



Application Type  
Facility Type  
Major / Minor

Renewal  
Industrial  
Minor

**NPDES PERMIT FACT SHEET  
INDIVIDUAL INDUSTRIAL WASTE (IW)  
AND IW STORMWATER**

Application No. **PA0001198**  
APS ID **1115062**  
Authorization ID **1487456**

**Applicant and Facility Information**

|                           |                                                                                   |                  |                                                |
|---------------------------|-----------------------------------------------------------------------------------|------------------|------------------------------------------------|
| Applicant Name            | <b>PPG Industries Inc.</b>                                                        | Facility Name    | <b>PPG Industries Inc. Springdale</b>          |
| Applicant Address         | 125 Colfax Street<br>Springdale, PA 15144-1506                                    | Facility Address | 125 Colfax Street<br>Springdale, PA 15144-1506 |
| Applicant Contact         | Timothy Previni                                                                   | Facility Contact | Same as Applicant                              |
| Applicant Phone           | (724) 274-3495                                                                    | Facility Phone   | Same as Applicant                              |
| Applicant email           | <a href="mailto:previni@ppg.com">previni@ppg.com</a>                              | Facility email   | Same as Applicant                              |
| Client ID                 | 27913                                                                             | Site ID          | 241590                                         |
| SIC Code                  | 2821,2851<br>Manufacturing - Paints and Allied Products, Manufacturing - Plastics | Municipality     | Springdale Borough                             |
| SIC Description           | Materials and Resins                                                              | County           | Allegheny                                      |
| Date Application Received | May 31, 2024                                                                      | EPA Waived?      | Yes                                            |
| Date Application Accepted |                                                                                   | If No, Reason    |                                                |
| Purpose of Application    | Renewal NPDES Permit Coverage                                                     |                  |                                                |

**Summary of Review**

The Department received a timely renewal NPDES permit application from PPG Industries, Inc. on May 31, 2024 for coverage of its facility located in Neville Township, Allegheny County.

The Springdale Complex consists of three distinct operations: a paint (industrial coatings) manufacturing plant, a development center, and a research center. The paint plant manufactures coatings (SIC Code 2851) for aluminum extrusions, general industrial, and coil-coating markets. The development center provides scale-up support for resin manufacture (SIC Code 2821) and is used to test new resins for trials in coatings manufacture. The research center (SIC 8731) consists of various research and development laboratories and office space. Auxiliary site areas include tank farms for storage of raw materials and intermediaries, a boiler house consisting of two steam boilers, and QA/QC laboratories. There is also a warehouse at the site used to store finished paint.

Non-contact cooling water discharges from the Development Center, Research Center, and Paint Plant through Outfalls 001, 002, and 003, respectively. Outfall 001 discharges to the Allegheny River. Outfalls 002 and 003 discharge to a municipal storm sewer that flows along Colfax Street on the site's eastern boundary to the Allegheny River. Outfalls 001, 002, and 003 also receive storm water runoff. Outfalls 006 and 007 discharge storm water to the municipal storm sewer on Colfax Street. Outfalls 005 and 008 discharge storm water directly to the Allegheny River.

The Springdale Complex has three active water-producing wells. There are two water-producing wells (#3 and #4) on the PPG Paint Plant site. There is one water-producing well located in the (R&D) panel farm that is west of the PPG Paint Plant warehouse. This well provides the non-contact cooling water required by condenser, reactors, etc., at this facility. Two wells (#1 and #2) that were previously used for water supply to the plant are near the rail line. Both of these wells have been capped.

| Approve | Deny | Signatures                                                  | Date               |
|---------|------|-------------------------------------------------------------|--------------------|
| X       |      | <br>Angela Rohrer / Environmental Engineering Specialist    | September 19, 2024 |
| X       |      | <br>Michael E. Fifth, P.E. / Environmental Engineer Manager | October 30, 2024   |

### Summary of Review

There is a municipal water pumping station located on the corner of Colfax and Remaley Streets, which is approximately 300-500 feet east from the front entrance of the Springdale Complex.

The permittee has 37 open violations with the Storage Tanks Program.

### Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

**Discharge, Receiving Waters and Water Supply Information**

|                                               |                                                                                   |                                   |                           |
|-----------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|---------------------------|
| Outfall No.                                   | 001                                                                               | Design Flow (MGD)                 | 0.442                     |
| Latitude                                      | 40° 32' 08.49"                                                                    | Longitude                         | -79° 47' 14.07"           |
| Quad Name                                     | New Kensington East                                                               | Quad Code                         | 1408                      |
| Wastewater Description:                       | Once-through non-contact cooling water from the Development Center and stormwater |                                   |                           |
| Receiving Waters                              | Allegheny River (WWF)                                                             | Stream Code                       | 42122                     |
| NHD Com ID                                    | 123972852                                                                         | RMI                               | 16.2                      |
| Drainage Area                                 | 11,500 mi <sup>2</sup>                                                            | Yield (cfs/mi <sup>2</sup> )      | 0.207                     |
| Q <sub>7-10</sub> Flow (cfs)                  | 2,390                                                                             | Q <sub>7-10</sub> Basis           | US Army Corp of Engineers |
| Elevation (ft)                                | 737                                                                               | Slope (ft/ft)                     | 0.0001                    |
| Watershed No.                                 | 18-A                                                                              | Chapter 93 Class.                 | WWF                       |
| Existing Use                                  |                                                                                   | Existing Use Qualifier            |                           |
| Exceptions to Use                             |                                                                                   | Exceptions to Criteria            |                           |
| Assessment Status                             | Impaired                                                                          |                                   |                           |
| Cause(s) of Impairment                        | Polychlorinated Biphenyls (PCBS)                                                  |                                   |                           |
| Source(s) of Impairment                       | Source Unknown                                                                    |                                   |                           |
| TMDL Status                                   |                                                                                   | Name                              |                           |
| Nearest Downstream Public Water Supply Intake |                                                                                   | Oakmont Water Authority (9.2 MGD) |                           |
| PWS Waters                                    | Allegheny River                                                                   | Flow at Intake (cfs)              | 2,390                     |
| PWS RMI                                       | 13.52                                                                             | Distance from Outfall (mi)        | 2.68                      |

**Discharge, Receiving Waters and Water Supply Information**

|                                                                                                        |                                  |                                   |                           |
|--------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------|---------------------------|
| Outfall No.                                                                                            | 002                              | Design Flow (MGD)                 | 0.145                     |
| Latitude                                                                                               | 40° 32' 16.33"                   | Longitude                         | -79° 47' 03.71"           |
| Quad Name                                                                                              | New Kensington East              | Quad Code                         | 1408                      |
| Wastewater Description: Once-through non-contact cooling water from the Research Center and stormwater |                                  |                                   |                           |
| Receiving Waters                                                                                       | Allegheny River (WWF)            | Stream Code                       | 42122                     |
| NHD Com ID                                                                                             | 123972852                        | RMI                               | 16.43                     |
| Drainage Area                                                                                          | 11,500 mi <sup>2</sup>           | Yield (cfs/mi <sup>2</sup> )      | 0.207                     |
| Q <sub>7-10</sub> Flow (cfs)                                                                           | 2,390                            | Q <sub>7-10</sub> Basis           | US Army Corp of Engineers |
| Elevation (ft)                                                                                         | 737                              | Slope (ft/ft)                     | 0.0001                    |
| Watershed No.                                                                                          | 18-A                             | Chapter 93 Class.                 | WWF                       |
| Existing Use                                                                                           |                                  | Existing Use Qualifier            |                           |
| Exceptions to Use                                                                                      |                                  | Exceptions to Criteria            |                           |
| Assessment Status                                                                                      | Impaired                         |                                   |                           |
| Cause(s) of Impairment                                                                                 | Polychlorinated Biphenyls (PCBS) |                                   |                           |
| Source(s) of Impairment                                                                                | Source Unknown                   |                                   |                           |
| TMDL Status                                                                                            | Name _____                       |                                   |                           |
| Nearest Downstream Public Water Supply Intake                                                          |                                  | Oakmont Water Authority (9.2 MGD) |                           |
| PWS Waters                                                                                             | Allegheny River                  | Flow at Intake (cfs)              | 2,390                     |
| PWS RMI                                                                                                | 13.52                            | Distance from Outfall (mi)        | 2.87                      |

**Discharge, Receiving Waters and Water Supply Information**

|                         |                                                                                                                                                                                                |                   |                 |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|
| Outfall No.             | 003                                                                                                                                                                                            | Design Flow (MGD) | 0.137           |
| Latitude                | 40° 32' 01.03"                                                                                                                                                                                 | Longitude         | -79° 47' 03.52" |
| Quad Name               | New Kensington East                                                                                                                                                                            | Quad Code         | 1408            |
| Wastewater Description: | Once-through non-contact cooling water from the Paint Plant. Steam condensate, steam mixed with non-contact cooling water, steam from one-pass heating systems and steam traps, and stormwater |                   |                 |

|                              |                                  |                              |                           |
|------------------------------|----------------------------------|------------------------------|---------------------------|
| Receiving Waters             | Allegheny River (WWF)            | Stream Code                  | 42122                     |
| NHD Com ID                   | 123972852                        | RMI                          | 16.41                     |
| Drainage Area                | 11,500 mi <sup>2</sup>           | Yield (cfs/mi <sup>2</sup> ) | 0.207                     |
| Q <sub>7-10</sub> Flow (cfs) | 2,390                            | Q <sub>7-10</sub> Basis      | US Army Corp of Engineers |
| Elevation (ft)               | 737                              | Slope (ft/ft)                | 0.0001                    |
| Watershed No.                | 18-A                             | Chapter 93 Class.            | WWF                       |
| Existing Use                 |                                  | Existing Use Qualifier       |                           |
| Exceptions to Use            |                                  | Exceptions to Criteria       |                           |
| Assessment Status            | Impaired                         |                              |                           |
| Cause(s) of Impairment       | Polychlorinated Biphenyls (PCBS) |                              |                           |
| Source(s) of Impairment      | Source Unknown                   |                              |                           |
| TMDL Status                  | Name _____                       |                              |                           |

|                                               |                                   |                            |       |
|-----------------------------------------------|-----------------------------------|----------------------------|-------|
| Nearest Downstream Public Water Supply Intake | Oakmont Water Authority (9.2 MGD) |                            |       |
| PWS Waters                                    | Allegheny River                   | Flow at Intake (cfs)       | 2,390 |
| PWS RMI                                       | 13.52                             | Distance from Outfall (mi) | 2.87  |

**Discharge, Receiving Waters and Water Supply Information**

|                         |                     |                   |                 |
|-------------------------|---------------------|-------------------|-----------------|
| Outfall No.             | 005                 | Design Flow (MGD) | 0               |
| Latitude                | 40° 32' 06.84"      | Longitude         | -79° 47' 05.23" |
| Quad Name               | New Kensington East | Quad Code         | 1408            |
| Wastewater Description: | Stormwater          |                   |                 |

|                              |                                  |                              |                           |
|------------------------------|----------------------------------|------------------------------|---------------------------|
| Receiving Waters             | Allegheny River (WWF)            | Stream Code                  | 42122                     |
| NHD Com ID                   | 123972852                        | RMI                          | 16.40                     |
| Drainage Area                | 11,500 mi <sup>2</sup>           | Yield (cfs/mi <sup>2</sup> ) | 0.207                     |
| Q <sub>7-10</sub> Flow (cfs) | 2,390                            | Q <sub>7-10</sub> Basis      | US Army Corp of Engineers |
| Elevation (ft)               | 737                              | Slope (ft/ft)                | 0.0001                    |
| Watershed No.                | 18-A                             | Chapter 93 Class.            | WWF                       |
| Existing Use                 |                                  | Existing Use Qualifier       |                           |
| Exceptions to Use            |                                  | Exceptions to Criteria       |                           |
| Assessment Status            | Impaired                         |                              |                           |
| Cause(s) of Impairment       | Polychlorinated Biphenyls (PCBS) |                              |                           |
| Source(s) of Impairment      | Source Unknown                   |                              |                           |
| TMDL Status                  |                                  | Name                         |                           |

|                                               |                                   |                            |       |
|-----------------------------------------------|-----------------------------------|----------------------------|-------|
| Nearest Downstream Public Water Supply Intake | Oakmont Water Authority (9.2 MGD) |                            |       |
| PWS Waters                                    | Allegheny River                   | Flow at Intake (cfs)       | 2,390 |
| PWS RMI                                       | 13.52                             | Distance from Outfall (mi) | 2.84  |

| Discharge, Receiving Waters and Water Supply Information |                                   |                              |                           |
|----------------------------------------------------------|-----------------------------------|------------------------------|---------------------------|
| Outfall No.                                              | 006                               | Design Flow (MGD)            | 0                         |
| Latitude                                                 | 40° 32' 10.03"                    | Longitude                    | -79° 47' 03.52"           |
| Quad Name                                                | New Kensington East               | Quad Code                    | 1408                      |
| Wastewater Description:                                  | Stormwater                        |                              |                           |
| Receiving Waters                                         | Allegheny River (WWF)             | Stream Code                  | 42122                     |
| NHD Com ID                                               | 123972852                         | RMI                          | 16.41                     |
| Drainage Area                                            | 11,500 mi <sup>2</sup>            | Yield (cfs/mi <sup>2</sup> ) | 0.207                     |
| Q <sub>7-10</sub> Flow (cfs)                             | 2,390                             | Q <sub>7-10</sub> Basis      | US Army Corp of Engineers |
| Elevation (ft)                                           | 754                               | Slope (ft/ft)                | 0.0001                    |
| Watershed No.                                            | 18-A                              | Chapter 93 Class.            | WWF                       |
| Existing Use                                             |                                   | Existing Use Qualifier       |                           |
| Exceptions to Use                                        |                                   | Exceptions to Criteria       |                           |
| Assessment Status                                        | Impaired                          |                              |                           |
| Cause(s) of Impairment                                   | Polychlorinated Biphenyls (PCBS)  |                              |                           |
| Source(s) of Impairment                                  | Source Unknown                    |                              |                           |
| TMDL Status                                              |                                   | Name                         |                           |
| Nearest Downstream Public Water Supply Intake            | Oakmont Water Authority (9.2 MGD) |                              |                           |
| PWS Waters                                               | Allegheny River                   | Flow at Intake (cfs)         | 2,390                     |
| PWS RMI                                                  | 13.52                             | Distance from Outfall (mi)   | 2.88                      |

