FRANKLIN COUNTY COMMUNITY CLEAN WATER TOOLBOX

A County-Based Action Plan for Clean Water

July 2018

FRANKLIN COUNTY COMMUNITY CLEAN WATER TOOLBOX

Resources to Help You Develop A County-Based Action Plan for Clean Water

Pennsylvania Watershed Implementation Plan (WIP) Local Planning Process to Meet Countywide Goals

July 2018

FRANKLIN COUNTY COMMUNITY CLEAN WATER TOOLBOX

Table of Contents

Introduction

Appendix I:	The Local Story: Opportunities to Improve Local Water Quality and Meet Countywide Goals
Appendix II:	Beginning the Local Planning Process
Appendix III:	Reporting Local Action Plans – Establishing a Countywide Implementation Team
Appendix IV:	Resources and Contacts

FRANKLIN COUNTY TOOLBOX

Pennsylvania Phase 3 Watershed Implementation Plan (WIP) Local Planning Process to Meet Countywide Goals

Introduction

Welcome to your Community Clean Water Toolbox.

This document has been prepared to help you improve local water quality. This collaborative effort is being made throughout Pennsylvania's portion of the Chesapeake Bay Watershed. Each Pennsylvania county within the watershed will have a Toolbox with similar components tailored to that county's specific conditions.

What is the Toolbox?

This toolbox has been developed as a starting point for each county to use to improve local water quality. It contains useful and specific data and information relevant to your county to assist you with reaching local water quality goals.

No county is required to use every tool in this toolbox! You are encouraged to add other tools as fits your local situation. This toolbox serves as a *guide* to assist with collaborative efforts, *not* as a regulatory tool.

You also will find a variety of resources that may be helpful in the Toolbox's Appendices.

Appendix I: The Local Story: Opportunities to Improve Local Water Quality and Meet Countywide Goals

Information is available that can help inform local planning strategies. This information can help answer questions like:

- What is the water quality like in my area?
- How has it been changing?
- What are important sources of nutrients and sediments in my area?
- What opportunities exist to address these sources?
- Where geographically should we focus our efforts?

This Toolbox provides information to help answer those questions and to tell the local story of water quality in your county. In this Toolbox, you'll find information on local water quality, local sources and drivers of nutrients and sediments, best management practice information, and additional available resources.

The information in this Toolbox and the guidance provided for its use are meant to act as a starting point to help answer some common questions that arise during planning. Local groups can utilize whichever pieces of information they find most useful, supplement with their own local knowledge, and use the additional resources listed to find more information.

We hope this Toolbox gives you a foundation to build off in telling Franklin County's local story and in identifying opportunities for meeting local goals.

Pennsylvania's Clean Water Goal

Pennsylvania Planning Targets

	Nitrogen (M Ibs/year)		Phosphorus (M lbs/year)	
Year	Delivered to the Bay	Delivered to Local PA Waterways	Delivered to the Bay	Delivered to Local PA Waterways
1985(Actual)	122.02	183.88	6.046	14.857
2017 (Actual)	107.31	161.94	3.801	9.640
2025 (Final TMDL Planning Target)	73.18	110.88	3.044	7.619
Remaining Reductions to be Achieved Through Local Planning Goals *	34.31	51.06	0.757	2.012

*This table does not account for future (beyond 2025) pollution loads and potential impacts such as climate change, development and growth.

Franklin County's Clean Water Goal

Countywide Goal for Franklin County

Year	Nitrogen (lbs/year) Delivered to Local Franklin County Waterways	Phosphorus (lbs/year) Delivered to Local Franklin County Waterways	
1985(Actual)	8,170,993	606,282	
1985 (Actual) Federal Load*	72,800	8,172	
2017 (Actual)	7,710,660	387,112	
2017 (Actual) Federal Load*	82,349	7,106	
2025 (Final TMDL Planning Target)	4,895,301	294,226	
Remaining Load to be Achieved Through Local Planning Goals *	2,897,708	99,992	

*Federal load is referring to the load attributed to Letterkenny Army Depot. This load is separate, due to the federal facility being responsible for reducing their own load.

The nitrogen and phosphorus planning targets for Pennsylvania in Figure 1 (above) are broken down into planning goals for each county, which are then further split into federal and nonfederal land. The 2025 planning target is a summation of both federal and non-federal loads. Added together across all counties, these goals will help Pennsylvania reach its assigned nutrient reduction planning targets.

Depiction of Franklin County's Goal

Hypothetical Journey to Franklin County's Goal

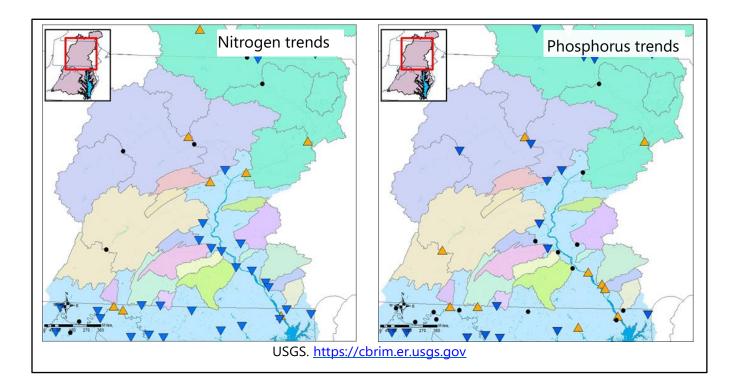
Franklin County Potential progress with new and Local existing state agency programs Initiatives Progress from 1985 through 2017 7.79 million lbs 8.24 million lbs 4.90 million lbs Permitting, Technical and Financial Assistance Compliance and **Reductions Already Made** and Outreach Initiatives Enforcement Initiatives 2.89 million lbs Customized Partnership by County Hypothetical journey to a county goal (nitrogen)

Figure 3 represents Franklin County's hypothetical journey to countywide goals and overall water quality targets. Moreover, it represents Franklin County's journey to clean water:

- The purple section represents the progress Franklin County has made from 1985 through 2017.
- The green section depicts the estimated reductions that can be achieved between now and 2025 if all existing state agency permitting, compliance and enforcement initiatives are accomplished across the watershed. This will require ongoing effort to achieve these reductions through compliance. To be truly successful, these initiatives will also be more effective through additional assistance and collaboration at the local level.
- The blue section and the arrow across the bottom of the journey bar represent a series of technical, financial assistance and outreach initiatives that are now under development by the sector specific workgroups under the Phase 3 WIP Steering Committee. However, to be truly successful, these initiatives will need to be customized to each county's unique situation.
- Reductions from these initiatives will be estimated across the watershed, then customized as part of the individual countywide planning efforts to capture additional local resources and initiatives that can be added; as well as tailoring the watershed-wide initiatives to more effectively maximize these resources.
- The end result will be a countywide action plan for each county that identifies the customized partnership of local and watershed-wide initiatives that can be accomplished at the county level to reach the county planning target in the most effective manner.

A Summary of Franklin County's Water Quality Story

Current Conditions of Franklin County's Streams


- Monitoring shows that streams in Franklin County have elevated amounts of nitrogen, phosphorus and sediment.
- > Water quality in Franklin County's streams is changing over time:
 - The amount of nitrogen is going down in local streams, which means conditions are improving.
 - The amount of phosphorus is going down in Antietam and Conodoguinet over the last 10 years, which means conditions are improving. However, trends in Conococheague show conditions are degrading with regard to phosphorus loads over the last 10 years.
 - There are no significant suspended sediment trends in any of the three monitored watersheds in Franklin County
 - Twenty three percent of Franklin County's streams are impaired, representing opportunities for focusing restoration efforts on those areas.

Sources of Nutrients & Sediment in Franklin County

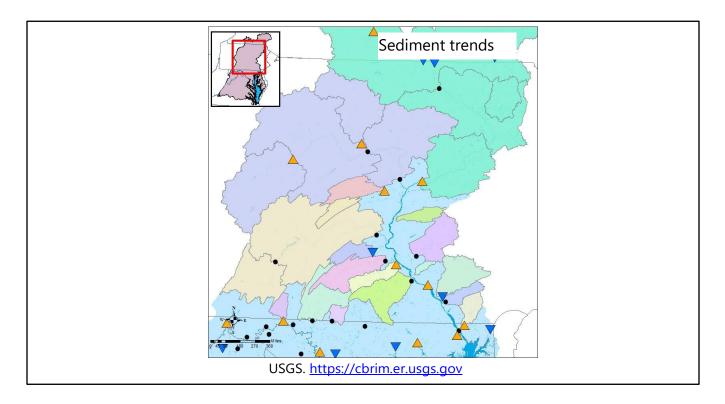
- Most nutrients and sediment in Franklin County's streams are estimated to be coming from agricultural and developed/urban lands.
- Effective management will address the specific sources of nutrients and sediment in Franklin County:
 - On agricultural lands, nutrients are applied to the land equally as fertilizer and manure, so addressing both sources will be important.
 - On developed/urban lands, the majority of nutrients entering local streams come from stormwater outside regulated municipal separate stormwater sewer system (MS4) areas, which may require different outreach, financial programs, etc. to address.
 - Wastewater and septic contribute a small portion of the nutrients to local streams, but can be important locally.
 - Most of the phosphorus and sediment in local streams comes from overland runoff or streambank erosion during rain events; the most effective management practices reduce application of phosphorus to the land, reduce runoff, and reduce soil erosion.
 - In both agricultural and developed/urban areas, erosion of stream banks are important sources of sediment to local streams.
 - Nitrogen also reaches streams as groundwater, and portions of Franklin County are especially vulnerable to high nitrogen in groundwater.

