

Application Type

Renewal

Facility Type

Industrial

Major / Minor

Major

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No.

PA0000868

APS ID

1002414

Authorization ID

1289647

Applicant and Facility Information

Applicant Name	Zekelman Industries d/b/a Wheatland Tube Co.		
Applicant Address	1 Council Avenue PO Box 608	Facility Name	Wheatland Tube - Council Avenue Plant
	Wheatland, PA 16161-1162	Facility Address	1 Council Avenue
Applicant Contact	Robert Werth, Environmental Manager	Facility Contact	Bryce Benic, Environmental Technician
Applicant Phone	(773) 346-8822	Facility Phone	(724) 342-6851 ext. 1267
Applicant Email	robert.werth@zekelman.com	Facility Email	bryce.benic@zekelman.com
Client ID	352576	Site ID	241430
SIC Code	3317 & 3498	Municipality	Wheatland Borough
SIC Description	Manufacturing - Steel Pipe and Tubes; Fabricated Pipe and Pipe Fittings	County	Mercer
Date Application Received	March 22, 2019	EPA Waived?	No
Date Application Accepted		If No, Reason	Major Facility
Purpose of Application	NPDES permit renewal for discharges of industrial waste, non-contact cooling water, groundwater, and storm water.		

Summary of Review

On March 22, 2019, John Maneely Company d/b/a Wheatland Tube Co. (WTC) submitted an application dated March 11, 2019 (2019 Application) to the Department of Environmental Protection ("DEP") to renew NPDES Permit PA0000868 for discharges from Wheatland Tube's Council Avenue Plant. The renewal application was accompanied by an application to transfer the permit from John Maneely Company to Zekelman Industries (still d/b/a Wheatland Tube Co. as a division of Zekelman Industries).

WTC's current NPDES permit was issued on September 25, 2014 with an effective date of October 1, 2014 and an expiration date of September 30, 2019. The deadline to submit a renewal application was April 3, 2019. Pursuant to the receipt of WTC's timely application, DEP's inability to reissue the permit before the expiration date, and 25 Pa. Code § 92a.7(b), the terms and conditions of the 2014 Permit were automatically continued past the expiration date.

On July 17, 2025, DEP requested WTC to update the 2019 Application owing to the amount of time that had passed since that application was last submitted/revised. WTC submitted an updated application on August 29, 2025 (2025 Application Update). On December 11 and 12, 2025, WTC submitted updated information on the facility's cooling water intake structure. This Fact Sheet is based on both the 2019 Application and the 2025 Application Update and its revisions.

Facility Description

Zekelman Industries manufactures standard pipe, fence framework, fire sprinkler pipe, galvanized mechanical tube, and steel electrical conduit including hot-dip galvanized steel rigid metal conduit, steel intermediate metal conduit (IMC), steel electrical metallic tubing (EMT), rigid aluminum conduit, and a full line of elbows, couplings and nipples, and running thread pipe. The Council Avenue Plant manufactures standard pipe, fire sprinkler pipe, and fence framework products. Production lines at WTC include the Continuous Butt Weld (CW) Mill that hot-forms carbon steel strip into pipe and then straightens the pipe in a cold-

Approve	Deny	Signatures	Date
✓		Ryan C. Decker Ryan C. Decker, P.E. / Environmental Engineer	December 16, 2025
X		Michael E. Fifth Michael E. Fifth, P.E. / Environmental Engineer Manager	December 17, 2025

Summary of Review

forming step; and a new Hot-Dip Galvanizing (HDG) line that replaced the original galvanizing line that ceased production at the end of 2024 and was later decommissioned. The new HDG line performs the same operations as the original galvanizing line (alkaline cleaning, acid pickling, and hot coating) but at a smaller scale.

Wastewaters generated at the Council Avenue Plant include process wastewaters from the CW Mill (contact cooling water from the mill scale pit that contains mill scale and oil) and from the new HDG line (galvanizing, acid pickling, and alkaline cleaning wastewaters), boiler blowdown, non-contact cooling water, contaminated groundwater, and storm water associated with industrial activities. Process wastewaters from the CW Mill and HDG line are pumped to the facility's Water Treatment Plant for treatment. Contaminated groundwater and storm water from the coil yard and finishing areas of the mill collected in an 80,000-gallon "First Flush Tank" also are pumped to the Water Treatment Plant. The First Flush Tank is equipped with an oil skimmer for preliminary treatment of contaminated groundwater and storm water runoff. HDG wastewaters are directed to the No. 1 and No. 2 Neutralization Tanks that operate in series. The neutralization tanks are dosed with magnesium hydroxide for pH neutralization and potassium hydroxide to increase the pH of the wastewater to precipitate metals (iron, zinc, chromate). The wastewaters then flow to the No. 1 Flocculation Tank where a coagulant is added, and then to Clarifier 301 for settling. Effluent from Clarifier 301 flows to the Sump for further treatment. The Sump also receives sludge tank decant and sludge press filtrate.

CW Mill wastewater flows to the Scale Pit containing three oil skimmers to remove oil, and then to the No. 2 Mix Tank, which also receives wastewaters from the Sump and groundwater and storm water pumped from the First Flush Tank. The No. 2 Mix Tank is dosed with an aluminum-based coagulant and potassium hydroxide. Wastewaters then flow to the No. 2 Flocculation Tank where coagulant is added, and then to Clarifier 302 for settling. Effluent from Clarifier 302 discharges to a lagoon for cooling and additional settling. Clarifier 301 also may discharge directly to the lagoon. The downstream side of the lagoon is lined with an absorbent boom to skim any remaining oil. Sludge wasted from the clarifiers is stored in Sludge Holding Tank 714 and is dewatered using a sludge filter press. Decant from the holding tank and filtrate from the sludge filter press are directed to the No. 2 Mix Tank via the Sump.

Treated effluent discharging to the lagoon is regulated at Suboutfall 101 (a.k.a. Internal Monitoring Point 101 or "IMP 101"). The lagoon overflows to Outfall 001 where the effluent mixes with non-contact cooling water and storm water from Outfall 007. Those effluents combine and discharge through a pipe to an unnamed tributary to the Shenango River on the east side of Council Avenue/State Route 718. Pumped flow from the First Flush Tank to the Water Treatment Plant is monitored for flow at Suboutfall 201 (a.k.a. Internal Monitoring Point 201 or "IMP 201").

Outfalls 002, 003, 004, and 005 discharge storm water associated with industrial activities. Suboutfall 104 (a manhole outside the old boiler house) was previously used to regulate water softener backwash, non-contact cooling water from compressors, and boiler blowdown discharging with storm water through Outfall 004. However, other than storm water, those sources were either eliminated or re-routed, so Suboutfall 104 will be removed from the permit as part of this permit renewal. Outfall 004 will regulate the remaining storm water discharges.

Outfall 006 is for overflows of storm water from the First Flush Tank, which discharges to a ditch to the Shenango River. The permit authorizes Outfall 006 to only discharge storm water and requires WTC to pump up to 90,000 gallons of collected runoff to the Water Treatment Plant before a discharge from Outfall 006 is allowed to occur on consecutive days. In this way, contaminated groundwater making up base flow to the tank and first flush storm water are conveyed to treatment.

Cooling Water Intake Structure

The Council Avenue Plant is supplied with cooling water from an intake structure on the Shenango River. Section 316(b) of the Clean Water Act requires the location, design, construction, and capacity of cooling water intake structures to reflect the best technology available (BTA) for minimizing adverse environmental impact. Pursuant to implementing regulations under 40 CFR part 125, Subpart J, adverse environmental impact for existing facilities is minimized through the implementation of BTA standards for impingement and entrainment mortality. Impingement mortality is the death of any life stages of fish and shellfish on the outer part of an intake structure or against a screening device during periods of intake water withdrawal. Entrainment mortality is the death of any life stages of fish and shellfish in the intake water flow entering and passing through a cooling water intake structure and into a cooling water system.

WTC was not subject to any 316(b) requirements in previous permits. In its 2025 Application Update, WTC supplied drawings of the intake structure and indicated that the intake pump is a vertical turbine centrifugal pump that operates at a constant pressure of 50 psig rather than a constant flowrate. The Design Intake Flow was reported on the 2025 Application Update as 2.9 MGD based on pressure ratings. However, to determine the Design Intake Flow of the cooling water intake structure, WTC

Summary of Review

installed a new flow meter in November 2025 and refined the reported operating parameters of the intake. In December 2025, WTC revised the Design Intake Flow to 1.55 MGD and the Actual Intake Flow to 1.10 MGD, which reduced the application requirements.

Based on regulations implementing section 316(b) in 40 CFR part 125, Subpart J and the characteristics of WTC's intake, WTC is not subject to the specific requirements listed in 40 CFR §§ 125.94 through 125.99. Therefore, pursuant to 40 CFR § 125.90(b), WTC must meet BTA requirements under section 316(b) of the CWA established by the Director on a case-by-case, best professional judgment (BPJ) basis.

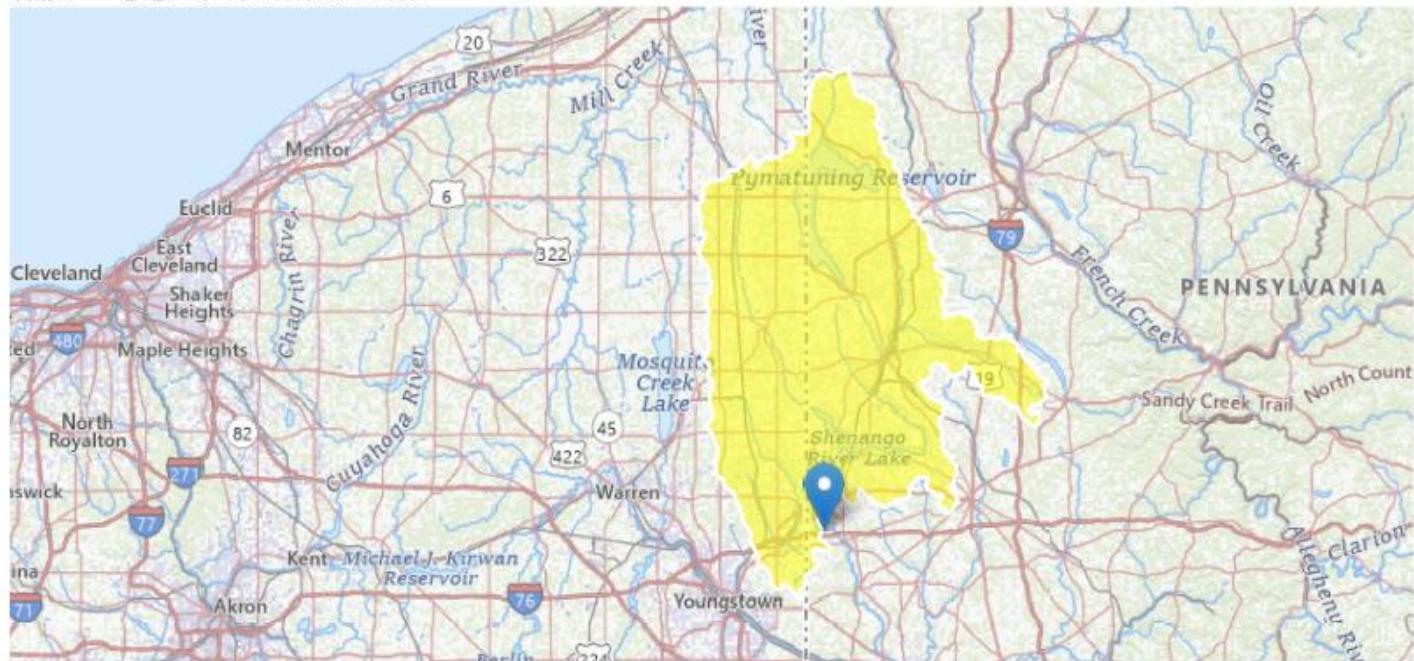
In accordance with DEP's "Standard Operating Procedure (SOP) for Clean Water Program, Establishing Best Technology Available (BTA) Using Best Professional Judgement (BPJ) for Cooling Water Intake Structures at Existing NPDES Facilities" [SOP No. BCW-PMT-038, 12/7/2021], the permit identifies a 0.5 fps through-screen design velocity as BTA for impingement and the maintenance of actual intake flow of 1% or less of the mean annual flow of the surface waters as BTA for entrainment. DEP's evaluation to determine BTA for impingement and entrainment for WTC's intake structure is included in **Attachment D** to this Fact Sheet.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	2.0; 1.0 avg.
Latitude	41° 11' 34"	Longitude	-80° 29' 33"
Quad Name	Sharon East	Quad Code	0902
Wastewater Description:	Overflows from the cooling pond at the catch basin consisting of storm water and process wastewaters regulated at IMP 101		
Receiving Waters	Shenango River (WWF)	Stream Code	35482
NHD Com ID	130033638	RMI	24.0
Drainage Area	706	Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)	121.05	Q ₇₋₁₀ Basis	USGS Gage 03103500
Elevation (ft)		Slope (ft/ft)	0.00042
Watershed No.	20-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Polychlorinated Biphenyls (PCBs)		
Source(s) of Impairment	Sources Unknown		
TMDL Status	Final	Name	Shenango River
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company – New Castle		
PWS ID	6370034	PWS Withdrawal (MGD)	8.4
PWS Waters	Shenango River	Flow at Intake (cfs)	
PWS RMI	5.05	Distance from Outfall (mi)	18.95

Discharge, Receiving Waters and Water Supply Information			
Suboutfall	101	Design Flow (MGD)	1.0
Latitude	41° 11' 37"	Longitude	-80° 29' 34"
Wastewater Description:	Wastewater from the Water Treatment Plant that receives process wastewater from the Continuous Weld Furnace Scale Pit, Galvanizing Dept., and contaminated groundwater and storm water pumped from the First Flush Tank		
Receiving Waters	Shenango River via Outfall 001	Stream Code	35482
Suboutfall	201	Design Flow (MGD)	0.0158 (avg.)
Latitude	41° 11' 36"	Longitude	80° 29' 37"
Wastewater Description:	Contaminated groundwater and storm water pumped from the First Flush Tank		
Receiving Waters	Shenango River via Outfall 001	Stream Code	35482


StreamStats Report - Basin Delineation for Outfall 001

Region ID: PA

Workspace ID: PA20250731125854272000

Clicked Point (Latitude, Longitude): 41.18889, -80.49228

Time: 2025-07-31 08:59:18 -0400

[+ Collapse All](#)

► Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	706	square miles
ELEV	Mean Basin Elevation	1096	feet

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	002	Design Flow (MGD)	Variable
Latitude	41° 11' 33"	Longitude	-80° 29' 33"
Quad Name	Sharon East	Quad Code	0902
Wastewater Description:	Storm water runoff from the eastern portion of the coil storage yard		
Receiving Waters	Shenango River (WWF)	Stream Code	35482
NHD Com ID	130033638	RMI	24.0
Drainage Area		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	
Elevation (ft)		Slope (ft/ft)	
Watershed No.	20-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Polychlorinated Biphenyls (PCBs)		
Source(s) of Impairment	Sources Unknown		
TMDL Status	Final	Name	Shenango River
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company – New Castle		
PWS ID	6370034	PWS Withdrawal (MGD)	8.4
PWS Waters	Shenango River	Flow at Intake (cfs)	
PWS RMI	5.05	Distance from Outfall (mi)	

Changes Since Last Permit Issuance:

Other Comments:

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	003	Design Flow (MGD)	Variable
Latitude	41° 11' 33"	Longitude	-80° 29' 33"
Quad Name	Sharon East	Quad Code	0902
Wastewater Description:	Storm water from a parking lot, plant roads, and building roofs		
Receiving Waters	Shenango River (WWF)	Stream Code	35482
NHD Com ID	130033638	RMI	24.0
Drainage Area		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	
Elevation (ft)		Slope (ft/ft)	
Watershed No.	20-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Polychlorinated Biphenyls (PCBs)		
Source(s) of Impairment	Sources Unknown		
TMDL Status	Final	Name	Shenango River
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company – New Castle		
PWS ID	6370034	PWS Withdrawal (MGD)	8.4
PWS Waters	Shenango River	Flow at Intake (cfs)	
PWS RMI	5.05	Distance from Outfall (mi)	

Changes Since Last Permit Issuance:

Other Comments:

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	004	Design Flow (MGD)	0.001
Latitude	41° 11' 44"	Longitude	-80° 29' 39"
Quad Name	Sharon East	Quad Code	0902
Wastewater Description:	Storm water from building roofs and paved areas from the north end of the property		
Receiving Waters	Shenango River (WWF)	Stream Code	35482
NHD Com ID	130033638	RMI	24.0
Drainage Area		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	
Elevation (ft)		Slope (ft/ft)	
Watershed No.	20-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Polychlorinated Biphenyls (PCBs)		
Source(s) of Impairment	Sources Unknown		
TMDL Status	Final	Name	Shenango River
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company – New Castle		
PWS ID	6370034	PWS Withdrawal (MGD)	8.4
PWS Waters	Shenango River	Flow at Intake (cfs)	
PWS RMI	5.05	Distance from Outfall (mi)	

Discharge, Receiving Waters and Water Supply Information			
Suboutfall	104	Design Flow (MGD)	
Latitude	41° 11' 20.20"	Longitude	-80° 29' 30.43"
Wastewater Description:			
Receiving Waters	Shenango River via Outfall 004	Stream Code	37556

Changes Since Last Permit Issuance:

Other Comments:

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	005	Design Flow (MGD)	Variable
Latitude	41° 11' 34"	Longitude	-80° 29' 50"
Quad Name	Sharon East	Quad Code	0902
Wastewater Description:	Storm water from the western side of the property including parking lots and building roofs		
Receiving Waters	Shenango River (WWF)	Stream Code	35482
NHD Com ID	130034023	RMI	25.0
Drainage Area		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	
Elevation (ft)		Slope (ft/ft)	
Watershed No.	20-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Polychlorinated Biphenyls (PCBs)		
Source(s) of Impairment	Sources Unknown		
TMDL Status	Final	Name	Shenango River
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company – New Castle		
PWS ID	6370034	PWS Withdrawal (MGD)	8.4
PWS Waters	Shenango River	Flow at Intake (cfs)	
PWS RMI	5.05	Distance from Outfall (mi)	

Changes Since Last Permit Issuance:

Other Comments:

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	006	Design Flow (MGD)	Variable
Latitude	41° 11' 30"	Longitude	-80° 29' 42"
Quad Name	Sharon East	Quad Code	0902
Wastewater Description:	Storm water from the coil yard and finishing areas of the mill		
Receiving Waters	Shenango River (WWF)	Stream Code	35482
NHD Com ID	130033638	RMI	24.14
Drainage Area		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	
Elevation (ft)		Slope (ft/ft)	
Watershed No.	20-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Polychlorinated Biphenyls (PCBs)		
Source(s) of Impairment	Sources Unknown		
TMDL Status	Final	Name	Shenango River
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company – New Castle		
PWS ID	6370034	PWS Withdrawal (MGD)	8.4
PWS Waters	Shenango River	Flow at Intake (cfs)	
PWS RMI	5.05	Distance from Outfall (mi)	

Changes Since Last Permit Issuance:

Other Comments:

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	007	Design Flow (MGD)	0.119 (avg.); 0.5 (max)
Latitude	41° 11' 35"	Longitude	-80° 29' 33"
Quad Name	Sharon East	Quad Code	0902
Wastewater Description:	Non-contact cooling water (NCCW) from the mill roof, storm water, and cooling pond overflow		
Receiving Waters	Shenango River (WWF)	Stream Code	35482
NHD Com ID	130033638	RMI	24.0
Drainage Area		Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)		Q ₇₋₁₀ Basis	
Elevation (ft)		Slope (ft/ft)	
Watershed No.	20-A	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	Metals, Polychlorinated Biphenyls (PCBs)		
Source(s) of Impairment	Sources Unknown		
TMDL Status	Final	Name	Shenango River
Background/Ambient Data		Data Source	
pH (SU)			
Temperature (°F)			
Hardness (mg/L)			
Other:			
Nearest Downstream Public Water Supply Intake	Pennsylvania American Water Company – New Castle		
PWS ID	6370034	PWS Withdrawal (MGD)	8.4
PWS Waters	Shenango River	Flow at Intake (cfs)	
PWS RMI	5.05	Distance from Outfall (mi)	

Changes Since Last Permit Issuance:

Other Comments:

Shenango River-130033638
Assessment Unit ID: PA-SCR-130033638

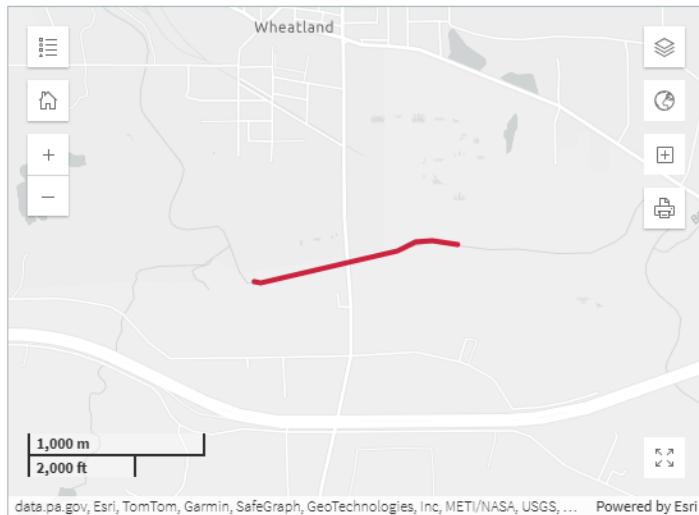
Waterbody Condition: █ Impaired (Issues Identified)

Existing Plans for Restoration: Yes

303(d) Listed: Yes

Year Reported: 2024

303(d) List Status: EPA Final Action


Other Years Reported: 2016, 2018, 2020, 2022 (opens new browser tab)

Organization Name (ID): Pennsylvania (21PA)

What type of water is this?
Stream/creek/river (0.7251 Miles)

Where is this water located?
WHEATLAND BORO, 16159 (county: Mercer)

Advanced Filtering (opens new browser tab) Download Waterbody Data (2024)

Assessment Information from 2024

State or Tribal Nation specific designated uses:

Information on Water Quality Standards Expand All

Fishing	Impaired	>
Warm Water Fishes	Impaired	>

Probable sources contributing to impairment from 2024:

Click a column heading to sort... Clear Filters

Source	Parameter	Confirmed
Filter...	Filter...	Filter...
Source Unknown	Metals	Yes
Source Unknown	Polychlorinated Biphenyls (Pcbs)	Yes

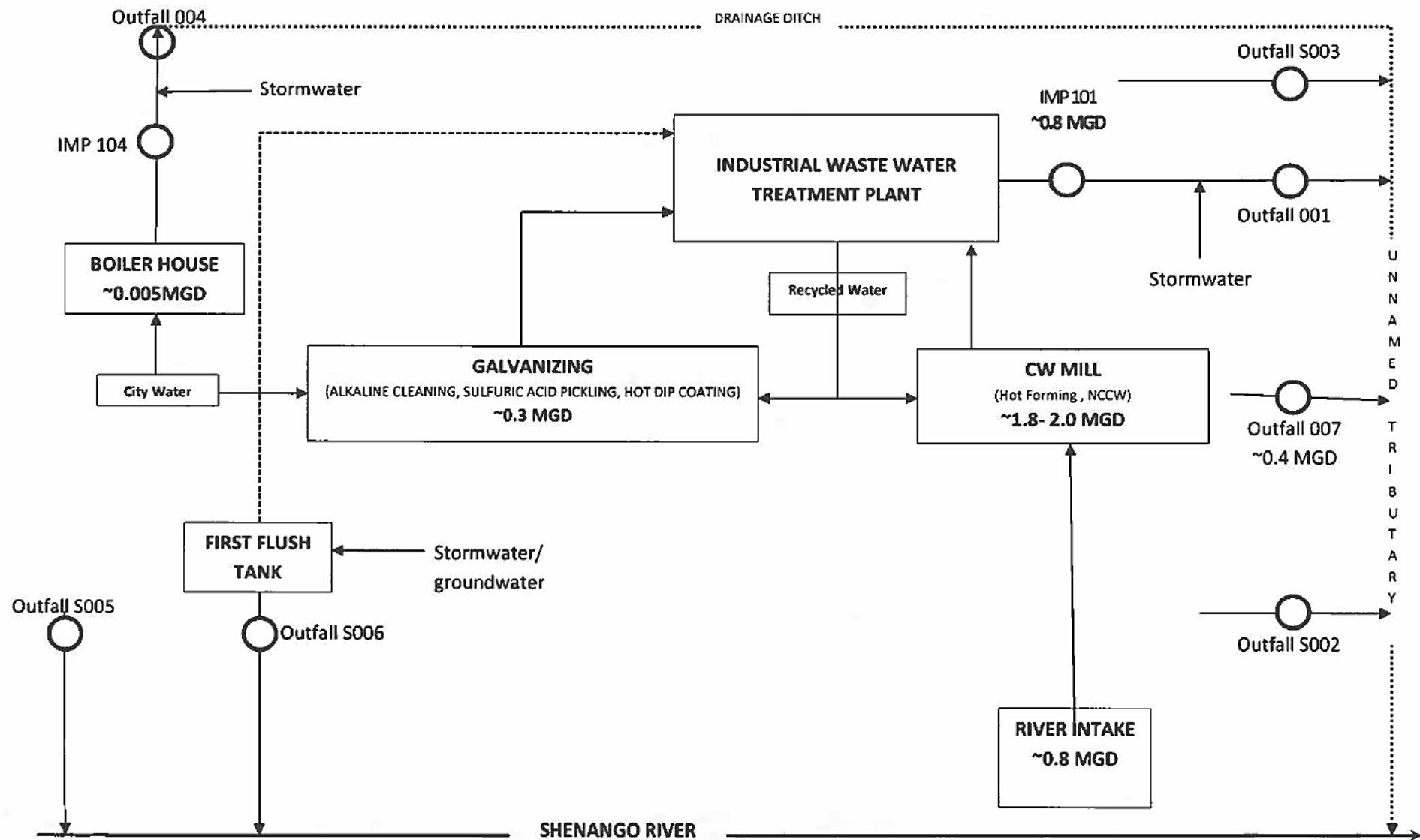
Click a column heading to sort... Clear Filters

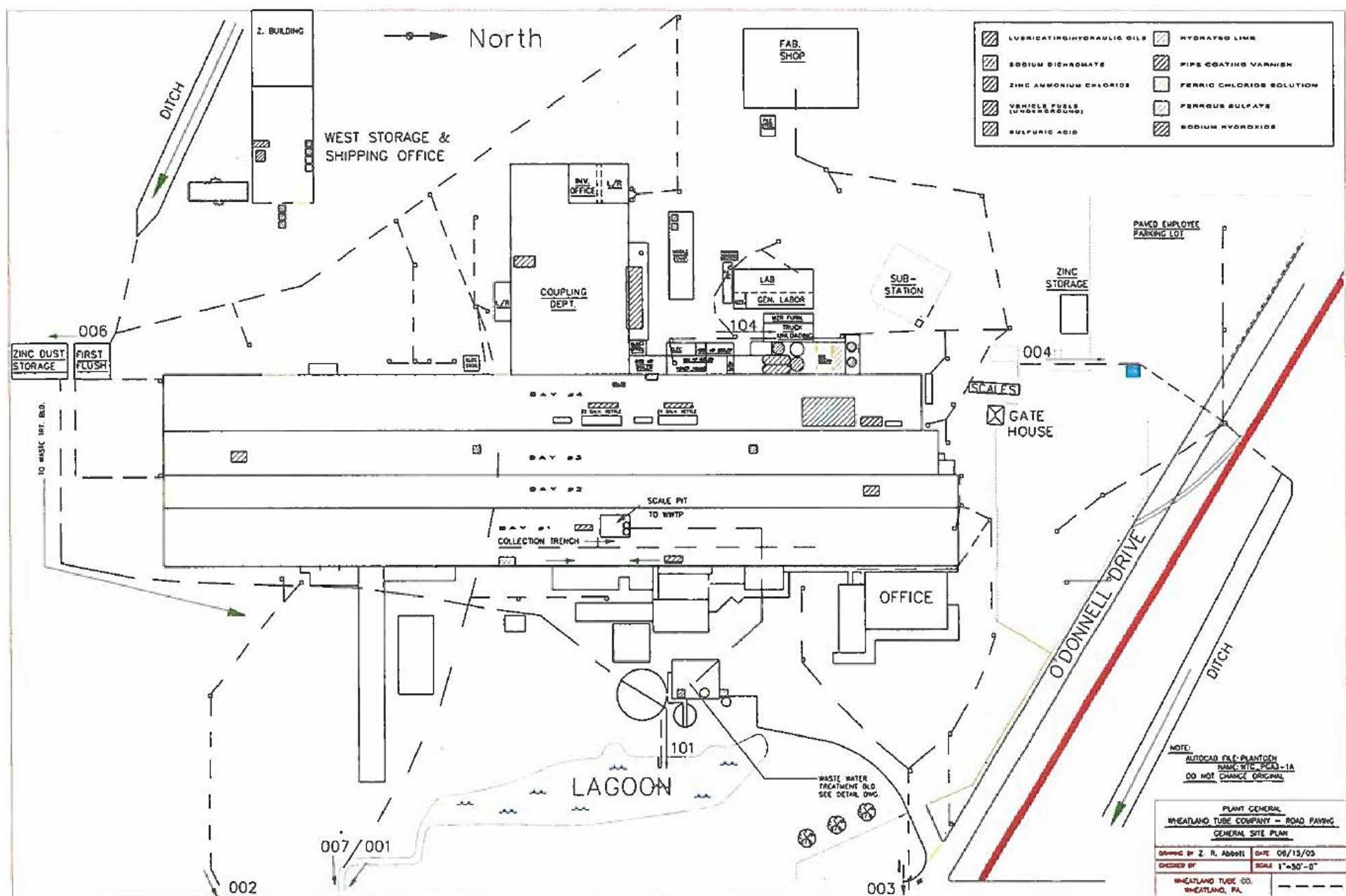
Assessment Documents

No documents are available

Plans to Restore Water Quality

What plans are in place to protect or restore water quality?
Links below open in a new browser tab.


