

# Factors Related to the Occurrence and Distribution of Select Bacterial and Protozoan Pathogens in Pennsylvania Streams

Joseph W. Duris U.S. Geological Survey Michigan Water Science Center (517) 887-8942 jwduris@usgs.gov

### Background

- What do indicators indicate?
- New studies dealing with fecal indicator bacteria (FIB) relation to pathogens
  - (Streams) Season, land use, discharge, turbidity, chemistry
  - (Lakes) Wave height, wind direction, storm drain flow
- Few studies have the same level of chemical and hydrologic data available from the WQN



### Shiga toxin-producing *E. coli* (STEC)

- STEC are a main cause of intestinal disease in humans
  - Over 200 STEC types identified with various combinations of virulence genes
- STEC have been associated with outbreaks and death
  - Food and Water
- E. coli O157:H7 is most frequently isolated type in North America
  - Only STEC type that is "easy" to identify
  - Small infectious dose (fewer than 10 cells)
  - Typically most virulent combination of genes
- Microbial Source Tracking (MST) application





### Pathogenic Enterococci

- Pathogenic Enterococcus
  - Not a common intestinal pathogen (i.e. does not typically cause diarrhea)
  - However, enters body via oral/fecal transmission
  - Enterococcus strains with the esp gene
    - Bacteremia
    - Endocarditis
    - Wound infection
    - Urinary Tract Infection
  - esp gene is cited in the literature as being a good marker for Enterococci from a human source (MST application)





### Giardia and Cryptosporidum

- Analysis done by PA-DEP Bureau of Labs
- Protozoan parasites
- USEPA Method 1623
- Giardia
  - Causes Giardiasis, (diarrheal disease)
  - Exist as cysts in the environment (moderately chlorine resistant)
  - 6-19 microns
- Cryptosporidium
  - Causes Cryptosporidiosis (diarrheal disease)
  - Exist as oocysts in the environment (chlorine resistant)
  - 3-5 microns







### Pathogen and MST Approach

- Use of fecal indicator bacteria cultures as platform
  - Growth/viability of the target organisms
    - Original Indicator Sample
  - Target pathogens and source tracking markers within those cultures
    - Enrichment PCR
    - Improved detection limits over direct PCR
      - Most direct PCR assays reported in the literature have high detection limits (e.g., 20 target CFU/ml) due to matrix interference and small volumes
  - Relevance to water quality criteria/standards
    - Pathogen occurrence can be related to concentrations of fecal indicator bacteria



# Pathogen and MST Gene Targets

| Organism    | Gene Name   | Gene Product                     | Gene Function                                                              |  |  |  |  |
|-------------|-------------|----------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| E. coli     | eaeA        | Intimin protein                  | Allows <i>E. coli</i> to tightly bind intestine                            |  |  |  |  |
| E. coli     | stx1        | Shiga Toxin 1                    | Causes less severe disease in humans (more common in ruminants than human) |  |  |  |  |
| E. coli     | stx2        | Shiga Toxin 2                    | Causes severe disease in humans (HC, HUS)                                  |  |  |  |  |
| E. coli     | E. coli 16s | E. coli ribosome                 | Universal marker of all <i>E. coli</i> , control                           |  |  |  |  |
| E. coli     | rfbO157     | O157 surface protein             | Marker of <i>E. coli</i> O157 (hamburger outbreak <i>E. coli</i> )         |  |  |  |  |
| E. coli     | LTIIa       | Heat Labile Toxin<br>Subunit IIa | Bovine Sources, gastroenteritis in humans                                  |  |  |  |  |
| E. coli     | STII        | Heat Stabile Toxin<br>Subunit II | Swine Sources, swine and human disease                                     |  |  |  |  |
| Enterococci | esp         | Enterococcus surface protein     | Human Sources, associated with human disease (skin and bladder infections) |  |  |  |  |



### **Measured Parameters**

- Presence/absence of Gene Markers (Pathogen & MST)
- Densities of E. coli, enterococci, Cryptosporidium oocysts, Giardia cysts
- Physical parameters
  - Discharge, total dissolved solids, total suspended solids, ANC
- Chemistry
  - Basic chemistry
  - Nutrients
  - Metals
  - Organics
    - Pharmaceuticals, antibiotics, hormones
- Site Characteristics
  - Land-use, proximal & catchment, basin slope, drainage area, % carbonate bedrock and glacial deposit at catchment level