Opportunities for Implementation in Franklin County

- Conococheague Creek and Antietam Creek are effective places to manage nitrogen, phosphorus and sediment in Franklin County.
- Some effective practices to address nutrients and sediment are currently being implemented in Franklin County, such as conservation tillage and barnyard runoff control.
- There are many more opportunities within the county to increase implementation of effective practices such as basic and advanced nutrient management, cover crops, and forest and grass buffers in agricultural areas, and stormwater controls and urban nutrient management in developed areas.

Water quality trends vary geographically and patterns are changing across Pennsylvania's Chesapeake Bay Watershed

Understanding Pennsylvania's regional water quality trends can put trends in local watersheds, like those in Franklin County, in perspective.


In addition to providing real-time water quality data, the USGS monitoring stations help to identify changes in water quality over time. These maps demonstrate nitrogen and phosphorus trends from 2007-2016.

- Blue downward triangles = improving conditions
- Orange upward triangles = degrading conditions
- Black dots = no trend

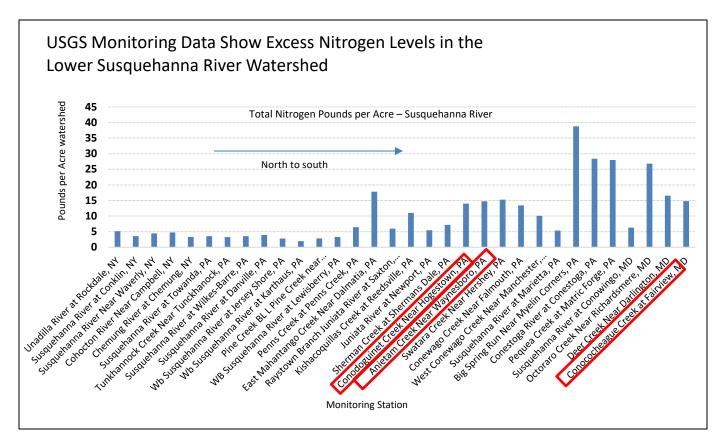
These results tell us that:

- Nitrogen levels in streams have been improving throughout the region with a few exceptions.
- Phosphorus levels show varying patterns depending on local watershed, reflecting local changes. Trends in the lower Susquehanna and portions of the Potomac are degrading.

Water quality trends for the USGS non-tidal stations are available at: <u>https://cbrim.er.usgs.gov/summary.html</u>.

Water quality trends vary geographically and patterns are changing across Pennsylvania's Chesapeake Bay Watershed

Understanding Pennsylvania's regional water quality trends can put trends in local watersheds, like those in Franklin County, in perspective.

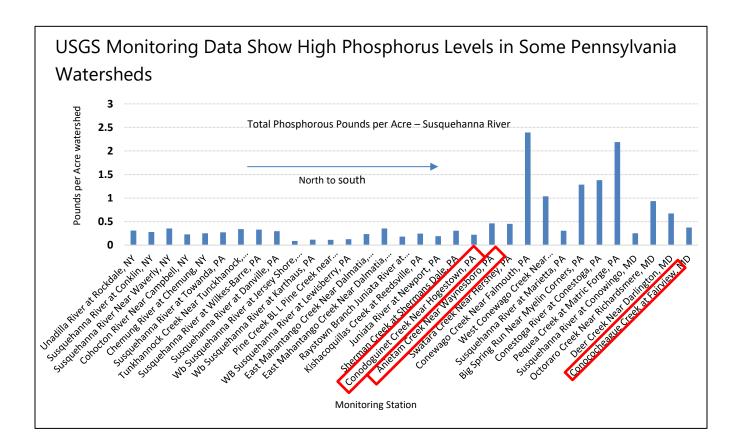

In addition to providing real-time water quality data, the USGS monitoring stations help to identify changes in water quality over time. The map demonstrates sediment trends from 2007-2016.

- Blue downward triangles = improving conditions
- Orange upward triangles = degrading conditions
- Black dots = no trend

These results tell us that:

• Sediment levels show varying patterns depending on local watershed, reflecting local changes. In many cases across the region these trends are degrading.

Water quality trends for the USGS non-tidal stations are available at: <u>https://cbrim.er.usgs.gov/summary.html</u>.


Source: USGS <u>https://cbrim.er.usgs.gov/</u>

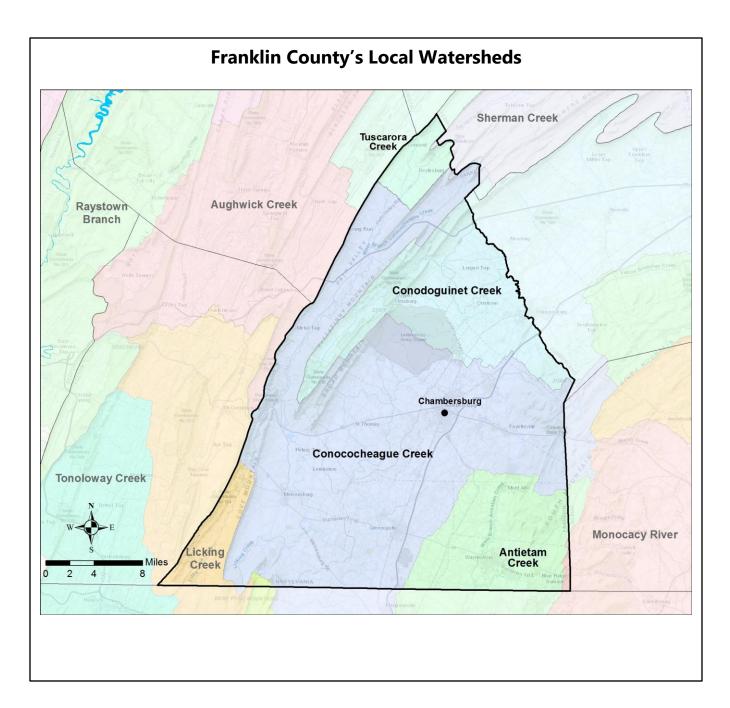
Understanding where nutrients and sediment are highest across Pennsylvania streams can help focus planning efforts, especially in small watersheds.

In the graph above, the bars show the average annual pounds of nitrogen measured at monitoring stations divided by the acres of watershed draining into that station. The larger the bar, the more nitrogen there is in the watershed's streams relative to its size, and the greater the impact on streams.

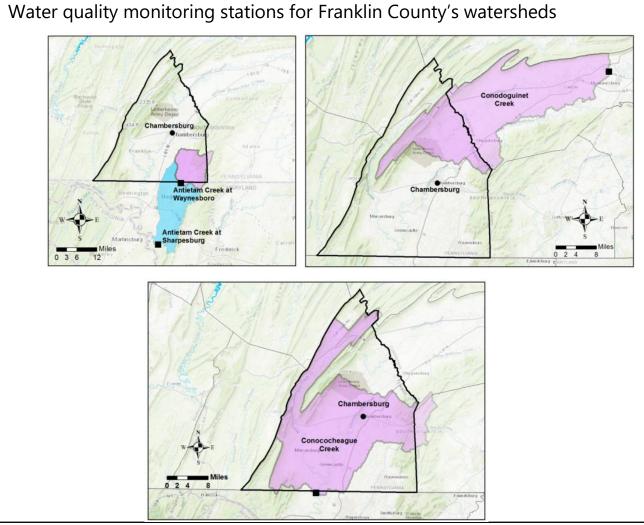
Small watersheds in the Lower Susquehanna, including those in Franklin County, have some of the higher amounts of nitrogen relative to their size. These watersheds can be some of the most effective places to manage nitrogen.

Values in the graph above represent the average annual load per acre for the last 5 years. Data for the USGS non-tidal stations are available at: <u>https://cbrim.er.usgs.gov/summary.html</u>

Source: USGS https://cbrim.er.usgs.gov/


Understanding where nutrients and sediment are highest across Pennsylvania streams can help focus planning efforts, especially in small watersheds.

