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PROJECT SUMMARY 

 

This project is the result of a long history of developmental efforts spanning nearly three 

decades. Fish community-based assessments gained nationwide momentum in the 

1980s. By the 1990s, numerous states began developmental efforts to include fish 

community-based monitoring and assessments. Federal guidance on developmental 
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strategies also began to emerge around this time. Pennsylvania initiated the first fish 

community-based developmental efforts in the mid-1990s when PFBC entered into a 

contractual agreement with DEP that funded a staff position dedicated to the task. Data 

collection was conducted across Pennsylvania’s wadeable streams through the contract 

period. Once fish community data was collected and evaluated, DEP pursued 

assessment method development. Based on spatial coverage and sample sizes, the 

assessment method development effort was largely focused on regional and stream 

size calibrations that were specifically focused on warmwater, wadeable streams in the 

Ohio River basin. Throughout this time, standardized sampling protocols were 

developed and evaluated to achieve consistent and repeatable data collection while 

maintaining a reasonable level of logistical effort. Standardized sampling protocols were 

developed in the mid-2000s for wadeable streams. Based on the revised sampling 

protocols, a probabilistic sampling effort was conducted across wadeable streams 

throughout the state. This monumental project (“Fish IBI Project”) included two years 

(2008-2009) of intensive data collection that was collaborative between DEP, PFBC and 

PSU. As data and sample sizes began to increase, developmental efforts began 

focusing on the eastern half of the state (Atlantic Slope). Throughout all developmental 

efforts, various challenges were identified that were generally related to extensive 

zoogeographical influences on fish distributions, sample sizes and barriers to 

recolonization. The challenges identified in early developmental efforts were invaluable 

to current efforts. As these challenges were being considered, concerns over large river 

system health began to emerge. The development of standardized sampling protocols 

(non-wadeable) followed and extensive data collection continued across both wadeable 

and non-wadeable waterbodies. By 2016, data was available to initiate another round of 

developmental effort that was able to focus on a larger spatial scale across both 

wadeable and non-wadeable waterbodies. The following document is the consolidated 

product of all these efforts.
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INTRODUCTION 

 

This document is intended to describe the purpose, applicability and development of a 

thermal fish index (TFI) that serves as a multidisciplinary tool for management centered 

around fish and their role in 25 Pa. Code § 93 for measuring water quality. Specifically, 

“Uses” are discussed to establish initial context for making assessments and 

evaluations, pursuant to Water Quality Standards, using fish. The technical 

development of a TFI focuses on introducing important fish-related concepts and 

empirical evaluations that support these concepts. General results are discussed to 

create an initial foundation for assessment and evaluations. Specific assessment 

methods stemming from this technical document are presented independently (Wertz 

2021). 

 

25 Pa. Code § 93.3 lists five categories of protected water uses: Aquatic Life, Water 

Supply, Recreation and Fish Consumption, Special Protection and Other. Each of these 

categories is specifically intended to protect and support the resource and/or the user of 

the resource. Section 93.3 defines four Aquatic Life Use (ALU) sub-categories, three of 

which – Cold Water Fishes (CWF), Warm Water Fishes (WWF) and Trout Stocking 

(TSF) – are narrative definitions of biological communities along a thermal regime 

(Table 1). These protected sub-categorical ALU definitions describe maintenance 

and/or propagation of certain ecological communities. Pennsylvania’s water quality 

standards also include water quality criteria associated with various protected uses. In 

this context of protected uses and water quality criteria, development of biologically 

based ALU assessments must be calibrated and responsive to changes in water quality 

and habitat as a reflection of waterbody condition and the ability of a waterbody to 

support relevant protected uses. In contrast to protected ALUs and associated water 

quality criteria, which focus on the ability of a waterbody to support certain fish and 

associated flora and fauna, protected recreational uses focus on human uses of 

waterbodies (Table 1) with associated water quality criteria designed to be protective of 

human health. 

 

25 Pa. Code § 93.7 provides maximum temperature criteria for defined times of the year 

for three protected sub-categorical ALUs: CWF, WWF and TSF. Temperature criteria in 

§ 93.7 are applied to heated waste sources regulated under 25 Pa. Code Chapters 92a 

and 96. Temperature limits apply to other sources when they are needed to protect 

designated and existing uses. In other words, temperature criteria are applied to specific 

cases and are not used for broad assessments of ALU. As indicated from the ALU 

definitions, an appropriate thermal evaluation includes a biological assessment 

(bioassessment) based on instream flora and fauna, with specific mention of fish 

species.
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Table 1. Protected water uses for Aquatic Life and for Recreation and Fish 

Consumption (25 Pa. Code § 93.3) 

Aquatic Life 

CWF - Cold Water Fishes Maintenance or propagation, or both, of fish species 

including the family Salmonidae and additional flora and 

fauna which are indigenous to a cold water habitat.   

WWF - Warm Water Fishes Maintenance and propagation of fish species and 

additional flora and fauna which are indigenous to a 

warm water habitat.  

MF - Migratory Fishes Passage, maintenance and propagation of anadromous 

and catadromous fishes and other fishes which move to 

or from flowing waters to complete their life cycle in 

other waters. 

TSF - Trout Stocking Maintenance of stocked trout from February 15 to July 

31 and maintenance and propagation of fish species 

and additional flora and fauna which are indigenous to a 

warm water habitat. 

Recreation and Fish Consumption  

B – Boating Use of the water for power boating, sail boating, 

canoeing and rowing for recreational purposes when 

surface water flow or impoundment conditions allow. 

F – Fishing Use of the water for the legal taking of fish. For 

recreation or consumption. 

WC – Water Contact Use of the water for swimming and related activities. 

E – Esthetics Use of the water as an esthetic setting to recreational 

pursuits. 

 

Freshwater fishes are important indicators of temperature as they are obligate 

poikilothermic, meaning their internal body temperatures are dictated by the ambient 

surrounding water temperature (Wood and McDonald 1997, Beitinger et al. 2000). 

Thermal preference and tolerance vary among species (Wehrly et al. 2003, Yoder 

2006), creating unique assemblages of fishes along a continuous gradient, upstream to 

downstream. These longitudinal changes in fish assemblages parallel important shifts in 

loading, transport and utilization of organic matter from headwaters to mouth that form 

the river continuum concept (RCC; Vannote et al. 1980). The thermal zonation of fishes 

along a longitudinal gradient has been realized for nearly a century (Carpenter and 
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Huxley 1928) and biological zones have been identified based on the occurrence of 

dominant fishes as “indicator species” (Huet 1959). 

 

The use of indicator species may be appropriate where only presence-absence data are 

available, but the use of indicator species in bioassessments tends to lack 

responsiveness to degradation along a continuous gradient (Fausch et al. 1990). For 

example, when an indicator species is absent due to stress, any additional stress on the 

system will have no measurable effect. An alternative to using indicator species is the 

use of all species in an assemblage and their relative abundance based on taxonomy, 

traits and tolerance values to make bioassessments along a broad range of stress. The 

shift from indicator species to a more broad-scale, assemblage-based approach largely 

began in the 1970s and 1980s, and the application of these concepts were first realized 

by the seminal introduction of the Index of Biotic Integrity (IBI) conceptualized by Karr 

(1981). As assemblage-based concepts began to evolve from indicator species 

concepts, regulatory definitions evolved as well. Historic ALU definitions were largely 

dependent on using trout species (family Salmonidae) as an indicator of a cold water 

community, as evident from the evolution of definitions from the late 1960s (  
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Table 2) to what they are today (Table 1).  

 

It is important to note that sub-categorical ALU definitions that make specific mention of 

trout (e.g., CWF, TSF), use trout as an indicator of natural thermal communities. Where 

trout populations are being completely supported indicates that additional flora and 

fauna indigenous to a cold water habitat may be supported (CWF), or not supported 

(WWF) by waterbody conditions, and an ecological community intermediate of CWF 

and WWF exists that does not fit the sub-categorical definition of TSF. While trout 

fishing has well-established socioeconomic value, the socioeconomic value of trout 

fishing is included and protected in Pennsylvania’s water quality standards under the 

protected recreational fishing use, not under the protected ALU (Table 1). 
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Table 2. Historic sub-categorical aquatic life uses from Article 301 of the Sanitary Water 

Board Rules and Regulations, Commonwealth of Pennsylvania, Water Quality Criteria 

(1968). 

Cold Water Fishes Maintenance or propagation, or both, of fish species of the 

family Salmonidae and fish food organisms.   

Warm Water Fishes Maintenance and propagation of fish food organisms and all 

families of fishes except Salmonidae.  

Migratory Fishes Passage, maintenance and propagation of anadromous and 

catadromous fishes and other fishes which ascend to flowing 

waters to complete their life cycle. 

Trout (Stocking Only) * Warm water fishes and trout stocking  

* Added December 20, 1967. 

 

On the surface, sub-categorical ALU definitions could be interpreted as framework for 

thermal assessment with CWF, TSF and WWF considered as hierarchical along a 

thermal gradient. However, these ALU definitions have inherent complexities that 

present challenges for assessment purposes. Specifically, some waters under natural 

(or near-natural) conditions may not always support CWF (e.g., large streams, rivers). 