Plan	Impairments	Type	Completion Date
Shenango River	Chlordane, Polychlorinated Biphenyls (Pcbs)	█ TMDL	2000-11-27


Treatment Facility Summary				
Treatment Facility Name: Continuous Weld Mill Treatment System; Hot Forming Treatment System; Heated Waste Treatment System				
WQM Permit No.	Issuance Date	Purpose		
4387201	August 26, 1987	<p>Continuous Weld Mill Treatment System: Settling, oil removal and cooling, and metals removal system including two-stage neutralization (using lime), flash mixing, polymer flocculation and clarification.</p> <p>Hot Forming Treatment System: Alum and Polymer Addition, Flash Mixing, Flocculation and Clarification.</p> <p>Heated Waste Treatment System: Lagoon</p>		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial	Primary	Settling, oil/water separation, chemical precipitation, flocculation, clarification	None	

Zekelman Ind DBA WHEATLAND TUBE COMPANY – COUNCIL

NPDES PERMIT #PA0000868

FLOW DIAGRAM AND OUTFALLS



Image Source and Date: Google Earth Pro; October 2, 2024. Annotations by DEP.

Compliance History

DMR Data for Outfall 001 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
pH (S.U.) Minimum	8.58	8.45	8.44	8.43	8.54	8.68	8.14	8.72	8.56	7.85	8.53	8.73
pH (S.U.) Maximum	8.86	8.81	8.82	8.77	8.97	8.82	8.86	8.98	8.98	8.91	8.95	8.82
Oil and Grease (mg/L) Average Monthly	< 5.0	< 5.0	< 5.0	5.71	< 5.0	< 8.28	< 5.0	9.85	< 5.0	< 5.0	< 5.0	7.00
Oil and Grease (mg/L) Instantaneous Maximum	< 5.0	< 5.0	< 5.0	8.53	< 5.0	18.1	< 5.0	24.4	< 5.0	< 5.0	< 5.0	13.8

DMR Data for Outfall 002 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD) Daily Maximum											0.042	
Total Iron (lbs/day) Daily Maximum											0.729	
Total Iron (mg/L) Daily Maximum											2.09	
Total Lead (lbs/day) Daily Maximum											< 0.0017	
Total Lead (mg/L) Daily Maximum											< 0.005	

DMR Data for Outfall 003 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD) Daily Maximum											0.035	
Total Iron (lbs/day) Daily Maximum											0.561	
Total Iron (mg/L) Daily Maximum											1.92	
Total Lead (lbs/day) Daily Maximum											0.0023	
Total Lead (mg/L) Daily Maximum											0.008	

DMR Data for Outfall 004 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD)					0.034			0.013			0.018	
Daily Maximum		0.013										
Total Iron (lbs/day)					0.17			0.36			0.12	
Daily Maximum		0.03										
Total Iron (mg/L)					0.62			3.3			0.79	
Daily Maximum		0.31										
Total Lead (lbs/day)					0.0006			< 0.001			0.0008	
Daily Maximum		< 0.0001										
Total Lead (mg/L)					0.002			0.007			0.005	
Daily Maximum		< 0.001										

DMR Data for Outfall 005 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD)											0.056	
Daily Maximum												
Total Iron (lbs/day)											0.206	
Daily Maximum												
Total Iron (mg/L)											0.44	
Daily Maximum												
Total Lead (lbs/day)											< 0.0023	
Daily Maximum												
Total Lead (mg/L)											< 0.005	
Daily Maximum												

DMR Data for Outfall 006 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD)											0.066	
Daily Maximum												
Total Iron (lbs/day)											7.932	
Daily Maximum												
Total Iron (mg/L)											14.4	
Daily Maximum												
Total Lead (lbs/day)											0.0303	
Daily Maximum												
Total Lead (mg/L)											0.055	
Daily Maximum												

DMR Data for Outfall 007 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD) Daily Maximum		0.009			0.022			0.008			0.012	
pH (S.U.) Minimum	7.59	7.70	7.67	7.48	7.57	7.52	7.75	7.47	7.65	7.61	7.65	7.46
pH (S.U.) Maximum	7.78	7.85	7.74	7.58	7.76	7.63	7.80	7.61	7.74	7.64	7.81	7.76
Oil and Grease (mg/L) Average Monthly	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Oil and Grease (mg/L) Instantaneous Maximum	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Iron (lbs/day) Daily Maximum		0.019			0.075			0.055			0.143	
Total Iron (mg/L) Daily Maximum		0.25			0.40			0.78			1.42	
Total Lead (lbs/day) Daily Maximum		< 0.0001			0.0002			< 0.0001			< 0.0005	
Total Lead (mg/L) Daily Maximum		< 0.001			0.001			< 0.001			< 0.005	

DMR Data for Outfall 101 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD) Average Monthly	0.44	0.39	0.35	0.29	0.29	0.45	0.55	0.52	0.61	0.54	0.4	0.48
Flow (MGD) Daily Maximum	0.69	0.63	0.61	0.64	0.62	0.70	0.86	0.86	0.80	0.79	0.8	0.70
TSS (lbs/day) Average Monthly	< 12.0	22.43	15.15	18.0	14.95	33.22	38.57	30.68	38.46	32.43	47.81	44.13
TSS (lbs/day) Daily Maximum	< 14.88	44.10	21.47	34.8	29.09	60.5	45.66	71.47	59.70	55.03	83.16	74.46
TSS (mg/L) Average Monthly	< 3.0	5.25	3.75	6.8	4.5	6.6	6.75	8.50	7.60	7.25	9.75	8.40
Oil and Grease (lbs/day) Average Monthly	< 20.01	< 21.84	< 20.32	< 12.88	< 16.46	< 24.8	31.71	< 18.1	< 25.03	< 23.45	< 23.13	< 25.85
Oil and Grease (lbs/day) Daily Maximum	< 24.81	< 26.27	< 23.56	< 19.33	< 25.85	< 27.99	34.70	< 32.49	< 27.45	< 29.72	< 33.24	< 28.26
Oil and Grease (mg/L) Instantaneous Maximum	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	6.84	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Total Aluminum (lbs/day) Daily Maximum		1.67			0.09			0.26			0.17	
Total Aluminum (mg/L) Daily Maximum		0.56			0.11			0.69			1.14	
Total Iron (lbs/day) Average Monthly	0.95	1.49	2.23	1.19	1.27	4.84	5.6	3.63	5.04	4.56	4.33	5.92
Total Iron (lbs/day) Daily Maximum	1.79	2.10	4.72	1.96	2.43	8.80	7.43	9.55	8.95	8.08	7.18	10.51
Total Iron (mg/L) Instantaneous Maximum	0.36	0.41	1.10	0.67	0.57	1.60	1.14	1.47	1.63	1.36	1.08	1.86
Total Lead (lbs/day) Average Monthly	< 0.01	< 0.02	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.02	< 0.02	< 0.09	< 0.10
Total Lead (lbs/day) Daily Maximum	< 0.01	< 0.04	< 0.01	< 0.01	< 0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04	< 0.13	< 0.11
Total Lead (mg/L) Average Monthly	< 0.003	< 0.004	< 0.002	< 0.003	< 0.004	< 0.003	< 0.002	< 0.003	< 0.003	< 0.007	< 0.020	< 0.020
Total Lead (mg/L) Daily Maximum	< 0.003	< 0.007	< 0.003	< 0.003	< 0.007	< 0.003	< 0.003	< 0.003	< 0.003	< 0.02	< 0.02	< 0.02
Total Zinc (lbs/day) Average Monthly	0.12	0.16	0.1	0.14	0.17	1.08	1.11	0.54	1.40	0.89	1.18	0.45
Total Zinc (lbs/day) Daily Maximum	0.30	0.24	0.17	0.27	0.29	1.54	1.56	1.43	2.2	2.08	2.53	0.85
Total Zinc (mg/L) Average Monthly	0.03	0.04	0.03	0.05	0.06	0.22	0.19	0.14	0.28	0.19	0.22	0.09

DMR Data for Outfall 104 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD) Average Monthly	0.0041	0.0022	0.0016	0.0026	0.0058	0.0051	0.0047	0.0022	0.0031	0.0015	0.0031	0.0017
pH (S.U.) Minimum	8.21	8.35	7.91	7.83	7.65	7.65	7.77	6.89	7.03	6.50	8.76	7.97
pH (S.U.) Maximum	8.25	8.55	8.31	8.13	7.69	7.71	8.47	8.33	7.70	8.35	8.97	8.03
Oil and Grease (mg/L) Average Monthly	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	10.53	89.25	60.13	< 5.0	< 5.0	< 5.0
Oil and Grease (mg/L) Instantaneous Maximum	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	15.8	159	115	< 5.0	< 5.0	< 5.0

DMR Data for Outfall 201 (from November 1, 2024 to October 31, 2025)

Parameter	OCT-25	SEP-25	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24
Flow (MGD) Average Monthly	0.016	0.01	0.004	0.013	0.009	00	0.016	0.015	0.007	0.00	00	

Compliance History

Effluent Violations for Outfall 104, from: December 1, 2024 To: October 31, 2025

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Oil and Grease	02/28/25	Avg Mo	60.13	mg/L	15	mg/L
Oil and Grease	03/31/25	Avg Mo	89.25	mg/L	15	mg/L
Oil and Grease	02/28/25	IMAX	115	mg/L	30	mg/L
Oil and Grease	03/31/25	IMAX	159	mg/L	30	mg/L

Summary of Inspections: [REDACTED]

Other Comments: [REDACTED]

Development of Effluent Limitations

Suboutfall No.	101	Design Flow (MGD)	1.0
Latitude	41° 11' 37"	Longitude	-80° 29' 34"
Wastewater Description:	Wastewater from the Water Treatment Plant that receives process wastewater from the Continuous Weld Furnace Scale Pit, Galvanizing Dept., and contaminated groundwater and storm water pumped from the First Flush Tank		

Internal Waste Streams

Effluent limits are imposed at Suboutfall/IMP 101 rather than another monitoring location because 40 CFR § 125.3(f) prohibits compliance with technology-based treatment requirements using “non-treatment” techniques such as flow augmentation (*i.e.*, dilution). Since the wastewaters monitored at IMP 101 combine with other wastewaters before the next downstream monitoring location (Outfall 001), IMP 101 is the only point at which compliance with applicable effluent limits can be determined without the interference of other wastewaters. This rationale is consistent with 40 CFR § 122.45(h)¹, which allows for the imposition of effluent limitations on internal waste streams in these circumstances.

Current Effluent Limits and Monitoring Requirements

Discharges regulated at IMP 101 are currently subject to the following effluent limits and monitoring requirements.

Table 1. IMP 101's Current Effluent Limits and Monitoring Requirements

Parameter	Mass (lbs/day)		Concentration (mg/L)			Minimum Measurement Frequency	Sample Type
	Avg. Mo.	Max Daily	Avg. Mo.	Max Daily	IMAX		
Flow (MGD)	Report	Report	—	—	—	Continuous	Measured
TSS	524	1,279	Report	—	60	1/week	24-Hr Comp.
Oil and Grease	119	468	—	—	30	1/week	Grab
Aluminum, Total	—	Report	—	Report	—	1/quarter	Grab
Iron, Total	72	143	—	—	15.4	1/week	24-Hr Comp.
Lead, Total	0.83	1.7	0.095	0.19	0.24	1/week	24-Hr Comp.
Zinc, Total	1.5	4.5	Report	—	0.5	1/week	24-Hr Comp.

The effluent limits and monitoring requirements in **Table 1** will remain in effect in the renewed permit pursuant to anti-backsliding requirements under Section 402(o) of the Clean Water Act (33 U.S.C. §1342(o)) and/or 40 CFR § 122.44(l) (incorporated by reference at 25 Pa. Code § 92a.44) unless the limits are superseded by more stringent limits developed for this renewal or are relaxed pursuant to the anti-backsliding exceptions listed in 33 U.S.C. § 1342(o) or 40 CFR § 122.44(l).²

101.A. Technology-Based Effluent Limitations (TBELs)

Federal Effluent Limitations Guidelines

Process wastewaters from WTC's pipe and tube manufacturing and galvanizing operations are subject to Federal Effluent Limitations Guidelines (ELGs) under 40 CFR Part 420 – Iron and Steel Manufacturing Point Source Category. Production lines at WTC include: 1) the Continuous Butt Weld (CW) Mill that hot-forms carbon steel strip into pipe and then straightens the pipe in a cold-forming step; and 2) a new Hot-Dip Galvanizing (HDG) line that replaced the original galvanizing line that ceased production at the end of 2024 and was later decommissioned. The new HDG line performs the same operations as the original galvanizing line (alkaline cleaning, acid pickling, and hot coating) but at a smaller scale. Subcategories of 40 CFR Part 420 applicable to WTC include the following:

- CW Mill: Subpart G – Hot Forming Subcategory and Subpart J – Cold Forming Subcategory
- HDG Line: Subpart I – Acid Pickling, Subpart K – Alkaline Cleaning, and Subpart L – Hot Coating

¹ 40 CFR § 122.45(h)(1): “When permit effluent limitations or standards imposed at the point of discharge are impractical or infeasible, effluent limitations or standards for discharges of pollutants may be imposed on internal waste streams before mixing with other waste streams or cooling water streams.”

² 40 CFR § 122.44(l) *Reissued permits.* (1) Except as provided in paragraph (l)(2) of this section when a permit is renewed or reissued, interim effluent limitations, standards or conditions must be at least as stringent as the final effluent limitations, standards, or conditions in the previous permit (unless the circumstances on which the previous permit was based have materially and substantially changed since the time the permit was issued and would constitute cause for permit modification or revocation and reissuance under § 122.62.)

The performance standards in 40 CFR Part 420 are production-based. Pursuant to 40 CFR § 122.45(b)(2)(i) and Section 5.2.2.5 of USEPA's NPDES Permit Writers' Manual (September 2010), the calculation of any permit limitations, standards, or prohibitions that are based on production shall be based, not on the designed production capacity, but on a reasonable measure of the permittee's actual long-term average daily production that can reasonably be expected to prevail during the next permit term. DEP previously calculated production-based mass limits for WTC using the highest monthly production rate reported during the previous permit term. When mass limits are imposed based on the highest monthly production rate reported during the previous permit term, those limits are typically accompanied by concentration limits to ensure that the ELG's performance standards are met when production is low. Concentration limits are discussed later in this fact sheet.

Tables 2 through **6** identify the controlling performance standards from the applicable subparts of the ELGs and the production-based mass limits calculated using WTC's maximum monthly production rates from the last five years (or expected maximum production rates for the new HDG line since production history is limited for that new line). Controlling limits are highlighted in the tables in green. For the acid pickling process, consistent with performance standards under Subpart I, additional pollutant loadings are calculated for WTC's use of one (1) acid pickling fume scrubber (down from four acid pickling fume scrubbers and three hot coating fume scrubbers used to calculate additional pollutant loadings for WTC's current permit).

Table 2. Production-Based TBELs for CW Mill under 40 CFR Part 420, Subpart G – Hot Forming

Industrial Category & Subcategory: Iron and Steel Manufacturing Point Source Category, Subpart G – Hot Forming					
Regulatory Citation: 40 CFR §§ 420.72(d) [BPT] & 420.77(d) [BCT] – Pipe and tube mills, carbon and specialty ¹					
Production Line and Process Description: Continuous Butt Weld Mill / Hot Forming of Carbon Steel Strip into Pipe					
Production Rate: 41,007,500 pounds/month [Five-Year Maximum Monthly Production from March 2023] ÷ 16.69 days/month [Average Number of Production Days/Month in 2023] = 2,457,010 pounds/day					
Parameter	Controlling Performance Standard	Performance Standards		Mass Limits	
		Maximum for any 1 day	Average of daily values for 30 consecutive days	Average Monthly	Maximum Daily
		pounds per 1,000 pounds of product		pounds/day	pounds/day
TSS	BCT	0.212	0.0795	195.3	520.9
Oil and Grease	BCT	0.0530	—	—	130.2
pH (S.U.)	BCT	within the range of 6.0 to 9.0		—	—

¹ Per 40 CFR § 420.73, EPA determined that there are not significant quantities of toxic pollutants in hot forming wastewaters after compliance with applicable BPT limits. Consequently, EPA did not promulgate more stringent Best Available Technology Economically Achievable (BAT) limits for Hot Forming.

Table 3. Production-Based TBELs for CW Mill under 40 CFR Part 420, Subpart J – Cold Forming

Industrial Category & Subcategory: Iron and Steel Manufacturing Point Source Category, Subpart J – Cold Forming					
Regulatory Citation: 40 CFR §§ 420.102(b)(1) [BPT], 420.103(b)(1) [BAT], 420.107(b)(1) [BCT] – Cold worked pipe and tube – Using water					
Production Line and Process Description: Continuous Butt Weld Mill / Hot Forming of Carbon Steel Strip into Pipe					
Production Rate: 41,007,500 pounds/month [Five-Year Maximum Monthly Production from March 2023] ÷ 16.69 days/month [Average Number of Production Days/Month in 2023] = 2,457,010 pounds/day — Cold Forming production is the same as Hot Forming production because all hot-formed pipe goes through a straightening (cold forming) process					
Parameter	Controlling Performance Standard	Performance Standards		Mass Limits	
		Maximum for any 1 day	Average of daily values for 30 consecutive days	Average Monthly	Maximum Daily
		pounds per 1,000 pounds of product		pounds/day	pounds/day
TSS	BCT	0.00125	0.000626	1.5	3.1
Oil and Grease	BCT	0.000522	0.000209	0.5	1.3
Chromium ¹	BAT	0.0000209	0.0000084	N/A ¹	N/A ¹
Lead	BAT	0.0000094	0.0000031	0.008	0.023
Nickel ¹	BAT	0.0000188	0.0000063	N/A ¹	N/A ¹
Zinc	BAT	0.0000063	0.0000021	0.005	0.015
pH (S.U.)	BCT	within the range of 6.0 to 9.0		—	—

¹ The limitations for chromium and nickel shall be applicable in lieu of those for lead and zinc when cold forming wastewaters are treated with descaling or combination acid pickling wastewaters.

Table 4. Production-Based TBELs for HDG Line under 40 CFR Part 420, Subpart I – Acid Pickling

Industrial Category & Subcategory: Iron and Steel Manufacturing Point Source Category, Subpart I – Acid Pickling					
Regulatory Citation: 40 CFR §§ 420.92(a)(4) [BPT], 420.93(a)(4) [BAT], 420.97(a)(4) [BCT] – Sulfuric acid pickling (spent acid solutions and rinse waters) – Pipe, tube and other products					
Production Line and Process Description: HDG Hot-Dip Galvanizing / Sulfuric Acid Pickling					
Production Rate: 7,976,306 pounds/month [Maximum Monthly Production from November 2024] ÷ 9.42 days/month [Average Number of Production Days/Month in 2024] = 846,742 pounds/day ¹					
Parameter	Controlling Performance Standard	Performance Standards		Mass Limits	
		Maximum for any 1 day	Average of daily values for 30 consecutive days	Average Monthly	Maximum Daily
		pounds per 1,000 pounds of product		pounds/day	pounds/day
TSS	BCT	0.146	0.0626	53.0	123.6
Oil and Grease ²	BCT	0.0626	0.209	17.7	53.0
Lead	BAT	0.000939	0.000313	0.27	0.80
Zinc	BAT	0.00125	0.000417	0.35	1.06
pH (S.U.)	BCT	within the range of 6.0 to 9.0		—	—

Regulatory Citation: 40 CFR §§ 420.92(a)(5) [BPT], 420.93(a)(5) [BAT], 420.97(a)(5) [BCT] – Sulfuric acid pickling – Fume scrubbers

Production Line and Process Description: HDG Hot-Dip Galvanizing / Sulfuric Acid Pickling / Fume Scrubbers

Production Rate: One (1) fume scrubber

Parameter	Controlling Performance Standard	Performance Standards		Mass Limits	
		Maximum for any 1 day	Average of daily values for 30 consecutive days	Average Monthly	Maximum Daily
		kilograms per day (pounds per day) ³		pounds/day	pounds/day
TSS	BCT	5.72 (12.61)	2.45 (5.401)	5.4	12.6
Oil and Grease ²	BCT	2.45 (5.401)	0.819 (1.806)	1.8	5.4
Lead	BAT	0.0368 (0.08113)	0.0123 (0.02712)	0.03	0.08
Zinc	BAT	0.0491 (0.1083)	0.0164 (0.0362)	0.04	0.11
pH (S.U.)	BCT	within the range of 6.0 to 9.0		—	—

¹ The old galvanizing department, including hot-dip galvanizing operations for Pot 1, Pot 2, and associated pickling processes, were decommissioned in 2024. WTC reported that it anticipates the new HDG line will reach 75% of its design production capacity within the next five years (about 90,000,000 pounds/year). An expected daily production rate (pounds/day) was not reported, so the production rate of the new automated HDG line is estimated using available data from operation of that line in 2024 (maximum monthly production divided by the average number of production days per month).

² The limitations for oil and grease shall be applicable when acid pickling wastewaters are treated with cold rolling wastewaters.

³ Limitations apply to each fume scrubber associated with a sulfuric acid pickling operation.

Table 5. Production-Based TBELs for HDG Line under 40 CFR Part 420, Subpart K – Alkaline Cleaning

Industrial Category & Subcategory: Iron and Steel Manufacturing Point Source Category, Subpart K – Alkaline Cleaning					
Regulatory Citation: 40 CFR §§ 420.112(a) [BPT] & 420.117(a) [BCT] – Batch ¹					
Production Line and Process Description: HDG Hot-Dip Galvanizing / Alkaline Cleaning					
Production Rate: 7,976,306 pounds/month [Maximum Monthly Production from November 2024] ÷ 9.42 days/month [Average Number of Production Days/Month in 2024] = 846,742 pounds/day					
Parameter	Controlling Performance Standard	Performance Standards		Mass Limits	
		Maximum for any 1 day	Average of daily values for 30 consecutive days	Average Monthly	Maximum Daily
		pounds per 1,000 pounds of product		pounds/day	pounds/day
TSS	BCT	0.0730	0.0313	26.5	61.8
Oil and Grease	BCT	0.0313	0.0104	8.81	26.5
pH (S.U.)	BCT	within the range of 6.0 to 9.0		—	—

¹ Per 40 CFR § 420.113, EPA determined that there are not significant quantities of toxic pollutants in alkaline cleaning wastewaters after compliance with applicable BPT limitations. Consequently, EPA did not promulgate more stringent Best Available Technology Economically Achievable (BAT) limits for Alkaline Cleaning.

Table 6. Production-Based TBELs for HDG Line under 40 CFR Part 420, Subpart L – Hot Coating

Industrial Category & Subcategory: Iron and Steel Manufacturing Point Source Category, Subpart L – Hot Coating					
Regulatory Citation: 40 CFR §§ 420.122(a)(1) [BPT], 420.123(a)(1) [BAT], 420.127(a)(1) [BCT] – Galvanizing, terne coatings, and other coatings – Strip, sheet, and miscellaneous products					
Production Line and Process Description: HDG Hot-Dip Galvanizing / Coating of Pipe with Molten Zinc					
Production Rate: 7,976,306 pounds/month [Maximum Monthly Production from November 2024] ÷ 9.42 days/month [Average Number of Production Days/Month in 2024] = 846,742 pounds/day					
Parameter	Controlling Performance Standard	Performance Standards		Mass Limits	
		Maximum for any 1 day	Average of daily values for 30 consecutive days	Average Monthly	Maximum Daily
		pounds per 1,000 pounds of product		pounds/day	pounds/day
TSS	BCT	0.175	0.0751	63.6	148.2
Oil and Grease	BCT	0.0751	0.0250	21.2	63.6
Lead	BAT	0.00113	0.000376	0.32	0.96
Zinc	BAT	0.00150	0.000500	0.42	1.27
Chromium, VI ¹	BAT	0.000150	0.0000501	N/A	N/A
pH (S.U.)	BCT	within the range of 6.0 to 9.0		—	—

¹ The limitations for hexavalent chromium shall be applicable only to galvanizing operations which discharge wastewater from the chromate rinse step.

Groundwater and Storm Water

Groundwater from the coil yard and finishing areas of the mill is collected and combines with storm water in an 80,000-gallon “First Flush Tank”. The combined wastewaters are pumped to the Water Treatment Plant intermittently at large volumes following the installation of a larger pump at the First Flush Tank within the last few years. The new pump keeps the tank level below the weir overflow to Outfall 006 in accordance with a permit condition that requires 90,000 gallons of water collected in the First Flush Tank to be pumped to the Water Treatment Plant before a discharge from Outfall 006 is allowed to occur on consecutive days. The average monthly volume of water pumped to the treatment plant from the First Flush Tank in 2025 is approximately 340,000 gallons, with the pump primarily triggered during storm events.

For the previous permit, DEP provided additional pollutant loading allowances at IMP 101 for TSS, lead, and zinc in wastewaters pumped from the First Flush Tank. Pursuant to DEP’s best professional judgement, the load allowances were calculated using the BPT/BAT performance standards for those parameters from 40 CFR §§ 433.13(a) and 433.14(a) (Metal Finishing Point Source Category ELGs) and an estimated flow rate of 0.0012 MGD.

The previous permit imposed a flow monitoring requirement at IMP 201 to quantify the flow rate of groundwater and storm water pumped from the First Flush Tank to the Water Treatment Plant. Based on flow data collected at IMP 201, the five-year average flow rate of pumped groundwater and storm water is 0.0158 MGD. That flow rate will be used to calculate additional pollutant loading allowances for TSS, lead, and zinc for this permit renewal.

Table 7. Additional TBELs for Groundwater and Stormwater from the First Flush Tank

Industrial Category & Subcategory: Metal Finishing Point Source Category, Subpart A – Metal Finishing Subcategory					
Regulatory Citation: 40 CFR §§ 433.13(a)(1) [BPT] & 433.14(a) [BAT]; 25 Pa. Code § 92a.48(a)(3) & 40 CFR § 125.3(c)(2) [BPJ]					
Production Line and Process Description: Groundwater and storm water from pumped from the First Flush Tank					
Production Rate: 0.0158 MGD [Five-year average pumped flow rate at IMP 102]					
Parameter	Controlling Performance Standard	Performance Standards		Mass Limits	
		Maximum for any 1 day	Average of daily values for 30 consecutive days	Average Monthly	Maximum Daily
		pounds per 1,000 pounds of product		pounds/day	pounds/day
TSS	BPT	60	31	4.1	7.9
Lead	BAT	0.69	0.43	0.057	0.091
Zinc	BAT	2.61	1.48	0.20	0.34
pH (S.U.)	BPT	within the range of 6.0 to 9.0		—	—

When DEP prepared WTC's 2014 NPDES permit, DEP calculated loading allowances for total iron from coil yard and finishing area groundwater and storm water based on BAT TBELs for total iron from 40 CFR § 434.33. That regulation identifies BAT performance standards for acid or ferruginous mine drainage. However, TBELs for total iron were not imposed at IMP 101. The effluent limits for total iron currently in effect at IMP 101 are water quality-based mass limits and an instantaneous maximum (IMAX) concentration limit only (discussed in Section 101.B, below). Imposing TBELs for total iron at IMP 101 would require either the adoption of TBELs from another regulation (e.g., § 434.33) based on technology transfer or an accounting for iron in WTC's process wastewaters and an evaluation of the treatability of iron in those wastewaters by BAT. While iron is present in significant/treatable concentrations in the various waste streams regulated by 40 CFR Part 420, EPA did not identify BPT/BAT treatability values for total iron in the corresponding Iron and Steel ELG Development Document and chose not to limit iron in 40 CFR 420 Subparts G, I, J, K, or L because iron is not a toxic priority pollutant. EPA concluded that limits for toxic indicator pollutants (lead and zinc) would result in the treatment and removal of other pollutants like iron. Available influent and effluent data summarized in **Table 8** support EPA's conclusion.

Table 8. Influent and Effluent Concentrations and Percent Removals

Parameter	Influent (µg/L)	Effluent (µg/L)	Percent Removal
Aluminum, Total	28,000	376 ^{††}	98.6571%
Antimony, Total	34	1.4	95.8824%
Arsenic, Total	56	0.5	99.1071%
Barium, Total	76	15	80.2632%
Beryllium, Total	<5	0.1	98.0000%
Boron, Total	5110	78	98.4736%
Cadmium, Total	143	<2	>98.6014%
Chromium, Total	47,200	2.3	99.9951%
Chromium, Hexavalent	11	<5	>54.5455%
Cobalt, Total	264	0.4	99.8485%
Copper, Total	903	29	96.7885%
Cyanide, Total	<5	8	—
Iron, Total	9,000,000	2,819 ^{††}	99.9687%
Iron, Dissolved	8,870,000	46.7	99.9995%
Lead, Total	57	<0.02 ^{††}	>99.9649%
Manganese, Total	134,000	146	99.8910%
Mercury, Total	1.3	0.067	94.8462%
Molybdenum, Total	8190	12	99.8535%
Nickel, Total	3340	4.7	99.8593%
Phenols, Total	24	0.047	99.8042%
Selenium, Total	<500	<5	99.0000%
Silver, Total	<0.5	0.2	—
Thallium, Total	2.3	5	—
Zinc, Total	290,000	167 [†]	99.9424%

[†] Influent concentrations reported on WTC's 2019 Application.