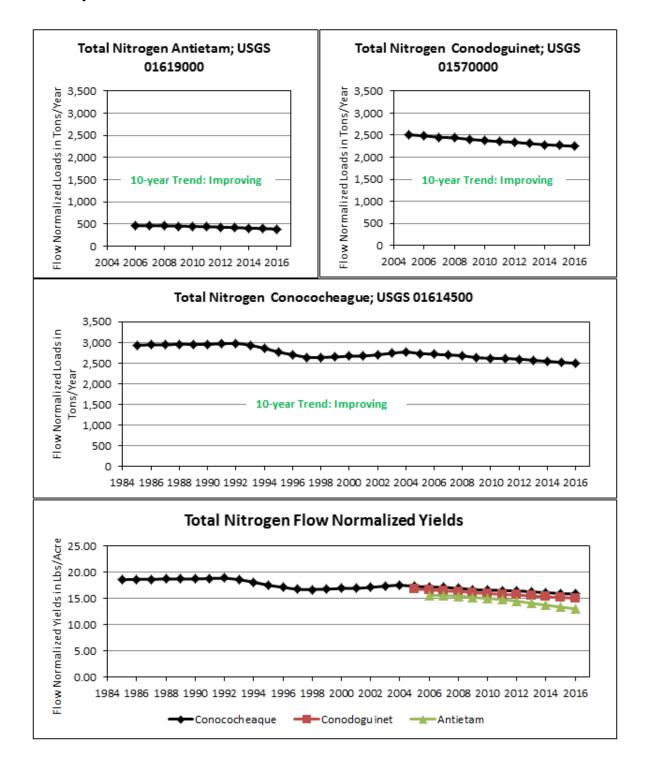
In the graph above, the bars show the annual pounds of phosphorus measured at monitoring stations divided by the acres of watershed draining into that station. The larger the bar, the more phosphorus there is in the watershed's streams relative to its size and the greater the impact on streams.


The amount of phosphorus in streams in Franklin County's small watersheds are midrange compared to the rest of Pennsylvania.

Phosphorus is especially important to manage locally because it can significantly and negatively impact freshwater streams.

Values in the graph above represent the average annual load per acre for the last 5 years. Data for the USGS non-tidal stations are available at: <u>https://cbrim.er.usgs.gov/summary.html</u>.

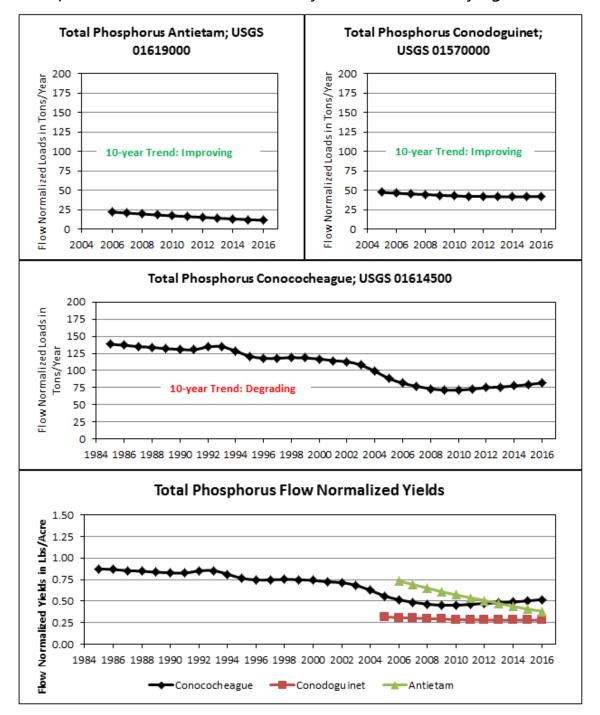
The following pages provide in-depth information on local water quality in Franklin County's monitored watersheds.



Three USGS monitoring stations (small circles) measure water quality in Franklin County's watersheds. These maps depict the areas that drain into each of those monitoring stations.

- The Antietam Creek station at Waynesboro is located near the state border and monitors water quality for the southeast corner of Franklin County. Almost all of this station's watershed is in Franklin County.
- The Conodoguinet Creek station is located in eastern Cumberland County, and • monitors water quality for a portion of Franklin County. Franklin County lands contribute to water quality at this station, but most of the watershed is in Cumberland County.
- The Conococheague Creek station is located near the state line and its watershed covers a large portion of Franklin County. This station's watershed is almost entirely in Franklin County, so the water quality measured at this station is reflective of land in the county.

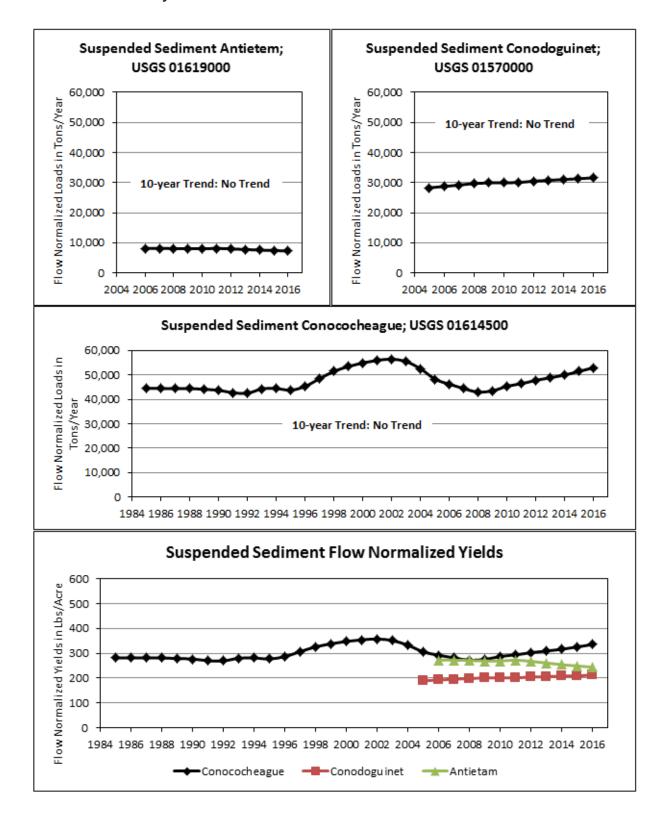
Water quality trends for the USGS non-tidal stations are available at: https://cbrim.er.usgs.gov/summary.html.


Nitrogen levels have been improving (going down) over time in Franklin County's watersheds

The monitored watersheds within Franklin County show improving nitrogen trends (meaning that nitrogen load is decreasing).

- Of Franklin County's three locally monitored watersheds (Antietam, Conodoguinet and Conococheague), Conococheague and Conodoguinet have higher nitrogen loads than Antietam. This is partially due to their larger size.
- The bottom graph shows that when size is taken into account, the nitrogen load per acre of watershed is similar between these three watersheds.
- These watersheds would be effective areas to focus efforts.
- Decreasing nitrogen is a result of decreasing deposition of nitrogen from the atmosphere onto the watershed (a result of the Clean Air Act), wastewater treatment plant upgrades, and some agricultural practices.

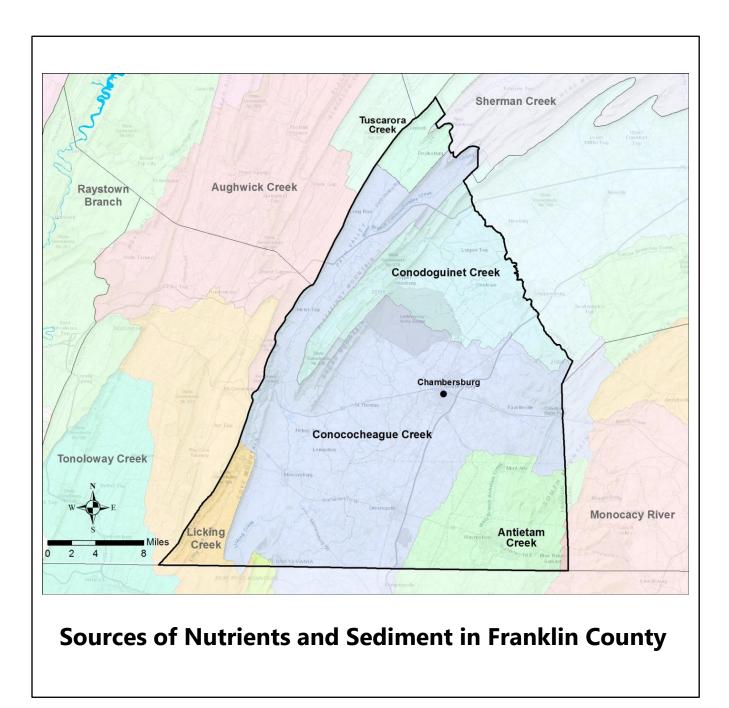
The graphs above take into account variability between years in river flow. For more information, visit: <u>https://cbrim.er.usgs.gov/summary.html</u>.

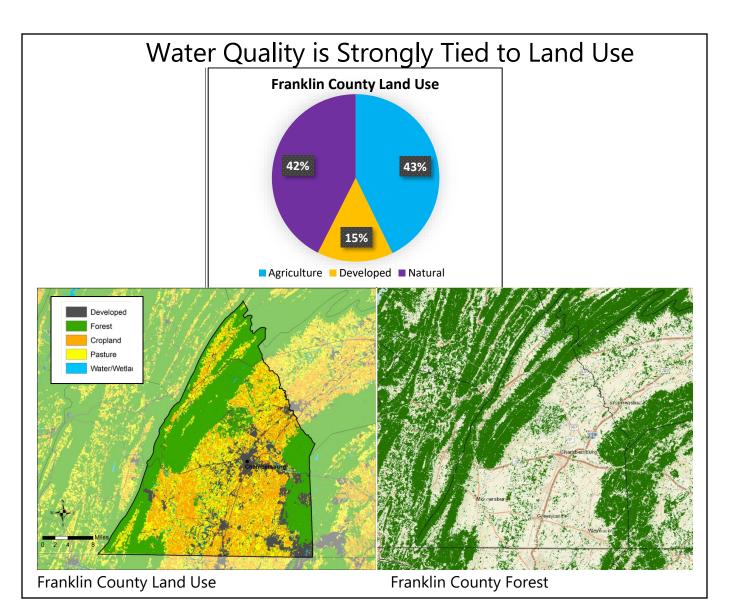

Phosphorus levels in Franklin County streams show varying conditions.

