | 4152-8018 | Michael Hayes                      | John E. Gage, Jr.        | 1974           | H   | 1,168                           | H                   | MDbv/fsh          |
| 1225          | 4159-8019 | Judd Seldon                        | Moody Drilling Co., Inc. | 1953           | H   | 775                             | T                   | Qo/gr             |
| 1226          | 4159-8020 | Pennsylvania State Police Barracks | do.                      | 1954           | H   | 740                             | T                   | Qo/gr             |
| 1227          | 4159-8021 | Jim Frey                           | do.                      | 1954           | H   | 740                             | T                   | Qo/gr             |
| 1228          | 4158-8021 | Lawrence Frey                      | do.                      | 1954           | H   | 760                             | V                   | Qo/t              |
| 1229          | 4158-8022 | G. H. Cox                          | do.                      | 1956           | H   | 755                             | V                   | Qo/gr             |
| 1230          | 4157-8017 | Mike Felege                        | do.                      | 1951           | H   | 902                             | S                   | Dch/fsh           |
| 1231          | 4157-8019 | Lewis Stafford                     | do.                      | 1954           | H   | 869                             | U                   | Qt/gr             |
| 1232          | 4153-8009 | Bruce Iffl                         | do.                      | ---            | H   | 1,360                           | H                   | Dv/fsh            |
| 1233          | 4152-8028 | Roy Sawalter                       | do.                      | 1957           | U   | 960                             | F                   | Dch/sh            |
| 1234          | 4152-8024 | Sam Russin                         | do.                      | 1958           | H   | 854                             | V                   | Qo/gr             |
| 1235          | 4154-8030 | Roland Hammer                      | do.                      | 1956           | H   | 850                             | U                   | Qo/gr             |
| 1236          | 4151-8022 | M. L. Cherry                       | do.                      | 1959           | H   | 1,065                           | S                   | MDbv/fsh          |
| 1237          | 4151-8022 | Herb Cherry                        | do.                      | 1956           | H   | 1,060                           | S                   | MDbv/fsh          |
| 1238          | 4151-8022 | Sam Pittsenberger                  | do.                      | 1955           | H   | 960                             | S                   | MDbv/fsh          |
| 1239          | 4151-8019 | Alfred Fahlen                      | do.                      | 1950           | H   | 1,110                           | U                   | Dch/fst           |
| 1240          | 4151-8018 | Kenneth Raymond                    | do.                      | 1957           | H   | 1,130                           | V                   | Qo/gr             |
| 1241          | 4153-8025 | Milo Brown                         | do.                      | 1955           | H   | 900                             | U                   | Dch/fsh           |
| 1242          | 4157-8025 | Chester Osterberg                  | do.                      | 1956           | H   | 735                             | F                   | Qb/gr             |
| 1243          | 4157-8023 | Ernest Testo                       | do.                      | 1957           | U   | 810                             | V                   | Qt/t              |
| 1244          | 4154-8028 | Tom Freeman                        | do.                      | 1956           | H   | 825                             | S                   | Qo/gr             |
| 1245          | 4153-8022 | Bill Tucker                        | do.                      | 1956           | H   | 890                             | S                   | Qt/gr             |
| 1246          | 4153-8028 | Kane Stanton                       | do.                      | 1957           | H   | 930                             | V                   | Dch/fsh           |
| 1247          | 4153-8023 | Noble Lawrence                     | do.                      | 1955           | H   | 865                             | V                   | Dch/fsh           |
| 1248          | 4153-8023 | V.F.W. Club                        | do.                      | 1958           | C   | 865                             | V                   | Qt/sd             |
| 1249          | 4151-8024 | Albion Sportsmens Club             | Lorenze Lee Hall         | 1977           | R   | 860                             | V                   | Qo/sdgr           |
| 1250          | 4151-8025 | Gary Simpson                       | Alfred L. Burch          | 1977           | H   | 930                             | S                   | Dch/fsh           |
| 1251          | 4153-8026 | William Palo                       | Moody Drilling Co., Inc. | 1956           | H   | 915                             | U                   | Dch/fsh           |
| 1253          | 4154-8025 | Neil Shade                         | Alfred L. Burch          | 1977           | H   | 890                             | U                   | Dch/sh            |
| 1254          | 4154-8023 | Carlyle Krieg                      | Lorenze Lee Hall         | 1977           | H   | 890                             | S                   | Qo/gr             |
| 1255          | 4156-8027 | Minute Man Service                 | Harry Bros.              | 1977           | C   | 734                             | U                   | Qb/sd             |
| 1256          | 4152-8015 | James Crosby                       | Jack Young               | 1977           | H   | 1,205                           | V                   | Qo/gr             |
| 1257          | 4152-8013 | John Dascanio                      | Robert Anderson          | 1977           | H   | 1,274                           | S                   | MDbv/fsh          |
| 1258          | 4151-8013 | Charles Lukpa                      | Boyd Lee Hall            | 1977           | H   | 1,265                           | S                   | MDbv/fsh          |
| 1259          | 4151-8016 | Jerry Skelton                      | do.                      | 1977           | H   | 1,260                           | U                   | Qt/t              |
| 1260          | 4151-8018 | James Kreider                      | Lorenze Lee Hall         | 1977           | H   | 1,070                           | V                   | Qo/gr             |
| 1261          | 4152-8019 | Albert Bainbridge                  | do.                      | 1977           | H   | 1,005                           | V                   | Dch/ssh           |
| 1262          | 4151-8020 | James Beveridge                    | Alfred L. Burch          | 1976           | H   | 1,130                           | U                   | MDbv/fsh          |
| 1263          | 4159-8016 | J. Spaulding                       | Robert Anderson          | 1978           | H   | 835                             | S                   | Qo/gr             |
| 1264          | 4159-8015 | Charles Longnecker                 | do.                      | 1977           | H   | 868                             | S                   | Qt/sdgr           |
| 1265          | 4159-8020 | Samuel Orlando                     | Alfred L. Burch          | 1976           | H   | 814                             | S                   | Qo/sdgr           |
| 1266          | 4159-8020 | Boehm Realty                       | do.                      | 1976           | H   | 780                             | S                   | Qo/sd             |
| 1267          | 4159-8015 | Anthony Mitcho                     | do.                      | 1976           | H   | 910                             | U                   | Qt/sd             |
| 1268          | 4159-8014 | Barry Smiti                        | George H. Ackerman       | 1977           | H   | 924                             | S                   | Qo/sdgr           |
| 1269          | 4159-8014 | Adam Brezinski                     | Michael W. Burch         | 1977           | H   | 930                             | S                   | Qo/gr             |
| 1270          | 4159-8013 | G. Bennett                         | Felix J. Waible          | 1977           | H   | 940                             | F                   | Qt/gr             |
| 1271          | 4203-8014 | Patrick Luciano                    | Donald L. Hermann        | 1976           | H   | 720                             | F                   | Qb/gr             |
| 1272          | 4202-8014 | Keith Johnson                      | Alfred L. Burch          | 1976           | H   | 820                             | T                   | Qo/u              |
| 1273          | 4203-8013 | Ralph Baybrook                     | George H. Ackerman       | 1977           | H   | 750                             | T                   | Qo/sdgr           |
| 1274          | 4203-7958 | Gorniak Bros.                      | Moody Drilling Co., Inc. | 1958           | H   | 1,352                           | U                   | Dch/fsh           |
| 1275          | 4203-8011 | Michael Yarbenet                   | Donald L. Hermann        | 1976           | H   | 845                             | U                   | Qo/gr             |
| 1276          | 4203-8012 | Lynwood Nursery                    | Felix J. Waible          | 1977           | I   | 790                             | U                   | Qo/gr             |
| 1277          | 4202-8013 | Kenneth Swift                      | Alfred L. Burch          | 1939           | H   | 820                             | F                   | Qo/u              |
| 1278          | 4200-8014 | Alice Olmstead                     | do.                      | 1976           | H   | 930                             | U                   | Qo/sd             |
| 1279          | 4156-8014 | Yvette Rosenberg                   | Felix J. Waible          | 1927           | H   | 1,190                           | U                   | MDbv/fsh          |
| 1280          | 4154-8014 | John Levis                         | Robert Anderson          | 1977           | H   | 1,260                           | U                   | MDbv/fsh          |
| 1281          | 4153-8009 | Bruce Iffl                         | Alfred L. Burch          | 1976           | N   | 1,360                           | F                   | Dv/fsh            |
| 1282          | 4153-8013 | Fred Suhy                          | Robert Anderson          | 1977           | H   | 1,285                           | U                   | MDbv/fsh          |
| 1283          | 4159-8009 | J. Hicks                           | do.                      | 1978           | H   | 1,069                           | S                   | Dch/sh            |

(Continued)

| Total depth below land surface (feet) | Casing |     | Depth(s) to water-bearing zone(s) (feet) | Static water level |                   | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------|-----|------------------------------------------|--------------------|-------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |        |     |                                          | Depth (feet)       | Diameter (inches) |                          |                                  |                                       |                                        |            |             |
| 81                                    | 81     | --- | ---                                      | ---                | ---               | 9                        | ---                              | 220                                   | 620                                    | 7.6        | Er-1210     |
| 49                                    | ---    | 5   | ---                                      | 6                  | 7/51              | ---                      | ---                              | 200                                   | 401                                    | 7.6        | 1211        |
| 90                                    | 90     | --- | ---                                      | ---                | ---               | ---                      | ---                              | 150                                   | 857                                    | 7.9        | 1212        |
| 55                                    | ---    | --- | ---                                      | ---                | ---               | ---                      | ---                              | 180                                   | 359                                    | 7.9        | 1213        |
| 40                                    | 40     | --- | ---                                      | ---                | ---               | ---                      | ---                              | 200                                   | 493                                    | 7.7        | 1214        |
| 75                                    | 75     | --- | ---                                      | ---                | ---               | ---                      | ---                              | 180                                   | 442                                    | 7.7        | 1215        |
| 30                                    | 30     | 8   | ---                                      | ---                | ---               | ---                      | ---                              | 230                                   | 580                                    | 7.7        | 1216        |
| 70                                    | 70     | --- | ---                                      | ---                | ---               | ---                      | ---                              | 330                                   | 613                                    | 7.3        | 1217        |
| 28                                    | 28     | --- | ---                                      | ---                | ---               | ---                      | ---                              | 140                                   | 314                                    | 6.5        | 1218        |
| 78                                    | ---    | --- | ---                                      | ---                | ---               | ---                      | ---                              | 120                                   | 1,280                                  | 7.8        | 1219        |
| 38                                    | 38     | --- | ---                                      | ---                | ---               | ---                      | ---                              | 260                                   | 500                                    | 7.3        | 1220        |
| 54                                    | ---    | --- | ---                                      | ---                | ---               | ---                      | ---                              | 170                                   | 923                                    | 7.3        | 1221        |
| 84                                    | ---    | --- | ---                                      | ---                | ---               | ---                      | ---                              | 110                                   | 2,080                                  | 7.5        | 1222        |
| 242                                   | 242    | 6   | ---                                      | ---                | ---               | ---                      | ---                              | ---                                   | ---                                    | ---        | 1223        |
| 49                                    | 30     | 8   | 14;20                                    | 5                  | 8/74              | 3                        | .09                              | ---                                   | ---                                    | ---        | 1224        |
| 34                                    | 34     | 12  | 20                                       | 15                 | 5/53              | 20                       | ---                              | ---                                   | ---                                    | ---        | 1225        |
| 53                                    | 53     | 7   | 49                                       | 18                 | 9/54              | 6                        | ---                              | ---                                   | ---                                    | ---        | 1226        |
| 46                                    | 46     | 7   | 38                                       | 27                 | 9/54              | 20                       | ---                              | ---                                   | ---                                    | ---        | 1227        |
| 127                                   | 120    | 7   | 31;62;127                                | ---                | ---               | .1                       | ---                              | ---                                   | ---                                    | ---        | 1228        |
| 34                                    | 34     | 8   | 29                                       | 24                 | 10/56             | 9                        | ---                              | ---                                   | ---                                    | ---        | 1229        |
| 58                                    | 44     | 10  | 39                                       | 30                 | 9/51              | 3                        | ---                              | 190                                   | 700                                    | ---        | 1230        |
| 93                                    | 93     | 7   | 89                                       | 63                 | 8/54              | 5                        | ---                              | ---                                   | ---                                    | ---        | 1231        |
| 83                                    | 28     | 8   | ---                                      | 13                 | ---               | 1                        | ---                              | ---                                   | ---                                    | ---        | 1232        |
| 40                                    | ---    | --- | ---                                      | ---                | ---               | .2                       | ---                              | ---                                   | ---                                    | ---        | 1233        |
| 135                                   | 135    | 6   | 59;130                                   | 15                 | 1/58              | 5                        | ---                              | ---                                   | ---                                    | ---        | 1234        |
| 52                                    | 52     | 8   | 45                                       | 38                 | 10/56             | 20                       | ---                              | ---                                   | ---                                    | ---        | 1235        |
| 78                                    | 20     | 8   | 20                                       | 8                  | 8/59              | 4                        | ---                              | ---                                   | ---                                    | ---        | 1236        |
| 54                                    | 14     | 8   | ---                                      | 3                  | 6/56              | 33                       | ---                              | 80                                    | 520                                    | ---        | 1237        |
| 65                                    | 11     | 8   | ---                                      | 11                 | 9/55              | 10                       | ---                              | ---                                   | ---                                    | ---        | 1238        |
| 51                                    | 35     | 5   | ---                                      | 39                 | 9/50              | 5                        | ---                              | 50                                    | 275                                    | ---        | 1239        |
| 22                                    | 22     | 8   | 17                                       | 15                 | 11/57             | 6                        | ---                              | ---                                   | ---                                    | ---        | 1240        |
| 50                                    | 18     | 6   | ---                                      | 2                  | 11/55             | 2                        | ---                              | ---                                   | ---                                    | ---        | 1241        |
| 34                                    | 34     | 8   | 29                                       | 11                 | 12/56             | 10                       | ---                              | ---                                   | ---                                    | ---        | 1242        |
| 42                                    | ---    | --- | ---                                      | ---                | ---               | ---                      | ---                              | ---                                   | ---                                    | ---        | 1243        |
| 48                                    | 48     | 8   | ---                                      | 25                 | 8/56              | 10                       | ---                              | ---                                   | ---                                    | ---        | 1244        |
| 46                                    | 46     | 7   | 41                                       | 36                 | 9/56              | 5                        | ---                              | 5                                     | 650                                    | ---        | 1245        |
| 40                                    | 10     | 10  | ---                                      | 7                  | 6/57              | 6                        | ---                              | ---                                   | ---                                    | ---        | 1246        |
| 110                                   | 107    | 6   | ---                                      | ---                | ---               | 6                        | ---                              | ---                                   | ---                                    | ---        | 1247        |
| 195                                   | 182    | 8   | ---                                      | ---                | ---               | .1                       | ---                              | ---                                   | ---                                    | ---        | 1248        |
| 62                                    | 62     | 8   | 27;56                                    | 14                 | 9/77              | 24                       | .9                               | ---                                   | ---                                    | ---        | 1249        |
| 50                                    | 39     | 8   | 18;41                                    | 10                 | 3/77              | 10                       | ---                              | ---                                   | ---                                    | ---        | 1250        |
| 38                                    | 24     | 7   | ---                                      | 8                  | 8/56              | 4                        | ---                              | ---                                   | ---                                    | ---        | 1251        |
| 90                                    | 35     | 8   | ---                                      | 40                 | 3/77              | .1                       | ---                              | ---                                   | ---                                    | ---        | 1253        |
| 120                                   | 120    | 6   | 93;120                                   | 80                 | 9/77              | 2                        | .06                              | 120                                   | 1,850                                  | ---        | 1254        |
| 31                                    | 24     | 8   | 24                                       | ---                | ---               | 3                        | .6                               | ---                                   | ---                                    | ---        | 1255        |
| 20                                    | 20     | 8   | 12;17                                    | 10                 | 5/77              | 10                       | 10                               | 100                                   | 275                                    | ---        | 1256        |
| 71                                    | 17     | 8   | 35;45                                    | 10                 | 8/77              | 1                        | .02                              | ---                                   | ---                                    | ---        | 1257        |
| 112                                   | 33     | 8   | 33;105                                   | 8                  | 6/77              | 8                        | .08                              | ---                                   | ---                                    | ---        | 1258        |
| 62                                    | 62     | 8   | 45;60                                    | 10                 | 5/77              | 30                       | 30                               | 10                                    | 525                                    | ---        | 1259        |
| 52                                    | 28     | 6   | 30;47                                    | 15                 | 8/77              | 40                       | 2.6                              | ---                                   | ---                                    | ---        | 1260        |
| 52                                    | 25     | 10  | 20;39                                    | 11                 | 3/77              | 1                        | .03                              | ---                                   | ---                                    | ---        | 1261        |
| 60                                    | 32     | 8   | 10;25                                    | 4                  | 11/76             | 10                       | ---                              | ---                                   | ---                                    | ---        | 1262        |
| 52                                    | 52     | 8   | 49                                       | 9                  | 1/78              | 5                        | .1                               | ---                                   | ---                                    | ---        | 1263        |
| 55                                    | 55     | 8   | 27;53                                    | 16                 | 7/77              | 4                        | .1                               | ---                                   | ---                                    | ---        | 1264        |
| 50                                    | 50     | 8   | 40                                       | 30                 | 7/76              | 20                       | ---                              | ---                                   | ---                                    | ---        | 1265        |
| 35                                    | 35     | 8   | 24                                       | 12                 | 6/76              | 20                       | ---                              | ---                                   | ---                                    | ---        | 1266        |
| 100                                   | 94     | 8   | 77;90                                    | 64                 | 9/76              | 2                        | ---                              | 230                                   | 800                                    | ---        | 1267        |
| 120                                   | 108    | 8   | 101                                      | 32                 | 9/77              | 50                       | 4.5                              | ---                                   | ---                                    | ---        | 1268        |
| 71                                    | 71     | 8   | 26;65                                    | 29                 | 5/77              | 30                       | 1.9                              | ---                                   | ---                                    | ---        | 1269        |
| 78                                    | 78     | 8   | 75                                       | 28                 | 5/77              | 5                        | ---                              | ---                                   | ---                                    | ---        | 1270        |
| 34                                    | 34     | 8   | 30                                       | 18                 | 6/76              | 15                       | 2.1                              | ---                                   | ---                                    | ---        | 1271        |
| 86                                    | ---    | 6   | 85                                       | 70                 | 12/76             | 6                        | .6                               | ---                                   | ---                                    | ---        | 1272        |
| 40                                    | 40     | 8   | 31                                       | 20                 | 10/77             | 50                       | 10                               | ---                                   | ---                                    | ---        | 1273        |
| 80                                    | 48     | 8   | ---                                      | 4                  | 6/58              | 5                        | ---                              | ---                                   | ---                                    | ---        | 1274        |
| 89                                    | 89     | 8   | 82;86                                    | 42                 | 9/76              | 15                       | .5                               | ---                                   | ---                                    | ---        | 1275        |
| 45                                    | 45     | 8   | 40                                       | 22                 | 7/77              | 20                       | ---                              | ---                                   | ---                                    | ---        | 1276        |
| 49                                    | 49     | 6   | 49                                       | 35                 | 9/76              | 14                       | ---                              | ---                                   | ---                                    | ---        | 1277        |
| 47                                    | 47     | 8   | 40                                       | 22                 | 10/76             | 30                       | ---                              | ---                                   | ---                                    | ---        | 1278        |
| 31                                    | 18     | 8   | 14                                       | 14                 | 10/27             | 20                       | ---                              | 110                                   | 300                                    | ---        | 1279        |
| 70                                    | 26     | 8   | 27;37                                    | 5                  | 5/77              | 1                        | .02                              | 180                                   | 2,800                                  | ---        | 1280        |
| 70                                    | 43     | 8   | 36;50                                    | 10                 | 6/76              | 4                        | ---                              | ---                                   | ---                                    | ---        | 1281        |
| 60                                    | 13     | 8   | 35                                       | 5                  | 6/77              | 1                        | .02                              | ---                                   | ---                                    | ---        | 1282        |
| 63                                    | 18     | 8   | 20;29                                    | 5                  | 3/78              | 6                        | .1                               | 200                                   | 520                                    | ---        | 1283        |

Table 12.