| Discharge, Receiving Waters and Water Supply Information |                                   |                              |                           |
|----------------------------------------------------------|-----------------------------------|------------------------------|---------------------------|
| Outfall No.                                              | 007                               | Design Flow (MGD)            | 0                         |
| Latitude                                                 | 40° 32' 14.15"                    | Longitude                    | -79° 47' 03.65"           |
| Quad Name                                                | New Kensington East               | Quad Code                    | 1408                      |
| Wastewater Description:                                  | Stormwater                        |                              |                           |
| Receiving Waters                                         | Allegheny River (WWF)             | Stream Code                  | 42122                     |
| NHD Com ID                                               | 123972852                         | RMI                          | 16.41                     |
| Drainage Area                                            | 11,500 mi <sup>2</sup>            | Yield (cfs/mi <sup>2</sup> ) | 0.207                     |
| Q <sub>7-10</sub> Flow (cfs)                             | 2,390                             | Q <sub>7-10</sub> Basis      | US Army Corp of Engineers |
| Elevation (ft)                                           | 754                               | Slope (ft/ft)                | 0.0001                    |
| Watershed No.                                            | 18-A                              | Chapter 93 Class.            | WWF                       |
| Existing Use                                             |                                   | Existing Use Qualifier       |                           |
| Exceptions to Use                                        |                                   | Exceptions to Criteria       |                           |
| Assessment Status                                        | Impaired                          |                              |                           |
| Cause(s) of Impairment                                   | Polychlorinated Biphenyls (PCBS)  |                              |                           |
| Source(s) of Impairment                                  | Source Unknown                    |                              |                           |
| TMDL Status                                              |                                   | Name                         |                           |
| Nearest Downstream Public Water Supply Intake            | Oakmont Water Authority (9.2 MGD) |                              |                           |
| PWS Waters                                               | Allegheny River                   | Flow at Intake (cfs)         | 2,390                     |
| PWS RMI                                                  | 13.52                             | Distance from Outfall (mi)   | 2.88                      |

| Discharge, Receiving Waters and Water Supply Information |                                   |                              |                           |
|----------------------------------------------------------|-----------------------------------|------------------------------|---------------------------|
| Outfall No.                                              | 008                               | Design Flow (MGD)            | 0                         |
| Latitude                                                 | 40° 32' 08"                       | Longitude                    | -79° 47' 04"              |
| Quad Name                                                | New Kensington East               | Quad Code                    | 1408                      |
| Wastewater Description:                                  | Stormwater                        |                              |                           |
| Receiving Waters                                         | Allegheny River (WWF)             | Stream Code                  | 42122                     |
| NHD Com ID                                               | 123972852                         | RMI                          | 16.40                     |
| Drainage Area                                            | 11,500 mi <sup>2</sup>            | Yield (cfs/mi <sup>2</sup> ) | 0.207                     |
| Q <sub>7-10</sub> Flow (cfs)                             | 2,390                             | Q <sub>7-10</sub> Basis      | US Army Corp of Engineers |
| Elevation (ft)                                           | 754                               | Slope (ft/ft)                | 0.0001                    |
| Watershed No.                                            | 18-A                              | Chapter 93 Class.            | WWF                       |
| Existing Use                                             |                                   | Existing Use Qualifier       |                           |
| Exceptions to Use                                        |                                   | Exceptions to Criteria       |                           |
| Assessment Status                                        | Impaired                          |                              |                           |
| Cause(s) of Impairment                                   | Polychlorinated Biphenyls (PCBS)  |                              |                           |
| Source(s) of Impairment                                  | Source Unknown                    |                              |                           |
| TMDL Status                                              |                                   | Name                         |                           |
| Nearest Downstream Public Water Supply Intake            | Oakmont Water Authority (9.2 MGD) |                              |                           |
| PWS Waters                                               | Allegheny River                   | Flow at Intake (cfs)         | 2,390                     |
| PWS RMI                                                  | 13.52                             | Distance from Outfall (mi)   | 2.86                      |

**Development of Effluent Limitations**

|                                |                                                                                   |                   |                 |
|--------------------------------|-----------------------------------------------------------------------------------|-------------------|-----------------|
| Outfall No.                    | 001                                                                               | Design Flow (MGD) | 0.442           |
| Latitude                       | 40° 32' 08.49"                                                                    | Longitude         | -79° 47' 14.07" |
| <b>Wastewater Description:</b> | Once-through non-contact cooling water from the Development Center and stormwater |                   |                 |

**Technology-Based Effluent Limitations (TBELs)**

There are no Federal Effluent Limitations Guidelines (ELGs) applicable to Outfall 001's discharges.

**Regulatory Effluent Standards and Monitoring Requirements**

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's *Implementation Guidance for Temperature Criteria*. As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation. The analytical discharge data submitted with the application indicated that TRC is present in the discharge at 1.10 mg/L. Although chlorination isn't used at the facility, TRC being present in the discharge at this concentration indicates that some form of chlorine is somehow getting into the wastewater or is being used in the process; thus, the limitations from 25 Pa. Code § 92a.48(b) should be imposed.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 1.

**Table 1: Regulatory Effluent Standards and Monitoring Requirements for Outfall 001**

| Parameter                     | Monthly Average                        | Daily Maximum | IMAX | Units |
|-------------------------------|----------------------------------------|---------------|------|-------|
| Flow                          | Monitor and Report                     |               | XXX  | MGD   |
| Temperature                   | XXX                                    | XXX           | 110  | °F    |
| Total Residual Chlorine (TRC) | 0.5                                    | 1.0           | XXX  | mg/L  |
| pH                            | Not less than 6.0 nor greater than 9.0 |               |      | S.U.  |

**Stormwater**

Outfall 001 will be subject to PAG-03 General Stormwater Permit conditions because it discharges stormwater associated with industrial activity. Based on the site's SIC code, the corresponding appendix that would apply to the facility is Appendix F of the PAG-03. The proposed monitoring requirements are shown in Table 2 below. The benchmark values listed below are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permittee shall submit a Corrective Action Plan. This requirement will be included in Part C of the permit.

**Table 2: PAG-03 Appendix (F) Monitoring Requirements**

| Parameters                          | Monitoring Requirements       |             | Benchmark Values |
|-------------------------------------|-------------------------------|-------------|------------------|
|                                     | Minimum Measurement Frequency | Sample Type |                  |
| Total Nitrogen (mg/L)               | 1 / 6 Months                  | Calculation | XXX              |
| Total Phosphorus (mg/L)             | 1 / 6 Months                  | Grab        | XXX              |
| pH (S.U.)                           | 1 / 6 Months                  | Grab        | 9.0              |
| Chemical Oxygen Demand (COD) (mg/L) | 1 / 6 Months                  | Grab        | 120              |
| Total Suspended Solids (TSS) (mg/L) | 1 / 6 Months                  | Grab        | 100              |
| Nitrate + Nitrite-Nitrogen (mg/L)   | 1 / 6 Months                  | Grab        | 3.0              |
| Total Lead (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Zinc (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |

| Parameters            | Monitoring Requirements       |             | Benchmark Values |
|-----------------------|-------------------------------|-------------|------------------|
|                       | Minimum Measurement Frequency | Sample Type |                  |
| Total Iron (mg/L)     | 1 / 6 Months                  | Grab        | XXX              |
| Total Aluminum (mg/L) | 1 / 6 Months                  | Grab        | XXX              |

#### Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts. Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

PPG Industries' sample data revealed PFAS detection, triggering quarterly reporting of PFOA, PFOS, PFBS, and HFPO-DA, consistent with Section II.I.b of SOP BCW-PMT-032. Furthermore, the Draft Permit will include a Part C condition requiring a PFAS Reduction Plan.

As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods, then the monitoring may be discontinued.

### Water Quality-Based Effluent Limitations

#### Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, this-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

#### Reasonable Potential Analysis and WQBEL Development for Outfall 001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on the DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 3. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment C of this Fact Sheet. The Toxics Management Spread Sheet did not recommend any WQBELs for Outfall 001.

**Table 3: TMS Inputs for Outfall 001**

| Parameter                           | Value |
|-------------------------------------|-------|
| River Mile Index                    | 16.2  |
| Discharge Flow (MGD)                | 0.442 |
| <b>Basin/Stream Characteristics</b> |       |
| Parameter                           | Value |

|                                       |        |
|---------------------------------------|--------|
| Area in Square Miles                  | 11,500 |
| Q <sub>7-10</sub> (cfs)               | 2,390  |
| Low-flow yield (cfs/mi <sup>2</sup> ) | 0.207  |
| Elevation (ft)                        | 737    |
| Slope                                 | 0.0001 |

### Total Residual Chlorine

Although chlorination isn't used at the facility, the analytical discharge data submitted with the application indicated that TRC is present in the discharge; therefore, the discharge must be analyzed to determine if WQBELs are required for TRC. To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC\_CALC created with Microsoft Excel for Windows. TRC\_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment D, indicate that no WQBELs are required for TRC.

### Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l) and are displayed below in Table 4. These limitations are currently imposed on Outfall 001. The benchmark values were based on the 2015 Multi-Sector General Permit.

**Table 4: Current Limitations at Outfall 001**

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                 | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                  | -                   | -             | 6.0                   | -               | 9.0           | -                     | 2/month                 | Grab        |
| Temperature (°F)           | -                   | -             | -                     | -               | 110           | -                     | 2/month                 | I-S         |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

**Proposed Effluent Limitations and Monitoring Requirements**

The proposed effluent limitations and monitoring requirements for Outfall 001 are shown below in Table 5. Based on the limitation development above, Outfall 001 will receive new limitations for TRC. At this time PPG Industries may not be able to achieve the new limits upon permit issuance, the Department is granting a one-year compliance schedule for PPG Industries to come into compliance with the new limits. During the interim period, a monitor and report requirement will be imposed for Total Residual Chloride and the final limits will become effective one year after permit issuance date.

The daily maximum reporting requirement for pH and temperature has been replaced with an instantaneous maximum reporting requirement to be consistent with current permitting practices.

**Table 5: Proposed Interim Effluent Limitation at Outfall 001**

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                 | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                  | -                   | -             | 6.0                   | -               | -             | 9.0                   | 2/month                 | Grab        |
| Temperature (°F)           | -                   | -             | -                     | -               | -             | 110                   | 2/month                 | I-S         |
| Total Residual Chlorine    | -                   | -             | -                     | Report          | Report        | -                     | 2/month                 | Grab        |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrogen, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| PFOA (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| PFOS (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| PFBS (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| HFPO-DA (ng/L)             | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |

**Table 6: Proposed Final Effluent Limitation at Outfall 001**

| Parameter                      | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|--------------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                                | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                     | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                      | -                   | -             | 6.0                   | -               | -             | 9.0                   | 2/month                 | Grab        |
| Temperature (°F)               | -                   | -             | -                     | -               | -             | 110                   | 2/month                 | I-S         |
| Total Residual Chlorine (mg/L) | -                   | -             | -                     | 0.5             | 1.0           | -                     | 2/month                 | Grab        |
| Chemical Oxygen Demand         | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrogen, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| PFOA (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| PFOS (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| PFBS (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| HFPO-DA (ng/L)             | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |

EPA modified the benchmark monitoring thresholds in the 2021 MSGP for aluminum based on revised CWA section 304(a) national recommended aquatic life water quality criteria and suspended the benchmark monitoring thresholds for iron based on lack of documented acute toxicity. The renewed permit will reflect these changes, ensuring alignment with the latest regulatory requirements.

**Table 7: 2021 Multi-Sector General Permit benchmark values**

| Discharge Parameter        | Benchmark Values (mg/L)        |
|----------------------------|--------------------------------|
| pH (s.u.)                  | within the range of 6.0 to 9.0 |
| Chemical Oxygen Demand     | 120                            |
| Total Suspended Solids     | 100                            |
| Nitrate + Nitrite Nitrogen | 0.68                           |
| Phosphorus, Total          | 2.0                            |
| Lead, Total                | 0.082                          |
| Zinc, Total                | 0.12                           |
| Iron, Total                | -                              |
| Aluminum, Total            | 1.1                            |

**Development of Effluent Limitations**

|                                |                |                                                                                |                 |
|--------------------------------|----------------|--------------------------------------------------------------------------------|-----------------|
| Outfall No.                    | 002            | Design Flow (MGD)                                                              | 0.145           |
| Latitude                       | 40° 32' 16.33" | Longitude                                                                      | -79° 47' 03.71" |
| <b>Wastewater Description:</b> |                | Once-through non-contact cooling water from the Research Center and stormwater |                 |

**Technology-Based Effluent Limitations (TBELs)**

There are no Federal Effluent Limitations Guidelines (ELGs) applicable to Outfall 002's discharges.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's "*Implementation Guidance for Temperature Criteria*." As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation. The analytical discharge data submitted with the application indicated that TRC is present in the discharge at 0.7 mg/L. Although chlorination isn't used at the facility, TRC being present in the discharge at this concentration indicates that some form of chlorine is somehow getting into the wastewater or is being used in the process; thus, the limitations from 25 Pa. Code § 92a.48(b) must be imposed.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 8.

**Table 8: Regulatory Effluent Standards and Monitoring Requirements for Outfall 002**

| Parameter                     | Monthly Average                        | Daily Maximum | IMAX | Units |
|-------------------------------|----------------------------------------|---------------|------|-------|
| Flow                          | Monitor and Report                     |               | XXX  | MGD   |
| Temperature                   | XXX                                    | XXX           | 110  | °F    |
| Total Residual Chlorine (TRC) | 0.5                                    | 1.0           | XXX  | mg/L  |
| pH                            | Not less than 6.0 nor greater than 9.0 |               |      | S.U.  |

Stormwater

Outfall 002 will be subject to PAG-03 General Stormwater Permit conditions because it discharges stormwater associated with industrial activity. Based on the site's SIC code, the corresponding appendix that would apply to the facility is Appendix F of the PAG-03. The proposed monitoring requirements are shown in Table 9 below. The benchmark values listed below are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permittee shall submit a Corrective Action Plan. This requirement will be included in Part C of the permit.