## Study Area



- 27-stations
- Quarterly samples
- 2 years (2007-2009)
- Drainage areas from 5 km<sup>2</sup> to 49,000 km<sup>2</sup>
- Within 5 miles of drinking water intake



### **Study Goals**

- Determine the frequency of occurrence of select bacterial and protozoan pathogens
- Determine relation of Indicator Bacteria to pathogens
- Determine factor(s) related to the occurrence of pathogens in Pennsylvania streams



## Frequency of Pathogen Detection





# Pathogen Relation to Indicator Criteria

|                       | (n) | eaeA   | stx2   | stx1   | rfb0157 | LTIIa  | STII   | esp    | Crytposporidium | Giardia |
|-----------------------|-----|--------|--------|--------|---------|--------|--------|--------|-----------------|---------|
|                       |     | (%)    | (%)    | (%)    | (%)     | (%)    | (%)    | (%)    | (%)             | (%)     |
| Meet <i>E. coli</i>   |     |        |        |        |         |        |        |        |                 |         |
| criteriaª             | 186 | 32     | 7.6    | 3.2    | 3.8     | 3.8    | 1.6    | 2.2    | 44              | 58      |
| Exceed <i>E</i> .     | 21  | 07     | 53     | 26     | 22      | 22     | 22     | 42     | 61              | 77      |
| coli criteria         | 31  | 97     | 55     | 26     | 32      | 32     | 23     | 42     | 61              | 77      |
| p-value <sup>b</sup>  |     | p<0.05 | p<0.05 | p<0.05 | p<0.05  | p<0.05 | p<0.05 | p<0.05 | p=0.100         | p=0.057 |
| Meet                  |     |        |        |        |         |        |        |        |                 |         |
| enterococci           | 163 | 29     | 5.5    | 2.5    | 3.1     | 1.2    | 0.6    | 1.8    | 42              | 57      |
| criteria <sup>c</sup> |     |        |        |        |         |        |        |        |                 |         |
| Exceed                |     |        |        |        |         |        |        |        |                 |         |
| enterococci           | 54  | 78     | 43     | 19     | 22      | 26     | 17     | 26     | 57              | 70      |
| criteria              |     |        |        |        |         |        |        |        |                 |         |
| p-value <sup>b</sup>  |     | p<0.05 | p<0.05 | p<0.05 | p<0.05  | p<0.05 | p<0.05 | p<0.05 | p=0.076         | p=0.115 |

<sup>&</sup>lt;sup>a</sup> Recreational Water Quality Moderate Full Body Contact Criteria for *E. coli*, 298 CFU 100 L<sup>-1</sup>



<sup>&</sup>lt;sup>b</sup> Pearson chi-square test with Yates' correction

<sup>&</sup>lt;sup>c</sup>Recreational Water Quality Moderate Full Body Contact Criteria for enterococci, 78 CFU 100 L<sup>-1</sup>

# Seasonal Differences in Indicator Bacteria and Protozoan Densities and Frequencies

|                      |     | Concentration |              |                              |                      |                     | Frequency (%) |                 |         |  |  |
|----------------------|-----|---------------|--------------|------------------------------|----------------------|---------------------|---------------|-----------------|---------|--|--|
|                      | (n) | E. colia      | Enterococcia | Cryptosporidium <sup>b</sup> | Giardia <sup>b</sup> | E. coli Enterococci |               | Cryptosporidium | Giardia |  |  |
|                      |     |               |              |                              |                      |                     |               |                 |         |  |  |
| Winter               | 26  | 295           | 322          | 0.18                         | 0.36                 | 76.9                | 84.6          | 50              | 77      |  |  |
| Spring               | 84  | 296*          | 227*         | 0.07                         | 1.45*                | 88.1                | 79.8          | 43              | 70      |  |  |
| Summer               | 54  | 1186*         | 1331*        | 0.11                         | 0.43                 | 98.2                | 94.6          | 39              | 50      |  |  |
| Autumn               | 50  | 435           | 749          | 0.19                         | 0.63*                | 96.1                | 82.4          | 57              | 47      |  |  |
| p-value <sup>c</sup> |     | p<0.05        | p<0.05       | P=0.270                      | p<0.05               | <0.05               | p=0.227       | p=0.387         | p<0.05  |  |  |