Additionally, the interpretation of the ALU definitions have traditionally relied heavily on 

the presence of fish (e.g., trout in CWF) to fulfil the “maintenance” requirements, and 

the presence of young-of-year or multiple age-classes of fish (e.g., trout in CWF) to fulfil 

the “propagation” requirements. This interpretation can be successfully applied to CWF 

when trout are present in high numbers but becomes more challenging as trout 

numbers are reduced (e.g., how many trout constitute “maintenance”?). In other words, 

numerical thresholds may help alleviate subjectivity while providing consistent 

interpretation of narrative definitions. Furthermore, species within the trout family 

(Salmonidae), need to clearly demonstrate a positive response to good water quality, if 

their use as a potential indicator of waterbody condition is to be meaningful. Preliminary 

investigations of trout density and abundance as an indicator of water quality suggests 

responses to water quality may be variable overall and species-specific (Figure 1).  
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Figure 1. Three common trout species found in Pennsylvania, density (log transformed) 

as the number of fish per hectare and relative abundance in response to water quality, 

measured with the modified water quality index (ModWQI), at all sites where present. 

The ModWQI measures water quality stress from poor to good, on a continuous scale 

from 0-100, respectively. 

 

Interpretation of ALU narrative provisions for “maintenance” and/or “propagation” can be 

bolstered through the development of numeric thermal assemblage classes. This 

provides a shift from qualitative implementation to a more quantitative description of fish 

assemblages along a thermal gradient. Numerically describing the transition from “fish 

species... and additional flora and fauna which are indigenous to a cold water habitat” to 



 

7 
 

“fish species and additional flora and fauna which are indigenous to a warm water 

habitat” is possible by quantifying the transition of assemblages dominated by cold 

water species to assemblages dominated by warm water species. This transition is 

considered continuous in nature as opposed to binary, meaning there will be 

assemblages dominated by warm water species that may still have cold water species 

present. This transitional or “cool water” assemblage appears to align with the TSF use 

interpretation presented, where stocked trout may be seasonally maintained within a 

warm water assemblage. However, important differences are noted between the TSF 

use and a transitional assemblage that may preclude quantification of TSF directly. 

Herein, a transitional assemblage is considered a segue of biological assemblages 

intermediate of cold and warm assemblages, based on environmental changes along a 

waterbody’s continuum (e.g., from headwaters downstream, slope, temperature). 

Subsequently, bioassessments should be directed towards quantifying a transitional 

assemblage (as opposed to TSF), as a measure of a waterbody’s ability to support this 

natural transitional assemblage. To avoid confusion between established uses in 

Chapter 93 and natural assemblages, the terms cold water assemblage (CWA), 

transitional assemblage (TSA) and warm water assemblage (WWA) will be used 

hereafter to describe thermal assemblages from an ALU assessment perspective. 

These terms are used to describe assemblage classes of fishes along a thermal (and 

environmental condition) gradient, and should in no way be considered redefinitions of 

ALUs. 

 

As previously stated, ALU bioassessment tools are designed to evaluate a waterbody’s 

condition by measuring changes in biological assemblages, in response to stress. The 

natural thermal zonation of fishes along a longitudinal gradient can be altered by 

anthropogenic stressors (Caissie 2006, Stanfield and Kilgour 2013) that include but are 

not limited to: deforestation (Brown and Krygier 1970, Jones et. al 1999, Burcher et. al.  

2008), urbanization (Brown et. al. 2005, Nelson and Palmer 2007), groundwater 

manipulation (Poole and Berman 2001, O’Driscoll and DeWalle 2006), impounding 

(Ward and Stanford 1983, Lessard and Hayes 2002), thermal effluents (Coutant 1975, 

Shuter et al. 1980) and global climate change (Eaton and Scheller 1996, Mohseni et al. 

2003, Nelson and Palmer 2007). Thermal regimes can also be affected by natural 

factors that may combine to shape the fish assemblages found within a waterbody. 

Common natural effects that influence the thermal regime include effects related to 

latitude, elevation, slope, velocity, groundwater and canopy cover, among others. Less 

common effects may include effects associated with turbidity, basin orientation or 

substrate characteristics. Effects of anthropogenic and/or natural factors are usually 

spatiotemporally stochastic and are both responsible (at varying degrees), for the 

formation of modern-day fish assemblages. This theory forms a physical habitat 

template and suggests that recovery from disturbances and the response of fish 
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assemblages may vary accordingly (Southwood 1977, Poff and Ward 1990). In other 

words, as anthropogenic stress increases in a waterbody, the natural thermal 

assemblage may adjust accordingly (Figure 2). Alternatively, as anthropogenic stress is 

mitigated (naturally or through management), the thermal assemblage may adjust 

accordingly. Therefore, it is important to note that the thermal response of fish 

assemblages is not exclusively limited to changes in temperature. 

 
Figure 2. Theoretical example of natural longitudinal transition areas versus stress 

induced fish assemblage transitions. With applied stress to a cold water assemblage 

(CWA; blue), the CWA reduces, the transitional assemblage (TSA; yellow) is shifted 

upstream and the warm water assemblage (WWA; red) is expanded.  
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Historically, DEP has relied on bioassessments based on macroinvertebrate 

assemblages to make categorical ALU assessment determinations. Fish-based 

bioassessment tools offer a suite of benefits that compliment macroinvertebrate-based 

assessments. Benefits include: (1) fish life cycles are longer than macroinvertebrates, 

providing insight into acute and chronic exposure through time, (2) fish often respond to 

stress at different landscape scales than macroinvertebrates (Lammert and Allan 1999), 

(3) fish life history and tolerance information is widely available, (4) fish are relatively 

easy to identify, (5) fish have well-established socioeconomic value and (6) fish provide 

important evidence of sub-categorical ALU narrative descriptions. Fish-based 

bioassessment tools are typically considered more complex than macroinvertebrate-

based tools, in that: (1) fish can be highly mobile within dendritic freshwater systems,  

(2) species distributions are based on zoogeographic factors that can make inter-basin 

comparisons challenging and (3) barriers (physical and/or chemical) to recolonization 

efforts may delay recovery. Pennsylvania has had extensive zoogeographic influences 

that have shaped six major drainage basins and nearly 200 fish species, represented by 

28 families, have been recorded from Pennsylvania’s non-tidal waters (Stauffer et al. 

2016). To overcome distributional challenges and have a fish-based bioassessment tool 

that can be broadly applied throughout Pennsylvania, focus should be shifted away from 

taxonomic assessments (e.g., species-level assessments) and directed towards 

tolerance/preferences at the assemblage level. Additionally, focus should be directed 

towards relative abundance changes as a way to help mitigate potential effects of 

barriers to recolonization. For example, if a species is excluded from an area due to 

recolonization barriers, the species that are present may still respond to improving 

waterbody conditions that facilitate reproductive success and relative abundance. 

Specifically, this assessment method development is directed towards thermal 

tolerances (or preferences) of fish assemblages to make categorical ALU assessments, 

while numerically aligning assemblages with the intent of sub-categorical ALU 

definitions, to the extent possible. 

 

Although there is a great deal of literature concerning the thermal response of fishes, 

there is little information regarding the quantification of entire fish assemblages along a 

thermal gradient (but see Zorn et al. 2002). The following represents the introduction of 

a metric, the TFI, that quantifies the thermal preference of entire assemblages as a 

numerical description of how “cold” or “warm” a fish assemblage is, based on a unitless 

scale. The TFI ranks assemblages from coldest to warmest along a 2.0 to 10.0 scoring 

gradient, respectively.  
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METHODS 

 

Index Calculation 

Fish species were designated within a thermal class as determined from thermal studies 

compiled by Eaton and Scheller (1996) and Lyons et al. (2009). Eaton and Scheller 

(1996) ranked each species on a three-tiered classification of Cold, Cool and Warm 

from streams across the continental United States, whereas Lyons et al. (2009) utilized 

an additional fourth tier by splitting Cool into Cool-transitional and Warm-transitional in 

Wisconsin and Michigan streams. Tiered delineations were converted to five-tiers with 

associated numerical values: 1-Cold (Cd), 2-Cold-Cool (CdCl), 3-Cool (Cl), 4-Cool-

Warm (ClWm) and 5-Warm (Wm), similar to Coker et al. (2001), to normalize any 

disagreement between delineations. The list of Pennsylvania fish taxa and their thermal 

delineations were then independently sent to regional experts familiar with fishes of the 

Northeastern and Mid-Atlantic United States – including representatives of PFBC, the 

Susquehanna River Basin Commission (SRBC), EPA Region 3 and DEP – to delineate 

taxa not directly addressed by Eaton and Scheller (1996) and Lyons et al. (2009). Final 

delineations from regional experts were chosen based on modal values (Appendix A). 

Where modal values were not achieved, the delineations were made by using arithmetic 

mean rounded up or down by considering latitudinal distributions and habitat 

preferences for each species, similar to Coker et al. (2001). 