**Table 9: PAG-03 Appendix (F) Monitoring Requirements**

| Parameters                          | Monitoring Requirements       |             | Benchmark Values |
|-------------------------------------|-------------------------------|-------------|------------------|
|                                     | Minimum Measurement Frequency | Sample Type |                  |
| Total Nitrogen (mg/L)               | 1 / 6 Months                  | Calculation | XXX              |
| Total Phosphorus (mg/L)             | 1 / 6 Months                  | Grab        | XXX              |
| pH (S.U.)                           | 1 / 6 Months                  | Grab        | 9.0              |
| Chemical Oxygen Demand (COD) (mg/L) | 1 / 6 Months                  | Grab        | 120              |
| Total Suspended Solids (TSS) (mg/L) | 1 / 6 Months                  | Grab        | 100              |
| Nitrate + Nitrite-Nitrogen (mg/L)   | 1 / 6 Months                  | Grab        | 3.0              |
| Total Lead (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Zinc (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Iron (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Aluminum (mg/L)               | 1 / 6 Months                  | Grab        | XXX              |

### Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts. Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

PPG Industries' sample data revealed PFAS detection, however, the detection values were below the Quantitation Limits established above. Therefore, annual reporting of PFOA, PFOS, PFBS, and HFPO-DA will be required consistent with Section II.I.b of SOP BCW-PMT-032.

As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods, then the monitoring may be discontinued.

### Water Quality-Based Effluent Limitations

#### Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, this-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data

such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 002

Discharges from Outfall 002 are evaluated based on concentrations reported on the application and on the DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 10. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment E of this Fact Sheet. The Toxics Management Spread Sheet did not recommend any WQBELs for Outfall 002.

**Table 10: TMS Inputs for Outfall 002**

| Parameter                             | Value  |
|---------------------------------------|--------|
| River Mile Index                      | 16.2   |
| Discharge Flow (MGD)                  | 0.442  |
| <b>Basin/Stream Characteristics</b>   |        |
| Parameter                             | Value  |
| Area in Square Miles                  | 11,500 |
| Q <sub>7-10</sub> (cfs)               | 2,390  |
| Low-flow yield (cfs/mi <sup>2</sup> ) | 0.207  |
| Elevation (ft)                        | 737    |
| Slope                                 | 0.0001 |

Total Residual Chlorine

Although chlorination isn't used at the facility, the analytical discharge data submitted with the application indicated that TRC is present in the discharge; therefore, the discharge must be analyzed to determine if WQBELs are required for TRC. To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC\_CALC created with Microsoft Excel for Windows. TRC\_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment F, indicate that no WQBELs are required for TRC.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l) and are displayed below in Table 11. These limitations are currently imposed on Outfall 002. The benchmark values were based on the 2015 Multi-Sector General Permit.

**Table 11: Current Limitations at Outfall 002**

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                 | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                  | -                   | -             | 6.0                   | -               | 9.0           | -                     | 2/month                 | Grab        |
| Temperature (°F)           | -                   | -             | -                     | -               | 110           | -                     | 2/month                 | I-S         |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

Proposed Effluent Limitations and Monitoring Requirements

The proposed effluent limitations and monitoring requirements for Outfall 002 are shown below in Table 12. Based on the limitation development above, Outfall 002 will receive new limitations for TRC. At this time PPG Industries may not be able to achieve the new limits upon permit issuance, the Department is granting a one-year compliance schedule for PPG Industries to come into compliance with the new limits. During the interim period, a monitor and report requirement will be imposed for Total Residual Chloride and the final limits will become effective one year after permit issuance date.

The daily maximum limit for pH and temperature has been replaced with an instantaneous maximum reporting requirement to be consistent with current permitting practices.

Table 12: Proposed Interim Effluent Limitation at Outfall 002

| Parameter                      | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|--------------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                                | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                     | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                      | -                   | -             | 6.0                   | -               | -             | 9.0                   | 2/month                 | Grab        |
| Temperature (°F)               | -                   | -             | -                     | -               | -             | 110                   | 2/month                 | I-S         |
| Total Residual Chlorine (mg/L) | -                   | -             | -                     | Report          | Report        | -                     | 2/month                 | Grab        |
| Chemical Oxygen Demand         | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids         | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                    | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                    | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total              | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrogen, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                    | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| PFOA (ng/L)                    | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |
| PFOS (ng/L)                    | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |
| PFBS (ng/L)                    | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |
| HFPO-DA (ng/L)                 | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |

Table 13: Proposed Final Effluent Limitation at Outfall 002

| Parameter                      | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|--------------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                                | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                     | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                      | -                   | -             | 6.0                   | -               | -             | 9.0                   | 2/month                 | Grab        |
| Temperature (°F)               | -                   | -             | -                     | -               | -             | 110                   | 2/month                 | I-S         |
| Total Residual Chlorine (mg/L) | -                   | -             | -                     | 0.5             | 1.0           | -                     | 2/month                 | Grab        |
| Chemical Oxygen Demand         | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids         | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                    | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                    | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total              | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrogen, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                    | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| PFOA (ng/L)                    | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |

| Parameter      | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| PFOS (ng/L)    | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |
| PFBS (ng/L)    | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |
| HFPO-DA (ng/L) | -                   | -             | -                     | -               | Report        | -                     | 1/year                  | Grab        |

EPA modified the benchmark monitoring thresholds in the 2021 MSGP for aluminum based on revised CWA section 304(a) national recommended aquatic life water quality criteria and suspended the benchmark monitoring thresholds for iron based on lack of documented acute toxicity. The renewed permit will reflect these changes, ensuring alignment with the latest regulatory requirements.

**Table 14: 2021 Multi-Sector General Permit benchmark values**

| Discharge Parameter        | Benchmark Values (mg/L)        |
|----------------------------|--------------------------------|
| pH (s.u.)                  | within the range of 6.0 to 9.0 |
| Chemical Oxygen Demand     | 120                            |
| Total Suspended Solids     | 100                            |
| Nitrate + Nitrite Nitrogen | 0.68                           |
| Phosphorus, Total          | 2.0                            |
| Lead, Total                | 0.082                          |
| Zinc, Total                | 0.12                           |
| Iron, Total                | -                              |
| Aluminum, Total            | 1.1                            |

### Development of Effluent Limitations

|                                |                                                                                                                                                                                                |                          |                 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|
| <b>Outfall No.</b>             | 003                                                                                                                                                                                            | <b>Design Flow (MGD)</b> | 0.137           |
| <b>Latitude</b>                | 40° 32' 01.03"                                                                                                                                                                                 | <b>Longitude</b>         | -79° 47' 03.52" |
| <b>Wastewater Description:</b> | Once-through non-contact cooling water from the Paint Plant. Steam condensate, steam mixed with non-contact cooling water, steam from one-pass heating systems and steam traps, and stormwater |                          |                 |

#### Technology-Based Effluent Limitations (TBELs)

There are no Federal Effluent Limitations Guidelines (ELGs) applicable to Outfall 003's discharges.

#### Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1).

Temperature limits will be imposed per the Department's *"Implementation Guidance for Temperature Criteria."* As a policy, DEP normally imposes a maximum temperature limit of 110°F on discharges that contain residual heat. The limit is intended as a safety measure to protect sampling personnel or anyone who may come into contact with the heated discharge where it enters the receiving water.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation. The analytical discharge data submitted with the application indicated that TRC is present in the discharge at 0.1 mg/L, however, it was below the technology limitation in 25 Pa. Code § 92a.48(b). Therefore, effluent limitations/monitoring of TRC will not be required.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code § 95.2(1) as indicated in Table 15.

**Table 15: Regulatory Effluent Standards and Monitoring Requirements for Outfall 003**

| Parameter   | Monthly Average | Daily Maximum                          | IMAX | Units |
|-------------|-----------------|----------------------------------------|------|-------|
| Flow        |                 | Monitor and Report                     | XXX  | MGD   |
| Temperature | XXX             | XXX                                    | 110  | °F    |
| pH          |                 | Not less than 6.0 nor greater than 9.0 |      | S.U.  |

#### Stormwater

Outfall 003 will be subject to PAG-03 General Stormwater Permit conditions because it discharges stormwater associated with industrial activity. Based on the site's SIC code, the corresponding appendix that would apply to the facility is Appendix F of the PAG-03. The proposed monitoring requirements are shown in Table 16 below. The benchmark values listed below are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permittee shall submit a Corrective Action Plan. This requirement will be included in Part C of the permit.

**Table 16: PAG-03 Appendix (F) Monitoring Requirements**

| Parameters                          | Monitoring Requirements       |             | Benchmark Values |
|-------------------------------------|-------------------------------|-------------|------------------|
|                                     | Minimum Measurement Frequency | Sample Type |                  |
| Total Nitrogen (mg/L)               | 1 / 6 Months                  | Calculation | XXX              |
| Total Phosphorus (mg/L)             | 1 / 6 Months                  | Grab        | XXX              |
| pH (S.U.)                           | 1 / 6 Months                  | Grab        | 9.0              |
| Chemical Oxygen Demand (COD) (mg/L) | 1 / 6 Months                  | Grab        | 120              |
| Total Suspended Solids (TSS) (mg/L) | 1 / 6 Months                  | Grab        | 100              |
| Nitrate + Nitrite-Nitrogen (mg/L)   | 1 / 6 Months                  | Grab        | 3.0              |
| Total Lead (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Zinc (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |

| Parameters            | Monitoring Requirements       |             | Benchmark Values |
|-----------------------|-------------------------------|-------------|------------------|
|                       | Minimum Measurement Frequency | Sample Type |                  |
| Total Iron (mg/L)     | 1 / 6 Months                  | Grab        | XXX              |
| Total Aluminum (mg/L) | 1 / 6 Months                  | Grab        | XXX              |

### Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts. Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

PPG Industries' sample data revealed PFAS detection, triggering quarterly reporting of PFOA, PFOS, PFBS, and HFPO-DA, consistent with Section II.I.b of SOP BCW-PMT-032. Furthermore, the Draft Permit will include a Part C condition requiring a PFAS Reduction Plan.

As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods, then the monitoring may be discontinued.

## Water Quality-Based Effluent Limitations

### Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, this-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

### Reasonable Potential Analysis and WQBEL Development for Outfall 003

Discharges from Outfall 003 are evaluated based on concentrations reported on the application and on the DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 17. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment G of this Fact Sheet. The Toxics Management Spread Sheet did not recommend any WQBELs for Outfall 003.

**Table 17: TMS Inputs for Outfall 003**

| Parameter                           | Value  |
|-------------------------------------|--------|
| River Mile Index                    | 16.2   |
| Discharge Flow (MGD)                | 0.442  |
| <b>Basin/Stream Characteristics</b> |        |
| Parameter                           | Value  |
| Area in Square Miles                | 11,500 |

|                                       |        |
|---------------------------------------|--------|
| Q <sub>7-10</sub> (cfs)               | 2,390  |
| Low-flow yield (cfs/mi <sup>2</sup> ) | 0.207  |
| Elevation (ft)                        | 737    |
| Slope                                 | 0.0001 |

#### Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC\_CALC created with Microsoft Excel for Windows. TRC\_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and discharge chlorine demands for the receiving stream, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/L from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is then proposed. The results of the modeling, included in Attachment D, indicate that no WQBELs are required for TRC.

#### Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l) and are displayed below in Table 18. These limitations are currently imposed on Outfall 003. The benchmark values were based on the 2015 Multi-Sector General Permit.

**Table 18: Current Limitations at Outfall 003**

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                 | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                  | -                   | -             | 6.0                   | -               | 9.0           | -                     | 2/month                 | Grab        |
| Temperature (°F)           | -                   | -             | -                     | -               | 110           | -                     | 2/month                 | I-S         |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

**Proposed Effluent Limitations and Monitoring Requirements**

The proposed effluent limitations and monitoring requirements for Outfall 003 are shown below in Table 19. The daily maximum limit requirement for pH and temperature has been replaced with an instantaneous maximum limit requirement to be consistent with current permitting practices.

**Table 19: Proposed Final Effluent Limitation at Outfall 003**

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                 | Report              | Report        | -                     | -               | -             | -                     | 2/month                 | Measured    |
| pH (s.u.)                  | -                   | -             | 6.0                   | -               | -             | 9.0                   | 2/month                 | Grab        |
| Temperature (°F)           | -                   | -             | -                     | -               | -             | 110                   | 2/month                 | I-S         |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrogen, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| PFOA (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| PFOS (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| PFBS (ng/L)                | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |
| HFPO-DA (ng/L)             | -                   | -             | -                     | -               | Report        | -                     | 1/quarter               | Grab        |

EPA modified the benchmark monitoring thresholds in the 2021 MSGP for aluminum based on revised CWA section 304(a) national recommended aquatic life water quality criteria and suspended the benchmark monitoring thresholds for iron based on lack of documented acute toxicity. The renewed permit will reflect these changes, ensuring alignment with the latest regulatory requirements.