| Well location |           | Owner                | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topo-graphic setting | Aquifer/lithology |
|---------------|-----------|----------------------|--------------------------|----------------|-----|---------------------------------|----------------------|-------------------|
| Number        | Lat-Long  |                      |                          |                |     |                                 |                      |                   |
| Er-1284       | 4158-8009 | Leroy Preston        | Michael W. Burch         | 1977           | H   | 1,165                           | S                    | Dch/fsh           |
| 1285          | 4201-8011 | Sun Oil Co.          | Donald L. Hermann        | 1977           | C   | 1,100                           | H                    | Qo/sdgr           |
| 1286          | 4200-8009 | James Wittnaak       | do.                      | 1976           | H   | 1,065                           | S                    | Dch/ssh           |
| 1287          | 4200-8009 | John Schultz         | Michael W. Burch         | 1977           | H   | 1,025                           | S                    | Qt/gr             |
| 1288          | 4200-8010 | Theodore Waisley     | Donald L. Hermann        | 1976           | H   | 960                             | V                    | Dch/fsh           |
| 1289          | 4157-8007 | Adam Jaroszewski     | George H. Ackerman       | 1977           | H   | 1,405                           | S                    | Qt/gr             |
| 1290          | 4201-8006 | Thomas West          | Donald L. Hermann        | 1976           | H   | 1,190                           | S                    | Dch/sh            |
| 1291          | 4200-8004 | David Sharie         | George H. Ackerman       | 1977           | H   | 1,145                           | V                    | Qo/sdgr           |
| 1292          | 4155-7944 | James Platt          | Max E. Hickernell        | 1977           | H   | 1,400                           | V                    | Qo/gr             |
| 1293          | 4156-7946 | David Jagta          | George H. Ackerman       | 1977           | H   | 1,590                           | S                    | MDcr/fsed         |
| 1294          | 4156-7946 | David Lindberg       | do.                      | 1977           | H   | 1,595                           | S                    | MDcr/fsh          |
| 1295          | 4210-7945 | William Desin        | Ralph C. Parmenter       | 1977           | H   | 1,508                           | S                    | Qt/u              |
| 1296          | 4209-7947 | Eugene Groves        | do.                      | 1977           | H   | 1,382                           | S                    | Dch/fsh           |
| 1297          | 4153-8001 | Ronald Poker         | Robert Rindfuss          | 1976           | H   | 1,560                           | S                    | MDbr/fsh          |
| 1298          | 4153-8001 | Joseph Shesman       | Robert Anderson          | 1977           | H   | 1,515                           | S                    | MDbr/fsh          |
| 1299          | 4153-8001 | Charles Merry        | Donald L. Hermann        | 1976           | H   | 1,525                           | S                    | MDbr/fsh          |
| 1300          | 4152-8000 | Carl Miller          | Robert Rindfuss          | 1976           | H   | 1,220                           | S                    | Dv/fsh            |
| 1301          | 4152-8000 | do.                  | do.                      | 1976           | H   | 1,245                           | S                    | Dv/fsh            |
| 1302          | 4151-7957 | George Peters        | do.                      | 1976           | H   | 1,470                           | S                    | MDcr/fsed         |
| 1303          | 4159-8054 | Arthur Loop          | Michael W. Burch         | 1977           | H   | 1,375                           | S                    | Dch/ssh           |
| 1304          | 4156-7957 | Gary Tagliente       | Robert Rindfuss          | 1976           | H   | 1,310                           | U                    | Dv/fsh            |
| 1305          | 4155-7955 | Merle Wilhee         | do.                      | 1976           | S   | 1,305                           | U                    | Dv/fsh            |
| 1306          | 4158-7953 | Brady Marks          | Robert Anderson          | 1977           | H   | 1,405                           | S                    | Dv/fsh            |
| 1307          | 4205-7953 | John Afton           | Michael W. Burch         | 1977           | H   | 1,370                           | U                    | Dv/fsh            |
| 1308          | 4204-7946 | Calvin Pifer         | George H. Ackerman       | 1977           | H   | 1,690                           | S                    | Qo/sdgr           |
| 1309          | 4203-7953 | David Rockwell       | Donald L. Hermann        | 1977           | H   | 1,370                           | S                    | Qo/sd             |
| 1310          | 4203-7953 | Arlo Applebee        | Michael W. Burch         | 1977           | H   | 1,350                           | S                    | Qo/gr             |
| 1311          | 4202-7952 | Steven Gorniak       | Alfred L. Burch          | 1976           | H   | 1,475                           | H                    | Dch/fsh           |
| 1312          | 4206-7951 | Merle Lewis          | Robert Anderson          | 1977           | H   | 1,415                           | S                    | Dch/fsh           |
| 1313          | 4206-7946 | Robert Gibbons       | Ralph C. Parmenter       | 1977           | H   | 1,670                           | S                    | Qt/u              |
| 1314          | 4206-7951 | Greenfield Fire Co.  | do.                      | 1976           | H   | 1,475                           | S                    | Qt/u              |
| 1315          | 4209-7952 | Daniel Lyons         | do.                      | 1976           | H   | 1,325                           | S                    | Dch/fsh           |
| 1316          | 4209-7953 | John Skinner         | Michael W. Burch         | 1977           | H   | 1,305                           | S                    | Dch/sh            |
| 1318          | 4211-7955 | Richard Kosik        | Alfred L. Burch          | 1976           | H   | 665                             | V                    | Qb/sd             |
| 1319          | 4210-7956 | Richard Eisert       | do.                      | 1976           | H   | 765                             | S                    | Dne/fsh           |
| 1320          | 4208-7958 | Ruth Speice          | Michael W. Burch         | 1977           | H   | 842                             | S                    | Dg/fsh            |
| 1321          | 4209-7955 | Roy Shannon          | do.                      | 1977           | H   | 910                             | S                    | Dg/ssh            |
| 1322          | 4207-7958 | James Stensen        | J. W. Waterhouse         | 1977           | H   | 1,020                           | S                    | Dch/sed           |
| 1323          | 4206-7958 | Erie County Cable TV | Michael W. Burch         | 1977           | H   | 1,170                           | S                    | Dch/fsh           |
| 1324          | 4206-7957 | Charles Young        | do.                      | 1977           | H   | 1,272                           | S                    | Dch/fsh           |
| 1325          | 4204-8000 | Ralph Semrau         | Robert Anderson          | 1977           | H   | 1,318                           | S                    | Dch/fsh           |
| 1326          | 4204-8000 | D. O. Nupp           | Felix J. Waible          | 1977           | H   | 1,380                           | S                    | Dch/fsh           |
| 1327          | 4205-7959 | J. Kirby             | Michael W. Burch         | 1978           | H   | 1,140                           | S                    | Dch/ssh           |
| 1328          | 4206-7957 | Sal Randazzo         | Donald L. Hermann        | 1976           | H   | 1,358                           | S                    | Dch/fsh           |
| 1329          | 4205-7954 | John Phelps          | George H. Ackerman       | 1977           | H   | 1,300                           | S                    | Qo/gr             |
| 1330          | 4206-7954 | Perry Bennett        | Robert Anderson          | 1977           | H   | 1,210                           | V                    | Dch/fsh           |
| 1331          | 4204-7958 | D. Kreger            | Michael W. Burch         | 1977           | H   | 1,210                           | S                    | Qo/sdgr           |
| 1332          | 4204-7959 | Donn Niclao          | Felix J. Waible          | 1977           | H   | 1,360                           | S                    | Qt/clgr           |
| 1333          | 4202-7957 | Roger Klein          | Michael W. Burch         | 1977           | H   | 1,310                           | S                    | Qt/sdgr           |
| 1334          | 4204-7957 | Raymond Orlomanski   | Alfred L. Burch          | 1976           | H   | 1,355                           | S                    | Dch/fsh           |
| 1335          | 4203-7956 | David Hale           | Felix J. Waible          | 1977           | H   | 1,368                           | S                    | Dch/fsh           |
| 1336          | 4203-7956 | George Palmer        | Michael W. Burch         | 1977           | H   | 1,359                           | S                    | Dch/fsh           |
| 1337          | 4203-7954 | Edward Snippert      | George H. Ackerman       | 1977           | H   | 1,335                           | S                    | Qo/sd             |
| 1338          | 4201-7955 | James Spaeder        | Robert Rindfuss          | 1976           | H   | 1,395                           | S                    | Qo/gr             |
| 1339          | 4201-7959 | James Collins        | Donald L. Hermann        | 1976           | H   | 1,352                           | S                    | Dch/ssh           |
| 1340          | 4201-7958 | Jack Farrell         | do.                      | 1976           | H   | 1,240                           | V                    | Dch/fsh           |
| 1341          | 4154-8009 | Robert Sokolowski    | Robert Anderson          | 1977           | H   | 1,384                           | S                    | Dv/fsh            |
| 1342          | 4153-8009 | James Hobbs          | Boyd Lee Hall            | 1977           | H   | 1,250                           | S                    | MDcr/fsed         |
| 1343          | 4156-7957 | Terry Page           | Alfred L. Burch          | 1976           | H   | 1,214                           | V                    | Qt/clgr           |
| 1344          | 4156-7957 | do.                  | Moody Drilling Co., Inc. | 1976           | H   | 1,220                           | V                    | Qt/clgr           |
| 1345          | 4153-8009 | R. D. Overheim       | Max E. Hickernell        | 1977           | H   | 1,275                           | S                    | Dv/fsh            |
| 1346          | 4153-8005 | Len Krzywicki        | Boyd Lee Hall            | 1976           | H   | 1,505                           | S                    | MDbr/fsed         |
| 1347          | 4151-8005 | John Berger          | Donald L. Hermann        | 1976           | H   | 1,430                           | S                    | MDbr/fsh          |
| 1348          | 4202-8006 | Raymond Andrus       | do.                      | 1976           | H   | 1,125                           | S                    | Dch/ssh           |
| 1349          | 4202-8006 | Carl Hahn            | Robert Anderson          | 1977           | H   | 1,080                           | U                    | Dch/fsh           |
| 1350          | 4203-8003 | David Menzies        | Alfred L. Burch          | 1977           | H   | 1,050                           | S                    | Dch/fsh           |
| 1351          | 4203-8001 | Caesar Lombardozzi   | Donald L. Hermann        | 1977           | H   | 1,214                           | S                    | Dch/sh            |
| 1352          | 4202-8005 | Sal Altadonna        | George H. Ackerman       | 1977           | H   | 1,210                           | S                    | Qt/gr             |
| 1353          | 4202-8006 | Andrew Glass         | Moody Drilling Co., Inc. | 1976           | H   | 1,190                           | S                    | Dch/ssh           |
| 1354          | 4201-8005 | Michael Rock         | Donald L. Hermann        | 1976           | H   | 1,272                           | S                    | Dch/ssh           |
| 1355          | 4201-8004 | Lawrence Gehrlein    | do.                      | 1976           | S   | 1,370                           | S                    | Dv/ssh            |
| 1356          | 4201-8001 | George Kuebel        | Michael W. Burch         | 1977           | U   | 1,230                           | V                    | Qt/gr             |
| 1357          | 4201-8000 | Leonard Siegel       | do.                      | 1977           | U   | 1,226                           | V                    | Qo/sdgr           |
| 1358          | 4201-8001 | Michael Komarow      | Donald L. Hermann        | 1976           | H   | 1,242                           | V                    | Dch/fsh           |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 55                                    | 23           | 8                 | 17                                       | 8                               | 4/77                  | 10                       | .2                               | ---                                   | ---                                    | ---        | Er-1284     |
| 145                                   | 140          | 8                 | 75;134                                   | 78                              | 4/77                  | 20                       | .5                               | ---                                   | ---                                    | ---        | 1285        |
| 50                                    | 22           | 8                 | ---                                      | 10                              | 6/76                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1286        |
| 65                                    | 43           | 8                 | 39                                       | 13                              | 5/77                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 1287        |
| 60                                    | 16           | 12                | 18                                       | 6                               | 9/76                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1288        |
| 65                                    | 36           | 8                 | 30;58                                    | F                               | 5/77                  | 50                       | 1.6                              | ---                                   | ---                                    | ---        | 1289        |
| 55                                    | 22           | 8                 | 18                                       | 8                               | 10/76                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 1290        |
| 78                                    | 78           | 8                 | 76                                       | F                               | 5/77                  | 25                       | ---                              | 90                                    | 380                                    | ---        | 1291        |
| 127                                   | 127          | 6                 | 124                                      | F                               | 5/77                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1292        |
| 60                                    | 21           | 8                 | 14;52                                    | 6                               | 8/77                  | 25                       | 1.8                              | ---                                   | ---                                    | ---        | 1293        |
| 70                                    | 21           | 8                 | 16;62                                    | 7                               | 8/77                  | 50                       | 1.1                              | ---                                   | ---                                    | ---        | 1294        |
| 50                                    | 15           | 6                 | 4                                        | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 1295        |
| 40                                    | 18           | 6                 | 10                                       | 6                               | 6/77                  | 3                        | .3                               | ---                                   | ---                                    | ---        | 1296        |
| 65                                    | 27           | 8                 | 55                                       | 35                              | 7/76                  | 35                       | 1.8                              | ---                                   | ---                                    | ---        | 1297        |
| 76                                    | 53           | 8                 | 62;73                                    | 33                              | 9/77                  | 30                       | 1.5                              | ---                                   | ---                                    | ---        | 1298        |
| 50                                    | 24           | 8                 | 21;30                                    | 18                              | 6/76                  | 12                       | .5                               | ---                                   | ---                                    | ---        | 1299        |
| 66                                    | 46           | 8                 | 55                                       | 30                              | 5/76                  | 20                       | .5                               | ---                                   | ---                                    | ---        | 1300        |
| 91                                    | 73           | 8                 | 83                                       | 31                              | 4/76                  | 6                        | .1                               | ---                                   | ---                                    | ---        | 1301        |
| 113                                   | 40           | 8                 | 42;103                                   | 52                              | 9/76                  | 13                       | .2                               | ---                                   | ---                                    | ---        | 1302        |
| 50                                    | 31           | 8                 | 15;27                                    | 12                              | 5/77                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 1303        |
| 65                                    | 35           | 8                 | 38                                       | 9                               | 3/76                  | 6                        | .1                               | ---                                   | ---                                    | ---        | 1304        |
| 130                                   | 45           | 8                 | 45;98                                    | 25                              | 5/76                  | 10                       | .1                               | ---                                   | ---                                    | ---        | 1305        |
| 110                                   | 73           | 8                 | 75;90                                    | 32                              | 11/77                 | 30                       | 3                                | ---                                   | ---                                    | ---        | 1306        |
| 95                                    | 20           | 5                 | 18;25                                    | 15                              | 9/77                  | 2                        | .02                              | ---                                   | ---                                    | ---        | 1307        |
| 67                                    | 67           | 8                 | 34                                       | 34                              | 8/77                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1308        |
| 95                                    | 95           | 8                 | 27;92                                    | 35                              | 3/77                  | 2                        | .04                              | ---                                   | ---                                    | ---        | 1309        |
| 48                                    | 48           | 8                 | 40                                       | 18                              | 4/77                  | 8                        | .4                               | ---                                   | ---                                    | ---        | 1310        |
| 60                                    | 57           | 8                 | 37;57                                    | 16                              | 8/76                  | 10                       | ---                              | 110                                   | 275                                    | ---        | 1311        |
| 64                                    | 13           | 8                 | 20;25                                    | 1                               | 9/77                  | 2                        | .03                              | ---                                   | ---                                    | ---        | 1312        |
| 64                                    | 32           | 6                 | 10                                       | 30                              | 9/77                  | 4                        | .2                               | 100                                   | 270                                    | ---        | 1313        |
| 60                                    | 20           | 12                | ---                                      | 10                              | 12/76                 | 5                        | .2                               | ---                                   | ---                                    | ---        | 1314        |
| 40                                    | 16           | 6                 | 20                                       | 10                              | 5/76                  | 3                        | .1                               | ---                                   | ---                                    | ---        | 1315        |
| 55                                    | 15           | 8                 | 8;25                                     | 20                              | 7/77                  | 5                        | ---                              | 120                                   | 610                                    | ---        | 1316        |
| 40                                    | 36           | 8                 | 34                                       | 18                              | 5/76                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1318        |
| 50                                    | 9            | 8                 | 9;11                                     | 5                               | 5/76                  | 5                        | ---                              | 120                                   | 420                                    | ---        | 1319        |
| 52                                    | 22           | 8                 | 15;24                                    | 15                              | 6/77                  | 1                        | .02                              | ---                                   | ---                                    | ---        | 1320        |
| 40                                    | 26           | 8                 | 20;28;34                                 | 7                               | 5/77                  | 5                        | .2                               | 220                                   | 650                                    | ---        | 1321        |
| 68                                    | 35           | 8                 | 39;50                                    | 20                              | 9/77                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1322        |
| 71                                    | 15           | 8                 | 11                                       | 8                               | 11/77                 | 5                        | .08                              | ---                                   | ---                                    | ---        | 1323        |
| 55                                    | 12           | ---               | 12;18                                    | 8                               | 7/77                  | 8                        | .2                               | ---                                   | ---                                    | ---        | 1324        |
| 55                                    | 12           | 8                 | 15;26                                    | 10                              | 4/77                  | 5                        | .1                               | 75                                    | 305                                    | ---        | 1325        |
| 55                                    | 15           | 8                 | 9                                        | 8                               | 7/77                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1326        |
| 50                                    | 25           | 8                 | 21                                       | 5                               | 3/78                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1327        |
| 55                                    | 18           | 8                 | 16;23                                    | 5                               | 8/76                  | 6                        | .1                               | ---                                   | ---                                    | ---        | 1328        |
| 120                                   | 120          | 8                 | 72;113                                   | 54                              | 10/77                 | 50                       | 2.1                              | ---                                   | ---                                    | ---        | 1329        |
| 60                                    | 12           | 8                 | 10;15                                    | 3                               | 9/77                  | 7                        | .1                               | 55                                    | 490                                    | ---        | 1330        |
| 108                                   | 94           | 8                 | 9;24;36                                  | F                               | 11/77                 | 3                        | ---                              | ---                                   | ---                                    | ---        | 1331        |
| 51                                    | 49           | 8                 | 48                                       | 25                              | 6/77                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1332        |
| 90                                    | 90           | 8                 | 17;82                                    | 11                              | 8/77                  | 45                       | 2.4                              | ---                                   | ---                                    | ---        | 1333        |
| 70                                    | 17           | 8                 | 17;22                                    | ---                             | 9/76                  | 3                        | ---                              | 80                                    | 260                                    | ---        | 1334        |
| 60                                    | 35           | 8                 | 30                                       | 18                              | 10/77                 | 4                        | ---                              | ---                                   | ---                                    | ---        | 1335        |
| 60                                    | 23           | 8                 | 14;33                                    | 16                              | 8/77                  | 45                       | 45                               | ---                                   | ---                                    | ---        | 1336        |
| 80                                    | 80           | 8                 | 75                                       | 15                              | 7/77                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 1337        |
| 84                                    | 84           | 8                 | 75                                       | 60                              | 8/76                  | 9                        | .5                               | ---                                   | ---                                    | ---        | 1338        |
| 55                                    | 26           | 8                 | 20                                       | 3                               | 6/76                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1339        |
| 70                                    | 56           | 8                 | 48;62                                    | 35                              | 7/76                  | 15                       | 1.4                              | ---                                   | ---                                    | ---        | 1340        |
| 72                                    | 31           | 8                 | 29;35                                    | 2                               | 10/77                 | 30                       | 1.5                              | ---                                   | ---                                    | ---        | 1341        |
| 75                                    | 40           | 8                 | 55;70                                    | 25                              | 6/77                  | 8                        | 1.6                              | ---                                   | ---                                    | ---        | 1342        |
| 80                                    | 65           | 8                 | 50;60                                    | 28                              | 10/76                 | .5                       | ---                              | 140                                   | 350                                    | ---        | 1343        |
| 66                                    | 65           | 8                 | ---                                      | 30                              | 10/76                 | .1                       | ---                              | ---                                   | ---                                    | ---        | 1344        |
| 60                                    | 19           | 8                 | 21;36                                    | 5                               | 5/77                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1345        |
| 105                                   | 44           | 8                 | 56;103                                   | 20                              | 8/76                  | 30                       | .5                               | ---                                   | ---                                    | ---        | 1346        |
| 75                                    | 33           | 8                 | 28;55                                    | 23                              | 10/76                 | 15                       | .4                               | ---                                   | ---                                    | ---        | 1347        |
| 50                                    | 18           | 8                 | 14;19                                    | 8                               | 8/76                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1348        |
| 55                                    | 15           | 8                 | 18                                       | 13                              | 4/77                  | 1                        | .04                              | ---                                   | ---                                    | ---        | 1349        |
| 40                                    | 17           | 8                 | 9;35                                     | 6                               | 2/77                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1350        |
| 53                                    | 24           | 8                 | 28;38                                    | 12                              | 2/77                  | 7                        | .2                               | ---                                   | ---                                    | ---        | 1351        |
| 55                                    | 14           | 8                 | 9                                        | 5                               | 6/77                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1352        |
| 50                                    | 17           | 8                 | 17                                       | 8                               | 8/76                  | 5                        | .1                               | ---                                   | ---                                    | ---        | 1353        |
| 35                                    | 18           | 8                 | 19                                       | 5                               | 7/76                  | 2                        | ---                              | 150                                   | 600                                    | ---        | 1354        |
| 55                                    | 28           | 8                 | 19;24                                    | 8                               | 8/76                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1355        |
| 60                                    | 57           | 8                 | 13;48                                    | 7                               | 5/77                  | 50                       | 1.5                              | ---                                   | ---                                    | ---        | 1356        |
| 66                                    | 60           | 8                 | 6;59                                     | 1                               | 5/77                  | 60                       | 1.5                              | ---                                   | ---                                    | ---        | 1357        |
| 52                                    | 26           | 8                 | 20;35                                    | 8                               | 11/76                 | 18                       | 1                                | ---                                   | ---                                    | ---        | 1358        |

Table 12.

| Well location |           | Owner                                     | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topo-graphic setting | Aquifer/lithology |
|---------------|-----------|-------------------------------------------|--------------------------|----------------|-----|---------------------------------|----------------------|-------------------|
| Number        | Lat-Long  |                                           |                          |                |     |                                 |                      |                   |
| Er-1359       | 4201-8000 | Daniel Collins                            | Donald L. Hermann        | 1976           | H   | 1,318                           | S                    | Dch/ssh           |
| 1360          | 4200-8002 | Harry Winkleman                           | do.                      | 1976           | H   | 1,442                           | S                    | Dv/ssh            |
| 1361          | 4201-8003 | Frank Di Bartolomeo                       | Robert Anderson          | 1977           | H   | 1,372                           | V                    | Qt/gr             |
| 1362          | 4203-8000 | Great Lakes Communication                 | Moody Drilling Co., Inc. | 1957           | H   | 1,380                           | S                    | Dv/fst            |
| 1363          | 4205-8007 | Marshall Thompson                         | do.                      | 1955           | H   | 730                             | F                    | Qb/gr             |
| 1364          | 4201-8002 | Summit Central Elementary School          | do.                      | 1955           | T   | 1,340                           | S                    | Dv/fst            |
| 1365          | 4201-8003 | Stanley Przybylak                         | do.                      | 1957           | H   | 1,330                           | S                    | Dv/fsh            |
| 1366          | 4202-8002 | John Sloan                                | do.                      | 1956           | H   | 1,282                           | U                    | Dch/fsh           |
| 1367          | 4202-8004 | Miles Baker                               | do.                      | 1955           | H   | 1,269                           | V                    | Dch/fsh           |
| 1368          | 4201-8003 | Pennsylvania Department of Transportation | McCray Bros.             | 1964           | D   | 1,400                           | U                    | Dv/fss            |
| 1369          | 4203-8003 | Ed Bronakowski                            | Moody Drilling Co., Inc. | 1955           | H   | 1,253                           | S                    | Dch/fst           |
| 1370          | 4201-8003 | Marcella Hanes                            | do.                      | 1956           | H   | 1,390                           | U                    | Dv/fsh            |
| 1371          | 4206-8002 | Dorothy Wagner                            | do.                      | 1957           | H   | 809                             | F                    | Qt/t              |
| 1372          | 4203-8002 | Walter Brogeuricz                         | do.                      | 1956           | H   | 1,262                           | S                    | Dch/fsh           |
| 1373          | 4204-8005 | Lillian Conner                            | do.                      | 1955           | H   | 925                             | S                    | Qt/gr             |
| 1374          | 4203-8005 | Boy Scouts of America                     | do.                      | 1956           | U   | 960                             | V                    | Dch/fsh           |
| 1375          | 4205-8004 | William Sapper                            | do.                      | 1955           | H   | 902                             | S                    | Qo/gr             |
| 1376          | 4204-8006 | John Parmentor                            | do.                      | 1955           | H   | 930                             | U                    | Dg/fsh            |
| 1377          | 4205-7959 | Richard Conyngham                         | do.                      | 1956           | H   | 1,180                           | S                    | Dch/fsh           |
| 1378          | 4204-8005 | Cornell Cracium                           | do.                      | 1955           | H   | 912                             | V                    | Dg/fsh            |
| 1379          | 4205-8005 | F. M. Carlson                             | do.                      | 1955           | H   | 940                             | U                    | Qt/c1gr           |
| 1380          | 4206-8007 | Jewish Temple                             | do.                      | ---            | U   | 665                             | F                    | Qb/sd             |
| 1381          | 4209-8004 | U.S. Coast Guard                          | do.                      | 1954           | H   | 581                             | F                    | Qs/sdgr           |
| 1382          | 4205-8009 | Brown                                     | do.                      | 1953           | H   | 715                             | U                    | Qo/u              |
| 1383          | 4206-8008 | Clem Schwab                               | do.                      | 1954           | U   | 700                             | F                    | Dne/fst           |
| 1384          | 4204-8011 | Miriam Bowman                             | do.                      | 1957           | H   | 733                             | F                    | Qo/gr             |
| 1385          | 4205-8008 | Edward Zielinski                          | do.                      | 1956           | H   | 715                             | F                    | Qb/gr             |
| 1386          | 4204-8011 | Siemieniak                                | do.                      | 1956           | H   | 730                             | F                    | Qo/gr             |
| 1387          | 4204-8009 | Bob Parker                                | do.                      | 1956           | H   | 769                             | U                    | Qo/gr             |
| 1388          | 4204-8008 | Ralph Riehl                               | do.                      | 1957           | H   | 875                             | U                    | Qo/gr             |
| 1389          | 4204-8008 | do.                                       | do.                      | 1957           | H   | 898                             | U                    | Qo/gr             |
| 1390          | 4204-8008 | James Sebastian                           | do.                      | 1958           | H   | 879                             | U                    | Qo/gr             |
| 1391          | 4204-8008 | Jack Spiriti                              | do.                      | 1955           | H   | 900                             | U                    | Qo/gr             |
| 1392          | 4204-8009 | Wayne Pemberton                           | do.                      | 1955           | H   | 880                             | U                    | Qo/gr             |
| 1393          | 4203-8009 | W. C. Hengalbrok                          | do.                      | 1954           | H   | 888                             | U                    | Qo/gr             |
| 1394          | 4151-8007 | James Skelton                             | do.                      | 1952           | H   | 1,192                           | V                    | Qo/sd             |
| 1395          | 4152-8002 | John Kovshak                              | do.                      | 1957           | H   | 1,240                           | S                    | Dv/fsh            |
| 1396          | 4152-8001 | Carlton Palmer                            | do.                      | 1957           | H   | 1,553                           | S                    | MDbr/fsh          |
| 1397          | 4154-8011 | Peter Gregan                              | do.                      | 1951           | H   | 1,318                           | S                    | Dv/fst            |
| 1398          | 4152-8012 | T. H. Young                               | do.                      | 1956           | H   | 1,370                           | S                    | MDbv/fsh          |
| 1399          | 4152-8008 | Robert Bender                             | do.                      | 1956           | H   | 1,215                           | S                    | Qo/gr             |
| 1400          | 4152-8008 | William Ulbing                            | do.                      | 1958           | H   | 1,241                           | S                    | Dv/fsh            |
| 1401          | 4203-8017 | Galbo                                     | do.                      | 1955           | H   | 652                             | F                    | Qb/c1gr           |
| 1402          | 4200-8014 | Arthur Ihnsen                             | do.                      | 1957           | U   | 910                             | U                    | Qo/sd             |
| 1403          | 4200-8014 | Ted Niebauer                              | do.                      | 1957           | H   | 919                             | U                    | Qo/gr             |
| 1404          | 4200-8026 | Baptist Church                            | do.                      | 1958           | H   | 600                             | F                    | Qb/c              |
| 1405          | 4200-8017 | John Runser                               | do.                      | 1957           | H   | 784                             | F                    | Qb/gr             |
| 1406          | 4202-8019 | Carl Rimpia                               | do.                      | 1958           | H   | 696                             | F                    | Qb/sd             |
| 1407          | 4202-8014 | Herbert Wilson                            | do.                      | 1954           | H   | 802                             | U                    | Qb/gr             |
| 1408          | 4200-7953 | C. V. Myers                               | do.                      | 1955           | H   | 1,349                           | S                    | Dch/fst           |
| 1409          | 4203-7953 | Gerald Arnold                             | do.                      | 1956           | H   | 1,355                           | U                    | Qo/gr             |
| 1410          | 4205-7959 | John Nesselhauf                           | do.                      | 1957           | H   | 1,140                           | F                    | Dch/fsh           |
| 1411          | 4201-7955 | P. E. Smock                               | do.                      | 1957           | H   | 1,406                           | H                    | Qo/gr             |
| 1412          | 4205-7953 | J. A. Jantzer                             | do.                      | 1958           | H   | 1,446                           | S                    | Qo/gr             |
| 1413          | 4207-7958 | Louis Balmer                              | do.                      | 1956           | H   | 1,015                           | S                    | Dch/fsh           |
| 1414          | 4210-7957 | Eiroy McArthur                            | do.                      | 1957           | H   | 651                             | S                    | Qb/sd             |
| 1415          | 4211-7956 | Kenneth McGuigan                          | do.                      | 1957           | H   | 658                             | F                    | Qb/sd             |
| 1416          | 4211-7956 | Alexander Kuklinski                       | do.                      | 1958           | H   | 674                             | F                    | Qb/c1gr           |
| 1417          | 4210-7956 | George Palmer                             | do.                      | 1957           | H   | 738                             | F                    | Dne/fsh           |
| 1418          | 4208-7959 | Bert Sharaff                              | do.                      | 1954           | H   | 818                             | S                    | Dg/fst            |
| 1419          | 4208-7959 | Leo Ranawiecki                            | do.                      | 1957           | H   | 805                             | S                    | Dg/fsh            |
| 1420          | 4207-7959 | Sam Richardson                            | do.                      | 1958           | H   | 838                             | S                    | Qb/c1gr           |
| 1421          | 4155-7958 | Deane Schlosser                           | do.                      | 1963           | H   | 1,182                           | V                    | Qo/sdgr           |
| 1422          | 4157-7957 | Raymond Schuschi                          | do.                      | 1957           | H   | 1,400                           | U                    | Dv/fst            |
| 1423          | 4156-7958 | E. H. Hopkins                             | do.                      | 1956           | H   | 1,180                           | V                    | Qo/t              |
| 1424          | 4204-7951 | G. A. Smith                               | do.                      | 1954           | H   | 1,363                           | S                    | Qo/gr             |
| 1425          | 4203-8013 | Concrete Paper Co. of America             | do.                      | ---            | N   | 740                             | U                    | Qb/sdgr           |
| 1426          | 4203-8012 | Whitlings Motel                           | do.                      | 1958           | H   | 773                             | U                    | Qb/gr             |
| 1427          | 4200-8014 | Ernest Kemling                            | do.                      | ---            | H   | 908                             | U                    | Qo/gr             |
| 1428          | 4204-8008 | Jack Van Tassell                          | do.                      | 1957           | H   | 920                             | U                    | Qo/gr             |
| 1429          | 4204-8011 | Mary Sheall                               | Alfred L. Burch          | 1976           | H   | 733                             | F                    | Qb/sdgr           |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |              |                   |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth (feet)                    | Diameter (inches)     |                          |                                  |                                       |                                        |            |             |
| 56                                    | 26           | 8                 | 23                                       | 3                               | 6/76                  | 5                        | ---                              | ---                                   | ---                                    | ---        | Er-1359     |
| 50                                    | 31           | 8                 | 29;39                                    | 10                              | 7/76                  | 30                       | 2.7                              | ---                                   | ---                                    | ---        | 1360        |
| 52                                    | 46           | 8                 | 18                                       | 7                               | 8/77                  | 5                        | .1                               | ---                                   | ---                                    | ---        | 1361        |
| 65                                    | 31           | 10                | ---                                      | ---                             | ---                   | 15                       | ---                              | ---                                   | ---                                    | ---        | 1362        |
| 31                                    | 31           | 6                 | 25                                       | 12                              | 8/55                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1363        |
| 153                                   | 37           | 36                | ---                                      | 12                              | 10/55                 | 8                        | ---                              | ---                                   | ---                                    | ---        | 1364        |
| 68                                    | 37           | 8                 | ---                                      | 18                              | 6/57                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1365        |
| 71                                    | 38           | 8                 | ---                                      | 12                              | 1/56                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1366        |
| 40                                    | 19           | 12                | ---                                      | 9                               | 9/55                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1367        |
| 65                                    | 22           | 12                | 16;45                                    | 10                              | 9/64                  | 11                       | .2                               | ---                                   | ---                                    | ---        | 1368        |
| 35                                    | 20           | 8                 | ---                                      | 7                               | 6/55                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1369        |
| 68                                    | 47           | 10                | ---                                      | 22                              | 6/56                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 1370        |
| 30                                    | 2            | 24                | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1371        |
| 52                                    | 21           | 8                 | ---                                      | 3                               | 4/56                  | 5                        | ---                              | 55                                    | 745                                    | ---        | 1372        |
| 60                                    | 60           | 7                 | 55                                       | 30                              | 4/55                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1373        |
| 50                                    | ---          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1374        |
| 48                                    | 48           | 6                 | 42                                       | 10                              | 11/55                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 1375        |
| 100                                   | 96           | 6                 | ---                                      | ---                             | ---                   | 1                        | ---                              | ---                                   | ---                                    | ---        | 1376        |
| 65                                    | 15           | 8                 | ---                                      | 6                               | 7/56                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1377        |
| 35                                    | 21           | 6                 | ---                                      | 6                               | 8/55                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1378        |
| 84                                    | 84           | 8                 | ---                                      | 40                              | 6/55                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 1379        |
| 20                                    | 16           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1380        |
| 26                                    | ---          | 7                 | 21                                       | 3                               | 2/54                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 1381        |
| 62                                    | 62           | ---               | ---                                      | 1                               | 4/53                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1382        |
| 50                                    | ---          | ---               | ---                                      | 4                               | 5/54                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1383        |
| 60                                    | 60           | 7                 | 33;55                                    | 45                              | 10/57                 | 9                        | ---                              | ---                                   | ---                                    | ---        | 1384        |
| 28                                    | 8            | 23                | ---                                      | 3                               | 9/56                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1385        |
| 41                                    | 41           | 8                 | 36                                       | 28                              | 6/56                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1386        |
| 87                                    | 87           | 8                 | 26;82                                    | 60                              | 8/56                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1387        |
| 69                                    | 69           | 7                 | 62                                       | 45                              | 10/57                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 1388        |
| 76                                    | 76           | 6                 | 71                                       | 45                              | 12/57                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 1389        |
| 70                                    | 70           | ---               | 64                                       | 43                              | 3/58                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1390        |
| 90                                    | 90           | 7                 | 84                                       | 65                              | 4/55                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1391        |
| 79                                    | 79           | ---               | 69                                       | 50                              | 6/55                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 1392        |
| 79                                    | 79           | 7                 | 74                                       | 64                              | 11/54                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 1393        |
| 27                                    | 27           | ---               | ---                                      | 5                               | 12/52                 | 5                        | ---                              | 110                                   | 320                                    | ---        | 1394        |
| 100                                   | 67           | 7                 | ---                                      | 17                              | 10/57                 | 2                        | ---                              | ---                                   | ---                                    | ---        | 1395        |
| 80                                    | 31           | 6                 | ---                                      | 48                              | 5/57                  | 30                       | ---                              | 200                                   | 440                                    | ---        | 1396        |
| 63                                    | 17           | 8                 | ---                                      | 10                              | 9/51                  | 1                        | ---                              | 55                                    | 780                                    | ---        | 1397        |
| 50                                    | 40           | 6                 | ---                                      | 12                              | 1/56                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 1398        |
| 42                                    | 42           | 8                 | 38                                       | 12                              | 12/56                 | 7                        | ---                              | ---                                   | ---                                    | ---        | 1399        |
| 68                                    | 53           | 8                 | ---                                      | 30                              | 4/58                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1400        |
| 86                                    | 75           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1401        |
| 100                                   | 100          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1402        |
| 47                                    | 47           | 6                 | 42                                       | 29                              | 7/57                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1403        |
| 9                                     | 9            | 24                | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1404        |
| 45                                    | 45           | 8                 | 40                                       | 35                              | 12/57                 | 7                        | ---                              | ---                                   | ---                                    | ---        | 1405        |
| 21                                    | 21           | 24                | ---                                      | 4                               | 7/58                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1406        |
| 40                                    | 40           | 7                 | 35                                       | 20                              | 11/54                 | 10                       | ---                              | ---                                   | ---                                    | ---        | 1407        |
| 80                                    | 43           | 7                 | ---                                      | ---                             | ---                   | .6                       | ---                              | 35                                    | 420                                    | ---        | 1408        |
| 23                                    | 23           | 8                 | 19                                       | 10                              | 6/56                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1409        |
| 51                                    | 22           | 8                 | ---                                      | 10                              | 4/57                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1410        |
| 112                                   | 112          | 7                 | 107                                      | 75                              | 10/57                 | 15                       | ---                              | 100                                   | 300                                    | ---        | 1411        |
| 43                                    | 43           | 8                 | 38                                       | 10                              | 2/58                  | 4                        | ---                              | 85                                    | 240                                    | ---        | 1412        |
| 60                                    | 21           | 8                 | ---                                      | 7                               | 1956                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1413        |
| 26                                    | 26           | 24                | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1414        |
| 17                                    | 17           | 24                | ---                                      | 6                               | 10/57                 | 2                        | ---                              | 160                                   | 1,450                                  | ---        | 1415        |
| 16                                    | 16           | 24                | ---                                      | 8                               | 5/58                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 1416        |
| 45                                    | 29           | 8                 | 16                                       | 10                              | 9/57                  | 20                       | ---                              | 120                                   | 400                                    | ---        | 1417        |
| 30                                    | 20           | 7                 | ---                                      | 8                               | 11/54                 | 3                        | ---                              | ---                                   | ---                                    | ---        | 1418        |
| 41                                    | 25           | 8                 | ---                                      | ---                             | ---                   | 3                        | ---                              | ---                                   | ---                                    | ---        | 1419        |
| 17                                    | 17           | ---               | ---                                      | 3                               | 4/58                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 1420        |
| 56                                    | 36           | 6                 | ---                                      | 12                              | 6/63                  | 60                       | ---                              | ---                                   | ---                                    | ---        | 1421        |
| 70                                    | 21           | 7                 | ---                                      | 25                              | 11/57                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 1422        |
| 227                                   | 155          | 7                 | ---                                      | 80                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1423        |
| 55                                    | 55           | 7                 | 40                                       | 10                              | 10/54                 | 4                        | ---                              | 100                                   | 270                                    | ---        | 1424        |
| 23                                    | 23           | 10                | ---                                      | 6                               | ---                   | 85                       | 5.4                              | ---                                   | ---                                    | ---        | 1425        |
| 47                                    | 20           | 8                 | ---                                      | 46                              | 7/58                  | 30                       | ---                              | ---                                   | ---                                    | ---        | 1426        |
| 37                                    | 37           | 8                 | ---                                      | 22                              | ---                   | 10                       | ---                              | ---                                   | ---                                    | ---        | 1427        |
| 100                                   | 100          | 7                 | 95                                       | 82                              | 11/57                 | 20                       | ---                              | ---                                   | ---                                    | ---        | 1428        |
| 43                                    | 43           | 8                 | 12;36                                    | 12                              | 11/76                 | 5                        | ---                              | ---                                   | ---                                    | ---        | 1429        |