^{††} Long-term average of maximum daily concentrations reported on DMRs (Oct. 2014 – May 2025).

The long-term average concentration of total iron in WTC's effluent is less than the average monthly TBEL for total iron from 40 CFR § 434.33 (3.5 mg/L). WTC's treatment process appears to remove metals from the facility's wastewaters effectively; although, influent data are limited. Based on the data on **Table 8**, no TBELs for other parameters are developed. However, due to their significant concentrations in the raw wastewaters and, to the extent that more stringent WQBELs do not apply, reporting will be required for aluminum, chromium, iron (total and dissolved), and manganese to confirm the removal of those pollutants by WTC's treatment process. The mass TBELs for IMP 101 are summarized in **Table 9**.

Table 9. Summary of Technology-Based Mass Limits at IMP 101

Parameter	Average Monthly (pounds/day)	Maximum Daily (pounds/day)	Basis
Total Suspended Solids	349.0	878.0	40 CFR 420, Subparts G, I, J, K, L + First Flush Loading
Oil and Grease	50.0	280.0	40 CFR 420, Subparts G, I, J, K, L + First Flush Loading
Lead	0.67	1.95	40 CFR 420, Subparts G, I, J, K, L + First Flush Loading
Zinc	1.0	2.8	40 CFR 420, Subparts G, I, J, K, L + First Flush Loading

Concentration-Based Limits for IMP 101

To supplement the production-based mass limits, DEP previously imposed IMAX concentration limits for TSS, oil and grease, zinc, and, nominally, lead, under the authority of 40 CFR § 122.45(f)(2).³ The concentration TBEL for lead was superseded by WQBELs, which in turn resulted in more stringent mass limits for lead (discussed in Section 101.B). **Table 10** summarizes the concentration-based performance standards underlying the production-based performance standards in 40 CFR Part 420.

Table 10. Concentration-Based Performance Standards for Part 420-Regulated Wastewaters

Parameter	BPT		BCT		BAT	
	Avg. Mo. (mg/L)	Max Daily (mg/L)	Avg. Mo. (mg/L)	Max Daily (mg/L)	Avg. Mo. (mg/L)	Max Daily (mg/L)
Subpart G - Hot Forming						
TSS	15	40	15	40	—	—
Oil & Grease	—	10	—	10	—	—
Lead	—	—	—	—	—	—
Zinc	—	—	—	—	—	—
Subpart J - Cold Forming						
TSS	30	60	30	60	—	—
Oil & Grease	10	25	10	25	—	—
Lead	0.15	0.45	0.15	0.45	0.15	0.45
Zinc	0.1	0.3	0.1	0.3	0.1	0.3
Subpart I - Acid Pickling						
TSS	30	70	30	70	—	—
Oil & Grease	10	30	10	30	—	—
Lead	0.15	0.45	0.15	0.45	0.15	0.45
Zinc	0.1	0.3	0.1	0.3	0.1	0.3
Subpart K - Alkaline Cleaning						
TSS	30	70	30	70	—	—
Oil & Grease	10	30	10	30	—	—
Lead	—	—	—	—	—	—
Zinc	—	—	—	—	—	—
Subpart L - Hot Coating						
TSS	30	70	30	70	—	—
Oil & Grease	10	30	10	30	—	—
Lead	0.15	0.45	0.15	0.45	0.15	0.45
Zinc	0.1	0.3	0.1	0.3	0.1	0.3

IMP 101 is currently subject to average monthly reporting for TSS, a TSS IMAX limit of 60 mg/L, an Oil and Grease IMAX limit of 30.0 mg/L, an average monthly reporting requirement for zinc, and a zinc IMAX limit of 0.5 mg/L. Other IMAX concentration limits imposed at IMP 101 are WQBELs that may be subject to change based on DEP's updated reasonable potential analysis for this permit renewal (see Section 101.B below). As imposed in the current permit, the TSS and zinc IMAX limits do not appear on WTC's DMRs as limits against which WTC must report effluent analytical results. The TSS and zinc IMAX limits would be used by DEP sampling personnel to allow a grab sample to be collected to determine compliance (e.g., a grab sample collected during an inspection to readily assess treatment performance).

The current 60 mg/L IMAX limit for TSS corresponds to the maximum daily TSS concentration for Cold Forming based on BPT/BCT. The maximum daily TSS concentration for Hot Forming wastewaters is more stringent at 40 mg/L, but the maximum daily TSS concentration for the other subparts' wastewaters is less stringent at 70 mg/L. The proportional contributions of wastewaters from each of the production operations are unknown, so flow-weighted concentration limits cannot be calculated. However, 60 mg/L is more stringent than an unweighted arithmetic mean of the five subparts' maximum daily TSS concentrations ($(40 \text{ mg/L} + 60 \text{ mg/L} + 70 \text{ mg/L} + 70 \text{ mg/L} + 70 \text{ mg/L}) \div 5 = 62 \text{ mg/L}$).

WTC's long-term average effluent TSS concentration at IMP 101 is 9.0 mg/L with a maximum average monthly concentration of 36 mg/L reported in August 2019. Based on those values, WTC's treatment system performs at a level commensurate with the ELG's underlying concentrations. However, as discussed previously, when mass limits are based on the highest monthly production rate reported during the previous permit term, those limits are typically accompanied by concentration limits to ensure that the ELG's performance standards are met when production is low. Therefore, the 60

³ 40 CFR 122.45(f)(2) states: "Pollutants limited in terms of mass additionally may be limited in terms of other units of measurement, and the permit shall require the permittee to comply with both limitations."

mg/L limit will be imposed as a maximum daily concentration limit. The average monthly reporting requirement for TSS will remain in effect to maintain an allowance for operational flexibility.

The current 30 mg/L Oil and Grease limit at IMP 101 is the same as the maximum daily Oil and Grease concentration-based performance standard for all wastewaters regulated by Part 420 except those from Hot Forming and Cold Forming. The production-based performance standards for Hot Forming wastewaters are based on a maximum daily concentration of 10 mg/L and, for Cold Forming wastewaters, 25 mg/L. A concentration limit of 30 mg/L is a reasonable upper limit considering 25 Pa. Code § 95.2(2)(ii) limits Oil and Grease in oil-bearing wastewaters to a maximum of 30 mg/L. WTC's long-term average Oil and Grease concentration at IMP 101 is 4.12 mg/L with most results reported as "<5.0 mg/L", and the maximum concentration of Oil and Grease at IMP 101 was 10.6 mg/L reported in March 2020. The 30 mg/L Oil and Grease IMAX limit will remain in effect at IMP 101 with a reporting requirement added for the average monthly concentration.

The 0.5 mg/L zinc limit at IMP 101 is higher than the maximum daily concentration-based performance standard of 0.3 mg/L from 40 CFR Part 420, Subparts I, J, and L. According to 40 CFR §§ 420.73 and 420.113, Hot Forming and Alkaline Cleaning wastewaters do not contain significant concentrations of toxics after treatment for conventional pollutants, so WTC would be expected to achieve effluent concentrations of 0.3 mg/L or less assuming Hot Forming and Alkaline Cleaning wastewaters do not contribute zinc. WTC's long-term average effluent zinc concentration at IMP 101 is 0.167 mg/L with a maximum concentration of 0.62 mg/L reported in December 2016. Consistent with the rationale for imposing concentration limits discussed previously, the 0.5 mg/L limit for zinc will be imposed as a maximum daily concentration limit and the average monthly reporting requirement for zinc will remain in effect to maintain an allowance for operational flexibility.

Lead is not subject to concentration TBELs in the current permit. Consistent with the rationale for imposing concentration limits discussed previously, a maximum daily concentration limit of 0.45 mg/L will be imposed for lead (equivalent to the underlying maximum daily concentrations for Subparts I, J, and L) with average monthly concentration reporting. Concentration TBELs for IMP 101 are summarized in **Table 11**.

Table 11. Summary of Technology-Based Concentration Limits at IMP 101

Parameter	Average Monthly (mg/L)	Maximum Daily (mg/L)
Total Suspended Solids	Report	60.0
Oil and Grease	Report	30.0
Lead	Report	0.45
Zinc	Report	0.5

Consistent with the previous permit and the discretion allowed by 40 CFR § 420.07, monitoring for compliance with the pH limits is specified at the point of discharge to the receiving water: Outfall 001.

Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the world. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts.⁴ Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

⁴ ATSDR, "Toxicological Profile for Perfluoroalkyls". Patrick N. Breysse, Ph.D., CIH Director, National Center for Environmental Health and Agency for Toxic Substances and Disease Registry Centers for Disease Control and Prevention, May 2021.

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

WTC collected application samples before the NPDES permit application forms were updated to require sampling for PFOA, PFOS, PFBS, and HFPO-DA, so effluent data for PFAS are not available. However, according to EPA's guidance, WTC does not operate in one of the industries EPA expects to be a source for PFAS. Therefore, annual reporting of PFOA, PFOS, PFBS, and HFPO-DA will be required consistent with Section II.I.b of SOP BCW-PMT-032. As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods (i.e., four consecutive annual results in WTC's case), then the monitoring may be discontinued.

101.B. Water Quality-Based Effluent Limitations (WQBELs)

Total Iron

The Fact Sheet for the current NPDES permit (issued in 2014) states that IMP 101's effluent limits for total iron were derived from a water quality-based effluent limit (WQBEL) calculated for the facility's December 1995 NPDES permit. Water quality modeling from that time apparently calculated an average monthly effluent limit for total iron of 7.2 mg/L. Rather than impose that WQBEL, DEP granted the company's request to instead impose equivalent mass limits calculated as follows:

Average Monthly Limit (AML):

$$7.2 \text{ mg/L} \times 1.195 \text{ MGD} \times 8.34 \text{ [unit conversion factor]} = 71.7 \text{ pounds/day}$$

Maximum Daily Limit (MDL):

$$71.7 \text{ pounds/day} \times 2.0 \text{ [AML-to-MDL multiplier]} = 143.0 \text{ pounds/day}$$

An instantaneous maximum concentration limit also was calculated as follows:

$$72 \text{ pounds/day} \div 8.34 \text{ [unit conversion factor]} \div 1.4 \text{ MGD} \times 2.5 \text{ [AML-to-IMAX multiplier]} = 15.4 \text{ mg/L}$$

Water quality modeling by DEP in February 2014 identified a governing WQBEL of 7.2 mg/L for dissolved iron and a governing WQBEL of 45.1 mg/L for total iron. Those limits were calculated based on a discharge flow rate of 1.85 MGD, a Q₇₋₁₀ flow of 142.63 cfs for the Shenango River, and water quality criteria for iron in 25 Pa. Code Chapter 93 (1.5 mg/L total iron and 0.3 mg/L dissolved iron) that have not changed since initial promulgation in 1974. DEP remodeled the discharge in March 2014 using a lower flow rate, which resulted in less stringent WQBELs for dissolved iron. However, the previously imposed limits for iron were not changed. Notwithstanding the remodeling, it appears that DEP imposed a dissolved iron WQBEL calculated in 1995 as the WQBEL for total iron and maintained that limit through subsequent renewals. Influent characterization data in **Table 8** suggest that imposing a dissolved iron WQBEL as a total iron WQBEL was reasonable because total iron in the wastewater is predominantly present as dissolved iron, which is the more bioavailable form of iron.

Section II.A of DEP's Standard Operating Procedure (SOP) for Clean Water Program Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Dischargers [SOP No. BCW-PMT-037] states: "Application managers will reestablish existing WQBELs in a renewed permit if [reasonable potential] RP is demonstrated based on the latest information, including site-specific data. If RP is not demonstrated, existing WQBELs may be relaxed or eliminated if one or more of the [statutory or regulatory] anti-backsliding exceptions

apply and are documented in the fact sheet." The need for iron WQBELs—whether new or maintained from the previous permit—is discussed below with the water quality modeling results for this permit renewal.

Total Lead

DEP's March 2014 remodeling resulted in the calculation of an average monthly WQBEL of 0.095 mg/L for lead with a maximum daily limit of 0.19 mg/L calculated using an average monthly multiplier of two (0.095 mg/L \times 2 = 0.19 mg/L) and an IMAX limit of 0.24 mg/L calculated using an average monthly multiplier of 2.5 (0.095 mg/L \times 2.5 \approx 0.24 mg/L). Those limits will be maintained if responsible potential is demonstrated.

Water Quality Modeling

WQBELs generally are not imposed at internal monitoring points because internal waste streams do not need to comply with water quality standards until they discharge to waters of the Commonwealth. DEP's previous water quality modeling at IMP 101 may have been based on the fact that toxics are only expected to be present in significant concentrations in IMP 101's wastewaters; or on the expectation that dry weather discharges from Outfall 001 that would occur at Q₇₋₁₀ design stream flow conditions would be driven by process wastewater discharges from IMP 101 and not from other inputs to the lagoon (e.g., storm water). DEP will continue to model discharges regulated at IMP 101 as if they were discharging at Outfall 001 and impose WQBELs at IMP 101 accordingly.

Toxics Management Spreadsheet Water Quality Modeling Program and Procedures for Evaluating Reasonable Potential

WQBELs are developed pursuant to Section 301(b)(1)(C) of the Clean Water Act and, per 40 CFR § 122.44(d)(1)(i), are imposed to "control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) that are or may be discharged at a level that will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality." The Department of Environmental Protection developed the DEP Toxics Management Spreadsheet (TMS) to facilitate calculations necessary to complete a reasonable potential (RP) analysis and determine WQBELs for discharges of toxic and some nonconventional pollutants.

The TMS is a single discharge, mass-balance water quality modeling program for Microsoft Excel® that considers mixing, first-order decay, and other factors to determine WQBELs for toxic and nonconventional pollutants. Required input data including stream code, river mile index, elevation, drainage area, discharge flow rate, low-flow yield, and the hardness and pH of both the discharge and the receiving stream are entered into the TMS to establish site-specific discharge conditions. Other data such as reach dimensions, partial mix factors, and the background concentrations of pollutants in the stream also may be entered to further characterize the discharge and receiving stream. The pollutants to be analyzed by the model are identified by inputting the maximum concentration reported in the permit application or Discharge Monitoring Reports, or by inputting an Average Monthly Effluent Concentration (AMEC) calculated using DEP's TOXCONC.xls spreadsheet for datasets of 10 or more effluent samples. Pollutants with no entered concentration data and pollutants for which numeric water quality criteria in 25 Pa. Code Chapter 93 have not been promulgated are excluded from the modeling. If warranted, ammonia-nitrogen, CBOD-5, and dissolved oxygen are analyzed separately using DEP's WQM 7.0 model.

The TMS evaluates each pollutant by computing a wasteload allocation for each applicable criterion, determining the most stringent governing WQBEL, and comparing that governing WQBEL to the input discharge concentration to determine whether permit requirements apply in accordance with the following RP thresholds:

- Establish limits in the permit where the maximum reported effluent concentration or calculated AMEC equals or exceeds 50% of the WQBEL. Use the average monthly, maximum daily, and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- For non-conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 25% - 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 10% - 50% of the WQBEL.

In most cases, pollutants with effluent concentrations that are not detectable at the level of DEP's Target Quantitation Limits are eliminated as candidates for WQBELs and water quality-based monitoring requirements.

Reasonable Potential Analysis and WQBEL Development for IMP 101 at Outfall 001

Outfall 001 discharges to a tributary that flows along Council Avenue (SR 718). Modeling for IMP 101 was previously performed at the mouth of that tributary where it flows into the Shenango River (ostensibly the “point of first use”). Water quality modeling for this permit renewal will be performed at that location, but DEP may opt to perform a point of first use evaluation in the future to determine whether the tributary has a use.

Figure 1. Site Features for IMP 101/Outfall 001 Water Quality Modeling

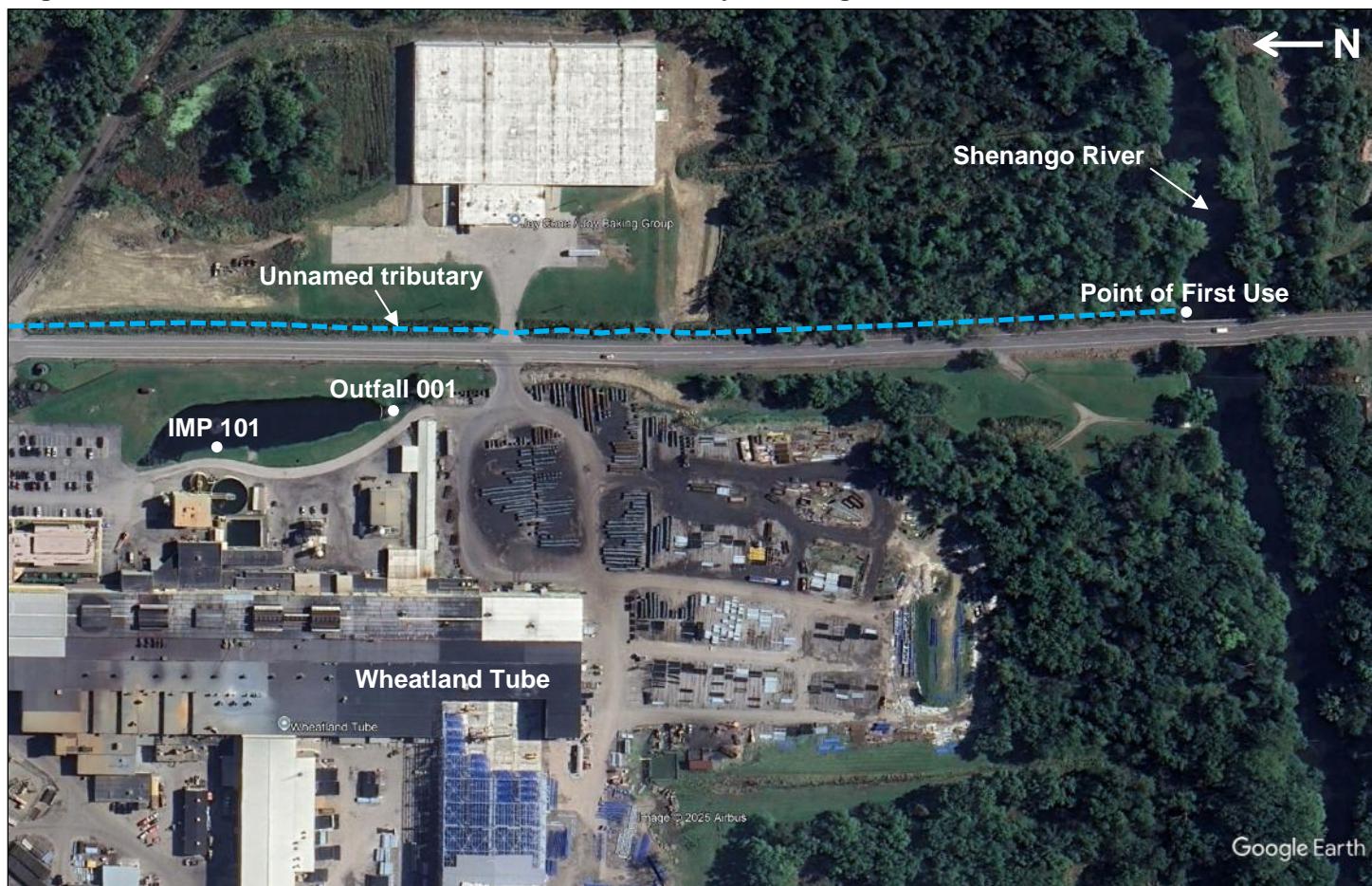


Image Source and Date: Google Earth Pro; October 2, 2024.

Pursuant to 25 Pa. Code § 96.4(g), mathematical modeling to develop WQBELs for point source discharges is based on Q₇₋₁₀ flow for aquatic life criteria and threshold human health criteria, and harmonic mean flow for non-threshold human health criteria (i.e., carcinogens).⁵ DEP used USGS's Hydrologic Toolbox v.1.1.0 software and data from USGS Gage 03103500 – Shenango River at Sharpsville, PA for the period of record lasting from 2009 through 2024 to calculate Q₇₋₁₀ flow and harmonic mean flow for the Shenango River. The results are shown in **Figure 2**. The period of record from 2009 through 2024 is used because there is a data gap in the period of record from October 1991 to October 2009 and data preceding October 1991 is less likely to be representative of current conditions.

⁵ Q₇₋₁₀ flow: The actual or estimated lowest 7 consecutive-day average flow that occurs once in 10 years for a stream with unregulated flow, or the estimated minimum flow for a stream with regulated flow.

Harmonic mean flow: The flow that is determined by taking the reciprocal of the arithmetic mean of reciprocals of daily flow values.

Figure 2. USGS Gage 03103500 Flow Statistics (2009-2024)

RESULTS: USGS 03103500 Shenango River at Sharpsville, PA			
File Edit View Help All available data from Apr 1, 2010 through Mar 31, 2024 are included in analysis Climatic year defined as Apr 1 - Mar 31.			
Seasonal Calculation?	No	Percentile	x-day avg. Excur. per 3 yr.
Season Or Year Start	1-Apr		
Season Or Year End	31-Mar		
Years Included in Calculations	2009~2024		
Start	2009		
End	2024		
Flow Statistic	Flow Value	Percentile	x-day avg. Excur. per 3 yr.
1B3	111.3	0.17%	1
4B3	124.72	0.25%	0.8
30B3	168.01	2.76%	1
Flow Statistic	Flow Value	Percentile	1-day Excur. per 3 yr.
7Q10	121.05	0.23%	1
Harmonic Mean	423.47	41.43%	N/A
Harmonic Mean, Adjusted	423.47	40.62%	N/A

Table 12. TMS Inputs for IMP 101 at 001

Discharge Characteristics		
Parameter	Value	
Discharge Flow (MGD)	1.0	
Hardness (mg/L)	493	
Receiving Stream Characteristics		
Parameter	Outfall 001	End of Segment
Stream Code	35482	35482
River Mile Index	24	4.75
Drainage Area (mi ²)	706	790
Q ₇₋₁₀ (cfs)	121.05	see output
Harmonic Mean Flow (cfs)	423.47	see output
Low-flow Yield (cfs/mi ²)	0.171	0.171
Elevation (ft)	823.55	793.67
Slope (ft/ft)	0.00042	0.00042
PWS Intake (MGD)	—	8.4
Width (ft)	125.0	175.0
Depth (ft)	3.0	see output

Discharges from IMP 101 are evaluated based on the maximum concentrations reported on the permit renewal application except for lead and zinc, which are evaluated using the maximum daily concentration TBELs listed in **Table 11**. The TMS model is run with the modeled discharge and receiving stream characteristics shown in **Table 12**. Pollutants for which water quality criteria have not been promulgated (e.g., TSS, Oil and Grease, etc.) are excluded from the modeling.

The width and depth of the river are estimated for Q₇₋₁₀ low-flow conditions. The width of the Shenango River at the outfall and at the nearest downstream potable water supply were determined by measuring the width of the river on a topographic map. The depth of the river at Outfall 001 was estimated based on DEP's best professional judgement. The slope of the river in the vicinity of Outfall 001 was estimated by measuring the length of the river between the nearest topographic contour lines that cross the Shenango River upstream and downstream of Outfall 001 and dividing the elevation difference between those contours (elev. 830 feet – elev. 820 feet) by the length of river between them (23,873.28 feet as shown in **Figure 3** measured using USGS's The National Map Viewer). The resulting slope is calculated as: 10 feet ÷ 23,873.28 feet ≈ 0.00042.

The drainage areas of the Shenango River at Outfall 001 and at the downstream end-of-reach are estimated using USGS StreamStats web application. USGS StreamStats also can be used to calculate stream flow statistics, but the flow statistics in StreamStats are calculated using regression equations and regionalized data that are not appropriate for gaged streams.

Output from the TMS model is included in **Attachment A** to this Fact Sheet. The results of the modeling identify WQBELs for total lead and acrylamide and reporting requirements for total cadmium, total copper, and total zinc as shown in **Table 13**.

Figure 3. River Length Measurement for Slope Determination

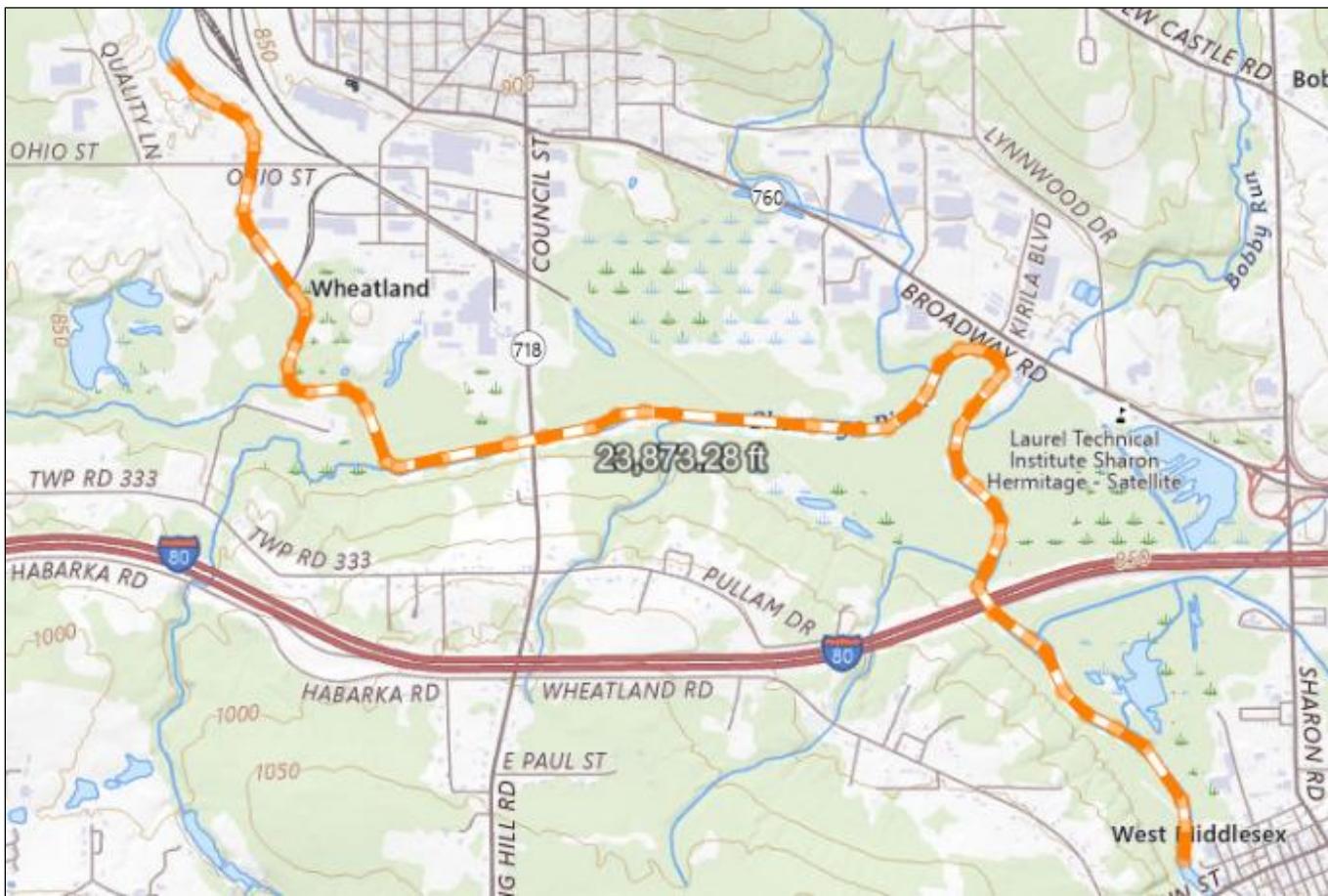


Table 13. Water Quality-Based Effluent Limits for IMP 101 at Outfall 001

Parameter	Permit Limits					Discharge Conc. (µg/L)	Target QL (µg/L)	Governing WQBEL (µg/L)	Governing WQBEL Basis [†]
	Avg Mo. (lb/day)	Max Daily (lb/day)	Avg Mo. (µg/L)	Max Daily (µg/L)	IMAX (µg/L)				
Cadmium	Report	Report	Report	Report	Report	<2	0.2	19.0	CFC
Copper	Report	Report	Report	Report	Report	36	4	200	AFC
Lead	1.72	2.68	206	321	514	450	1	206	CFC
Zinc	Report	Report	Report	Report	Report	500	5	1,713	AFC
Acrylamide	0.16	0.25	19.2	30.0	48.1	10000	N/A	19.2	CRL

[†] AFC: Acute Fish Criterion; CFC: Chronic Fish Criterion; CRL: Cancer Risk Level

WTC reported results for Acrylamide using an analytical reporting limit of 10 mg/L. For modeling purposes, the TMS uses a Target QL of 0.1 µg/L for Acrylamide. The permit application instructions do not identify a Target QL for Acrylamide, so applicants are not held to the TMS's Target QL for Acrylamide. Also, according to the application, chemical additives containing Acrylamide are not used by WTC. Therefore, the TMS's WQBELs for Acrylamide are not imposed at Outfall 001.

The concentration WQBELs for lead are more stringent than the concentration TBELs, so the WQBELs are imposed in combination with the production-based mass limits for lead that are more stringent than the mass WQBELs. The new concentration WQBELs for lead are less stringent than the concentration WQBELs for lead in the previous permit. Backsliding to the new limits is permissible in this case based on the exception to anti-backsliding given by Section 402(o)(2)(B)(i) of the Clean Water Act (33 U.S.C. § 1342(o)(2)(B)(i)) regarding new information that justifies that application of less stringent effluent limitations—in this case, updated modeling inputs that result in a determination that lead in IMP 101's effluent does not have reasonable potential to cause or contribute to excursions above water quality criteria at the previously calculated WQBELs.