 $<sup>^{\</sup>text{a}}$  [E. coli], Geometric Mean CFU100 mL  $^{\text{-}1}$  ; [Enterococci] Mean CFU100 L  $^{\text{-}1}$  ;

Note: Dec-Feb, Winter; Mar-May, Spring; Jun-Aug, Summer; Sep-Nov, Autumn



<sup>&</sup>lt;sup>b</sup> [Cryptosporidium] Mean oocysts, 1 L<sup>-1</sup>; [Giardia], Mean cysts, 1 L<sup>-1</sup>

<sup>&</sup>lt;sup>c</sup>Pearson chi-square test with Yates' correction (frequency), or ANOVA on ranks of log transformed concentrations (concentrations)

### Pathogen Relation to Season

| Season               | (n) | eaeA   | stx2    | stx1    | rfbO157  | <i>lt</i> lla | stll    | esp     |
|----------------------|-----|--------|---------|---------|----------|---------------|---------|---------|
|                      |     | (%)    | (%)     | (%)     | (%)      | (%)           | (%)     | (%)     |
| Winter               | 26  | 38     | 15      | 3.8     | 3.8      | 7.7           | 7.7     | 15      |
| Spring               | 84  | 24     | 9.5     | 4.8     | 7.1      | 6.0           | 2.4     | 7.1     |
| Summer               | 54  | 59     | 23      | 12      | 11       | 11            | 7.1     | 8.9     |
| Autumn               | 50  | 45     | 14      | 3.9     | 7.8      | 5.9           | 3.9     | 3.9     |
| p-value <sup>a</sup> |     | p<0.05 | p=0.259 | p=0.414 | p=0.9127 | p=0.874       | p=0.815 | p=0.625 |

<sup>&</sup>lt;sup>a</sup> Pearson chi-square test with Yates' correction

Note: Dec-Feb, Winter; Mar-May, Spring; Jun-Aug, Summer; Sep-Nov, Autumn



# Relation of Discharge to Indicator and Protozoan Densities

|                                    |     | Density              |                          |                              |                      |  |  |  |  |  |
|------------------------------------|-----|----------------------|--------------------------|------------------------------|----------------------|--|--|--|--|--|
| Discharge<br>Category <sup>a</sup> | (n) | E. coli <sup>b</sup> | Enterococci <sup>b</sup> | Cryptosporidium <sup>b</sup> | Giardia <sup>b</sup> |  |  |  |  |  |
| Low                                | 35  | 49*                  | 32*                      | 0.08                         | 0.41                 |  |  |  |  |  |
| Median                             | 118 | 333                  | 389                      | 0.13                         | 1.27*                |  |  |  |  |  |
| High                               | 61  | 1242*                | 1441*                    | 0.15                         | 0.37*                |  |  |  |  |  |
| p-value <sup>c</sup>               |     | p<0.05               | p<0.05                   | p=0.224                      | p<0.5                |  |  |  |  |  |

<sup>&</sup>lt;sup>a</sup> Low, discharge measured was less than 25<sup>th</sup> percentile of daily mean stream flow at sample location; Median, discharge measured was between 25<sup>th</sup> and 75<sup>th</sup> percentile of daily mean stream flow at sample location; High, Discharge measured was greater than 75<sup>th</sup> percentile of daily mean stream flow at sample location



<sup>&</sup>lt;sup>b</sup> [E. coli], Mean CFU100 L<sup>-1</sup> ; [Enterococci] Mean CFU100 L<sup>-1</sup>; [Cryptosporidium] Mean oocysts, 1 L<sup>-1</sup>; [Giardia] , Mean cysts, 1 L<sup>-1</sup>

Pearson chi-square test with Yates' correction (frequency), or ANOVA on ranks of log transformed concentrations (concentrations)