Table 12.

| Well location |           | Owner                          | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|--------------------------------|--------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                                |                          |                |     |                                 |                     |                   |
| Er-1430       | 4203-8011 | John Seber                     | George H. Ackerman       | 1977           | H   | 814                             | U                   | Qo/sdgr           |
| 1431          | 4204-8007 | John Kielczewski               | Robert Anderson          | ---            | H   | 882                             | S                   | Qt/gr             |
| 1432          | 4204-8008 | James Jones                    | Moody Drilling Co., Inc. | ---            | H   | 880                             | U                   | Qt/gr             |
| 1433          | 4204-8009 | Springhurst Inc.               | Michael W. Burch         | 1977           | H   | 850                             | U                   | Qt/gr             |
| 1434          | 4203-8009 | Chester Kubak                  | Felix J. Waible          | 1978           | H   | 888                             | U                   | Qo/gr             |
| 1436          | 4203-8007 | Rickey Taraszki                | George H. Ackerman       | 1977           | H   | 908                             | U                   | Qo/sdgr           |
| 1437          | 4206-8000 | T. Kellogg                     | Michael W. Burch         | 1978           | H   | 1,069                           | S                   | Qt/clgr           |
| 1438          | 4203-8008 | Paul Canfield                  | Robert Anderson          | 1977           | H   | 870                             | U                   | Qt/clgr           |
| 1439          | 4203-8008 | David McDonald                 | do.                      | 1977           | H   | 882                             | T                   | Qo/gr             |
| 1440          | 4205-8003 | Robert Gehlein                 | Michael W. Burch         | 1977           | H   | 950                             | F                   | Qt/sdgr           |
| 1441          | 4204-8003 | John Maleno                    | George H. Ackerman       | 1977           | H   | 984                             | S                   | Qt/gr             |
| 1442          | 4205-8001 | James Clark                    | Donald L. Hermann        | 1976           | H   | 1,056                           | S                   | Dch/fsh           |
| 1443          | 4202-8008 | Joseph Leonardi                | Robert Anderson          | 1977           | H   | 932                             | U                   | Qo/gr             |
| 1444          | 4203-8006 | C. Black                       | do.                      | 1978           | H   | 1,045                           | S                   | Qt/t              |
| 1445          | 4205-7959 | A. Kirby                       | Michael W. Burch         | 1978           | H   | 1,130                           | F                   | Dch/fsh           |
| 1446          | 4152-8027 | George Kessler                 | Lorenze Lee Hall         | 1977           | H   | 953                             | U                   | Dch/fsh           |
| 1447          | 4151-8025 | Ronald Noe                     | Alfred L. Burch          | 1977           | H   | 869                             | S                   | Dch/fsh           |
| 1448          | 4152-8019 | Ward Norton, Jr.               | Lorenze Lee Hall         | 1977           | H   | 1,008                           | S                   | Dch/fsh           |
| 1449          | 4152-8020 | Richard Johnson                | Jack Young               | 1977           | H   | 1,068                           | S                   | MDbr/fsh          |
| 1450          | 4157-8016 | Michael Pacansky               | Moody Drilling Co., Inc. | ---            | H   | 912                             | S                   | Qt/u              |
| 1451          | 4159-8016 | David Thomas                   | Robert Anderson          | 1977           | H   | 870                             | U                   | Qt/gr             |
| 1452          | 4200-8016 | William Nies                   | Felix J. Waible          | 1977           | H   | 850                             | F                   | Qo/gr             |
| 1453          | 4201-8015 | Carl Triola                    | George H. Ackerman       | 1977           | H   | 830                             | F                   | Dg/sh             |
| 1454          | 4203-8014 | Harold Litzel                  | Donald L. Hermann        | 1977           | H   | 751                             | F                   | Qb/gr             |
| 1455          | 4155-8013 | James Will                     | Michael W. Burch         | 1977           | H   | 1,272                           | S                   | MDbr/fsh          |
| 1456          | 4157-8011 | Al Machinski                   | Robert Anderson          | 1977           | H   | 1,222                           | S                   | Qt/clgr           |
| 1457          | 4158-8010 | David Hutnyak                  | Donald L. Hermann        | 1976           | H   | 1,222                           | S                   | Dv/fsh            |
| 1458          | 4159-8008 | Mark Benson                    | Robert Anderson          | 1977           | H   | 1,185                           | S                   | Dch/fsh           |
| 1459          | 4200-8007 | Stanley Paschel                | Donald L. Hermann        | 1976           | H   | 1,063                           | S                   | Qt/gr             |
| 1460          | 4154-7944 | John Wisniewski                | McCray Bros.             | 1975           | H   | 1,395                           | T                   | Qo/gr             |
| 1461          | 4158-7952 | Ronald Waite                   | Robert Rindfuss          | 1976           | H   | 1,315                           | S                   | Dch/sh            |
| 1462          | 4159-8006 | Joseph Seth                    | Donald L. Hermann        | 1976           | H   | 1,252                           | S                   | Dch/fsh           |
| 1463          | 4200-8004 | Robert Franz                   | Felix J. Waible          | 1977           | H   | 1,200                           | S                   | Qt/gr             |
| 1464          | 4151-7950 | Harold Maynard                 | Max E. Hickernell        | 1977           | H   | 1,610                           | H                   | Mc/st             |
| 1465          | 4151-7950 | Inspirational Times Inc.       | do.                      | ---            | H   | 1,605                           | H                   | Mc/fsh            |
| 1466          | 4156-8003 | Richard Falkowski              | Robert Anderson          | 1977           | H   | 1,540                           | U                   | MDbr/fsh          |
| 1467          | 4155-8001 | Ronald Shields                 | Robert Rindfuss          | 1976           | H   | 1,425                           | V                   | MDbr/fsh          |
| 1468          | 4203-7952 | Theodore Wołozanski            | George H. Ackerman       | 1977           | H   | 1,335                           | V                   | Qo/gr             |
| 1469          | 4200-7946 | Stuart Foradora                | do.                      | 1977           | H   | 1,335                           | V                   | Qo/sdgr           |
| 1470          | 4202-7952 | Mario Farino                   | Robert Anderson          | 1978           | H   | 1,425                           | S                   | Dch/fsh           |
| 1471          | 4203-7952 | Robert Kruse                   | Michael W. Burch         | 1977           | H   | 1,370                           | S                   | Qo/sdgr           |
| 1472          | 4205-7957 | Charles Lander                 | do.                      | 1977           | H   | 1,372                           | S                   | Dch/fsh           |
| 1473          | 4202-7959 | William Peters                 | Robert Anderson          | 1977           | H   | 1,352                           | S                   | Dch/fsh           |
| 1474          | 4203-7958 | James Kennerknecht             | Lorenze Lee Hall         | 1977           | H   | 1,350                           | U                   | Dch/fsh           |
| 1475          | 4200-7954 | Dennis Hancock                 | Michael W. Burch         | 1977           | H   | 1,330                           | T                   | Dch/ssh           |
| 1476          | 4204-7959 | R. Sandle                      | George H. Ackerman       | 1977           | H   | 1,374                           | F                   | Dv/fsh            |
| 1477          | 4205-7954 | Richard Trimble                | Michael W. Burch         | 1977           | H   | 1,306                           | S                   | Qo/gr             |
| 1478          | 4207-7950 | Tim Buck                       | do.                      | 1977           | H   | 1,484                           | U                   | Dv/fsh            |
| 1479          | 4206-7954 | L. Vincent                     | Robert Rindfuss          | 1976           | H   | 1,188                           | S                   | Dch/fsh           |
| 1480          | 4201-8002 | W. Williams                    | Robert Anderson          | 1978           | H   | 1,400                           | U                   | Dv/fsh            |
| 1481          | 4156-8021 | Richard Gloskey                | Max E. Hickernell        | 1978           | U   | 850                             | U                   | Qt/sd             |
| 1482          | 4157-8019 | Howard Bowen                   | John E. Gage, Jr.        | 1973           | H   | 885                             | U                   | Qt/sd             |
| 1483          | 4154-8021 | Albion Borough                 | Moody Drilling Co., Inc. | 1960           | Z   | 870                             | V                   | Qo/gr             |
| 1484          | 4154-8021 | do.                            | do.                      | 1960           | Z   | 892                             | S                   | Qo/gr             |
| 1485          | 4203-8009 | Michael Haggerty               | George H. Ackerman       | 1977           | H   | 892                             | U                   | Qo/gr             |
| 1486          | 4206-8006 | National Forge                 | Moody Drilling Co., Inc. | 1957           | N   | 710                             | F                   | Qb/gr             |
| 1487          | 4158-8014 | Girl Scouts of America         | do.                      | ---            | H   | 1,000                           | S                   | Dch/fsh           |
| 1488          | 4152-8000 | J. W. Hanas                    | Robert Rindfuss          | 1972           | H   | 1,300                           | S                   | Qo/gr             |
| 1489          | 4152-8000 | John Hanas                     | Moody Drilling Co., Inc. | 1952           | H   | 1,210                           | S                   | Qo/gr             |
| 1490          | 4152-8000 | Mrs. John Hanas                | Donald L. Hermann        | 1973           | H   | 1,300                           | S                   | Dv/fsh            |
| 1491          | 4158-8004 | Walter Kosienksi               | do.                      | 1972           | H   | 1,450                           | U                   | Dv/ssh            |
| 1492          | 4157-8000 | Charles Brace                  | do.                      | 1975           | H   | 1,278                           | S                   | Dch/fsh           |
| 1493          | 4157-8004 | William Pennock                | do.                      | 1976           | H   | 1,520                           | S                   | MDbr/fsh          |
| 1494          | 4153-8005 | Robert Hamilton                | Boyd Lee Hall            | 1977           | H   | 1,483                           | S                   | MDbr/fsh          |
| 1495          | 4159-8006 | Kenneth Felix                  | Michael W. Burch         | 1976           | H   | 1,340                           | S                   | Dv/fsh            |
| 1496          | 4159-8006 | Gordon Smith                   | do.                      | 1976           | H   | 1,338                           | S                   | Qt/sdgr           |
| 1497          | 4159-8006 | do.                            | do.                      | 1976           | H   | 1,345                           | S                   | Dv/fsh            |
| 1499          | 4157-8007 | Janice Dennis                  | Robert Anderson          | 1976           | H   | 1,409                           | S                   | Dv/fsh            |
| 1500          | 4151-8017 | Albion Borough                 | ---                      | 1930           | P   | 1,085                           | V                   | Qo/sdgr           |
| 1501          | 4156-7959 | Waterford Borough              | ---                      | ---            | P   | 1,180                           | V                   | Qo/sdgr           |
| 1502          | 4156-7938 | Corry Water Supply Co.         | ---                      | 1947           | P   | 1,415                           | V                   | Qo/sdgr           |
| 1503          | 4156-7938 | do.                            | ---                      | ---            | P   | 1,425                           | V                   | Qo/sdgr           |
| 1504          | 4156-7938 | do.                            | ---                      | ---            | P   | 1,430                           | V                   | Qo/gr             |
| 1505          | 4152-8007 | Edinboro Municipal Water Works | ---                      | 1910           | P   | 1,200                           | V                   | Qo/sdgr           |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       |              |                   |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
|                                       | Depth (feet) | Diameter (inches) |                                          |                                 |                       |                          |                                  |                                       |                                        |            |             |
| 67                                    | 67           | 8                 | 32;62                                    | 38                              | 10/77                 | 50                       | 3.6                              | ---                                   | ---                                    | ---        | Er-1430     |
| 65                                    | 65           | 8                 | 60;65                                    | 57                              | ---                   | 10                       | 3.3                              | ---                                   | ---                                    | ---        | 1431        |
| 63                                    | 63           | ---               | 59                                       | 37                              | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 1432        |
| 90                                    | 90           | 8                 | 47;82                                    | 60                              | 9/77                  | 30                       | 30                               | ---                                   | ---                                    | ---        | 1433        |
| 73                                    | 73           | 8                 | 70                                       | 55                              | 3/78                  | 20                       | 20                               | ---                                   | ---                                    | ---        | 1434        |
| 62                                    | 62           | 8                 | 32;57                                    | 20                              | 4/77                  | 25                       | ---                              | ---                                   | ---                                    | ---        | 1436        |
| 50                                    | 47           | 8                 | 42                                       | 30                              | 3/78                  | 15                       | 3                                | ---                                   | ---                                    | ---        | 1437        |
| 55                                    | 55           | 8                 | 50                                       | 28                              | 10/77                 | 30                       | 3                                | ---                                   | ---                                    | ---        | 1438        |
| 50                                    | 35           | 8                 | 33                                       | 19                              | 7/77                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1439        |
| 38                                    | 38           | 8                 | 33                                       | 23                              | 8/77                  | 18                       | 9                                | 240                                   | 830                                    | ---        | 1440        |
| 63                                    | 43           | 8                 | ---                                      | 8                               | 12/77                 | 30                       | ---                              | ---                                   | ---                                    | ---        | 1441        |
| 100                                   | 81           | 8                 | 77                                       | 42                              | 7/76                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1442        |
| 53                                    | 53           | 8                 | 51                                       | 20                              | 6/77                  | 12                       | .6                               | ---                                   | 750                                    | ---        | 1443        |
| 89                                    | 70           | 8                 | 68                                       | 64                              | 2/78                  | 18                       | .9                               | ---                                   | ---                                    | ---        | 1444        |
| 55                                    | 12           | 8                 | 8;20;26                                  | 5                               | 3/78                  | 2                        | ---                              | 80                                    | 405                                    | ---        | 1445        |
| 51                                    | 26           | 8                 | 31;41                                    | 6                               | 4/77                  | 8                        | .2                               | ---                                   | ---                                    | ---        | 1446        |
| 70                                    | 53           | 8                 | 30;47                                    | 10                              | 3/77                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 1447        |
| 52                                    | 27           | 8                 | 15;28                                    | 24                              | 6/77                  | 12                       | .5                               | 100                                   | 340                                    | ---        | 1448        |
| 45                                    | 23           | 8                 | 20;27                                    | 8                               | 3/77                  | 10                       | 5                                | ---                                   | ---                                    | ---        | 1449        |
| 34                                    | 34           | 8                 | 15                                       | 13                              | ---                   | 5                        | .3                               | ---                                   | ---                                    | ---        | 1450        |
| 31                                    | 31           | 8                 | 30                                       | 15                              | 5/77                  | 12                       | 1.2                              | ---                                   | ---                                    | ---        | 1451        |
| 52                                    | 52           | 8                 | 47                                       | 19                              | 4/77                  | 20                       | ---                              | 210                                   | 450                                    | ---        | 1452        |
| 140                                   | 115          | 8                 | 28;95;112                                | 78                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1453        |
| 27                                    | 27           | 8                 | ---                                      | 12                              | 3/77                  | 15                       | 2.5                              | ---                                   | ---                                    | ---        | 1454        |
| 50                                    | 32           | 8                 | 14;44                                    | 1                               | 5/77                  | 10                       | .2                               | ---                                   | ---                                    | ---        | 1455        |
| 43                                    | 43           | 8                 | 37;42                                    | 17                              | 5/77                  | 10                       | .5                               | ---                                   | ---                                    | ---        | 1456        |
| 53                                    | 36           | 8                 | 31;45                                    | 7                               | 10/76                 | 5                        | .1                               | ---                                   | ---                                    | ---        | 1457        |
| 66                                    | 37           | 8                 | 38;40                                    | 20                              | 6/77                  | 8                        | .2                               | 120                                   | 300                                    | ---        | 1458        |
| 50                                    | 29           | 8                 | 24                                       | 8                               | 9/76                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1459        |
| 112                                   | 112          | 6                 | 112                                      | F                               | 2/75                  | 5                        | .5                               | 75                                    | 200                                    | ---        | 1460        |
| 101                                   | 85           | 8                 | 90                                       | 50                              | 7/76                  | 3                        | .07                              | ---                                   | ---                                    | ---        | 1461        |
| 65                                    | 30           | 12                | 24                                       | 12                              | 7/76                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 1462        |
| 45                                    | 41           | 8                 | 41                                       | 12                              | 7/77                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1463        |
| 91                                    | 19           | 8                 | 55;84                                    | 22                              | 4/77                  | 30                       | .6                               | ---                                   | ---                                    | ---        | 1464        |
| 82                                    | 27           | 6                 | 58;76                                    | 8                               | ---                   | 15                       | .5                               | ---                                   | ---                                    | ---        | 1465        |
| 50                                    | 17           | 8                 | 20;25                                    | 3                               | 5/77                  | 7                        | .2                               | ---                                   | ---                                    | ---        | 1466        |
| 67                                    | 41           | 8                 | 57                                       | 22                              | 10/76                 | 9                        | .2                               | ---                                   | ---                                    | ---        | 1467        |
| 97                                    | 97           | 8                 | 30;78;92                                 | 5                               | 5/77                  | 25                       | .4                               | ---                                   | ---                                    | ---        | 1468        |
| 104                                   | 104          | 8                 | 42;96                                    | F                               | 5/77                  | 25                       | .5                               | 95                                    | 260                                    | ---        | 1469        |
| 66                                    | 30           | 8                 | 31                                       | 2                               | 3/78                  | 20                       | .5                               | ---                                   | ---                                    | ---        | 1470        |
| 107                                   | 107          | 8                 | 14;103                                   | 40                              | 9/77                  | 15                       | .3                               | ---                                   | ---                                    | ---        | 1471        |
| 100                                   | 28           | 8                 | 12;27                                    | 7                               | 9/77                  | 2                        | .02                              | ---                                   | ---                                    | ---        | 1472        |
| 56                                    | 25           | 8                 | 26;30                                    | 10                              | 6/77                  | 9                        | .2                               | ---                                   | ---                                    | ---        | 1473        |
| 66                                    | 52           | 8                 | 35;48;57                                 | 21                              | 6/77                  | 16                       | .4                               | 140                                   | 370                                    | ---        | 1474        |
| 71                                    | 71           | 8                 | 15;33;66                                 | 23                              | 5/77                  | 45                       | 6.4                              | ---                                   | ---                                    | ---        | 1475        |
| 55                                    | 32           | 8                 | 23;45                                    | 5                               | 11/77                 | 50                       | ---                              | ---                                   | ---                                    | ---        | 1476        |
| 55                                    | 55           | 8                 | 45                                       | 22                              | 4/77                  | 30                       | 1.6                              | 120                                   | 310                                    | ---        | 1477        |
| 60                                    | 17           | 8                 | 10;20                                    | 1                               | 10/77                 | 1                        | ---                              | ---                                   | ---                                    | ---        | 1478        |
| 65                                    | 38           | 8                 | 48                                       | 12                              | 6/76                  | 8                        | .2                               | ---                                   | ---                                    | ---        | 1479        |
| 64                                    | 29           | 8                 | 30                                       | 6                               | 1/78                  | 6                        | .1                               | ---                                   | ---                                    | ---        | 1480        |
| 141                                   | 111          | 8                 | ---                                      | 35                              | 10/78                 | 5                        | .03                              | 95                                    | 2,500                                  | ---        | 1481        |
| 115                                   | 112          | 6                 | 32                                       | 70                              | 9/73                  | 1                        | ---                              | 120                                   | 600                                    | ---        | 1482        |
| 70                                    | 67           | ---               | 15                                       | 6                               | 8/60                  | 235                      | ---                              | ---                                   | ---                                    | ---        | 1483        |
| 111                                   | 110          | --                | 22;25;53                                 | --                              | --                    | --                       | ---                              | ---                                   | ---                                    | ---        | 1484        |
| 96                                    | 96           | 8                 | 92                                       | 70                              | 6/77                  | 25                       | ---                              | ---                                   | ---                                    | ---        | 1485        |
| 36                                    | 36           | 20                | ---                                      | 20                              | 1957                  | 70                       | 4.6                              | ---                                   | ---                                    | ---        | 1486        |
| 33                                    | 15           | 7                 | ---                                      | 6                               | ---                   | 25                       | ---                              | ---                                   | ---                                    | ---        | 1487        |
| 96                                    | --           | 8                 | ---                                      | 35                              | 8/72                  | 33                       | .6                               | 125                                   | 340                                    | ---        | 1488        |
| 97                                    | 96           | 7                 | ---                                      | 4                               | 11/52                 | 10                       | .16                              | ---                                   | ---                                    | ---        | 1489        |
| 80                                    | 39           | 8                 | 36                                       | 32                              | 10/73                 | 2                        | .05                              | 140                                   | 340                                    | ---        | 1490        |
| 75                                    | 60           | 8                 | 55;60                                    | 22                              | 7/72                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1491        |
| 80                                    | 57           | 8                 | 54                                       | 32                              | 8/75                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1492        |
| 52                                    | 34           | 8                 | 34;48                                    | 1                               | 8/76                  | 20                       | .8                               | ---                                   | ---                                    | ---        | 1493        |
| 88                                    | 44           | 6                 | ---                                      | 78                              | 6/77                  | 5                        | 1.7                              | ---                                   | ---                                    | ---        | 1494        |
| 61                                    | 29           | 8                 | 9;12;21;52                               | 4                               | 4/76                  | 4                        | .06                              | 160                                   | 2,800                                  | ---        | 1495        |
| 55                                    | 24           | 8                 | 19                                       | 10                              | 7/76                  | 4                        | .1                               | ---                                   | ---                                    | ---        | 1496        |
| 65                                    | 53           | 8                 | 25;40                                    | 12                              | 3/76                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 1497        |
| 62                                    | 30           | 8                 | 31;45                                    | 12                              | 7/76                  | 4                        | .08                              | ---                                   | ---                                    | ---        | 1499        |
| 40                                    | 38           | 8                 | ---                                      | 0                               | 1930                  | 65                       | ---                              | 200                                   | ---                                    | 7.2        | 1500        |
| 100                                   | 58           | 12                | ---                                      | ---                             | 1,000                 | 34                       | 150                              | ---                                   | 7.8                                    | 1501       |             |
| 32                                    | 24           | 12                | 24                                       | 5                               | 1947                  | 250                      | 28                               | 120                                   | ---                                    | 7.5        | 1502        |
| 65                                    | 48           | ---               | ---                                      | 12                              | ---                   | 500                      | ---                              | 120                                   | ---                                    | 7.9        | 1503        |
| 65                                    | 52           | ---               | ---                                      | 16                              | ---                   | 400                      | 11                               | 120                                   | 308                                    | 7.9        | 1504        |
| 20                                    | 20           | 20                | ---                                      | ---                             | 350                   | ---                      | 220                              | ---                                   | 7.5                                    | 1505       |             |

Table 12.

