

Southwest Regional Office CLEAN WATER PROGRAM

Application Type	Renewal	
Facility Type	Industrial	IN.
Major / Minor	Minor	

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.	PA0000272
APS ID	1061490
Authorization ID	1392803

Applicant Name	PA An	nerican Water Co.	Facility Name	E. H. Aldrich Water Treatment Facility
Applicant Address	1 Wate	er St.	Facility Address	60 Elrama Avenue
	Camdo	en, NJ 08105		Elrama, PA 15038-1008
Applicant Contact	Ryan I	Hardgrove	Facility Contact	Tim Patterson
Applicant Phone	(412) 690-5436		Facility Phone	(412) 334-3700
Client ID	87712		Site ID	261435
SIC Code	4941		Municipality	Union Township
SIC Description	Trans.	& Utilities - Water Supply	County	Washington
Date Application Rece	eived	April 19, 2022	EPA Waived?	Yes
Date Application Acce	pted	May 10, 2022	If No, Reason	

Summary of Review

The Department received a timely renewal NPDES permit application from PA American Water Co. for their E.H. Aldrich Water Treatment facility located in Union Township of Washington County on April 19, 2022. The facility is a potable public water treatment plant with an SIC code of 4941.

The E. H. Aldrich Water Treatment Facility purifies water withdrawn from the Monongahela River for potable public consumption. This facility removes naturally occurring sediment from the Monongahela River during the treatment process with an up-flow clarification process and conventional filtration. The filters are backwashed to remove trapped solids and particles on a daily basis. This backwash water is sent to a wastewater clarifier. The sludge from the wastewater clarifier is sent to two lagoons. The lagoons are used as gravity thickeners and are used one at a time. If the clarifier is taken out of service, the filter backwash is discharged directly to the sludge lagoons. The supernatant water from the clarifier and the sludge lagoons are discharged via Outfall 001 to the Monongahela River, designated in the 25 PA Code Chapter 93 as a Warm Water Fishery.

A second waste clarifier has been designed and the construction phase is set to start during May 2022 and is set to be complete some time in 2023. The second clarifier will have similar dimensions, design flow, and capacity to the first waste clarifier. The second clarifier is being installed for the purpose of redundancy. The second clarifier has been approved by the Department under Water Quality Management Permit 467I005T2-A3.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-

Approve	Deny	Signatures	Date
Х		ah On	
		Adam Olesnanik / Project Manager	5/11/2022
X		Maderal E. Fifet	
		Michael E. Fifth, P.E. / Environmental Engineer Manager	5/13/2022

Summary of Review
day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the <i>Pennsylvania Bulletin</i> at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

scharge, Receivi	ng Water	s and Water Supply Info	rmation		
Outfall No. 001			_ Design Flow (MGD)	0.601	
Latitude 40° 14' 58"			_ Longitude	-79° 55' 11"	
Quad Name Monongahela		Quad Code	1706		
Wastewater Desc	ription:	Water Treatment Effluer	nt		
Receiving Waters	Mono	ngahela River	Stream Code	37185	
NHD Com ID	13483	39806	RMI	_25.3	
Drainage Area	5330		Yield (cfs/mi²)	0.103	
Q ₇₋₁₀ Flow (cfs) 550		Q ₇₋₁₀ Basis	US Army Corp of Engineers		
Elevation (ft)	· -		Slope (ft/ft)	0.0001	
Watershed No.	19-C		Chapter 93 Class.	WWF	
Existing Use			Existing Use Qualifier		
Exceptions to Use			Exceptions to Criteria		
Assessment Statu	-	Impaired	<u> </u>		
Cause(s) of Impai	rment	PCB			
Source(s) of Impa		Source Unknown			
TMDL Status		Final	Name Monongahela River TMDL		
Nearest Downstre	am Publi	c Water Supply Intake	PA American Water Co. – Pitt	sburgh	
PWS Waters	Monong	ahela River	Flow at Intake (cfs)	1230	
PWS RMI	4.6		Distance from Outfall (mi)	20.85	

	Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	0.601				
Latitude	40° 14' 58.00"	Longitude	-79° 55' 11.00"				
Wastewater D	Description: Water Treatment Effluent	_					

Technology-Based Effluent limitations:

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) which is displayed in Table 1 below.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code §§ 95.2(1) which is displayed in Table 1 below.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation which is displayed in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg	Daily Max	IMAX
Flow	Monitor	Monitor	
pН	6-9 at a	II times	
TRC	0.5 mg/l		1.6 mg/l

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of WTP sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which falls under Best Professional Judgement under 40 CFR § 125.3 and the limits imposed are displayed in Table 2 below.