 

To calculate the TFI, the number of individuals within each thermal class, as a 

proportion (e.g., 20% cold water individuals = 0.2), was calculated. A weighted average 

was obtained by multiplying the numeric value for the thermal class by the proportion of 

individuals, summed across classes. The final value is then multiplied by two to expand 

and standardize the range from two to ten, coldest to warmest, respectively (  
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Table 3). Calculation of the TFI follows: 

 

𝑇𝐹𝐼 = (∑𝑁𝑃𝑖

5

1

)2 

 

where, N is the numeric value for the thermal class and P is the proportion of individuals 

at the ith thermal class.  
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Table 3. Example of proportional abundance shifts of individuals within a thermal class, 

across the five thermal classes, and the resulting thermal fish index (TFI) score for six 

example assemblages. 

Example Cold Cold-Cool Cool Cool-Warm Warm TFI 

Score Assemblage 1 2 3 4 5 

Assemblage 1 1.00         2 

Assemblage 2 0.60 0.30 0.10   3 

Assemblage 3  0.60 0.30 0.10  5 

Assemblage 4   0.60 0.30 0.10 7 

Assemblage 5   0.10 0.30 0.60 9 

Assemblage 6         1.00 10 

 

Reference Condition and Stressor Gradient 

A least-disturbed (LD) approach was used to develop a reference condition, or the “best 

available” condition, based on Stoddard et al. (2006). The criteria for establishing the LD 

condition was determined a priori and applied consistently across streams of all sizes to 

allow for assemblage characterization along a longitudinal gradient. Three major stress 

categories were identified: stressed (S), moderately stressed (M) and LD (Figure 3). 

Two major stressors on aquatic environments were used to delineate stress categories: 

water quality and habitat. Water quality stress was measured using a modified version 

of DEP’s water quality index (WQI), originally described by Wertz and Shank (2019). 

The original WQI used 21 parameters to inform stress condition along a land-use-

similarity index (range = 0-100, S to LD, respectively). The modified WQI (modWQI) 

was reduced to 18 parameters (Table 4), which increased the number of fish sites 

available with paired water quality. Instream habitat measures were conducted following 

a modified version of the U.S. Environmental Protection Agency’s (EPA’s) Rapid 

Bioassessment Protocols for Use in Streams and Wadeable Rivers (RBP III) (Plafkin et 

al. 1989, Barbour et al.1999) associated with DEP and SRBC collection methods at 

each fish site (Shull and Lookenbill 2018, Shank et al. 2016). Since habitat measures 

varied across sampling methods (i.e., wadeable vs. nonwadeable), habitat measures 

were standardized into a habitat category score (Habcat; range = 1-4, LD to S, 

respectively) based on available measures of sedimentation, embeddedness, sand, silt 

and detritus. Finally, a dam proximity criterion was added to ensure fish sampling sites 

were not close to habitat-modified systems, or barriers to migration, that could 

potentially influence the fish assemblage (Table 5).
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Figure 3. Map of sites considered least disturbed (LD), moderately stressed (M) and stressed (S) across a gradient of 

water quality and habitat conditions. Open circles represent sinkhole locations and relative density.



 

14 
 

Table 4. Water quality parameters (n =18) used to create a modified water quality index 

(modWQI). See Wertz and Shank (2019) for further details. 

PARAMETER 

ALKALINITY, TOTAL  

ALUMINUM, TOTAL 

AMMONIA TOTAL AS NITROGEN 

BROMIDE, TOTAL 

CALCIUM, TOTAL 

CHLORIDE, TOTAL 

DISSOLVED SOLIDS, TOTAL 

HARDNESS, TOTAL 

IRON, TOTAL 

MAGNESIUM, TOTAL  

MANGANESE, TOTAL 

NICKEL, TOTAL 

pH 

PHOSPHOROUS, TOTAL 

SPECIFIC CONDUCTIVITY @ 25.0 C 

SULFATE 

SUSPENDED SOLIDS, TOTAL  

ZINC, TOTAL 

 

Table 5. Least-disturbed and stressed criteria based on water quality using a modified 

water quality index (modWQI), habitat from a categorical measure (Habcat) and dam 

proximity. 

  Freestone Limestone 

Description 

Least 

Disturbed 

Criteria 

Stressed 

Criteria 

Least 

Disturbed 

Criteria 

Stressed 

Criteria 

modWQI score > 60 < 40 > 40 < 20 

Habcat score 1 3 or 4 1 or 2 3 or 4 

Proximity to dam or impoundment  > 1.5 km    > 1.5 km   
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Datasets 

Prior to development of the TFI, water quality and habitat data were spatiotemporally 

paired with fish assemblage data; the full dataset was then inspected for potential 

outliers and anomalies. Three potential issues were considered at this stage and 

addressed accordingly. First, if an assemblage had >10% of the individuals not 

identified to the species-level (e.g., not having a thermal class), the TFI score was 

considered not representative of the assemblage and the sample was removed. 

Second, samples with less than 50 individuals were investigated for potential cause and 

representativeness. Potential causes for low sample sizes investigated were: 1) 

appropriate application of collection protocols (e.g., electrofishing settings, survey 

distance and time), 2) potentially toxic water quality conditions and 3) near-sterile 

conditions (e.g., extremely low productivity). Only two of these causes were identified in 

the dataset. Toxic conditions were observed at sites with extreme acid mine drainage 

and near-sterile conditions were observed in extreme headwaters. In both cases all 

samples were still considered to be representative of the overall site conditions and 

were retained. Lastly, sites were coded based on spatiotemporal representation of at 

least one water chemistry sample to fish sample location and time. Sites were coded 

from zero to three, best to worst expected representation, respectively, where: 1- 

represented same site and year, 2- represented a separation of year or distance but no 

evidence suggested a significant change in space or time and 3- represented a 

separation of year or distance with evidence to suggest the spatiotemporal gap may not 

be representative. All 3s (those fish samples where the spatiotemporally closest water 

chemistry sample was most likely to be unrepresentative) were removed from the 

dataset. 

 

The full dataset was divided into three subsets; 1) precision dataset, 2) calibration 

dataset and 3) validation dataset. The precision dataset was first partitioned from the full 

dataset to reduce any pseudo-replication or spatial-autocorrelation issues (Sokal and 

Oden 1978, Hurlbert 1984). Since the stress measures used have a strong temporal 

component (i.e., based on instream measures instead of land use) sample 

independence was defined in an attempt to retain repeated samples from the same site 

that have measurable, spatiotemporal change in water quality or habitat. Independent 

samples were identified, randomly across samples at the same site, as having either a 

five-point modWQI score change or a one-point change in Habcat score. These 

respective temporal changes to water quality or habitat are biologically meaningful as 

they can occur as a result of anthropogenic activities, which would be expected to 

influence fish assemblages through time. Samples that didn’t meet this definition were 

regarded as repeat measures and were used in the precision dataset (samples 

removed; n = 193, 36%). The temporal strength of this method negated the need for 

temporal precision estimates as it treated all replicated sites, given similar water quality 
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and habitat conditions, the same. In other words, repeated sites were considered 

standardized by habitat and water quality, to ensure variability was associated with 

natural conditions (i.e., seasonal, sampling, processing). This result was desired as 

sampling for quality assurance and precision estimates at fish community sites presents 

theoretical challenges. For example, sampling the exact same reach twice on the same 

day is not advised since fish were removed on the first sampling event. Over time the 

first sampled reach will go back pre-sampled conditions as fish are returned to the reach 

after processing and recolonizing occurs. The exact period of time for recolonization is 

unknown as it varies with reach conditions. Conversely, sampling a nearby reach (i.e., 

replicating) on the same day that is representative of the first is advisable but must be 

evaluated thoroughly to ensure habitat and water quality were similar to the first. 

Standardizing by habitat and water quality at replicated sites allows same-time 

replicates to be compared to across-time replicates.  

 

The full development dataset (i.e., the dataset after splitting out the precision dataset 

from the full dataset) included sites from all stress groups (i.e., LD, M, S), and was 

randomly split into a calibration dataset and a validation dataset (80/20, respectively; n 

= 360/90). The LD sites within the calibration dataset were used for site classification 

purposes. The calibration dataset was used for development of the TFI and the 

validation dataset served as an independent basis for measuring the performance of the 

TFI. 

 

Landscape Variables 

Landscape variables were compiled at the local (stream segment) and watershed (total 

upstream catchment) scale. Local variables were obtained from the Appalachian 

Landscape Conservation Cooperative (AppLCC) stream classification system. The 

AppLCC contained data across six major variable types: size, gradient, temperature, 

hydrology, buffering capacity and confinement (Olivero et al. 2015). Of the six AppLCC 

variable groups available, temperature was the only variable group not used in 

development of the TFI as it was based on fish assemblage data and was considered 

redundant. Catchment data was obtained by delineating upstream drainage areas for 

each site and measuring area (km2), density of sinkholes (#/km2) and the percent of 

limestone geology within the catchment. Drainage area was considered a longitudinal 

variable as catchment size increases from headwater to mouth. Sinkholes and 

limestone geology were specifically chosen to address potential relationships identified 

from previous studies relating to limestone and karst systems, and their effect on fish 

assemblages (Steffy and Kilham 2006, Carline et al. 2011, Kollaus and Bonner 2012). 