| Well location |           | Owner                              | Driller                   | Year completed | Use | Altitude of land surface (feet) | Topo-graphic setting | Aquifer/lithology |
|---------------|-----------|------------------------------------|---------------------------|----------------|-----|---------------------------------|----------------------|-------------------|
| Number        | Lat-Long  |                                    |                           |                |     |                                 |                      |                   |
| Er-1506       | 4152-8007 | Edinboro Municipal Water Works     | ---                       | ---            | P   | 1,200                           | V                    | Qo/sdgr           |
| 1507          | 4202-8015 | Whitehall Village                  | ---                       | 1967           | P   | 680                             | F                    | Qb/u              |
| 1508          | 4202-8015 | do.                                | ---                       | ---            | P   | 680                             | F                    | Qb/u              |
| 1509          | 4202-8015 | do.                                | ---                       | ---            | P   | 692                             | F                    | Qb/u              |
| 1510          | 4200-8020 | Lake City Borough                  | ---                       | ---            | P   | 725                             | F                    | Qb/u              |
| 1511          | 4200-8019 | do.                                | ---                       | ---            | P   | 735                             | F                    | Qb/u              |
| 1512          | 4202-8016 | Palmer Shores Water Co.            | ---                       | ---            | P   | 680                             | F                    | Qb/gr             |
| 1513          | 4200-8019 | Girard Borough                     | ---                       | ---            | P   | 735                             | F                    | Qb/u              |
| 1514          | 4200-8019 | do.                                | ---                       | ---            | P   | 735                             | F                    | Qb/u              |
| 1515          | 4201-8018 | do.                                | ---                       | ---            | P   | 740                             | F                    | Qb/u              |
| 1516          | 4201-8015 | Fairview Borough                   | ---                       | ---            | P   | 825                             | F                    | Qb/u              |
| 1517          | 4201-8015 | do.                                | ---                       | ---            | P   | 820                             | F                    | Qb/u              |
| 1518          | 4201-8015 | do.                                | ---                       | 1961           | P   | 815                             | F                    | Qb/u              |
| 1519          | 4202-8013 | Westminster Water Co.              | Moody Drilling Co., Inc.  | ---            | P   | 800                             | F                    | Qb/gr             |
| 1520          | 4202-8013 | do.                                | ---                       | ---            | P   | 800                             | F                    | Qb/sdgr           |
| 1521          | 4203-8011 | Greenbrier Hill Corp.              | ---                       | 1964           | P   | 855                             | H                    | Qo/u              |
| 1522          | 4204-8014 | Manchester Heights                 | ---                       | ---            | P   | 580                             | F                    | Qb/u              |
| 1523          | 4205-8009 | Erie Suburban Water Co.            | ---                       | ---            | P   | 731                             | F                    | Qb/u              |
| 1524          | 4204-8010 | do.                                | ---                       | ---            | P   | 740                             | F                    | Qb/u              |
| 1525          | 4204-8010 | do.                                | ---                       | ---            | P   | 740                             | F                    | Qb/u              |
| 1526          | 4204-8010 | do.                                | ---                       | ---            | P   | 770                             | F                    | Qb/sdgr           |
| 1527          | 4204-8010 | do.                                | ---                       | ---            | P   | 770                             | F                    | Qb/u              |
| 1528          | 4204-8010 | do.                                | ---                       | ---            | P   | 770                             | F                    | Qb/u              |
| 1529          | 4205-8009 | do.                                | ---                       | ---            | P   | 740                             | F                    | Qb/u              |
| 1530          | 4205-8009 | do.                                | ---                       | ---            | P   | 740                             | F                    | Qb/u              |
| 1531          | 4205-8009 | do.                                | ---                       | ---            | P   | 740                             | F                    | Qb/u              |
| 1532          | 4159-8009 | Idyll Whyle Village, Inc.          | ---                       | ---            | P   | 970                             | V                    | Qo/u              |
| 1533          | 4201-8007 | Happy Homes Mobile Park            | ---                       | ---            | P   | 1,076                           | F                    | Dch/fsh           |
| 1534          | 4203-8013 | Erie Suburban Water Co.            | ---                       | ---            | P   | 735                             | F                    | Qb/u              |
| 1535          | 4203-8012 | do.                                | ---                       | 1972           | P   | 765                             | F                    | Qb/sdgr           |
| 1536          | 4156-7938 | Corry Water Supply Co.             | Moody Drilling Co., Inc.  | 1974           | U   | 1,415                           | V                    | Qo/sdgr           |
| 1537          | 4204-8013 | Lake Shore Maintenance Association | do.                       | ---            | P   | 730                             | F                    | Qb/u              |
| 1539          | 4204-7958 | James Foltz                        | Alfred L. Burch           | 1976           | H   | 1,262                           | S                    | Dch/fsh           |
| 1540          | 4200-8018 | Patrick Luciano                    | Moody Drilling Co., Inc.  | 1972           | H   | 788                             | F                    | Qb/sdgr           |
| 1541          | 4157-8007 | David Hogan                        | Felix J. Waible           | 1974           | H   | 1,406                           | S                    | Dv/fsh            |
| 1542          | 4157-8001 | D. J. Dolph                        | Robert Anderson           | 1975           | H   | 1,290                           | S                    | Qo/sdgr           |
| 1544          | 4157-8001 | Ted Goring                         | Robert Rindfuss           | 1975           | H   | 1,270                           | S                    | Qo/gr             |
| 1545          | 4158-8001 | Abram Thomas                       | Alfred L. Burch           | 1972           | P   | 1,285                           | S                    | Qt/gr             |
| 1546          | 4158-8001 | do.                                | do.                       | 1973           | P   | 1,300                           | S                    | Dv/fsh            |
| 1547          | 4153-8003 | Edward Humes                       | Max E. Hickernell         | 1963           | H   | 1,540                           | S                    | Dv/fst            |
| 1548          | 4155-8000 | Charles Burge                      | Moody Drilling Co., Inc.  | ---            | H   | 1,394                           | H                    | Dv/fsh            |
| 1549          | 4159-8002 | Deimel-Heynes Farm                 | Michael W. Burch          | ---            | S   | 1,450                           | S                    | Dv/fsh            |
| 1550          | 4153-8030 | Robert Taylor                      | Lowell Halstead           | 1973           | H   | 870                             | U                    | Qo/gr             |
| 1551          | 4203-8007 | First Alliance Church              | W. K. Bailey              | 1976           | H   | 908                             | U                    | Qt/sd             |
| 1552          | 4205-8002 | A. C. Schenck                      | Alfred L. Burch           | 1971           | H   | 1,050                           | S                    | Qt/gr             |
| 1553          | 4205-8000 | Andy Zafiroopoulos                 | Michael W. Burch          | 1977           | H   | 1,130                           | U                    | Qt/t              |
| 1554          | 4206-8000 | do.                                | do.                       | 1977           | H   | 1,110                           | U                    | Qt/t              |
| 1555          | 4206-8000 | do.                                | do.                       | 1977           | H   | 1,058                           | U                    | Qt/gr             |
| 1556          | 4200-8006 | J. A. Meyer                        | do.                       | 1975           | H   | 1,240                           | S                    | Dch/s             |
| 1557          | 4202-8003 | Great Lakes Television             | Moody Drilling Co., Inc.  | 1954           | H   | 1,340                           | S                    | Dv/fst            |
| 1558          | 4202-8001 | Joseph Mientkiewicz                | George H. Ackerman        | 1977           | H   | 1,332                           | H                    | Dch/sh            |
| 1559          | 4204-8002 | Robert Stewart                     | Donald L. Hermann         | 1972           | H   | 1,029                           | V                    | Dch/s             |
| 1560          | 4201-8005 | J. R. Ott                          | do.                       | 1972           | H   | 1,335                           | S                    | Dv/fsh            |
| 1561          | 4200-8000 | Kevin Osborne                      | do.                       | 1976           | H   | 1,255                           | S                    | Dch/fsh           |
| 1562          | 4151-8022 | Larry Kadley                       | Jack Young                | 1978           | H   | 1,048                           | S                    | Dch/fsh           |
| 1563          | 4151-8016 | Nevin Shoaf                        | Alfred L. Burch           | 1966           | H   | 1,222                           | S                    | Mdbv/sst          |
| 1564          | 4158-8008 | J. A. Lange                        | George H. Ackerman        | 1975           | H   | 1,210                           | S                    | Dch/fsh           |
| 1565          | 4156-8013 | Frank Pertl                        | John E. Gage, Jr.         | 1974           | H   | 1,195                           | S                    | Qt/t              |
| 1566          | 4157-8012 | J. R. Crandall                     | Donald L. Hermann         | 1972           | H   | 1,210                           | U                    | Mdbv/fst          |
| 1567          | 4154-8007 | W. E. Adams                        | Donald L. Hermann         | 1972           | N   | 1,265                           | T                    | Qo/sdgr           |
| 1568          | 4159-8013 | W. C. Kinstler                     | Moody Drilling Co., Inc.  | 1957           | H   | 955                             | F                    | Qt/c1gr           |
| 1569          | 4155-8008 | Roger Soth                         | Alfred L. Burch           | 1976           | H   | 1,375                           | S                    | Dv/fsh            |
| 1570          | 4158-8011 | J. R. Baldwin                      | do.                       | 1972           | H   | 1,175                           | S                    | Dch/fsh           |
| 1571          | 4156-8011 | Wayne Washburn                     | do.                       | 1967           | H   | 1,303                           | U                    | Mdbv/fsh          |
| 1572          | 4159-8014 | Adam Brezinski                     | Herbert G. Orr            | 1976           | H   | 930                             | S                    | Dch/fsh           |
| 1573          | 4152-8014 | L. K. Stroup                       | John E. Gage, Jr.         | 1970           | H   | 1,282                           | H                    | Mdbv/s            |
| 1574          | 4152-8010 | David Robinson                     | Max E. Hickernell         | 1966           | H   | 1,491                           | U                    | Mdbv/fss          |
| 1575          | 4201-8017 | West Ridge Gravel Co.              | Charles J. Richardson III | 1973           | N   | 790                             | F                    | Qb/sd             |
| 1576          | 4202-8016 | M. A. Roseman                      | Robert Anderson           | 1972           | H   | 672                             | F                    | Dne/sh            |
| 1577          | 4201-8016 | Erie County Infirmary              | Moody Drilling Co., Inc.  | ---            | T   | 808                             | F                    | Qo/sdgr           |
| 1578          | 4202-8015 | Robert Gidner                      | do.                       | 1951           | H   | 780                             | T                    | Qo/gr             |
| 1579          | 4201-8016 | Michael Tarasovitch                | Alfred L. Burch           | 1968           | C   | 810                             | F                    | Qb/sdgr           |
| 1580          | 4201-8016 | Erie County Infirmary              | do.                       | 1971           | T   | 805                             | F                    | Qb/gr             |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 38                                    | 36           | 12                | 36                                       | 0                               | ---                   | 500                      | ---                              | 220                                   | ---                                    | 7.3        | Er-1506     |
| 30                                    | 24           | 120               | 24                                       | 4                               | 7/67                  | 32                       | ---                              | 540                                   | ---                                    | 6.9        | 1507        |
| 30                                    | 24           | 120               | 24                                       | 4                               | ---                   | 14                       | ---                              | 390                                   | ---                                    | 7.0        | 1508        |
| 22                                    | 15           | 120               | 15                                       | 3                               | ---                   | 49                       | ---                              | 320                                   | ---                                    | 7.6        | 1509        |
| 16                                    | 15           | 180               | 15                                       | ---                             | ---                   | 250                      | ---                              | 200                                   | ---                                    | 7.1        | 1510        |
| 44                                    | 39           | 10                | ---                                      | 4                               | 12/64                 | 600                      | ---                              | 260                                   | ---                                    | 7.0        | 1511        |
| 17                                    | 17           | 120               | ---                                      | ---                             | ---                   | 100                      | ---                              | 200                                   | 600                                    | 7.4        | 1512        |
| 30                                    | ---          | ---               | ---                                      | 6                               | ---                   | 850                      | 67                               | 220                                   | 400                                    | 7.4        | 1513        |
| 17                                    | 17           | 216               | ---                                      | 8                               | ---                   | 300                      | 270                              | 220                                   | 420                                    | 7.4        | 1514        |
| 12                                    | 12           | 120               | ---                                      | 8                               | ---                   | 200                      | ---                              | 200                                   | 420                                    | 7.4        | 1515        |
| 43                                    | 43           | ---               | ---                                      | ---                             | ---                   | 120                      | ---                              | 220                                   | ---                                    | 7.4        | 1516        |
| 38                                    | 38           | 8                 | ---                                      | ---                             | ---                   | 44                       | 50                               | 220                                   | ---                                    | 7.4        | 1517        |
| 46                                    | 38           | 12                | ---                                      | 28                              | 8/63                  | 90                       | 29                               | 190                                   | ---                                    | 7.4        | 1518        |
| 46                                    | 41           | 12                | ---                                      | ---                             | ---                   | 200                      | ---                              | 260                                   | ---                                    | 7.1        | 1519        |
| 65                                    | ---          | 12                | 36                                       | ---                             | ---                   | 100                      | ---                              | 330                                   | ---                                    | 7.0        | 1520        |
| 73                                    | 68           | 7                 | ---                                      | 50                              | 1/64                  | 70                       | 140                              | 240                                   | 530                                    | 7.9        | 1521        |
| 10                                    | ---          | 96                | ---                                      | 6                               | ---                   | 40                       | ---                              | 300                                   | ---                                    | 7.0        | 1522        |
| 34                                    | 24           | 12                | ---                                      | ---                             | ---                   | 75                       | ---                              | 420                                   | 2,400                                  | 8.0        | 1523        |
| 32                                    | ---          | ---               | ---                                      | ---                             | ---                   | 200                      | ---                              | 220                                   | ---                                    | 7.5        | 1524        |
| 30                                    | 28           | 120               | ---                                      | ---                             | ---                   | 150                      | 19                               | 320                                   | ---                                    | 7.5        | 1525        |
| 29                                    | 24           | 72                | ---                                      | ---                             | ---                   | 100                      | ---                              | 250                                   | ---                                    | 7.4        | 1526        |
| 34                                    | 24           | 72                | ---                                      | 15                              | ---                   | 75                       | 15                               | 260                                   | ---                                    | 7.6        | 1527        |
| 43                                    | 36           | 72                | ---                                      | ---                             | ---                   | 50                       | ---                              | 220                                   | ---                                    | 8.0        | 1528        |
| 20                                    | 18           | ---               | ---                                      | ---                             | ---                   | 50                       | ---                              | 260                                   | ---                                    | 7.6        | 1529        |
| 25                                    | ---          | 12                | ---                                      | ---                             | ---                   | 200                      | ---                              | 260                                   | ---                                    | 6.9        | 1530        |
| 24                                    | ---          | 72                | ---                                      | ---                             | ---                   | 100                      | ---                              | 240                                   | ---                                    | 6.8        | 1531        |
| 13                                    | 13           | 60                | ---                                      | ---                             | ---                   | 15                       | ---                              | 170                                   | ---                                    | 7.6        | 1532        |
| 26                                    | 22           | 96                | ---                                      | 10                              | ---                   | 55                       | ---                              | 120                                   | ---                                    | 7.6        | 1533        |
| 16                                    | ---          | ---               | ---                                      | ---                             | ---                   | 50                       | ---                              | 300                                   | ---                                    | 7.6        | 1534        |
| 20                                    | ---          | 120               | 15                                       | ---                             | ---                   | 160                      | ---                              | 230                                   | ---                                    | 7.5        | 1535        |
| 209                                   | ---          | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1536        |
| 17                                    | 17           | 60                | ---                                      | ---                             | ---                   | 100                      | ---                              | ---                                   | ---                                    | ---        | 1537        |
| 62                                    | 19           | 8                 | 35                                       | ---                             | ---                   | .1                       | ---                              | ---                                   | ---                                    | ---        | 1539        |
| 80                                    | 80           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 200                                   | ---                                    | 7.0        | 1540        |
| 45                                    | 30           | 8                 | 26                                       | 12                              | 6/74                  | 12                       | ---                              | ---                                   | ---                                    | ---        | 1541        |
| 85                                    | 44           | 8                 | 42;50                                    | F                               | 7/75                  | 15                       | .2                               | ---                                   | ---                                    | ---        | 1542        |
| 56                                    | 56           | 8                 | 50                                       | 11                              | 7/75                  | 6                        | .1                               | 120                                   | 320                                    | ---        | 1544        |
| 33                                    | 33           | 8                 | 3;14;25                                  | 4                               | 7/72                  | 50                       | ---                              | ---                                   | ---                                    | ---        | 1545        |
| 60                                    | 27           | 8                 | 14;20                                    | 7                               | 7/73                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1546        |
| 54                                    | 21           | 6                 | 28;51                                    | 14                              | 8/63                  | 10                       | .2                               | ---                                   | ---                                    | ---        | 1547        |
| 80                                    | 51           | 8                 | ---                                      | 40                              | 4/56                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1548        |
| 82                                    | 34           | 8                 | 21;64;72                                 | 15                              | 9/77                  | 7                        | .1                               | ---                                   | ---                                    | ---        | 1549        |
| 46                                    | 46           | 8                 | 42                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1550        |
| 55                                    | 48           | 8                 | 44                                       | 27                              | 5/76                  | 10                       | .4                               | ---                                   | ---                                    | ---        | 1551        |
| 82                                    | 82           | 8                 | 77                                       | 69                              | 10/71                 | 18                       | ---                              | ---                                   | ---                                    | ---        | 1552        |
| 105                                   | 97           | 8                 | 98                                       | 65                              | 6/77                  | 1                        | .02                              | ---                                   | ---                                    | ---        | 1553        |
| 70                                    | 64           | 8                 | 5;68                                     | 54                              | 6/77                  | .2                       | ---                              | ---                                   | ---                                    | ---        | 1554        |
| 34                                    | 30           | 8                 | 21                                       | F                               | 6/77                  | 45                       | 2.2                              | ---                                   | ---                                    | ---        | 1555        |
| 80                                    | 16           | 8                 | 42                                       | ---                             | ---                   | .6                       | ---                              | ---                                   | ---                                    | ---        | 1556        |
| 65                                    | 30           | 8                 | ---                                      | 7                               | 3/54                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1557        |
| 80                                    | 52           | 8                 | 46                                       | 18                              | 6/77                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 1558        |
| 82                                    | 73           | 8                 | 67;73                                    | ---                             | ---                   | 5                        | ---                              | ---                                   | ---                                    | ---        | 1559        |
| 47                                    | 30           | 8                 | 26;30;32                                 | 12                              | 6/72                  | 15                       | .8                               | ---                                   | ---                                    | ---        | 1560        |
| 75                                    | 60           | 8                 | 58;61                                    | 55                              | 7/76                  | 15                       | 3                                | 210                                   | 635                                    | ---        | 1561        |
| 35                                    | 9            | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1562        |
| 45                                    | 32           | 8                 | 26;40                                    | 12                              | 12/66                 | 20                       | 1.5                              | ---                                   | ---                                    | ---        | 1563        |
| 60                                    | 24           | 8                 | 14;48                                    | ---                             | 6/75                  | 50                       | ---                              | 100                                   | 395                                    | ---        | 1564        |
| 49                                    | 32           | 8                 | 13;25                                    | 10                              | 7/74                  | 2                        | .09                              | ---                                   | ---                                    | ---        | 1565        |
| 70                                    | 20           | 8                 | 22                                       | ---                             | ---                   | .2                       | ---                              | ---                                   | ---                                    | ---        | 1566        |
| 30                                    | 30           | 8                 | 26                                       | 10                              | 9/72                  | 15                       | 3                                | 150                                   | 440                                    | ---        | 1567        |
| 111                                   | 111          | 8                 | ---                                      | 32                              | 3/57                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1568        |
| 60                                    | 31           | 8                 | 15;25;40                                 | 13                              | 10/76                 | 10                       | ---                              | 120                                   | 310                                    | ---        | 1569        |
| 75                                    | 17           | 8                 | 17;40;68                                 | 38                              | 7/72                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1570        |
| 40                                    | 32           | 8                 | 29;36                                    | 7                               | 7/67                  | 20                       | .6                               | ---                                   | ---                                    | ---        | 1571        |
| 134                                   | 85           | 8                 | 110;125                                  | 25                              | 7/76                  | 4                        | .04                              | ---                                   | ---                                    | ---        | 1572        |
| 43                                    | 43           | 5                 | 33;43                                    | 3                               | 7/70                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 1573        |
| 107                                   | 29           | 8                 | 51;83;96                                 | 12                              | 8/66                  | 30                       | ---                              | 140                                   | 360                                    | ---        | 1574        |
| 24                                    | 24           | 30                | 6;20                                     | 6                               | 10/73                 | 52                       | 3.7                              | 190                                   | 480                                    | ---        | 1575        |
| 74                                    | 61           | 8                 | 23;61                                    | 22                              | 6/72                  | .5                       | ---                              | ---                                   | ---                                    | ---        | 1576        |
| 79                                    | 79           | 5                 | ---                                      | 54                              | ---                   | 20                       | 3.3                              | ---                                   | ---                                    | ---        | 1577        |
| 140                                   | 90           | 7                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1578        |
| 53                                    | 53           | 8                 | 46                                       | 36                              | 6/68                  | 40                       | 40                               | 140                                   | 430                                    | ---        | 1579        |
| 46                                    | 46           | 8                 | 20;36                                    | 9                               | 9/71                  | 40                       | ---                              | ---                                   | ---                                    | ---        | 1580        |

Table 12.

| Well location |           | Owner                                     | Driller                  | Year completed | Use | Altitude of land surface (feet) | Topographic setting | Aquifer/lithology |
|---------------|-----------|-------------------------------------------|--------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                                           |                          |                |     |                                 |                     |                   |
| Er-1581       | 4201-8015 | Parker White Metal                        | Moody Drilling Co., Inc. | ---            | N   | 785                             | F                   | Qb/gr             |
| 1582          | 4203-7957 | William Marie                             | George H. Ackerman       | 1975           | H   | 1,320                           | S                   | Dch/fsh           |
| 1583          | 4202-7956 | Richard Kircher                           | do.                      | 1967           | H   | 1,335                           | S                   | Qo/gr             |
| 1584          | 4206-7958 | Pennsylvania Department of Transportation | Robert Anderson          | 1974           | P   | 1,170                           | S                   | Dch/sh            |
| 1585          | 4203-7959 | David Young                               | do.                      | 1975           | H   | 1,415                           | S                   | Dv/fsh            |
| 1586          | 4202-7956 | Wayne Price                               | George H. Ackerman       | 1975           | H   | 1,385                           | H                   | Qo/sdr            |
| 1587          | 4200-7956 | Lawrence Yaple                            | Donald L. Hermann        | 1972           | H   | 1,405                           | S                   | Dch/fsh           |
| 1588          | 4203-7957 | John Noonan                               | Ralph Wayne Grant        | 1974           | H   | 1,330                           | S                   | Qo/sdr            |
| 1589          | 4207-7957 | Humble Oil Co.                            | Alfred L. Burch          | 1971           | C   | 1,150                           | F                   | Dch/fsh           |
| 1590          | 4202-7956 | Robert Smith                              | Donald L. Hermann        | 1975           | H   | 1,325                           | S                   | Qo/sdr            |
| 1591          | 4151-7959 | Mystic Inc.                               | Robert Rindfuss          | 1974           | N   | 1,158                           | V                   | Qo/gr             |
| 1592          | 4152-7958 | Floyd King                                | Alfred L. Burch          | 1964           | H   | 1,250                           | S                   | Dv/fsh            |
| 1593          | 4151-7954 | Stanley Allen                             | do.                      | 1970           | H   | 1,594                           | U                   | MDcr/fsh          |
| 1594          | 4151-7956 | Max Brown                                 | Max E. Hickernell        | 1968           | H   | 1,560                           | H                   | MDcr/fsh          |
| 1595          | 4213-7950 | Max Reid                                  | Moody Drilling Co., Inc. | 1957           | H   | 793                             | F                   | Qo/sd             |
| 1596          | 4209-7948 | George Pilch                              | Ralph C. Parmenter       | 1974           | H   | 1,380                           | S                   | Qo/u              |
| 1597          | 4215-7947 | Ruth Mattson                              | Alfred L. Burch          | 1972           | H   | 605                             | S                   | Qt/t              |
| 1598          | 4211-7949 | Lake View Motel                           | McCray Bros.             | 1974           | U   | 1,040                           | S                   | Dg/fsh            |
| 1599          | 4214-7946 | Exxon Corp.                               | Max E. Hickernell        | 1970           | C   | 810                             | F                   | Qt/t              |
| 1600          | 4210-7948 | North East Borough                        | Robert Rindfuss          | 1975           | P   | 1,306                           | U                   | Dch/fsh           |
| 1601          | 4156-7949 | Vic Dasconio                              | Robert Anderson          | 1976           | H   | 1,530                           | S                   | Dv/fsh            |
| 1602          | 4153-7951 | Gary Potts                                | Robert Rindfuss          | 1975           | H   | 1,332                           | U                   | Qo/gr             |
| 1603          | 4158-7947 | Stanley Phillips                          | Harold F. Anderson       | 1975           | H   | 1,538                           | S                   | Dv/fsh            |
| 1604          | 4152-7951 | Victor Powell                             | do.                      | 1975           | H   | 1,425                           | S                   | Dv/fsh            |
| 1605          | 4153-7951 | Robert Miller                             | Max E. Hickernell        | 1972           | H   | 1,350                           | S                   | Dv/fsh            |
| 1606          | 4153-7951 | Dan Tarbell                               | do.                      | 1974           | H   | 1,300                           | U                   | Qt/gr             |
| 1607          | 4154-7949 | Joseph Tomcho                             | do.                      | 1974           | N   | 1,370                           | S                   | Qo/gr             |
| 1608          | 4157-7946 | Norman Troyer                             | do.                      | ---            | H   | 1,500                           | V                   | Dv/fst            |
| 1609          | 4154-7947 | Rexford Morris                            | Alfred L. Burch          | 1966           | H   | 1,460                           | H                   | Qt/gr             |
| 1610          | 4155-7946 | Bargain Road Trailer Sales                | do.                      | 1970           | H   | 1,604                           | H                   | MDcr/fsh          |
| 1611          | 4202-7949 | J. Whitehill                              | Lorenze Lee Hall         | 1976           | H   | 1,330                           | V                   | Qo/gr             |
| 1612          | 4205-7951 | Gene Penberthy                            | Ralph C. Parmenter       | 1975           | H   | 1,440                           | S                   | Dch/fsh           |
| 1613          | 4200-7952 | Paul Vogel                                | Harold F. Anderson       | 1974           | H   | 1,525                           | S                   | Dv/fsh            |
| 1614          | 4200-7952 | Lawrence Vogel                            | do.                      | 1974           | H   | 1,490                           | S                   | Dv/fsh            |
| 1616          | 4202-7949 | John Wroblewski                           | Ralph C. Parmenter       | 1977           | H   | 1,325                           | V                   | Qt/u              |
| 1617          | 4152-7958 | Betty Wallace                             | Robert Rindfuss          | 1972           | H   | 1,220                           | V                   | Qo/gr             |
| 1618          | 4152-7958 | Thomas McLaughlin                         | Lorenze Lee Hall         | 1974           | H   | 1,210                           | V                   | Qt/clgr           |
| 1619          | 4159-7953 | Francis O'Sullivan                        | Alfred L. Burch          | 1964           | H   | 1,315                           | V                   | Dch/fsh           |
| 1620          | 4153-7955 | Henry Rupert                              | do.                      | 1971           | H   | 1,288                           | S                   | Dv/fsh            |
| 1621          | 4153-7959 | Lovewells Country Market                  | do.                      | 1968           | H   | 1,172                           | V                   | Qo/gr             |
| 1622          | 4153-7959 | Thomas Lovewell                           | do.                      | 1968           | H   | 1,198                           | V                   | Qo/gr             |
| 1623          | 4155-7954 | Atlas Construction Co.                    | do.                      | 1972           | H   | 1,405                           | S                   | Dv/fsh            |
| 1624          | 4157-7959 | Happy Homes Trailer Park                  | do.                      | 1972           | H   | 1,230                           | S                   | Qo/gr             |
| 1625          | 4154-7959 | William Anysz                             | Robert Rindfuss          | 1974           | H   | 1,285                           | S                   | Dv/fsh            |
| 1626          | 4155-7957 | Troyer Farms                              | Donald L. Hermann        | 1975           | I   | 1,252                           | H                   | Dch/fsh           |
| 1627          | 4153-7953 | Nolan Webb                                | Max E. Hickernell        | 1969           | H   | 1,302                           | S                   | Dv/fss            |
| 1628          | 4153-7958 | O. J. Stull                               | Harold F. Anderson       | 1973           | H   | 1,190                           | V                   | Qo/sdr            |
| 1629          | 4156-7957 | G. A. Rieder                              | Donald L. Hermann        | 1972           | H   | 1,220                           | V                   | Dch/fsh           |
| 1630          | 4158-7954 | R. E. Petty                               | Robert Rindfuss          | 1974           | H   | 1,534                           | U                   | Qt/c              |
| 1631          | 4201-8009 | Erie Skeet Club                           | Moody Drilling Co., Inc. | 1956           | H   | 992                             | F                   | Qt/sdr            |
| 1632          | 4203-8014 | Robert Seth                               | do.                      | 1957           | H   | 700                             | F                   | Qb/sdr            |
| 1633          | 4203-8007 | D. Rogala                                 | Robert Anderson          | 1977           | H   | 922                             | U                   | Qt/sdr            |
| 1634          | 4204-8013 | Fred Ralph                                | Vernon Reed              | 1947           | Z   | 610                             | V                   | Qb/gr             |
| 1635          | 4204-8013 | do.                                       | Alfred L. Burch          | 1970           | Z   | 625                             | V                   | Qb/sdr            |
| 1637          | 4157-8024 | R. R. Robison                             | ---                      | ---            | H   | 740                             | F                   | Qb/gr             |
| 1638          | 4205-8008 | W. Blakesley                              | Vernon Reed              | 1946           | H   | 715                             | F                   | Dne/sh            |
| 1639          | 4205-8008 | Willard Johnson                           | ---                      | 1950           | H   | 715                             | F                   | Qb/sd             |
| 1640          | 4203-8012 | Edward Lunenberger                        | Bernard P. Kuntz         | 1946           | H   | 782                             | F                   | Qb/gr             |
| 1641          | 4203-8008 | James Di Cara                             | do.                      | 1949           | H   | 857                             | U                   | Qo/gr             |
| 1642          | 4158-8018 | John Bair                                 | Vernon Reed              | 1950           | H   | 862                             | F                   | Qt/gr             |
| 1643          | 4157-8023 | Richard Godfrey                           | John E. Gage, Jr.        | 1974           | H   | 820                             | U                   | Qo/gr             |
| 1644          | 4159-8028 | Erie County Parks Commission              | Alfred L. Burch          | 1967           | Z   | 590                             | V                   | Qb/sdgr           |
| 1645          | 4159-8028 | do.                                       | do.                      | 1967           | U   | 620                             | U                   | Qt/clgr           |
| 1646          | 4159-8028 | do.                                       | do.                      | 1966           | U   | 625                             | T                   | Dne/sh            |
| 1647          | 4152-8018 | Edwin Horrigan                            | do.                      | 1972           | H   | 1,149                           | S                   | MDbv/fsh          |
| 1648          | 4155-7943 | John Frontera                             | do.                      | 1964           | H   | 1,404                           | V                   | Qo/gr             |
| 1649          | 4156-7942 | Martin Dewitt                             | do.                      | 1969           | H   | 1,570                           | S                   | Dv/fsh            |
| 1650          | 4152-7941 | Dale Bunnell                              | do.                      | 1966           | H   | 1,720                           | S                   | MDcr/fsh          |
| 1651          | 4154-8024 | B. H. Anderson                            | B. W. Bateman and Son    | 1969           | H   | 895                             | U                   | Qt/t              |
| 1652          | 4156-8024 | William Dunegan                           | do.                      | 1969           | H   | 825                             | U                   | Qo/gr             |
| 1653          | 4203-8012 | Standard Oil Co.                          | Vernon Reed              | 1951           | C   | 795                             | T                   | Qb/gr             |
| 1654          | 4204-8008 | William Rounds                            | do.                      | 1950           | H   | 910                             | U                   | Qo/gr             |
| 1655          | 4203-8009 | Walter Schreiber                          | Bernard P. Kuntz         | 1950           | H   | 890                             | U                   | Qo/gr             |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 49                                    | 41           | 12                | 37                                       | 31                              | ---                   | 300                      | 38                               | ---                                   | ---                                    | ---        | Er-1581     |
| 65                                    | 38           | 8                 | 34;62                                    | 10                              | 5/75                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1582        |
| 55                                    | 55           | 8                 | 50                                       | 12                              | 6/67                  | 15                       | ---                              | 240                                   | 560                                    | ---        | 1583        |
| 65                                    | 12           | 8                 | 12;17                                    | 7                               | 8/74                  | 5                        | .09                              | ---                                   | ---                                    | ---        | 1584        |
| 50                                    | 20           | 8                 | 20;30                                    | 10                              | 5/75                  | 2                        | .06                              | ---                                   | ---                                    | ---        | 1585        |
| 98                                    | 95           | 8                 | 92                                       | 68                              | 4/75                  | 6                        | ---                              | ---                                   | ---                                    | ---        | 1586        |
| 90                                    | 80           | 8                 | 76;82                                    | 72                              | 8/72                  | 4                        | .2                               | 100                                   | 325                                    | ---        | 1587        |
| 80                                    | 80           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1588        |
| 60                                    | 20           | 8                 | 12;14                                    | 4                               | 9/71                  | 18                       | ---                              | ---                                   | ---                                    | ---        | 1589        |
| 85                                    | 85           | 8                 | 80;85                                    | 38                              | 7/75                  | 20                       | 2.5                              | ---                                   | ---                                    | ---        | 1590        |
| 96                                    | 96           | 8                 | 91                                       | 55                              | 12/74                 | 5                        | .1                               | ---                                   | ---                                    | ---        | 1591        |
| 60                                    | 28           | 6                 | 40                                       | 12                              | 8/64                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1592        |
| 75                                    | 31           | 8                 | 17;22;25                                 | 10                              | 11/70                 | 12                       | .2                               | ---                                   | ---                                    | ---        | 1593        |
| 83                                    | 31           | 8                 | 58;72                                    | 20                              | 10/68                 | 15                       | ---                              | ---                                   | ---                                    | ---        | 1594        |
| 17                                    | 17           | 24                | ---                                      | ---                             | ---                   | 2                        | ---                              | ---                                   | ---                                    | ---        | 1595        |
| 24                                    | 24           | 5                 | 1                                        | F                               | 6/74                  | 4                        | 4                                | ---                                   | ---                                    | ---        | 1596        |
| 60                                    | 31           | 8                 | 23;53                                    | 36                              | 8/72                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1597        |
| 60                                    | 16           | 12                | 24;36                                    | ---                             | 8/74                  | 2                        | .05                              | ---                                   | ---                                    | ---        | 1598        |
| 78                                    | 31           | 8                 | 32                                       | 15                              | 11/70                 | 8                        | ---                              | 570                                   | 1,400                                  | ---        | 1599        |
| 52                                    | 33           | 8                 | 40                                       | 10                              | 4/75                  | 12                       | .4                               | ---                                   | ---                                    | ---        | 1600        |
| 91                                    | 24           | 8                 | 26;78                                    | 41                              | 8/76                  | 4                        | .09                              | ---                                   | ---                                    | ---        | 1601        |
| 33                                    | 33           | 8                 | 22                                       | 6                               | 10/75                 | 12                       | .6                               | ---                                   | ---                                    | ---        | 1602        |
| 55                                    | 23           | 8                 | 23;50                                    | ---                             | ---                   | 27                       | ---                              | ---                                   | ---                                    | ---        | 1603        |
| 110                                   | 17           | 8                 | ---                                      | ---                             | ---                   | 24                       | ---                              | ---                                   | ---                                    | ---        | 1604        |
| 90                                    | 19           | 6                 | ---                                      | 11                              | 1972                  | 10                       | ---                              | 140                                   | 360                                    | ---        | 1605        |
| 48                                    | 48           | 6                 | 44                                       | 15                              | 10/74                 | 20                       | 1.3                              | ---                                   | ---                                    | ---        | 1606        |
| 50                                    | 50           | 8                 | 36                                       | 1                               | 1/74                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1607        |
| 53                                    | 28           | 6                 | 34;50                                    | 6                               | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 1608        |
| 123                                   | 102          | 6                 | 70;123                                   | 52                              | 6/66                  | 3                        | .04                              | 80                                    | 240                                    | ---        | 1609        |
| 125                                   | 70           | 8                 | 74;115                                   | 30                              | 9/70                  | 6                        | .06                              | ---                                   | ---                                    | ---        | 1610        |
| 100                                   | 95           | 8                 | 57;90                                    | 15                              | 6/76                  | 50                       | 1.1                              | ---                                   | ---                                    | ---        | 1611        |
| 60                                    | 25           | 6                 | ---                                      | 10                              | 8/75                  | 3                        | .08                              | 110                                   | 280                                    | ---        | 1612        |
| 70                                    | 36           | 8                 | 36;60;65                                 | ---                             | ---                   | 8                        | ---                              | ---                                   | ---                                    | ---        | 1613        |
| 75                                    | 22           | 8                 | 2;60;65;70                               | ---                             | ---                   | 8                        | ---                              | 120                                   | 950                                    | ---        | 1614        |
| 50                                    | 50           | 6                 | ---                                      | 10                              | 4/77                  | 4                        | .1                               | 180                                   | 470                                    | ---        | 1616        |
| 52                                    | 52           | 8                 | 52                                       | 39                              | 7/72                  | 12                       | 12                               | ---                                   | ---                                    | ---        | 1617        |
| 79                                    | 45           | 8                 | 47;72                                    | 38                              | 9/74                  | 5                        | .1                               | 110                                   | 400                                    | ---        | 1618        |
| 62                                    | 30           | 6                 | 50                                       | 20                              | 8/64                  | 20                       | ---                              | 110                                   | 400                                    | 8.1        | 1619        |
| 67                                    | 17           | 8                 | 16;40;50                                 | 28                              | 5/71                  | 4                        | ---                              | ---                                   | ---                                    | ---        | 1620        |
| 98                                    | 96           | 6                 | 21                                       | 9                               | ---                   | 20                       | 1.2                              | ---                                   | ---                                    | ---        | 1621        |
| 55                                    | 55           | 8                 | 40;51;55                                 | 27                              | 8/68                  | 30                       | 2.3                              | 140                                   | 360                                    | ---        | 1622        |
| 100                                   | 15           | 8                 | 15;20;70                                 | 6                               | 10/72                 | 7                        | .07                              | ---                                   | ---                                    | ---        | 1623        |
| 49                                    | 47           | 8                 | 2;27;30;42                               | 13                              | 6/72                  | 10                       | .3                               | ---                                   | ---                                    | ---        | 1624        |
| 60                                    | 45           | 8                 | 50                                       | 26                              | 1/74                  | 5                        | .14                              | ---                                   | ---                                    | ---        | 1625        |
| 100                                   | 80           | 8                 | 79                                       | 42                              | 8/75                  | 2                        | ---                              | 240                                   | 560                                    | 8.0        | 1626        |
| 120                                   | 50           | 6                 | 87                                       | 45                              | 6/69                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 1627        |
| 50                                    | 33           | 8                 | 30;44;50                                 | ---                             | ---                   | 6                        | ---                              | ---                                   | ---                                    | ---        | 1628        |
| 55                                    | 28           | 8                 | 27                                       | 14                              | 6/72                  | 3                        | .08                              | ---                                   | ---                                    | ---        | 1629        |
| 70                                    | 35           | 8                 | 35;57                                    | 15                              | 5/74                  | 7                        | .1                               | 150                                   | 380                                    | ---        | 1630        |
| 44                                    | 44           | 8                 | ---                                      | 20                              | 8/56                  | 20                       | ---                              | ---                                   | ---                                    | ---        | 1631        |
| 44                                    | 44           | 6                 | ---                                      | 7                               | 7/57                  | 3                        | ---                              | ---                                   | ---                                    | ---        | 1632        |
| 86                                    | 58           | 8                 | 56                                       | 28                              | 11/77                 | 2                        | .04                              | ---                                   | ---                                    | ---        | 1633        |
| 31                                    | 31           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 280                                   | 547                                    | 6.9        | 1634        |
| 40                                    | 14           | 8                 | 11                                       | 4                               | 10/70                 | 1                        | .03                              | ---                                   | ---                                    | ---        | 1635        |
| 18                                    | 18           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 110                                   | 324                                    | 7.0        | 1637        |
| 90                                    | ---          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 88                                    | 903                                    | 8.0        | 1638        |
| 20                                    | 20           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 270                                   | 525                                    | 7.7        | 1639        |
| 35                                    | 35           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 200                                   | 488                                    | 7.7        | 1640        |
| 54                                    | 54           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 210                                   | 369                                    | 7.7        | 1641        |
| 60                                    | 60           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 120                                   | 440                                    | 7.7        | 1642        |
| 112                                   | 112          | 8                 | 63;112                                   | 80                              | 9/74                  | 9                        | .6                               | 170                                   | 420                                    | ---        | 1643        |
| 25                                    | ---          | ---               | 9                                        | 6                               | 1/67                  | 2                        | .1                               | 320                                   | 800                                    | ---        | 1644        |
| 58                                    | 58           | 8                 | 45                                       | ---                             | ---                   | .1                       | ---                              | ---                                   | ---                                    | ---        | 1645        |
| 50                                    | ---          | ---               | ---                                      | 20                              | 12/66                 | .1                       | ---                              | ---                                   | ---                                    | ---        | 1646        |
| 70                                    | 35           | 8                 | 17;24;38                                 | 10                              | 4/72                  | 5                        | .08                              | 170                                   | 510                                    | ---        | 1647        |
| 138                                   | 136          | 6                 | 11;36;90;130                             | F                               | 6/64                  | 360                      | ---                              | ---                                   | ---                                    | ---        | 1648        |
| 110                                   | 25           | 8                 | 26;40;92                                 | 27                              | 7/69                  | 20                       | .4                               | 120                                   | 350                                    | ---        | 1649        |
| 35                                    | 15           | 8                 | 20;30                                    | 20                              | 8/66                  | 20                       | 1.3                              | 85                                    | 230                                    | ---        | 1650        |
| 50                                    | 45           | 6                 | 46                                       | 20                              | 5/69                  | 6                        | .3                               | 200                                   | 1,700                                  | ---        | 1651        |
| 48                                    | 48           | ---               | 20                                       | 3                               | 7/69                  | 6                        | .6                               | 110                                   | 280                                    | ---        | 1652        |
| 32                                    | 32           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 240                                   | 482                                    | 7.4        | 1653        |
| 100                                   | 100          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 210                                   | 407                                    | 7.8        | 1654        |
| 108                                   | 108          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 260                                   | 522                                    | 7.5        | 1655        |