Table 2. BPT Limits for WTP sludge and filter backwash wastewater

Parameter	Monthly Avg (mg/l)	Daily Max (mg/l)		
Suspended solids	30.0	60.0		
Iron (total)	2.0	4.0		
Aluminum (total)	4.0	8.0		
Manganese (total)	1.0	2.0		
Flow	Monitor			
pH	6-9 at all times			
Total Residual Chlorine	0.5	1.0		

Water Quality-Based Effluent limitations:

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific

NPDES Permit Fact Sheet PA American Water Aldrich WTP

discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 3. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water qualitybased effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment C of this Fact Sheet. The Toxics Management Spread Sheet did not recommend any WQBELs for Outfall 001.

Table 3: TMS Inputs for Outfall 001

Parameter	Value					
River Mile Index	25.3					
Discharge Flow (MGD)	0.944					
Basin/Stream Characteristics						
Parameter	Value					
Area in Square Miles	5330					
Q ₇₋₁₀ (cfs)	550					
Low-flow yield (cfs/mi ²)	0.103					
Elevation (ft)	727					
Slope	0.0001					

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment D, indicate that no WQBELs are required for TRC.

Total Maximum Daily Loads

The Monongahela River has a TMDL for PCBs and Chlordane. The TMDL outlines a plan to achieve water quality standards in the water body. The TMDL applies only to discharges of PCBs and chlordane to the Monongahela River and does not provide waste load allocations for either. The TMDL goal is for levels of PCB and chlordane in the water column to be equal to or less than the Commonwealth's water quality criteria. The production and use of PCB in the United States was banned in July of 1979. In addition, the TMDL acknowledges that there are no longer any known point sources of either pollutant in the watershed and the TMDL is expected to achieve implementation through "natural attenuation". While it is now illegal to manufacture, distribute, or use PCBs in the United states, these synthetic oils were used in the past. However, this site has not been shown to have PCBs in its discharge and has not been known to use PCBs. Neither chlordane nor PCB's are used, generated, or stored at the site; nor is there any evidence to suggest that PCBs and chlordane were ever used, generated, or stored onsite in the past. Based upon these considerations, the Monongahela River TMDL is not applicable to site's discharges.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(I). The previous limitations for Outfall 001 are displayed below in Table 4.

Table 4: Current Effluent Limitation at Outfall 001

Parameters	Mass (lb/day)		Concentra	ation (mg/L)		Monitoring Requirements		
rarameters	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Metered	
Total Suspended Solids	XXX	XXX	XXX	30.0	60.0	XXX	2/Month	Grab	
Total Residual Chlorine	XXX	XXX	XXX	0.5	1.0	1.6	2/Month	Grab	
Total Aluminum	XXX	XXX	XXX	4.0	8.0	XXX	2/Month	Grab	
Total Iron	XXX	XXX	XXX	2.0	4.0	XXX	2/Month	Grab	
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/Month	Grab	