# Relation of Discharge to Pathogen Frequencies

|                                    |     | Frequency (%) |        |         |         |               |        |        |                     |         |
|------------------------------------|-----|---------------|--------|---------|---------|---------------|--------|--------|---------------------|---------|
| Discharge<br>Category <sup>a</sup> | (n) | eaeA          | stx2   | stx1    | rfbO157 | <i>lt</i> IIa | stll   | esp    | Crytposp<br>oridium | Giardia |
| Low                                | 35  | 31            | 5.7    | 2.9     | 2.9     | 5.7           | 0      | 0      | 34                  | 60      |
| Median                             | 118 | 39            | 10     | 5.1     | 5.1     | 5.9           | 2.5    | 6.8    | 47                  | 54      |
| High                               | 61  | 51            | 30     | 12      | 16      | 11            | 11     | 15     | 52                  | 75      |
| p-value <sup>c</sup>               |     | p=0.139       | p<0.05 | p=0.164 | p<0.05  | p=0.580       | p<0.05 | p<0.05 | p=0.222             | p<0.05  |

<sup>&</sup>lt;sup>a</sup> Low, discharge measured was less than 25<sup>th</sup> percentile of daily mean stream flow at sample location; Median, discharge measured was between 25<sup>th</sup> and 75<sup>th</sup> percentile of daily mean stream flow at sample location; High, Discharge measured was greater than 75<sup>th</sup> percentile of daily mean stream flow at sample location



<sup>&</sup>lt;sup>b</sup> [E. coli], Mean CFU100 L<sup>-1</sup>; [Enterococci] Mean CFU100 L<sup>-1</sup>; [Cryptosporidium] Mean oocysts, 1 L<sup>-1</sup>; [Giardia], Mean cysts, 1 L<sup>-1</sup>

Pearson chi-square test with Yates' correction (frequency), or ANOVA on ranks of log transformed concentrations (concentrations)

### Pathogen Relation to Likely Source





### "Data Exploration"

- Original data set had 214 samples and over 220 measured parameters and sampling location observations
- Eliminated measurements that were mostly non-detects, or were incomplete across all sampling years
  - Some substitution of censored data according to established procedures.
- Cluster analysis and principle components analysis with remaining observations



### **Cluster Analysis**



#### Low Pathogen cluster

- Less frequent pathogen gene detection
- Greater proximal forest, and less proximal urban land use
- Less carbonate bedrock area
- Fewer indicator bacteria
- Lower suspended solids
- Lower total nitrogen
- Lower caffeine concentrations



### **Cluster Analysis**



#### Intermediate Pathogen cluster

- Significantly greater upstream agricultural land use, and area of carbonate bedrock
- Significantly different (intermediate) indicator bacteria and suspended solids
- Significantly greater total nitrogen, carbamazipine, and sulfamethoxazole concentrations



### Cluster Analysis



#### High Pathogen Cluster

- Mixed land use
- Significantly different (intermediate) carbonate bedrock
- Significantly greater drainage area and unit discharge
- Significantly greater indicator bacteria and suspended solids
- Greater Fe, Mn, Al, and acetaminophen concentrations



### Conclusions

- Bacterial and protozoan pathogens were frequently detected
- Samples exceeding standards are more likely to contain bacterial pathogens (not protozoa)
- Certain pathogenic populations of EC and ENT are affected by increased discharge while other populations of EC, most likely driven by source, are unaffected by increased discharge.



### Conclusions

- The presence of MST markers was a poor discriminator of EC pathogens
- Giardia frequency increased in winter and spring under median flow conditions.
  - Giardia occurrence is related more to non-point sources that are highly influential during seasonal overland transport resulting from snow melt and spring rain
- More frequent pathogen detection was associated with increased concentrations of acetaminophen, AI, Fe, and Mn
  - Suggests more frequent pathogen occurrence related to human waste and practices



### Thank You.

- PA-DEP
- PA-DEP BOL
- USGS PA-WSC
- Co-authors:
  - Andrew G. Reif, USGS PA-WSC
  - Donna A. Krouse, PA-DEP BOL
  - Natasha Cosgrove, USGS MI-WSC
- \*Factors Related to the Occurrence and Distribution of Select Bacterial and Protozoan Pathogens in Pennsylvania Streams. In revision for submission to Water Research





# Factors Related to the Occurrence and Distribution of Select Bacterial and Protozoan Pathogens in Pennsylvania Streams

Joseph W. Duris U.S. Geological Survey Michigan Water Science Center (517) 887-8942 jwduris@usgs.gov