Table 12.

| Well location |           | Owner                            | Driller                     | Year completed | Use | Altitude of land surface (feet) | Topographic setting | AQUIFER/LITHOLOGY |
|---------------|-----------|----------------------------------|-----------------------------|----------------|-----|---------------------------------|---------------------|-------------------|
| Number        | Lat-Long  |                                  |                             |                |     |                                 |                     |                   |
| Er-1656       | 4211-7950 | W. M. Luke                       | Ralph C. Parmenter          | 1920           | H   | 1,008                           | S                   | Dg/sh             |
| 1658          | 4156-8028 | Hugh Seelye                      | ---                         | 1941           | H   | 712                             | F                   | Qb/u              |
| 1659          | 4157-8024 | George Jones                     | ---                         | ---            | H   | 750                             | T                   | Qb/gr             |
| 1660          | 4159-8029 | S. Wilcox                        | ---                         | ---            | H   | 620                             | F                   | Qb/gr             |
| 1661          | 4156-7938 | Corry Water Supply Co.           | Moody Drilling Co., Inc.    | 1974           | P   | 1,420                           | V                   | Qo/sdgr           |
| 1662          | 4152-8008 | Edinboro Waste Plant             | Robert Rindfuss             | 1976           | C   | 1,250                           | S                   | Dv/fsh            |
| 1663          | 4203-7954 | Wattsburg Joint Area High School | Alfred L. Burch             | 1971           | T   | 1,345                           | U                   | Qo/sdgr           |
| 1664          | 4201-7958 | Richard Ziegler                  | Michael W. Burch            | 1976           | H   | 1,235                           | V                   | Qo/sdgr           |
| 1665          | 4205-7952 | Gregory Spinks                   | do.                         | 1975           | H   | 1,504                           | S                   | Dv/fsh            |
| 1666          | 4204-7953 | Robert Austin                    | do.                         | 1976           | H   | 1,354                           | S                   | Dch/fsh           |
| 1667          | 4203-7958 | Raymond Jonczak                  | do.                         | 1977           | H   | 1,309                           | V                   | Qo/sdgr           |
| 1668          | 4201-7952 | Paris Bros.                      | do.                         | 1977           | H   | 1,578                           | H                   | Qt/gr             |
| 1669          | 4203-7959 | Dennis Heberlein                 | do.                         | 1977           | H   | 1,372                           | H                   | Dv/ssh            |
| 1670          | 4203-7955 | Atlas Homes                      | Alfred L. Burch             | 1976           | H   | 1,305                           | V                   | Qo/sdgr           |
| 1671          | 4202-7955 | John Shick                       | do.                         | 1967           | H   | 1,328                           | U                   | Qo/sd             |
| 1672          | 4202-7959 | Dale Zimmerly                    | do.                         | 1972           | H   | 1,360                           | S                   | Dch/fsh           |
| 1673          | 4203-7956 | Wattsburg Joint Area High School | do.                         | 1969           | Z   | 1,335                           | S                   | Qo/gr             |
| 1674          | 4203-7956 | do.                              | do.                         | 1969           | U   | 1,335                           | S                   | Qo/sdgr           |
| 1675          | 4203-7956 | do.                              | do.                         | 1969           | Z   | 1,345                           | S                   | Qt/gr             |
| 1676          | 4203-7956 | do.                              | do.                         | 1969           | Z   | 1,348                           | S                   | Qt/clgr           |
| 1677          | 4200-8013 | Lakelands Racing Association     | Max E. Hickernell           | 1973           | C   | 920                             | F                   | Qo/gr             |
| 1678          | 4209-7946 | Edith Munger                     | Adgate Marshall             | 1915           | H   | 1,470                           | S                   | Dch/sed           |
| 1679          | 4155-7940 | Pennsylvania Fish Commission     | Moody Drilling Co., Inc.    | 1961           | R   | 1,390                           | V                   | Qo/gr             |
| 1680          | 4155-7940 | do.                              | do.                         | 1968           | Z   | 1,420                           | V                   | Qo/gr             |
| 1681          | 4155-7940 | do.                              | do.                         | 1961           | Z   | 1,388                           | V                   | Qo/gr             |
| 1682          | 4155-7940 | do.                              | do.                         | 1967           | Z   | 1,392                           | V                   | Qo/gr             |
| 1683          | 4158-8030 | U.S. Steel Corp.                 | Lininger Drilling and Pumps | 1977           | Z   | 621                             | F                   | Dg/sh             |
| 1684          | 4158-8030 | do.                              | do.                         | 1977           | Z   | 640                             | F                   | Dne/sh            |
| 1685          | 4157-8030 | do.                              | do.                         | 1977           | Z   | 640                             | F                   | Dg/sh             |
| 1686          | 4156-8031 | do.                              | do.                         | 1977           | Z   | 680                             | F                   | Qt/t              |
| 1687          | 4158-8028 | do.                              | do.                         | 1977           | Z   | 653                             | F                   | Qt/t              |
| 1688          | 4158-8030 | do.                              | ---                         | ---            | H   | 622                             | F                   | Qt/t              |
| 1689          | 4158-8028 | do.                              | ---                         | ---            | H   | 658                             | F                   | Qt/t              |
| 1690          | 4156-8031 | Frank Talarico                   | Max E. Hickernell           | ---            | H   | 680                             | F                   | Qb/sd             |
| 1691          | 4156-8012 | Perry Mills                      | ---                         | ---            | H   | 1,245                           | U                   | Qt/t              |
| 1692          | 4214-7948 | Frank Mehler                     | Robert Anderson             | 1975           | H   | 673                             | S                   | Dne/sh            |
| 1693          | 4208-7947 | Russell Arrigo                   | Boyd Lee Hall               | 1977           | H   | 1,425                           | S                   | Qo/sdgr           |
| 1694          | 4207-7947 | William Penn                     | Ralph C. Parmenter          | 1976           | H   | 1,442                           | H                   | Qt/sd             |
| 1695          | 4202-8004 | New's Volvo                      | Donald L. Hermann           | 1971           | C   | 1,280                           | U                   | Dch/fsh           |
| 1696          | 4204-7946 | D. Bull                          | Michael W. Burch            | 1979           | H   | 1,682                           | H                   | Qt/clgr           |
| 1697          | 4152-8026 | J. R. Smith                      | John E. Gage, Jr.           | 1970           | H   | 943                             | U                   | Qt/gr             |
| 1698          | 4207-7958 | Richard Horton                   | Alfred L. Burch             | 1973           | H   | 940                             | S                   | Qo/gr             |
| 1699          | 4200-8018 | Imperial Mobile Home Park        | Moody Drilling Co., Inc.    | 1972           | P   | 780                             | F                   | Qb/sdgr           |
| 1700          | 4158-8027 | Pennzoil Service Station         | ---                         | ---            | C   | 680                             | T                   | Qb/u              |
| 1701          | 4159-8028 | Erie County Parks                | ---                         | ---            | H   | 615                             | S                   | Qt/t              |
| 1702          | 4159-8025 | Ford Bailey                      | ---                         | ---            | H   | 664                             | F                   | Qt/clgr           |
| 1703          | 4202-8018 | Jack Northrup                    | ---                         | ---            | H   | 684                             | F                   | Qb/u              |
| 1704          | 4201-8021 | Samuel Repoff                    | ---                         | ---            | H   | 693                             | F                   | Qb/u              |
| 1705          | 4154-8017 | T. Rader                         | ---                         | ---            | H   | 1,110                           | F                   | Qt/t              |
| 1706          | 4203-8014 | Munch Fisheries                  | ---                         | ---            | H   | 688                             | T                   | Qb/sdgr           |
| 1707          | 4204-7946 | Timothy Shumac                   | Ralph C. Parmenter          | 1976           | H   | 1,755                           | H                   | Dv/sh             |
| 1708          | 4155-8007 | Erie County Schools              | Moody Drilling Co., Inc.    | 1957           | I   | 1,250                           | V                   | Qo/gr             |
| 1709          | 4200-7951 | Walter Meyers                    | Lorenze Lee Hall            | 1974           | H   | 1,520                           | S                   | Qt/clgr           |
| 1710          | 4200-7949 | Floyd Parsons                    | McCray Bros.                | 1975           | H   | 1,376                           | S                   | Dch/sh            |
| 1711          | 4205-8001 | Carl Pepper                      | Ralph Wayne Grant           | 1975           | H   | 1,108                           | S                   | Qo/sdgr           |
| 1712          | 4154-8023 | Carlyle Krieg                    | Moody Drilling Co., Inc.    | ---            | H   | 912                             | U                   | Qt/clgr           |
| 1713          | 4153-8024 | Rudler's Auto Service            | ---                         | 1952           | C   | 855                             | F                   | Qt/t              |
| 1714          | 4151-7942 | Allison Bell                     | ---                         | ---            | H   | 1,555                           | S                   | MDcr/ss           |
| 1715          | 4151-7938 | Robert Kraft                     | ---                         | 1977           | H   | 1,677                           | S                   | MDcr/fsh          |
| 1716          | 4153-7937 | G. E. Haenel                     | McCray Bros.                | 1974           | H   | 1,800                           | S                   | Qt/sd             |
| 1717          | 4155-7942 | Carroll Colonial Estates         | ---                         | ---            | H   | 1,405                           | V                   | Qt/u              |
| 1718          | 4152-7950 | Walter Downer                    | Max E. Hickernell           | 1971           | H   | 1,542                           | S                   | MDcr/fsh          |
| 1719          | 4212-7946 | Edward Calvin                    | Alfred L. Burch             | 1968           | H   | 1,108                           | S                   | Dg/sh             |
| 1720          | 4209-7958 | Curt Hoover                      | ---                         | ---            | Z   | 700                             | F                   | Dne/sh            |
| 1721          | 4210-7956 | Rainbow Motel                    | ---                         | ---            | C   | 730                             | F                   | Qb/sdgr           |
| 1722          | 4154-7942 | A. C. Gates                      | ---                         | ---            | H   | 1,382                           | V                   | Qo/sdgr           |
| 1723          | 4159-7950 | Ralph Bacon                      | Alfred L. Burch             | 1974           | H   | 1,284                           | L                   | Qo/u              |

(Continued)

| Total depth below land surface (feet) | Casing       |                   | Depth(s) to water-bearing zone(s) (feet) | Static water level              |                       | Reported yield (gal/min) | Specific capacity [(gal/min)/ft] | Hardness (mg/L as CaCO <sub>3</sub> ) | Specific conductance (μmho/cm at 25°C) | pH (units) | Well number |
|---------------------------------------|--------------|-------------------|------------------------------------------|---------------------------------|-----------------------|--------------------------|----------------------------------|---------------------------------------|----------------------------------------|------------|-------------|
|                                       | Depth (feet) | Diameter (inches) |                                          | Depth below land surface (feet) | Date measured (mo/yr) |                          |                                  |                                       |                                        |            |             |
| 80                                    | ---          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 140                                   | 443                                    | 7.7        | Er-1656     |
| 25                                    | 25           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 98                                    | 293                                    | 6.7        | 1658        |
| 22                                    | 22           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 160                                   | 355                                    | 6.8        | 1659        |
| 20                                    | 20           | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 610                                   | 1,350                                  | 7.4        | 1660        |
| 71                                    | 59           | 12                | ---                                      | 16                              | 8/74                  | 400                      | 12                               | 160                                   | ---                                    | 7.0        | 1661        |
| 60                                    | 35           | 8                 | 35;54                                    | 57                              | 1976                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1662        |
| 57                                    | 53           | 8                 | 46                                       | 23                              | 6/71                  | 40                       | 4.4                              | ---                                   | ---                                    | ---        | 1663        |
| 41                                    | 41           | 8                 | 17;36                                    | 9                               | 9/76                  | 17                       | .8                               | ---                                   | ---                                    | ---        | 1664        |
| 45                                    | 27           | 8                 | 16;28                                    | 4                               | 5/75                  | 2                        | .05                              | ---                                   | ---                                    | ---        | 1665        |
| 75                                    | 32           | 8                 | 26;50                                    | 6                               | 9/76                  | 22                       | .4                               | 130                                   | 320                                    | ---        | 1666        |
| 30                                    | 29           | 8                 | 12                                       | 8                               | 9/77                  | 10                       | .5                               | ---                                   | ---                                    | ---        | 1667        |
| 55                                    | 52           | 8                 | 47                                       | 25                              | 6/77                  | 30                       | 6                                | ---                                   | ---                                    | ---        | 1668        |
| 50                                    | 43           | 8                 | 31;41                                    | F                               | 5/77                  | 28                       | .9                               | ---                                   | ---                                    | ---        | 1669        |
| 64                                    | 64           | 6                 | 59                                       | F                               | 8/66                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1670        |
| 159                                   | 159          | 8                 | 20;35;141                                | 40                              | 3/67                  | 5                        | .04                              | ---                                   | ---                                    | ---        | 1671        |
| 50                                    | 24           | 8                 | 16;40                                    | 6                               | 5/72                  | 20                       | .4                               | ---                                   | ---                                    | ---        | 1672        |
| 70                                    | 53           | 8                 | 21;49                                    | 17                              | 2/69                  | 8                        | ---                              | ---                                   | ---                                    | ---        | 1673        |
| 72                                    | 72           | 8                 | 20;62                                    | F                               | 5/69                  | 10                       | ---                              | ---                                   | ---                                    | ---        | 1674        |
| 103                                   | 53           | 8                 | 36;84                                    | 15                              | 4/69                  | 5                        | ---                              | ---                                   | ---                                    | ---        | 1675        |
| 50                                    | ---          | ---               | 11;27                                    | 4                               | 2/69                  | 1                        | ---                              | ---                                   | ---                                    | ---        | 1676        |
| 52                                    | 45           | 12                | 40                                       | 29                              | 5/73                  | 60                       | 10                               | ---                                   | ---                                    | ---        | 1677        |
| 98                                    | ---          | ---               | ---                                      | ---                             | ---                   | ---                      | ---                              | 160                                   | 324                                    | 7.7        | 1678        |
| 82                                    | 78           | 8                 | 48;55;73                                 | +4                              | 4/61                  | 100                      | ---                              | ---                                   | ---                                    | ---        | 1679        |
| 405                                   | ---          | 8                 | ---                                      | 12                              | 2/68                  | ---                      | 12                               | ---                                   | ---                                    | ---        | 1680        |
| 337                                   | 260          | 6                 | 42;204;241                               | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1681        |
| 140                                   | 40           | 10                | 10;30                                    | 0                               | 12/67                 | 290                      | 26                               | ---                                   | ---                                    | ---        | 1682        |
| 63                                    | 60           | 2                 | 60                                       | 43                              | 4/77                  | ---                      | ---                              | 600                                   | 5,110                                  | 6.3        | 1683        |
| 185                                   | 50           | 6                 | ---                                      | 73                              | 5/77                  | ---                      | ---                              | 2,500                                 | 25,800                                 | 6.0        | 1684        |
| 150                                   | 43           | 6                 | ---                                      | 21                              | 4/77                  | 2                        | ---                              | 550                                   | 9,870                                  | 7.1        | 1685        |
| 60                                    | 55           | 2                 | 55                                       | 5                               | 4/77                  | ---                      | ---                              | 200                                   | 2,090                                  | 6.6        | 1686        |
| 55                                    | 50           | 2                 | 48                                       | 8                               | 5/77                  | ---                      | ---                              | 120                                   | 2,110                                  | 6.7        | 1687        |
| 26                                    | 26           | 48                | ---                                      | 5                               | ---                   | ---                      | ---                              | 120                                   | 941                                    | 6.7        | 1688        |
| 28                                    | 28           | 48                | ---                                      | 24                              | ---                   | ---                      | ---                              | 98                                    | 613                                    | 6.7        | 1689        |
| 25                                    | 25           | 8                 | 15                                       | 10                              | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1690        |
| 25                                    | 25           | 36                | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | 8.1        | 1691        |
| 47                                    | 24           | 8                 | ---                                      | 20                              | ---                   | .1                       | ---                              | ---                                   | ---                                    | ---        | 1692        |
| 36                                    | 36           | 8                 | ---                                      | 15                              | ---                   | 10                       | ---                              | 100                                   | 260                                    | ---        | 1693        |
| 220                                   | 220          | 6                 | ---                                      | 20                              | 7/76                  | 5                        | .1                               | 110                                   | 300                                    | ---        | 1694        |
| 80                                    | 15           | 8                 | ---                                      | F                               | ---                   | 5                        | ---                              | 118                                   | ---                                    | 7.9        | 1695        |
| 52                                    | 52           | 8                 | ---                                      | 35                              | 7/79                  | 20                       | ---                              | 180                                   | 380                                    | ---        | 1696        |
| 41                                    | 41           | 6                 | 38                                       | 10                              | 9/70                  | 3                        | .12                              | ---                                   | ---                                    | ---        | 1697        |
| 50                                    | 40           | 8                 | 31                                       | F                               | 9/73                  | 15                       | ---                              | ---                                   | ---                                    | ---        | 1698        |
| 51                                    | 41           | 8                 | 30                                       | 30                              | ---                   | 490                      | 22                               | 200                                   | ---                                    | 7.7        | 1699        |
| 22                                    | 22           | 36                | ---                                      | ---                             | ---                   | ---                      | 1.                               | 92                                    | ---                                    | 7.3        | 1700        |
| 26                                    | 26           | 48                | ---                                      | ---                             | ---                   | ---                      | ---                              | 400                                   | ---                                    | 7.0        | 1701        |
| 27                                    | 27           | 36                | ---                                      | ---                             | ---                   | ---                      | ---                              | 260                                   | ---                                    | 7.7        | 1702        |
| 25                                    | 25           | 48                | ---                                      | ---                             | ---                   | ---                      | ---                              | 110                                   | ---                                    | 7.5        | 1703        |
| 22                                    | 22           | 36                | ---                                      | ---                             | ---                   | ---                      | ---                              | 150                                   | ---                                    | 7.3        | 1704        |
| 25                                    | 25           | 6                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | 8.2        | 1705        |
| 26                                    | 26           | 36                | ---                                      | ---                             | ---                   | ---                      | ---                              | 160                                   | ---                                    | 7.7        | 1706        |
| 80                                    | 60           | 6                 | 75                                       | 20                              | 6/76                  | 4                        | .08                              | ---                                   | ---                                    | ---        | 1707        |
| 30                                    | 30           | 8                 | ---                                      | 5                               | 11/57                 | 155                      | 13                               | 125                                   | 320                                    | 7.5        | 1708        |
| 120                                   | 120          | 8                 | 112                                      | 40                              | 9/74                  | 17                       | .7                               | ---                                   | ---                                    | ---        | 1709        |
| 160                                   | 40           | 6                 | 84;96;130                                | 40                              | 2/75                  | ---                      | ---                              | ---                                   | ---                                    | ---        | 1710        |
| 120                                   | 109          | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | ---        | 1711        |
| 140                                   | 140          | 6                 | ---                                      | ---                             | ---                   | .1                       | ---                              | ---                                   | ---                                    | ---        | 1712        |
| 51                                    | ---          | 5                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | 8.5        | 1713        |
| 150                                   | ---          | ---               | 20                                       | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | 7.9        | 1714        |
| 122                                   | 105          | 6                 | 106                                      | 30                              | 10/77                 | 30                       | 10                               | ---                                   | ---                                    | ---        | 1715        |
| 147                                   | 147          | 6                 | ---                                      | 6/74                            | 12                    | .5                       | ---                              | ---                                   | ---                                    | ---        | 1716        |
| 42                                    | 42           | 8                 | ---                                      | ---                             | ---                   | ---                      | ---                              | ---                                   | ---                                    | 8.2        | 1717        |
| 114                                   | ---          | 6                 | 85;97;108                                | ---                             | ---                   | 20                       | ---                              | ---                                   | ---                                    | ---        | 1718        |
| 95                                    | 32           | 8                 | 30;50;85                                 | 34                              | 6/68                  | 2                        | ---                              | ---                                   | ---                                    | ---        | 1719        |
| 29                                    | 29           | 36                | ---                                      | ---                             | ---                   | ---                      | ---                              | 150                                   | ---                                    | 7.4        | 1720        |
| 14                                    | 14           | 36                | ---                                      | ---                             | ---                   | ---                      | ---                              | 210                                   | ---                                    | 6.6        | 1721        |
| 79                                    | 79           | 6                 | ---                                      | ---                             | ---                   | ---                      | ---                              | 120                                   | 320                                    | ---        | 1722        |
| 85                                    | 52           | 8                 | 18;72                                    | ---                             | ---                   | .1                       | ---                              | ---                                   | ---                                    | ---        | 1723        |

# **Ground-Water-Quality Data in Pennsylvania— A Compilation of Computerized [Electronic] Databases, 1979-2004**

By Dennis J. Low and Douglas C. Chichester

In cooperation with the Pennsylvania Department of Environmental Protection

Data Series 150

**U.S. Department of the Interior  
U.S. Geological Survey**

**U.S. Department of the Interior**  
Gale A. Norton, Secretary

**U.S. Geological Survey**  
P. Patrick Leahy, Acting Director

U.S. Geological Survey, Reston, Virginia: 2006

For sale by U.S. Geological Survey, Information Services  
Box 25286, Denver Federal Center  
Denver, CO 80225

For more information about the USGS and its products:  
Telephone: 1-888-ASK-USGS  
World Wide Web: <http://www.usgs.gov/>

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

*Suggested citation: Low, D.J., and Chichester, D.C., 2006, Ground-water-quality data in Pennsylvania—A compilation of computerized [electronic] databases, 1979-2004: U.S. Geological Survey Data Series 150, 22 p.*

# Contents

|                                                                                             |    |
|---------------------------------------------------------------------------------------------|----|
| Abstract.....                                                                               | 1  |
| Introduction .....                                                                          | 1  |
| Purpose and Scope.....                                                                      | 2  |
| Data-Compilation Methods.....                                                               | 2  |
| Data Sources .....                                                                          | 5  |
| Mandatory Latitude and Longitude in Data Files .....                                        | 8  |
| Assigning a Geolithology to Wells .....                                                     | 8  |
| Clean-up of Data Records and Bulk Processing .....                                          | 8  |
| Categories of Analytes .....                                                                | 8  |
| Analyte Group Abbreviations and Descriptions.....                                           | 9  |
| Formats, Naming Conventions, and Abbreviations Used in Data Files .....                     | 10 |
| Maps and Tables Summarizing the Ground-Water-Quality Data .....                             | 10 |
| Statewide Summary Map.....                                                                  | 10 |
| Summary Maps for 35 Watersheds .....                                                        | 10 |
| Summary Maps for Nitrate Nitrogen Concentrations in Ground Water for 35 Watersheds .....    | 10 |
| Summary Tables by Source Agency .....                                                       | 10 |
| Summary .....                                                                               | 15 |
| Acknowledgments .....                                                                       | 15 |
| Selected References.....                                                                    | 15 |
| Appendix—Files of Comments, Data, and Map Images by Source.....                             | 20 |
| Borough of Carroll Valley.....                                                              | 20 |
| Chester County Health Department .....                                                      | 20 |
| Pennsylvania Department of Environmental Protection Ambient and Fixed Station Network ..... | 20 |
| Montgomery County Health Department.....                                                    | 20 |
| Pennsylvania Drinking Water Information System.....                                         | 21 |
| Pennsylvania Department of Agriculture .....                                                | 21 |
| Susquehanna River Basin Commission.....                                                     | 21 |
| U.S. Geological Survey—Pennsylvania Water Science Center .....                              | 21 |
| Pennsylvania Geology .....                                                                  | 21 |
| Pennsylvania Well Locations.....                                                            | 22 |
| Pennsylvania Watersheds .....                                                               | 22 |
| Pennsylvania Watersheds and Nitrate Ranges.....                                             | 22 |
| Pennsylvania Watersheds 17 and 18 Geology and Nitrate Ranges.....                           | 22 |

## Figures

|                                                                                                                                                                                              |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1. The 67 counties in Pennsylvania and boundaries of the 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management .....   | 3  |
| 2. Dominant aquifer and boundaries of the 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management .....                  | 4  |
| 3. Glacial outwash or "ice" aquifers and boundaries of the 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management ..... | 6  |
| 4. Well locations with ground-water-quality data compiled from eight source agencies representing the period 1979-2004 for Pennsylvania .....                                                | 11 |
| 5. Well locations of water-quality data compiled from two source agencies for Watershed Number 35, Lake Erie/French & Oil Creek, northwestern Pennsylvania .....                             | 12 |
| 6. Ranges of concentration for nitrate nitrogen in ground water for Watershed Number 24, southcentral Pennsylvania .....                                                                     | 13 |

## Tables

|                                                                                                                                          |    |
|------------------------------------------------------------------------------------------------------------------------------------------|----|
| 1. The 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management ..... | 2  |
| 2. The 13 dominant aquifer and rock-type categories used for this data compilation with abbreviations .....                              | 5  |
| 3. Data sources and reason(s) for data collection .....                                                                                  | 7  |
| 4. Summary table of Susquehanna River Basin Commission ground-water-quality studies by major river basins in Pennsylvania .....          | 14 |

# Conversion Factors, Datums, and Abbreviations

## Inch/Pound to SI

| Multiply                       | By             | To obtain                           |
|--------------------------------|----------------|-------------------------------------|
| inch (in.)                     | 2.54           | centimeter (cm)                     |
| foot (ft)                      | 0.3048         | meter (m)                           |
| mile (mi)                      | 1.609          | kilometer (km)                      |
| <b>Area</b>                    |                |                                     |
| square mile (mi <sup>2</sup> ) | 2.590          | square kilometer (km <sup>2</sup> ) |
| <b>Flow rate</b>               |                |                                     |
| gallon per day (gal/d)         | 0.003785       | cubic meter per day                 |
| <b>Radioactivity</b>           |                |                                     |
| picocurie per liter (pCi/L)    | 0.037          | becquerel per liter                 |
| <b>Temperature</b>             |                |                                     |
| degree Fahrenheit (°F)         | °C=5/9 (°F-32) | degree Celsius                      |

Horizontal coordinate information is referenced to either the North American Datum (NAD 1927) or the North American Datum of 1983 (NAD 83).