The monitored watersheds within Franklin County show varying phosphorus trends (some are degrading while others are improving).

- Of Franklin County's three locally monitored watersheds Antietam and Conodoguinet show improving conditions for phosphorus while the last 10 year trend at Conococheague is showing degrading conditions.
- Conococheague has higher phosphorus loads than Conodoguinet and Antietam. This is partially due to its larger size.
- The bottom graph shows that when size is taken into account, the phosphorus load per acre of watershed is still higher in Conococheague.
- The higher load per acre and degrading trends in Conococheague make it an effective area to focus efforts within Franklin County.

The graphs above take into account variability between years in river flow. For more information, visit: <u>https://cbrim.er.usgs.gov/summary.html</u>.

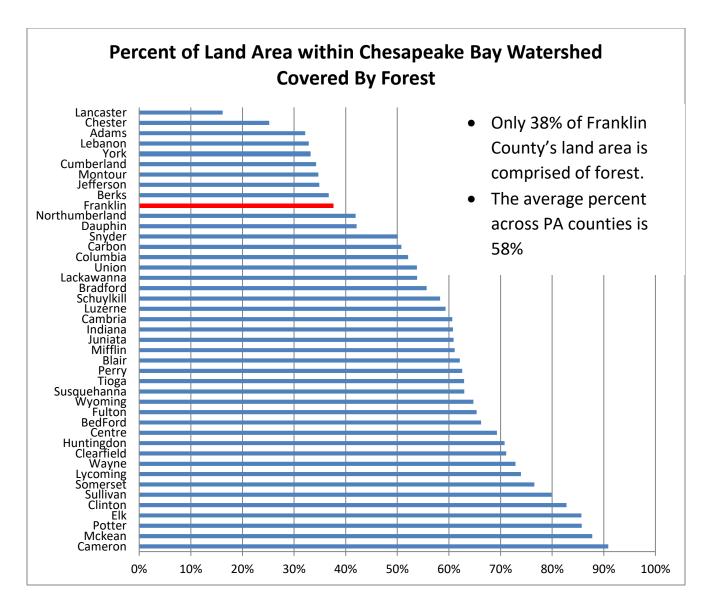

Sediment levels in Franklin County's streams have shown no significant trends over the last 10 years.



The monitored watersheds within Franklin County show no significant trends over the last 10 years.

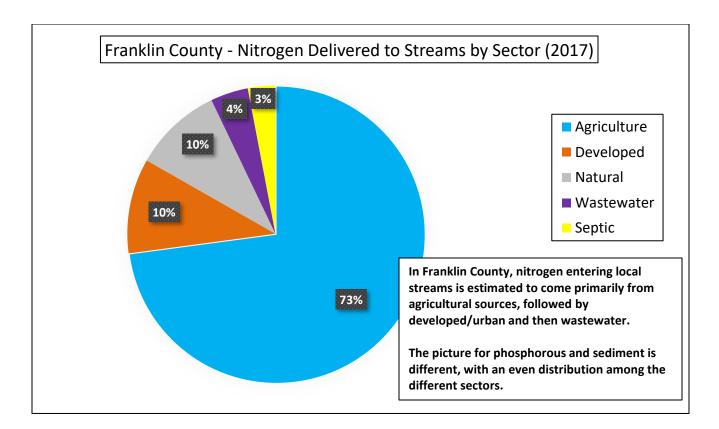
- Of Franklin County's three local monitored watersheds (Antietam, Conodoguinet and Conococheague), Conococheague has a higher sediment load than Antietam and Conodoguinet. This is partially due to its larger size.
- The bottom graph shows that when size is taken into account, the sediment load per acre of watershed is still higher in the Conococheague.
- The higher load per acre in the Conococheague watershed makes it an effective area to focus efforts.

The graphs above take into account variability between years in river flow. For more information, visit: <u>https://cbrim.er.usgs.gov/summary.html</u>.



Franklin County has unique challenges in restoring water quality.

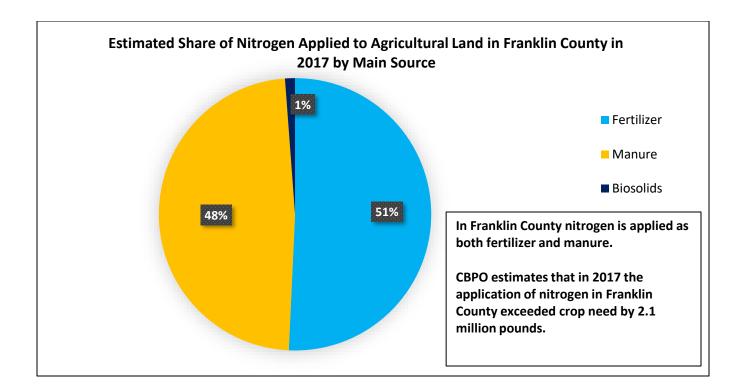
- Agricultural and developed land generate more nutrients and sediment than forested land. Franklin County has unique local water quality challenges in part due to its high acreage of agricultural and developed land.
- The pie chart above shows the breakdown of land uses in Franklin County. 57 percent of the county is agricultural or developed land, which is higher than most other counties in Pennsylvania.
- The maps above show the geography of land uses (left) and specifically the relatively small amount of forested land in the county (right).


High resolution land-use for the Chesapeake Bay watershed is available from USGS and the Chesapeake Bay Program at: <u>https://chesapeake.usgs.gov/phase6/</u>.

The maps above are from Falcone, 2015 (left) and CAST Map Viewer (right). The breakdown of land use by county can be found on CAST at: <u>https://gis.chesapeakebay.net/mpa/scenarioviewer/</u>.

Franklin County's land is only 38 percent forested. This is the tenth least forested county of all counties in Pennsylvania's Chesapeake Bay watershed, representing a unique challenge for Franklin County. The average for Pennsylvania counties is 58 percent forested land.

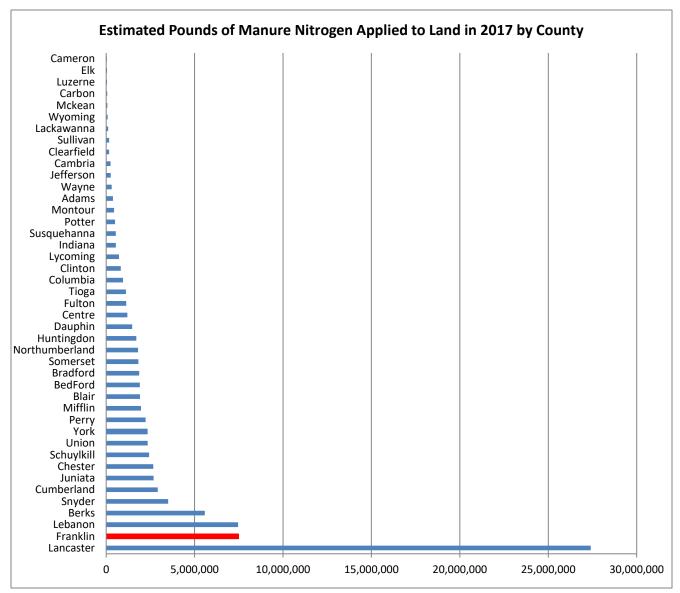
The breakdown of land use by county can be found on CAST at: <u>http://cast.chesapeakebay.net/Home/SourceData</u>


The pie chart above shows the percentage of nitrogen delivered to local streams based on land use or activity. Most nitrogen entering local streams in Franklin County comes from agricultural sources including cropland, pastures and barnyards.

The developed/urban sector also contributes a fair amount of the load from stormwater.

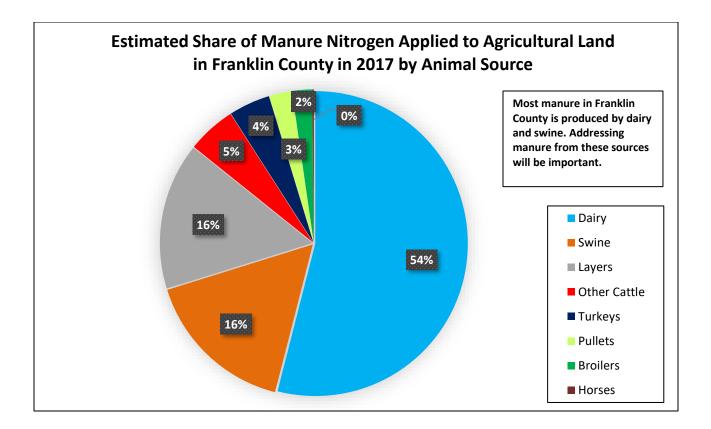
Because agriculture and developed/urban sources contribute the majority of the load in Franklin County, these sectors will need to consider how they can supply the majority of the reductions to reach local goals. Wastewater and septic sources can also be reduced.