Final Effluent Limitations

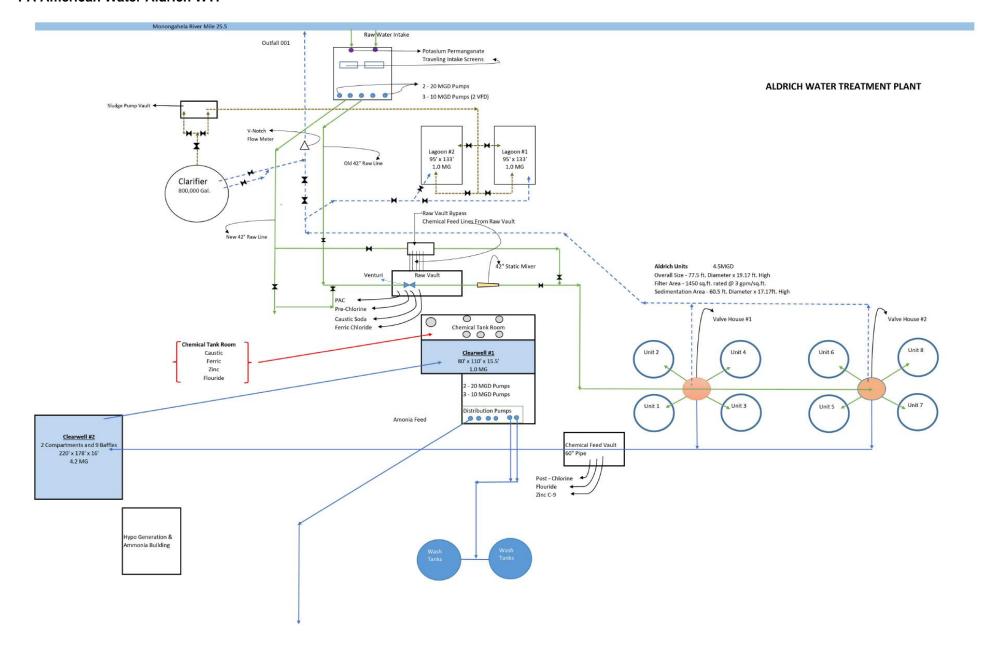
The proposed effluent limitations and monitoring requirements for Outfall 001 are shown below in Table 5. The limits are the most stringent values from the above limitation analysis.

Table 4: Proposed Effluent Limitation at Outfall 001

Dorometero	Mass (lb/day)		Concentra	ation (mg/L)		Monitoring Requirements		
Parameters	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Metered	
Total Suspended Solids	XXX	XXX	XXX	30.0	60.0	XXX	2/Month	Grab	
Total Residual Chlorine	XXX	XXX	XXX	0.5	1.0	1.6	2/Month	Grab	
Total Aluminum	XXX	XXX	XXX	4.0	8.0	XXX	2/Month	Grab	
Total Iron	XXX	XXX	XXX	2.0	4.0	XXX	2/Month	Grab	
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	2/Month	Grab	

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
\boxtimes	Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Attachments


Attachment A: Site Line Diagram

Attachment B: StreamStats Report

Attachment C: Toxic Management Spreadsheet for Outfall 001

Attachment D: TRC Modeling Results for Outfall 001

ATTACHMENT A: Site Line Diagram

ATTACHMENT B:

StreamStats Report

StreamStats Report

Region ID: PA

Workspace ID: PA20220511171330157000

Clicked Point (Latitude, Longitude): 40.24864, -79.91882

Time: 2022-05-11 13:13:56 -0400

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5330	square miles
ELEV	Mean Basin Elevation	1825	feet

Low-Flow Statist	ics Parameters [99.9	Percent (5	330 square mi	ies) Low Fic	w Region
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	5330	square miles	2.26	1400

ATTACHMENT C:

Toxics Management Spreadsheet for Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Facility: Pa American Water - E.H Aldrich Plant

Evaluation Type: Major Sewage / Industrial Waste

NPDES Permit No.: PA0000272

Outfall No.: 001

Water Treatment Backwash

	Discharge Characteristics												
Design Flow	Handrass (mar/l)*	-11 (010)	F	artial Mix Fa	Complete Mix Times (min)								
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h					
0.944	119	7											