## Water-Quality Units

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (µg/L). Milligrams per liter is a unit expressing the concentration of chemical constituents in solution as mass (milligrams) of solute per unit volume (liter) of water. One-thousand micrograms per liter is equivalent to 1 milligram per liter. For concentrations less than 7,000 mg/L, the numerical value is the same as for concentrations in parts per million. Bacterial concentrations are reported in units of colonies per 100 milliliters (col/100 mL). Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25°C). Turbidity is reported in nephelometric turbidity units (NTU).

## Radioactivity Units

A commonly used unit of measure for radioactivity is the picocurie. One Curie is the activity of one gram of radium-226, which is equal to  $3.7 \times 10^{10}$  atomic disintegrations per second; a picocurie is  $10^{-12}$  Curies, which is about equal to 2.2 atomic disintegrations per minute. Activity refers to the decay of a radioactive substance, which is measured by the number of particles emitted by a radionuclide per unit of time. The rate of decay is proportional to the number of atoms of a radioactive substance present, and inversely proportional to its half life, which is the time necessary for the substance to lose half its radioactivity. Activity is defined as being equal to  $n \times l$ , where  $n$  is the number of atoms of a radionuclide and  $l$  is the decay constant. The decay constant,  $l$ , is equal to the natural logarithm of 2 divided by the half-life of the radionuclide.



# Ground-Water-Quality Data in Pennsylvania—A Compilation of Computerized [Electronic] Databases, 1979-2004

By Dennis J. Low and Douglas C. Chichester

## Abstract

This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP), provides a compilation of ground-water-quality data for a 25-year period (January 1, 1979, through August 11, 2004) based on water samples from wells. The data are from eight source agencies—Borough of Carroll Valley, Chester County Health Department, Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network, Montgomery County Health Department, Pennsylvania Drinking Water Information System, Pennsylvania Department of Agriculture, Susquehanna River Basin Commission, and the U.S. Geological Survey. The ground-water-quality data from the different source agencies varied in type and number of analyses; however, the analyses are represented by 12 major analyte groups: biological (bacteria and viruses), fungicides, herbicides, insecticides, major ions, minor ions (including trace elements), nutrients (dominantly nitrate and nitrite as nitrogen), pesticides, radiochemicals (dominantly radon or radium), volatile organic compounds, wastewater compounds, and water characteristics (dominantly field pH, field specific conductance, and hardness).

A summary map shows the areal distribution of wells with ground-water-quality data statewide and by major watersheds and source agency. Maps of 35 watersheds within Pennsylvania are used to display the areal distribution of water-quality information. Additional maps emphasize the areal distribution with respect to 13 major geologic units in Pennsylvania and concentration ranges of nitrate (as nitrogen). Summary data tables by source agency provide information on the number of wells and samples collected for each of the 35 watersheds and analyte groups.

The number of wells sampled for ground-water-quality data varies considerably across Pennsylvania. Of the 8,012 wells sampled, the greatest concentration of wells are in the southeast (Berks, Bucks, Chester, Delaware, Lancaster, Montgomery, and Philadelphia Counties), in the vicinity of Pittsburgh, and in the northwest (Erie County). The number of wells sampled is relatively sparse in south-central (Adams, Cambria,

Cumberland, and Franklin Counties), central (Centre, Indiana, and Snyder Counties), and north-central (Bradford, Potter, and Tioga Counties) Pennsylvania. Little to no data are available for approximately one-third of the state. Water characteristics and nutrients were the most frequently sampled major analyte groups; approximately 21,000 samples were collected for each group. Major and minor ions were the next most-frequently sampled major analyte groups; approximately 17,000 and 12,000 samples were collected, respectively. For the remaining eight major analyte groups, the number of samples collected ranged from a low of 307 samples (wastewater compounds) to a high of approximately 3,000 samples (biological).

The number of samples that exceeded a maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL) by major analyte group also varied. Of the 2,988 samples in the biological analyte group, 53 percent had water that exceeded an MCL. Almost 2,500 samples were collected and analyzed for volatile organic compounds; 14 percent exceeded an MCL. Other major analyte groups that frequently exceeded MCLs or SMCLs included major ions (17,465 samples and a 33.9 percent exceedence), minor ions (11,905 samples and a 17.1 percent exceedence), and water characteristics (21,183 samples and a 20.3 percent exceedence). Samples collected and analyzed for fungicides, herbicides, insecticides, and pesticides (4,062 samples), radiochemicals (1,628 samples), wastewater-compounds (307 samples), and nutrients (20,822 samples) had the lowest exceedences of 0.3, 8.4, 0.0, and 8.8 percent, respectively.

## Introduction

Ground-water-quality data have been collected in Pennsylvania for more than 100 years. Unfortunately, most data are confined to paper copies, and it is prohibitively expensive to compile the data. However, with the advent of computers and increased storage capacities, most recent (since about 1980) data now reside in electronic databases making access less expensive. By compiling the electronic data from local, state, and Federal agencies, it may be possible to identify areas where (1) data are sparse and further studies of ground-water quality

## 2 Ground-Water-Quality in Pennsylvania

may be needed, and (2) ground water contains analytes of concern at elevated concentrations.

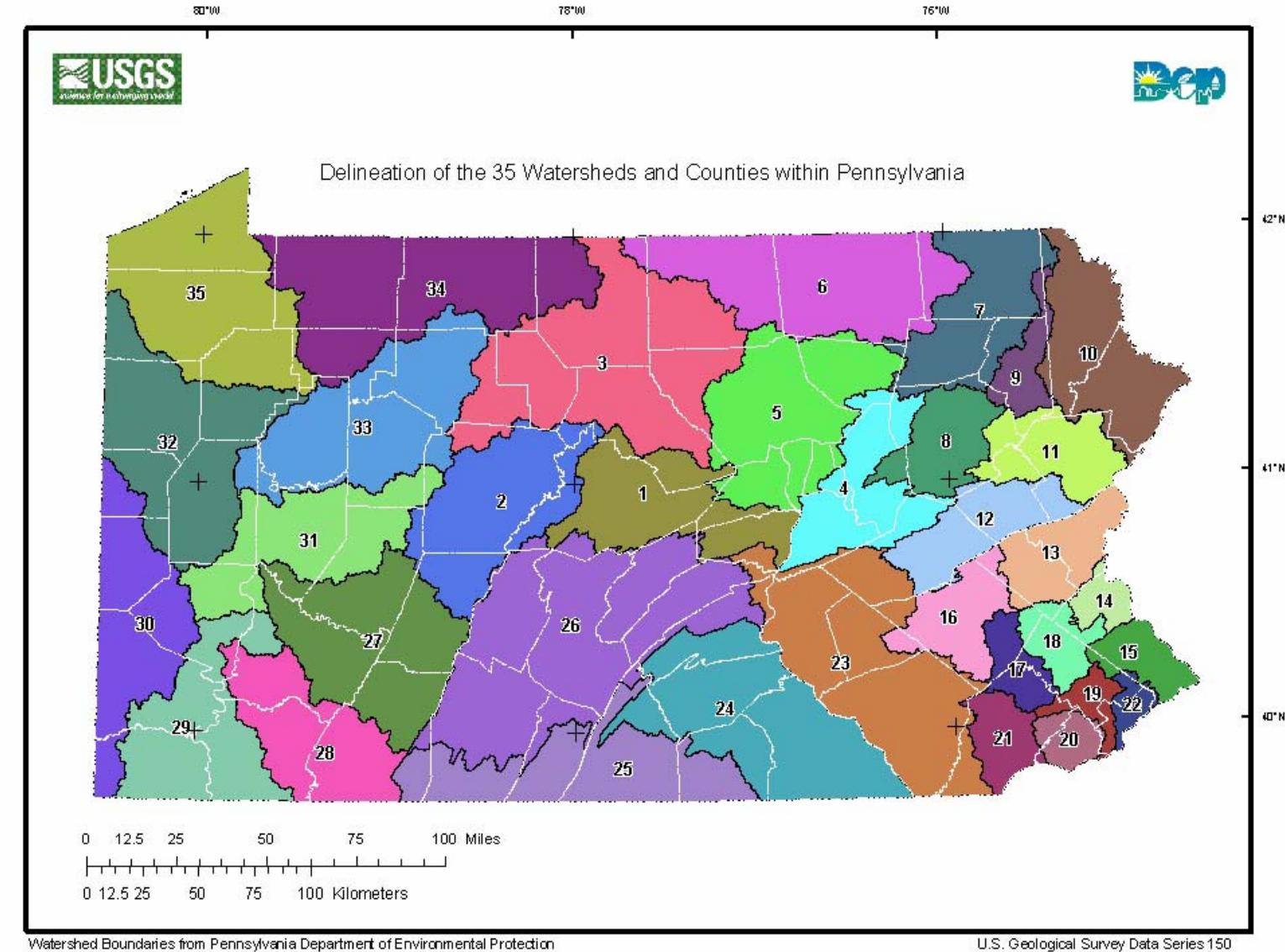
In 2001, the Pennsylvania Department of Environmental Protection (PADEP) re-oriented its resource management and planning strategy to a watershed, as opposed to political boundary, approach. With this watershed-focused approach, PADEP established 35 watershed teams (fig. 1 and table 1) to address 17 indicators of environmental improvement at a watershed scale.

Pennsylvania is a physiographically and geologically diverse state. Over 200 different geologic formations or members are recognized by the Pennsylvania Topographic and Geologic Survey (PAGS). For this study, geologic formations were consolidated into 13 major aquifer categories based on dominant rock type or geolithologies (table 2). Even with this simplified categorization, however, geology extends beyond watershed and political boundaries (fig 2).

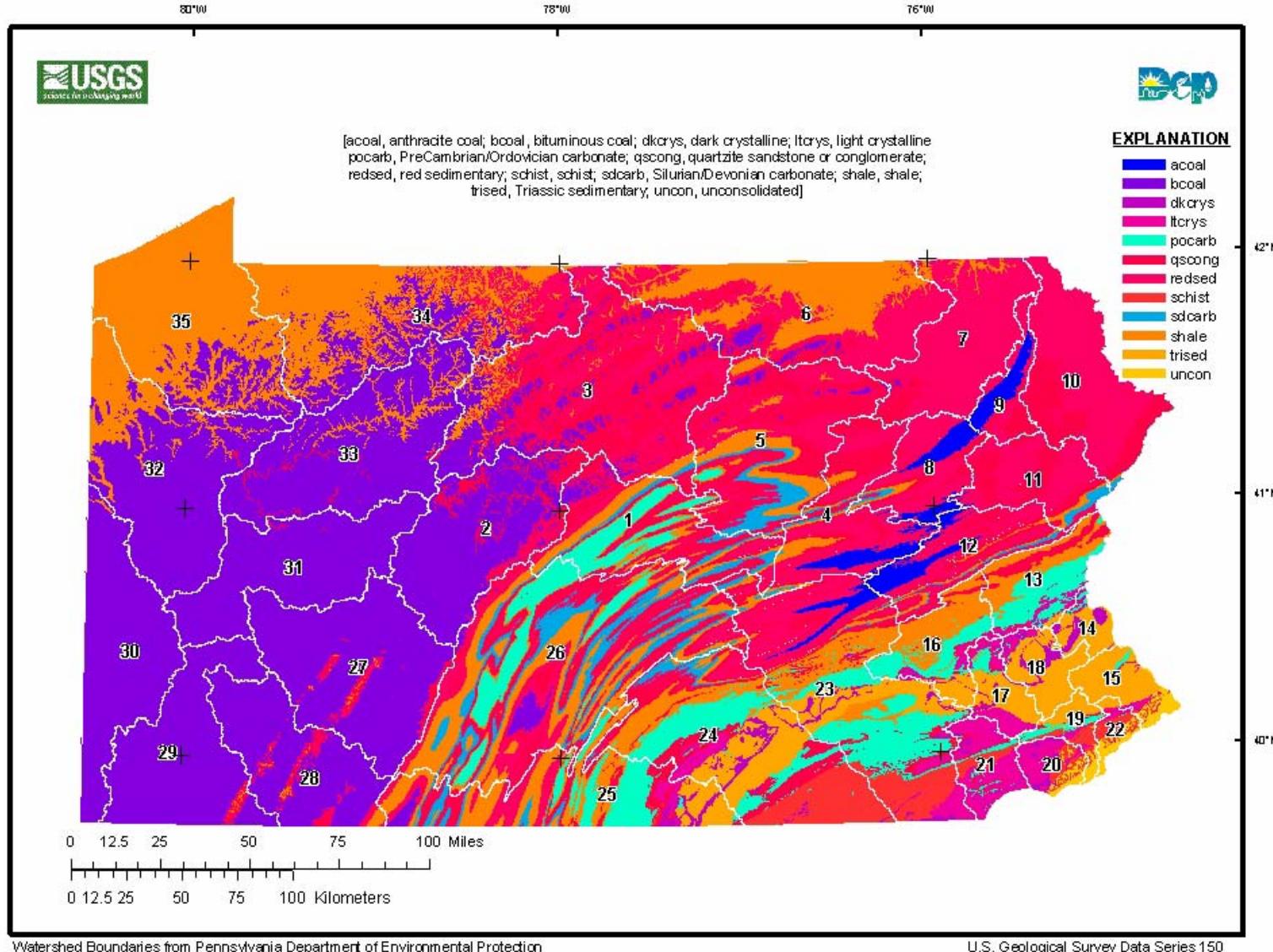
### Purpose and Scope

This report provides geologic, hydrologic, and geographic information regarding electronically available ground-water-quality data in the Commonwealth of Pennsylvania on watershed and statewide scales from January 1, 1979, through August 11, 2004. This report presents ground-water-quality data from eight local, state, or Federal source agencies in a standard electronic format. The geographic distribution of the data also are presented in a standard electronic format, most commonly by watershed. Ancillary information, including local well numbers, and major geolithologic units are included by well for each source agency. More detailed information, specifically the aquifer sampled and the original scientific or data report in which the water-quality data were released, is provided for individual wells sampled as part of various U.S. Geological Survey (USGS) studies or investigations.

Nitrate nitrogen was identified as an analyte of interest to better evaluate the potential of an electronic database for visually displaying ground-water-quality data. Nitrate nitrogen was selected because (1) it is widespread in Pennsylvania, (2) it is commonly analyzed for, and (3) it has a maximum contaminant level (MCL). As a result, maps were generated summarizing nitrate nitrogen concentrations by watershed and geology.


### Data-Compilation Methods

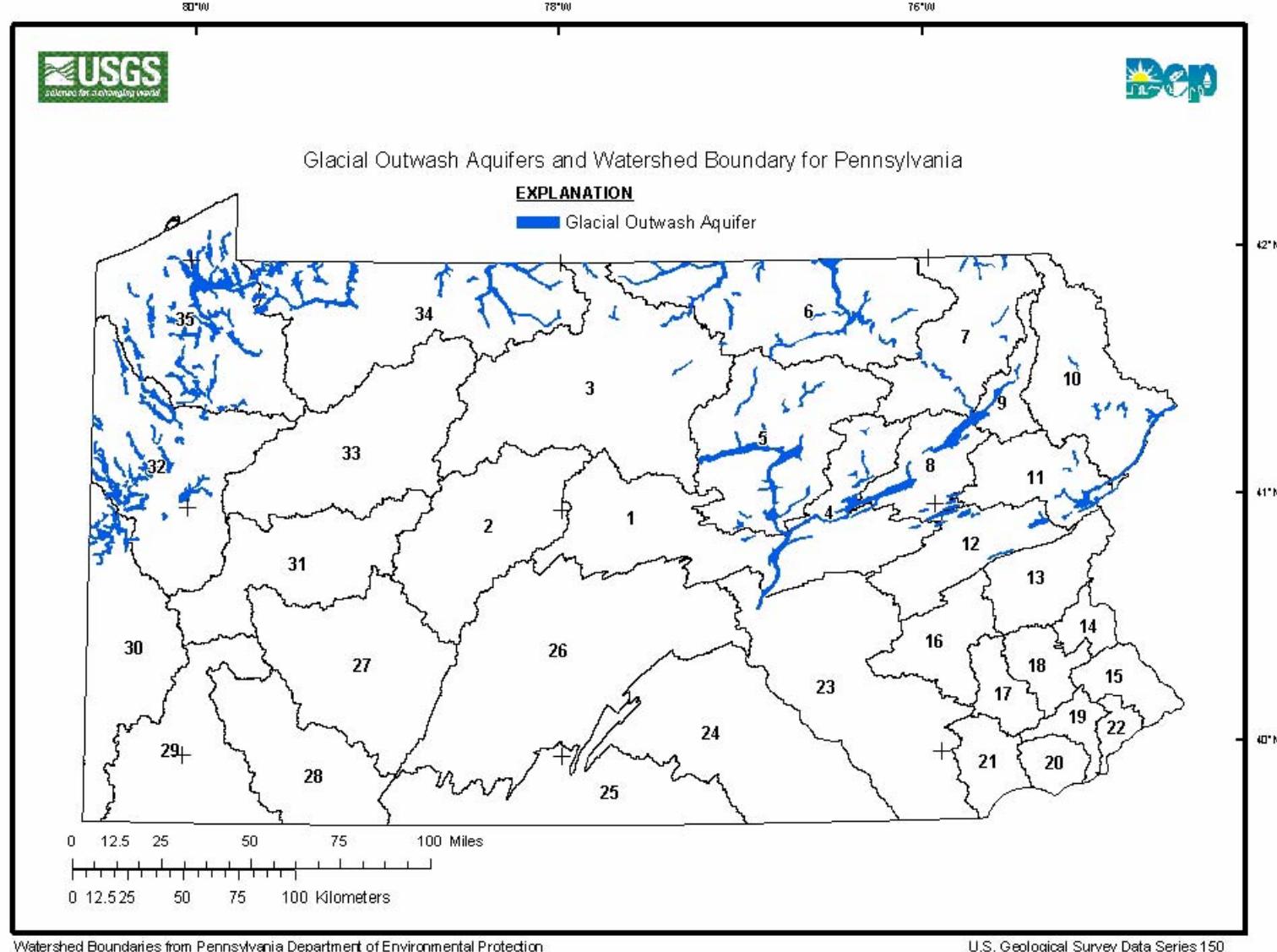
The compiled ground-water-quality data varies by (1) number of constituents, (2) frequency of sample collection, (3) source agency, and (4) geographic distribution. For example, the Borough of Carroll Valley collects water-quality data on bacteria and nutrients from selected wells within the Borough once every 10 years. The PADEP Ambient and Fixed Station Network (FSN) collects water-quality data (major ions, minor ions, trace elements, and nutrients) from across the state at individual wells. The frequency of this collection varies from one time only to multiple samples spread out over a period of years.


Although the USGS collects ground-water-quality samples across the state, the geographic distribution may vary from several wells at a field research site to major river basins. A specific contaminant of concern such as arsenic may lead to a geographic distribution relating to land use or other factors. Geographic distribution of data collection also may be restricted to specific geologic formations and members.

**Table 1.** The 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management.

| Watershed number | Watershed name                                                   |
|------------------|------------------------------------------------------------------|
| 1                | Central Penn                                                     |
| 2                | Upper West Branch                                                |
| 3                | Susquehannock/Genessee                                           |
| 4                | Lower North Branch Susquehanna                                   |
| 5                | Big Bend                                                         |
| 6                | Bradford/Tioga                                                   |
| 7                | Upper Susquehanna                                                |
| 8                | Wyoming Valley                                                   |
| 9                | Lackawanna                                                       |
| 10               | Upper Delaware                                                   |
| 11               | Brodhead/Toby/Tunk                                               |
| 12               | Upper Schuylkill/Middle Lehigh                                   |
| 13               | Lower Lehigh                                                     |
| 14               | Delaware River/Tohickon Creek                                    |
| 15               | Delaware Common Tributaries/Neshaminy                            |
| 16               | Middle Schuylkill                                                |
| 17               | French/Manatawny                                                 |
| 18               | Perkiomen Creek                                                  |
| 19               | Wissahickon Creek/Schuylkill River                               |
| 20               | Darby/Chester/Ridley/Crum Creeks                                 |
| 21               | Christina River/Elk/North East River/Brandywine Creek/White Clay |
| 22               | Pennypack/Tacony                                                 |
| 23               | Lower Susquehanna East                                           |
| 24               | Lower Susquehanna West                                           |
| 25               | Potomac                                                          |
| 26               | Juniata                                                          |
| 27               | Kiski-Conemaugh                                                  |
| 28               | Youghiogheny                                                     |
| 29               | Monongahela                                                      |
| 30               | Ohio                                                             |
| 31               | Allegheny                                                        |
| 32               | Moraine                                                          |
| 33               | Middle Allegheny                                                 |
| 34               | Upper Allegheny                                                  |
| 35               | Lake Erie/French & Oil Creek                                     |




**Figure 1.** The 67 counties in Pennsylvania and boundaries of the 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management (see table 1 for watershed names). (modified from Pennsylvania Department of Environmental Protection, 2005)



**Figure 2.** Dominant aquifer (excludes Glacial outwash or “ice”) and boundaries of the 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management.

**Table 2.** The 13 dominant aquifer and rock-type categories used for this data compilation with abbreviations.

| Dominant aquifer                      | Geo-<br>Abbreviation | Dominant rock type.                                                                                                                                                                       |
|---------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anthracite coal                       | acoal                | Anthracite coal bearing                                                                                                                                                                   |
| Bituminous coal                       | bcoal                | Bituminous coal bearing                                                                                                                                                                   |
| Dark crystalline                      | dkcrys               | Intrusive crystalline rocks that are dark in color (for example, diabase)                                                                                                                 |
| Light crystalline                     | ltcrys               | Intrusive crystalline rocks that are light in color (for example, granite)                                                                                                                |
| PreCambrian/Ordovician carbonates     | pocarb               | Precambrian- through Ordovician-age limestones and dolomites (with or without minor siliciclastics)                                                                                       |
| Quartzite, sandstone, or conglomerate | qscong               | Quartz rich, dominantly sedimentary rocks (for example, Tuscarora Formation)                                                                                                              |
| Red sedimentary                       | redsed               | Rocks that are dominantly red in color, excludes Triassic age sediments (for example, Catskill Formation)                                                                                 |
| Schist                                | schist               | A strongly foliated crystalline rock, formed by dynamic metamorphism, that have a dominant cleavage plane due to well developed parallelism of the minerals (for example, Marburg Schist) |
| Silurian/Devonian carbonates          | sdcarb               | Silurian- through Devonian-age limestones and dolomites (with or without minor siliciclastics)                                                                                            |
| Shale                                 | shale                | Dark, fine-grained, sedimentary rocks (for example, Hamilton Group)                                                                                                                       |
| Triassic sedimentary                  | trised               | Sedimentary rocks that are Triassic in age (for example, Gettysburg Formation)                                                                                                            |
| Unconsolidated                        | uncon                | Gravels, sands, and clays along the Delaware River (for example, Trenton Gravel)                                                                                                          |
| Glacial outwash                       | ice                  | Dominantly sand and gravel that were deposited by glaciers or associated fluvial action (for example, outwash)                                                                            |



**Figure 3.** Glacial outwash or "ice" aquifers and boundaries of the 35 watersheds used by Pennsylvania Department of Environmental Protection to subdivide Pennsylvania for resource management. (modified from Sevon and Braun, 2000)

## Data Sources

Despite the widespread use of computers and related software, electronic archival or storage of ground-water-quality data is limited when compared to what is available in hard or paper copy. Many local and county agencies as well as universities contacted for this study maintain paper copies as the final repository format for ground-water-quality data. As a result, the sources of the collected data in this study are dominated by state and Federal agencies. Information on the source of the ground-water-quality data collected for this study and reasons for data collection are presented in table 3.

About every 10 years, as part of their Act 537 Sewage Facilities Program (Carl Bower, Borough of Carroll Valley, oral commun., 2004), the Borough of Carroll Valley (CV) evaluates the effectiveness of the community's onlot septic systems. This is done by collecting water-quality samples from domestic wells for analysis of nitrate as nitrogen and bacteria (fecal and total coliform). Carroll Valley tries to obtain a representative sample from about 10 percent of the domestic wells.

Since 1984, the Chester County Health Department (CCDH) has required that recently drilled and completed domestic wells be sampled and tested for a fixed group of analytes. Although the number of analytes tested is extensive, only a small part of the data is stored electronically (water characteristics, major ions, and nutrients).

PADEP is charged with determining the ambient ground-water quality of water in Pennsylvania. PADEP addresses this effort through the FSN. The FSN consists of a large number of wells in selected basins generally in the eastern or western parts of Pennsylvania.

Since February 1, 1997, the Montgomery County Health Department (MCHD) has required that recently drilled and completed domestic wells be sampled and tested for a fixed group of analytes. These analytes include bacteria, water characteristics, major ions, minor ions, nutrients, trace elements, volatile organic compounds, and wastewater compounds.

PADEP also is responsible for assessments of ground-water quality for community and non-community water systems to determine whether ground water meets the primary drinking-water standards. One method utilized by PADEP to meet this directive is through the Pennsylvania Drinking Water Information System (PADWIS). Through PADWIS, raw (unfiltered) ground-water samples are collected from non-private wells and submitted to private water-quality labs for analysis. The resulting data are then reviewed and entered into PADWIS.

The Pennsylvania Department of Agriculture (PennAg) has long been interested in monitoring for pesticides in ground water. As a result, PennAg has sampled wells in agricultural areas to determine occurrence and distribution of pesticides in ground water; the most recent sampling was directed at an assessment of concentration trends.

The Susquehanna River Basin Commission (SRBC) issues permits for large supply wells (wells that yield more than 100,000 gallons per day). Water-quality data is a part of the data that SRBC collects.

The U.S. Geological Survey (USGS) has collected data through various water-resources and water-quality studies. Much of the water-quality data collected by the USGS was obtained from analysis of water samples from domestic wells.