Mass and concentration TBELs for zinc are more stringent than the water quality-based reporting requirements, so TBELs will control for zinc. Cadmium and copper will require 24-hour composite sampling 1/week.

Neither total iron nor dissolved iron exhibit a reasonable potential to cause or contribute to excursions above water quality criteria. The most stringent WQBELs calculated for total iron and dissolved iron are 118.9 mg/L and 23.8 mg/L, respectively. Based on those results, WQBELs for iron will be removed from IMP 101 based on the exception to anti-backsliding given by Section 402(o)(2)(B)(i) of the Clean Water Act (33 U.S.C. § 1342(o)(2)(B)(i)) regarding new information that justifies that application of less stringent effluent limitations—in this case, updated modeling inputs that result in a determination that total iron and dissolved iron in IMP 101's effluent do not have reasonable potential to cause or contribute to excursions above water quality criteria.

101.C. Effluent Limitations and Monitoring Requirements for Internal Monitoring Point 101

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61 and anti-backsliding requirements under Section 402(o) of the Clean Water Act and 40 CFR § 122.44(l), effluent limits are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements developed for this permit renewal; and effluent limits and monitoring requirements from the previous permit, subject to any exceptions to anti-backsliding discussed previously in this Fact Sheet. Applicable requirements are summarized in the following table.

Table 14. Effluent Limits and Monitoring Requirements for IMP 101 (Suboutfall 101)

Pollutant	Mass (pounds/day)		Concentration (mg/L)			Basis
	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	IMAX	
Flow (MGD)	Report	Report	—	—	—	25 Pa. Code §92a.61(d)(1)
Total Suspended Solids	349.0	878.0	Report	60.0	—	40 CFR §§ 420.77(d), 420.97(a)(4), 420.97(a)(5), 420.107(b)(1), 420.117(a), 420.127(a)(1), and BPJ
Oil and Grease	50.0	280.0	Report	—	30.0	40 CFR §§ 420.77(d), 420.97(a)(4), 420.97(a)(5), 420.107(b)(1), 420.117(a), 420.127(a)(1), and BPJ
Aluminum, Total	Report	Report	Report	Report	—	25 Pa. Code § 92a.61(b)
Cadmium, Total	Report	Report	Report	Report	—	25 Pa. Code § 92a.61(b)
Chromium, Total	Report	Report	Report	Report	—	25 Pa. Code § 92a.61(b)
Copper, Total	Report	Report	Report	Report	—	25 Pa. Code § 92a.61(b)
Iron, Dissolved	Report	Report	Report	Report	—	25 Pa. Code § 92a.61(b)
Iron, Total	Report	Report	Report	Report	—	25 Pa. Code § 92a.61(b)
Lead, Total	0.67	1.95	0.206	0.321	0.514	40 CFR §§ 420.93(a)(4), 420.93(a)(5), 420.103(b)(1), 420.123(a)(1), and WQBELs: 25 Pa. Code §§ 92a.12(a)(1) & 96.4(b)
Manganese, Total	Report	Report	Report	Report	—	25 Pa. Code § 92a.61(b)
Zinc, Total	1.0	2.8	Report	0.5	—	40 CFR §§ 420.93(a)(4), 420.93(a)(5), 420.103(b)(1), 420.123(a)(1)
Perfluorooctanoic acid (PFOA) (ng/L)	—	—	—	Report	—	25 Pa. Code § 92a.61(b)
Perfluorooctanesulfonic acid (PFOS) (ng/L)	—	—	—	Report	—	25 Pa. Code § 92a.61(b)
Perfluorobutanesulfonic acid (PFBS) (ng/L)	—	—	—	Report	—	25 Pa. Code § 92a.61(b)
Hexafluoropropylene oxide dimer acid (HFPO-DA) (ng/L)	—	—	—	Report	—	25 Pa. Code § 92a.61(b)

Monitoring frequencies and sample types are imposed based on those given in the existing permit and on Chapter 6, Table 6-4 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits". Flow must be measured continuously. TSS, aluminum, cadmium, chromium, copper, lead, and zinc must be sampled 1/week using 24-hour composite sampling. Oil and Grease must be sampled 1/week using grab sampling. PFOA, PFOS, PFBS, and HFPO-DA must be sampled 1/quarter using grab sampling.

Development of Effluent Limitations

Suboutfall No. 201
Latitude N/A

Design Flow (MGD) 0.0158 (avg.)
Longitude N/A

Wastewater Description: Contaminated groundwater and storm water pumped from the First Flush Tank

The previous permit imposed a flow monitoring requirement at IMP 201 to quantify the flow rate of groundwater and storm water pumped from the First Flush Tank to the Water Treatment Plant. As explained in Section 101.A of this Fact Sheet, the flow data collected at IMP 201 are used to calculate additional pollutant loading allowances for TSS, lead, and zinc from the pumped groundwater and storm water. The flow monitoring will be maintained in the renewed permit for that purpose.

Table 15. Monitoring Requirements for IMP 201

Pollutant	Mass (pounds/day)			Concentration (mg/L)			Basis
	Average Monthly	Maximum Daily	Average Monthly	Maximum Daily	IMAX		
Flow (MGD)	Report	—	—	—	—	25 Pa. Code §92a.61(d)(1)	

Flow must be measured continuously.

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	2.0; 1.0 avg.
Latitude	41° 11' 34"	Longitude	-80° 29' 33"
Wastewater Description:		Overflows from the cooling pond at the catch basin consisting of storm water and process wastewaters regulated at IMP 101	

Current Effluent Limits and Monitoring Requirements

Discharges regulated at Outfall 001 are currently subject to the following effluent limits and monitoring requirements.

Table 16. Outfall 001's Current Effluent Limits and Monitoring Requirements

Parameter	Mass (lbs/day)		Concentration (mg/L)			Minimum Measurement Frequency	Sample Type
	Avg. Mo.	Daily Max	Avg. Mo.	Daily Max	IMAX		
pH (S.U.)	—	—	6.0 Inst. Min.	—	9.0	2/month	Grab
Oil & Grease	—	—	15	—	30	2/month	Grab

The effluent limits and monitoring requirements in **Table 16** will remain in effect in the renewed permit pursuant to anti-backsliding requirements under Section 402(o) of the Clean Water Act (33 U.S.C. §1342(o)) and/or 40 CFR § 122.44(l) (incorporated by reference at 25 Pa. Code § 92a.44) unless the limits are superseded by more stringent limits developed for this renewal or are relaxed pursuant to the anti-backsliding exceptions listed in 33 U.S.C. §1342(o) or 40 CFR § 122.44(l).

001.A. Technology-Based Effluent Limitations (TBELs)

Effluent limits that apply to process wastewaters discharging through Outfall 001 based on 40 CFR Part 420 are imposed at IMP 101. Therefore, no TBELs from the Federal ELGs are imposed at Outfall 001.

In accordance with 25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code §§ 95.2(1) and 95.2(2), discharges of industrial waste from Outfall 001 were subject to effluent limits for pH and Oil & Grease in the previous permit. Section 95.2(1) states that industrial wastes must have a pH of not less than 6 and not greater than 9. Section 95.2(2) requires that oil-bearing wastewaters shall at no time cause a film or sheen upon or discoloration of the waters of this Commonwealth or adjoining shoreline and imposes the Oil & Grease limits shown in **Table 16**. Those requirements will be maintained in the renewed permit. Flow should be estimated at the time of sampling pursuant to 25 Pa. Code § 92a.61(d)(1).

Storm Water Associated with Industrial Activities

Outfall 001 also discharges storm water. WTC did not characterize the quality of storm water entering the lagoon separately from process wastewater contributions from IMP 101. Also, no drainage area was identified on Module 1 of the application for Outfall 001's storm water and there was no certification of a condition of "no exposure" for that storm water. Based on discussions with WTC on July 25, 2025, there are no piped storm water contributions to the lagoon from plant production/storage areas. WTC indicated that storm water contributions to Outfall 001 include runoff from the immediate area surrounding the lagoon and rainfall on the lagoon. The proximity of the lagoon to a plant roadway suggests that industrial impacts to storm water runoff flowing into the lagoon cannot be ruled out. Therefore, monitoring requirements applicable to storm water discharges associated with industrial activities are imposed at Outfall 001.

Consistent with 25 Pa. Code § 92a.61(h) and DEP's policy for permitting storm water discharges associated with industrial activities, minimum standards described in DEP's "PAG-03 NPDES General Permit for Discharges of Stormwater Associated with Industrial Activity" (PAG-03) are imposed on storm water discharges authorized by individual industrial waste NPDES permits.⁶ Based on WTC's SIC Codes of 3317 and 3498, the facility would be classified under Appendix B – Primary Metals Industry Facilities and Appendix U – Fabricated Metal Products of the PAG-03 General Permit.⁷ To ensure baseline consistency with other primary metals industry and fabricated metal products facilities in Pennsylvania that discharge storm water associated with their industrial activities, the monitoring requirements of Appendices B and U of the

⁶ Standard Operating Procedure (SOP) for Clean Water Program, Establishing Effluent Limitations for Individual Industrial Permits, Section III.C. (SOP No. BCW-PMT-032, October 1, 2020, Version 1.6): "The applicable appendix of the PAG-03 General Permit should be considered the minimum standards for limits, benchmarks and monitoring requirements for individual industrial stormwater permits. The application manager may include other limits, benchmarks and monitoring requirements as justified in the fact sheet."

⁷ The determination of which of the PAG-03 General Permit's appendices applies to a facility is based on a facility's SIC Code.

PAG-03 General Permit are imposed at Outfall 001. Also, the sector-specific Best Management Practices (BMPs) of those appendices will be included in the storm water conditions in Part C of the permit. The monitoring requirements of Appendices B and U are shown in **Tables 17** and **18**. The parameters listed in the appendices differ slightly, so reporting is required for all unique and overlapping parameters from both appendices.

Table 17. PAG-03 Appendix B – Minimum Monitoring Requirements

Discharge Parameter	Units	Sample Type	Minimum Measurement Frequency	Benchmark Values
Total Nitrogen †	mg/L	1 Grab	1/6 months	XXX
Total Phosphorus	mg/L	1 Grab	1/6 months	XXX
Total Suspended Solids	mg/L	1 Grab	1/6 months	100
Oil & Grease	mg/L	1 Grab	1/6 months	30
Aluminum, Total	mg/L	1 Grab	1/6 months	XXX
Zinc, Total	mg/L	1 Grab	1/6 months	XXX
Copper, Total	mg/L	1 Grab	1/6 months	XXX
Iron, Total	mg/L	1 Grab	1/6 months	XXX
Lead, Total	mg/L	1 Grab	1/6 months	XXX

† Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.

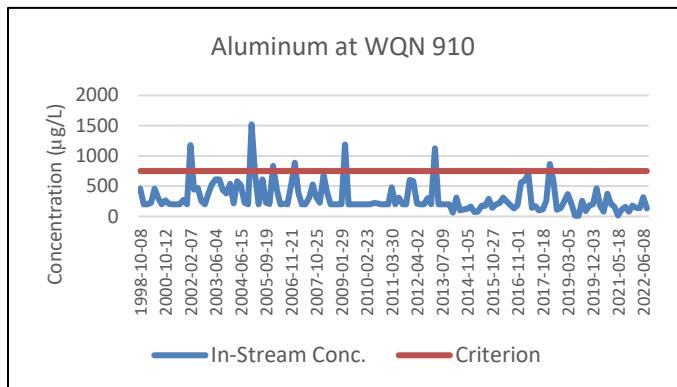
Table 18. PAG-03 Appendix U – Minimum Monitoring Requirements

Discharge Parameter	Units	Sample Type	Minimum Measurement Frequency	Benchmark Values
Total Nitrogen †	mg/L	1 Grab	1/6 months	XXX
Total Phosphorus	mg/L	1 Grab	1/6 months	XXX
pH	S.U.	1 Grab	1/6 months	9.0
Total Suspended Solids	mg/L	1 Grab	1/6 months	100
Oil & Grease	mg/L	1 Grab	1/6 months	30
Nitrate + Nitrite-Nitrogen	mg/L	1 Grab	1/6 months	3.0
Aluminum, Total	mg/L	1 Grab	1/6 months	XXX
Iron, Total	mg/L	1 Grab	1/6 months	XXX
Zinc, Total	mg/L	1 Grab	1/6 months	XXX

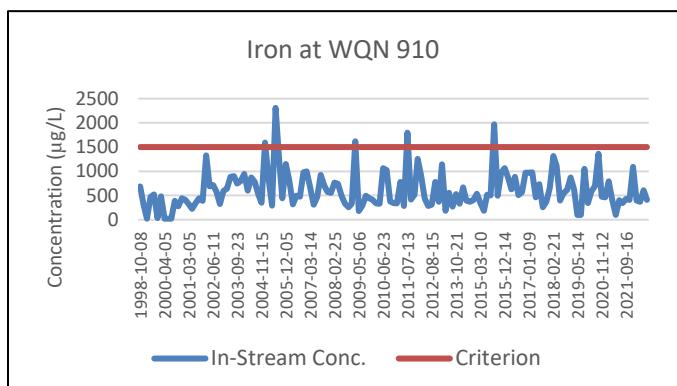
† Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample.

Typically, monitoring requirements for additional pollutants are considered to the extent that baseline monitoring requirements from an applicable PAG-03 appendix(es) do not capture the range of analytes present in the discharges. However, as stated above, WTC did not characterize Outfall 001's storm water quality separately from other wastewaters discharging through Outfall 001, so no reporting is required for additional pollutants.

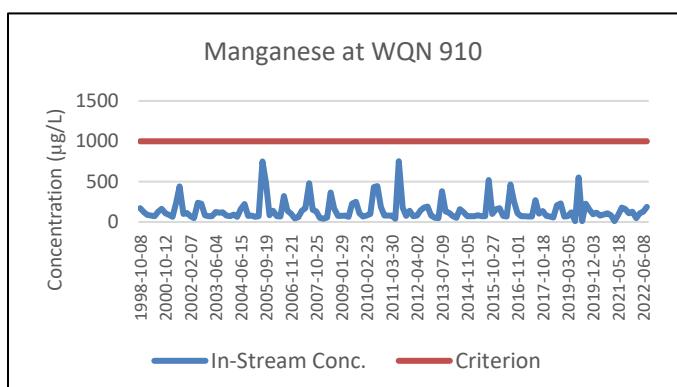
001.B. Water Quality-Based Effluent Limitations (WQBELs)


Water quality modeling for discharges from Outfall 001 was performed based on the characteristics of treated process wastewaters at IMP 101 (see Section 101.B of this Fact Sheet). The only other wastewater input to Outfall 001 downstream of IMP 101 is storm water. Based on those circumstances, modeling IMP 101 as the discharge at Outfall 001 was reasonable. That modeling was also conservative (aside from whether the point of first use is in the unnamed tributary rather than at the Shenango River) because the combination of treated process wastewaters and storm water in the cooling pond/lagoon would likely dilute treated process wastewaters and result in lower effluent concentrations at the point of discharge. To confirm, DEP modeled discharges from Outfall 001 with all the same inputs as the IMP 101 analysis except using Outfall 001's reported effluent concentrations instead of IMP 101's effluent concentrations. The results of the modeling (included in **Attachment B**) did not result in more stringent effluent limit recommendations.⁸

Shenango River Impairments


There is a fish consumption use impairment for the Shenango River caused by PCBs and chlordane. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (40 CFR Part 130) require states to develop a Total Maximum Daily Load (TMDL) for impaired water bodies. A TMDL

⁸ Discharge concentrations for lead and zinc were not input as the concentration TBELs from **Table 8** due to the expected dilution of treated process wastewaters with storm water in the lagoon. Inputting the TBELs as the discharge concentrations for Outfall 001 modeling results in slightly more stringent WQBELs recommended for lead because the hardness of Outfall 001's effluent is lower than at IMP 101. Higher hardness concentrations make some metals (like lead) less toxic and vice versa.


establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources to restore and maintain the quality of the state's water resources. A TMDL considers each river and tributary within the target watershed and its impairment sources. Stream data and discharger data are used to calculate minimum pollutant reductions that are necessary to attain water quality criteria. To achieve those reductions, the TMDL prescribes allocations to all contributing pollutant sources in the target watershed to minimally achieve water quality criteria (i.e., 100% use of a stream's assimilative capacity).

TMDL allocations include waste load allocations (WLA), load allocations (LA), and a margin of safety (MOS). The WLA is the portion of the allowable load assigned to point sources. The LA is the portion of the allowable load assigned to non-point sources. The MOS is applied to account for uncertainties in the computational process and may be expressed implicitly (documenting conservative processes in the computations) or explicitly (setting aside a portion of the allowable load). Absent a TMDL revision, loads included in the MOS cannot be reallocated to either the WLA or LA portion of the TMDL.

The Shenango River TMDL for PCBs and chlordane identifies five potential sources of PCBs and chlordane in the Shenango River including two Superfund sites and three sites listed under Pennsylvania's Hazardous Sites Cleanup Act. However, there are no known active point source discharges of PCBs or chlordane consistent with bans on their use. Therefore, TMDL WLAs for PCBs and chlordane are zero. To ensure the permit reflects the requirements of the TMDL with its 'zero' wasteload allocations for PCBs and chlordane, the following narrative limitation will be included as a condition in Part C of the permit: "There shall be no point source discharges of Polychlorinated Biphenyls (PCBs) or Chlordane to the Shenango River." This conclusion applies to all outfalls from the facility.

Apart from the fish consumption use impairment, the aquatic life use of the Shenango River is impaired by "Metals." The aquatic life impairment was first listed in 2002, but no TMDL has been developed. The specific metals associated with the impairment are not identified. A review of stream data from Water Quality Network Station 910 – Shenango River at Sharpsville, PA about nine miles upstream of WTC shows that long-term average concentrations of aluminum, iron, and manganese (metals associated with the most common source of metals-based aquatic life impairment in Pennsylvania—abandoned mine drainage) are less than the most stringent water quality criteria for those parameters (see graphs at left). Based on those data and the lack of a TMDL for the metals-based impairment, no additional requirements are imposed relating to that impairment.

001.C. Effluent Limitations and Monitoring Requirements for Outfall 001

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61 and anti-backsliding requirements under Section 402(o) of the Clean Water Act and 40 CFR § 122.44(l), effluent limits are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements developed for this permit renewal; and effluent limits and monitoring requirements from the previous permit, subject to any exceptions to anti-backsliding discussed previously in this Fact Sheet. Applicable requirements are summarized in the following table.

Table 19. Effluent Limits and Monitoring Requirements for Outfall 001

Parameter	Mass (pounds)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	Report	Report	—	—	—	25 Pa. Code § 92a.61(h)
pH (S.U.)	—	—	6.0 (Inst. Min.)	—	9.0	25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2(1)
Total Suspended Solids	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Oil and Grease	—	—	15.0	—	30.0	25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2(2)
Nitrate-Nitrite as N	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix U
Nitrogen, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Phosphorus, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Aluminum, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Copper, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Iron, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Lead, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Zinc, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U

Existing monitoring frequencies and sample types will be maintained in the renewed permit including: 2/month grab sampling for Oil and Grease and pH. The remaining storm water parameters will require grab sampling 1/6 months consistent with PAG-03 General Permit Appendices B and/or U. Total Nitrogen must be calculated as the sum of Total Kjeldahl Nitrogen (TKN) plus Nitrite-Nitrate as N ($\text{NO}_2 + \text{NO}_3 - \text{N}$), where TKN and $\text{NO}_2 + \text{NO}_3 - \text{N}$ are measured in the same sample. Flow should be estimated 2/month at the time of sampling.

Development of Effluent Limitations

Outfall Nos. 002, 003, 004, 005
Latitude See pp. 6 through 9
Wastewater Description: Storm water

Design Flow (MGD) Variable
Longitude See pp. 6 through 9

Discharges monitored at storm water Outfalls ("SWO") 002, 003, 004, and 005 are currently subject to the following monitoring requirements.

Table 20. Current Monitoring Requirements at Outfalls 002, 003, 004, and 005

Parameter	Mass (lbs/day)		Concentration (mg/L)			Minimum Measurement Frequency	Sample Type
	Avg. Mo.	Daily Max	Avg. Mo.	Daily Max	IMAX		
Flow (MGD)	—	Report	—	—	—	1/year [†]	Estimate
Iron, Total	—	Report	—	Report	—	1/year [†]	Grab
Lead, Total	—	Report	—	Report	—	1/year [†]	Grab

[†] Outfall 004 is subject to a minimum measurement frequency of 1/quarter.

The effluent limits and monitoring requirements in **Table 20** will remain in effect in the renewed permit pursuant to anti-backsliding requirements under Section 402(o) of the Clean Water Act (33 U.S.C. §1342(o)) and/or 40 CFR § 122.44(l) (incorporated by reference at 25 Pa. Code § 92a.44) unless the limits are superseded by more stringent limits developed for this renewal or are relaxed pursuant to the anti-backsliding exceptions listed in 33 U.S.C. §1342(o) or 40 CFR § 122.44(l).

SWO.A. Technology-Based Effluent Limitations (TBELs)

There are no Federal ELGs that apply to storm water discharges from Outfalls 002, 003, 004, and 005. In the absence of ELGs, case-by-case TBELs, if warranted, are developed based on DEP's Best Professional Judgment (BPJ).

Consistent with 25 Pa. Code § 92a.61(h) and DEP's policy for permitting storm water discharges associated with industrial activities, minimum standards described in DEP's "PAG-03 NPDES General Permit for Discharges of Stormwater Associated with Industrial Activity" (PAG-03) are imposed on storm water discharges authorized by individual industrial waste NPDES permits. Based on WTC's SIC Codes of 3317 and 3498, the facility would be classified under Appendix B – Primary Metals Industry Facilities and Appendix U – Fabricated Metal Products of the PAG-03 General Permit. To ensure baseline consistency with other primary metals industry and fabricated metal products facilities in Pennsylvania that discharge storm water associated with their industrial activities, the monitoring requirements and sector-specific Best Management Practices (BMPs) of the PAG-03, Appendices B and U are imposed at Outfalls 002, 003, 004, and 005 (see **Tables 17** and **18** for applicable monitoring requirements). The parameters listed in the appendices differ, so reporting is required for all unique and overlapping parameters from both appendices. Monitoring requirements for additional pollutants are considered to the extent that baseline monitoring requirements from those appendices do not capture the range of analytes present in the discharges.

In accordance with 40 CFR § 122.44(k)(2), DEP considers the use of BMPs to be BAT for storm water discharges associated with industrial activities unless effluent concentrations indicate that BMPs provide inadequate pollution control. **Table 21** summarizes the effluent data reported for the general chemistry pollutants listed on Module 1 of the updated NPDES permit application and additional parameters regulated in WTC's process wastewaters. Highlighted concentrations are elevated.

Table 21. Effluent Concentrations Reported for Outfalls 002, 003, 004, and 005

Parameter	Outfall 002	Outfall 003	Outfall 004	Outfall 005	Benchmark Value
Oil and Grease (mg/L)	<5	<5	<5	<5	30
BOD ₅ (mg/L)	<3	<3	<3	<3	30
COD (mg/L)	25.5	<10	17	<10	120
TSS (mg/L)	27	7	154	5	100
Nitrogen, Total (mg/L)	0.87	1.8	<1.2	1.3	—
Phosphorus, Total (mg/L)	<0.04	0.06	0.13	0.13	2.0
pH (S.U.)	7.62	7.72	7.72	7.77	6.0 to 9.0
Lead, Total (mg/L)	<0.071	0.024	0.05 ††	0.04 ††	0.082

Table 21. Effluent Concentrations Reported for Outfalls 002, 003, 004, and 005

Parameter	Outfall 002	Outfall 003	Outfall 004	Outfall 005	Benchmark Value
Iron, Total (mg/L)	2.09 ††	3.38 ††	31.4 ††	19.3 ††	—
Zinc, Total (mg/L)	<7.8	0.547	0.224	0.062	0.12

† Benchmarks from applicable appendices of DEP's PAG-03 General Permit or EPA's Multi-Sector General Permit, which is the federal equivalent of the PAG-03.

†† Result is the maximum result reported on DMRs under the previous permit

Based on the results in **Table 21**, no additional monitoring requirements are added to Outfalls 002, 003, 004, and 005. Parameters that are present in elevated concentrations will be subject to reporting requirements added to the permit with this renewal according to Appendices B and U of the PAG-03 General Permit.

Consistent with the PAG-03 General Permit, the benchmark values for pollutants in WTC's storm water discharges will be set at 9.0 s.u. for pH, 100 mg/L for TSS, 30 mg/L for Oil and Grease, 3.0 mg/L for Nitrate + Nitrite-Nitrogen. There is no benchmark value for Total Iron in the PAG-03, but the concentrations of Total Iron reported at Outfalls 002, 003, 004, and 005 are elevated. Therefore, a benchmark value of 3.75 mg/L will be specified for Total Iron based on the 30-day average water quality criterion for Total Iron from 25 Pa. Code § 93.7(a) and an average-monthly-to-instantaneous-maximum multiplier of 2.5 from Chapter 2, Section C of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits" [Doc. No. 386-0400-001] (i.e., $1.5 \text{ mg/L} \times 2.5 = 3.75 \text{ mg/L}$).

DEP uses benchmark monitoring in the PAG-03 General Permit as an indicator of the effectiveness of a facility's BMPs. The benchmark values are not effluent limitations and exceedances do not constitute permit violations. However, if sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, then WTC must submit a Corrective Action Plan within 90 days of the end of the monitoring period triggering the plan. Continued exceedances of the benchmark values will require a graduated response. The Corrective Action Plan requirement and the benchmark values will be specified in a condition in Part C of the permit. Estimates of the storm water discharge flow rates will be required pursuant to 25 Pa. Code § 92a.61(h).

Observations of Drainage Areas

In the inspection report from DEP's February 27, 2025 inspection of WTC, DEP observed significant mud and multiple sheens in the driveway from Outfall 005, Suboutfall 104 (discussed later in the fact sheet), and Outfall 004. Sheen also was observed at Outfall 004/Suboutfall 104 (later determined to be from an equipment hydraulic leak) and Outfall 006 (apparently originating from an adjacent storage area). Outfall 004 is not monitored for TSS and Oil & Grease under the current permit, but elevated iron concentrations reported at Outfall 004 would positively correlate with sediment-laden waters. Suboutfall 104, which discharges through Outfall 004, is monitored for Oil and Grease. Oil and Grease is detected intermittently at Suboutfall 104. DEP's observations suggest that Outfalls 004 and 005 are relatively more susceptible to contamination by sediment and oils than other storm water outfalls. For this permit renewal, the semi-annual benchmark monitoring for TSS and Oil & Grease added to WTC's storm water outfalls and corresponding Corrective Action Plan requirements will control those observed pollutants.

SWO.B. Water Quality-Based Effluent Limitations (WQBELs)

No WQBELs are developed for the storm water outfalls. Pursuant to 25 Pa. Code § 96.4(g), mathematical modeling used to develop WQBELs must be performed at Q₇₋₁₀ low flow conditions. Precipitation-induced discharges generally do not occur at Q₇₋₁₀ design conditions because the precipitation that causes a storm water discharge also will increase the receiving stream's flow and that increased stream flow will provide additional assimilative capacity during a storm event.

Even though no mathematical modeling is performed, conditions in Part C of the permit will ensure compliance with water quality standards through a combination of best management practices including pollution prevention and exposure minimization, good housekeeping, erosion and sediment control, and spill prevention and response.

SWO.C. Effluent Limitations and Monitoring Requirements for Outfalls 002, 003, 004, and 005

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61 and anti-backsliding requirements under Section 402(o) of the Clean Water Act and 40 CFR § 122.44(l), effluent limits are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements developed for this permit renewal; and effluent limits and monitoring requirements from the previous permit, subject to any exceptions to anti-backsliding discussed previously in this Fact Sheet. Applicable requirements are summarized in the following table.

Table 22. Effluent Limits and Monitoring Requirements for Outfalls 002, 003, 004, and 005

Parameter	Mass (pounds)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	—	Report	—	—	—	25 Pa. Code § 92a.61(h)
pH (S.U.)	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix U
Total Suspended Solids	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Oil and Grease	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Nitrate-Nitrite as N	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix U
Nitrogen, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Phosphorus, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Aluminum, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Copper, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Iron, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Lead, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Zinc, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U

The sampling frequency for all parameters will be 1/6 months based on the sampling frequencies in Appendices B and U of the PAG-03 General Permit. Grab sampling is required for all parameters except Total Nitrogen, which must be calculated as the sum of Total Kjeldahl Nitrogen (TKN) plus Nitrite-Nitrate as N ($\text{NO}_2+\text{NO}_3\text{-N}$), where TKN and $\text{NO}_2+\text{NO}_3\text{-N}$ are measured in the same sample. Flow should be estimated at the time of sampling.

Development of Effluent Limitations

Suboutfall No. 104	Design Flow (MGD) _____
Latitude 41° 11' 35.00"	Longitude -80° 29' 33.00"
Wastewater Description: Storm water from paved areas and roofs from the north end of the property	

Discharges monitored at Suboutfall 104 (a.k.a. Internal Monitoring Point 104 or IMP 104) are currently subject to the following monitoring requirements.