**Table 20: 2021 Multi-Sector General Permit benchmark values**

| Discharge Parameter        | Benchmark Values (mg/L)        |
|----------------------------|--------------------------------|
| pH (s.u.)                  | within the range of 6.0 to 9.0 |
| Chemical Oxygen Demand     | 120                            |
| Total Suspended Solids     | 100                            |
| Nitrate + Nitrite Nitrogen | 0.68                           |
| Phosphorus, Total          | 2.0                            |
| Lead, Total                | 0.082                          |
| Zinc, Total                | 0.12                           |
| Iron, Total                | -                              |
| Aluminum, Total            | 1.1                            |

**Development of Effluent Limitations**

Outfall No. 005  
Latitude 40° 32' 06.84"  
Wastewater Description: Stormwater

Design Flow (MGD) 0.0 (varied)  
Longitude -79° 47' 05.23"

Outfall No. 006  
Latitude 40° 32' 10.03"  
Wastewater Description: Stormwater

Design Flow (MGD) 0.0 (varied)  
Longitude -79° 47' 03.52"

Outfall No. 007  
Latitude 40° 32' 14.15"  
Wastewater Description: Stormwater

Design Flow (MGD) 0.0 (varied)  
Longitude -79° 47' 03.65"

**Technology-Based Limitations**

**Stormwater Technology Limits**

Outfalls 005, 006 and 007 will be subject to PAG-03 General Stormwater Permit conditions because it discharges stormwater associated with industrial activity. Based on the site's SIC code, the corresponding appendix that would apply to the facility is Appendix F of the PAG-03. The proposed monitoring requirements are shown in Table 21 below. The benchmark values listed below are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permittee shall submit a Corrective Action Plan. This requirement will be included in Part C of the permit.

**Table 21: PAG-03 Appendix (F) Monitoring Requirements**

| Parameters                          | Monitoring Requirements       |             | Benchmark Values |
|-------------------------------------|-------------------------------|-------------|------------------|
|                                     | Minimum Measurement Frequency | Sample Type |                  |
| Total Nitrogen (mg/L)               | 1 / 6 Months                  | Calculation | XXX              |
| Total Phosphorus (mg/L)             | 1 / 6 Months                  | Grab        | XXX              |
| pH (S.U.)                           | 1 / 6 Months                  | Grab        | 9.0              |
| Chemical Oxygen Demand (COD) (mg/L) | 1 / 6 Months                  | Grab        | 120              |
| Total Suspended Solids (TSS) (mg/L) | 1 / 6 Months                  | Grab        | 100              |
| Nitrate + Nitrite-Nitrogen (mg/L)   | 1 / 6 Months                  | Grab        | 3.0              |
| Total Lead (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Zinc (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Iron (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Aluminum (mg/L)               | 1 / 6 Months                  | Grab        | XXX              |

**Water Quality-Based Limitations**

**Stormwater WQBELs**

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharge from Outfalls 005, 006 and 007 is composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

**Anti-Backsliding**

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l) and are displayed below in Table 22. These limitations are currently imposed on Outfalls 005, 006 and 007.

**Table 22. Current Effluent Limitation at Outfalls 005, 006 and 007**

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                 | Report              | Report        | -                     | -               | -             | -                     | 1/6 months              | Grab        |
| pH                         |                     |               |                       |                 | Report        |                       | 1/6 months              | Grab        |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

**Proposed Effluent Limitations and Monitoring Requirements**

Outfalls 005, 006 and 007 will be subject to the semi-annual monitoring requirements in Appendix U of the PAG-03 General Permit. The proposed effluent monitoring requirements for Outfalls 005, 006 and 007 are displayed in Table 23 below. A Part C condition is included in the Draft Permit requiring development and submission of a Corrective Action Plan whenever there are two or more consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are also displayed below in Table 23. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

**Table 23: Proposed Final Effluent Limitation at Outfalls 005, 006 and 007**

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                 | Report              | Report        | -                     | -               | -             | -                     | 1/6 months              | Grab        |
| pH                         |                     |               |                       |                 | Report        |                       | 1/6 months              | Grab        |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrogen, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

EPA modified the benchmark monitoring thresholds in the 2021 MSGP for aluminum based on revised CWA section 304(a) national recommended aquatic life water quality criteria and suspended the benchmark monitoring thresholds for iron based on lack of documented acute toxicity. The renewed permit will reflect these changes, ensuring alignment with the latest regulatory requirements.

**Table 24: 2021 Multi-Sector General Permit benchmark values**

| Discharge Parameter        | Benchmark Values (mg/L)        |
|----------------------------|--------------------------------|
| pH (s.u.)                  | within the range of 6.0 to 9.0 |
| Chemical Oxygen Demand     | 120                            |
| Total Suspended Solids     | 100                            |
| Nitrate + Nitrite Nitrogen | 0.68                           |
| Phosphorus, Total          | 2.0                            |
| Lead, Total                | 0.082                          |
| Zinc, Total                | 0.12                           |
| Iron, Total                | -                              |
| Aluminum, Total            | 1.1                            |

| Development of Effluent Limitations |             |                   |              |  |  |  |  |  |
|-------------------------------------|-------------|-------------------|--------------|--|--|--|--|--|
| Outfall No.                         | 008         | Design Flow (MGD) | 0.0 (varied) |  |  |  |  |  |
| Latitude                            | 40° 32' 08" | Longitude         | -79° 47' 04" |  |  |  |  |  |
| Wastewater Description:             | Stormwater  |                   |              |  |  |  |  |  |

### Technology-Based Limitations

#### Stormwater Technology Limits

Outfall 008 will be subject to PAG-03 General Stormwater Permit conditions because it discharges stormwater associated with industrial activity. Based on the site's SIC code, the corresponding appendix that would apply to the facility is Appendix F of the PAG-03. The proposed monitoring requirements are shown in Table 25 below. The benchmark values listed below are not effluent limitations, and exceedances do not constitute permit violations. However, if the permittee's sampling demonstrates exceedances of benchmark values for two consecutive monitoring periods, the permittee shall submit a Corrective Action Plan. This requirement will be included in Part C of the permit.

**Table 25: PAG-03 Appendix (F) Monitoring Requirements**

| Parameters                          | Monitoring Requirements       |             | Benchmark Values |
|-------------------------------------|-------------------------------|-------------|------------------|
|                                     | Minimum Measurement Frequency | Sample Type |                  |
| Total Nitrogen (mg/L)               | 1 / 6 Months                  | Calculation | XXX              |
| Total Phosphorus (mg/L)             | 1 / 6 Months                  | Grab        | XXX              |
| pH (S.U.)                           | 1 / 6 Months                  | Grab        | 9.0              |
| Chemical Oxygen Demand (COD) (mg/L) | 1 / 6 Months                  | Grab        | 120              |
| Total Suspended Solids (TSS) (mg/L) | 1 / 6 Months                  | Grab        | 100              |
| Nitrate + Nitrite-Nitrogen (mg/L)   | 1 / 6 Months                  | Grab        | 3.0              |
| Total Lead (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Zinc (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Iron (mg/L)                   | 1 / 6 Months                  | Grab        | XXX              |
| Total Aluminum (mg/L)               | 1 / 6 Months                  | Grab        | XXX              |

### Water Quality-Based Limitations

#### Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharge from Outfall 008 is composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

### Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation, 40 CFR 122.44(l) and are displayed below in Table 26. These limitations are currently imposed on Outfall 008.

**Table 26. Current Effluent Limitation at Outfalls 008**

| Parameter  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD) | Report              | Report        | -                     | -               | -             | -                     | 1/6 months              | Grab        |
| pH         |                     |               |                       |                 | Report        |                       | 1/6 months              | Grab        |

| Parameter                  | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|----------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                            | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Chemical Oxygen Demand     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Total Suspended Solids     | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrate + Nitrite Nitrogen | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total            | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total          | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

#### Proposed Effluent Limitations and Monitoring Requirements

Outfall 008 will be subject to the semi-annual monitoring requirements in Appendix F of the PAG-03 General Permit. The proposed effluent monitoring requirements for Outfall 008 are displayed in Table 28 below. A Part C condition is included in the Draft Permit requiring development and submission of a Corrective Action Plan whenever there are two or more consecutive exceedances of the benchmark values, which are also included in the Part C condition. The benchmark values are also displayed below in Table 28. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be conducted to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's controls may not be sufficiently controlling pollutants in stormwater.

Pursuant to review of sample data submitted in the application and DMRs, elevated concentrations of TSS, Total Aluminum and Total Iron have been detected at Outfall 008 (See Table 27). Despite the facility's implementation of additional BMPs, the data indicates these measures are ineffective. Consequently, the monitoring frequency for Total Suspended Solids will be increased to quarterly to ensure that the quality of the discharge from Outfall 008 meets the benchmark values established in the permit.

**Table 27: Benchmark exceedances summary at Outfalls 008**

| PARAMETER              | MONITORING PERIOD     | VALUE mg/L | BENCHMARK VALUE mg/L |
|------------------------|-----------------------|------------|----------------------|
| Aluminum, Total        | 1/1/2023 - 6/30/2023  | 23.1       | 0.75                 |
|                        | 7/1/2023 - 12/31/2023 | 29.5       |                      |
|                        | 1/1/2024 - 6/30/2024  | 15.8       |                      |
|                        | Application           | 14         |                      |
| Iron, Total            | 1/1/2023 - 6/30/2023  | 45.3       | 1.5                  |
|                        | 7/1/2023 - 12/31/2023 | 50.9       |                      |
|                        | 1/1/2024 - 6/30/2024  | 35.4       |                      |
|                        | Application           | 33         |                      |
| Total Suspended Solids | 1/1/2023 - 6/30/2023  | 2270       | 100                  |
|                        | 7/1/2023 - 12/31/2023 | 1000       |                      |
|                        | 1/1/2024 - 6/30/2024  | 1035       |                      |
|                        | Application           | 1300       |                      |

**Table 28: Proposed Final Effluent Limitation at Outfalls 008**

| Parameter                     | Mass Units (lb/day) |               | Concentrations (mg/L) |                 |               |                       | Monitoring Requirements |             |
|-------------------------------|---------------------|---------------|-----------------------|-----------------|---------------|-----------------------|-------------------------|-------------|
|                               | Average Monthly     | Daily Maximum | Instant Minimum       | Average Monthly | Daily Maximum | Instantaneous Maximum | Sample Frequency        | Sample Type |
| Flow (MGD)                    | Report              | Report        | -                     | -               | -             | -                     | 1/6 months              | Grab        |
| pH                            |                     |               |                       |                 | Report        |                       | 1/6 months              | Grab        |
| Chemical Oxygen Demand        | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| <b>Total Suspended Solids</b> | -                   | -             | -                     | -               | <b>Report</b> | -                     | <b>1/quarter</b>        | <b>Grab</b> |
| Nitrate + Nitrite Nitrogen    | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Aluminum, Total               | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Iron, Total                   | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Lead, Total                   | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Phosphorus, Total             | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Nitrogen, Total               | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |
| Zinc, Total                   | -                   | -             | -                     | -               | Report        | -                     | 1/6 months              | Grab        |

EPA modified the benchmark monitoring thresholds in the 2021 MSGP for aluminum based on revised CWA section 304(a) national recommended aquatic life water quality criteria and suspended the benchmark monitoring thresholds for iron based on lack of documented acute toxicity. The renewed permit will reflect these changes, ensuring alignment with the latest regulatory requirements.

**Table 29: 2021 Multi-Sector General Permit benchmark values**

| Discharge Parameter        | Benchmark Values (mg/L)        |
|----------------------------|--------------------------------|
| pH (s.u.)                  | within the range of 6.0 to 9.0 |
| Chemical Oxygen Demand     | 120                            |
| Total Suspended Solids     | 100                            |
| Nitrate + Nitrite Nitrogen | 0.68                           |
| Phosphorus, Total          | 2.0                            |
| Lead, Total                | 0.082                          |
| Zinc, Total                | 0.12                           |
| Iron, Total                | -                              |
| Aluminum, Total            | 1.1                            |

| Tools and References Used to Develop Permit |                                                                                                                                                                                                                    |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input type="checkbox"/>                    | WQM for Windows Model (see Attachment)                                                                                                                                                                             |
| <input checked="" type="checkbox"/>         | Toxics Management Spreadsheet (see Attachment C, E, G)                                                                                                                                                             |
| <input checked="" type="checkbox"/>         | TRC Model Spreadsheet (see Attachment D, F)                                                                                                                                                                        |
| <input type="checkbox"/>                    | Temperature Model Spreadsheet (see Attachment)                                                                                                                                                                     |
| <input type="checkbox"/>                    | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| <input type="checkbox"/>                    | Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
| <input type="checkbox"/>                    | Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| <input type="checkbox"/>                    | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| <input type="checkbox"/>                    | Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
| <input type="checkbox"/>                    | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
| <input type="checkbox"/>                    | Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| <input type="checkbox"/>                    | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| <input type="checkbox"/>                    | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| <input type="checkbox"/>                    | Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
| <input type="checkbox"/>                    | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
| <input type="checkbox"/>                    | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| <input type="checkbox"/>                    | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
| <input type="checkbox"/>                    | Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
| <input type="checkbox"/>                    | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
| <input type="checkbox"/>                    | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
| <input type="checkbox"/>                    | Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
| <input type="checkbox"/>                    | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| <input type="checkbox"/>                    | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| <input type="checkbox"/>                    | SOP: [REDACTED]                                                                                                                                                                                                    |
| <input type="checkbox"/>                    | Other: [REDACTED]                                                                                                                                                                                                  |