These estimates were generated using the Chesapeake Bay Program's Phase 6 Watershed Model. The model is generated using water quality monitoring data.


Estimated loads by sector can be found on CAST at: <u>http://cast.chesapeakebay.net/</u>.

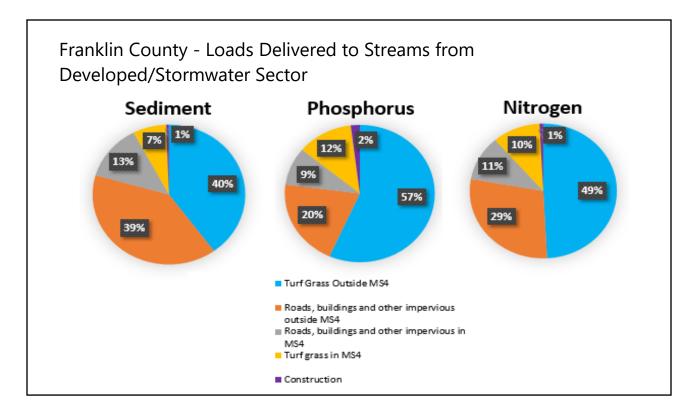
Understanding how nutrients are being applied to the land can help identify the sources that may need to be managed.

- Most nutrients applied to agricultural land in Franklin County are in the form fertilizer and manure.
- Nutrients that are applied to agricultural land and not taken up by crops can negatively impact water quality.
- It's estimated that in 2017 nitrogen application exceeded crop need by 2.1 million lbs in Franklin County.
- When identifying strategies to manage nutrient application, focusing on fertilizer and manure will address a large portion of the issue. These can require different control and management practices such as advanced or precision nutrient application, manure storage, manure transport, etc.


Estimated application of nutrients by source can be found on CAST at: <u>http://cast.chesapeakebay.net/.</u>

Franklin County is higher than average in Pennsylvania with regard to the amount of manure that is produced and applied to the land. Practices that can effectively manage manure as well as nutrient applications include:

- Practices that result in less application of nutrients to agricultural land, such as nutrient management, can address over-application of nutrients.
- Practices that manage manure, such as animal waste management systems and barnyard runoff control.
- Practices that remove manure from the county, such as manure transport.

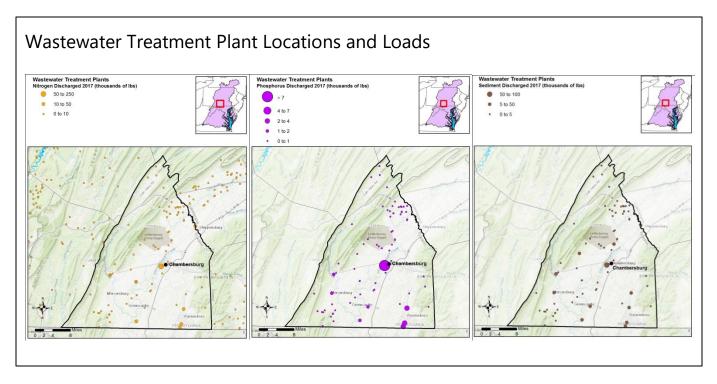

Estimated application of nutrients by source can be found on CAST at: <u>http://cast.chesapeakebay.net/</u>.

Understanding where manure is coming from within the county will help identify opportunities to manage it.

Most manure in Franklin County is from dairy, swine and layers operations. Focusing efforts on implementing practices at these operations can address a large portion of Franklin County's manure management needs.

Estimated share of manure nutrient animal sources can be found on CAST at <u>http://cast.chesapeakebay.net/</u>.

The developed/stormwater sector is also an important source of nutrients and sediment in Franklin County.

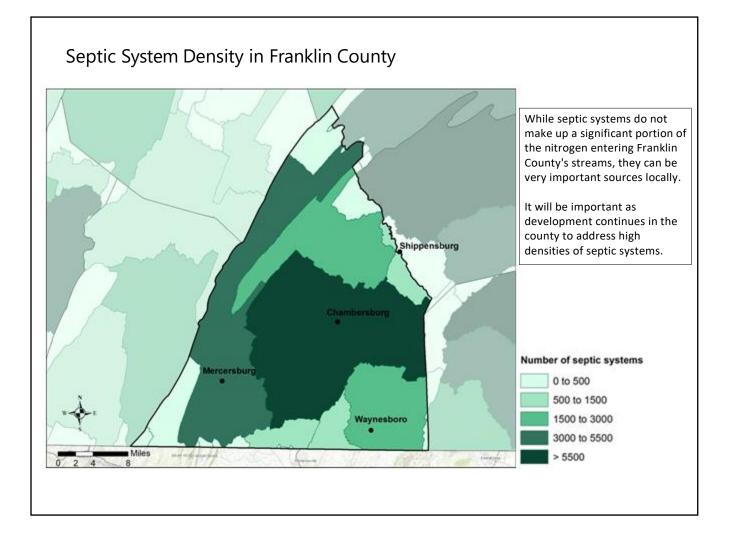

The charts above show the estimated breakdown of sources of nutrients and sediment to local streams exclusively from developed/urban lands.

- MS4 (municipal separate storm sewer systems) areas are regulated by DEP, while land outside of MS4 areas is not regulated for stormwater.
- The majority of the developed nutrient and sediment loads come from outside of MS4 areas.
- Turf grass represents grassy and barren lands that have been altered through compaction, removal of organic material, and/or fertilization. These include all lawns and grassy areas in residential, commercial, recreational, cemeteries, shopping centers, etc.

Understanding where stormwater nutrient and sediment comes from is an important first step in addressing it.

- In Franklin County, both impervious and grassy areas are important sources to manage stormwater.
- Managing stormwater outside of regulated MS4 areas will be important in Franklin County.
- Managing these unregulated stormwater areas may take different outreach, voluntary programs and funding programs to implement practices.

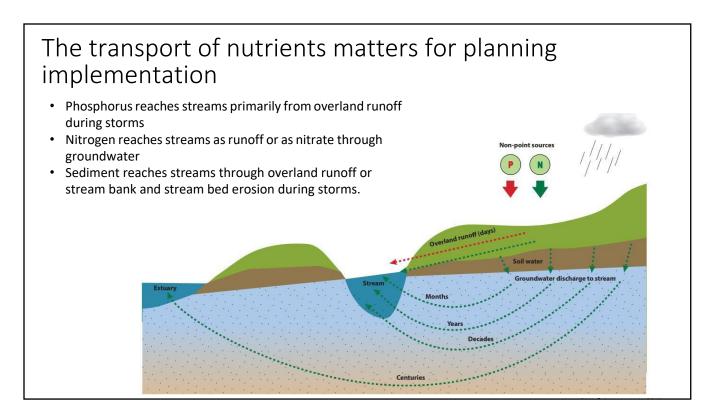
Estimated loads by sources can be found on CAST at <u>http://cast.chesapeakebay.net/</u>.



The maps above show the locations of wastewater treatment plants within Franklin County and their annual discharges of nitrogen, phosphorus and sediment in 2017.

Although wastewater makes up a smaller portion of nutrient loads to streams than agricultural or developed land and has already been slightly reduced in Franklin County, there is still room for reductions, particularly of nutrients. Wastewater is an important source to control as the discharges enter streams directly.

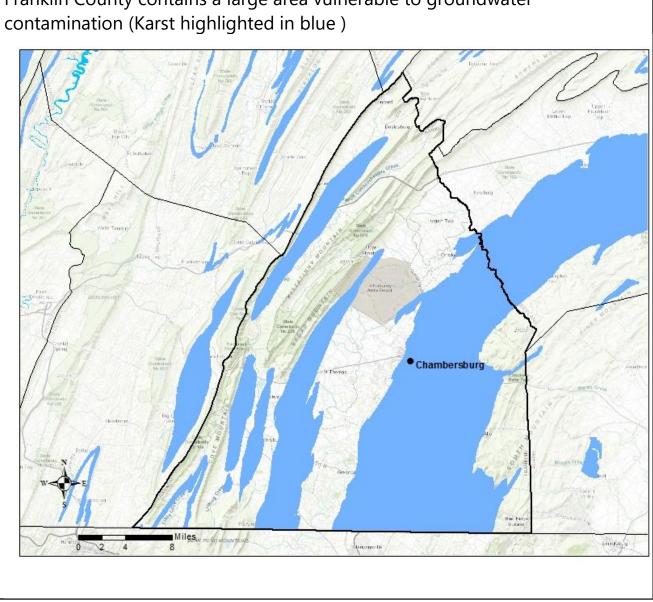
Understanding where the higher loading plants are can help identify opportunities for treatment plant upgrades in the future.


Reported wastewater treatment plant discharges and treatment plant locations are available from the Chesapeake Bay Point Source Database: https://www.chesapeakebay.net/what/downloads/bay program nutrient point source database

Although on-lot septic systems do not make up a large portion of the load in Franklin County, they can be very important local sources of nitrogen, especially when leaking into groundwater.