Table 23. Current Monitoring Requirements at IMP 104

Parameter	Mass (lbs/day)		Concentration (mg/L)			Minimum Measurement Frequency	Sample Type
	Avg. Mo.	Daily Max	Avg. Mo.	Daily Max	IMAX		
Flow (MGD)	Report	—	—	—	—	1/quarter	Estimate
pH (S.U.)	—	—	6.0 Inst. Min.	Report	9.0	2/month	Grab
Oil & Grease	—	—	15	—	30	2/month	Grab

Under the current permit, IMP 104 authorizes discharges of water softener backwash and boiler blowdown. The 2014 Application identified IMP 104's wastewater sources as non-contact cooling water from compressors, boiler blowdown, and storm water from paved areas and roofs from the north end of the property. In the 2025 Application Update, WTC reported that IMP 104 no longer receives non-contact cooling water and boiler blowdown. According to the inspection report from DEP's February 27, 2025 inspection of WTC, the boiler and water softener systems for the old galvanizing facility were decommissioned. The new boiler system blowdown discharges to the Scale Pit (IMP 101/Outfall 001) and the old scrubber system that discharged to the wastewater treatment plant (IMP 101/Outfall 001) was replaced with a new system that has no discharge. With the elimination or re-routing of non-process wastewaters, IMP 104 only discharges storm water from paved areas and roofs from the north end of the property.

IMP 104 was created pursuant to 40 CFR § 122.45(h) to regulate non-process wastewaters separately from storm water that combined with the non-process wastewaters downstream of the manhole outside the old boiler house (the designated monitoring location for IMP 104). With the elimination/re-routing of non-process wastewater sources, it is not necessary to maintain IMP 104 to regulate wastewaters other than storm water because storm water present at IMP 104 is subject to the same requirements as storm water that combines with IMP 104's storm water downstream of IMP 104. Therefore, IMP 104 will be removed from the permit. Any storm water flowing through IMP 104 will be regulated at Outfall 004. Notwithstanding the elimination of IMP 104, WTC should ensure that the manhole outside the old boiler house is included in facility inspections.

The elimination of IMP 104—and the reduction in monitoring frequencies from 1/quarter to 1/6 months for currently monitored parameters at Outfall 004 (see **Tables 20 and 22**)—is consistent with the exception to anti-backsliding given by Section 402(o)(2)(A) of the Clean Water Act regarding material and substantial alterations or additions to the permitted facility that justify the application of less stringent effluent limitations—in this case, physical and operational changes that eliminated non-storm water sources to IMP 104.

Development of Effluent Limitations

Outfall No.	006	Design Flow (MGD)	Variable
Latitude	41° 11' 30.00"	Longitude	-80° 29' 42.00"
Wastewater Description: Storm water from the coil yard and finishing areas of the mill			

Discharges monitored at Outfall 006 are currently subject to the following monitoring requirements.

Table 24. Current Monitoring Requirements at Outfall 006

Parameter	Mass (lbs/day)		Concentration (mg/L)			Minimum Measurement Frequency	Sample Type
	Avg. Mo.	Daily Max	Avg. Mo.	Daily Max	IMAX		
Flow (MGD)	—	Report	—	—	—	1/year	Estimate
Iron, Total	—	Report	—	Report	—	1/year	Grab
Lead, Total	—	Report	—	Report	—	1/year	Grab

The effluent limits and monitoring requirements in **Table 24** will remain in effect in the renewed permit pursuant to anti-backsliding requirements under Section 402(o) of the Clean Water Act (33 U.S.C. §1342(o)) and/or 40 CFR § 122.44(l) (incorporated by reference at 25 Pa. Code § 92a.44) unless the limits are superseded by more stringent limits developed for this renewal or are relaxed pursuant to the anti-backsliding exceptions listed in 33 U.S.C. §1342(o) or 40 CFR § 122.44(l).

006.A. Technology-Based Effluent Limitations (TBELs)

The NPDES permit application identifies the effluent sources for Outfall 006 as storm water runoff and groundwater from the coil yard and finishing areas of the mill. DEP's inspection report for its February 27, 2025 inspection of WTC clarifies that those sources include contaminated groundwater and runoff from the zinc dust storage area. Those sources collect in an 80,000-gallon "First Flush Tank" from which the wastewaters are pumped to the wastewater treatment plant. Overflows from the tank discharge through Outfall 006 to a ditch that flows to the Shenango River.

Figure 4. First Flush Tank with oil skimmer

Image Source and Date: DEP Compliance Evaluation Inspection, Feb. 27, 2025.

Figure 5. Outfall 006, First Flush Tank weir overflow

Image Source and Date: DEP Compliance Evaluation Inspection, Feb. 27, 2025.

The permit includes the following stipulation for Outfall 006:

This discharge shall consist of stormwater runoff only. 90,000 gallons of collected runoff must be pumped to the wastewater treatment facility before a discharge is allowed to occur on consecutive days.

[For flow estimation:] Report the calendar day that the overflow to 006 occurs on the DMR or a separate table.

Based on the permit requirements, contaminated first flush storm water that typically contains the highest pollutant loading and contaminated groundwater are treated by the onsite wastewater treatment plant (with preliminary oil removal via skimming at the First Flush Tank). Storm water overflows from the First Flush Tank that exceed 90,000 gallons will be subject to semi-annual reporting requirements based on Appendices B and U of the PAG-03, as discussed in Section SWO.A of this Fact Sheet. The discharge restriction imposed in the previous permit will be re-imposed in the renewed permit as a footnote to Part A. The footnote will state the following:

Discharges from Outfall 006 shall consist of storm water runoff only. Ninety thousand (90,000) gallons of collected runoff must be pumped to the wastewater treatment facility before a discharge from Outfall 006 is allowed to occur on consecutive days. The permittee shall record the calendar days on which overflows to Outfall 006 occur within each semi-annual monitoring period and shall report those days to DEP in an attachment to semi-annual eDMRs or in the comment section of the semi-annual eDMR.

006.B. Water Quality-Based Effluent Limitations (WQBELs)

No WQBELs are developed for the storm water outfalls. Pursuant to 25 Pa. Code § 96.4(g), mathematical modeling used to develop WQBELs must be performed at Q_{7-10} low flow conditions. Precipitation-induced discharges generally do not occur at Q_{7-10} design conditions because the precipitation that causes a storm water discharge also will increase the receiving stream's flow and that increased stream flow will provide additional assimilative capacity during a storm event.

Even though no mathematical modeling is performed, conditions in Part C of the permit will ensure compliance with water quality standards through a combination of best management practices including pollution prevention and exposure minimization, good housekeeping, erosion and sediment control, and spill prevention and response.

006.C. Effluent Limitations and Monitoring Requirements for Outfall 006

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61 and anti-backsliding requirements under Section 402(o) of the Clean Water Act and 40 CFR § 122.44(l), effluent limits are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements developed for this permit renewal; and effluent limits and monitoring requirements from the previous permit, subject to any exceptions to anti-backsliding discussed previously in this Fact Sheet. Applicable requirements are summarized in the following table.

Table 25. Effluent Limits and Monitoring Requirements for Outfall 006

Parameter	Mass (pounds)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	—	Report	—	—	—	25 Pa. Code § 92a.61(h)
pH (S.U.)	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix U
Total Suspended Solids	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Oil and Grease	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Nitrate-Nitrite as N	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix U
Nitrogen, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Phosphorus, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Aluminum, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Copper, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Iron, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Lead, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Zinc, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U

Narrative limitations for Outfall 006 will be imposed as a footnote in Part A of the permit, as discussed in Section 006.A of this Fact Sheet.

The sampling frequency for all parameters will be 1/6 months based on the sampling frequencies in Appendices B and U of the PAG-03 General Permit. Grab sampling is required for all parameters except Total Nitrogen, which must be calculated as the sum of Total Kjeldahl Nitrogen (TKN) plus Nitrite-Nitrate as N ($\text{NO}_2+\text{NO}_3-\text{N}$), where TKN and $\text{NO}_2+\text{NO}_3-\text{N}$ are measured in the same sample. Flow should be estimated at the time of sampling.

Development of Effluent Limitations

Outfall No.	007	Design Flow (MGD)	0.119 (avg.); 0.5 (max)
Latitude	41° 11' 35"	Longitude	-80° 29' 33"
Wastewater Description: Non-contact cooling water (NCCW) from the mill roof, storm water, and cooling pond overflow			

Discharges monitored at Outfall 007 are currently subject to the following monitoring requirements.

Table 26. Current Monitoring Requirements at Outfall 007

Parameter	Mass (lbs/day)		Concentration (mg/L)			Minimum Measurement Frequency	Sample Type
	Avg. Mo.	Daily Max	Avg. Mo.	Daily Max	IMAX		
Flow (MGD)	Report	—	—	—	—	1/quarter	Estimate
pH (S.U.)	—	—	6.0 Inst. Min.	Report	9.0	2/month	Grab
Oil & Grease	—	—	15	—	30	2/month	Grab
Total Iron	—	Report	—	Report	—	1/quarter	Grab
Total Lead	—	Report	—	Report	—	1/quarter	Grab

The effluent limits and monitoring requirements in **Table 26** will remain in effect in the renewed permit pursuant to anti-backsliding requirements under Section 402(o) of the Clean Water Act (33 U.S.C. §1342(o)) and/or 40 CFR § 122.44(l) (incorporated by reference at 25 Pa. Code § 92a.44) unless the limits are superseded by more stringent limits developed for this renewal or are relaxed pursuant to the anti-backsliding exceptions listed in 33 U.S.C. §1342(o) or 40 CFR § 122.44(l).

007.A. Technology-Based Effluent Limitations (TBELs)

Non-Contact Cooling Water (NCCW)

Figure 6. Outfall 001 (lagoon overflow) and Outfall 007 (pipe at left)

Image Source and Date: DEP Compliance Evaluation Inspection, Sept. 7, 2023.

In accordance with the recommendations given in Chapter 6, Table 6-4 of DEP's "Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits" [Doc. No. 386-0400-001], self-monitoring requirements for NCCW discharges generally include the following parameters: flow, pH, and temperature. Flow monitoring is required in accordance with 25 Pa. Code § 92a.61(b). Limits for pH (6.0 minimum and 9.0 maximum) are imposed at Outfall 007 based on 25 Pa. Code § 95.2(1). Temperature is normally identified as a parameter of concern for cooling waters. However, based on the outfall configuration (see **Figure 6**), temperature limits/monitoring will not be imposed at Outfall 007. Discharges from Outfall 007 immediately mix with cooled water overflowing the onsite lagoon (Outfall 001), which facilitates cooling of Outfall 007's NCCW. The piping runs from the facility to Outfall 007 and then from Outfall

007 to the receiving water also would dissipate heat. As described in Section 001.B, if DEP opts to perform a point of first use evaluation in the future to determine whether the unnamed tributary has a use upstream of the current point of first use at the Shenango River, then DEP may revisit the need for temperature limits at Outfall 007.

DEP previously imposed effluent limits for Oil & Grease at Outfall 007 based on 25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2(2). Those limits will be maintained.

The current application indicates that storm water contributes to Outfall 007. Outfall 007 was not listed on Module 1 of the NPDES permit renewal application and no drainage area was identified. It appears that Outfall 007 receives storm water runoff from an area localized to the outfall. Wet weather discharges from Outfall 007 will be subject to semi-annual reporting requirements based on Appendices B and U of the PAG-03, as discussed in Section SWO.A of this Fact Sheet.

007.B. Water Quality-Based Effluent Limitations (WQBELs)

Table 27. TMS Inputs for Outfall 007

Discharge Characteristics		
Parameter	Value	
Discharge Flow (MGD)	0.50	
Hardness (mg/L)	73.3	
Receiving Stream Characteristics		
Parameter	Outfall 001	End of Segment
Stream Code	35482	35482
River Mile Index	24	4.75
Drainage Area (mi ²)	706	790
Q ₇₋₁₀ (cfs)	121.05	see output
Harmonic Mean Flow (cfs)	423.47	see output
Low-flow Yield (cfs/mi ²)	0.1	0.1
Elevation (ft)	823.55	793.67
Slope (ft/ft)	0.00042	0.00042
PWS Intake (MGD)	—	8.4
Width (ft)	125.0	175.0
Depth (ft)	3.0	see output

Discharges from Outfall 007 are evaluated based on the maximum concentrations reported on the permit renewal application, except for iron and lead, which are evaluated using the maximum concentrations reported on DMRs. The TMS model is run with the modeled discharge and receiving stream characteristics shown in **Table 27**. Pollutants for which water quality criteria have not been promulgated (e.g., TSS, Oil and Grease, etc.) are excluded from the modeling. Except for the discharge flow rate and hardness, the modeling inputs are the same as those used for Outfall 001 because the point of first use for Outfalls 001 and 007 is the same.

Output from the TMS model is included in **Attachment C** to this Fact Sheet. The results of the modeling identify WQBELs acrylamide. WTC reported results for Acrylamide using an analytical reporting limit of 10 mg/L. For modeling purposes, the TMS uses a Target QL of 0.1 µg/L for Acrylamide. The permit application instructions do not identify a Target QL for Acrylamide, so applicants are not held to the TMS's Target QL for Acrylamide. Also, according to the application, chemical additives containing Acrylamide are not used by WTC. Therefore, the TMS's WQBELs for Acrylamide are not imposed at Outfall 007. No other WQBELs or water quality-based monitoring requirements apply.

007.C. Effluent Limitations and Monitoring Requirements for Outfall 007

In accordance with 25 Pa. Code §§ 92a.12 and 92a.61 and anti-backsliding requirements under Section 402(o) of the Clean Water Act and 40 CFR § 122.44(l), effluent limits are the more stringent of TBELs, WQBELs, regulatory effluent standards, and monitoring requirements developed for this permit renewal; and effluent limits and monitoring requirements from the previous permit, subject to any exceptions to anti-backsliding discussed previously in this Fact Sheet. Applicable requirements are summarized in the following table.

Table 28. Effluent Limits and Monitoring Requirements for Outfall 007

Parameter	Mass (pounds)		Concentration (mg/L)			Basis
	Average Monthly	Daily Maximum	Average Monthly	Daily Maximum	Instant Maximum	
Flow (MGD)	Report	Report	—	—	—	25 Pa. Code § 92a.61(h)
pH (S.U.)	—	—	6.0 (Inst. Min.)	—	9.0	25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2(1)
Total Suspended Solids	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Oil and Grease	—	—	15.0	—	30.0	25 Pa. Code § 92a.48(a)(2) and 25 Pa. Code § 95.2(2)
Nitrate-Nitrite as N	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix U
Nitrogen, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Phosphorus, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Aluminum, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Copper, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Iron, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U
Lead, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appendix B
Zinc, Total	—	—	—	Report	—	§ 92a.61(h); PAG-03, Appx. B & U

Existing monitoring frequencies and sample types will be maintained in the renewed permit for pH and Oil and Grease: 2/month grab sampling. The remaining storm water parameters will require grab sampling 1/6 months consistent with PAG-03 General Permit Appendices B and/or U. Total Nitrogen must be calculated as the sum of Total Kjeldahl Nitrogen (TKN) plus Nitrite-Nitrate as N ($\text{NO}_2 + \text{NO}_3 - \text{N}$), where TKN and $\text{NO}_2 + \text{NO}_3 - \text{N}$ are measured in the same sample. Flow should be estimated 2/month at the time of sampling.

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment _____)
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment A, B, and C)
<input type="checkbox"/>	TRC Model Spreadsheet (see Attachment _____)
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment _____)
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input checked="" type="checkbox"/>	SOP: Standard Operating Procedure for Clean Water Program New and Reissuance Industrial Waste and Industrial Stormwater Individual NPDES Permit Applications, SOP No. BCW-PMT-001, February 5, 2024, Version 1.7.
<input checked="" type="checkbox"/>	SOP: Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Industrial Permits, SOP No. BCW-PMT-032, February 5, 2024, Version 1.7.
<input checked="" type="checkbox"/>	SOP: Standard Operating Procedure for Clean Water Program Establishing Best Technology Available (BTA) Using Best Professional Judgement (BPJ) for Cooling Water Intake Structures at Existing NPDES Facilities, SOP No. BCW-PMT-038, December 7, 2021, Version 1.0.
<input type="checkbox"/>	Other: _____

ATTACHMENT A

Toxics Management Spreadsheet Results for IMP 101 as Outfall 001

Discharge Information

Instructions Discharge Stream

Facility: Zekelman Industries d/b/a Wheatland Tube NPDES Permit No.: PA0000868 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Process wastewater

Discharge Characteristics						
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)
			AFC	CFC	THH	
1	493	7.6				

	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod
Group 1	Total Dissolved Solids (PWS)	mg/L	838								
	Chloride (PWS)	mg/L	73.4								
	Bromide	mg/L	< 0.1								
	Sulfate (PWS)	mg/L	447								
	Fluoride (PWS)	mg/L	< 0.2								
Group 2	Total Aluminum	µg/L	940			1.1247					
	Total Antimony	µg/L	1.5								
	Total Arsenic	µg/L	0.9								
	Total Barium	µg/L	17								
	Total Beryllium	µg/L	0.05								
	Total Boron	µg/L	113								
	Total Cadmium	µg/L	< 2								
	Total Chromium (III)	µg/L	3								
	Hexavalent Chromium	µg/L	0.17								
	Total Cobalt	µg/L	0.5								
	Total Copper	µg/L	36								
	Free Cyanide	µg/L	7								
	Total Cyanide	µg/L	11								
	Dissolved Iron	µg/L	100								
	Total Iron	µg/L	3262			0.42					
	Total Lead	µg/L	450								
	Total Manganese	µg/L	186								
	Total Mercury	µg/L	0.09								
	Total Nickel	µg/L	6								
	Total Phenols (Phenolics) (PWS)	µg/L	8								
	Total Selenium	µg/L	< 5								
	Total Silver	µg/L	0.4								
	Total Thallium	µg/L	0.5								
	Total Zinc	µg/L	500								
	Total Molybdenum	µg/L	19								
	Acrolein	µg/L	< 0.9								
	Acrylamide	µg/L	< 10000								
	Acrylonitrile	µg/L	< 0.3								
	Benzene	µg/L	< 0.04								
	Bromoform	µg/L	< 0.1								

Group 3	Carbon Tetrachloride	µg/L	<	0.1							
	Chlorobenzene	µg/L	<	0.07							
	Chlorodibromomethane	µg/L		0.3							
	Chloroethane	µg/L		0.3							
	2-Chloroethyl Vinyl Ether	µg/L	<	0.1							
	Chloroform	µg/L		0.3							
	Dichlorobromomethane	µg/L		0.3							
	1,1-Dichloroethane	µg/L	<	0.06							
	1,2-Dichloroethane	µg/L		0.4							
	1,1-Dichloroethylene	µg/L	<	0.07							
	1,2-Dichloropropane	µg/L	<	0.1							
	1,3-Dichloropropylene	µg/L	<	0.06							
	1,4-Dioxane	µg/L	<	0.1							
	Ethylbenzene	µg/L	<	0.06							
	Methyl Bromide	µg/L	<	0.1							
	Methyl Chloride	µg/L	<	0.09							
	Methylene Chloride	µg/L	<	0.1							
	1,1,2,2-Tetrachloroethane	µg/L	<	0.1							
	Tetrachloroethylene	µg/L	<	0.09							
	Toluene	µg/L	<	0.06							
	1,2-trans-Dichloroethylene	µg/L	<	0.1							
	1,1,1-Trichloroethane	µg/L	<	0.06							
	1,1,2-Trichloroethane	µg/L	<	0.08							
	Trichloroethylene	µg/L	<	0.1							
	Vinyl Chloride	µg/L	<	0.1							
Group 4	2-Chlorophenol	µg/L	<	0.101							
	2,4-Dichlorophenol	µg/L	<	0.0911							
	2,4-Dimethylphenol	µg/L	<	0.486							
	4,6-Dinitro-o-Cresol	µg/L	<	0.131							
	2,4-Dinitrophenol	µg/L	<	3.33							
	2-Nitrophenol	µg/L	<	0.0567							
	4-Nitrophenol	µg/L	<	0.0456							
	p-Chloro-m-Cresol	µg/L	<	0.11							
	Pentachlorophenol	µg/L	<	0.116							
	Phenol	µg/L	<	0.05							
Group 5	2,4,6-Trichlorophenol	µg/L	<	0.11							
	Acenaphthene	µg/L	<	0.114							
	Acenaphthylene	µg/L	<	0.103							
	Anthracene	µg/L	<	0.101							
	Benzidine	µg/L	<	5.56							
	Benzo(a)Anthracene	µg/L	<	0.0689							
	Benzo(a)Pyrene	µg/L	<	0.08							
	3,4-Benzofluoranthene	µg/L	<	0.05							
	Benzo(ghi)Perylene	µg/L	<	0.0911							
	Benzo(k)Fluoranthene	µg/L	<	0.0922							
	Bis(2-Chloroethoxy)Methane	µg/L	<	0.0944							
	Bis(2-Chloroethyl)Ether	µg/L	<	0.0876							
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.0989							
	Bis(2-Ethylhexyl)Phthalate	µg/L		1.68							
	4-Bromophenyl Phenyl Ether	µg/L	<	0.12							
	Butyl Benzyl Phthalate	µg/L	<	0.0733							
	2-Chloronaphthalene	µg/L	<	0.101							
	4-Chlorophenyl Phenyl Ether	µg/L	<	0.106							
	Chrysene	µg/L	<	0.0811							
	Dibenzo(a,h)Anthracene	µg/L	<	0.0596							
	1,2-Dichlorobenzene	µg/L	<	0.09							
	1,3-Dichlorobenzene	µg/L	<	0.05							
	1,4-Dichlorobenzene	µg/L	<	0.08							
	3,3-Dichlorobenzidine	µg/L	<	0.154							
	Diethyl Phthalate	µg/L	<	0.13							
	Dimethyl Phthalate	µg/L	<	0.13							
	Di-n-Butyl Phthalate	µg/L		1.29							
	2,4-Dinitrotoluene	µg/L	<	0.0933							

Stream / Surface Water Information

Zekelman Industries d/b/a Wheatland Tube, NPDES Permit No. PA0000868, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Shenango River**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	035482	24	823.55	706	0.00042		Yes
End of Reach 1	035482	4.75	793.67	790	0.00042	8.4	Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	24	0.171	121.05			125	3					80	7.7		
End of Reach 1	4.75	0.171				175									

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	24		423.47												
End of Reach 1	4.75														

Model Results

Zekelman Industries d/b/a Wheatland Tube, NPDES Permit No. PA0000868, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	<input checked="" type="radio"/> All <input type="radio"/> Inputs <input type="radio"/> Results <input type="radio"/> Limits
---------------------	----------------	----------------------------------	-----------------------------	-----------------------	--

Hydrodynamics

Q₇₋₁₀

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
24	121.05		121.05	1.547	0.00042	3.	125.	41.667	0.327	3.598	196.07
4.75	135.41	12.995	122.4192								

Q_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
24	423.47		423.47	1.547	0.00042	5.184	125.	24.111	0.656	1.794	87.887
4.75	542.079	12.995	529.08								

Wasteload Allocations

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (mg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	16,982	
Total Antimony	0	0		0	1,100	1,100	24,907	
Total Arsenic	0	0		0	340	340	7,699	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	475,500	
Total Boron	0	0		0	8,100	8,100	183,407	
Total Cadmium	0	0		0	1.979	2.1	47.4	Chem Translator of 0.945 applied
Total Chromium (III)	0	0		0	561,536	1,777	40,237	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	369	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	2,151	
Total Copper	0	0		0	13.216	13.8	312	Chem Translator of 0.96 applied

Free Cyanide	0	0		0	22	22.0	498	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	63.344	79.8	1,807	Chem Translator of 0.794 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	37.3	Chem Translator of 0.85 applied
Total Nickel	0	0		0	461.253	462	10,465	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.120	3.67	83.1	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	1,472	
Total Zinc	0	0		0	115,430	118	2,672	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	67.9	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	650	650	14,718	
Benzene	0	0		0	640	640	14,491	
Bromoform	0	0		0	1,800	1,800	40,757	
Carbon Tetrachloride	0	0		0	2,800	2,800	63,400	
Chlorobenzene	0	0		0	1,200	1,200	27,171	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	407,571	
Chloroform	0	0		0	1,900	1,900	43,021	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	339,643	
1,1-Dichloroethylene	0	0		0	7,500	7,500	169,821	
1,2-Dichloropropane	0	0		0	11,000	11,000	249,071	
1,3-Dichloropropylene	0	0		0	310	310	7,019	
Ethylbenzene	0	0		0	2,900	2,900	65,664	
Methyl Bromide	0	0		0	550	550	12,454	
Methyl Chloride	0	0		0	28,000	28,000	634,000	
Methylene Chloride	0	0		0	12,000	12,000	271,714	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	22,643	
Tetrachloroethylene	0	0		0	700	700	15,850	
Toluene	0	0		0	1,700	1,700	38,493	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	153,971	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	67,929	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	76,986	
Trichloroethylene	0	0		0	2,300	2,300	52,079	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	12,680	
2,4-Dichlorophenol	0	0		0	1,700	1,700	38,493	
2,4-Dimethylphenol	0	0		0	660	660	14,944	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	1,811	
2,4-Dinitrophenol	0	0		0	660	660	14,944	
2-Nitrophenol	0	0		0	8,000	8,000	181,143	
4-Nitrophenol	0	0		0	2,300	2,300	52,079	
p-Chloro-m-Cresol	0	0		0	160	160	3,623	
Pentachlorophenol	0	0		0	17.541	17.5	397	

Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	10,416	
Acenaphthene	0	0		0	83	83.0	1,879	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	6,793	
Benzo(a)Anthracene	0	0		0	0.5	0.5	11.3	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	679,286	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	101,893	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	6,114	
Butyl Benzyl Phthalate	0	0		0	140	140	3,170	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	18,567	
1,3-Dichlorobenzene	0	0		0	350	350	7,925	
1,4-Dichlorobenzene	0	0		0	730	730	16,529	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	90,571	
Dimethyl Phthalate	0	0		0	2,500	2,500	56,607	
Di-n-Butyl Phthalate	0	0		0	110	110	2,491	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	36,229	
2,6-Dinitrotoluene	0	0		0	990	990	22,416	
1,2-Diphenylhydrazine	0	0		0	15	15.0	340	
Fluoranthene	0	0		0	200	200	4,529	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	226	
Hexachlorocyclopentadiene	0	0		0	5	5.0	113	
Hexachloroethane	0	0		0	60	60.0	1,359	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	226,429	
Naphthalene	0	0		0	140	140	3,170	
Nitrobenzene	0	0		0	4,000	4,000	90,571	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	384,929	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	6,793	
Phenanthrene	0	0		0	5	5.0	113	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	2,944	

CFC

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): 85.211

Analysis pH: 7.70

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
------------	--------------------	-----------	------------------	-----------	------------	---------------	------------	----------

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	17,435	
Total Arsenic	0	0		0	150	150	11,887	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	324,918	
Total Boron	0	0		0	1,600	1,600	126,797	
Total Cadmium	0	0		0	0.220	0.24	19.0	Chem Translator of 0.916 applied
Total Chromium (III)	0	0		0	65.010	75.6	5,991	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	824	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	1,506	
Total Copper	0	0		0	7.811	8.14	645	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	412	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	118,872	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.113	2.6	206	Chem Translator of 0.814 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	71.8	Chem Translator of 0.85 applied
Total Nickel	0	0		0	45.421	45.6	3,610	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	395	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	1,030	
Total Zinc	0	0		0	103.158	105	8,291	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	238	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	130	130	10,302	
Benzene	0	0		0	130	130	10,302	
Bromoform	0	0		0	370	370	29,322	
Carbon Tetrachloride	0	0		0	560	560	44,379	
Chlorobenzene	0	0		0	240	240	19,020	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	277,369	
Chloroform	0	0		0	390	390	30,907	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	245,669	
1,1-Dichloroethylene	0	0		0	1,500	1,500	118,872	
1,2-Dichloropropane	0	0		0	2,200	2,200	174,346	
1,3-Dichloropropylene	0	0		0	61	61.0	4,834	
Ethylbenzene	0	0		0	580	580	45,964	
Methyl Bromide	0	0		0	110	110	8,717	
Methyl Chloride	0	0		0	5,500	5,500	435,865	
Methylene Chloride	0	0		0	2,400	2,400	190,196	

1,1,2,2-Tetrachloroethane	0	0		0	210	210	16,642	
Tetrachloroethylene	0	0		0	140	140	11,095	
Toluene	0	0		0	330	330	26,152	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	110,948	
1,1,1-Trichloroethane	0	0		0	610	610	48,341	
1,1,2-Trichloroethane	0	0		0	680	680	53,889	
Trichloroethylene	0	0		0	450	450	35,662	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	8,717	
2,4-Dichlorophenol	0	0		0	340	340	26,944	
2,4-Dimethylphenol	0	0		0	130	130	10,302	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	1,268	
2,4-Dinitrophenol	0	0		0	130	130	10,302	
2-Nitrophenol	0	0		0	1,600	1,600	126,797	
4-Nitrophenol	0	0		0	470	470	37,247	
p-Chloro-m-Cresol	0	0		0	500	500	39,624	
Pentachlorophenol	0	0		0	13.458	13.5	1,066	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	7,212	
Acenaphthene	0	0		0	17	17.0	1,347	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	4,676	
Benzo(a)Anthracene	0	0		0	0.1	0.1	7.92	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	475,489	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	72,116	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	4,279	
Butyl Benzyl Phthalate	0	0		0	35	35.0	2,774	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	12,680	
1,3-Dichlorobenzene	0	0		0	69	69.0	5,468	
1,4-Dichlorobenzene	0	0		0	150	150	11,887	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	63,399	
Dimethyl Phthalate	0	0		0	500	500	39,624	
Di-n-Butyl Phthalate	0	0		0	21	21.0	1,664	
2,4-Dinitrotoluene	0	0		0	320	320	25,359	
2,6-Dinitrotoluene	0	0		0	200	200	15,850	
1,2-Diphenylhydrazine	0	0		0	3	3.0	238	
Fluoranthene	0	0		0	40	40.0	3,170	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	158	
Hexachlorocyclopentadiene	0	0		0	1	1.0	79.2	
Hexachloroethane	0	0		0	12	12.0	951	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	166,421	
Naphthalene	0	0		0	43	43.0	3,408	
Nitrobenzene	0	0		0	810	810	64,191	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	269,444	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	4,676	
Phenanthrene	0	0		0	1	1.0	79.2	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	2,060	