**Table 3.** Data sources and reason(s) for data collection.

| Data Sources                                                                          | Source abbreviation | Reason for data collection                                           |
|---------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------|
| Borough of Carroll Valley                                                             | CV                  | Act 537 (sewage facilities program)                                  |
| Chester County Health Department                                                      | CCDH                | Permitting of domestic wells                                         |
| Pennsylvania Department of Environmental Protection—Ambient and Fixed Station Network | FSN                 | Monitoring of ground-water quality by ground-water basin             |
| Montgomery County Health Department                                                   | MCHD                | Permitting of domestic wells                                         |
| Pennsylvania Drinking Water Information System                                        | PADWIS              | Permitting of public and non-community wells (self-reporting system) |
| Pennsylvania Department of Agriculture                                                | PennAg              | Pesticides in ground water                                           |
| Susquehanna River Basin Commission                                                    | SRBC                | Permitting of public, industrial, and commercial water-supply wells  |
| U.S. Geological Survey                                                                | USGS                | Various water-resources and water-quality studies                    |

## 8 Ground-Water-Quality in Pennsylvania

### Mandatory Latitude and Longitude in Data Files

Water-quality data collected from January 1, 1979, through August 11, 2004, were obtained from the source government agencies in a variety of electronic formats but were dominated by Microsoft Excel or .dbf4 type files (.dbf4 or dBase files are simple sequential files of fixed-length records. .dbf file formats commonly are understood by Windows spreadsheets and organizers.). Although the number of analytes varied by source agency and the objective(s) of historical studies, each data set was required to have (1) a site-specific identifier such as a local name or well number, (2) a geographic reference, and (3) an analyte of interest. The CV data set lacked latitudes and longitudes but contained street addresses and parcel numbers. The parcel and address information was combined with an available Geographic Information System (GIS) parcel coverage to assign latitudes and longitudes. The wells comprising the MCHD data set contained a mixture of latitudes, longitudes, and street addresses. The GIS parcel coverage from Montgomery County was not available; therefore, wells lacking latitudes or longitudes were removed from the data set.

### Assigning a Geolithology to Wells

Utilizing previous work (Barker, 1984; Low and others, 2002), the geologic formations represented on PAGS Map 1 (Berg and others, 1980) were condensed into 13 geolithologic units (table 2), and a GIS coverage was developed. A second GIS coverage that contained attributes for the 35 watersheds was obtained from PADEP (fig. 1). On the basis of their geographic distribution, the wells in each data set were brought into the various GIS coverages and assigned a specific geolithologic unit and watershed.

### Clean-up of Data Records and Bulk Processing

The data sets from MCHD and CCDH included a large segment of text embedded with quantified results. A substantial effort at hand editing was involved to separate the text from the quantified results. In many of these cases, qualitative results were converted into numeric remark codes such as “sample exceeded the MCL for lead,” or “an analyte was sampled for but not detected.”

To efficiently combine the water-quality data sets and the GIS data sets, a series of SAS Institute Inc. (SAS) programs were developed. The SAS programs not only merged the water-quality and GIS data sets by site identifier but also were written to identify which samples contained an analyte that exceeded a U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) or secondary maximum contaminant level (SMCL). Because of the size of some files generated by the SAS program, the data sets were exported as .dbf4 files and hand edited for possible errors prior to conversion to Microsoft Excel format where additional editing took place. Additional GIS coverages were then developed from the Microsoft Excel

data files to show the distribution of wells by data source across the state and for individual major watershed.

### Categories of Analytes

The source-agency data files are subdivided into 12 analyte groups described below. These analyte groups represent subfiles or folders. Some source agency files, such as the CV, consisted of two subfiles—bacteria and nutrients. Others, like the USGS, consisted of 11 subfiles. Because some source agencies such as the USGS collect a large amount of pesticide data, it was necessary to further divide this analyte group into fungicides, herbicides, and insecticides.

## Analyte Group Abbreviations and Descriptions

- Micro—Bacteria, viruses, and other micro-organisms group. Total coliform and fecal coliform are the most common bacteria analyzed. Enteric and coliphage are the most common viruses analyzed. Clostridium and enterococci are some of the other micro-organisms analyzed.
  - Source agency—CV: Total and fecal bacteria; 124 samples.
  - Source agency—MCHD: Total, fecal, and *Escherichia coli* (*E. coli*) bacteria; 971 samples.
  - Source agency—PADWIS: Total, fecal, and *E. coli* bacteria; 360 samples.
  - Source agency—PennAg: Total and *E. coli* bacteria; 269 samples.
  - Source agency—USGS: 11 methods or organisms including viruses; 1,264 samples.
- Field—Water characteristics group. pH and specific conductance are the most common analytes.
  - Source agency—CCDH: Turbidity and pH; 833 samples.
  - Source agency—FSN: lab pH, lab alkalinity, and total hardness; 10,590 samples.
  - Source agency—MCHD: pH; 971 samples.
  - Source agency—SRBC: 4 parameters or analytes; 681 samples.
  - Source agency—USGS: 16 parameters or analytes; 8,132 samples
- Fungus—Fungicide group. Chlorothalonil and cis-1,3-Dichloropropane are the most common analytes.
  - Source agency—USGS: 10 analytes (including filtered and unfiltered); 1,196 samples.
- Herb—Herbicide group. Atrazine, Alachlor, and Cyanazine are among the most common analytes.
  - Source agency—USGS: 107 analytes (including filtered and unfiltered); 1,319 samples.
- Insec—Insecticide group. Carbaryl, Dieldrin, and Lindane are among the most common analytes.
  - Source agency—USGS: 87 analytes (including filtered and unfiltered); 1,280 samples.
- Major—Major cations and anions group. Chloride, calcium, and iron are among the most common analytes.
  - Source agency—FSN: 11 analytes; 10,591 samples.
  - Source agency—MCHD: 4 analytes; 971 samples.
  - Source agency—SRBC: 8 analytes; 724 samples.
  - Source agency—USGS: 31 analytes (including filtered and unfiltered); 5,175 samples.
- Minors—Minor cations, anions, and trace elements group. Aluminum, arsenic, and lead are common analytes.
  - Source agency—FSN: 8 analytes (trace elements); 7,675 samples.
  - Source agency—MCHD: 4 analytes (trace elements); 75 samples.
  - Source agency—PADWIS: 12 analytes; 36 samples.
  - Source agency—SRBC: 6 analytes (trace elements); 706 samples.
  - Source agency—USGS: 41 analytes (including filtered and unfiltered); 3,413 samples.
- Nuts—Nutrient group. Nitrate, nitrite, and total organic carbon are among the most common analytes.
  - Source agency—CV: Nitrate; 124 samples.
  - Source agency—CCDH: Nitrate; 849 samples.
  - Source agency—FSN: 5 analytes; 10,594 samples.
  - Source agency—MCHD: Nitrate; 971 samples.
  - Source agency—PennAg: Nitrate, nitrite; 269 samples.
  - Source agency—SRBC: Nitrate, orthophosphate, and total organic carbon; 707 samples.
  - Source agency—USGS: 27 analytes (including filtered and unfiltered); 7,315 samples.
- Pest—Pesticide group. Atrazine, Cyanazine, and Simazine are among the most common analytes.
  - Source agency—PADWIS: Carbofuran, and 2,4-D; 2 samples.
  - Source agency—PennAg: 10 analytes; 273 samples.
- Radio—Radiochemicals (radionuclides) group. Radon-222 and uranium are the most common analytes.
  - Source agency—PADWIS: 6 analytes; 19 samples.
  - Source agency—USGS: 16 analytes (including filtered and unfiltered); 1,609 samples.
- Voa—Volatile organic compounds group. Benzene, toluene, styrene, and xylenes are among the most common analytes.
  - Source agency—MCHD: 25 analytes; 971 samples.
  - Source agency—PADWIS: 27 analytes; 183 samples.
  - Source agency—USGS: 104 analytes (including filtered and unfiltered); 1,280 samples
- Waste—Wastewater and pharmaceuticals group. Methylene blue active substance and caffeine are among the most common analytes.
  - Source agency—MCHD: Trihalomethanes; 5 samples.
  - Source agency—USGS: 54 analytes (including filtered and unfiltered); 304 samples.

## Formats, Naming Conventions, and Abbreviations Used in Data Files

The data format is Microsoft Excel 2003 (Excel); supporting documents are in Portable Document Format (PDF). Each folder is identified by the source agency. For example, the folder titled MCHD contains files compiled from the Montgomery County Health Department. Within each folder are a series of files. Each file is organized by analyte group. For example, the Excel file titled MCHD.Voa.xls contains the water-quality data for volatile organic compounds collected by the Montgomery County Health Department. Also included in this file are ancillary data such as local well number, site identifier (site ID), latitude, longitude, and geolithologic unit. Information regarding an exceedence of a USEPA MCL or SMCL is presented in an adjacent column and cell. Analyte results for MCHD and CCDH also contain numeric qualifiers. Data files from the USGS also contain analyte remark codes such as less than, estimated, and missing, as well as information on the study for which the samples were collected. The USGS data files also contain a seven or eight length alphanumeric code that details a specific geologic formation or unit.

**MCHD.Comments.Micro.pdf** is a PDF file that provides supporting information on the water-quality measurements (in this case about bacteria and viruses), including analytes, definitions, and USEPA contaminant levels on samples collected by or for the Montgomery County Health Department.

USGS.CrossReferenceNumbers is an Excel table that presents the abbreviated author and report citation for the scientific or data report in which the data were originally published. This allows the interested reader a means to locate the study and determine the purpose for which the data were collected. It is an aid in locating the complete citation listed in the Selected References, which also lists the abbreviated report citation in bold. USGS.MicroReport is an Excel file that lists the abbreviated citations for bacteria and virus studies and includes local well numbers, site IDs, latitudes, longitudes, watersheds, geolithologic units, and geologic formations.

## Maps and Tables Summarizing the Ground Water-Quality Data

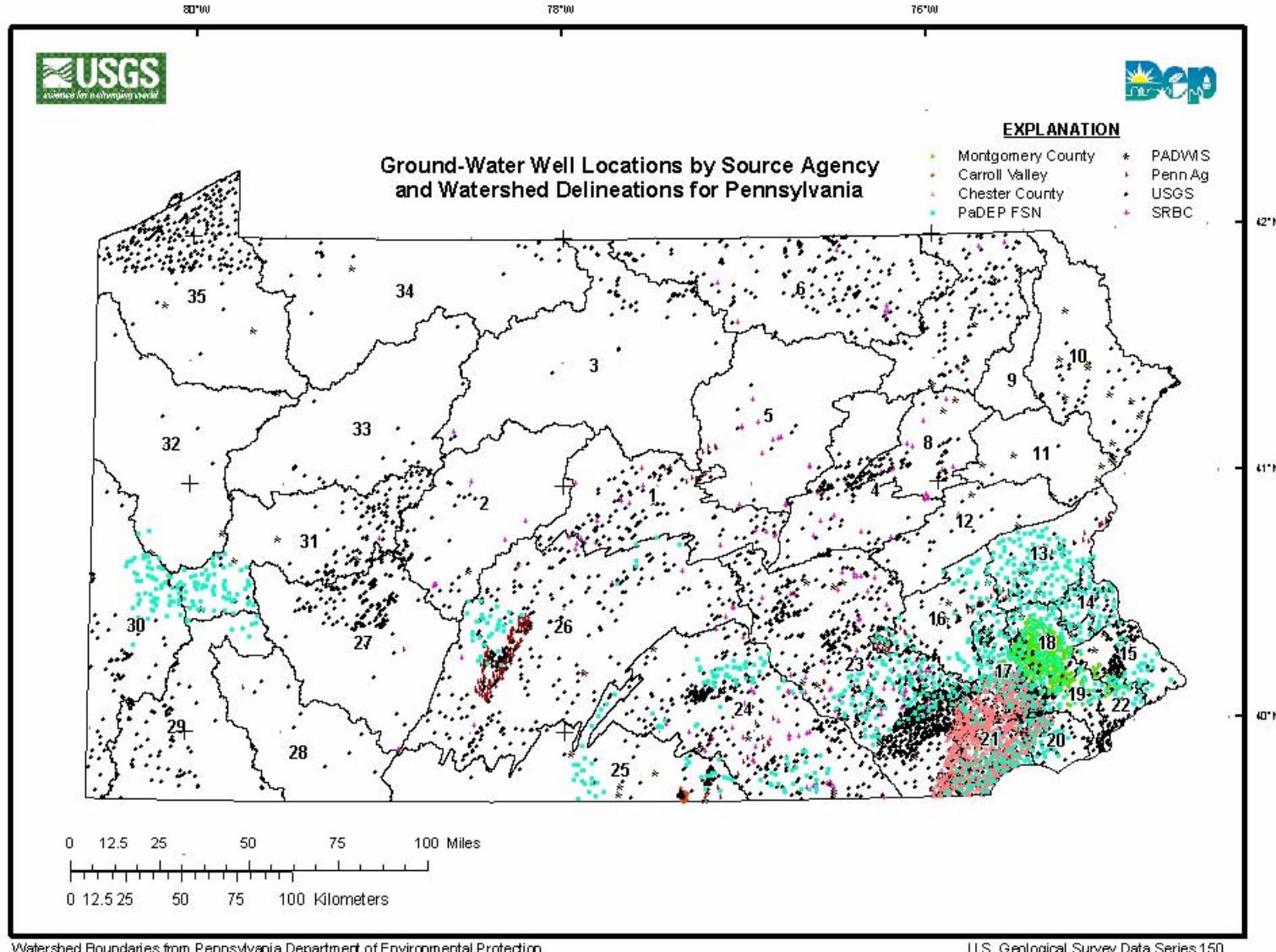
The maps generated for this study (accessed through hyperlinks in the Appendix) are PDF images. The 35 images titled Basin1\_Wells through Basin35\_Wells show the distribution of wells with available water-quality data by watershed and source agency. The 35 images titled Basin1\_QWNO3 through Basin35\_QWNO3 show the distribution of nitrate data (NO<sub>3</sub>) by watershed and source agency. The 12 images pre-fixed by "Statewide" show the distribution of wells with water-quality data by source agency.

Summary tables (accessed through hyperlinks in the Appendix) are included within each source-agency file. For example, SRBC.Summary.pdf (table 4) presents information on the number of (1) wells sampled by major river basin, (2) wells sampled by watershed, (3) samples collected by analyte group, and (4) samples that exceeded USEPA contaminant levels.

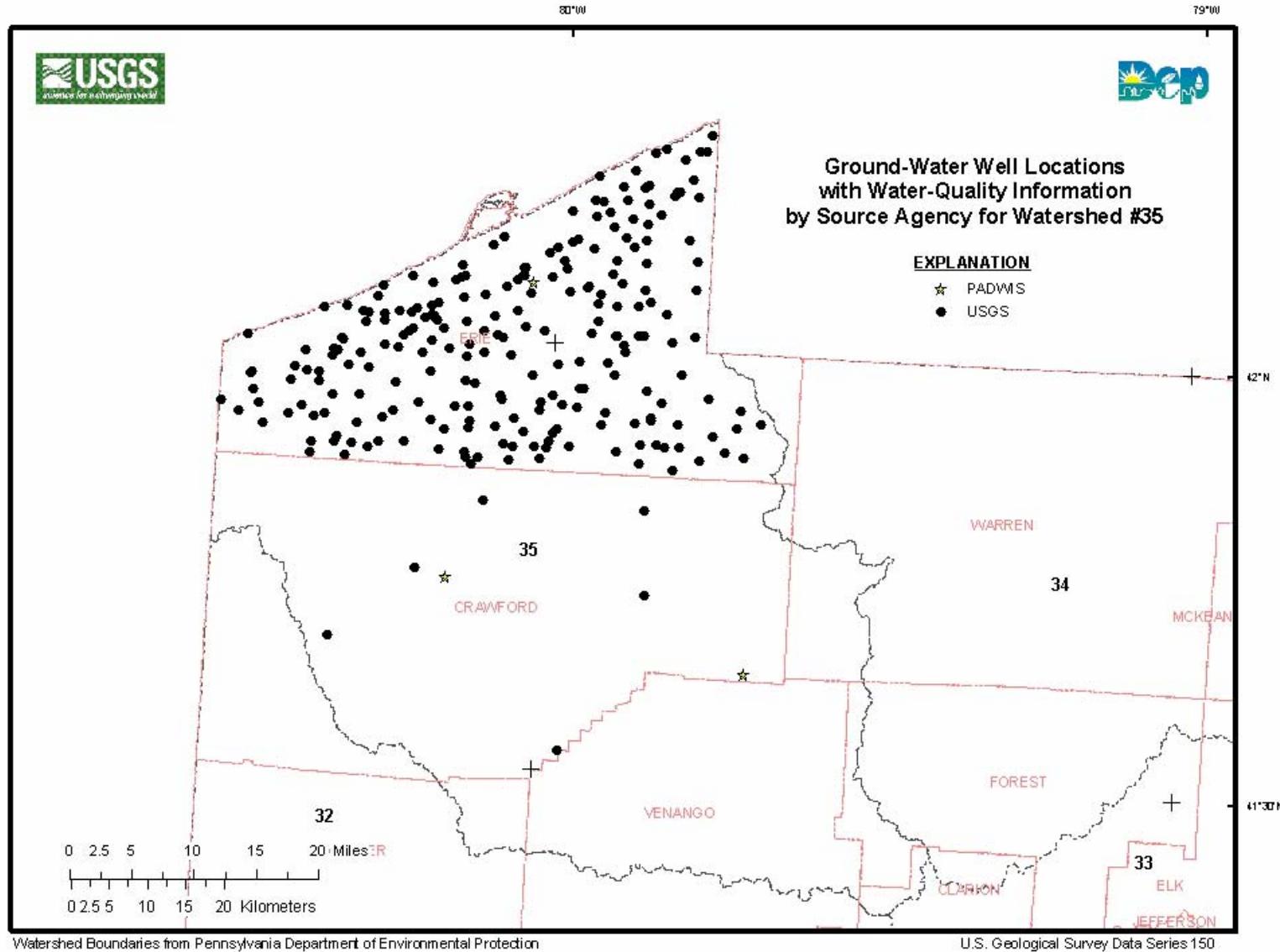
## Statewide Summary Map

Figure 4 shows the distribution of the 8,012 wells from the eight source agencies. The greatest concentration of wells with water-quality data are in watersheds 17, 18, 21, and 23 of southeastern Pennsylvania (Chester, Lancaster, and Montgomery Counties). The part of watershed 35 that has been extensively sampled is Erie County. About half of the watersheds in Pennsylvania have fewer than 100 wells with water-quality data; watershed 9 contains no ground-water-quality data.

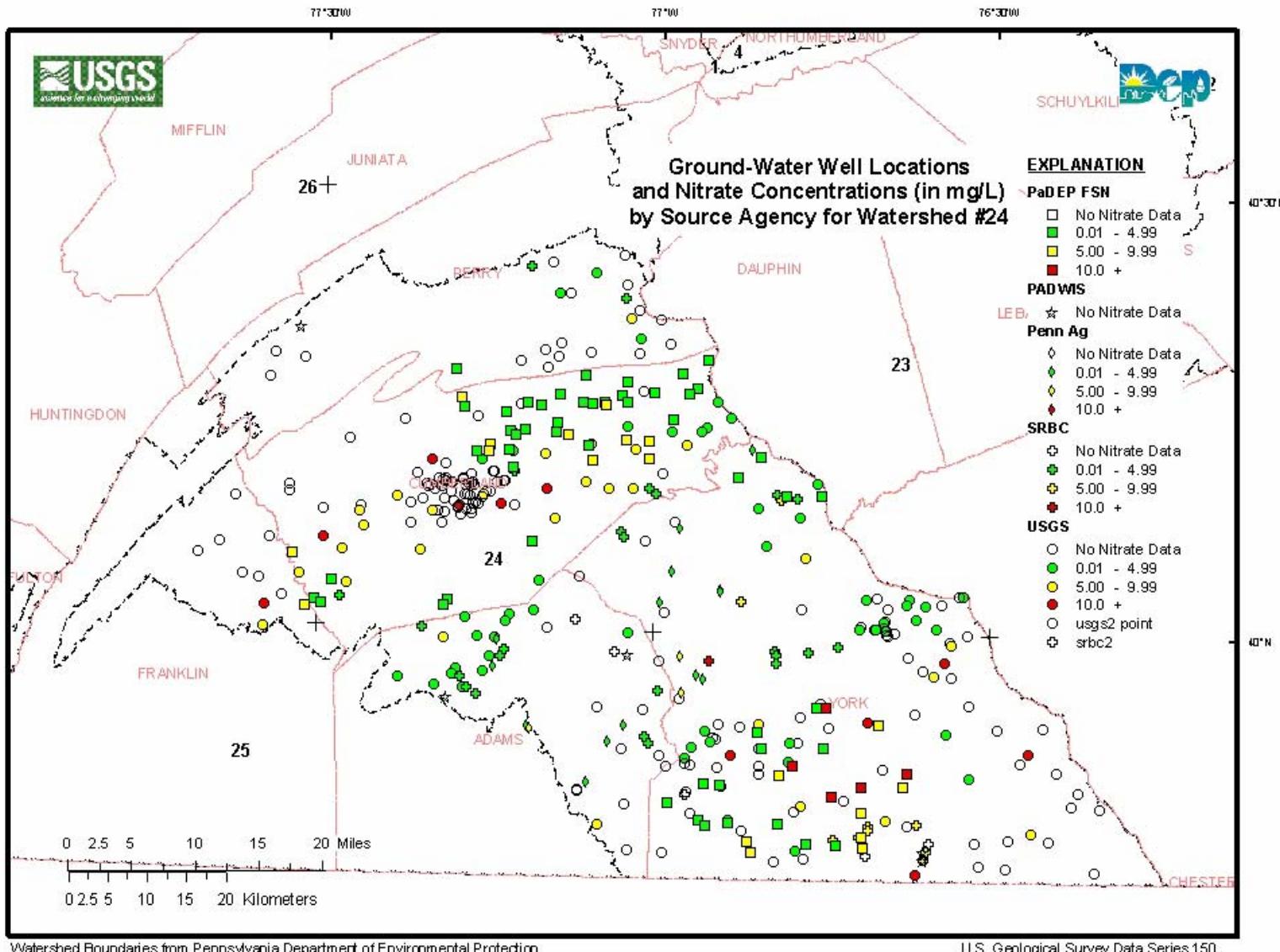
## Summary Maps for 35 Watersheds


Figure 5 shows the distribution by county and watershed from the PDF image Basin35\_Wells. Almost all 246 wells sampled for ground-water-quality data in watershed 35 were the result of USGS studies specifically related to Erie County. Similar images for all 35 watersheds can be viewed through the hyperlinks in the Appendix.

## Summary Maps for Nitrate Nitrogen Concentrations in Ground Water for 35 Watersheds


Figure 6 shows the distribution of 461 wells by county in watershed 24 (from the PDF image Basin24\_QWNO3). Of the 565 nutrient samples collected and analyzed, 31 samples (5.5 percent) exceeded the USEPA MCL of 10.0 mg/L for nitrate. Results were averaged for wells that were sampled more than once. About 50 percent of the wells visited and sampled are the result of USGS studies. Similar images for all 35 watersheds can be viewed through the hyperlinks in the Appendix.

## Summary Tables by Source Agency


Table 4 is a summary of the ground-water-quality data collected by the SRBC and contained within the various Excel data spreadsheet files listed for the SRBC in the Appendix. Similar summary files for the other source agencies also are available through hyperlinks in the Appendix. Each summary table presents information on the number of wells sampled, the number of samples collected, the number of exceedences for USEPA MCL and SMCL analytes. The summary data are organized by PADEP watershed and major analyte group.



**Figure 4.** Well locations with ground-water-quality data compiled from eight source agencies representing the period 1979-2004 for Pennsylvania.



**Figure 5.** Well locations of water-quality data compiled from two source agencies (Pennsylvania Drinking Water Information System and U.S. Geological Survey) for Watershed Number 35, Lake Erie/French & Oil Creek, northwestern Pennsylvania.



**Figure 6.** Ranges of concentration for nitrate nitrogen in ground water for Watershed Number 24, southcentral Pennsylvania.

## 14 Ground-Water-Quality in Pennsylvania

**Table 4.** Summary table of Susquehanna River Basin Commission (SRBC) ground-water-quality studies by major river basins in Pennsylvania.

[2/0, number of samples collected/number of samples that exceeded a U.S. Environmental Protection Agency Maximum or Secondary Maximum Contaminant Level]

| Pennsylvania<br>Department of<br>Environmental<br>Protection<br>watershed | Wells | Major ions | Minor and trace<br>elements |         | Nutrients |       | Water<br>characteristics<br>(field<br>measurements) |      |
|---------------------------------------------------------------------------|-------|------------|-----------------------------|---------|-----------|-------|-----------------------------------------------------|------|
| <b>Ohio and St. Lawrence River Basins</b>                                 |       |            |                             |         |           |       |                                                     |      |
| 31                                                                        | 1     | 2/ 0       | 2/ 0                        | 2/ 0    | 2/ 0      | 2/ 0  | 2/ 0                                                | 2/ 0 |
| <b>Delaware River Basin</b>                                               |       |            |                             |         |           |       |                                                     |      |
| 12                                                                        | 6     | 13/ 4      | 14/ 4                       | 13/ 0   | 13/ 0     | 13/ 8 |                                                     |      |
| <b>Lower Susquehanna River Basin</b>                                      |       |            |                             |         |           |       |                                                     |      |
| 23                                                                        | 123   | 289/ 73    | 278/ 27                     | 236/ 34 | 267/ 27   |       |                                                     |      |
| 24                                                                        | 61    | 147/ 14    | 145/ 22                     | 138/ 3  | 144/ 23   |       |                                                     |      |
| 26                                                                        | 18    | 40/ 3      | 39/ 6                       | 31/ 3   | 33/ 2     |       |                                                     |      |
| <b>Upper Susquehanna River Basin</b>                                      |       |            |                             |         |           |       |                                                     |      |
| 1                                                                         | 23    | 39/ 9      | 38/ 5                       | 36/ 0   | 37/ 1     |       |                                                     |      |
| 2                                                                         | 10    | 35/ 15     | 35/ 5                       | 28/ 0   | 33/ 7     |       |                                                     |      |
| 3                                                                         | 1     | 2/ 0       | 3/ 0                        | 2/ 0    | 2/ 0      |       |                                                     |      |
| 4                                                                         | 14    | 21/ 12     | 21/ 5                       | 21/ 0   | 21/ 7     |       |                                                     |      |
| 5                                                                         | 24    | 44/ 12     | 41/ 3                       | 41/ 0   | 43/ 10    |       |                                                     |      |
| 6                                                                         | 17    | 33/ 23     | 32/ 8                       | 28/ 0   | 31/ 0     |       |                                                     |      |
| 7                                                                         | 3     | 7/ 0       | 6/ 1                        | 7/ 0    | 6/ 1      |       |                                                     |      |
| 8                                                                         | 28    | 52/ 22     | 52/ 7                       | 49/ 1   | 49/ 17    |       |                                                     |      |

## Summary

This study, by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) Bureau of Watershed Management, provides detailed ground-water-quality data from January 1, 1979, to August 11, 2004, on 8,612 wells for 35 watersheds throughout Pennsylvania. Eight source agencies—Borough of Carroll Valley (CV), Chester County Health Department (CCDH), Pennsylvania Department of Environmental Protection-Ambient and Fixed Station Network (FSN), Montgomery County Health Department (MCHD), Pennsylvania Drinking Water Information System (PADWIS), Pennsylvania Department of Agriculture (PennAg), Susquehanna River Basin Commission (SRBC), and USGS provided the data in various electronic formats that were suitable for editing and compiling. The resulting ground-water-quality data were divided, by source agency, into 12 analyte groups—micro-organisms, major ions, minor ions and trace elements, nutrients, pesticides (USGS pesticide data were further subdivided into fungicides, herbicides, and insecticides), radiochemicals, volatile organic compounds, wastewater compounds, and water characteristics.

For each source agency, Microsoft Excel files and Portable Document Format files were created. The Excel files (for example, CV.Micro.xls) contain the edited ground-water-quality data, whereas the PDF files (for example, SRBC.Summary.pdf) contain a summary of the results by watershed and analyte group. As a result of the large number of independent studies conducted by the USGS, additional Excel files were created. These Excel files (for example, USGS.MicroReport.xls) contain an abbreviated reference to the original citation listed in Selected References. This allows the interested reader a means to locate the study and determine the purpose for which the ground-water-quality data were collected.

A series of PDF images were created to show the 35 watersheds within Pennsylvania, the 13 geolithologic units that were used to represent the complex geology of Pennsylvania, and the distribution of 8,612 wells with ground-water-quality data. An additional 35 images were created to show the distribution of the 8,612 wells by watershed, another 35 were images created to show the distribution and range of nitrate (as nitrogen) concentrations in the 35 watersheds.

## Acknowledgments

Joseph J. Lee, Jr. and Patrick Bowling of the Pennsylvania Department of Environmental Protection Bureau of Watershed Management provided technical assistance and review of the report along with Dennis W. Risser, Kim L. Otto, and Kevin J. Breen from the USGS.

## Selected References

Bolded abbreviations in parentheses at the end of a citation are used in USGS.MicroReport.xls and other similar named Excel files to identify where the water-quality data have been previously published and/or the basis for the collection of the sample.

Anderson, R.M., Beer, K.M., Buckwalter, T.F., Clark, M.E., McAuley, S.D., Sams III, J.I., and Williams, D.R., 2000, Water quality in the Allegheny and Monongahela River Basins: U.S. Geological Survey Circular 1202, 32 p. (**Circular 1202**)

Balmer, W.T., and Davis, D.K., 1996, Groundwater resources of Delaware County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 66, 67 p. (**WRR 66**)

Barker, J.L., 1984, Compilation of ground-water-quality data in Pennsylvania: U.S. Geological Survey Open-File Report 84-706, 102 p.