The map above shows the number of septic systems in different watersheds in the county, identifying potential areas of focus where septic system density is high.

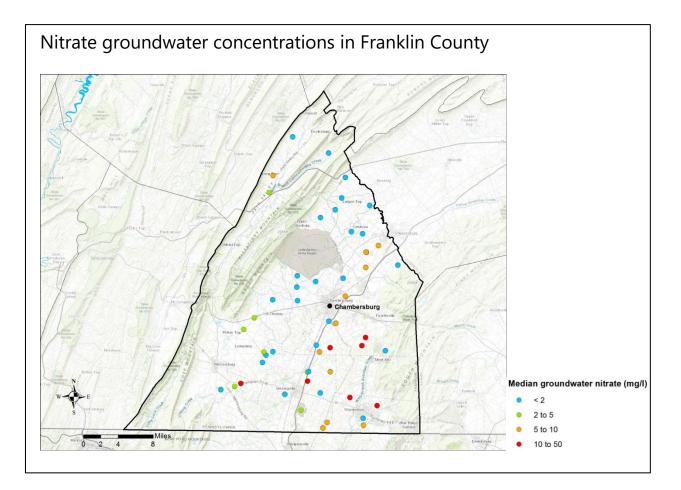
Number of septic systems in each watershed can be found on CAST at http://cast.chesapeakebay.net/.


The way in which nutrients and sediment reach our streams impacts which practices will be effective at controlling them.

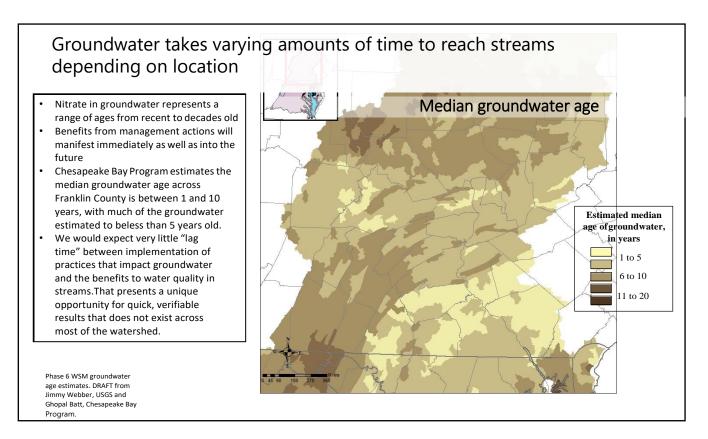
Phosphorus and sediment travel over the top of the land during high runoff events such as storms and rainfall, and also enter streams from stream bank or stream bed erosion.

Nitrogen can travel over land as well, but in many watersheds, including those in Franklin County, it travels to streams primarily as nitrate underground in groundwater.

- For example, in the Conodoguinet and Conococheague watersheds 59% of nitrogen entering the stream is in the form of nitrate from groundwater. In the Antietam watershed 79% of nitrogen is from ground water.
- If agricultural practices only focus on overland runoff, they could be missing a lot of the nitrogen that is entering streams through groundwater.
- Once nitrogen is in groundwater, it is very difficult to remove. Effective practices include those that stop nitrogen from entering groundwater in the first place, like applying less nitrogen and planting cover crops.
- Riparian buffers can remove nitrate from groundwater if placed in effective locations.


Percent of Nitrogen entering the streams as ground water nitrate can be found at <u>https://pubs.usgs.gov/wri/wri98-4059/pdf/wri98-4059.pdf</u>

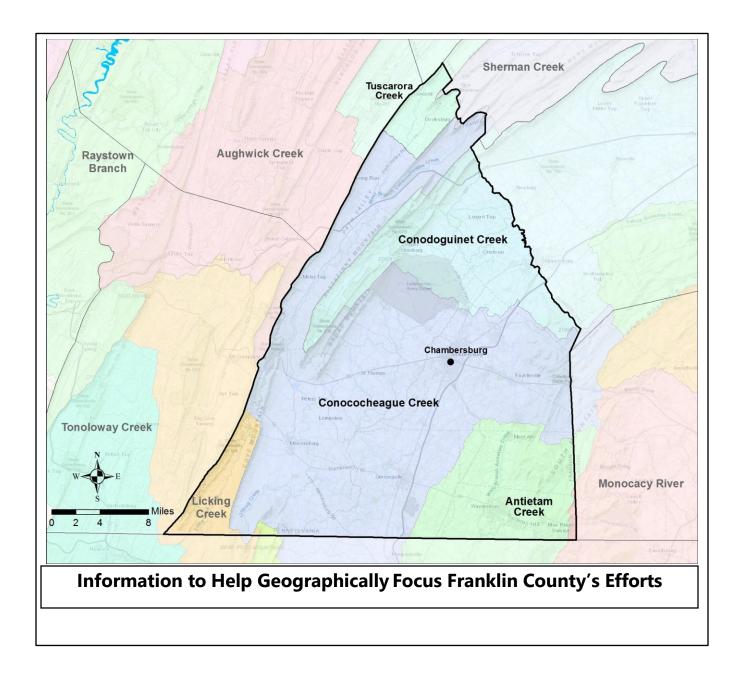
Franklin County contains a large area vulnerable to groundwater

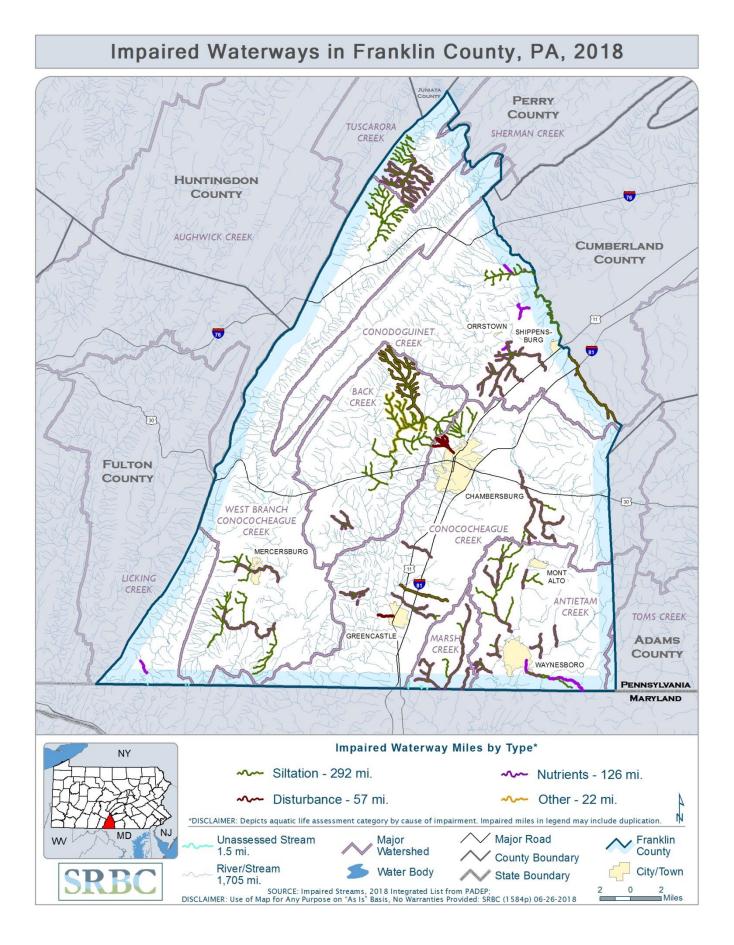

Certain areas of the watershed are more vulnerable to nitrate contamination of groundwater because the geology under the soil makes it easier for nitrogen to enter groundwater and provides less opportunity for its removal to occur naturally.

- The map above shows these vulnerable areas, which have Karst or carbonate geology. •
- Agricultural land on top of these areas makes the groundwater especially vulnerable due • to the high inputs of nitrogen onto the landscape.
- These areas can be very effective for focusing efforts that keep nitrogen from getting into groundwater and are especially important areas to manage application of nitrogen.

Groundwater in Franklin County has some elevated nitrate levels.

- This can be due to the vulnerable geology, and also to the over-application of nutrients over time.
- Because groundwater contributes a significant portion of nitrogen to streams in these watersheds, groundwater nitrate levels are good indicators of what will eventually enter streams.
- In a few cases throughout Franklin County, groundwater nitrate levels exceed the EPA's safe drinking water threshold of 10 mg/L.
- The map above depicts median groundwater data from 1925-present within Franklin County, data can be accessed here: <u>https://water.usgs.gov/owq/data.html</u>.

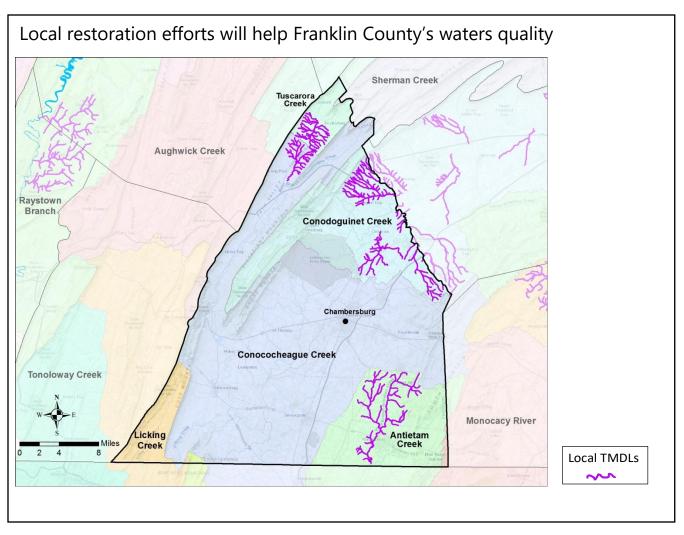



Groundwater takes anywhere from days to years to reach nearby streams.