THH CCT (min): ##### THH PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A PWS PMF: 1

Pollutants	Stream Conc (mg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	44,266,645	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Chloride (PWS)	0	0		0	250,000	250,000	22,133,323	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	22,133,323	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Fluoride (PWS)	0	0		0	2,000	2,000	177,067	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	444	
Total Arsenic	0	0		0	10	10.0	792	
Total Barium	0	0		0	2,400	2,400	190,196	
Total Boron	0	0		0	3,100	3,100	245,669	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	317	
Dissolved Iron	0	0		0	300	300	23,774	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	79,248	
Total Mercury	0	0		0	0.050	0.05	3.96	
Total Nickel	0	0		0	610	610	48,341	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	443	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	19.0	

Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	238	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	7,925	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	452	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	2,615	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	5,389	
Methyl Bromide	0	0		0	100	100.0	7,925	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	4,517	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	7,925	
1,1,1-Trichloroethane	0	0		0	10,000	10,000	792,482	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	2,377	
2,4-Dichlorophenol	0	0		0	10	10.0	792	
2,4-Dimethylphenol	0	0		0	100	100.0	7,925	
4,6-Dinitro- <i>o</i> -Cresol	0	0		0	2	2.0	158	
2,4-Dinitrophenol	0	0		0	10	10.0	792	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro- <i>m</i> -Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	316,993	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	5,547	
Anthracene	0	0		0	300	300	23,774	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	15,850	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	7.92	
2-Chloronaphthalene	0	0		0	800	800	63,399	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	79,248	
1,3-Dichlorobenzene	0	0		0	7	7.0	555	
1,4-Dichlorobenzene	0	0		0	300	300	23,774	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	47,549	
Dimethyl Phthalate	0	0		0	2,000	2,000	158,496	
Di-n-Butyl Phthalate	0	0		0	20	20.0	1,585	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	1,585	
Fluorene	0	0		0	50	50.0	3,962	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	317	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	2,694	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	792	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	1,585	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	5.55	

CRL

CCT (min): 87.887

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	

Total Antimony	0	0		0	N/A	N/A	N/A
Total Arsenic	0	0		0	N/A	N/A	N/A
Total Barium	0	0		0	N/A	N/A	N/A
Total Boron	0	0		0	N/A	N/A	N/A
Total Cadmium	0	0		0	N/A	N/A	N/A
Total Chromium (III)	0	0		0	N/A	N/A	N/A
Hexavalent Chromium	0	0		0	N/A	N/A	N/A
Total Cobalt	0	0		0	N/A	N/A	N/A
Total Copper	0	0		0	N/A	N/A	N/A
Free Cyanide	0	0		0	N/A	N/A	N/A
Dissolved Iron	0	0		0	N/A	N/A	N/A
Total Iron	0	0		0	N/A	N/A	N/A
Total Lead	0	0		0	N/A	N/A	N/A
Total Manganese	0	0		0	N/A	N/A	N/A
Total Mercury	0	0		0	N/A	N/A	N/A
Total Nickel	0	0		0	N/A	N/A	N/A
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A
Total Selenium	0	0		0	N/A	N/A	N/A
Total Silver	0	0		0	N/A	N/A	N/A
Total Thallium	0	0		0	N/A	N/A	N/A
Total Zinc	0	0		0	N/A	N/A	N/A
Acrolein	0	0		0	N/A	N/A	N/A
Acrylamide	0	0		0	0.07	0.07	19.2
Acrylonitrile	0	0		0	0.06	0.06	16.5
Benzene	0	0		0	0.58	0.58	159
Bromoform	0	0		0	7	7.0	1,923
Carbon Tetrachloride	0	0		0	0.4	0.4	110
Chlorobenzene	0	0		0	N/A	N/A	N/A
Chlorodibromomethane	0	0		0	0.8	0.8	220
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A
Chloroform	0	0		0	N/A	N/A	N/A
Dichlorobromomethane	0	0		0	0.95	0.95	261
1,2-Dichloroethane	0	0		0	9.9	9.9	2,720
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A
1,2-Dichloropropane	0	0		0	0.9	0.9	247
1,3-Dichloropropylene	0	0		0	0.27	0.27	74.2
Ethylbenzene	0	0		0	N/A	N/A	N/A
Methyl Bromide	0	0		0	N/A	N/A	N/A
Methyl Chloride	0	0		0	N/A	N/A	N/A
Methylene Chloride	0	0		0	20	20.0	5,495
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	54.9
Tetrachloroethylene	0	0		0	10	10.0	2,747
Toluene	0	0		0	N/A	N/A	N/A
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A

1,1,2-Trichloroethane	0	0		0	0.55	0.55	151	
Trichloroethylene	0	0		0	0.6	0.6	165	
Vinyl Chloride	0	0		0	0.02	0.02	5.49	
2-Chlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0		0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	0.030	0.03	8.24	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	412	
Acenaphthene	0	0		0	N/A	N/A	N/A	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	0.0001	0.0001	0.027	
Benzo(a)Anthracene	0	0		0	0.001	0.001	0.27	
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.027	
3,4-Benzo fluoranthene	0	0		0	0.001	0.001	0.27	
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	2.75	
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	8.24	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	87.9	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	0.12	0.12	33.0	
Dibenzo(a,h)Anthracene	0	0		0	0.0001	0.0001	0.027	
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	13.7	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	13.7	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	13.7	
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	8.24	
Fluoranthene	0	0		0	N/A	N/A	N/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.022	
Hexachlorobutadiene	0	0		0	0.01	0.01	2.75	
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A	
Hexachloroethane	0	0		0	0.1	0.1	27.5	

Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.27	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.19	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	1.37	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	907	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			
Total Cadmium	Report	Report	Report	Report	Report	µg/L	19.0	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	µg/L	200	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Lead	1.72	2.68	206	321	514	µg/L	206	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	1,713	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrylamide	0.16	0.25	19.2	30.0	48.1	µg/L	19.2	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	44,267	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	22,133	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	22,133	mg/L	Discharge Conc ≤ 10% WQBEL
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	18,668	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	444	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	792	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	190,196	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	117,557	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	5,991	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	236	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	1,379	µg/L	Discharge Conc ≤ 10% WQBEL

Free Cyanide	317	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	23,774	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	118,872	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	79,248	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	3.96	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	3,610	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	443	µg/L	Discharge Conc ≤ 10% WQBEL
Total Selenium	395	µg/L	Discharge Conc < TQL
Total Silver	53.3	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	19.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	43.5	µg/L	Discharge Conc < TQL
Acrylonitrile	16.5	µg/L	Discharge Conc < TQL
Benzene	159	µg/L	Discharge Conc < TQL
Bromoform	1,923	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	110	µg/L	Discharge Conc < TQL
Chlorobenzene	7,925	µg/L	Discharge Conc < TQL
Chlorodibromomethane	220	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	261,237	µg/L	Discharge Conc < TQL
Chloroform	452	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	261	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	2,720	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethylene	2,615	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	247	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	74.2	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	5,389	µg/L	Discharge Conc < TQL
Methyl Bromide	7,925	µg/L	Discharge Conc < TQL
Methyl Chloride	406,368	µg/L	Discharge Conc < TQL
Methylene Chloride	5,495	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	54.9	µg/L	Discharge Conc < TQL
Tetrachloroethylene	2,747	µg/L	Discharge Conc < TQL
Toluene	4,517	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	7,925	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	43,539	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	151	µg/L	Discharge Conc < TQL
Trichloroethylene	165	µg/L	Discharge Conc < TQL
Vinyl Chloride	5.49	µg/L	Discharge Conc < TQL
2-Chlorophenol	2,377	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	792	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	7,925	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	158	µg/L	Discharge Conc < TQL

2,4-Dinitrophenol	792	µg/L	Discharge Conc < TQL
2-Nitrophenol	116,105	µg/L	Discharge Conc < TQL
4-Nitrophenol	33,380	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	2,322	µg/L	Discharge Conc < TQL
Pentachlorophenol	8.24	µg/L	Discharge Conc < TQL
Phenol	316,993	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	412	µg/L	Discharge Conc < TQL
Acenaphthene	1,205	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	23,774	µg/L	Discharge Conc < TQL
Benzidine	0.027	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.27	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.027	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.27	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	2.75	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	8.24	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	15,850	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	87.9	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	3,919	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	7.92	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	63,399	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	33.0	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthracene	0.027	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	11,901	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	555	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	10,595	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	13.7	µg/L	Discharge Conc < TQL
Diethyl Phthalate	47,549	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	36,283	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	1,585	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	13.7	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	13.7	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	8.24	µg/L	Discharge Conc < TQL
Fluoranthene	1,585	µg/L	Discharge Conc < TQL
Fluorene	3,962	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.022	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	2.75	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	72.6	µg/L	Discharge Conc < TQL
Hexachloroethane	27.5	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.27	µg/L	Discharge Conc < TQL
Isophorone	2,694	µg/L	Discharge Conc < TQL

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Naphthalene	2,032	µg/L	Discharge Conc < TQL
Nitrobenzene	792	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.19	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.37	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	907	µg/L	Discharge Conc < TQL
Phenanthrene	72.6	µg/L	Discharge Conc < TQL
Pyrene	1,585	µg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	5.55	µg/L	Discharge Conc < TQL

ATTACHMENT B

Toxics Management Spreadsheet Results for Outfall 001

Discharge Information

Instructions **Discharge** Stream

Facility: Zekelman Industries d/b/a Wheatland Tube

NPDES Permit No.: PA0000868

Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste

Wastewater Description: Process wastewater

Discharge Characteristics							
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)	
			AFC	CFC	THH	CRL	Q ₇₋₁₀
1	395	7.6					

		Discharge Pollutant	Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteria Mod	Chem Transl
Group 1	Total Dissolved Solids (PWS)	mg/L		633									
	Chloride (PWS)	mg/L		58.6									
	Bromide	mg/L	<	0.1									
	Sulfate (PWS)	mg/L		388									
	Fluoride (PWS)	mg/L	<	0.2									
Group 2	Total Aluminum	µg/L		102									
	Total Antimony	µg/L		1.4									
	Total Arsenic	µg/L		0.7									
	Total Barium	µg/L		18									
	Total Beryllium	µg/L		0.05									
	Total Boron	µg/L		71									
	Total Cadmium	µg/L	<	2									
	Total Chromium (III)	µg/L		3									
	Hexavalent Chromium	µg/L	<	5									
	Total Cobalt	µg/L		0.5									
	Total Copper	µg/L		33									
	Free Cyanide	µg/L	<	5									
	Total Cyanide	µg/L	<	5									
	Dissolved Iron	µg/L	<	20									
	Total Iron	µg/L		2310									
	Total Lead	µg/L		0.3									
	Total Manganese	µg/L		144									
	Total Mercury	µg/L		0.2									
	Total Nickel	µg/L		5									
	Total Phenols (Phenolics) (PWS)	µg/L		6									
	Total Selenium	µg/L	<	5									
	Total Silver	µg/L		0.06									
	Total Thallium	µg/L		0.2									
	Total Zinc	µg/L		236									
	Total Molybdenum	µg/L		11									
	Acrolein	µg/L	<	0.9									
	Acrylamide	µg/L	<	10000									
	Acrylonitrile	µg/L	<	0.3									
	Benzene	µg/L	<	0.04									
	Bromoform	µg/L	<	0.1									

Stream / Surface Water Information

Zekelman Industries d/b/a Wheatland Tube, NPDES Permit No. PA0000868, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Shenango River**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	035482	24	823.55	706	0.00042		Yes
End of Reach 1	035482	4.75	793.67	790	0.00042	8.4	Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	24	0.171	121.05			125	3					80	7.7		
End of Reach 1	4.75	0.171				175									

Q_h

Location	RMI	LFY (cfs/mi ²)	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	24		423.47												
End of Reach 1	4.75														

Model Results

Zekelman Industries d/b/a Wheatland Tube, NPDES Permit No. PA0000868, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	<input type="radio"/> All	<input checked="" type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits
---------------------	----------------	----------------------------------	-----------------------------	-----------------------	---------------------------	---	-------------------------------	------------------------------

Hydrodynamics

Q₇₋₁₀

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
24	121.05		121.05	1.547	0.00042	3.	125.	41.667	0.327	3.598	196.07
4.75	135.41	12.995	122.4192								

Q_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
24	423.47		423.47	1.547	0.00042	5.184	125.	24.111	0.656	1.794	87.887
4.75	542.079	12.995	529.08								

Wasteload Allocations

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	16,982	
Total Antimony	0	0		0	1,100	1,100	24,907	
Total Arsenic	0	0		0	340	340	7,699	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	475,500	
Total Boron	0	0		0	8,100	8,100	183,407	
Total Cadmium	0	0		0	1.894	2.0	45.3	Chem Translator of 0.947 applied
Total Chromium (III)	0	0		0	541.193	1,713	38,779	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	369	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	2,151	
Total Copper	0	0		0	12.667	13.2	299	Chem Translator of 0.96 applied

Free Cyanide	0	0		0	22	22.0	498	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	60.308	75.4	1,707	Chem Translator of 0.8 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	37.3	Chem Translator of 0.85 applied
Total Nickel	0	0		0	444.002	445	10,074	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	2.887	3.4	76.9	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	1,472	
Total Zinc	0	0		0	111.107	114	2,572	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	67.9	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	650	650	14,718	
Benzene	0	0		0	640	640	14,491	
Bromoform	0	0		0	1,800	1,800	40,757	
Carbon Tetrachloride	0	0		0	2,800	2,800	63,400	
Chlorobenzene	0	0		0	1,200	1,200	27,171	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	407,571	
Chloroform	0	0		0	1,900	1,900	43,021	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	339,643	
1,1-Dichloroethylene	0	0		0	7,500	7,500	169,821	
1,2-Dichloropropane	0	0		0	11,000	11,000	249,071	
1,3-Dichloropropylene	0	0		0	310	310	7,019	
Ethylbenzene	0	0		0	2,900	2,900	65,664	
Methyl Bromide	0	0		0	550	550	12,454	
Methyl Chloride	0	0		0	28,000	28,000	634,000	
Methylene Chloride	0	0		0	12,000	12,000	271,714	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	22,643	
Tetrachloroethylene	0	0		0	700	700	15,850	
Toluene	0	0		0	1,700	1,700	38,493	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	153,971	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	67,929	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	76,986	
Trichloroethylene	0	0		0	2,300	2,300	52,079	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	12,680	
2,4-Dichlorophenol	0	0		0	1,700	1,700	38,493	
2,4-Dimethylphenol	0	0		0	660	660	14,944	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	1,811	
2,4-Dinitrophenol	0	0		0	660	660	14,944	
2-Nitrophenol	0	0		0	8,000	8,000	181,143	
4-Nitrophenol	0	0		0	2,300	2,300	52,079	
p-Chloro-m-Cresol	0	0		0	160	160	3,623	
Pentachlorophenol	0	0		0	17.541	17.5	397	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	10,416	
Acenaphthene	0	0		0	83	83.0	1,879	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	6,793	
Benzo(a)Anthracene	0	0		0	0.5	0.5	11.3	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	679,286	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	101,893	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	6,114	
Butyl Benzyl Phthalate	0	0		0	140	140	3,170	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	18,567	
1,3-Dichlorobenzene	0	0		0	350	350	7,925	
1,4-Dichlorobenzene	0	0		0	730	730	16,529	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	90,571	
Dimethyl Phthalate	0	0		0	2,500	2,500	56,607	
Di-n-Butyl Phthalate	0	0		0	110	110	2,491	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	36,229	
2,6-Dinitrotoluene	0	0		0	990	990	22,416	
1,2-Diphenylhydrazine	0	0		0	15	15.0	340	
Fluoranthene	0	0		0	200	200	4,529	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	226	
Hexachlorocyclopentadiene	0	0		0	5	5.0	113	
Hexachloroethane	0	0		0	60	60.0	1,359	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	226,429	
Naphthalene	0	0		0	140	140	3,170	
Nitrobenzene	0	0		0	4,000	4,000	90,571	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	384,929	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	6,793	
Phenanthrene	0	0		0	5	5.0	113	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	2,944	

CFC

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

83.975

Analysis pH: 7.70

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
------------	--------------------	-----------	------------------	-----------	------------	---------------	------------	----------

Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	17,435	
Total Arsenic	0	0		0	150	150	11,887	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	324,918	
Total Boron	0	0		0	1,600	1,600	126,797	
Total Cadmium	0	0		0	0.218	0.24	18.8	Chem Translator of 0.916 applied
Total Chromium (III)	0	0		0	64.236	74.7	5,919	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	824	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	1,506	
Total Copper	0	0		0	7.714	8.04	637	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	412	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	118,872	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.080	2.55	202	Chem Translator of 0.816 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	71.8	Chem Translator of 0.85 applied
Total Nickel	0	0		0	44.863	45.0	3,566	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	395	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	1,030	
Total Zinc	0	0		0	101.888	103	8,189	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	238	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	130	130	10,302	
Benzene	0	0		0	130	130	10,302	
Bromoform	0	0		0	370	370	29,322	
Carbon Tetrachloride	0	0		0	560	560	44,379	
Chlorobenzene	0	0		0	240	240	19,020	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	277,369	
Chloroform	0	0		0	390	390	30,907	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	245,669	
1,1-Dichloroethylene	0	0		0	1,500	1,500	118,872	
1,2-Dichloropropane	0	0		0	2,200	2,200	174,346	
1,3-Dichloropropylene	0	0		0	61	61.0	4,834	
Ethylbenzene	0	0		0	580	580	45,964	
Methyl Bromide	0	0		0	110	110	8,717	
Methyl Chloride	0	0		0	5,500	5,500	435,865	
Methylene Chloride	0	0		0	2,400	2,400	190,196	

1,1,2,2-Tetrachloroethane	0	0		0	210	210	16,642	
Tetrachloroethylene	0	0		0	140	140	11,095	
Toluene	0	0		0	330	330	26,152	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	110,948	
1,1,1-Trichloroethane	0	0		0	610	610	48,341	
1,1,2-Trichloroethane	0	0		0	680	680	53,889	
Trichloroethylene	0	0		0	450	450	35,662	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	8,717	
2,4-Dichlorophenol	0	0		0	340	340	26,944	
2,4-Dimethylphenol	0	0		0	130	130	10,302	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	1,268	
2,4-Dinitrophenol	0	0		0	130	130	10,302	
2-Nitrophenol	0	0		0	1,600	1,600	126,797	
4-Nitrophenol	0	0		0	470	470	37,247	
p-Chloro-m-Cresol	0	0		0	500	500	39,624	
Pentachlorophenol	0	0		0	13.458	13.5	1,066	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	7,212	
Acenaphthene	0	0		0	17	17.0	1,347	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	4,676	
Benzo(a)Anthracene	0	0		0	0.1	0.1	7.92	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	475,489	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	72,116	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	4,279	
Butyl Benzyl Phthalate	0	0		0	35	35.0	2,774	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	12,680	
1,3-Dichlorobenzene	0	0		0	69	69.0	5,468	
1,4-Dichlorobenzene	0	0		0	150	150	11,887	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	63,399	
Dimethyl Phthalate	0	0		0	500	500	39,624	
Di-n-Butyl Phthalate	0	0		0	21	21.0	1,664	
2,4-Dinitrotoluene	0	0		0	320	320	25,359	
2,6-Dinitrotoluene	0	0		0	200	200	15,850	
1,2-Diphenylhydrazine	0	0		0	3	3.0	238	
Fluoranthene	0	0		0	40	40.0	3,170	

Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	158	
Hexachlorocyclopentadiene	0	0		0	1	1.0	79.2	
Hexachloroethane	0	0		0	12	12.0	951	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	166,421	
Naphthalene	0	0		0	43	43.0	3,408	
Nitrobenzene	0	0		0	810	810	64,191	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	269,444	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	4,676	
Phenanthrene	0	0		0	1	1.0	79.2	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	2,060	

THH CCT (min): ##### THH PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A PWS PMF: 1

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	44,266,645	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Chloride (PWS)	0	0		0	250,000	250,000	22,133,323	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	22,133,323	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Fluoride (PWS)	0	0		0	2,000	2,000	177,067	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	444	
Total Arsenic	0	0		0	10	10.0	792	
Total Barium	0	0		0	2,400	2,400	190,196	
Total Boron	0	0		0	3,100	3,100	245,669	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	317	
Dissolved Iron	0	0		0	300	300	23,774	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	79,248	
Total Mercury	0	0		0	0.050	0.05	3.96	
Total Nickel	0	0		0	610	610	48,341	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	443	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	19.0	

Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	238	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	7,925	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	452	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	2,615	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	5,389	
Methyl Bromide	0	0		0	100	100.0	7,925	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	4,517	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	7,925	
1,1,1-Trichloroethane	0	0		0	10,000	10,000	792,482	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	2,377	
2,4-Dichlorophenol	0	0		0	10	10.0	792	
2,4-Dimethylphenol	0	0		0	100	100.0	7,925	
4,6-Dinitro-o-Cresol	0	0		0	2	2.0	158	
2,4-Dinitrophenol	0	0		0	10	10.0	792	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	316,993	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	5,547	
Anthracene	0	0		0	300	300	23,774	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	15,850	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	7.92	
2-Chloronaphthalene	0	0		0	800	800	63,399	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	79,248	
1,3-Dichlorobenzene	0	0		0	7	7.0	555	
1,4-Dichlorobenzene	0	0		0	300	300	23,774	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	47,549	
Dimethyl Phthalate	0	0		0	2,000	2,000	158,496	
Di-n-Butyl Phthalate	0	0		0	20	20.0	1,585	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	1,585	
Fluorene	0	0		0	50	50.0	3,962	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	317	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	2,694	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	792	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	1,585	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	5.55	

CRL

CCT (min): 87.887

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	

Total Antimony	0	0		0	N/A	N/A	N/A
Total Arsenic	0	0		0	N/A	N/A	N/A
Total Barium	0	0		0	N/A	N/A	N/A
Total Boron	0	0		0	N/A	N/A	N/A
Total Cadmium	0	0		0	N/A	N/A	N/A
Total Chromium (III)	0	0		0	N/A	N/A	N/A
Hexavalent Chromium	0	0		0	N/A	N/A	N/A
Total Cobalt	0	0		0	N/A	N/A	N/A
Total Copper	0	0		0	N/A	N/A	N/A
Free Cyanide	0	0		0	N/A	N/A	N/A
Dissolved Iron	0	0		0	N/A	N/A	N/A
Total Iron	0	0		0	N/A	N/A	N/A
Total Lead	0	0		0	N/A	N/A	N/A
Total Manganese	0	0		0	N/A	N/A	N/A
Total Mercury	0	0		0	N/A	N/A	N/A
Total Nickel	0	0		0	N/A	N/A	N/A
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A
Total Selenium	0	0		0	N/A	N/A	N/A
Total Silver	0	0		0	N/A	N/A	N/A
Total Thallium	0	0		0	N/A	N/A	N/A
Total Zinc	0	0		0	N/A	N/A	N/A
Acrolein	0	0		0	N/A	N/A	N/A
Acrylamide	0	0		0	0.07	0.07	19.2
Acrylonitrile	0	0		0	0.06	0.06	16.5
Benzene	0	0		0	0.58	0.58	159
Bromoform	0	0		0	7	7.0	1,923
Carbon Tetrachloride	0	0		0	0.4	0.4	110
Chlorobenzene	0	0		0	N/A	N/A	N/A
Chlorodibromomethane	0	0		0	0.8	0.8	220
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A
Chloroform	0	0		0	N/A	N/A	N/A
Dichlorobromomethane	0	0		0	0.95	0.95	261
1,2-Dichloroethane	0	0		0	9.9	9.9	2,720
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A
1,2-Dichloropropane	0	0		0	0.9	0.9	247
1,3-Dichloropropylene	0	0		0	0.27	0.27	74.2
Ethylbenzene	0	0		0	N/A	N/A	N/A
Methyl Bromide	0	0		0	N/A	N/A	N/A
Methyl Chloride	0	0		0	N/A	N/A	N/A
Methylene Chloride	0	0		0	20	20.0	5,495
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	54.9
Tetrachloroethylene	0	0		0	10	10.0	2,747
Toluene	0	0		0	N/A	N/A	N/A
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A

1,1,2-Trichloroethane	0	0		0	0.55	0.55	151	
Trichloroethylene	0	0		0	0.6	0.6	165	
Vinyl Chloride	0	0		0	0.02	0.02	5.49	
2-Chlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0		0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	0.030	0.03	8.24	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	412	
Acenaphthene	0	0		0	N/A	N/A	N/A	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	0.0001	0.0001	0.027	
Benzo(a)Anthracene	0	0		0	0.001	0.001	0.27	
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.027	
3,4-Benzofluoranthene	0	0		0	0.001	0.001	0.27	
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	2.75	
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	8.24	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	87.9	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	0.12	0.12	33.0	
Dibenzo(a,h)Anthracene	0	0		0	0.0001	0.0001	0.027	
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	13.7	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	13.7	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	13.7	
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	8.24	
Fluoranthene	0	0		0	N/A	N/A	N/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.022	
Hexachlorobutadiene	0	0		0	0.01	0.01	2.75	
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A	
Hexachloroethane	0	0		0	0.1	0.1	27.5	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.27	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.19	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	1.37	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	907	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			
Total Cadmium	Report	Report	Report	Report	Report	µg/L	18.8	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	Report	Report	Report	Report	Report	µg/L	191	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	1,649	AFC	Discharge Conc > 10% WQBEL (no RP)
Acrylamide	0.16	0.25	19.2	30.0	48.1	µg/L	19.2	CRL	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	44,267	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	22,133	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	22,133	mg/L	Discharge Conc ≤ 10% WQBEL
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	10,885	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	444	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	792	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	190,196	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	117,557	µg/L	Discharge Conc ≤ 10% WQBEL
Total Chromium (III)	5,919	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	236	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cobalt	1,379	µg/L	Discharge Conc ≤ 10% WQBEL

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Free Cyanide	317	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	23,774	µg/L	Discharge Conc < TQL
Total Iron	118,872	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	202	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	79,248	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	3.96	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	3,566	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	443	µg/L	Discharge Conc ≤ 10% WQBEL
Total Selenium	395	µg/L	Discharge Conc < TQL
Total Silver	49.3	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	19.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	43.5	µg/L	Discharge Conc < TQL
Acrylonitrile	16.5	µg/L	Discharge Conc < TQL
Benzene	159	µg/L	Discharge Conc < TQL
Bromoform	1,923	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	110	µg/L	Discharge Conc < TQL
Chlorobenzene	7,925	µg/L	Discharge Conc < TQL
Chlorodibromomethane	220	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	261,237	µg/L	Discharge Conc < TQL
Chloroform	452	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	261	µg/L	Discharge Conc ≤ 25% WQBEL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	2,720	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	2,615	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	247	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	74.2	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	5,389	µg/L	Discharge Conc < TQL
Methyl Bromide	7,925	µg/L	Discharge Conc < TQL
Methyl Chloride	406,368	µg/L	Discharge Conc < TQL
Methylene Chloride	5,495	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	54.9	µg/L	Discharge Conc < TQL
Tetrachloroethylene	2,747	µg/L	Discharge Conc < TQL
Toluene	4,517	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	7,925	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	43,539	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	151	µg/L	Discharge Conc < TQL
Trichloroethylene	165	µg/L	Discharge Conc < TQL
Vinyl Chloride	5.49	µg/L	Discharge Conc < TQL
2-Chlorophenol	2,377	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	792	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	7,925	µg/L	Discharge Conc < TQL

4,6-Dinitro-o-Cresol	158	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	792	µg/L	Discharge Conc < TQL
2-Nitrophenol	116,105	µg/L	Discharge Conc < TQL
4-Nitrophenol	33,380	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	2,322	µg/L	Discharge Conc < TQL
Pentachlorophenol	8.24	µg/L	Discharge Conc < TQL
Phenol	316,993	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	412	µg/L	Discharge Conc < TQL
Acenaphthene	1,205	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	23,774	µg/L	Discharge Conc < TQL
Benzidine	0.027	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.27	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.027	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.27	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	2.75	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	8.24	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	15,850	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	87.9	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	3,919	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	7.92	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	63,399	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	33.0	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthracene	0.027	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	11,901	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	555	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	10,595	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	13.7	µg/L	Discharge Conc < TQL
Diethyl Phthalate	47,549	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	36,283	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	1,585	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	13.7	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	13.7	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	8.24	µg/L	Discharge Conc < TQL
Fluoranthene	1,585	µg/L	Discharge Conc < TQL
Fluorene	3,962	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.022	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	2.75	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	72.6	µg/L	Discharge Conc < TQL
Hexachloroethane	27.5	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.27	µg/L	Discharge Conc < TQL

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Isophorone	2,694	µg/L	Discharge Conc < TQL
Naphthalene	2,032	µg/L	Discharge Conc < TQL
Nitrobenzene	792	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.19	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	1.37	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	907	µg/L	Discharge Conc < TQL
Phenanthrene	72.6	µg/L	Discharge Conc < TQL
Pyrene	1,585	µg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	5.55	µg/L	Discharge Conc < TQL