All landscape variables were compiled using ArcGIS Pro version 2.2 (ESRI 2018). 
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Site Classification 

Boosted regression trees (BRTs) and recursive partitioning were used to classify LD 

and calibration datasets. Regression trees are a form of classification tree that utilize 

machine learning, where “boosting” generally improves performance from traditional 

regression trees by fitting multiple “simple” models with an error term to avoid 

overfitting. Boosted regression trees, used in a continuous regression situation, use 

recursive partitioning to split data into homogenous groups and sub-groups based on 

between-group sum-of-squares, similar to analysis of variance (ANOVA), (Qian 2016, 

Elith et al. 2008). Regression trees or recursive partitioning trees, (with or without 

boosting) have been utilized extensively for environmental modeling (Prasad et al. 

2006, Breiman et al. 1984, Cutler et al. 2007, De'ath and Fabricius 2000, De’ath 2007) 

and groundwater studies (Trauth and Xanthopoulos 1997, Naghibi et al. 2016). All 

statistics were performed using R (R core team, 2016). Boosted regression trees were 

performed using R package ‘gbm’ (Ridgeway, 2006). Recursive partitioning trees were 

performed using R package ‘rpart’ (Therneau and Atkinson, 2019), method = ANOVA 

for continuous response variable. Least disturbed sites were first modeled using BRTs 

to determine appropriate classification groups from natural variables using a minimum 

of 1,000 trees and adjusting the learning rates (lr) and tree complexity (tc) following Elith 

et.al. (2008). The variable importance output from the BRTs were used to indicate which 

variables should be used for classification. Recursive partitioning trees (single tree) 

were then investigated to determine where to best split the important variables. Results 

were analyzed for ecological relevance and minimal cross-validation error (Qian 2016). 

Similarly, BRTs were investigated in the calibration dataset to explore potential effects 

that may be problematic for analysis. Potential problematic issues may arise from 

stressors or site classification groups not represented in the LD dataset. The results of 

the classification schema were then applied to the calibration dataset and adjusted as 

needed to obtain final classification groups based on ecologically relevant concepts 

(i.e., RCC). For example, if the result of the recursive partitioning trees indicated a 

classification group split was evident around a drainage area of 170 km2, the area could 

be adjusted to 150 km2 with the understanding that the extra 20 km2 is ecologically 

arbitrary. 

 

During preliminary data exploration investigations within the calibration dataset, using 

recursive partitioning and BRTs, the effect of karst geology became apparent (using 

sinkhole density within upstream catchment as an indicator metric). This finding was in 

concordance with previous studies conducted in watersheds dominated by limestone 

geology. Generally, limestone streams (i.e., streams in karst-dominated geology) have a 

unique ability to maintain cold water assemblages at increased stress levels, relative to 

their freestone counterparts (Steffy and Kilham 2006, Carline et al. 2011). This 

phenomenon was apparent in the calibration dataset, where sites with increased 
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sinkhole densities were observed to have reduced modWQI scores while still 

maintaining lower TFI scores, when compared to the rest of the dataset. Sites with ≥ 

0.03 sinkholes/km2 were classified from sites with < 0.03 sinkholes/km2, hereafter 

referred to as limestone (LS) and freestone (FS) stream types, respectively. It is 

important to note that no LS streams met LD criteria for water quality as LS streams 

typically are found in wide, fertile valleys that tend to be dominated by agricultural 

practices. Habitat quality was also reduced in the limestone group, as many of these 

streams are typically lower gradient with moderate sand and gravel substrates. 

Additionally, the effect of habitat quality on the TFI score was apparent within the LS 

group. Since the LS group of streams did not meet LD criteria for the FS group, the LD 

criteria for LS streams was adjusted from the LD criteria for the FS streams (Error! 

Reference source not found.5) after investigating the range of water quality across the 

sites in the LS streams. It is important to note that LS stress criteria were only adjusted 

due to lower (colder) TFI scores than FS streams under similar stress conditions. This is 

hereafter referred to as the “karst effect”. In this dataset, the karst effect began to 

dissipate for LS streams after reaching significant size (~1,000 km2) where TFI scores 

began to resemble that of similar-sized FS streams. To compensate for the karst effect, 

streams with sinkhole densities >0.03/km2 that were in catchments >1,000 km2 were 

considered FS streams. 

 

Data Analysis 

Thermal fish index scores were investigated within the FS and LS datasets 

independently to determine thresholds that best align with ALU definitions, based on 

trout responses. To this end, TFI scores were rounded down to the next lowest integer 

(e.g., a score of 2.9 was rounded down to 2) and the proportion of samples with trout in 

each TFI integer group was calculated, referred to here as percent occurrence (PO). It 

should be noted that this was conducted at the sample level, as opposed to site level. At 

some sites where trout are present fleetingly and/or in low numbers, they may not be 

captured in some samples from that site. As such, trout PO may be lower calculated at 

the sample level than at the site level. Furthermore, the percent abundance (PA) of trout 

averaged across samples in each TFI integer group was calculated for comparison. 

This approach produced two measures of trout response (PO and PA) which were 

analyzed along the TFI gradient for each of the two stream groups (FS and LS). To 

establish TFI thresholds representing quantifiable transitions from CWA to WWA, plots 

of trout PO and PA by TFI integer group were visually investigated to find inflection 

points for LS and FS streams. The PO and PA measures were chosen to demonstrate 

the drastic difference across measures of occurrence and abundance. The occurrence 

measure (PO) is very different than abundance (PA), as trout can be present throughout 

a wide range of stream types at low abundance (e.g., one individual). Subsequently, the 
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strict presence-of-trout measure reduces ecological meaningfulness without associated 

abundance measures. 

Applying the site classification schema derived from the BRT and recursive partitioning 

analysis of the LD dataset to the calibration dataset allowed for analysis of TFI response 

to those classifications alongside the stress categories. TFI scores were plotted and 

regressed to test for responsiveness to longitudinal gradient and stress levels. The 

datasets were tested for within-group normalcy and homogeneity of variance by 

inspecting residual distributions from linear models and Shapiro-Wilk tests. Final group 

sample sizes were relatively small and non-normal distributions were not all 

successfully transformed to meet parametric assumptions. Subsequently, Kruskal-

Wallis chi-squared tests were used to measure among-group longitudinal differences of 

the final classification groups, using LD sites, followed by Dunn’s test of multiple 

comparison, post hoc (α = 0.05) adjusted using Bonferroni correction. Effect size (ETA2) 

and magnitude were calculated from results using 0.01 to < 0.06 (small effect), 0.06 to < 

0.14 (moderate effect) and >= 0.14 (large effect; Tomczak and Tomczak, 2014). Least 

disturbed sites were used to test for longitudinal response, minimizing effects from 

potential stressors. This procedure was repeated within stress level groups to measure 

significant differences in stress effect. Discrimination efficiency (DE) between LD and S 

sites was calculated to measure the TFI’s ability to characterize stress (i.e., how much 

overlap exists between the LD and S TFI scores) (Barbour et al. 1999, Gerritsen et al. 

2000). To measure DE, the percentage of S sites under the 75th percentile for LD sites 

was calculated by: 

 

%𝐷𝐸 = (
𝐴

𝐵
) ∗ 100 

 

where, A is the number of S sites scoring below the 75th percentile for LD range and B 

is the total number of S sites. 

 

After calculating DE, the 95th percentile of the LD sites within each group was used to 

establish impairment thresholds for assessment decisions. The 95th percentile is 

considered a high threshold for impairment which has two important considerations on 

assessments: 1) confidence in impairing a stressed site is increased, 2) confidence in 

not impairing a stressed site is reduced. For example, if a stressed site is below the 95th 

percentile of the LD TFI range, it would be considered attaining. The decision to use the 

95th percentile of LD sites is based on two reasons: 1) the modWQI is continuous in 

nature and allows for comparisons of stress response along a robust gradient of water 

quality across all stream classes; and 2) using Habcat scores (1-4) there is more 

confidence that LD sites are characterized as a 1 and less confidence that moderately 

stressed sites are characterized as a 4. For example, a moderately affected site with 

sedimentation issues is more likely to be classified as a 3 (stressed) or 4 (very stressed) 
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than a 1 (not stressed); however, a site with severe habitat modifications 

(impoundment) may also be classified as a 3 or 4. As such, more confidence is placed 

on LD sites being accurately characterized, and less confidence on stressed sites being 

accurately characterized. 

 

Once TFI impairment thresholds were established, validation was conducted to 

measure the TFI assessments ability to classify sites not used in development of the 

TFI. Classification efficiency (CE) was calculated to measure the percentage of sites 

correctly classified based on the exceedance of established TFI attainment thresholds. 

The validation dataset was used to classify both impaired and attaining samples based 

on exceedance of TFI impairment thresholds by measuring the percent correctly 

reclassified (i.e., the percentage of stressed sites being reclassified as impaired and the 

percentage of unstressed sites being reclassified as attaining). 

 

The TFI was considered novel in both concept and application. A comparative analysis 

that demonstrated how the TFI compares to traditional metrics was needed to enhance 

understanding of metric function, both in ecological relevance and performance. 