			0 if left	t blank	0.5 if left blank		0 if left blank			1 if left	t blank		
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transi
	Total Dissolved Solids (PWS)	mg/L		256									
1	Chloride (PWS)	mg/L		39.2									
F	Bromide	mg/L	<	0.1									
Group	Sulfate (PWS)	mg/L		64.7									
	Fluoride (PWS)	mg/L		0.23									
	Total Aluminum	μg/L	<	100									
	Total Antimony	μg/L	<	0.5									
	Total Arsenic	μg/L		0.7									
	Total Barium	μg/L		44									
	Total Beryllium	μg/L	<	0.5									
	Total Boron	μg/L		79									
	Total Cadmium	μg/L	<	0.1									
	Total Chromium (III)	μg/L		3									
	Hexavalent Chromium	μg/L		16									
	Total Cobalt	μg/L		1.5									
	Total Copper	μg/L		4.9									
2	Free Cyanide	μg/L											
ΙŽ	Total Cyanide	μg/L	<	10									
Group 2	Dissolved Iron	μg/L	<	20									
	Total Iron	μg/L		2000									
	Total Lead	μg/L		1.6									
	Total Manganese	μg/L		960									
	Total Mercury	μg/L	<	0.1									
	Total Nickel	μg/L	<	5									
	Total Phenols (Phenolics) (PWS)	μg/L	<	10									
	Total Selenium	μg/L	<	0.5									
	Total Silver	μg/L	<	0.1									
	Total Thallium	μg/L	<	0.1									
	Total Zinc	μg/L		30									
	Total Molybdenum	μg/L	<	10									
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										
1		F3/-											

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Pa American Water - E.H Aldrich Plant, NPDES Permit No. PA0000272, Outfall 001

Instructions Disch	Instructions Discharge Stream																	
Receiving Surface V	Vater Name:	Mon	ongahe	la					No. Rea	iches to I	Model	li1	1	Ξ	tewide Criteri at Lakes Crit			
Location			RMI*	Elevat	DA (mi²)*		Slop	Slope (ft/ft) PWS Withdraw (MGD)		val A	Apply F Criteri	Fish ORSANCO Criteria						
Point of Discharge	037185		25.3	727	7	5330						Yes						
End of Reach 1	037185	85 24.3		726	6	5331		Ye			Yes							
Q ₇₋₁₀									- "		110	avei	Tallection		Otro		Analy	-i-
Location	RMI				· /	\longrightarrow		Width	Depth	Velocit	Time		Tributa	,	Strea		Analys	
Daint of Disabases	05.0	•	s/mi ²)*	Stream	Tributa	ary R	atio	(ft)	(ft)	y (fps)	(da	avs)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	25.3		0.1	550				12	850						100	7		
End of Reach 1	24.3	(0.1	550				12	850									
Q_h																		
Location	RMI	L	_FY	Flow	(cfs)	V	//D	Width	Depth	Velocit		me	Tributa	ary	Strea	m	Analys	sis
Location	KIVII	(cfs	s/mi ²)	Stream	Tributa	ary R	atio	(ft)	(ft)	y (fps)		ave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	25.3																	
End of Reach 1	24.3																	

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Pa American Water - E.H Aldrich Plant, NPDES Permit No. PA0000272, Outfall 001

Instructions Resul	lts	RETURN TO INPUTS	SAVE AS PDF	PRINT •	All O Inputs	○ Results	○ Limits
☐ Hydrodynamics							
✓ Wasteload Alloc	ations						
☑ AFC	ССТ	(min): 0.001	PMF: 1	Analysis Hardness (mg/l):	100.05	Analysis pH:	7.00

	Sucam							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	**** (P9*2)	
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	283,213	
Total Antimony	0	0		0	1,100	1,100	415,379	
Total Arsenic	0	0		0	340	340	128,390	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	7,929,965	
Total Boron	0	0		0	8,100	8,100	3,058,701	
Total Cadmium	0	0		0	2.015	2.13	806	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	569.998	1,804	681,143	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	6,153	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	35,874	
Total Copper	0	0		0	13.445	14.0	5,289	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.617	81.7	30,850	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	622	Chem Translator of 0.85 applied
Total Nickel	0	0		0	468.435	469	177,244	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.220	3.79	1,430	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	24,545	
Total Zinc	0	0		0	117.230	120	45,264	Chem Translator of 0.978 applied

NPDES Permit No. PA0000272

✓ CFC CCT (min): 0.001 PMF: 1 Analysis Hardness (mg/l): 100.05 Analysis pH: 7.00

Pollutants	Conc	Stream	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (μg/L)	Comments
Total Disselved Colide (DMC)	(nd/L)		(µg/L)		(μg/L) N/A	(μg/L) N/A	N/A	
Total Dissolved Solids (PWS)	0	0		0			1 1	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	83,076	
Total Arsenic	0	0		0	150	150	56,643	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	1,548,231	
Total Boron	0	0		0	1,600	1,600	604,188	
Total Cadmium	0	0		0	0.246	0.27	102	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.145	86.2	32,556	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	3,925	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	7,175	
Total Copper	0	0		0	8.960	9.33	3,524	Chem Translator of 0.96 applied
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	566,426	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.518	3.18	1,202	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	342	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.029	52.2	19,706	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	1,884	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	4,909	
Total Zinc	0	0		0	118.189	120	45,264	Chem Translator of 0.986 applied