ATTACHMENT C

Toxics Management Spreadsheet Results for Outfall 007

Discharge Information

Instructions Discharge Stream

Facility: Zekelman Industries d/b/a Wheatland Tube

NPDES Permit No.: PA0000868

Outfall No.: 007

Evaluation Type: Major Sewage / Industrial Waste

Wastewater Description: Non-contact cooling water

Discharge Characteristics						
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)
			AFC	CFC	THH	
0.5	73.3	7.7				

	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod
Group 1	Total Dissolved Solids (PWS)	mg/L	148								
	Chloride (PWS)	mg/L	16.4								
	Bromide	mg/L	< 0.1								
	Sulfate (PWS)	mg/L	16.4								
	Fluoride (PWS)	mg/L	< 0.2								
Group 2	Total Aluminum	µg/L	438								
	Total Antimony	µg/L	< 0.2								
	Total Arsenic	µg/L	0.9								
	Total Barium	µg/L	20								
	Total Beryllium	µg/L	< 0.05								
	Total Boron	µg/L	26								
	Total Cadmium	µg/L	< 2								
	Total Chromium (III)	µg/L	1								
	Hexavalent Chromium	µg/L	< 5								
	Total Cobalt	µg/L	0.3								
	Total Copper	µg/L	2								
	Free Cyanide	µg/L	8								
	Total Cyanide	µg/L	8								
	Dissolved Iron	µg/L	130								
	Total Iron	µg/L	10800								
	Total Lead	µg/L	20								
	Total Manganese	µg/L	84								
	Total Mercury	µg/L	0.2								
	Total Nickel	µg/L	1								
	Total Phenols (Phenolics) (PWS)	µg/L	< 0.0495								
	Total Selenium	µg/L	< 5								
	Total Silver	µg/L	< 0.05								
	Total Thallium	µg/L	0.00006								
	Total Zinc	µg/L	24								
	Total Molybdenum	µg/L	0.4								
	Acrolein	µg/L	< 0.9								
	Acrylamide	µg/L	< 10000								
	Acrylonitrile	µg/L	< 0.3								
	Benzene	µg/L	< 0.04								
	Bromoform	µg/L	< 0.1								

Group 3	Carbon Tetrachloride	µg/L	<	0.1								
	Chlorobenzene	µg/L	<	0.07								
	Chlorodibromomethane	µg/L	<	0.08								
	Chloroethane	µg/L	<	0.06								
	2-Chloroethyl Vinyl Ether	µg/L	<	0.1								
	Chloroform	µg/L	<	0.09								
	Dichlorobromomethane	µg/L	<	0.08								
	1,1-Dichloroethane	µg/L	<	0.06								
	1,2-Dichloroethane	µg/L	<	0.08								
	1,1-Dichloroethylene	µg/L	<	0.07								
	1,2-Dichloropropane	µg/L	<	0.1								
	1,3-Dichloropropylene	µg/L	<	0.06								
	1,4-Dioxane	µg/L	<	0.1								
	Ethylbenzene	µg/L	<	0.06								
	Methyl Bromide	µg/L	<	0.1								
	Methyl Chloride	µg/L	<	0.09								
	Methylene Chloride	µg/L	<	0.1								
	1,1,2,2-Tetrachloroethane	µg/L	<	0.1								
	Tetrachloroethylene	µg/L	<	0.09								
	Toluene	µg/L	<	0.06								
	1,2-trans-Dichloroethylene	µg/L	<	0.1								
	1,1,1-Trichloroethane	µg/L	<	0.06								
	1,1,2-Trichloroethane	µg/L	<	0.08								
	Trichloroethylene	µg/L	<	0.1								
	Vinyl Chloride	µg/L	<	0.1								
Group 4	2-Chlorophenol	µg/L	<	0.1								
	2,4-Dichlorophenol	µg/L	<	0.0901								
	2,4-Dimethylphenol	µg/L	<	0.48								
	4,6-Dinitro-o-Cresol	µg/L	<	0.13								
	2,4-Dinitrophenol	µg/L	<	3.3								
	2-Nitrophenol	µg/L	<	0.056								
	4-Nitrophenol	µg/L	<	0.0451								
	p-Chloro-m-Cresol	µg/L	<	0.109								
	Pentachlorophenol	µg/L	<	0.114								
	Phenol	µg/L	<	0.0495								
Group 5	2,4,6-Trichlorophenol	µg/L	<	0.109								
	Acenaphthene	µg/L	<	0.113								
	Acenaphthylene	µg/L	<	0.102								
	Anthracene	µg/L	<	0.1								
	Benzidine	µg/L	<	5.49								
	Benzo(a)Anthracene	µg/L	<	0.0691								
	Benzo(a)Pyrene	µg/L	<	0.0791								
	3,4-Benzofluoranthene	µg/L	<	0.0495								
	Benzo(ghi)Perylene	µg/L	<	0.0901								
	Benzo(k)Fluoranthene	µg/L	<	0.0912								
	Bis(2-Chloroethoxy)Methane	µg/L	<	0.0934								
	Bis(2-Chloroethyl)Ether	µg/L	<	0.0857								
	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.0978								
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	1.45								
	4-Bromophenyl Phenyl Ether	µg/L	<	0.119								
	Butyl Benzyl Phthalate	µg/L	<	0.0725								
	2-Chloronaphthalene	µg/L	<	0.1								
	4-Chlorophenyl Phenyl Ether	µg/L	<	0.104								
	Chrysene	µg/L	<	0.0802								
	Dibenz(a,h)Anthracene	µg/L	<	0.0582								
	1,2-Dichlorobenzene	µg/L	<	0.09								
	1,3-Dichlorobenzene	µg/L	<	0.05								
	1,4-Dichlorobenzene	µg/L	<	0.08								
	3,3-Dichlorobenzidine	µg/L	<	0.153								
	Diethyl Phthalate	µg/L	<	0.129								
	Dimethyl Phthalate	µg/L	<	0.1								
	Di-n-Butyl Phthalate	µg/L	<	0.868								
	2,4-Dinitrotoluene	µg/L	<	0.0923								

Stream / Surface Water Information

Zekelman Industries d/b/a Wheatland Tube, NPDES Permit No. PA0000868, Outfall 007

Instructions **Discharge** Stream

Receiving Surface Water Name: **Shenango River**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	035482	24	823.55	706	0.00042		Yes
End of Reach 1	035482	4.75	793.67	790	0.00042	8.4	Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	24	0.171	121.05			125	3					80	7.7		
End of Reach 1	4.75	0.171				175									

Q_h

Location	RMI	LFY (cfs/mi ²)	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	24		423.47												
End of Reach 1	4.75														

Model Results

Zekelman Industries d/b/a Wheatland Tube, NPDES Permit No. PA0000868, Outfall 007

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	<input type="radio"/> All	<input checked="" type="radio"/> Inputs	<input type="radio"/> Results	<input type="radio"/> Limits
---------------------	----------------	----------------------------------	-----------------------------	-----------------------	---------------------------	---	-------------------------------	------------------------------

Hydrodynamics

Q₇₋₁₀

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
24	121.05		121.05	0.774	0.00042	3.	125.	41.667	0.325	3.621	198.568
4.75	135.41	12.995	122.4192								

Q_b

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
24	423.47		423.47	0.774	0.00042	5.195	125.	24.064	0.653	1.801	87.945
4.75	542.079	12.995	529.08								

Wasteload Allocations

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	33,009	
Total Antimony	0	0		0	1,100	1,100	48,414	
Total Arsenic	0	0		0	340	340	14,964	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	924,265	
Total Boron	0	0		0	8,100	8,100	356,502	
Total Cadmium	0	0		0	1.618	1.7	74.7	Chem Translator of 0.953 applied
Total Chromium (III)	0	0		0	473.858	1,500	65,999	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	717	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	4,181	
Total Copper	0	0		0	10.871	11.3	498	Chem Translator of 0.96 applied

Free Cyanide	0	0		0	22	22.0	968	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	50.504	61.3	2,698	Chem Translator of 0.824 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	72.5	Chem Translator of 0.85 applied
Total Nickel	0	0		0	387.061	388	17,070	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	2.184	2.57	113	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	2,861	
Total Zinc	0	0		0	96.837	99.0	4,358	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	132	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	650	650	28,608	
Benzene	0	0		0	640	640	28,168	
Bromoform	0	0		0	1,800	1,800	79,223	
Carbon Tetrachloride	0	0		0	2,800	2,800	123,235	
Chlorobenzene	0	0		0	1,200	1,200	52,815	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	792,227	
Chloroform	0	0		0	1,900	1,900	83,624	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	660,189	
1,1-Dichloroethylene	0	0		0	7,500	7,500	330,095	
1,2-Dichloropropane	0	0		0	11,000	11,000	484,139	
1,3-Dichloropropylene	0	0		0	310	310	13,644	
Ethylbenzene	0	0		0	2,900	2,900	127,637	
Methyl Bromide	0	0		0	550	550	24,207	
Methyl Chloride	0	0		0	28,000	28,000	1,232,353	
Methylene Chloride	0	0		0	12,000	12,000	528,151	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	44,013	
Tetrachloroethylene	0	0		0	700	700	30,809	
Toluene	0	0		0	1,700	1,700	74,821	
1,2-trans-Dichloroethylene	0	0		0	6,800	6,800	299,286	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	132,038	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	149,643	
Trichloroethylene	0	0		0	2,300	2,300	101,229	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	24,647	
2,4-Dichlorophenol	0	0		0	1,700	1,700	74,821	
2,4-Dimethylphenol	0	0		0	660	660	29,048	
4,6-Dinitro-o-Cresol	0	0		0	80	80.0	3,521	
2,4-Dinitrophenol	0	0		0	660	660	29,048	
2-Nitrophenol	0	0		0	8,000	8,000	352,101	
4-Nitrophenol	0	0		0	2,300	2,300	101,229	
p-Chloro-m-Cresol	0	0		0	160	160	7,042	
Pentachlorophenol	0	0		0	17,628	17.6	776	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	20,246	
Acenaphthene	0	0		0	83	83.0	3,653	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	13,204	
Benzo(a)Anthracene	0	0		0	0.5	0.5	22.0	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	1,320,378	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	198,057	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	11,883	
Butyl Benzyl Phthalate	0	0		0	140	140	6,162	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	36,090	
1,3-Dichlorobenzene	0	0		0	350	350	15,404	
1,4-Dichlorobenzene	0	0		0	730	730	32,129	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	176,050	
Dimethyl Phthalate	0	0		0	2,500	2,500	110,032	
Di-n-Butyl Phthalate	0	0		0	110	110	4,841	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	70,420	
2,6-Dinitrotoluene	0	0		0	990	990	43,572	
1,2-Diphenylhydrazine	0	0		0	15	15.0	660	
Fluoranthene	0	0		0	200	200	8,803	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	440	
Hexachlorocyclopentadiene	0	0		0	5	5.0	220	
Hexachloroethane	0	0		0	60	60.0	2,641	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	440,126	
Naphthalene	0	0		0	140	140	6,162	
Nitrobenzene	0	0		0	4,000	4,000	176,050	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	748,214	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	13,204	
Phenanthrene	0	0		0	5	5.0	220	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	5,722	

CFC

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): 79.957

Analysis pH: 7.70

Pollutants	Stream Conc (mg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
------------	--------------------	-----------	------------------	-----------	------------	---------------	------------	----------

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	34,649	
Total Arsenic	0	0		0	150	150	23,624	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	645,735	
Total Boron	0	0		0	1,600	1,600	251,994	
Total Cadmium	0	0		0	0.211	0.23	36.1	Chem Translator of 0.918 applied
Total Chromium (III)	0	0		0	61.708	71.8	11,301	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	1,637	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	2,992	
Total Copper	0	0		0	7.398	7.71	1,214	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	819	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	236,245	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	1.971	2.39	377	Chem Translator of 0.824 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	143	Chem Translator of 0.85 applied
Total Nickel	0	0		0	43.040	43.2	6,799	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	786	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	2,047	
Total Zinc	0	0		0	97.743	99.1	15,613	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	472	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	130	130	20,475	
Benzene	0	0		0	130	130	20,475	
Bromoform	0	0		0	370	370	58,274	
Carbon Tetrachloride	0	0		0	560	560	88,198	
Chlorobenzene	0	0		0	240	240	37,799	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	551,238	
Chloroform	0	0		0	390	390	61,424	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	488,239	
1,1-Dichloroethylene	0	0		0	1,500	1,500	236,245	
1,2-Dichloropropane	0	0		0	2,200	2,200	346,492	
1,3-Dichloropropylene	0	0		0	61	61.0	9,607	
Ethylbenzene	0	0		0	580	580	91,348	
Methyl Bromide	0	0		0	110	110	17,325	
Methyl Chloride	0	0		0	5,500	5,500	866,230	
Methylene Chloride	0	0		0	2,400	2,400	377,991	

1,1,2,2-Tetrachloroethane	0	0		0	210	210	33,074	
Tetrachloroethylene	0	0		0	140	140	22,050	
Toluene	0	0		0	330	330	51,974	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	220,495	
1,1,1-Trichloroethane	0	0		0	610	610	96,073	
1,1,2-Trichloroethane	0	0		0	680	680	107,098	
Trichloroethylene	0	0		0	450	450	70,873	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	17,325	
2,4-Dichlorophenol	0	0		0	340	340	53,549	
2,4-Dimethylphenol	0	0		0	130	130	20,475	
4,6-Dinitro-o-Cresol	0	0		0	16	16.0	2,520	
2,4-Dinitrophenol	0	0		0	130	130	20,475	
2-Nitrophenol	0	0		0	1,600	1,600	251,994	
4-Nitrophenol	0	0		0	470	470	74,023	
p-Chloro-m-Cresol	0	0		0	500	500	78,748	
Pentachlorophenol	0	0		0	13.524	13.5	2,130	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	14,332	
Acenaphthene	0	0		0	17	17.0	2,677	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	9,292	
Benzo(a)Anthracene	0	0		0	0.1	0.1	15.7	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	944,979	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	143,322	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	8,505	
Butyl Benzyl Phthalate	0	0		0	35	35.0	5,512	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	25,199	
1,3-Dichlorobenzene	0	0		0	69	69.0	10,867	
1,4-Dichlorobenzene	0	0		0	150	150	23,624	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	125,997	
Dimethyl Phthalate	0	0		0	500	500	78,748	
Di-n-Butyl Phthalate	0	0		0	21	21.0	3,307	
2,4-Dinitrotoluene	0	0		0	320	320	50,399	
2,6-Dinitrotoluene	0	0		0	200	200	31,499	
1,2-Diphenylhydrazine	0	0		0	3	3.0	472	
Fluoranthene	0	0		0	40	40.0	6,300	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	315	
Hexachlorocyclopentadiene	0	0		0	1	1.0	157	
Hexachloroethane	0	0		0	12	12.0	1,890	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	330,743	
Naphthalene	0	0		0	43	43.0	6,772	
Nitrobenzene	0	0		0	810	810	127,572	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	535,488	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	9,292	
Phenanthrene	0	0		0	1	1.0	157	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	4,095	

THH CCT (min): ##### THH PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A PWS PMF: 1

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	88,033,290	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Chloride (PWS)	0	0		0	250,000	250,000	44,016,645	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	44,016,645	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Fluoride (PWS)	0	0		0	2,000	2,000	352,133	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	882	
Total Arsenic	0	0		0	10	10.0	1,575	
Total Barium	0	0		0	2,400	2,400	377,991	
Total Boron	0	0		0	3,100	3,100	488,239	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	630	
Dissolved Iron	0	0		0	300	300	47,249	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	157,496	
Total Mercury	0	0		0	0.050	0.05	7.87	
Total Nickel	0	0		0	610	610	96,073	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	880	WQC applied at RMI 4.75 with a design stream flow of 135.414 cfs
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	37.8	

Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	472	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	15,750	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	5.7	5.7	898	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	5,197	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	10,710	
Methyl Bromide	0	0		0	100	100.0	15,750	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	
Tetrachloroethylene	0	0		0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	8,977	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	15,750	
1,1,1-Trichloroethane	0	0		0	10,000	10,000	1,574,964	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	4,725	
2,4-Dichlorophenol	0	0		0	10	10.0	1,575	
2,4-Dimethylphenol	0	0		0	100	100.0	15,750	
4,6-Dinitro-o-Cresol	0	0		0	2	2.0	315	
2,4-Dinitrophenol	0	0		0	10	10.0	1,575	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	629,986	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0		0	70	70.0	11,025	
Anthracene	0	0		0	300	300	47,249	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	31,499	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	15.7	
2-Chloronaphthalene	0	0		0	800	800	125,997	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	157,496	
1,3-Dichlorobenzene	0	0		0	7	7.0	1,102	
1,4-Dichlorobenzene	0	0		0	300	300	47,249	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	94,498	
Dimethyl Phthalate	0	0		0	2,000	2,000	314,993	
Di-n-Butyl Phthalate	0	0		0	20	20.0	3,150	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	3,150	
Fluorene	0	0		0	50	50.0	7,875	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	630	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	5,355	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	1,575	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	3,150	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	11.0	

CRL

CCT (min): 87.945

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	

Total Antimony	0	0		0	N/A	N/A	N/A
Total Arsenic	0	0		0	N/A	N/A	N/A
Total Barium	0	0		0	N/A	N/A	N/A
Total Boron	0	0		0	N/A	N/A	N/A
Total Cadmium	0	0		0	N/A	N/A	N/A
Total Chromium (III)	0	0		0	N/A	N/A	N/A
Hexavalent Chromium	0	0		0	N/A	N/A	N/A
Total Cobalt	0	0		0	N/A	N/A	N/A
Total Copper	0	0		0	N/A	N/A	N/A
Free Cyanide	0	0		0	N/A	N/A	N/A
Dissolved Iron	0	0		0	N/A	N/A	N/A
Total Iron	0	0		0	N/A	N/A	N/A
Total Lead	0	0		0	N/A	N/A	N/A
Total Manganese	0	0		0	N/A	N/A	N/A
Total Mercury	0	0		0	N/A	N/A	N/A
Total Nickel	0	0		0	N/A	N/A	N/A
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A
Total Selenium	0	0		0	N/A	N/A	N/A
Total Silver	0	0		0	N/A	N/A	N/A
Total Thallium	0	0		0	N/A	N/A	N/A
Total Zinc	0	0		0	N/A	N/A	N/A
Acrolein	0	0		0	N/A	N/A	N/A
Acrylamide	0	0		0	0.07	0.07	38.4
Acrylonitrile	0	0		0	0.06	0.06	32.9
Benzene	0	0		0	0.58	0.58	318
Bromoform	0	0		0	7	7.0	3,839
Carbon Tetrachloride	0	0		0	0.4	0.4	219
Chlorobenzene	0	0		0	N/A	N/A	N/A
Chlorodibromomethane	0	0		0	0.8	0.8	439
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A
Chloroform	0	0		0	N/A	N/A	N/A
Dichlorobromomethane	0	0		0	0.95	0.95	521
1,2-Dichloroethane	0	0		0	9.9	9.9	5,430
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A
1,2-Dichloropropane	0	0		0	0.9	0.9	494
1,3-Dichloropropylene	0	0		0	0.27	0.27	148
Ethylbenzene	0	0		0	N/A	N/A	N/A
Methyl Bromide	0	0		0	N/A	N/A	N/A
Methyl Chloride	0	0		0	N/A	N/A	N/A
Methylene Chloride	0	0		0	20	20.0	10,969
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	110
Tetrachloroethylene	0	0		0	10	10.0	5,485
Toluene	0	0		0	N/A	N/A	N/A
1,2-trans-Dichloroethylene	0	0		0	N/A	N/A	N/A
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A

1,1,2-Trichloroethane	0	0		0	0.55	0.55	302	
Trichloroethylene	0	0		0	0.6	0.6	329	
Vinyl Chloride	0	0		0	0.02	0.02	11.0	
2-Chlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0		0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	0.030	0.03	16.5	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	823	
Acenaphthene	0	0		0	N/A	N/A	N/A	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	0.0001	0.0001	0.055	
Benzo(a)Anthracene	0	0		0	0.001	0.001	0.55	
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.055	
3,4-Benzofluoranthene	0	0		0	0.001	0.001	0.55	
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	5.48	
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	16.5	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	176	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	0.12	0.12	65.8	
Dibenzo(a,h)Anthracene	0	0		0	0.0001	0.0001	0.055	
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	27.4	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	27.4	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	27.4	
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	16.5	
Fluoranthene	0	0		0	N/A	N/A	N/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.044	
Hexachlorobutadiene	0	0		0	0.01	0.01	5.48	
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A	
Hexachloroethane	0	0		0	0.1	0.1	54.8	

NPDES Permit Fact Sheet
Wheatland Tube Council Avenue Plant

NPDES Permit No. PA0000868

Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.55	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.38	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	2.74	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	1,810	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			
Acrylamide	0.16	0.25	38.4	59.9	96.0	µg/L	38.4	CRL	Discharge Conc \geq 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., \leq Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	88,033	mg/L	Discharge Conc \leq 10% WQBEL
Chloride (PWS)	44,017	mg/L	Discharge Conc \leq 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	44,017	mg/L	Discharge Conc \leq 10% WQBEL
Fluoride (PWS)	N/A	N/A	Discharge Conc $<$ TQL
Total Aluminum	21,158	µg/L	Discharge Conc \leq 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc $<$ TQL
Total Arsenic	1,575	µg/L	Discharge Conc \leq 10% WQBEL
Total Barium	377,991	µg/L	Discharge Conc \leq 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	228,503	µg/L	Discharge Conc \leq 10% WQBEL
Total Cadmium	36.1	µg/L	Discharge Conc \leq 10% WQBEL
Total Chromium (III)	11,301	µg/L	Discharge Conc \leq 10% WQBEL
Hexavalent Chromium	460	µg/L	Discharge Conc \leq 10% WQBEL

Total Cobalt	2,680	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	319	µg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	621	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	47,249	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	236,245	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	377	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	157,496	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	7.87	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	6,799	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)	880	µg/L	Discharge Conc < TQL
Total Selenium	786	µg/L	Discharge Conc < TQL
Total Silver	72.5	µg/L	Discharge Conc < TQL
Total Thallium	37.8	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	2,793	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	84.6	µg/L	Discharge Conc < TQL
Acrylonitrile	32.9	µg/L	Discharge Conc < TQL
Benzene	318	µg/L	Discharge Conc < TQL
Bromoform	3,839	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	219	µg/L	Discharge Conc < TQL
Chlorobenzene	15,750	µg/L	Discharge Conc < TQL
Chlorodibromomethane	439	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	507,786	µg/L	Discharge Conc < TQL
Chloroform	898	µg/L	Discharge Conc < TQL
Dichlorobromomethane	521	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	5,430	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	5,197	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	494	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	148	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	10,710	µg/L	Discharge Conc < TQL
Methyl Bromide	15,516	µg/L	Discharge Conc < TQL
Methyl Chloride	789,889	µg/L	Discharge Conc < TQL
Methylene Chloride	10,969	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	110	µg/L	Discharge Conc < TQL
Tetrachloroethylene	5,485	µg/L	Discharge Conc < TQL
Toluene	8,977	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	15,750	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	84,631	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	302	µg/L	Discharge Conc < TQL
Trichloroethylene	329	µg/L	Discharge Conc < TQL
Vinyl Chloride	11.0	µg/L	Discharge Conc < TQL

2-Chlorophenol	4,725	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	1,575	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	15,750	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	315	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	1,575	µg/L	Discharge Conc < TQL
2-Nitrophenol	225,682	µg/L	Discharge Conc < TQL
4-Nitrophenol	64,884	µg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	4,514	µg/L	Discharge Conc < TQL
Pentachlorophenol	16.5	µg/L	Discharge Conc < TQL
Phenol	629,986	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	823	µg/L	Discharge Conc < TQL
Acenaphthene	2,341	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	47,249	µg/L	Discharge Conc < TQL
Benzidine	0.055	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.55	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.055	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.55	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	5.48	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	16.5	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	31,499	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	176	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	7,617	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	15.7	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	125,997	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	65.8	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthracene	0.055	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	23,132	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	1,102	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	20,594	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	27.4	µg/L	Discharge Conc < TQL
Diethyl Phthalate	94,498	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	70,526	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	3,103	µg/L	Discharge Conc ≤ 25% WQBEL
2,4-Dinitrotoluene	27.4	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	27.4	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	16.5	µg/L	Discharge Conc < TQL
Fluoranthene	3,150	µg/L	Discharge Conc < TQL
Fluorene	7,875	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.044	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	5.48	µg/L	Discharge Conc < TQL

Hexachlorocyclopentadiene	141	µg/L	Discharge Conc < TQL
Hexachloroethane	54.8	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.55	µg/L	Discharge Conc < TQL
Isophorone	5,355	µg/L	Discharge Conc < TQL
Naphthalene	3,949	µg/L	Discharge Conc < TQL
Nitrobenzene	1,575	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.38	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	2.74	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	1,810	µg/L	Discharge Conc < TQL
Phenanthrene	141	µg/L	Discharge Conc < TQL
Pyrene	3,150	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	11.0	µg/L	Discharge Conc < TQL

ATTACHMENT D

Cooling Water Intake Structure Evaluation and Drawings

Clean Water Act Section 316(b) – Best Technology Available for Cooling Water Intake Structures

On August 15, 2014, EPA promulgated Clean Water Act Section 316(b) regulations that apply to cooling water intake structures at existing facilities. The regulations established best technology available (BTA) standards to reduce impingement mortality and entrainment of all life stages of fish and shellfish at existing power-generating and manufacturing facilities. The Final Rule took effect on October 14, 2014. Regulations implementing the 2014 Final Rule (and the previously promulgated Phase I Rule) are provided in 40 CFR part 125, Subparts I and J for new facilities and existing facilities, respectively. Associated NPDES permit application requirements for facilities with cooling water intake structures are provided in 40 CFR Part 122, Subpart B – Permit Application and Special NPDES Program Requirements (§ 122.21(r)).

Section 316(b) of the Clean Water Act (33 U.S.C. § 1326(b)) states:

- (b) Any standard established pursuant to section 301 or section 306 of this Act and applicable to a point source shall require that the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.

EPA's "Technical Development Document for the Final Section 316(b) Existing Facilities Rule" [EPA-821-R-14-002] dated May 2014 explains Section 316(b) as follows:

Section 316(b) addresses the adverse environmental impact caused specifically by the intake of cooling water, rather than discharges into water. Despite this special focus, the requirements of section 316(b) remain closely linked to several of the core elements of the NPDES permit program established under section 402 of the CWA to control discharges of pollutants into navigable waters. Thus, while effluent limitations apply to the discharge of pollutants by NPDES-permitted point sources to waters of the United States, section 316(b) applies to facilities subject to NPDES requirements that also withdraw water from a water of the United States for cooling and that use a cooling water intake structure to do so.

Existing facilities are subject to 40 CFR part 125, Subpart J – Requirements Applicable to Cooling Water Intake Structures for Existing Facilities Under Section 316(b) of the Clean Water Act (§§ 125.90 – 125.99) pursuant, in part, to the applicability criteria given by § 125.91(a) as follows:

- (a) The owner or operator of an existing facility, as defined in § 125.92(k), is subject to the requirements at §§ 125.94 through 125.99 if:
 - (1) The facility is a point source;
 - (2) The facility uses or proposes to use one or more cooling water intake structures with a cumulative design intake flow (DIF) of greater than 2 million gallons per day (mgd) to withdraw water from waters of the United States; and
 - (3) Twenty-five percent or more of the water the facility withdraws on an actual intake flow basis is used exclusively for cooling purposes.

"Existing facility" is defined in § 125.92(k) as follows:

- (k) *Existing facility* means any facility that commenced construction as described in 40 CFR 122.29(b)(4) on or before January 17, 2002 (or July 17, 2006 for an offshore oil and gas extraction facility) and any modification of, or any addition of a unit at such a facility. A facility built adjacent to another facility would be a new facility while the original facility would remain as an existing facility for purposes of this subpart. A facility cannot both be an existing facility and a new facility as defined at § 125.83.

"Cooling water intake structure" is defined in § 125.92(f) as follows:

- (f) *Cooling water intake structure* means the total physical structure and any associated constructed waterways used to withdraw cooling water from waters of the United States. The cooling water intake structure extends from the point at which water is first withdrawn from waters of the United States up to, and including the intake pumps.

"Design intake flow" (DIF) is defined in § 125.92(g) as follows:

- (g) *Design intake flow* (DIF) means the value assigned during the cooling water intake structure design to the maximum instantaneous rate of flow of water the cooling water intake system is capable of withdrawing from a

source waterbody. The facility's DIF may be adjusted to reflect permanent changes to the maximum capabilities of the cooling water intake system to withdraw cooling water, including pumps permanently removed from service, flow limit devices, and physical limitations of the piping. DIF does not include values associated with emergency and fire suppression capacity or redundant pumps (*i.e.*, back-up pumps).

“Actual intake flow” (AIF) is defined in § 125.92(a) as follows:

(a) *Actual Intake Flow* means the average volume of water withdrawn on an annual basis by the cooling water intake structures over the past three years. After October 14, 2019, Actual Intake Flow means the average volume of water withdrawn on an annual basis by the cooling water intake structures over the previous five years. Actual intake flow is measured at a location within the cooling water intake structure that the Director deems appropriate. The calculation of actual intake flow includes days of zero flow. AIF does not include flows associated with emergency and fire suppression capacity.