Becher, A.E., 1989, Geohydrology and water quality in the vicinity of the Gettysburg National Military Park and Eisenhower National Historic Site, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 89-4154, 44 p. (**WRIR 89-4154**)

Becher, A.E., 1991, Groundwater resources in and near the Anthracite basins of Schuylkill and adjacent counties, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 64, 59 p. (**WRR 64**)

Becher, A.E., 1996, Ground-water resources of Cambrian and Ordovician carbonate rocks in the Valley and Ridge Physiographic Province of Pennsylvania: U.S. Geological Survey Open-File Report 90-109, 134 p. (**OFR 90-109**)

Becher, A.E., and Taylor, L.E., 1981, Groundwater and geology of the Cumberland Valley, Cumberland County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 50, 95 p. (**WRR 50**)

Becher, A.E., and Taylor, L.E., 1982, Groundwater resources in the Cumberland and contiguous valleys of Franklin County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 53, 67 p. (**WRR 53**)

Berg, T.M., Edmunds, W.E., Geyer, A.R., Glover, A.D., Hoskins, D.M., MacLachlan, D.B., Root, S.I., Sevon, W.D., and Socolow, A.A., comps., 1980, Geologic map of Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Map 1, scale 1:250,000, 3 sheets.

Bird, P.H., 1998, Geohydrology and ground-water quality of Warwick Township, Bucks County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 97-4267, 37 p. (**WRIR 97-4267**)

Blickwedel, R.S., and Linn, J.H., 1987, Hydrogeology and ground-water quality at a land reclamation site, Neshaminy State Park, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 86-4164, 41 p. (**WRIR 86-4164**)

## 16 Ground-Water-Quality in Pennsylvania

Blickwedel, R.S., and Wood, C.R., 1989, Relation of ground-water quality to land use in the Philadelphia, Pennsylvania-Camden, New Jersey area: U.S. Geological Survey Water-Resources Investigations Report 88-4211, 58 p. (**WRIR 88-4211**)

Buchanan, J.W., 1983, Water Resources Data Pennsylvania Water Year 1982, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA 82-2, 244 p. (**PA 82-2**)

Buchanan, J.W., Loper, W.C., Schaffstall, W.P., and Hainly, R.A., 1984, Water Resources Data Pennsylvania Water Year 1983, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA 83-2, 283 p. (**PA 83-2**)

Buckwalter, T.F., Schreffler, C.L., and Gleichsner, R.E., 1996, Geohydrology and water quality of the unconsolidated deposits in Erie County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 95-4165, 105 p. (**WRIR 95-4165**)

Cecil, L., D., 1988, Geohydrology of the Furnace Creek Basin and vicinity, Berks, Lancaster, and Lebanon Counties, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 87-4218, 38 p. (**WRIR 87-4218**)

Coll, M.B., and Siwicki, R.W., 1997, Water Resources Data Pennsylvania Water Year 1996, vol. 3, Ohio River and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-96-3, 204 p. (**PA 96-3**)

Coll, M.B., and Siwicki, R.W., 1998, Water Resources Data Pennsylvania Water Year 1997, vol. 3, Ohio River and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-97-3, 339 p. (**PA 97-3**)

Coll, M.B., and Siwicki, R.W., 1999, Water Resources Data Pennsylvania Water Year 1998, vol. 3, Ohio River and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-98-3, 352 p. (**PA 98-3**)

Conger, R.W., 1997, Evaluation of selected wells in Pennsylvania's observation-well program as of 1993: U.S. Geological Survey Water-Resources Investigations Report 96-4319, 73 p. (**WRIR 96-4319**)

Davis, D.K., 1989, Groundwater resources of Pike County, Pennsylvania: Pennsylvania Topographic and Geologic Survey, 4<sup>th</sup> ser., Water Resource Report 65, 63 p. (**WRR 65**)

Durlin, R.R., and Schaffstall, W.P., 1992, Water Resources Data Pennsylvania Water Year 1991, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-91-2, 358 p. (**PA 91-2**)

Durlin, R.R., and Schaffstall, W.P., 1993, Water Resources Data Pennsylvania Water Year 1992, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-92-2, 342 p. (**PA 92-2**)

Durlin, R.R., and Schaffstall, W.P., 1994, Water Resources Data Pennsylvania Water Year 1993, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-93-2, 361 p. (**PA 93-2**)

Durlin, R.R., and Schaffstall, W.P., 1996, Water Resources Data Pennsylvania Water Year 1994, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-94-2, 418 p. (**PA 94-2**)

Durlin, R.R., and Schaffstall, W.P., 1997, Water Resources Data Pennsylvania Water Year 1995, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-95-2, 518 p. (**PA 95-2**)

Durlin, R.R., and Schaffstall, W.P., 1997, Water Resources Data Pennsylvania Water Year 1996, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-96-2, 310 p. (**PA 96-2**)

Durlin, R.R., and Schaffstall, W.P., 1998, Water Resources Data Pennsylvania Water Year 1997, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-97-2, 439 p. (**PA 97-2**)

Durlin, R.R., and Schaffstall, W.P., 1999, Water Resources Data Pennsylvania Water Year 1998, vol. 1, Delaware River Basin: U.S. Geological Survey Water-Data Report PA-98-1, 405 p. (**PA 98-1**)

Durlin, R.R., and Schaffstall, W.P., 1999, Water Resources Data Pennsylvania Water Year 1998, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-98-2, 456 p. (**PA 98-2**)

Durlin, R.R., and Schaffstall, W.P., 2000, Water Resources Data Pennsylvania Water Year 1999, vol. 1, Delaware River Basin: U.S. Geological Survey Water-Data Report PA-99-1, 571 p. (**PA 99-1**)

Durlin, R.R., and Schaffstall, W.P., 2000, Water Resources Data Pennsylvania Water Year 1999, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-99-2, 444 p. (**PA 99-2**)

Durlin, R.R., and Schaffstall, W.P., 2001, Water Resources Data Pennsylvania Water Year 2000, vol. 1, Delaware River Basin: U.S. Geological Survey Water-Data Report PA-00-1, 652 p. (**PA 00-1**)

Durlin, R.R., and Schaffstall, W.P., 2001, Water Resources Data Pennsylvania Water Year 2000, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-00-2, 458 p. (**PA 00-2**)

Durlin, R.R., and Schaffstall, W.P., 2002, Water Resources Data Pennsylvania Water Year 2001, vol. 1, Delaware River Basin: U.S. Geological Survey Water-Data Report PA-01-1, 529 p. (**PA 01-1**)

Durlin, R.R., and Schaffstall, W.P., 2002, Water Resources Data Pennsylvania Water Year 2001, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-01-2, 441 p. (**PA 01-2**)

Durlin, R.R., and Schaffstall, W.P., 2003, Water Resources Data Pennsylvania Water Year 2002, vol. 1, Delaware River Basin: U.S. Geological Survey Water-Data Report PA-02-1, 527 p. (**PA 02-1**)

Durlin, R.R., and Schaffstall, W.P., 2003, Water Resources Data Pennsylvania Water Year 2002, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-02-2, 536 p. (**PA 02-2**)

Durlin, R.R., and Schaffstall, W.P., 2004, Water Resources Data Pennsylvania Water Year 2003, vol. 1, Delaware River

Basin: U.S. Geological Survey Water-Data Report PA-03-1, 637 p. (**PA 03-1**)

Durlin, R.R., and Schaffstall, W.P., 2004, Water Resources Data Pennsylvania Water Year 2003, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-03-2, 563 p. (**PA 03-2**)

Fischer, J.M., Riva-Murray, K., Hickman, R.E., Chichester, D.C., Brightbill, R.A., Romanok, K.M., and Bilger, M.D., 2004, Water quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1998-2001: U.S. Geological Survey Circular 1227, 38 p. (**Circular 1227**)

Galeone, D.G., and Low, D.J., 2003, Surface-water and ground-water quality in the Powell Creek and Armstrong Creek Watersheds, Dauphin County, Pennsylvania, July-September 2001: U.S. Geological Survey Fact Sheet FS-052-03, 6 p. (**FS 052-03**)

Hippe, D.J., Witt III, E.C., and Giovanitti, R.M., 1994, Hydrogeology, herbicides and nutrients in ground water and springs, and relation of water quality to land use and agricultural practices near Carlisle, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 93-4172, 66 p. (**WRIR 93-4172**)

Langland, M.J., 1996, Quality of ground water at selected sites in the Upper Mahoning Creek Basin, Pennsylvania: U.S. Geological Survey Fact Sheet 176-96, 4 p. (**FS 176-96**)

Lescinsky, J.B., Coll, M.B., and Siwicki, R.W., 1985, Water Resources Data Pennsylvania Water Year 1984, vol. 3, Ohio River and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-84-3, 207 p. (**PA 84-3**)

Lescinsky, J.B., Coll, M.B., and Siwicki, R.W., 1986, Water Resources Data Pennsylvania Water Year 1985, vol. 3, Ohio River and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-85-3, 191 p. (**PA 85-3**)

Lindsey, B.D., Breen, K.J., Bilger, M.D., and Brightbill, R.A., 1998, Water quality in the Lower Susquehanna River Basin—Pennsylvania and Maryland, 1992-95: U.S. Geological Survey Circular 1168, 38 p. (**Circular 1168**)

Lindsey, B.D., and Koch, M.L., 2004, Determining sources of water and contaminants to wells in a carbonate aquifer near Martinsburg, Blair County, Pennsylvania, by use of geochemical indicators, analysis of anthropogenic contaminants and simulation of ground-water flow: U.S. Geological Survey Scientific Investigations Report 2004-5124, 46 p. (**SIR 2004-5124**)

Lindsey, B.D., Phillips, S.W., Donnelly, C.A., Speiran, G.K., Plummer, L.N., Bohlke, J.K., Focazio, M.J., Burton, W.C., and Busenberg, Eurybiades, 2003, Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay watershed: U.S. Geological Survey Water-Resources Investigations Report 03-4035, 201 p. (**WRIR 03-4035**)

Lindsey, B.D., Rasberry, J.S., and Zimmerman, T.M., 2002, Microbiological quality of water from noncommunity supply wells in carbonate and crystalline aquifers of Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 01-4268, 30 p. (**WRIR 01-4268**)

Loper, W.C., Behrendt, T.E., and Schaffstall, W.P., 1985, Water Resources Data Pennsylvania Water Year 1984, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-84-2, 327 p. (**PA 84-2**)

Loper, W.C., Behrendt, T.E., and Schaffstall, W.P., 1988, Water Resources Data Pennsylvania Water Year 1986, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-86-2, 330 p. (**PA 86-2**)

Loper, W.C., Behrendt, T.E., and Schaffstall, W.P., 1988, Water Resources Data Pennsylvania Water Year 1987, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-87-2, 322 p. (**87-2**)

Loper, W.C., Behrendt, T.E., and Schaffstall, W.P., 1989, Water Resources Data Pennsylvania Water Year 1988, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-88-2, 276 p. (**88-2**)

Loper, W.C., Behrendt, T.E., and Schaffstall, W.P., 1990, Water Resources Data Pennsylvania Water Year 1989, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-89-2, 289 p. (**89-2**)

Loper, W.C., Behrendt, T.E., Schaffstall, W.P., and Hainly, R.A., 1987, Water Resources Data Pennsylvania Water Year 1985, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-85-2, 361 p. (**PA 85-2**)

Loper, W.C., Durlin, R.R., and Schaffstall, W.P., 1991, Water Resources Data Pennsylvania Water Year 1991, vol. 2, Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Data Report PA-90-2, 266 p. (**90-2**)

Low, D.J., and Conger, R.W., 2002, Ground-water availability in part of the Borough of Carroll Valley, Adams County, Pennsylvania, and the establishment of a drought-monitor well: U.S. Geological Survey Water-Resources Investigations Report 02-4273, 78 p. (**WRIR 02-4273**)

Low, D.J., Goode, D.J., and Risser, D.W., 2000, Hydrogeology and simulation of ground-water flow at the Gettysburg Elevator Plant Superfund Site Adams County, Pennsylvania: U.S. Geological Survey Open-File Report 00-185, 34 p. (**OFR 00-185**)

Low, D.J., Hippe, D.J., and Yannacci, Dawna, 2002, Geohydrology of southeastern Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 00-4166, 347 p. (**WRIR 00-4166**)

McAuley, S.D., 2003, MTBE concentrations in ground water in Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 03-4201, 44 p. (**WRIR 03-4201**)

McElroy, T.A., 1998, Groundwater resources of Cambria County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 67, 49 p. (**WRR 67**)

Moore, M.E., and Buckwalter, T.F., 1996, Ground-water resources data for Warren County, Pennsylvania: U.S. Geological Survey Open-File Report 94-87, 94 p. (**OFR 94-87**)

Paulachok, G.N., and Wood, C.R., 1988, Water resources of Oley Township, Berks County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 87-4065, 59 p. (**WRIR 87-4065**)

## 18 Ground-Water-Quality in Pennsylvania

Paulachok, G.N., Wood, R.C., and Norton, L.J., 1984, Hydrologic data for aquifers in Philadelphia, Pennsylvania: U.S. Geological Survey Open-File Report 83-149, 104 p. (**OFR 83-149**)

Pennsylvania Department of Environmental Protection, 2005, eMapPA: accessed December 7, 2005, at <http://www.emappa.dep.state.pa.us/emappa/viewer.htm>

Reese, S.O. and Lee, J.J., 1998, Summary of groundwater quality monitoring data (1985-1997) from Pennsylvania's Ambient and Fixed Station Network (FSN) Monitoring Program—Selected groundwater basins in southwestern, southcentral, and southeastern Pennsylvania: Pennsylvania Department of Environmental Protection, Bureau of Water Supply Management, 32 p. plus Appendices. (**FSN**)

Richards, D.B., McCoy, H.J., and Gallaher, J.T., 1987, Groundwater resources of Erie County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 62, 101 p. (**WRR 62**)

Royer, D.W., 1983, Summary groundwater resources of Lebanon County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 55, 84 p. (**WRR 55**)

Royer, D.W., 1984, Summary groundwater resources of Perry County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 59, 70 p. (**WRR 59**)

Sams, III, J.I., Day, R.L., and Stiteler, J.M., 1998, Influence of land use and open-water wetlands on water quality in the Lake Wallenpaupack Basin, northeastern Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 98-4186, 56 p. (**WRIR 98-4186**)

Schreffler, C.L., McManus, B.C., and Rowland-Lesitsky, C.J., 1994, Hydrologic data for northern Bucks County, Pennsylvania: U.S. Geological Survey Open-File Report 94-381, 90 p. (**OFR 94-381**)

Senior, L.A., 1994, Geohydrology of, and nitrogen and chloride in, the glacial aquifer, Milford-Matamoras area, Pike County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 93-4109, 43 p. (**WRIR 93-4109**)

Senior, L.A., 1996, Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek Basin, Piedmont Physiographic Province, Pennsylvania and Delaware: U.S. Geological Survey Water-Resources Investigations Report 96-4288, 79 p. (**WRIR 96-4288**)

Senior, L.A., 1998, Radon-222 in the ground water of Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 98-4169, 79 p. (**WRIR 98-4169**)

Senior, L.A., Sloto, R.A., and Reif, A.G., 1997, Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 94-4137, 160 p. (**WRIR 94-4137**)

Senior, L.A., and Vogel, K.L., 1995, Radium and radon in ground water in the Chickies Quartzite, southeastern Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 92-4088, 145 p. (**WRIR 92-4088**)

Sevon, W.D., and Braun, D.D., 2000, Glacial deposits of Pennsylvania: Pennsylvania Topographic and Geologic Survey, 4<sup>th</sup> ser., Map 59, 1 p.

Siwicki, R.W., 2002, Water Resources Data Pennsylvania Water Year 2001, vol. 3, Ohio and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-01-3, 220 p. (**PA 01-3**)

Siwicki, R.W., 2003, Water Resources Data Pennsylvania Water Year 2002, vol. 3, Ohio and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-02-3, 285 p. (**PA 02-3**)

Siwicki, R.W., 2003, Water Resources Data Pennsylvania Water Year 2003, vol. 3, Ohio and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-01-3, 319 p. (**PA 03-3**)

Siwicki, R.W., 2005, Water Resources Data Pennsylvania Water Year 2004, vol. 3, Ohio and St. Lawrence River Basins: U.S. Geological Survey Water-Data Report PA-02-3, 337 p. (**PA 04-3**)

Siwiec, S.F., Hainly, R.A., Lindsey, B.D., Bilger, M.D., and Brightbill, R.A., 1997, Water-quality assessment of the Lower Susquehanna River Basin, Pennsylvania and Maryland—Design and implementation of water-quality studies, 1992-95: U.S. Geological Survey Open-File Report 97-583, 121 p. (**OFR 97-583**)

Sloto, R.A., 1987, Effect of urbanization on the water resources of Eastern Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 87-4098, 131 p. (**WRIR 87-4098**)

Sloto, R.A., 1989, Selected ground-water data, Chester County, Pennsylvania: U.S. Geological Survey Open-File Report 87-217, 198 p. (**OFR 87-217**)

Sloto, R.A., 1994, Geology, hydrology, and ground-water quality of Chester County, Pennsylvania: Chester County Water Resources Authority, Water-Resource Report 2, 127 p. (**Chester Co. WRR2**)

Sloto, R.A., 2002, Geohydrology and ground-water quality, Big Elk Creek Basin, Chester County, Pennsylvania, and Cecil County, Maryland: U.S. Geological Survey Water-Resources Investigations Report 02-4057, 81 p. (**WRIR 02-4057**)

Sloto, R.A., and Davis, D.K., 1983, Effect of urbanization on the water resources of Warminster Township, Bucks County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations 82-4020, 72 p. (**WRIR 82-4020**)

Sloto, R.A., Macchiaroli, Paola, and Towle, M.T., 1996, Geohydrology of the Stockton Formation and cross-contamination through open boreholes, Hatboro Borough and Warminster Township, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 96-4047, 49 p. (**WRIR 96-4047**)

Sloto, R.A., and McManus B.C., 1996, Hydrogeology and ground-water quality of Valley Forge National Historical Park, Montgomery County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 96-4120, 35 p. (**WRIR 96-4120**)

Stoner, J.D., Williams, D.R., Buckwalter, T.F., Felbinger, J.K., and Pattison, K.L., 1987, Water resources and the effects of coal mining, Greene County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 63, 166 p. (**WRR 63**)

Taylor, L.E., 1984, Groundwater resources of the Upper Susquehanna River Basin, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 58, 136 p. (**WRR 58**)

Taylor, L.E., and Royer, D.W., 1981, Summary groundwater resources of Adams County, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 52, 50 p. (**WRR 52**)

Taylor, L.E., and Werkheiser, W.H., 1984, Groundwater resources of the Lower Susquehanna River Basin, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 57, 130 p. (**WRR 57**)

Taylor, L.E., Werkheiser, W.H., DuPont, N.S., and Kriz, M.L., 1982, Groundwater resources of the Juniata River Basin, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 54, 131 p. (**WRR 54**)

Taylor, L.E., Werkheiser, W.H., and Kriz, M.L., 1983, Groundwater resources of the West Branch Susquehanna River Basin, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 56, 143 p. (**WRR 56**)

Ulanoski, J.T., Spangenberg, N.M., and Reese, S.O., 1997, Groundwater quality monitoring network—Ambient and Fixed Station Network (FSN) Monitoring Programs: Pennsylvania Department of Environmental Protection 391-3200-009/6/97, 87 p. (**FSN**)

Vogel, K.L., and Reif, A.G., 1993, Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware: U.S. Geological Survey Water-Resources Investigations Report 93-4055, 111 p. (**WRIR 93-4055**)

Unangst, Donald—Chairman, State RCWP Coordinating Committee, 1992, Conestoga Headwaters Project, Pennsylvania—Rural Clean Water Program 10-year report, 1981-1991: U.S. General Printing Office, 1992-624-121:60346, 329 p.

White, K.E., White, T.E., Druther, R.L., and Moleski, P., 1993, Water Resources Data Pennsylvania Water Year 1992, vol. 1, Delaware River Basin: U.S. Geological Survey Water-Data Report PA-92-1, 340 p. (**PA 92-1**)

Williams, D.R., Felbinger, J.K., and Squillace, P.J., 1993, Water resources and the hydrologic effects of coal mining in Washington County, Pennsylvania: U.S. Geological Survey Open-File Report 89-620, 226 p. (**OFR 89-620**)

Williams, D.R., and McElroy, T.A., 1991, Water resources data for Indiana County: U.S. Geological Survey Open-File Report 90-384, 147 p. (**OFR 90-384**)

Williams, D.R., and McElroy, T.A., 1997, Water resources of Indiana County: U.S. Geological Survey Water-Resources Investigations Report 95-4164, 105 p. (**WRIR 95-4164**)

Williams, J.H., and Eckhardt, D.A., 1987, Groundwater resources of the Berwick-Bloomsburg-Danville area, East-Central Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 61, 76 p. (**WRR 61**)

Williams, J.H., Taylor, L.E., and Low, D.J., 1998, Hydrogeology and groundwater quality of the glaciated valleys of Bradford, Tioga, and Potter Counties, Pennsylvania: Pennsylvania Geological Survey, 4<sup>th</sup> ser., Water Resource Report 68, 89 p. (**WRR 68**)

Zimmerman, T.M., Zimmerman, M.L., and Lindsey, B.D., 2002, Relation between selected well-construction characteristics and occurrence of bacteria in private household-supply wells, south-central and southeastern Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 01-4206. (**WRIR 01-4206**)

## Appendix—Files of Comments, Data, and Map Images by Source

[“Click” on filename in lists below to link to the file]

### Borough of Carroll Valley

#### Comment Files

Portable Document Format  
CV.Comments.Micro.pdf  
CV.Comments.Nuts.pdf  
CV.Summary.pdf

#### Data Spreadsheet Files

Microsoft Excel Format  
CV.Micro.xls  
CV.Nuts.xls

#### Map Image Files

Portable Document Format  
Statewide\_WellsCarrollValley.pdf

### Chester County Health Department

#### Comment Files

Portable Document Format  
CCDH.Comments.Field.pdf  
CCDH.Comments.Nuts.pdf  
CCDH.Summary.pdf

#### Data Spreadsheet Files

Microsoft Excel Format  
CCDH.Field.xls  
CCDH.Nuts.xls

#### Map Image Files

Portable Document Format  
Statewide\_WellsChesterCo.pdf

### Pennsylvania Department of Environmental Protection Ambient and Fixed Station Network

#### Comment Files

Portable Document Format  
FSN.Comments.Field.pdf  
FSN.Comments.Major.pdf  
FSN.Comments.Minor.pdf  
FSN.Comments.Nuts.pdf  
FSN.Summary.pdf

#### Data Spreadsheet Files

Microsoft Excel Format  
FSN.Field.xls  
FSN.Major.xls  
FSN.Minor.xls  
FSN.Nuts.xls

#### Map Image Files

Portable Document Format  
Statewide\_WellsPaDEPFSN.pdf

### Montgomery County Health Department

#### Comment Files

Portable Document Format  
MCHD.Comments.Micro.pdf  
MCHD.Comments.Field.pdf  
MCHD.Comments.Major.pdf  
MCHD.Comments.Minor.pdf  
MCHD.Comments.Nuts.pdf  
MCHD.Comments.Voa.pdf  
MCHD.Comments.Waste.pdf  
MCHD.Summary.pdf

#### Data Spreadsheet Files

Microsoft Excel Format  
MCHD.Micro.xls  
MCHD.Field.xls  
MCHD.Major.xls  
MCHD.Minor.xls  
MCHD.Nuts.xls  
MCHD.Voa.xls  
MCHD.Waste.xls

#### Map Image Files

Portable Document Format  
Statewide\_WellsMontgomeryCo.pdf

## Pennsylvania Drinking Water Information System

### Comment Files

Portable Document Format  
 PADWIS.Comments.Micro.pdf  
 PADWIS.Comments.Minor.pdf  
 PADWIS.Comments.Pest.pdf  
 PADWIS.Comments.Radio.pdf  
 PADWIS.Comments. Voa.pdf  
 PADWIS.Summary.pdf

### Data Spreadsheet Files

Microsoft Excel Format  
 PADWIS.Micro.xls  
 PADWIS.Minor.xls  
 PADWIS.Pest.xls  
 PADWIS.Radio.xls  
 PADWIS.Voa.xls

### Map Image Files

Portable Document Format  
 Statewide\_WellsPADWIS.pdf

## Pennsylvania Department of Agriculture

### Comment Files

Portable Document Format  
 PennAg.Comments.Micro.pdf  
 PennAg.Comments.Nuts.pdf  
 PennAg.Comments.Pest.pdf  
 PennAg.Summary.pdf

### Data Spreadsheet Files

Microsoft Excel Format  
 PennAg.Micro.xls  
 PennAg.Nuts.xls  
 PennAg.Pest.xls

### Map Image Files

Portable Document Format  
 Statewide\_WellsPennAg.pdf

## Susquehanna River Basin Commission

### Comment Files

Portable Document Format  
 SRBC.Comments.Field.pdf  
 SRBC.Comments.Major.pdf  
 SRBC.Comments.Minor.pdf  
 SRBC.Comments.Nuts.pdf  
 SRBC.Summary.pdf

### Data Spreadsheet Files

Microsoft Excel Format  
 SRBC.Field.xls  
 SRBC.Major.xls  
 SRBC.Minor.xls  
 SRBC.Nuts.xls

### Map Image Files

Portable Document Format  
 Statewide\_WellsSRBC.pdf

## U.S. Geological Survey—Pennsylvania Water Science Center

### Comment Files

Portable Document Format  
 USGS.Comments.Micro.pdf  
 USGS.Comments.Field.pdf  
 USGS.Comments.Fungus.pdf  
 USGS.Comments.Herb.pdf  
 USGS.Comments. Insec.pdf  
 USGS.Comments.Major.pdf  
 USGS.Comments.Minor.pdf  
 USGS.Comments.Nuts.pdf  
 USGS.Comments.Radio.pdf  
 USGS.Comments. Voa.pdf  
 USGS.Comments.Waste.pdf  
 USGS.Summary.pdf

### Data Spreadsheet Files

Microsoft Excel Format  
 USGS.Micro.xls USGS.MicroReport.xls  
 USGS.Field.xls USGS.FieldReport.xls  
 USGS.Fungus.xls USGS.FungusReport.xls  
 USGS.Herb.xls USGS.HerbReport.xls  
 USGS.Insec.xls USGS.InsecReport.xls  
 USGS.Major.xls USGS.MajorReport.xls  
 USGS.Minor.xls USGS.MinorReport.xls  
 USGS.Nuts.xls USGS.NutsReport.xls  
 USGS.Radio.xls USGS.RadioReport.xls  
 USGS.Voa.xls USGS.VoaReport.xls  
 USGS.Waste.xls USGS.WasteReport.xls  
 USGS.CrossReference Numbers.xls

### Map Image Files

Portable Document Format  
 Statewide\_WellsUSGS.pdf

## Pennsylvania Geology

### Map Image Files

Portable Document Format  
 Statewide\_Geology.pdf  
 Statewide\_SurficialGeology.pdf

## Pennsylvania Well Locations

### Map Image Files

Portable Document Format  
Statewide\_Wells2.pdf

## Pennsylvania Watersheds

### Map Image Files

Portable Document Format

Statewide\_Watershed.pdf

Basin1\_Wells.pdf

Basin2\_Wells.pdf

Basin3\_Wells.pdf

Basin4\_Wells.pdf

Basin5\_Wells.pdf

Basin6\_Wells.pdf

Basin7\_Wells.pdf

Basin8\_Wells.pdf

Basin9\_Wells.pdf

Basin10\_Wells.pdf

Basin11\_Wells.pdf

Basin12\_Wells.pdf

Basin13\_Wells.pdf

Basin14\_Wells.pdf

Basin15\_Wells.pdf

Basin16\_Wells.pdf

Basin17\_Wells.pdf

Basin18\_Wells.pdf

Basin19\_Wells.pdf

Basin20\_Wells.pdf

Basin21\_Wells.pdf

Basin22\_Wells.pdf

Basin23\_Wells.pdf

Basin24\_Wells.pdf

Basin25\_Wells.pdf

Basin26\_Wells.pdf

Basin27\_Wells.pdf

Basin28\_Wells.pdf

Basin29\_Wells.pdf

Basin30\_Wells.pdf

Basin31\_Wells.pdf

Basin32\_Wells.pdf

Basin33\_Wells.pdf

Basin34\_Wells.pdf

Basin35\_Wells.pdf

## Pennsylvania Watersheds and Nitrate Ranges

### Map Image Files

Portable Document Format

Basin1\_QWNO3.pdf

Basin2\_QWNO3.pdf

Basin3\_QWNO3.pdf

Basin4\_QWNO3.pdf

Basin5\_QWNO3.pdf

Basin6\_QWNO3.pdf

Basin7\_QWNO3.pdf

Basin8\_QWNO3.pdf

Basin9\_QWNO3.pdf

Basin10\_QWNO3.pdf

Basin11\_QWNO3.pdf

Basin12\_QWNO3.pdf

Basin13\_QWNO3.pdf

Basin14\_QWNO3.pdf

Basin15\_QWNO3.pdf

Basin16\_QWNO3.pdf

Basin17\_QWNO3.pdf

Basin18\_QWNO3.pdf

Basin19\_QWNO3.pdf

Basin20\_QWNO3.pdf

Basin21\_QWNO3.pdf

Basin22\_QWNO3.pdf

Basin23\_QWNO3.pdf

Basin24\_QWNO3.pdf

Basin25\_QWNO3.pdf

Basin26\_QWNO3.pdf

Basin27\_QWNO3.pdf

Basin28\_QWNO3.pdf

Basin29\_QWNO3.pdf

Basin30\_QWNO3.pdf

Basin31\_QWNO3.pdf

Basin32\_QWNO3.pdf

Basin33\_QWNO3.pdf

Basin34\_QWNO3.pdf

Basin35\_QWNO3.pdf

## Pennsylvania Watersheds 17 and 18 Geology and Nitrate Ranges

### Map Image Files

Portable Document Format

Basin17\_QWNO3GEO.pdf

Basin18\_QWNO3GEO.pdf