In Franklin County, the groundwater is some of the youngest in the Chesapeake Bay watershed, meaning that it doesn't take long to reach streams.

This means that we would expect to see benefits from management actions related to groundwater relatively sooner compared to other areas of the watershed.

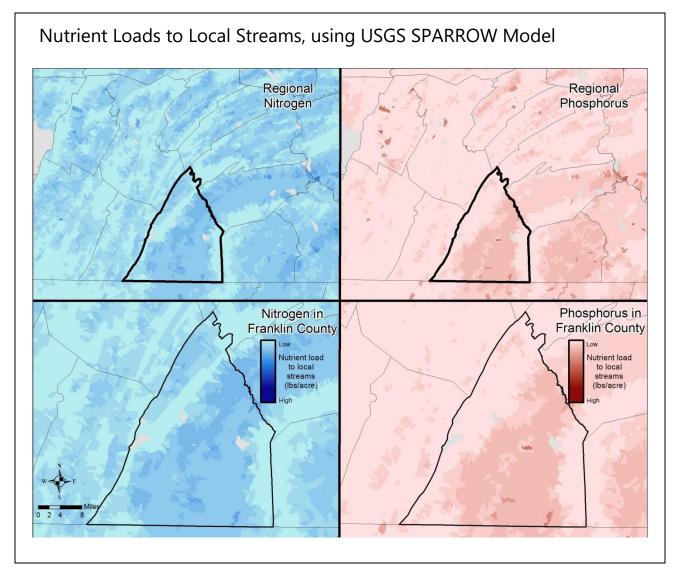
Estimated groundwater age can be obtained from the Chesapeake Bay Program at <u>www.chesapeakebay.net</u>.


I-33

Of Franklin County's 1,705 total stream miles, approximately 21% have degraded aquatic communities due to causes such as siltation (excessive sediment), nutrient pollution and others.

Knowing the sources of these impairments help to prioritize or coordinate efforts.

- For example, many agricultural practices that address nutrients can also address siltation impairments from sediment.
- Many urban/developed practices that address nutrients and sediment also address the same causes of pathogen impairments.
- Focusing efforts geographically in areas with impaired streams can help address local issues.

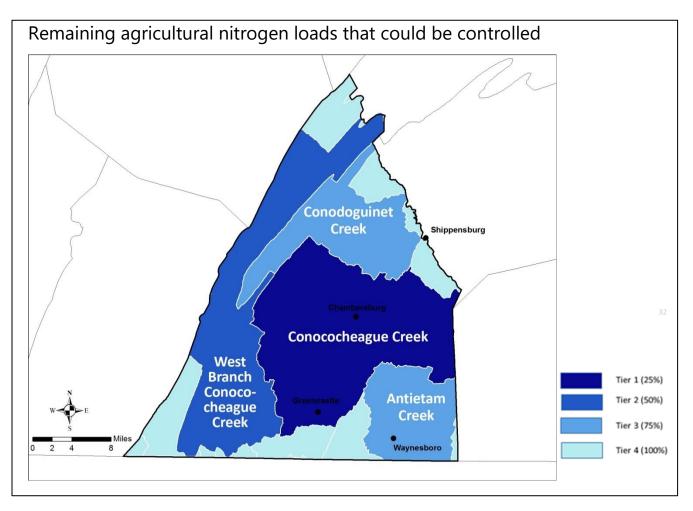

Local impaired waters listed on the 303(d) list can be found at PADEP: <u>http://www.depgis.state.pa.us/integratedreport/index.html</u>.

While many waters are listed as impaired, only some of these impairments are being addressed through regulatory Total Maximum Daily Loads (TMDLs).

Local groups may want to coordinate restoration efforts to focus on the watersheds that already have these local TMDLs.

Local impaired waters listed on the 303(d) list that have TMDLs can be found at PADEP: <u>http://www.depgis.state.pa.us/integratedreport/index.html</u>.

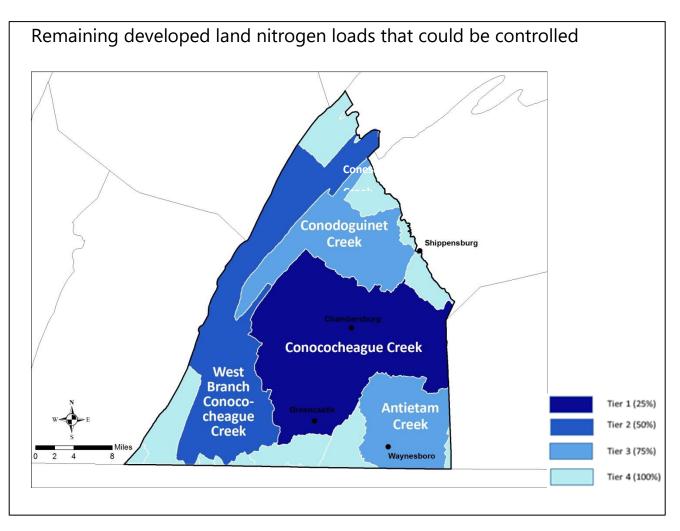
Focusing efforts on the highest loading areas within Franklin County can result in the greatest water quality benefits


We can estimate where the highest amounts of nitrogen and phosphorus are entering local streams.

The maps above show these higher loading areas within Franklin County and compared to the regional scale.

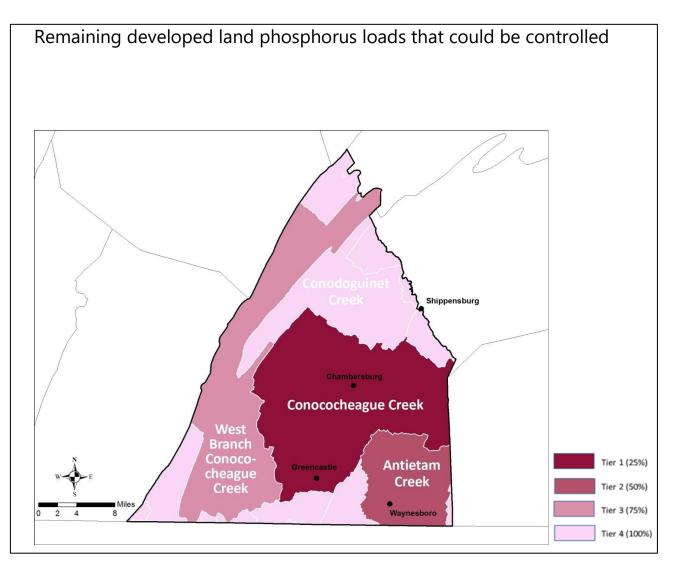
Focusing efforts on the highest loading areas can result in the greatest water quality benefits by addressing a larger portion of the nutrients entering streams. In Franklin County, the highest loading areas for both nitrogen and phosphorus tend to overlap. Focusing restoration efforts in those areas can be effective for both nitrogen and phosphorus.

The maps above are generated from the USGS SPARROW model for the Chesapeake Bay watershed:


https://pubs.usgs.gov/sir/2011/5167/

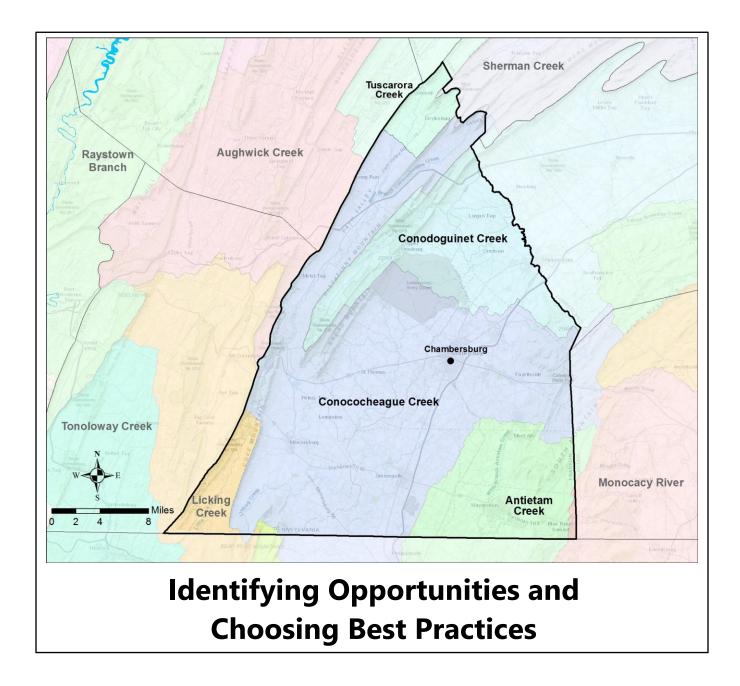
For each watershed within Franklin County, we can estimate the remaining nitrogen and phosphorus reductions that are feasibly possible from the agricultural sector.