The NPDES permit application instructions require existing facilities that meet the 40 CFR § 125.91(a) applicability criteria to submit Module 5 of the application, which includes, among other things, prompts for the following information in accordance with 40 CFR § 122.21(r) (regarding permit application requirements for facilities with cooling water intake structures): source water physical data, cooling water intake structure data, source water baseline biological characterization data, cooling water system data, the applicant’s chosen method of compliance with impingement mortality standard, entrainment performance studies, and operational status.

WTC is an existing facility (constructed in the late 1920s and beginning operation in 1931 as the John Maneely Company) and is a “point source” as defined in 40 CFR § 122.2. The facility’s point sources are permitted by NPDES Permit PA0000868.⁹ WTC owns and operates a cooling water intake structure (CWIS) that withdraws cooling water from the Shenango River. WTC was not subject to any 316(b) requirements in previous permits. WTC submitted drawings and basic information about its CWIS in the 2025 Application Update reporting a DIF of 2.9 MGD and an Actual Intake Flow of 0.037 MGD with 100% of the withdrawn water used for cooling. The intake consists of a forebay containing two stainless steel traveling screens with $\frac{1}{8}$ -inch diameter holes and a hole spacing of 3/16 inches on-center. The forebay is protected by a 15.5-foot \times 14-foot mesh trash screen with 6-inch \times 6-inch square openings and $\frac{3}{4}$ -inch diameter rods. The trash screen is angled away from the direction of flow in the Shenango River.

Figure 9. Intake pumps.

DEP Compliance Evaluation Inspection, February 2, 2025.

On September 10, 2025, based on the reported characteristics of WTC’s CWIS, DEP requested WTC to submit Module 5 of the application. Alternatively, DEP suggested that WTC modify its CWIS to reduce the DIF to less than 2.0 MGD given the low reported utilization of the intake’s capacity (0.037 MGD actual versus 2.9 MGD design). Reducing the DIF would remove the obligation for WTC to submit Module 5 and enable an alternative, less data-intensive, site-specific BTA determination for impingement and entrainment at WTC’s CWIS.

In DEP’s correspondence with WTC, WTC indicated that the intake pump (with one standby pump) is a vertical turbine centrifugal pump operating at a constant pressure of 50 psig rather than a constant flowrate. At most, the header can supply 1,600 gpm with no restrictions, but WTC significantly reduces the header to supply various outlets at their desired flowrates.

To address uncertainties about the intake’s withdrawal capabilities, WTC installed a new flow meter in November

2025 to verify the CWIS’s maximum flow rate and to gather flow data representing normal operations. With full flow through the supply pipe, WTC observed a maximum reading on the new flow meter of 1,075 gpm (approximately 1.55 MGD). The average flow from a limited period of operation after the flow meter was installed was 765 gpm (approximately 1.10 MGD). The revised flow values were reported to DEP in application revisions submitted on December 11 and 12, 2025.

⁹ *Point source* means any discernible, confined, and discrete conveyance, including but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, landfill leachate collection system, vessel or other floating craft from which pollutants are or may be discharged.

Figure 7. Trash screen (right) and traveling screens (left). DEP 2021 Inspection Report.

Figure 8. Trash screen (right) and traveling screens (left). DEP's 2025 Inspection Report.

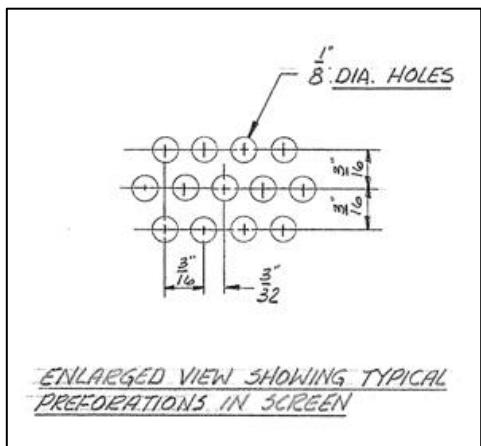
Based on regulations implementing section 316(b) in 40 CFR part 125, Subpart J and the characteristics of WTC's intake as reported to DEP in December 2025, WTC is not subject to the requirements listed in 40 CFR §§ 125.94 through 125.99 because the DIF of WTC's CWIS does not meet the 2.0 MGD DIF applicability threshold in § 125.91(a). An existing facility must meet all three applicability criteria under § 125.91(a) to be subject to the requirements of §§ 125.94 through 125.99. Even though WTC is not subject to those regulatory requirements, WTC is subject to site-specific BTA requirements for impingement mortality and entrainment minimization established by DEP using Best Professional Judgement pursuant to § 125.90(b). Section 125.90(b) states:

(b) Cooling water intake structures not subject to requirements under §§125.94 through 125.99 or subparts I or N of this part [because they do not meet one or more of the applicability criteria in § 125.91(a)] must meet requirements under section 316(b) of the CWA established by the Director on a case-by-case, best professional judgment (BPJ) basis.

Best Professional Judgement ("BPJ") of Best Technology Available for Impingement Minimization

DEP's "Standard Operating Procedure (SOP) for Clean Water Program, Establishing Best Technology Available (BTA) Using Best Professional Judgement (BPJ) for Cooling Water Intake Structures at Existing NPDES Facilities" [SOP No. BCW-PMT-038, 12/7/2021] describes the procedures DEP uses to make BPJ BTA determinations for existing CWISs.

Pursuant to Section II.A of the SOP, facilities that have one or more of the following technologies or best management practices has BTA for impingement mortality:


1. Closed-cycle recirculating system.
2. 0.5 foot per second (fps) through-screen design velocity.
3. 0.5 fps through-screen actual velocity.
4. Modified Traveling Screens with a fish handling and return system with sufficient water flow to return the fish directly to the source water in a manner that does not promote reimpingement of the fish or require a large vertical drop.

In addition, pursuant to Section II.B of the SOP, facilities that have one or more of the following technologies or best management practices has BTA for entrainment:

1. Closed-cycle recirculating system.
2. The actual intake flow (AIF) is minimal compared to the mean annual flow of the river. For cases where this option is being used, cumulative withdrawals from nearby facilities should be considered. The application manager may contact the Bureau of Clean Water to determine if this option is applicable.
3. Seasonal flow reductions - If a facility can reduce flows to mimic closed cycle cooling during spawning and biologically important time periods.

BPJ of BTA for Impingement

Based on information supplied by WTC, DEP estimates the design through-screen velocity to be 0.22 feet per second. DEP's calculations are summarized below.

WTC Drawing 4681 depicts the perforations on the traveling screen to be offset, 1/8-inch diameter round holes with an on-center spacing of 3/16 inches. The open area percentage of the screen is estimated using the following formula:

$$P = \frac{D^2 \times 90.69}{T^2}$$

where:

P = screen open area percentage

D = hole diameter (1/8 inches or 0.125")

T = distance between hole centers (3/16 inches or 0.1875")

Based on the reported screen perforations, the open area percentage of the traveling screens is 40.3%, calculated as follows:

$$P = \frac{(0.125)^2 \times 90.69}{(0.1875)^2} = 40.3\%$$

The maximum (design) through screen velocity is calculated using the following formula:

$$V = \frac{Q}{(A \times P)}$$

where:

V = maximum (design) through-screen intake velocity

Q = maximum (design) intake flow (1.55 MGD or 2.398 cfs)

A = wetted area of the traveling screens at the lowest river elevation

P = screen open area percentage (40.3%)

The wetted area of the traveling screens is estimated from WTC Drawings 4254 and 4255. Drawing 4255 shows a low water elevation of -16'-3" and a riverbed elevation of -19'-6", which is a difference of 3-feet, 3-inches or 3.25 feet. Theoretically, that is the submerged depth of the traveling screens at low flow.¹⁰ Drawing 4254 show a traveling screen width of 2 x (2'-1") for each screen (50 inches wide per screen) or 100 inches (8.33 feet) total for both screens operating. The wetted area of the screens at the lowest river elevation would be: 3.25 feet x 8.33 feet = 27.1 square feet.

Based on those values, the maximum (design) through-screen intake velocity is 0.22 feet per second.

$$V = \frac{2.398 \text{ ft}^3}{(27.1 \text{ ft}^2 \times 0.403)} \approx 0.22 \text{ feet per second}$$

A through-screen design velocity of 0.22 fps complies with Impingement BTA Option 2 because the velocity is less than 0.5 fps.

BPJ of BTA for Entrainment

Of the three entrainment BTA options in the SOP, WTC complies with Entrainment BTA Option 2 where the actual intake flow is minimal compared to the mean annual flow of the Shenango River.

In the 2014 Existing Facilities Final Rule (79 FR 48331), EPA states that “[e]ntrainment is generally considered to be proportional to flow and therefore a reduction in flow results in a proportional reduction in entrainment, as EPA assumes for purposes of national rulemaking that entrainable organisms are uniformly distributed throughout the source water. EPA has consistently applied this assumption throughout the 316(b) rulemaking process and continues to assume that it is broadly applicable on a national scale and is an appropriate assumption for a national rulemaking.”

Under 40 CFR Part 125, Subpart I – Requirements Applicable to Cooling Water Intake Structures for New Facilities Under Section 316(b) of the Act, EPA required all new facilities with cooling water intake structures located in freshwater rivers or streams to have a total design intake flow of no greater than five (5) percent of the source water mean flow. EPA's review of existing facility performance in the context of the 2001 New Facilities Final Rule indicated that 90% of existing facilities in freshwater rivers and streams met that requirement. EPA found that the proportional flow limitations represent limitations on capacity and location that are technically available and economically practicable for the industry as a whole. Consistent with EPA's assumption regarding the distribution of entrainable organisms, the five percent value for rivers and streams reflects an estimate that a facility complying with that requirement would entrain approximately five percent of the river or stream's entrainable organisms and a policy judgment that a greater degree of entrainment reflects an inappropriately located facility. (66 FR 65277)

Based on that information, it is reasonable to conclude that 1) withdrawing five percent or less of a source water's mean annual flow (and, by extension, five percent or less of a source water's entrainable organisms) represents Best Technology Available for entrainment at new facilities; and 2) existing facilities with a design intake flow of 2 MGD or less (*i.e.*, facilities eligible for a case-by-case BTA determination) that do not exceed the same proportion of a source water's mean annual flow also have BTA for entrainment.

¹⁰ WTC Drawing 4255 that depicts relative high and low water elevations (from which DEP estimated the wetted depth of the traveling screens) is dated May 14, 1963, which predates the beginning of flow regulation in the Shenango River from the construction of the Shenango Dam in 1967. Therefore, the wetted depth and wetted area of the traveling screens and the maximum through screen velocity calculated using the wetted area of the traveling screens may differ from what DEP determined from that drawing.

The AIF of WTC's intake is 1.10 MGD (about 1.7 cfs), which is approximately 0.4% of the harmonic mean flow of the Shenango River (423.47 cfs) and about 0.2% of the arithmetic mean flow of the Shenango River (884.1 cfs). The DIF of WTC's intake (1.55 MGD or 2.398 cfs) is about 0.6% of the harmonic mean flow of the Shenango River and about 0.3% of the arithmetic mean flow of the Shenango River. Even at Q₇₋₁₀ flow in the Shenango River (a significantly more conservative flow rate), WTC's DIF represents about 2% of the flow of the Shenango River, which is less than the 5% standard for new facilities. Since WTC's AIF (and DIF) is minimal compared to the mean annual flow of the Shenango River, and there are no other withdrawals from nearby facilities that would increase to total percentage of mean annual flow withdrawn from the river, DEP has determined that WTC complies with entrainment BTA Option 2.

The SOP indicates that when entrainment BTA Option 2 is selected, a monitoring requirement for flow should be included in the permit. DEP considers the requirement to monitoring intake flows to be reasonable irrespective of the fact that the DIF of the CWIS also is minimal compared to the mean annual flow of the river.

The permit will limit WTC's Actual Intake Flow to 1% of the mean annual flow of the Shenango River.

The following conditions will be included in the permit to implement § 316(b) requirements.

COOLING WATER INTAKE STRUCTURE

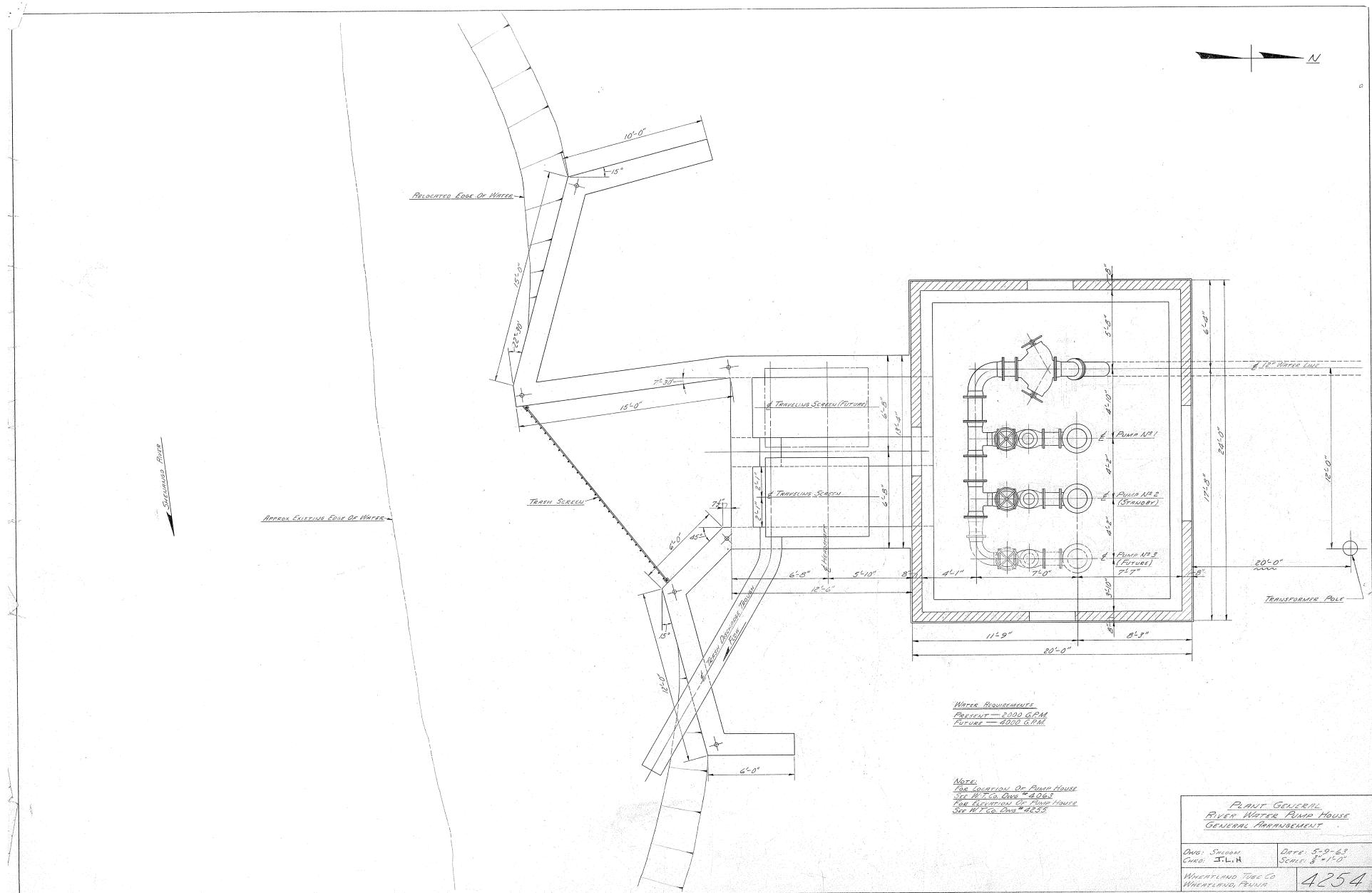
- A. Nothing in this permit authorizes a take of endangered or threatened species under the Endangered Species Act.
- B. Technology and operational measures employed at the cooling water intake structures must be operated in a way that minimizes impingement mortality and entrainment to the smallest amount, extent, or degree reasonably possible.
- C. The location, design, construction or capacity of the intake structure may not be altered without prior approval of DEP.
- D. The permittee must notify DEP before changing its source of cooling water.
- E. The permittee shall retain data and other records for any information developed pursuant to Section 316(b) of the Clean Water Act for a minimum of ten (10) years.
- F. Throughout the permit term, the permittee shall continue to operate and maintain the following technologies or BMPs that constitute Best Technology Available (BTA) for reducing impingement:
 - 0.5 foot per second (fps) through-screen design velocity.
- G. Throughout the permit term, the permittee shall continue to operate and maintain the following technologies or BMPs that constitute Best Technology Available (BTA) for reducing entrainment:
 - Maintenance of actual intake flow of 1% or less of the mean annual flow of the surface waters. The permittee shall monitor intake flows daily. The data shall be submitted on the Cooling Water Intake Monitoring Supplemental Report (3800-FM-BCW0010) as an attachment to monthly Discharge Monitoring Reports (DMRs).

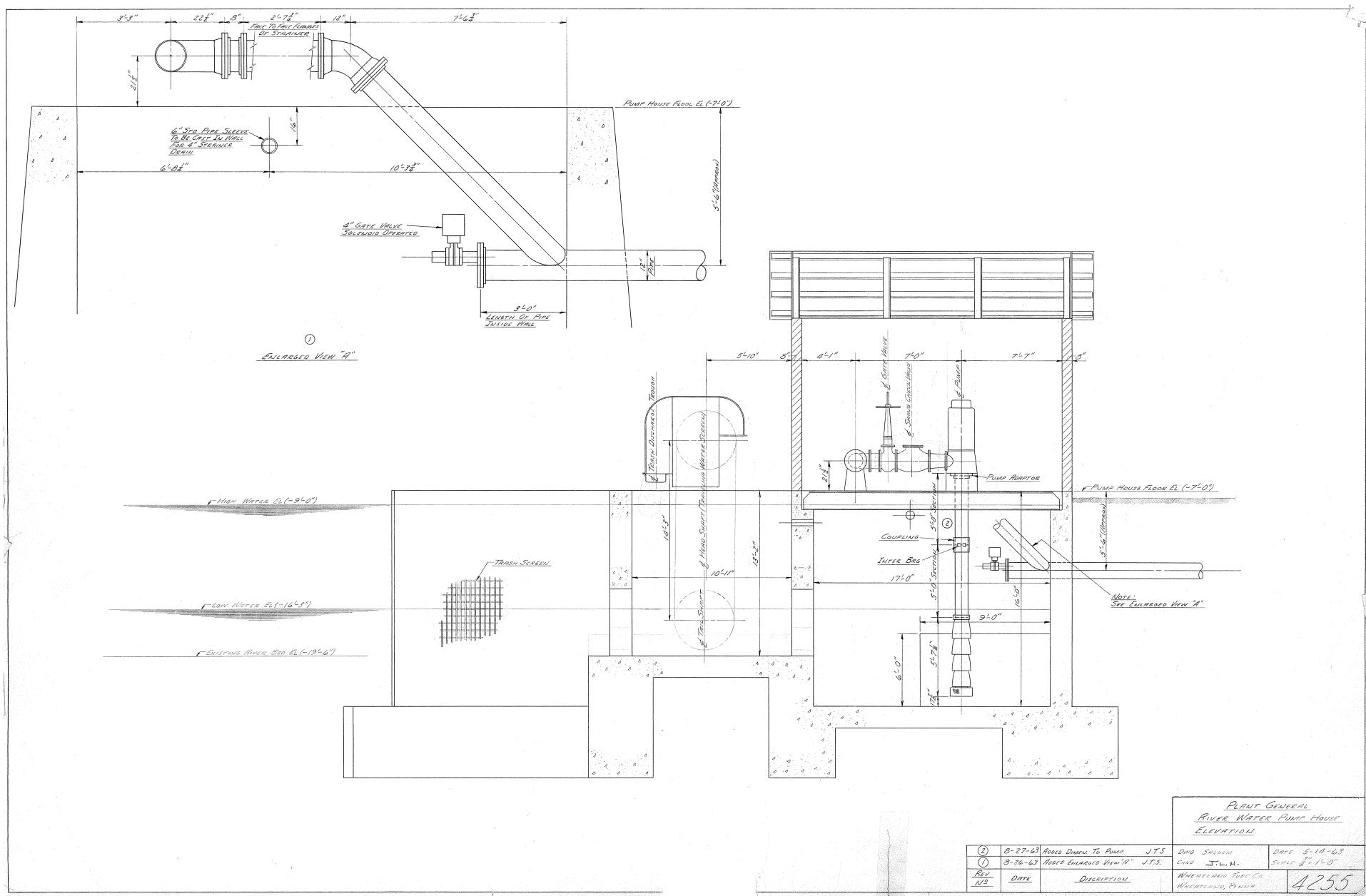
Trash Discharge Trough

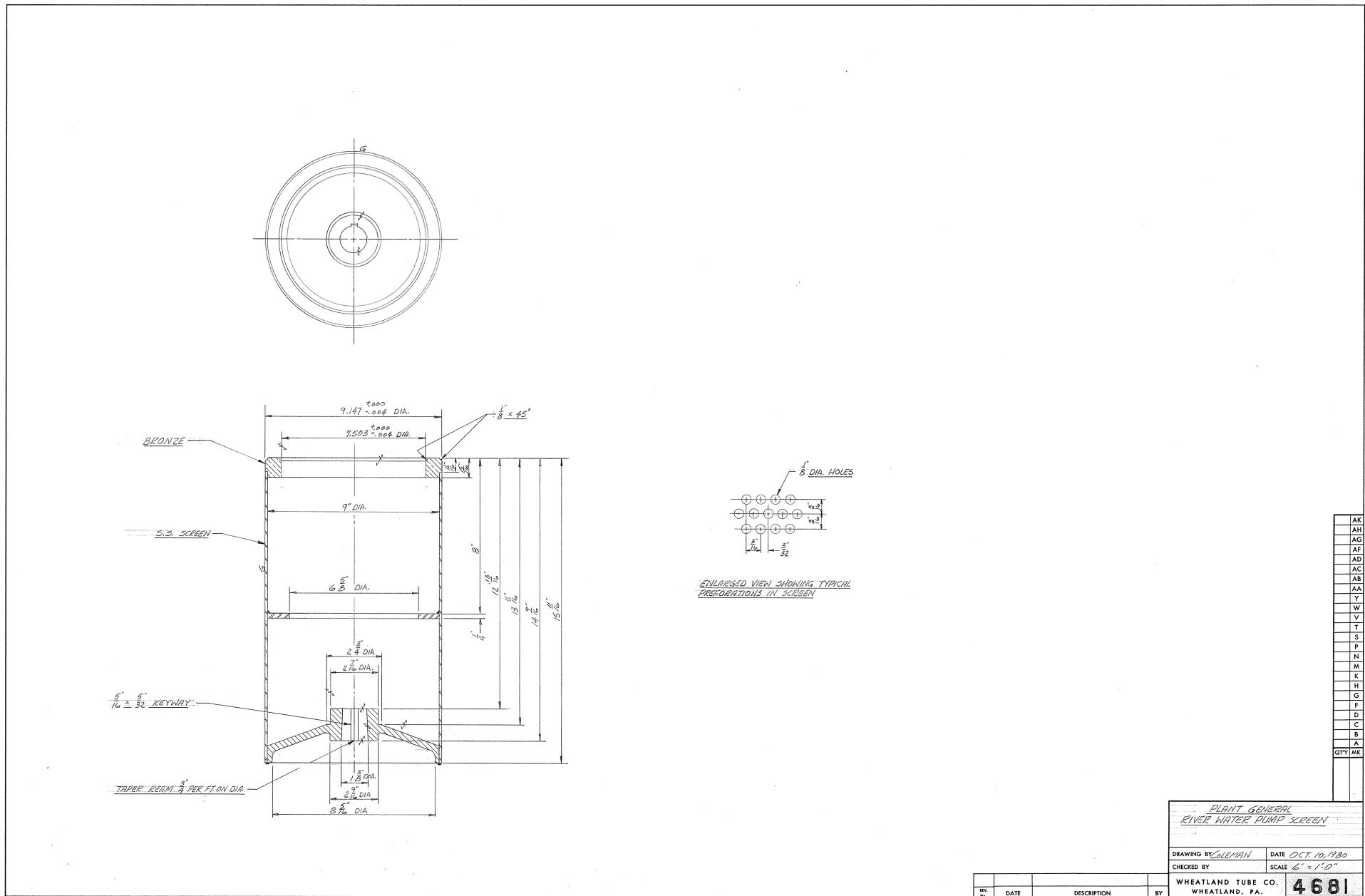
WTC Drawing 4254 and **Figures 7 and 8** in this Fact Sheet show a trash discharge trough running from the traveling screens back to the Shenango River. Discharges of trash or debris from the intake screen would violate narrative water quality criteria and corresponding prohibitions under 25 Pa. Code §§ 93.6 and 92a.41(c), respectively, which state:

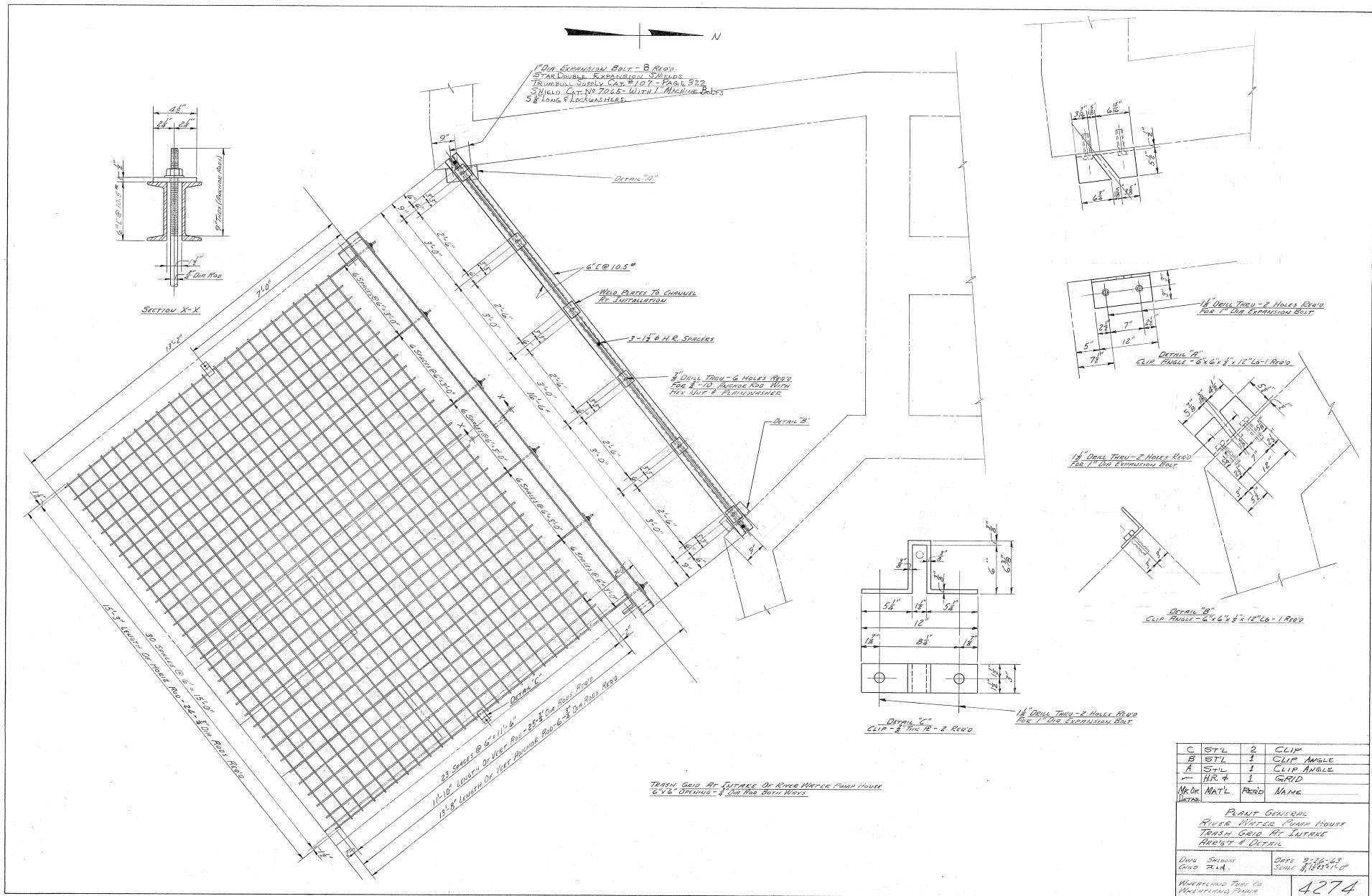
§ 93.6. General water quality criteria

- (a) Water may not contain substances attributable to point or nonpoint source discharges in concentration or amounts sufficient to be inimical or harmful to the water uses to be protected or to human, animal, plant or aquatic life.
- (b) In addition to other substances listed within or addressed by this chapter, specific substances to be controlled include, but are not limited to, floating materials, oil, grease, scum and substances that produce color, tastes, odors, turbidity or settle to form deposits.


§ 92a.41. Conditions applicable to all permits.


(c) The discharger may not discharge floating materials, scum, sheen, or substances that result in deposits in the receiving water. Except as provided for in the permit, the discharger may not discharge foam, oil, grease, or substances that produce an observable change in the color, taste, odor or turbidity of the receiving water.


Based on those requirements, the following permit condition (in addition to the § 92a.41(c) condition cited above, which is included in all NPDES permits) will be imposed in Part C of the permit to ensure protection of narrative water quality criteria:


"Trash and other debris physically or mechanically removed from the intake screens shall not be returned to the surface waters."

WTC must make any modifications to the intake structure necessary to ensure compliance with the prohibition on discharging trash/debris back to the Shenango River.