Traditional metrics were calculated for the biological condition gradient (BCG; Davies 

and Jackson 2006) level five (BCG5), percent tolerant individuals and percent 

omnivorous individuals. The BCG5 attribute is generally based on relative tolerance 

value of a species but also includes native/non-native status. A pairwise comparison 

using Spearman’s rank correlation coefficient was conducted across metrics as well as 

the modWQI and Habcat to compare metrics responses to stress. 

 

RESULTS 

 

Thermal Assemblage Classes 

The inflection point for trout PO was between TFI scores 6-7 in both FS and LS streams 

(Figure 4). Trout PA sharply decreased with TFI scores > 4 and the range of inflection 

was strongly noted between TFI scores 4-7 (Figure 4). Overall, the range of TFI scores 

from 5.0-7.0 indicates a strong transition in assemblages based on both trout 

abundance and occurrence. Upper thresholds were established to numerically define 

thermal assemblage classes that best represent the transition from an assemblage 

dominated by cold water species (TFI <= 5.0), to dominated by cool water species (TFI 

= 5.1-7.0) and dominated by warm water species (TFI > 7.0) (Figure 4). 
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Figure 4. Percent abundance (PA) and percent occurrence (PO) of trout by thermal fish 

index (TFI) group in both freestone and limestone streams. Dotted lines represent PO 

and solid lines represent PA. The transitions from cold water assemblage (CWA) to 

transitional assemblage (TSA) and from TSA to warm water assemblage (WWA) are 

represented by blue and red vertical lines, respectively. 

 

Modeled Results 

Results from the BRTs using LD sites in FS streams (n trees = 1,550, lr = 0.005, tc = 5) 

indicated a strong longitudinal and slope effect, with minimal ecoregional effect. 

Variable importance was partitioned relating to stream size (76%), slope (10%), water 

quality (10%) and ecoregion (4%). Recursive partitioning trees indicated five 

classifications based on stream size, with minimal ecoregional effects in small streams 

(Figure 5). Boosted regression trees in the LS dataset were conducted across all stress 

groups, as sample sizes from the LD sites precluded analysis. Boosted regression trees 

in LS streams (n trees = 2,800, lr = 0.005, tc = 2) indicated habitat, longitudinal and 

water quality effects, with additional karst effects. Variable importance was partitioned 

relating to habitat quality (35%), stream size (33%), water quality (17%) and karst and 

limestone geology (sum = 15%). Recursive partitioning trees indicated a single split 

based on stream size (Figure 6). 

 

The specific catchment-size ranges were modified slightly from recursive partitioning 

tree output to maintain sufficient sample sizes in each group and to ensure ecological 

relevance of the longitudinal effect of mean TFI distribution (i.e., the mean TFI 

increased as drainage area increase), maintaining ecological conformance with RCC. 
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The ecoregional effect in small FS streams was reinvestigated for a smaller catchment 

group to maintain a consistent classification scheme. Six final stream type/longitudinal 

classifications were determined by stream type and upper range of catchment area 

(km2) as: LS<1000, FS<40, FS<150, FS<550, FS<6000 and FS>6000; hereafter, these 

classifications are referred to as drainage area groups (DAGs; Figure 7). 
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Figure 5. Recursive partitioning tree model of least disturbed (LD) sites showing important variables to classify freestone 

streams (FS) are generally related to catchment size and ecoregion. The bottom “leaflets” correspond to the mean 

thermal fish index (TFI) and the percentage of the dataset within each group. 

 

 
Figure 6. Recursive partitioning tree model showing the most important variable to classify limestone streams (LS) is 

stream size. The size classifications here (i.e., small rivers, creeks, medium tributary rivers) are from Olivero et al. 2015. 

All stress groups within the dataset were used as the sample size using only least disturbed (LD) sites precluded analysis. 
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Figure 7. Boxplot of thermal fish index (TFI) scores (ThermalScore) for the final limestone (LS) and freestone (FS) 

drainage area groups (DAGs) (upper km2 range). Stress groups are denoted as: Least Disturbed (LD), Moderate (M) and 

Stressed (S). Dotted red lines represents the 95th percentile of LD sites, signifying the impairment threshold for each 

DAG. The solid blue line (TFI = 7.0) represents the upper limit for cold water assemblage (CWA) and the solid red line 

(TFI = 5.0) represents the lower limit for warm water assemblage (WWA) with the transitional assemblage (TSA) range in 

between.
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Between-DAG comparisons of LD sites in FS streams using regression and Kruskall 

Wallis showed a significant increase in TFI score along a longitudinal gradient (adjusted 

R2 = 0.76, P= < 0.001, chi-squared = 53.6, ETA2 = 0.60, Magnitude = Large). All mean 

and 95th percentile TFI estimates were increasing as DAGs increased, suggesting 

ecological relevance of the TFI. The 95th percentile for the LD sites within the LS DAG 

was 5.7. The 95th percentile for the LD sites within each longitudinally progressing FS 

DAG are as follows: 4.8, 6.0, 6.8, 7.6 and 8.4. Discrimination efficiencies were > 80% 

within each DAG, with the exception of the LS<1000 group, where the DE was 70%; the 

average DE across all DAGs was 88% (Table 6). 

 

Table 6. Between-group and within-group results describing thermal scores across 

drainage area groups (DAGs) and stress categories, respectively. Shared superscripted 

letters within the DAG column (i.e., abc) designate non-significant differences of the least 

disturbed (LD) groups between DAGs (Dunn’s test, p < 0.05). Sample sizes for each 

stress group and shared superscripted letters within the same cell designate non-

significant differences across stress categories within each DAG (Dunn’s test, p < 0.05). 

Kruskal-Wallis test chi-squared values in bold represent significant results (p < 0.05); 

values in bold italic represent significant results (p < 0.01). 

DAG n = LD, M, S chi-squared ETA2 Magnitude DE 

LS<1000abc 9a, 6ab, 10b 4.92 0.13 Moderate 70% 

FS<40ab 6a, 31a, 15b 24.93 0.46 Large 100% 

FS<150ab 16a, 30b, 9c 27.65 0.48 Large 100% 

FS<550ac 18a, 30bc, 9c 18.89 0.31 Large 89% 

FS<6000cd 15a, 30bc, 8c 8.48 0.13 Moderate 88% 

FS>6000d 6a, 82ab, 11c 8.57 0.06 Moderate 82% 

Average   15.57     88% 

 

TFI precision estimates measured with coefficient of variation (CV) and standard 

deviation (SD) across all sites averaged 4.3% (TFI score ± 0.3) and 0.25, respectively. 

The highest CV and SD was observed in the FS<150 DAG, averaging 8.8% (TFI score 

± 0.7) and 0.4, respectively (Table 7). Classification efficiency, calculated to validate the 

calibration dataset and averaged across DAG groups, was 95% for LD sites and 87% 

for S sites ( 

Table 8). 
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Table 7. Precision estimates using standard deviation (SD) and coefficient of variation 

(CV), expressed in percentage, for repeated sites within each drainage area group 

(DAG), regardless of stress level. 

DAG SD CV % n 

LS<1000 0.2 4.0 16 

FS<40 0.1 1.8 11 

FS<150 0.4 8.8 59 

FS<550 0.2 3.2 61 

FS<6000 0.3 4.5 39 

FS>6000 0.3 3.3 178 

 

Table 8. Validation classification efficiency: the percent stressed above impairment 

threshold and percent least disturbed under impairment threshold from the validation 

dataset. Values in parentheses denote sample size. 

  LS<1000 FS<40 FS<150 FS<550 FS<6000 FS>6000 Avg. 

Least 

Disturbed 100% (2) 100% (2) 100% (4) 100% (4) 100% (6) 67% (3) 95% 

Stressed 50% (4) 100% (1) 100% (3) 67% (3) 100% (1) 100% (3) 87% 

Avg. 67% 100% 100% 86% 100% 83% 91% 

 

Pairwise comparisons of the TFI to traditional metrics demonstrated numerous, 

significant correlations that were generally considered weak to moderate relationships 

(Figures 8-13). Strong and significant correlations were observed between the BCG5 

and percent tolerant metrics throughout all DAGs. The omnivore metric tended to 

correlate with other metrics in larger streams but was considered highly variable. 