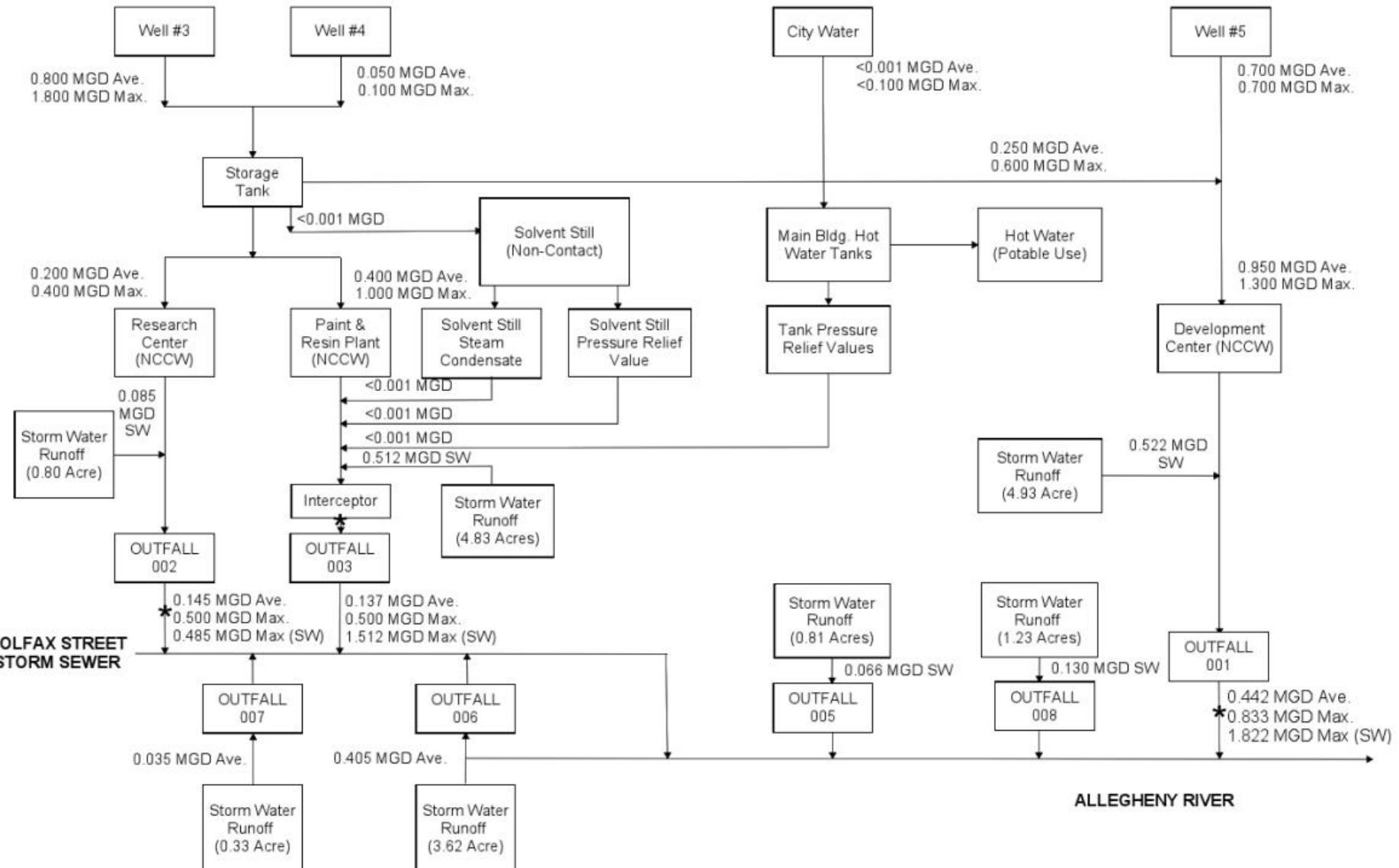
**Attachments**

Attachment A: Water Flow Diagram

Attachment B: StreamStats Report

Attachment C: Toxic Management Spreadsheet for Outfall 001

Attachment D: TRC Modeling Results for Outfall 001


Attachment E: Toxic Management Spreadsheet for Outfall 002

Attachment F: TRC Modeling Results for Outfall 002

Attachment G: Toxic Management Spreadsheet for Outfall 003

## **ATTACHMENT A.**

### **Water Flow Diagram**



Legend

\* Approximate Sampling Location

Notes:

- 1) Maximum storm water runoff values are based on 10-year, 24-hour storm event (3.9 inches).
- 2) Average and maximum internal flows and stormwater flows are estimated.
- 3) Outfalls 001, 002, and 003 Average and Maximum Flows are based on data from 1/1/2022 through 12/31/2023

PPG Industries, Inc. - Springdale Complex  
125 Colfax Street  
Springdale Borough, Allegheny County  
Outfall Line Drawing and Water Balance  
NPDES Permit No. PA 0001198

## **Attachment B: StreamStats Report**

## PA0001198 - PPG Industries - StreamStats Report

Region ID: PA

Workspace ID: PA20240924135109650000

Clicked Point (Latitude, Longitude): 40.53484, -79.78849

Time: 2024-09-24 09:51:41 -0400



 [Collapse All](#)

### ➤ Basin Characteristics

| Parameter Code | Parameter Description                      | Value   | Unit         |
|----------------|--------------------------------------------|---------|--------------|
| CARBON         | Percentage of area of carbonate rock       | 0       | percent      |
| DRNAREA        | Area that drains to a point on a stream    | 11500   | square miles |
| ELEV           | Mean Basin Elevation                       | 1598    | feet         |
| FOREST         | Percentage of area covered by forest       | 73.9068 | percent      |
| PRECIP         | Mean Annual Precipitation                  | 44      | inches       |
| URBAN          | Percentage of basin with urban development | 2.3804  | percent      |

## **Attachment C: Toxic Management Spreadsheet for Outfall 001**



## Discharge Information

Instructions Discharge Stream

Facility: PPG Industries, Inc - Springdale      NPDES Permit No.: PA0001198      Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste      Wastewater Description: Non-contact cooling water and stormwater

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |     |     |     |                          |                |
|-----------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 0.442                 | 330              | 8.08     |                            |     |     |     |                          |                |

|         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |               |
|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|---------------|
|         |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteri a Mod |
| Group 1 | Total Dissolved Solids (PWS)    | mg/L  | 780                |                 |             |                   |           |                 |            |                 |               |
|         | Chloride (PWS)                  | mg/L  | 140                |                 |             |                   |           |                 |            |                 |               |
|         | Bromide                         | mg/L  | 0.72               |                 |             |                   |           |                 |            |                 |               |
|         | Sulfate (PWS)                   | mg/L  | 220                |                 |             |                   |           |                 |            |                 |               |
|         | Fluoride (PWS)                  | mg/L  | 0.33               |                 |             |                   |           |                 |            |                 |               |
| Group 2 | Total Aluminum                  | µg/L  | 317                |                 |             |                   |           |                 |            |                 |               |
|         | Total Antimony                  | µg/L  | < 2                |                 |             |                   |           |                 |            |                 |               |
|         | Total Arsenic                   | µg/L  | < 0.68             |                 |             |                   |           |                 |            |                 |               |
|         | Total Barium                    | µg/L  | 88                 |                 |             |                   |           |                 |            |                 |               |
|         | Total Beryllium                 | µg/L  | < 0.12             |                 |             |                   |           |                 |            |                 |               |
|         | Total Boron                     | µg/L  | 120                |                 |             |                   |           |                 |            |                 |               |
|         | Total Cadmium                   | µg/L  | 0.39               |                 |             |                   |           |                 |            |                 |               |
|         | Total Chromium (III)            | µg/L  | < 0.55             |                 |             |                   |           |                 |            |                 |               |
|         | Hexavalent Chromium             | µg/L  | < 6                |                 |             |                   |           |                 |            |                 |               |
|         | Total Cobalt                    | µg/L  | < 7.4              |                 |             |                   |           |                 |            |                 |               |
|         | Total Copper                    | µg/L  | < 3.2              |                 |             |                   |           |                 |            |                 |               |
|         | Free Cyanide                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cyanide                   | µg/L  | < 8                |                 |             |                   |           |                 |            |                 |               |
|         | Dissolved Iron                  | µg/L  | < 20               |                 |             |                   |           |                 |            |                 |               |
|         | Total Iron                      | µg/L  | 1580               |                 |             |                   |           |                 |            |                 |               |
|         | Total Lead                      | µg/L  | < 2                |                 |             |                   |           |                 |            |                 |               |
|         | Total Manganese                 | µg/L  | 5600               |                 |             |                   |           |                 |            |                 |               |
|         | Total Mercury                   | µg/L  | 0.093              |                 |             |                   |           |                 |            |                 |               |
|         | Total Nickel                    | µg/L  | 12                 |                 |             |                   |           |                 |            |                 |               |
|         | Total Phenols (Phenolics) (PWS) | µg/L  | < 3.5              |                 |             |                   |           |                 |            |                 |               |
|         | Total Selenium                  | µg/L  | < 0.28             |                 |             |                   |           |                 |            |                 |               |
|         | Total Silver                    | µg/L  | < 0.1              |                 |             |                   |           |                 |            |                 |               |
|         | Total Thallium                  | µg/L  | 0.18               |                 |             |                   |           |                 |            |                 |               |
|         | Total Zinc                      | µg/L  | 88                 |                 |             |                   |           |                 |            |                 |               |
|         | Total Molybdenum                | µg/L  | 0.67               |                 |             |                   |           |                 |            |                 |               |
|         | Acrolein                        | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Acrylamide                      | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Acrylonitrile                   | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Benzene                         | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Bromoform                       | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Carbon Tetrachloride            | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Chlorobenzene                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorodibromomethane            | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | Chloroethane                    | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |
|         | 2-Chloroethyl Vinyl Ether       | µg/L  | <                  |                 |             |                   |           |                 |            |                 |               |

|         |                             |      |   |  |  |  |  |  |  |  |  |  |  |
|---------|-----------------------------|------|---|--|--|--|--|--|--|--|--|--|--|
| Group 3 | Chloroform                  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Dichlorobromomethane        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,1-Dichloroethane          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichloroethane          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,1-Dichloroethylene        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichloropropane         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,3-Dichloropropylene       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,4-Dioxane                 | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Ethylbenzene                | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Methyl Bromide              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Methyl Chloride             | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Methylene Chloride          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,2,2-Tetrachloroethane   | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Tetrachloroethylene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Toluene                     | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-trans-Dichloroethylene  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,1-Trichloroethane       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,2-Trichloroethane       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Trichloroethylene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Vinyl Chloride              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Group 4 | 2-Chlorophenol              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dichlorophenol          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dimethylphenol          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 4,6-Dinitro-o-Cresol        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dinitrophenol           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 2-Nitrophenol               | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 4-Nitrophenol               | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | p-Chloro-m-Cresol           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Pentachlorophenol           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Phenol                      | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Group 5 | 2,4,6-Trichlorophenol       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Acenaphthene                | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Acenaphthylene              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Anthracene                  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Benzidine                   | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(a)Anthracene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(a)Pyrene              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 3,4-Benzofluoranthene       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(ghi)Perylene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(k)Fluoranthene        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroethoxy)Methane  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroethyl)Ether     | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 4-Bromophenyl Phenyl Ether  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Butyl Benzyl Phthalate      | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 2-Chloronaphthalene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Chrysene                    | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Dibenzo(a,h)Anthracene      | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,3-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,4-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 3,3-Dichlorobenzidine       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Diethyl Phthalate           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Dimethyl Phthalate          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Di-n-Butyl Phthalate        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dinitrotoluene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 2,6-Dinitrotoluene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Di-n-Octyl Phthalate        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Diphenylhydrazine       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Fluoranthene                | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Fluorene                    | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Hexachlorobenzene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Hexachlorobutadiene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Hexachlorocyclopentadiene   | µg/L | < |  |  |  |  |  |  |  |  |  |  |
|         | Hexachloroethane            | µg/L | < |  |  |  |  |  |  |  |  |  |  |





## Stream / Surface Water Information

PPG Industries, Inc - Springdale, NPDES Permit No. PA0001198, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: Allgheny River

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 042122       | 16.2  | 737             | 11,500                 |               |                      | Yes                  |
| End of Reach 1     | 042122       | 13.52 | 728             | 11,600                 |               |                      | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 16.2  | 0.1                         | 2,390      |           |           | 722        | 18         |                |                    |           |    | 81        | 7   |          |    |
| End of Reach 1     | 13.52 | 0.1                         | 2,390      |           |           | 749        | 18         |                |                    |           |    |           |     |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> ) | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                            | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 16.2  |                            |            |           |           |            |            |                |                    |           |    |           |     |          |    |
| End of Reach 1     | 13.52 |                            |            |           |           |            |            |                |                    |           |    |           |     |          |    |



## Model Results

PPG Industries, Inc - Springdale, NPDES Permit No. PA0001198, Outfall 001

All  Inputs  Results  Limits

**Hydrodynamics**

**Wasteload Allocations**

AFC CCT (min):  PMF:  Analysis Hardness (mg/l):  Analysis pH:

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         |                  | 0         | 750        | 750           | 528,026    |                                  |
| Total Antimony                  | 0                  | 0         |                  | 0         | 1,100      | 1,100         | 774,439    |                                  |
| Total Arsenic                   | 0                  | 0         |                  | 0         | 340        | 340           | 239,372    | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                  | 0         | 21,000     | 21,000        | 14,784,737 |                                  |
| Total Boron                     | 0                  | 0         |                  | 0         | 8,100      | 8,100         | 5,702,684  |                                  |
| Total Cadmium                   | 0                  | 0         |                  | 0         | 1.648      | 1.73          | 1,218      | Chem Translator of 0.953 applied |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | 481.164    | 1,523         | 1,072,015  | Chem Translator of 0.316 applied |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | 16         | 16.3          | 11,471     | Chem Translator of 0.982 applied |
| Total Cobalt                    | 0                  | 0         |                  | 0         | 95         | 95.0          | 66,883     |                                  |
| Total Copper                    | 0                  | 0         |                  | 0         | 11.064     | 11.5          | 8,114      | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Lead                      | 0                  | 0         |                  | 0         | 51.549     | 62.8          | 44,201     | Chem Translator of 0.821 applied |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                  | 0         | 1.400      | 1.65          | 1,160      | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                  | 0         | 393.227    | 394           | 277,401    | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         |                  | 0         | 2.256      | 2.65          | 1,868      | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0                  | 0         |                  | 0         | 65         | 65.0          | 45,762     |                                  |
| Total Zinc                      | 0                  | 0         |                  | 0         | 98.382     | 101           | 70,823     | Chem Translator of 0.978 applied |