- Although we can never expect these areas to reduce all of these loads, identifying where the remaining reductions can come from can help to geographically focus efforts.
- The above map shows the total remaining nitrogen reductions possible in Franklin County broken into 25 percent tiers.
- For example, if we were to reduce nitrogen loads in the two darkest watersheds as low as feasibly possible, that would address 50 percent of the entire remaining nitrogen load.
- Conococheague Creek is in the top two tiers across nitrogen and phosphorus for both agricultural and developed sectors.


Remaining controllable agricultural loads represent the difference between 2017 Progress and the E3 scenario.

For each watershed within Franklin County, we can estimate the remaining nitrogen and phosphorus reductions that are feasibly possible from the developed sector.

- Although we can never expect these areas to reduce all of these loads, identifying where the remaining reductions can come from can help to geographically focus efforts.
- The above map shows the total remaining nitrogen reductions possible in Franklin County broken into 25 percent tiers.
- For example, if we were to reduce nitrogen loads in the two darkest watersheds as low as feasibly possible, that would address 50 percent of the entire remaining nitrogen load.
- Conococheague Creek is in the top two tiers across nitrogen and phosphorus for both agricultural and developed sectors.


Remaining controllable developed land loads represent the difference between 2017 Progress and the E3 scenario.

For each watershed within Franklin County, we can estimate the remaining nitrogen (previous page) and phosphorus reductions that are feasibly possible from the developed/urban sector.

- Although we can never expect these areas to reduce all of these loads, identifying where the remaining reductions can come from can help to geographically focus efforts.
- The above map shows the total remaining phosphorus reductions possible in Franklin County broken into 25 percent tiers.
- For example, if we were to reduce phosphorus loads in the two darkest watersheds as low as feasibly possible, that would address 50 percent of the entire remaining phosphorus load.
- Conococheague Creek and Antietam Creek are in the top two tiers for phosphorus developed loads.

Remaining controllable developed land loads represent the difference between 2017 Progress and the E3 scenario.

Most Cost-effective Agricultural Practices for Nitrogen Reduction in Franklin County

Sector	BMP	Cost per unit BMP	Nitrogen Lbs Reduced per unit BMP	Nitrogen \$/Ib reduced/year
Agriculture	Dairy Precision Feeding and/or Forage	-10	3.10	-3.21
	Management			
Agriculture	Tillage – management	0	2.84	0
Agriculture	Alternative Crops	18.26	26.63	0.69
Agriculture	Grass Buffer – Streamside with Exclusion Fence	277.30	226.88	1.22
Agriculture	Grass Buffer	56.95	39.28	1.45
Agriculture	Barnyard Runoff Control	567.46	365.45	1.55
Agriculture	Soil Conservation and Water Quality Plans	1.94	1.18	1.64
Agriculture	Wetland Restoration – Floodplain	96.58	39.47	2.45
Agriculture	Agricultural Stormwater management	1584.63	636.80	2.49
Agriculture	Forest Buffer – Streamside with Exclusion Fence	709.73	236.19	3.00
Agriculture	Forest Buffer	157.35	50.54	3.11
Agriculture	Water Control Structure	17.74	5.69	3.12
Agriculture	Grass Buffer – Narow	56.95	17.65	3.23
Agriculture	Loafing Lot management	1541.23	365.45	4.22
Agriculture	Cropland Irrigation management	4.57	0.76	5.99

Most Cost-effective Developed Practices for Nitrogen Reduction in Franklin County

Sector	BMP	Cost per unit BMP	Nitrogen Lbs Reduced per unit BMP	Nitrogen \$/Ib reduced/year
Developed	Forest Planting	92.23	7.21	12.79
Developed	Forest Buffer	153.28	9.52	16.09
Developed	Tree Planting – Canopy	107.78	1.32	81.79
Developed	Bioswale	865.95	6.98	124.07
Developed	Infiltration Practices w/o sand, veg. – A/B soils, no underdrain	1,093.35	7.98	137.08
Developed	Wet Ponds and Wetlands	330.44	1.99	165.75
Developed	Dry Extended Detention Ponds	342.62	1.99	171.86
Developed	Vegetated Open Channels a/b Soils, no underdrain	819.32	4.49	182.60
Developed	Storm Drain Cleaning	0.62	0.00	304.29
Developed	Bioretention/raingardens – C/D soils, underdrain	1,059.40	2.49	425.05

The list above reflects the top 15 agriculture and top 10 developed, most cost-effective practices at reducing nitrogen in Franklin County.

This list can serve as a starting point to assess feasibility of practice implementation.

For example, even though Alternative Crops are cost-effective, this practice involves replacing crops with others such as switchgrass, which may not be a feasible practice to implement.

Descriptions of the BMPS and the methods for generating cost-effectiveness can be found on the CAST website at <u>http://cast.chesapeakebay.net</u>.

The most effective practices were determined using CAST and isolating reductions from individual BMPs. Most effective practices list are available from CAST at http://cast.chesapeakebay.net.

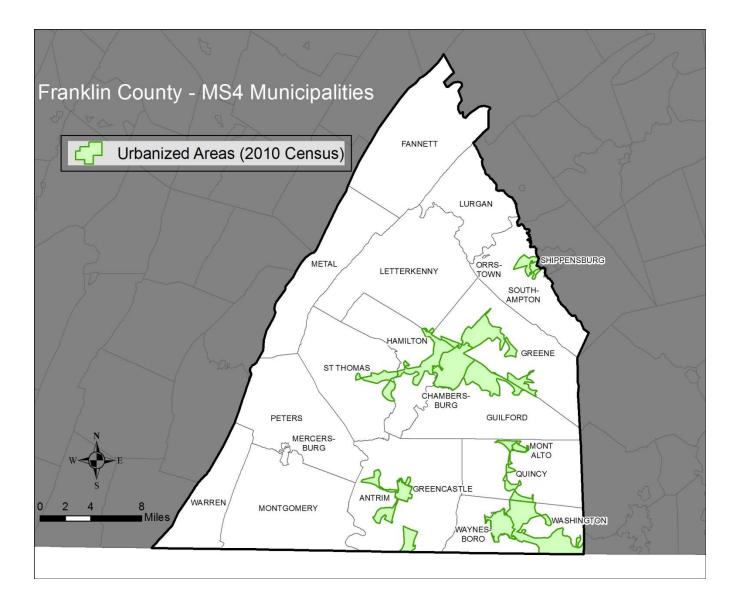
Remaining Opportunities in Franklin County for Agricultural Practices						
Practice	Current Reported Implementation	Acres Remaining				
Basic Nutrient Management	20%	162,000				
Conservation Tillage	79%	23,000				
Cover Crop	15%	96,000				
Prescribed Grazing	11%	21,000				
Barnyard Runoff Control	73%	130				
Soil & Water Conservation Plans	9%	186,000				
Forest Buffers	N/A	22,000				
		37				

This chart shows the current implementation in Franklin County of some effective agricultural practices, and the remaining acres of land in the county available to implement those practices.

The current reported implementation percent reflects how much of the land that is available for a particular practice already has that practice reported to be implemented on it.

For example, prescribed grazing's current percent implementation reflects that 11 percent of pasture land in Franklin County is currently reported to have prescribed grazing implemented. 21,000 acres of pasture remain in the county without prescribed grazing, which may represent an opportunity for further implementation of that practice.

Remaining opportunity is determined as the difference between reported implemented acres and all available acres on which the practice can be implemented. Land on which BMPs can be implemented are available in CAST. Reported implementation is available on CAST at http://cast.chesapeakebay.net.


Remaining Opportunities in Franklin County for Stormwater Practices on Developed/Urban Land					
Practice	Current Reported Implementation	Acres Remaining			
Erosion & Sediment Control	100%	0			
Stormwater Management	5%	70,000			
		38			

This chart shows the current implementation in Franklin County of stormwater practices, and the remaining acres of land in the county available to implement those practices.

Erosion and sediment control addresses construction areas and time periods. However, sediment from developed land and from erosion of streams on developed land persists as issues long after construction is over. Therefore, stormwater management is incredibly important for managing these issues once construction ends.

Opportunities exist in Franklin County to implement stormwater management practices in developed and urban areas.

Remaining opportunity is determined as the difference between reported implemented acres and all available acres on which the practice can be implemented. Land on which BMPs can be implemented are available in CAST. Reported implementation is available on CAST at <u>http://cast.chesapeakebay.net</u>.

Municipal separate storm sewer systems (MS4s) are identified above in Franklin County.

Municipalities and other entities that meet certain standards must obtain NPDES permit coverage for discharges of stormwater from their municipal separate storm sewer systems (MS4s). MS4s must apply for NPDES permit coverage or a waiver if they are located in an urbanized area as determined by 2010 Census data.

More information can be found here-

http://www.dep.pa.gov/Business/Water/CleanWater/StormwaterMgmt/Stormwater/Pages/defa ult.aspx_