Relationships between the TFI and water quality were noted in all DAGs, except in the 

FS>6000 DAG, where the relationship was reduced. Across all DAGs the TFI 

consistently outperformed traditional metrics in response to water quality and habitat 

based on Spearman’s correlation coefficients.
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Figure 8. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal fish index score (ThermalScore) 

to traditional metrics: Biological Condition Gradient category 5 (BCG5), percent tolerant (Tolerant), percent omnivorous 

(Omni), water quality index (WQI) and habitat (Habcat) in LS<1000 streams. Fitted red lines are LOESS smoothed. *** 

(P<0.001), ** (P<0.01), * (P<0.05)  
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Figure 9. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal fish index score (ThermalScore) 

to traditional metrics: Biological Condition Gradient category 5 (BCG5), percent tolerant (Tolerant), percent omnivorous 

(Omni), water quality index (WQI) and habitat (Habcat) in FS<40 streams. Fitted red lines are LOESS smoothed. *** 

(P<0.001), ** (P<0.01), * (P<0.05) 
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Figure 10. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal fish index score (ThermalScore) 

to traditional metrics: Biological Condition Gradient category 5 (BCG5), percent tolerant (Tolerant), percent omnivorous 

(Omni), water quality index (WQI) and habitat (Habcat) in FS<150 streams. Fitted red lines are LOESS smoothed. *** 

(P<0.001), ** (P<0.01), * (P<0.05) 
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Figure 11. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal fish index score (ThermalScore) 

to traditional metrics: Biological Condition Gradient category 5 (BCG5), percent tolerant (Tolerant), percent omnivorous 

(Omni), water quality index (WQI) and habitat (Habcat) in FS<550 streams. Fitted red lines are LOESS smoothed.  *** 

(P<0.001), ** (P<0.01), * (P<0.05) 
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Figure 12. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal fish index score (ThermalScore) 

to traditional metrics: Biological Condition Gradient category 5 (BCG5), percent tolerant (Tolerant), percent omnivorous 

(Omni), water quality index (WQI) and habitat (Habcat) in FS<6000 streams. Fitted red lines are LOESS smoothed. *** 

(P<0.001), ** (P<0.01), * (P<0.05) 
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Figure 13. Pairwise comparison, using Spearman’s correlation coefficient, of the thermal fish index score (ThermalScore) 

to traditional metrics: Biological Condition Gradient category 5 (BCG5), percent tolerant (Tolerant), percent omnivorous 

(Omni), water quality index (WQI) and habitat (Habcat) in FS>6000 streams. Fitted red lines are LOESS smoothed. *** 

(P<0.001), ** (P<0.01), * (P<0.05)
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DISCUSSION 

 

In preliminary classification analyses during TFI development, limestone streams were 

identified as a distinct group by their unique ability to support CWAs in larger stream 

sizes than FS counterparts. Catchment area was determined to be the strongest natural 

predictor of the TFI in both FS and LS systems, with slope being an important (albeit 

secondary) predictor. This result is beneficial as it provides a template for the transition 

of fish assemblages along a longitudinal gradient for both stream types. By taking into 

account key factors like stream size and stream type, the TFI provides an ecologically 

relevant, numerical indicator of thermal fish assemblages based on environmental 

characteristics (e.g., DAGs). The longitudinal regression response of the TFI using the 

LD sites in this analysis was strong and significant (adjusted R2 = 0.76, p = < 0.001) and 

meets expectations for general ecological relevance, based on the RCC (Vannote et al. 

1980). 

 

On the surface, the LS<1000 DAG appears to be unique with respect to the TFI when 

compared to FS DAGs. This group had the lowest DE (70%) and lowest CE (in the S 

group, 50%) recorded. However, the reason for this apparent discrepancy is attributed 

to one major factor, trout-stocking. Herein, all (100%) LS streams that were considered 

S yet had a TFI score below the impairment threshold are streams regularly stocked 

with trout, thereby lowering the TFI score. This concept identifies a small degree of 

complexity that may be present in all fish-based bioassessments, where intentional (or 

unintentional) stocking co-occurs. Herein, a tradeoff exists between enhancing valuable 

recreational opportunities through stocking and measuring the response of fish 

assemblages that may not be solely driven by waterbody conditions. Subsequently, the 

effect of stocking should be realized and treated as inherent, yet subtle “noise” that will 

likely be present in many fish-based bioassessments.  

 

The lowest DE in the FS DAGs was noted in FS>6000, with a DE of 82%. This is 

attributed to: 1) a stress effect-size change and 2) using a four-tiered habitat category 

(Habcat) as a measure of stress. Generally, as stream size increases the range of water 

quality decreases, where large rivers tend to occupy a more narrow and centralized 

distribution, as an effect of dilution (see generally, Nilssan 2008); this phenomenon was 

observed with the modWQI in the FS>6000 DAG (Figure 14). Alternatively, small 

streams are more susceptible to the extreme ends of the water quality range, being 

“very good” in heavily forested headwaters to “very poor” in effluent-dominated 

headwaters. This important concept suggests as streams increase in size the effect of 

water quality stress may be mitigated, to some degree, and the effect of habitat quality 

may become more important. 
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Figure 14. The shift in water quality range distribution across drainage area groups 

(DAG), as measured from the modified water quality index (modWQI).  

 

Using a categorical habitat metric (Habcat) as a measure of habitat quality successfully 

standardized habitat stress across all sampling methodologies employed (wadeable vs. 

nonwadeable), but was not without consequence for TFI development. The Habcat 

metric is generally, but not always, comparable across all sites within the same stress 

level. For example, a river characterized as a 4 for sediment deposition may not be the 

same stress as a river that is impounded for miles, also characterized as a 4. This 

concept was the major driver of the reduced DE in FS>6000, where naturally occurring 

increases in sedimentation caused a site to fall in the S group. This reaffirms 

aforementioned confidence in correctly identified LD sites and reduced confidence in 

correctly identifying S sites. 

 

The TFI was responsive to changes along a longitudinal gradient, temperature and 

stress (both habitat and water quality). The effect of water quality stress on the TFI was 

reduced longitudinally, as larger DAGs tended to occupy a narrow and more-central 

range of the modWQI (Figure 14). The effect of habitat on the TFI was important across 

both FS and LS groups (and DAGs) and tended to increase dramatically with increased 

sedimentation and impounding (Figure 15). These observations are important as 

multiple stressors have synergistic, antagonistic or additive effects on the TFI. For 

example, as water quality is reduced by agricultural activities and loss of riparian areas, 

changes to instream habitat and temperature will likely parallel the reductions in water 

quality, having a dramatic combined effect on the TFI. Alternatively, a stream with 
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mining influences may have reduced water quality, without drastic changes in habitat 

and temperatures, which may have a smaller effect on the TFI. In other words, as the 

number of stressors and/or intensity of stressors increases, increases in the TFI are 

expected. This is a desired outcome from a management perspective, as measured 

improvements in individual stressors may result in measurable recovery. For example, 

best management practices applied to small reaches of a larger watershed may have 

localized, measurable biological effects. 

 

 
Figure 15. Boxplot of thermal fish index (TFI) scores (ThermalScore) for the final 

limestone (LS) and freestone (FS) drainage area groups (DAGs) (upper km2 range). 

Habitat category (Habcat) groups 1-4 are on a gradient of good to poor, respectively. 

Dotted red lines represents the 95th percentile of least disturbed (LD) sites signifying 

the impairment threshold for each DAG. The solid blue line (TFI = 7.0) represents the 

upper limit for cold water assemblage (CWA) and the solid red line (TFI = 5.0) 

represents the lower limit for warm water assemblage (WWA), with the transitional 

assemblage (TSA) range in between. 

 

From a comparative perspective, the TFI may appear to be quite simple in design. In 

reality, the TFI should be viewed as a comprehensive metric, in that: 1) all species and 

individuals within the assemblage are provided equal consideration based on relative 

abundance; 2) the TFI can be applied uniformly across the State, basins, or ecoregions; 

3) the TFI has an ecologically meaningful output of assemblage thermal class (cold vs. 

warm) as opposed to a purely statistically-derived construct; and 4) the TFI exhibits 

fairly strong correlation with some other common bioassessment metrics and with 
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indicators of water quality and habitat quality. The TFI performed as well as or better 

than the three traditional metrics (BCG5, percent tolerant, percent omnivorous) in 

response to water quality and habitat conditions (Figures 8-13). Traditional metrics 

convey important ecological and biological concepts that can complement TFI scores in 

fish-based assessments of water quality. However, interpreting and conveying the 

results of traditional metrics can be challenging at times without identifying a 

comparative baseline to serve as the relevant “reference condition”. For traditional 

metrics, the relevant reference condition may change based on the pool of available 

species, not only within a DAG but also across major drainage basins. For example, 

species richness in an FS<150 stream in the Ohio River basin may be twice the species 

richness of a comparable stream in the Susquehanna River basin. Additionally, some 

traditional metrics may have a bimodal response across DAGs, increasing in response 

to increasing stress in some DAGs, but decreasing in response to increasing stress in 

other DAGs. For example, species richness tends to increase in small watersheds in 

response to increasing stress (e.g., cold/cool species displaced by warmer species), but 

this metric tends to decrease in response to increasing stress in larger watersheds. 

Similar patterns can be observed in the traditional metric comparisons made within and 

across DAGs (Figures 8-15). Finally, it is essential that comparisons of metric 

responses be relative to assessment determinations (i.e., attaining vs. impaired). 

Herein, comparisons of traditional metric responses to a relevant reference condition 

should be conducted relative to: 1) basin, 2) DAG and 3) assessment determination. 