CFC

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): 81.071

Analysis pH: 7.00

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Antimony                  | 0                  | 0         |                  | 0         | 220        | 220           | 769,188    |                                  |
| Total Arsenic                   | 0                  | 0         |                  | 0         | 150        | 150           | 524,446    | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                  | 0         | 4,100      | 4,100         | 14,334,858 |                                  |
| Total Boron                     | 0                  | 0         |                  | 0         | 1,600      | 1,600         | 5,594,091  |                                  |
| Total Cadmium                   | 0                  | 0         |                  | 0         | 0.213      | 0.23          | 810        | Chem Translator of 0.918 applied |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | 62.412     | 72.6          | 253,733    | Chem Translator of 0.86 applied  |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | 10         | 10.4          | 36,344     | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0                  | 0         |                  | 0         | 19         | 19.0          | 66,430     |                                  |
| Total Copper                    | 0                  | 0         |                  | 0         | 7.486      | 7.8           | 27,263     | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                  | 0         | 1,500      | 1,500         | 5,244,460  | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0                  | 0         |                  | 0         | 2.001      | 2.44          | 8,516      | Chem Translator of 0.822 applied |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                  | 0         | 0.770      | 0.91          | 3,167      | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                  | 0         | 43.547     | 43.7          | 152,712    | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                  | 0         | 4.600      | 4.99          | 17,444     | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 1 applied     |
| Total Thallium                  | 0                  | 0         |                  | 0         | 13         | 13.0          | 45,452     |                                  |
| Total Zinc                      | 0                  | 0         |                  | 0         | 98.895     | 100           | 350,678    | Chem Translator of 0.986 applied |

THH

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

| Pollutants                   | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS) | 0                  | 0         |                  | 0         | 500,000    | 500,000       | N/A        |          |
| Chloride (PWS)               | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Sulfate (PWS)                | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Fluoride (PWS)               | 0                  | 0         |                  | 0         | 2,000      | 2,000         | N/A        |          |
| Total Aluminum               | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony               | 0                  | 0         |                  | 0         | 5.6        | 5.6           | 19,579     |          |
| Total Arsenic                | 0                  | 0         |                  | 0         | 10         | 10.0          | 34,963     |          |
| Total Barium                 | 0                  | 0         |                  | 0         | 2,400      | 2,400         | 8,391,137  |          |
| Total Boron                  | 0                  | 0         |                  | 0         | 3,100      | 3,100         | 10,838,551 |          |
| Total Cadmium                | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)         | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium          | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cobalt                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Copper                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dissolved Iron               | 0                  | 0         |                  | 0         | 300        | 300           | 1,048,892  |          |

|                                 |   |   |  |   |       |       |           |
|---------------------------------|---|---|--|---|-------|-------|-----------|
| Total Iron                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A       |
| Total Lead                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A       |
| Total Manganese                 | 0 | 0 |  | 0 | 1,000 | 1,000 | 3,496,307 |
| Total Mercury                   | 0 | 0 |  | 0 | 0.050 | 0.05  | 175       |
| Total Nickel                    | 0 | 0 |  | 0 | 610   | 610   | 2,132,747 |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |  | 0 | 5     | 5.0   | N/A       |
| Total Selenium                  | 0 | 0 |  | 0 | N/A   | N/A   | N/A       |
| Total Silver                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A       |
| Total Thallium                  | 0 | 0 |  | 0 | 0.24  | 0.24  | 839       |
| Total Zinc                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A       |

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Arsenic                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Barium                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Boron                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cadmium                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cobalt                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Copper                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Iron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Mercury                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Nickel                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Thallium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

| Pollutants | Mass Limits   |               | Concentration Limits |     |      |       |  | Governing WQBEL | WQBEL Basis | Comments |
|------------|---------------|---------------|----------------------|-----|------|-------|--|-----------------|-------------|----------|
|            | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL | IMAX | Units |  |                 |             |          |
|            |               |               |                      |     |      |       |  |                 |             |          |

**Other Pollutants without Limits or Monitoring**

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                      | Governing WQBEL | Units | Comments                   |
|---------------------------------|-----------------|-------|----------------------------|
| Total Dissolved Solids (PWS)    | N/A             | N/A   | PWS Not Applicable         |
| Chloride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Bromide                         | N/A             | N/A   | No WQS                     |
| Sulfate (PWS)                   | N/A             | N/A   | PWS Not Applicable         |
| Fluoride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Total Aluminum                  | 338,444         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Antimony                  | N/A             | N/A   | Discharge Conc < TQL       |
| Total Arsenic                   | N/A             | N/A   | Discharge Conc < TQL       |
| Total Barium                    | 8,391,137       | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium                 | N/A             | N/A   | No WQS                     |
| Total Boron                     | 3,655,190       | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cadmium                   | 780             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Chromium (III)            | 253,733         | µg/L  | Discharge Conc < TQL       |
| Hexavalent Chromium             | 7,352           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cobalt                    | 42,870          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Copper                    | 5,201           | µg/L  | Discharge Conc < TQL       |
| Total Cyanide                   | N/A             | N/A   | No WQS                     |
| Dissolved Iron                  | 1,048,892       | µg/L  | Discharge Conc < TQL       |
| Total Iron                      | 5,244,460       | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Lead                      | 8,516           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Manganese                 | 3,496,307       | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 175             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Nickel                    | 152,712         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Phenols (Phenolics) (PWS) |                 | µg/L  | Discharge Conc < TQL       |
| Total Selenium                  | 17,444          | µg/L  | Discharge Conc < TQL       |
| Total Silver                    | 1,197           | µg/L  | Discharge Conc < TQL       |
| Total Thallium                  | 839             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Zinc                      | 45,395          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Molybdenum                | N/A             | N/A   | No WQS                     |

## **ATTACHMENT D**

### **TRC Modeling Results for Outfall 001**

TRC EVALUATION - Outfall 001

| 2,390          | = Q stream (cfs)               | 0.5                                                                                                    | = CV Daily                           |
|----------------|--------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|
| 0.442          | = Q discharge (MGD)            | 0.5                                                                                                    | = CV Hourly                          |
| 4              | = no. samples                  | 0.201                                                                                                  | = AFC_Partial Mix Factor             |
| 0.3            | = Chlorine Demand of Stream    | 1                                                                                                      | = CFC_Partial Mix Factor             |
| 0              | = Chlorine Demand of Discharge | 15                                                                                                     | = AFC_Criteria Compliance Time (min) |
| 0.5            | = BAT/BPJ Value                | 370.77                                                                                                 | = CFC_Criteria Compliance Time (min) |
|                | = % Factor of Safety (FOS)     |                                                                                                        | = Decay Coefficient (K)              |
| Source         | Reference                      | AFC Calculations                                                                                       | Reference                            |
| TRC            | 1.3.2.iii                      | WLA_afc = 224.135                                                                                      | 1.3.2.iii                            |
| PENTOXSD TRG   | 5.1a                           | LTAMULT_afc = 0.373                                                                                    | 5.1c                                 |
| PENTOXSD TRG   | 5.1b                           | LTA_afc= 83.518                                                                                        | 5.1d                                 |
| Source         |                                | Effluent Limit Calculations                                                                            |                                      |
| PENTOXSD TRG   | 5.1f                           | AML MULT = 1.720                                                                                       |                                      |
| PENTOXSD TRG   | 5.1g                           | AVG MON LIMIT (mg/l) = 0.500                                                                           | BAT/BPJ                              |
|                |                                | INST MAX LIMIT (mg/l) = 1.170                                                                          |                                      |
| WLA_afc        |                                | $(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...\\...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ |                                      |
| LTAMULT_afc    |                                | $\text{EXP}((0.5*\text{LN}(cvh^2+1))-2.326*\text{LN}(cvh^2+1)^0.5)$                                    |                                      |
| LTA_afc        |                                | wla_afc*LTAMULT_afc                                                                                    |                                      |
| WLA_cfc        |                                | $(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...\\...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$ |                                      |
| LTAMULT_cfc    |                                | $\text{EXP}((0.5*\text{LN}(cvd^2/no\_samples+1))-2.326*\text{LN}(cvd^2/no\_samples+1)^0.5)$            |                                      |
| LTA_cfc        |                                | wla_cfc*LTAMULT_cfc                                                                                    |                                      |
| AML MULT       |                                | $\text{EXP}(2.326*\text{LN}(cvd^2/no\_samples+1)^0.5)-0.5*\text{LN}(cvd^2/no\_samples+1)$              |                                      |
| AVG MON LIMIT  |                                | $\text{MIN}(\text{BAT_BPJ},\text{MIN}(\text{LTA_afc},\text{LTA_cfc})*\text{AML_MULT})$                 |                                      |
| INST MAX LIMIT |                                | $1.5*((\text{av\_mon\_limit}/\text{AML\_MULT})/\text{LTAMULT\_afc})$                                   |                                      |

## **Attachment E: Toxic Management Spreadsheet for Outfall 002**



## Discharge Information

Instructions Discharge Stream

Facility: PPG Industries, Inc - Springdale      NPDES Permit No.: PA0001198      Outfall No.: 002

Evaluation Type: Major Sewage / Industrial Waste      Wastewater Description: Non-contact cooling water and stormwater

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |     |     |     |                          |                |
|-----------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 0.145                 | 160              | 8.11     |                            |     |     |     |                          |                |

|                     |                                 |      | 0 if left blank |                    | 0.5 if left blank |             | 0 if left blank |           | 1 if left blank |            |     |               |             |
|---------------------|---------------------------------|------|-----------------|--------------------|-------------------|-------------|-----------------|-----------|-----------------|------------|-----|---------------|-------------|
| Discharge Pollutant |                                 |      | Units           | Max Discharge Conc | Trib Conc         | Stream Conc | Daily CV        | Hourly CV | Stream CV       | Fate Coeff | FOS | Criteri a Mod | Chem Transl |
| Group 1             | Total Dissolved Solids (PWS)    | mg/L |                 | 300                |                   |             |                 |           |                 |            |     |               |             |
|                     | Chloride (PWS)                  | mg/L |                 | 41                 |                   |             |                 |           |                 |            |     |               |             |
|                     | Bromide                         | mg/L |                 | 0.19               |                   |             |                 |           |                 |            |     |               |             |
|                     | Sulfate (PWS)                   | mg/L |                 | 47                 |                   |             |                 |           |                 |            |     |               |             |
|                     | Fluoride (PWS)                  | mg/L |                 | 0.13               |                   |             |                 |           |                 |            |     |               |             |
| Group 2             | Total Aluminum                  | µg/L | <               | 70                 |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Antimony                  | µg/L | <               | 2                  |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Arsenic                   | µg/L | <               | 0.68               |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Barium                    | µg/L |                 | 87                 |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Beryllium                 | µg/L | <               | 0.12               |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Boron                     | µg/L |                 | 54                 |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Cadmium                   | µg/L |                 | 0.68               |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Chromium (III)            | µg/L | <               | 0.55               |                   |             |                 |           |                 |            |     |               |             |
|                     | Hexavalent Chromium             | µg/L | <               | 6                  |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Cobalt                    | µg/L | <               | 0.16               |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Copper                    | µg/L |                 | 3.4                |                   |             |                 |           |                 |            |     |               |             |
|                     | Free Cyanide                    | µg/L |                 |                    |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Cyanide                   | µg/L | <               | 8                  |                   |             |                 |           |                 |            |     |               |             |
|                     | Dissolved Iron                  | µg/L | <               | 20                 |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Iron                      | µg/L |                 | 388                |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Lead                      | µg/L |                 | 4                  |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Manganese                 | µg/L |                 | 210                |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Mercury                   | µg/L | <               | 0.079              |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Nickel                    | µg/L | <               | 0.4                |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Phenols (Phenolics) (PWS) | µg/L | <               | 3.5                |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Selenium                  | µg/L | <               | 0.28               |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Silver                    | µg/L | <               | 0.1                |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Thallium                  | µg/L | <               | 0.13               |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Zinc                      | µg/L |                 | 705                |                   |             |                 |           |                 |            |     |               |             |
|                     | Total Molybdenum                | µg/L |                 | 1.4                |                   |             |                 |           |                 |            |     |               |             |
| Group 3             | Acrolein                        | µg/L | <               |                    |                   |             |                 |           |                 |            |     |               |             |
|                     | Acrylamide                      | µg/L | <               |                    |                   |             |                 |           |                 |            |     |               |             |
|                     | Acrylonitrile                   | µg/L | <               |                    |                   |             |                 |           |                 |            |     |               |             |
|                     | Benzene                         | µg/L | <               |                    |                   |             |                 |           |                 |            |     |               |             |
|                     | Bromoform                       | µg/L | <               |                    |                   |             |                 |           |                 |            |     |               |             |

|         |                               |      |   |  |  |  |  |  |  |  |  |  |  |  |
|---------|-------------------------------|------|---|--|--|--|--|--|--|--|--|--|--|--|
| Group 3 | Carbon Tetrachloride          | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Chlorobenzene                 | µg/L |   |  |  |  |  |  |  |  |  |  |  |  |
|         | Chlorodibromomethane          | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Chloroethane                  | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2-Chloroethyl Vinyl Ether     | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Chloroform                    | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Dichlorobromomethane          | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1-Dichloroethane            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichloroethane            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1-Dichloroethylene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichloropropane           | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,3-Dichloropropylene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,4-Dioxane                   | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Ethylbenzene                  | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Methyl Bromide                | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Methyl Chloride               | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Methylene Chloride            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,2,2-Tetrachloroethane     | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Tetrachloroethylene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
| Group 4 | Toluene                       | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-trans-Dichloroethylene    | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,1-Trichloroethane         | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,1,2-Trichloroethane         | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Trichloroethylene             | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Vinyl Chloride                | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2-Chlorophenol                | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dichlorophenol            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dimethylphenol            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 4,6-Dinitro- <i>o</i> -Cresol | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
| Group 5 | 2,4-Dinitrophenol             | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2-Nitrophenol                 | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 4-Nitrophenol                 | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | p-Chloro- <i>m</i> -Cresol    | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Pentachlorophenol             | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Phenol                        | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4,6-Trichlorophenol         | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Acenaphthene                  | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Acenaphthylene                | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Anthracene                    | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzidine                     | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(a)Anthracene            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(a)Pyrene                | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 3,4-Benzo fluoranthene        | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(ghi)Perylene            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Benzo(k)Fluoranthene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroethoxy)Methane    | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroethyl)Ether       | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether   | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate    | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 4-Bromophenyl Phenyl Ether    | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Butyl Benzyl Phthalate        | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2-Chloronaphthalene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether   | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Chrysene                      | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Dibenzo(a,h)Anthracene        | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,2-Dichlorobenzene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,3-Dichlorobenzene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 1,4-Dichlorobenzene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 3,3-Dichlorobenzidine         | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Diethyl Phthalate             | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Dimethyl Phthalate            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | Di-n-Butyl Phthalate          | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |
|         | 2,4-Dinitrotoluene            | µg/L | < |  |  |  |  |  |  |  |  |  |  |  |