✓ THH CCT (min): 0.001 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	2,115	
Total Arsenic	0	0		0	10	10.0	3,776	
Total Barium	0	0		0	2,400	2,400	906,282	
Total Boron	0	0		0	3,100	3,100	1,170,614	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet PA American Water Aldrich WTP

Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	300	300	113,285	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	1,000	1,000	377,617	
Total Mercury	0	0	0	0.050	0.05	18.9	
Total Nickel	0	0	0	610	610	230,347	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	90.6	
Total Zinc	0	0	0	N/A	N/A	N/A	

	CCT (min):	0.000	PMF:	1	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	
--	------------	-------	------	---	---------------------------	-----	--------------	-----	--

	Stream							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet PA American Water Aldrich WTP

✓ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
						·		·	

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments		
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable		
Chloride (PWS)	N/A	N/A	PWS Not Applicable		
Bromide	N/A	N/A	No WQS		
Sulfate (PWS)	N/A	N/A	PWS Not Applicable		
Fluoride (PWS)	N/A	N/A	PWS Not Applicable		
Total Aluminum	181,528	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Antimony	N/A	N/A	Discharge Conc < TQL		
Total Arsenic	3,776	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Barium	906,282	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Beryllium	N/A	N/A	No WQS		
Total Boron	604,188	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Cadmium	102	μg/L	Discharge Conc < TQL		
Total Chromium (III)	32,556	μg/L	Discharge Conc ≤ 10% WQBEL		
Hexavalent Chromium	3,925	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Cobalt	7,175	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Copper	3,390	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Cyanide	N/A	N/A	No WQS		
Dissolved Iron	113,285	μg/L	Discharge Conc < TQL		
Total Iron	566,426	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Lead	1,202	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Manganese	377,617	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Mercury	18.9	μg/L	Discharge Conc < TQL		
Total Nickel	19,706	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable		
Total Selenium	1,884	μg/L	Discharge Conc < TQL		
Total Silver	917	μg/L	Discharge Conc < TQL		
Total Thallium	90.6	μg/L	Discharge Conc < TQL		
Total Zinc	29,012	μg/L	Discharge Conc ≤ 10% WQBEL		
Total Molybdenum	N/A	N/A	No WQS		

ATTACHMENT D:

TRC Modeling Results for Outfall 001

TRC EVALUATION

0.944 4 0.3	= Chlorine De = BAT/BPJ V	ge (MGD) es emand of Stream emand of Discharge alue of Safety (FOS)	0.5 0.07 0.5 15		Mix Factor Compliance Time (min) Compliance Time (min)			
Source	Reference 1.3.2.iii	AFC Calculations WLA afc =	9.420	Reference 1.3.2.iii	CFC Calculations WLA cfc = 58.575			
PENTOXSD TRO		LTAMULT afc =	-	5.1c	LTAMULT cfc = 0.581			
PENTOXSD TRO		LTA_afc=		5.1d	34.053			
I ENTONOD THE	0.15	217 <u>-</u> 410-	0.111	0.14	01.000			
Source		Effluer	nt Limit Calcu	lations				
PENTOXSD TRO	5.1f		AML MULT =	1.720				
PENTOXSD TRO	5.1g	AVG MON L	IMIT (mg/I) =	0.500	BAT/BPJ			
INST MAX LIMIT (mg/l) = 1.170								
WLA afc		FC_tc)) + [(AFC_Yc*Qs	•	k*AFC_tc))				
LTAMULT afc	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)							
LTA wolf are	wla_afc*LTA		WIP 2+1) (0.5)					
LIA_aic	wia_aic LTA	IVIUL I _aIU						
WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)								
LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
LTA_cfc wla_cfc*LTAMULT_cfc								
AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1)) AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT) INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)								