The relevant reference condition approach provides a systematic method for making 

comparisons to one or more reference (least disturbed) sites for further insight into 

important ecological or biological processes that contribute to a “balanced indigenous 

community”. For purposes of this document, the definition of a “balanced indigenous 

community” (or population) is as defined in 40 CFR § 125.71(c) (see EPA 2010): 

 

“a biotic community typically characterized by diversity, the capacity to sustain 

itself through cyclic seasonal changes, presence of necessary food chain species 

and by lack of domination by pollution tolerant species. Such a community may 

include historically non-native species introduced in connection with a program of 

wildlife management and species whose presence or abundance results from 

substantial irreversible environmental modifications. Normally however, such a 

community will not include species whose presence or abundance is attributable 

to the introduction of pollutants that will be eliminated by compliance by all 

sources with section 301(b)(2) of the [Clean Water] Act; and may not include 

species whose presence or abundance is attributable to alternative effluent 

limitations imposed pursuant to section 316(a).” 
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Two of the three requirements for defining a relevant reference condition establish a 

baseline community, and its diversity and structure, that is indigenous to a set of 

environmental stream conditions: basin and DAG. The third requirement for defining the 

relevant reference condition relies on the assessment determination to convey the 

response of species (and their abundance) to stressors – water quality, habitat or 

temperature – as described herein. 

 

Numerous unique samples were noted within the dataset that warrant further 

discussion. Unique samples within each DAG were apparent in both directions. The 

assemblages with lower TFI scores than the rest of the distribution were generally 

caused by: 1) hydrologic alterations in the form of augmented bottom-releases from 

upstream impoundments; 2) unique natural features such as increased groundwater 

volume or canopy cover; and 3) unrepresentative sample locations influenced strongly 

by proximal tributaries. Individual streams or stream segments that have a natural ability 

to maintain colder fish assemblages can be viewed as unique and important from an 

ecological and/or recreational perspective. For example, the Delaware River near Balls 

Eddy is in the FS<6000 DAG and has achieved TFI scores as low as 4.6. This 

exceptionally low score for such a large DAG is the result of flow management and cold 

water releases from upstream reservoirs. This portion of the Delaware River remains an 

important recreational destination for trout fishing. Conversely, while flow management 

and cold water augmentation scenarios may initially be portrayed as an improvement, 

these practices are not without consequences. An example of these consequences is 

apparent in Clarks Creek near Harrisburg, a small tributary to the Susquehanna River. 

This stream is impounded by a drinking water reservoir. Fish surveys were conducted at 

two sites on Clarks Creek, bracketing the reservoir. The site downstream of the 

reservoir had a catchment area of 62 km2 (FS<150) with a TFI score of 5.4. This site is 

augmented by both cold water releases from the reservoir and trout stocking. The TFI 

score of 5.4 is below the impairment threshold of 6.0 based on the site’s DAG; water 

quality is supportive of trout stocking and the assemblage is characterized as a TSA. 

The site upstream of the reservoir had a much smaller catchment area of 34 km2 

(FS<40) with a TFI score of 7.8. The TFI score for this DAG is well above the 95th 

percentile of reference for the FS<40, set at 4.8. The upper site had excellent water 

quality and habitat but was located only 500 meters upstream of the impounded portion 

of the reservoir. Herein, the upstream site was influenced by fishes migrating upstream 

from the reservoir and was dominated by the family Centrarchidae. In other words, 

fishes indigenous to a cold water habitat were being replaced by fishes indigenous to a 

warm water habitat; conceptually, a “thermally invasive species”. This effect is therefore 

considered a “biological pollution” as a result of significant habitat alterations within 

proximity (Pringle 1997, Elliott 2003). Consequently, bolstering of CWAs downstream of 

cold water releases from impoundments was observed but a reduction of CWAs within 
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and upstream of impounded areas was also observed. Additionally, this tradeoff is likely 

to be in both directions of top release “spillover” impoundments (warmer assemblages 

upstream and downstream). 

 

Overall, the TFI responded significantly to changes in stream size and stress in both 

freestone and limestone waterbodies across Pennsylvania. The discrimination and 

classification efficiencies were within acceptable ranges, averaging 88% and 91% 

across all groups, respectively. Precision estimates measured from coefficient of 

variation were within (below) recommended threshold ranges of 10-15% (Stribling et al. 

2008) and averaged 4.3%, with maxima still within acceptable limits, topping out at 

8.8%. The TFI correlated with, and often outperformed, traditional metrics in 

comparative analysis. These factors combined with added benefits of a large spatial 

application and ecological relevance solidify the TFI as a tool for assessing and 

evaluating fish assemblages across Pennsylvania’s lotic waterbodies. 
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APPENDIX A:  THERMAL PREFERENCE BY SPECIES 
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Family Common Name Scientific Name 

Numeric 

Value Preference 

Petromyzontidae Ohio Lamprey Ichthyomyzon bdellium 3 Cool 

Petromyzontidae Northern Brook Lamprey Ichthyomyzon fossor 3 Cool 

Petromyzontidae Silver Lamprey Ichthyomyzon unicuspis 3 Cool 

Petromyzontidae American Brook 

Lamprey 

Lampetra appendix 3 Cool 

Petromyzontidae Sea Lamprey Petromyzon marinus 3 Cool 

Polydontidae Paddlefish Polyodon spathula 5 Warm 

Lepisosteidae Spotted Gar Lepisosteus oculatus 5 Warm 

Lepisosteidae Longnose Gar Lepisosteus osseus 5 Warm 

Lepisosteidae Shortnose Gar Lepisosteus platostomus 5 Warm 

Amiidae Bowfin Amia calva 5 Warm 

Hiodontidae Goldeye Hiodon alosoides 5 Warm 

Hiodontidae Mooneye Hiodon tergisus 5 Warm 

Anguillidae American Eel Anguilla rostrate 3 Cool 

Clupeidae Blueback Herring Alosa aestivalis 5 Warm 

Clupeidae Skipjack Herring Alosa chrysochloris 5 Warm 

Clupeidae Hickory Shad Alosa mediocris 5 Warm 

Clupeidae Alewife Alosa pseudoharengus 4 Cool-Warm 

Clupeidae American Shad Alosa sapidissima 5 Warm 

Clupeidae Gizzard Shad Dorosoma cepedianum 5 Warm 

Cyprinidae Central Stoneroller Campostoma anomalum 4 Cool-Warm 

Cyprinidae Goldfish Carassius auratus 5 Warm 

Cyprinidae Northern Redbelly Dace Chrosomus eos 4 Cool-Warm 

Cyprinidae Finescale Dace Chrosomus neogaeus 3 Cool 

Cyprinidae Redside Dace Clinostomus elongatus 3 Cool 

Cyprinidae Rosyside Dace Clinostomus funduloides 2 Cold-Cool 

Cyprinidae Grass Carp Ctenopharyngodon idella 5 Warm 

Cyprinidae Satinfin Shiner Cyprinella analostana 5 Warm 

Cyprinidae Spotfin Shiner Cyprinella spiloptera 5 Warm 

Cyprinidae Common Carp Cyprinus carpio 5 Warm 

Cyprinidae Streamline Chub Erimystax dissimilis 4 Cool-Warm 

Cyprinidae Gravel Chub Erimystax x-punctatus 3 Cool 

Cyprinidae Tonguetied Minnow Exoglossum laurae 3 Cool 

Cyprinidae Cutlip Minnow Exoglossum maxillingua 3 Cool 

Cyprinidae Eastern Silvery Minnow Hybognathus regius 5 Warm 
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Family Common Name Scientific Name 

Numeric 

Value Preference 

Cyprinidae Striped Shiner Luxilus chrysocephalus 4 Cool-Warm 

Cyprinidae Common Shiner Luxilus cornutus 4 Cool-Warm 

Cyprinidae Redfin Shiner Lythrurus umbratilis 4 Cool-Warm 

Cyprinidae Silver Chub Macrhybopsis storeriana 4 Cool-Warm 

Cyprinidae Pearl Dace Margariscus margarita 2 Cold-Cool 

Cyprinidae Hornyhead Chub Nocomis biguttatus 3 Cool 

Cyprinidae River Chub Nocomis micropogon 3 Cool 

Cyprinidae Golden Shiner Notemigonus crysoleucas 5 Warm 

Cyprinidae Comely Shiner Notropis amoenus 5 Warm 

Cyprinidae Emerald Shiner Notropis atherinoides 5 Warm 

Cyprinidae Silverjaw Minnow Notropis buccatus 3 Cool 

Cyprinidae Blackchin Shiner Notropis heterodon 4 Cool-Warm 

Cyprinidae Blacknose Shiner Notropis heterolepis 4 Cool-Warm 

Cyprinidae Spottail Shiner Notropis hudsonius 4 Cool-Warm 

Cyprinidae Silver Shiner Notropis photogenis 4 Cool-Warm 

Cyprinidae Swallowtail Shiner Notropis procne 3 Cool 

Cyprinidae Rosyface Shiner Notropis rubellus 4 Cool-Warm 

Cyprinidae Sand Shiner Notropis stramineus 4 Cool-Warm 

Cyprinidae Mimic Shiner Notropis volucellus 4 Cool-Warm 

Cyprinidae Bluntnose Minnow Pimephales notatus 4 Cool-Warm 

Cyprinidae Fathead Minnow Pimephales promelas 4 Cool-Warm 

Cyprinidae Eastern Blacknose Dace Rhinichthys atratulus 3 Cool 

Cyprinidae Longnose Dace Rhinichthys cataractae 3 Cool 

Cyprinidae Western Blacknose 

Dace 

Rhinichthys obtusus 3 Cool 

Cyprinidae Creek Chub Semotilus atromaculatus 3 Cool 

Cyprinidae Fallfish Semotilus corporalis 4 Cool-Warm 

Catostomidae River Carpsucker Carpiodes carpio 5 Warm 

Catostomidae Quillback Carpiodes cyprinus 5 Warm 

Catostomidae Highfin Carpsucker Carpiodes velifer 5 Warm 

Catostomidae Longnose Sucker Catostomus catostomus 2 Cold-Cool 

Catostomidae White Sucker Catostomus commersonii 3 Cool 

Catostomidae Creek Chubsucker Erimyzon oblongus 4 Cool-Warm 

Catostomidae Northern Hog Sucker Hypentelium nigricans 3 Cool 

Catostomidae Smallmouth Buffalo Ictiobus bubalus 5 Warm 
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Family Common Name Scientific Name 