## Stream / Surface Water Information

PPG Industries, Inc - Springdale, NPDES Permit No. PA0001198, Outfall 002

Instructions **Discharge** Stream

Receiving Surface Water Name: **Allgheny River**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 042122       | 16.43 | 737             | 11,500                 |               |                      | Yes                  |
| End of Reach 1     | 042122       | 13.52 | 728             | 11,600                 |               |                      | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 16.43 | 0.1                         | 2,390      |           |           | 722        | 18         |                |                    |           |    | 81        | 7   |          |    |
| End of Reach 1     | 13.52 | 0.1                         | 2,390      |           |           | 749        | 18         |                |                    |           |    |           |     |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> ) | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                            | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 16.43 |                            |            |           |           |            |            |                |                    |           |    |           |     |          |    |
| End of Reach 1     | 13.52 |                            |            |           |           |            |            |                |                    |           |    |           |     |          |    |



## Model Results

PPG Industries, Inc - Springdale, NPDES Permit No. PA0001198, Outfall 002

All  Inputs  Results  Limits

**Hydrodynamics**

**Wasteload Allocations**

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         |                  | 0         | 750        | 750           | 1,574,985  |                                  |
| Total Antimony                  | 0                  | 0         |                  | 0         | 1,100      | 1,100         | 2,309,978  |                                  |
| Total Arsenic                   | 0                  | 0         |                  | 0         | 340        | 340           | 713,993    | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                  | 0         | 21,000     | 21,000        | 44,099,576 |                                  |
| Total Boron                     | 0                  | 0         |                  | 0         | 8,100      | 8,100         | 17,009,836 |                                  |
| Total Cadmium                   | 0                  | 0         |                  | 0         | 1.641      | 1.72          | 3,618      | Chem Translator of 0.953 applied |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | 479.633    | 1,518         | 3,187,403  | Chem Translator of 0.316 applied |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | 16         | 16.3          | 34,216     | Chem Translator of 0.982 applied |
| Total Cobalt                    | 0                  | 0         |                  | 0         | 95         | 95.0          | 199,498    |                                  |
| Total Copper                    | 0                  | 0         |                  | 0         | 11.024     | 11.5          | 24,115     | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Lead                      | 0                  | 0         |                  | 0         | 51.330     | 62.5          | 131,191    | Chem Translator of 0.822 applied |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                  | 0         | 1.400      | 1.65          | 3,459      | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                  | 0         | 391.935    | 393           | 824,704    | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         |                  | 0         | 2.241      | 2.64          | 5,535      | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0                  | 0         |                  | 0         | 65         | 65.0          | 136,499    |                                  |
| Total Zinc                      | 0                  | 0         |                  | 0         | 98.059     | 100           | 210,553    | Chem Translator of 0.978 applied |

CFC

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): 81.007

Analysis pH: 7.00

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Antimony                  | 0                  | 0         |                  | 0         | 220        | 220           | 2,344,245  |                                  |
| Total Arsenic                   | 0                  | 0         |                  | 0         | 150        | 150           | 1,598,349  | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                  | 0         | 4,100      | 4,100         | 43,688,205 |                                  |
| Total Boron                     | 0                  | 0         |                  | 0         | 1,600      | 1,600         | 17,049,056 |                                  |
| Total Cadmium                   | 0                  | 0         |                  | 0         | 0.212      | 0.23          | 2,467      | Chem Translator of 0.918 applied |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | 62.371     | 72.5          | 772,800    | Chem Translator of 0.86 applied  |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | 10         | 10.4          | 110,766    | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0                  | 0         |                  | 0         | 19         | 19.0          | 202,458    |                                  |
| Total Copper                    | 0                  | 0         |                  | 0         | 7.481      | 7.79          | 83,032     | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                  | 0         | 1,500      | 1,500         | 15,983,490 | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0                  | 0         |                  | 0         | 1.999      | 2.43          | 25,928     | Chem Translator of 0.822 applied |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                  | 0         | 0.770      | 0.91          | 9,653      | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                  | 0         | 43.518     | 43.6          | 465,109    | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                  | 0         | 4.600      | 4.99          | 53,163     | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 1 applied     |
| Total Thallium                  | 0                  | 0         |                  | 0         | 13         | 13.0          | 138,524    |                                  |
| Total Zinc                      | 0                  | 0         |                  | 0         | 98.829     | 100           | 1,068,045  | Chem Translator of 0.986 applied |

THH

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

| Pollutants                   | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS) | 0                  | 0         |                  | 0         | 500,000    | 500,000       | N/A        |          |
| Chloride (PWS)               | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Sulfate (PWS)                | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Fluoride (PWS)               | 0                  | 0         |                  | 0         | 2,000      | 2,000         | N/A        |          |
| Total Aluminum               | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony               | 0                  | 0         |                  | 0         | 5.6        | 5.6           | 59,672     |          |
| Total Arsenic                | 0                  | 0         |                  | 0         | 10         | 10.0          | 106,557    |          |
| Total Barium                 | 0                  | 0         |                  | 0         | 2,400      | 2,400         | 25,573,583 |          |
| Total Boron                  | 0                  | 0         |                  | 0         | 3,100      | 3,100         | 33,032,545 |          |
| Total Cadmium                | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)         | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

|                                  |   |   |  |   |       |       |            |
|----------------------------------|---|---|--|---|-------|-------|------------|
| Hexavalent Chromium              | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |
| Total Cobalt                     | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |
| Total Copper                     | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |
| Dissolved Iron                   | 0 | 0 |  | 0 | 300   | 300   | 3,196,698  |
| Total Iron                       | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |
| Total Lead                       | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |
| Total Manganese                  | 0 | 0 |  | 0 | 1,000 | 1,000 | 10,655,660 |
| Total Mercury                    | 0 | 0 |  | 0 | 0.050 | 0.05  | 533        |
| Total Nickel                     | 0 | 0 |  | 0 | 610   | 610   | 6,499,952  |
| Total Phenols (Phenoolics) (PWS) | 0 | 0 |  | 0 | 5     | 5.0   | N/A        |
| Total Selenium                   | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |
| Total Silver                     | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |
| Total Thallium                   | 0 | 0 |  | 0 | 0.24  | 0.24  | 2,557      |
| Total Zinc                       | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

| Pollutants                       | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|----------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS)     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloride (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Sulfate (PWS)                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Fluoride (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Aluminum                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Arsenic                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Barium                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Boron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cadmium                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)             | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium              | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cobalt                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Copper                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dissolved Iron                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Iron                       | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead                       | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Manganese                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Mercury                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Nickel                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Phenols (Phenoolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Silver                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Thallium                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc                       | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

| ✓ | Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

| Pollutants | Mass Limits      |                  | Concentration Limits |     |      |       | Governing WQBEL | WQBEL Basis | Comments |
|------------|------------------|------------------|----------------------|-----|------|-------|-----------------|-------------|----------|
|            | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML                  | MDL | IMAX | Units |                 |             |          |
|            |                  |                  |                      |     |      |       |                 |             |          |

| ✓ | Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                      | Governing WQBEL | Units | Comments                   |
|---------------------------------|-----------------|-------|----------------------------|
| Total Dissolved Solids (PWS)    | N/A             | N/A   | PWS Not Applicable         |
| Chloride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Bromide                         | N/A             | N/A   | No WQS                     |
| Sulfate (PWS)                   | N/A             | N/A   | PWS Not Applicable         |
| Fluoride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Total Aluminum                  | 1,009,502       | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Antimony                  | N/A             | N/A   | Discharge Conc < TQL       |
| Total Arsenic                   | N/A             | N/A   | Discharge Conc < TQL       |
| Total Barium                    | 25,573,583      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium                 | N/A             | N/A   | No WQS                     |
| Total Boron                     | 10,902,618      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cadmium                   | 2,319           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Chromium (III)            | 772,800         | µg/L  | Discharge Conc < TQL       |
| Hexavalent Chromium             | 21,931          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cobalt                    | 127,870         | µg/L  | Discharge Conc < TQL       |
| Total Copper                    | 15,456          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cyanide                   | N/A             | N/A   | No WQS                     |
| Dissolved Iron                  | 3,196,698       | µg/L  | Discharge Conc < TQL       |
| Total Iron                      | 15,983,490      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Lead                      | 25,928          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Manganese                 | 10,655,660      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 533             | µg/L  | Discharge Conc < TQL       |
| Total Nickel                    | 465,109         | µg/L  | Discharge Conc < TQL       |
| Total Phenols (Phenolics) (PWS) |                 | µg/L  | Discharge Conc < TQL       |
| Total Selenium                  | 53,163          | µg/L  | Discharge Conc < TQL       |
| Total Silver                    | 3,548           | µg/L  | Discharge Conc < TQL       |
| Total Thallium                  | 2,557           | µg/L  | Discharge Conc < TQL       |
| Total Zinc                      | 134,956         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Molybdenum                | N/A             | N/A   | No WQS                     |

## **ATTACHMENT F**

### **TRC Modeling Results for Outfall 002**

TRC EVALUATION - Outfall 002

| 2,390          | = Q stream (cfs)               | 0.5                                                                                                    | = CV Daily                           |
|----------------|--------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------|
| 0.145          | = Q discharge (MGD)            | 0.5                                                                                                    | = CV Hourly                          |
| 4              | = no. samples                  | 0.197                                                                                                  | = AFC_Partial Mix Factor             |
| 0.3            | = Chlorine Demand of Stream    | 1                                                                                                      | = CFC_Partial Mix Factor             |
| 0              | = Chlorine Demand of Discharge | 15                                                                                                     | = AFC_Criteria Compliance Time (min) |
| 0.5            | = BAT/BPJ Value                | 386.5                                                                                                  | = CFC_Criteria Compliance Time (min) |
|                | = % Factor of Safety (FOS)     |                                                                                                        | = Decay Coefficient (K)              |
| Source         | Reference                      | AFC Calculations                                                                                       | Reference                            |
| TRC            | 1.3.2.iii                      | WLA_afc = 669.590                                                                                      | 1.3.2.iii                            |
| PENTOXSD TRG   | 5.1a                           | LTAMULT_afc = 0.373                                                                                    | 5.1c                                 |
| PENTOXSD TRG   | 5.1b                           | LTA_afc= 249.505                                                                                       | 5.1d                                 |
| Source         | Effluent Limit Calculations    |                                                                                                        |                                      |
| PENTOXSD TRG   | 5.1f                           | AML MULT = 1.720                                                                                       |                                      |
| PENTOXSD TRG   | 5.1g                           | AVG MON LIMIT (mg/l) = 0.500                                                                           | BAT/BPJ                              |
|                |                                | INST MAX LIMIT (mg/l) = 1.170                                                                          |                                      |
| WLA_afc        |                                | (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...<br>...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) |                                      |
| LTAMULT_afc    |                                | EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)                                                           |                                      |
| LTA_afc        |                                | wla_afc*LTAMULT_afc                                                                                    |                                      |
| WLA_cfc        |                                | (.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...<br>...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) |                                      |
| LTAMULT_cfc    |                                | EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)                                     |                                      |
| LTA_cfc        |                                | wla_cfc*LTAMULT_cfc                                                                                    |                                      |
| AML_MULT       |                                | EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))                                     |                                      |
| AVG_MON_LIMIT  |                                | MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)                                                             |                                      |
| INST_MAX_LIMIT |                                | 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)                                                              |                                      |

## **Attachment G: Toxic Management Spreadsheet for Outfall 003**



## Discharge Information

| Instructions | Discharge | Stream |
|--------------|-----------|--------|
|--------------|-----------|--------|

Facility: PPG Industries, Inc - Springdale      NPDES Permit No.: PA0001198      Outfall No.: 003

Evaluation Type: Major Sewage / Industrial Waste      Wastewater Description: Non-contact cooling water and stormwater