Numeric 

Value Preference 

Catostomidae Bigmouth Buffalo Ictiobus cyprinellus 5 Warm 

Catostomidae Silver Redhorse Moxostoma anisurum 4 Cool-Warm 

Catostomidae Smallmouth Redhorse Moxostoma breviceps 4 Cool-Warm 

Catostomidae River Redhorse Moxostoma carinatum 4 Cool-Warm 

Catostomidae Black Redhorse Moxostoma duquesnei 4 Cool-Warm 

Catostomidae Golden Redhorse Moxostoma erythrurum 4 Cool-Warm 

Catostomidae Shorthead Redhorse Moxostoma 

macrolepidotum 

4 Cool-Warm 

Ictaluridae Black Bullhead Ameiurus melas 5 Warm 

Ictaluridae Yellow Bullhead Ameiurus natalis 4 Cool-Warm 

Ictaluridae Brown Bullhead Ameiurus nebulosus 4 Cool-Warm 

Ictaluridae Channel Catfish Ictalurus punctatus 5 Warm 

Ictaluridae Stonecat Noturus flavus 4 Cool-Warm 

Ictaluridae Tadpole Madtom Noturus gyrinus 5 Warm 

Ictaluridae Margined Madtom Noturus insignis 4 Cool-Warm 

Ictaluridae Brindled Madtom Noturus miurus 4 Cool-Warm 

Ictaluridae Flathead Catfish Pylodictis olivaris 5 Warm 

Osmeridae Rainbow Smelt Osmerus mordax 1 Cold 

Salmonidae Cisco Coregonus artedi 1 Cold 

Salmonidae Lake Whitefish Coregonus clupeaformis 1 Cold 

Salmonidae Pink Salmon Oncorhynchus gorbuscha 1 Cold 

Salmonidae Coho Salmon Oncorhynchus kisutch 1 Cold 

Salmonidae Hybrid Golden Trout Oncorhynchus mykiss 

(hybrid) 

1 Cold 

Salmonidae Rainbow Trout Oncorhynchus mykiss 1 Cold 

Salmonidae Steelhead Oncorhynchus 

mykiss(steelhead) 

1 Cold 

Salmonidae Chinook Salmon Oncorhynchus 

tshawytscha 

1 Cold 

Salmonidae Brown Trout Salmo trutta 2 Cold-Cool 

Salmonidae Hybrid Tiger Trout Salvelinus fontinalis x 

Salmo trutta 

1 Cold 

Salmonidae Brook Trout Salvelinus fontinalis 1 Cold 

Salmonidae Lake Trout Salvelinus namaycush 1 Cold 

Esocidae Redfin Pickerel Esox americanus 

americanus 

4 Cool-Warm 
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Family Common Name Scientific Name 

Numeric 

Value Preference 

Esocidae Grass Pickerel Esox americanus 

vermiculatus 

4 Cool-Warm 

Esocidae Northern Pike Esox Lucius 4 Cool-Warm 

Esocidae Muskellunge Esox masquinongy 4 Cool-Warm 

Esocidae Chain Pickerel Esox niger 4 Cool-Warm 

Umbridae Central Mudminnow Umbra limi 4 Cool-Warm 

Percopsidae Trout Perch Percopsis omiscomaycus 1 Cold 

Gadidae Burbot Lota lota 2 Cold-Cool 

Atherinidae Brook Silverside Labidesthes sicculus 5 Warm 

Fundulidae Eastern Banded Killifish Fundulus diaphanus 

diaphanous 

5 Warm 

Fundulidae Western Banded Killifish Fundulus diaphanus 

menoma 

5 Warm 

Fundulidae Mummichog Fundulus heteroclitus 5 Warm 

Poeciliidae Eastern Mosquitofish Gambusia holbrooki 5 Warm 

Belonidae Atlantic Needlefish Strongylura marina 5 Warm 

Gasterosteidae Fourspine Stickleback Apeltes quadracus 1 Cold 

Gasterosteidae Brook Stickleback Culaea inconstans 3 Cool 

Gasterosteidae Threespine Stickleback Gasterosteus aculeatus 1 Cold 

Gasterosteidae Blackspotted Stickleback Gasterosteus wheatlandi 1 Cold 

Gasterosteidae Ninespine Stickleback Pungitius pungitius 1 Cold 

Cottidae Mottled Sculpin Cottus bairdii 1 Cold 

Cottidae Blue Ridge Sculpin Cottus caeruleomentum 1 Cold 

Cottidae Slimy Sculpin Cottus cognatus 1 Cold 

Cottidae Potomac Sculpin Cottus girardi 2 Cold-Cool 

Cottidae Spoonhead Sculpin Cottus ricei 1 Cold 

Cottidae Deepwater Sculpin Myoxocephalus 

thompsoni 

1 Cold 

Cottidae Unidentified sculpin Unidentified Cottus 1 Cold 

Moronidae White Perch Morone Americana 5 Warm 

Moronidae White Bass Morone chrysops 5 Warm 

Moronidae White x Striped bass Morone chrysops x 

saxatalis 

4 Cool-Warm 

Moronidae Striped Bass Morone saxatilis 4 Cool-Warm 

Centrarchidae Rock Bass Ambloplites rupestris 4 Cool-Warm 
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Numeric 
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Centrarchidae Redbreast Sunfish Lepomis auratus 4 Cool-Warm 

Centrarchidae Green Sunfish Lepomis cyanellus 5 Warm 

Centrarchidae Pumpkinseed Lepomis gibbosus 4 Cool-Warm 

Centrarchidae Warmouth Lepomis gulosus 5 Warm 

Centrarchidae Orangespotted Sunfish Lepomis humilis 5 Warm 

Centrarchidae Bluegill Lepomis macrochirus 5 Warm 

Centrarchidae Longear Sunfish Lepomis megalotis 4 Cool-Warm 

Centrarchidae Redear Sunfish Lepomis microlophus 5 Warm 

Centrarchidae Smallmouth Bass Micropterus dolomieu 4 Cool-Warm 

Centrarchidae Spotted Bass Micropterus punctulatus 4 Cool-Warm 

Centrarchidae Largemouth Bass Micropterus salmoides 5 Warm 

Centrarchidae White Crappie Pomoxis annularis 5 Warm 

Centrarchidae Black Crappie Pomoxis nigromaculatus 5 Warm 

Percidae Greenside Darter Etheostoma blennioides 4 Cool-Warm 

Percidae Rainbow Darter Etheostoma caeruleum 4 Cool-Warm 

Percidae Iowa Darter Etheostoma exile 3 Cool 

Percidae Fantail Darter Etheostoma flabellare 3 Cool 

Percidae Johnny Darter Etheostoma nigrum 4 Cool-Warm 

Percidae Tessellated Darter Etheostoma olmstedi 3 Cool 

Percidae Tippecanoe Darter Etheostoma tippecanoe 3 Cool 

Percidae Variegate Darter Etheostoma variatum 3 Cool 

Percidae Banded Darter Etheostoma zonale 4 Cool-Warm 

Percidae Ruffe Gymnocephalus cernuus 3 Cool 

Percidae Yellow Perch Perca flavescens 3 Cool 

Percidae Cheseapeake Logperch Percina bimaculata 4 Cool-Warm 

Percidae Logperch Percina caprodes 4 Cool-Warm 

Percidae Channel Darter Percina copelandi 4 Cool-Warm 

Percidae Gilt Darter Percina evides 3 Cool 

Percidae Longhead Darter Percina macrocephala 4 Cool-Warm 

Percidae Blackside Darter Percina maculata 3 Cool 

Percidae Shield Darter Percina peltata 3 Cool 

Percidae River Darter Percina shumardi 4 Cool-Warm 

Percidae Sauger Sander canadensis 3 Cool 

Percidae Saugeye Sander canadensis x 

vitreus 

3 Cool 
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Family Common Name Scientific Name 

Numeric 

Value Preference 

Percidae Walleye Sander vitreus 3 Cool 

Sciaenidae Freshwater Drum Aplodinotus grunniens 5 Warm 

Gobiidae Round Goby Neogobius 

melanostomus 

3 Cool 

 