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics |     |      |     | Partial Mix Factors (PMFs) |       | Complete Mix Times (min) |  |
|-----------------------|------------------|----------|---------------------------|-----|------|-----|----------------------------|-------|--------------------------|--|
|                       |                  |          | AFC                       | CFC | THH  | CRL | $Q_{7-10}$                 | $Q_h$ |                          |  |
|                       |                  |          | 0.137                     | 250 | 8.28 |     |                            |       |                          |  |

|                     |                                 |       | 0 if left blank    |           | 0.5 if left blank |          | 0 if left blank |           | 1 if left blank |     |               |             |
|---------------------|---------------------------------|-------|--------------------|-----------|-------------------|----------|-----------------|-----------|-----------------|-----|---------------|-------------|
| Discharge Pollutant |                                 | Units | Max Discharge Conc | Trib Conc | Stream Conc       | Daily CV | Hourly CV       | Stream CV | Fate Coeff      | FOS | Criteri a Mod | Chem Transl |
| <b>Group 1</b>      | Total Dissolved Solids (PWS)    | mg/L  | 580                |           |                   |          |                 |           |                 |     |               |             |
|                     | Chloride (PWS)                  | mg/L  | 91                 |           |                   |          |                 |           |                 |     |               |             |
|                     | Bromide                         | mg/L  | 0.34               |           |                   |          |                 |           |                 |     |               |             |
|                     | Sulfate (PWS)                   | mg/L  | 140                |           |                   |          |                 |           |                 |     |               |             |
|                     | Fluoride (PWS)                  | mg/L  | 0.24               |           |                   |          |                 |           |                 |     |               |             |
| <b>Group 2</b>      | Total Aluminum                  | µg/L  | 419                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Antimony                  | µg/L  | < 2                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Arsenic                   | µg/L  | < 0.68             |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Barium                    | µg/L  | 79                 |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Beryllium                 | µg/L  | < 0.12             |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Boron                     | µg/L  | 89                 |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Cadmium                   | µg/L  | 0.24               |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Chromium (III)            | µg/L  | < 0.55             |           |                   |          |                 |           |                 |     |               |             |
|                     | Hexavalent Chromium             | µg/L  | < 6                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Cobalt                    | µg/L  | 3.6                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Copper                    | µg/L  | 7                  |           |                   |          |                 |           |                 |     |               |             |
|                     | Free Cyanide                    | µg/L  |                    |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Cyanide                   | µg/L  | < 8                |           |                   |          |                 |           |                 |     |               |             |
|                     | Dissolved Iron                  | µg/L  | < 20               |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Iron                      | µg/L  | 967                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Lead                      | µg/L  | 2                  |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Manganese                 | µg/L  | 3200               |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Mercury                   | µg/L  | 0.11               |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Nickel                    | µg/L  | 6.4                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Phenols (Phenolics) (PWS) | µg/L  | 3.6                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Selenium                  | µg/L  | < 0.28             |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Silver                    | µg/L  | < 0.1              |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Thallium                  | µg/L  | < 0.13             |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Zinc                      | µg/L  | 168                |           |                   |          |                 |           |                 |     |               |             |
|                     | Total Molybdenum                | µg/L  | 0.95               |           |                   |          |                 |           |                 |     |               |             |
|                     | Acrolein                        | µg/L  | <                  |           |                   |          |                 |           |                 |     |               |             |
|                     | Acrylamide                      | µg/L  | <                  |           |                   |          |                 |           |                 |     |               |             |
|                     | Acrylonitrile                   | µg/L  | <                  |           |                   |          |                 |           |                 |     |               |             |
|                     | Benzene                         | µg/L  | <                  |           |                   |          |                 |           |                 |     |               |             |
|                     | Bromoform                       | µg/L  | <                  |           |                   |          |                 |           |                 |     |               |             |

|                             |      |   |  |  |  |  |  |  |  |  |  |  |
|-----------------------------|------|---|--|--|--|--|--|--|--|--|--|--|
| Carbon Tetrachloride        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Chlorobenzene               | µg/L |   |  |  |  |  |  |  |  |  |  |  |
| Chlorodibromomethane        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Chloroethane                | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2-Chloroethyl Vinyl Ether   | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Chloroform                  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Dichlorobromomethane        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,1-Dichloroethane          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,2-Dichloroethane          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,1-Dichloroethylene        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,2-Dichloropropane         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,3-Dichloropropylene       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,4-Dioxane                 | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Ethylbenzene                | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Methyl Bromide              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Methyl Chloride             | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Methylene Chloride          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane   | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Tetrachloroethylene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Toluene                     | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,2-trans-Dichloroethylene  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,1,1-Trichloroethane       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,1,2-Trichloroethane       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Trichloroethylene           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Vinyl Chloride              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2-Chlorophenol              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2,4-Dichlorophenol          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2,4-Dimethylphenol          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 4,6-Dinitro-o-Cresol        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2,4-Dinitrophenol           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2-Nitrophenol               | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 4-Nitrophenol               | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| p-Chloro-m-Cresol           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Pentachlorophenol           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Phenol                      | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2,4,6-Trichlorophenol       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Acenaphthene                | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Acenaphthylene              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Anthracene                  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Benzidine                   | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Benzo(a)Anthracene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Benzo(a)Pyrene              | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 3,4-Benzofluoranthene       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Benzo(ghi)Perylene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Benzo(k)Fluoranthene        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Bis(2-Chloroethoxy)Methane  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Bis(2-Chloroethyl)Ether     | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Bis(2-Chloroisopropyl)Ether | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Bis(2-Ethylhexyl)Phthalate  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 4-Bromophenyl Phenyl Ether  | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Butyl Benzyl Phthalate      | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2-Chloronaphthalene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 4-Chlorophenyl Phenyl Ether | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Chrysene                    | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Dibenzo(a,h)Anthracene      | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,2-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,3-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 1,4-Dichlorobenzene         | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 3,3-Dichlorobenzidine       | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Diethyl Phthalate           | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Dimethyl Phthalate          | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| Di-n-Butyl Phthalate        | µg/L | < |  |  |  |  |  |  |  |  |  |  |
| 2,4-Dinitrotoluene          | µg/L | < |  |  |  |  |  |  |  |  |  |  |





## Stream / Surface Water Information

PPG Industries, Inc - Springdale, NPDES Permit No. PA0001198, Outfall 003

Instructions **Discharge** Stream

Receiving Surface Water Name: **Allgheny River**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 042122       | 16.41 | 737             | 11,500                 |               |                      | Yes                  |
| End of Reach 1     | 042122       | 13.52 | 728             | 11,600                 |               |                      | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 16.41 | 0.1                         | 2,390      |           |           | 722        | 18         |                |                    |           |    | 81        | 7   |          |    |
| End of Reach 1     | 13.52 | 0.1                         | 2,390      |           |           | 749        | 18         |                |                    |           |    |           |     |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> ) | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time (days) | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|----------------------------|------------|-----------|-----------|------------|------------|----------------|--------------------|-----------|----|-----------|-----|----------|----|
|                    |       |                            | Stream     | Tributary |           |            |            |                |                    | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 16.41 |                            |            |           |           |            |            |                |                    |           |    |           |     |          |    |
| End of Reach 1     | 13.52 |                            |            |           |           |            |            |                |                    |           |    |           |     |          |    |



## Model Results

PPG Industries, Inc - Springdale, NPDES Permit No. PA0001198, Outfall 003

Instructions     Results    [RETURN TO INPUTS](#)    [SAVE AS PDF](#)    [PRINT](#)     All     Inputs     Results     Limits

**Hydrodynamics**

**Wasteload Allocations**

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         |                  | 0         | 750        | 750           | 1,669,778  |                                  |
| Total Antimony                  | 0                  | 0         |                  | 0         | 1,100      | 1,100         | 2,449,007  |                                  |
| Total Arsenic                   | 0                  | 0         |                  | 0         | 340        | 340           | 756,966    | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                  | 0         | 21,000     | 21,000        | 46,753,770 |                                  |
| Total Boron                     | 0                  | 0         |                  | 0         | 8,100      | 8,100         | 18,033,597 |                                  |
| Total Cadmium                   | 0                  | 0         |                  | 0         | 1.642      | 1.72          | 3,837      | Chem Translator of 0.953 applied |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | 479.819    | 1,518         | 3,380,549  | Chem Translator of 0.316 applied |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | 16         | 16.3          | 36,275     | Chem Translator of 0.982 applied |
| Total Cobalt                    | 0                  | 0         |                  | 0         | 95         | 95.0          | 211,505    |                                  |
| Total Copper                    | 0                  | 0         |                  | 0         | 11.029     | 11.5          | 25,577     | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Lead                      | 0                  | 0         |                  | 0         | 51.356     | 62.5          | 139,170    | Chem Translator of 0.822 applied |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                  | 0         | 1.400      | 1.65          | 3,667      | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                  | 0         | 392.091    | 393           | 874,689    | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         |                  | 0         | 2.242      | 2.64          | 5,873      | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0                  | 0         |                  | 0         | 65         | 65.0          | 144,714    |                                  |
| Total Zinc                      | 0                  | 0         |                  | 0         | 98.098     | 100           | 223,315    | Chem Translator of 0.978 applied |

CFC

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): 81.015

Analysis pH: 7.00

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Antimony                  | 0                  | 0         |                  | 0         | 220        | 220           | 2,481,123  |                                  |
| Total Arsenic                   | 0                  | 0         |                  | 0         | 150        | 150           | 1,691,674  | Chem Translator of 1 applied     |
| Total Barium                    | 0                  | 0         |                  | 0         | 4,100      | 4,100         | 46,239,102 |                                  |
| Total Boron                     | 0                  | 0         |                  | 0         | 1,600      | 1,600         | 18,044,527 |                                  |
| Total Cadmium                   | 0                  | 0         |                  | 0         | 0.213      | 0.23          | 2,611      | Chem Translator of 0.918 applied |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | 62.376     | 72.5          | 817,985    | Chem Translator of 0.86 applied  |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | 10         | 10.4          | 117,233    | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0                  | 0         |                  | 0         | 19         | 19.0          | 214,279    |                                  |
| Total Copper                    | 0                  | 0         |                  | 0         | 7.481      | 7.79          | 87,887     | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Iron                      | 0                  | 0         |                  | 0         | 1,500      | 1,500         | 16,916,744 | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0                  | 0         |                  | 0         | 2.000      | 2.43          | 27,446     | Chem Translator of 0.822 applied |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Mercury                   | 0                  | 0         |                  | 0         | 0.770      | 0.91          | 10,216     | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0                  | 0         |                  | 0         | 43.522     | 43.7          | 492,305    | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Total Selenium                  | 0                  | 0         |                  | 0         | 4.600      | 4.99          | 56,267     | Chem Translator of 0.922 applied |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 1 applied     |
| Total Thallium                  | 0                  | 0         |                  | 0         | 13         | 13.0          | 146,612    |                                  |
| Total Zinc                      | 0                  | 0         |                  | 0         | 98.837     | 100           | 1,130,497  | Chem Translator of 0.986 applied |

THH

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l): N/A

Analysis pH: N/A

| Pollutants                   | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS) | 0                  | 0         |                  | 0         | 500,000    | 500,000       | N/A        |          |
| Chloride (PWS)               | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Sulfate (PWS)                | 0                  | 0         |                  | 0         | 250,000    | 250,000       | N/A        |          |
| Fluoride (PWS)               | 0                  | 0         |                  | 0         | 2,000      | 2,000         | N/A        |          |
| Total Aluminum               | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony               | 0                  | 0         |                  | 0         | 5.6        | 5.6           | 63,156     |          |
| Total Arsenic                | 0                  | 0         |                  | 0         | 10         | 10.0          | 112,778    |          |
| Total Barium                 | 0                  | 0         |                  | 0         | 2,400      | 2,400         | 27,066,791 |          |
| Total Boron                  | 0                  | 0         |                  | 0         | 3,100      | 3,100         | 34,961,272 |          |
| Total Cadmium                | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)         | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

|                                 |   |   |  |   |       |       |            |  |
|---------------------------------|---|---|--|---|-------|-------|------------|--|
| Hexavalent Chromium             | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |
| Total Cobalt                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |
| Total Copper                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |
| Dissolved Iron                  | 0 | 0 |  | 0 | 300   | 300   | 3,383,349  |  |
| Total Iron                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |
| Total Lead                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |
| Total Manganese                 | 0 | 0 |  | 0 | 1,000 | 1,000 | 11,277,830 |  |
| Total Mercury                   | 0 | 0 |  | 0 | 0.050 | 0.05  | 564        |  |
| Total Nickel                    | 0 | 0 |  | 0 | 610   | 610   | 6,879,476  |  |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |  | 0 | 5     | 5.0   | N/A        |  |
| Total Selenium                  | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |
| Total Silver                    | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |
| Total Thallium                  | 0 | 0 |  | 0 | 0.24  | 0.24  | 2,707      |  |
| Total Zinc                      | 0 | 0 |  | 0 | N/A   | N/A   | N/A        |  |

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

| Pollutants                      | Stream Conc (µg/L) | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|---------------------------------|--------------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Dissolved Solids (PWS)    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Sulfate (PWS)                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Fluoride (PWS)                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Aluminum                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Antimony                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Arsenic                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Barium                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Boron                     | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cadmium                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Chromium (III)            | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium             | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Cobalt                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Copper                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dissolved Iron                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Iron                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Manganese                 | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Mercury                   | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Nickel                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Phenols (Phenolics) (PWS) | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Silver                    | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Thallium                  | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc                      | 0                  | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

| ✓ | **Recommended WQBELs & Monitoring Requirements**

No. Samples/Month: 4

| Pollutants | Mass Limits   |               | Concentration Limits |     |      |       | Governing WQBEL | WQBEL Basis | Comments |
|------------|---------------|---------------|----------------------|-----|------|-------|-----------------|-------------|----------|
|            | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL | IMAX | Units |                 |             |          |
|            |               |               |                      |     |      |       |                 |             |          |

| ✓ | **Other Pollutants without Limits or Monitoring**

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                      | Governing WQBEL | Units | Comments                   |
|---------------------------------|-----------------|-------|----------------------------|
| Total Dissolved Solids (PWS)    | N/A             | N/A   | PWS Not Applicable         |
| Chloride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Bromide                         | N/A             | N/A   | No WQS                     |
| Sulfate (PWS)                   | N/A             | N/A   | PWS Not Applicable         |
| Fluoride (PWS)                  | N/A             | N/A   | PWS Not Applicable         |
| Total Aluminum                  | 1,070,260       | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Antimony                  | N/A             | N/A   | Discharge Conc < TQL       |
| Total Arsenic                   | N/A             | N/A   | Discharge Conc < TQL       |
| Total Barium                    | 27,066,791      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium                 | N/A             | N/A   | No WQS                     |
| Total Boron                     | 11,558,808      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cadmium                   | 2,459           | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Chromium (III)            | 817,985         | µg/L  | Discharge Conc < TQL       |
| Hexavalent Chromium             | 23,251          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cobalt                    | 135,566         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Copper                    | 16,394          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cyanide                   | N/A             | N/A   | No WQS                     |
| Dissolved Iron                  | 3,383,349       | µg/L  | Discharge Conc < TQL       |
| Total Iron                      | 16,916,744      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Lead                      | 27,446          | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Manganese                 | 11,277,830      | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 564             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Nickel                    | 492,305         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Phenols (Phenolics) (PWS) |                 | µg/L  | PWS Not Applicable         |
| Total Selenium                  | 56,267          | µg/L  | Discharge Conc < TQL       |
| Total Silver                    | 3,765           | µg/L  | Discharge Conc < TQL       |
| Total Thallium                  | 2,707           | µg/L  | Discharge Conc < TQL       |
| Total Zinc                      | 143,136         | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Molybdenum                | N/A             | N/A   | No WQS                     |