

Southwest Regional Office CLEAN WATER PROGRAM

Application Type Renewal
NonFacility Type Municipal

Minor

Major / Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0001350

APS ID 1028193

Authorization ID 1335718

	Applicant and Facility Information					
Applicant Name	The V	Washington County Coal Company	Facility Name	Somerset Portal STP		
Applicant Address	4622	6 National Road	Facility Address	860 Vanceville Road		
	Saint	Clairsville, OH 43950-8742		Eighty Four, PA 15330		
Applicant Contact	Jon N	lagel	Facility Contact			
Applicant Phone	(724)	338-3100	Facility Phone			
Client ID	31009	93	Site ID	257787		
Ch 94 Load Status	Not C	Overloaded	Municipality	Somerset Township		
Connection Status	No Li	mitations	County	Washington		
Date Application Received		December 4, 2020	EPA Waived?	Yes		
Date Application Accepted		December 8, 2020	If No, Reason			
Purpose of Application	n	Renewal of an NPDES Permit for ar	n existing discharge of of Review	treated sewage.		

This is a privately owned sewage treatment plant serving an industrial facility engaged in coal mining activities.

No changes to discharge quantity or quality were proposed as part of this permit renewal.

The facility is currently using the eDMR system for reporting.

There are currently no open violations listed in EFACTS for this permittee (5/25/2021).

A WQM Permit amendment application must be submitted for a dechlorination unit that has been installed.

Sludge use and disposal description and location(s): Sludge is hauled offsite by a septic hauler for disposal at Liquid Asset Disposal in Wheeling, WV.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Adam Pesek Adam J. Pesek, E.I.T. / Environmental Engineering Specialist	May 25, 2021
Х		Justin C. Dickey Justin C. Dickey, P.E. / Environmental Engineer Manager	May 27, 2021

Outfall No. 001			Design Flow (MGD)	0.00972		
Latitude 40° 7' 38.0"			Longitude	-80° 3' 37"		
	ckett		Quad Code	01705		
Wastewater Descri		Treated Sewage Effluent				
Receiving Waters	Cente	r Branch Pigeon Creek	Stream Code	39723		
NHD Com ID	99410	260	RMI	1.85		
Orainage Area	4.37		Yield (cfs/mi²)	0.01137		
Q ₇₋₁₀ Flow (cfs) Elevation (ft)	.0497 993		Q ₇₋₁₀ Basis Slope (ft/ft)	USGS Streamstats Regression Analysis		
Natershed No.	19-C		Chapter 93 Class.	WWF		
Existing Use			Existing Use Qualifier	******		
Exceptions to Use			Exceptions to Criteria			
Assessment Status	·	Attaining Use(s)		-		
Cause(s) of Impair		· ····································				
Source(s) of Impair						
TMDL Status			Name			
Background/Ambie pH (SU)	nt Data	8.0	Data Source 3/12/2020 Stream Sample dir Reservoir	ectly above Mine No. 60		
Temperature (°C)		25	Default (WWF)			
Hardness (mg/L)		443	3/12/2020 Stream Sample directly above Mine No. 60 Reservoir 3/12/2020 Stream Sample directly above Mine No. 60			
Other: NH ₃ -N		< 0.02	Reservoir	ectly above willle No. 60		
Nearest Downstrea	ım Publi	c Water Supply Intake	PA American Water Company	y - Aldrich Station		
PWS Waters Monongahela River			Flow at Intake (cfs)	550		
PWS Waters	iviononga	ariela Rivei	_ I low at ilitane (cis)	330		

Changes Since Last Permit Issuance:

Other Comments:

Treatment Facility Name: Somerset Portal STP
--

WQM Permit No.	Issuance Date
467S050 T-2	9/8/2016
467S050 T-1	10/27/1993
467S050	1/15/1968

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary with NH3-N	Septic Tank Sand Filter		
Sewage	removal	W/Sol Removal	Hypochlorite	0.00972

Treatment Facility Summary

Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
				Hauled offsite by
0.00972	16.2	Not Overloaded	Septic Tank	septic hauler

Changes Since Last Permit Issuance: the application indicated that the permittee had installed a dechlorination unit without a WQM Permit Amendment. To come into compliance, the permittee must apply for and receive a WQM Permit Amendment. A WQM Permit application has not been submitted to date (4/30/2021).

Other Comments: Organic capacity was previously calculated using the following equation:

0.0097 mgd x 8.345 x 200 mg/l = 16.2 lbs/day

	Compliance History
Summary of DMRs:	A DMR review done during the 2/2/2021 inspection did not find any effluent violations at that time.
Summary of Inspections:	 The last site inspection was conducted on 2/2/21. The inspection report found the plant to be well maintained and in good working order. Sludge records were not available onsite at the inspection. Recommendations included: Calibration records need to be maintained for pH, DO, and TRC. Daily log, repair log, and routine maintenance logs need to be maintained. Please add visual observations, any process adjustments, or any problems or concerns to the daily log. Sludge removal records need to be kept on-site and retained for at least five years. The report also requested that the on-site lab needs registered with DEP Bureau of Labs and make sure Standard Laboratories is also registered with PA DEP. I will need both PA DEP Lab ID numbers.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from March 1, 2020 to February 28, 2021)

Parameter	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20
Flow (MGD)				0.00080	0.00080							
Average Monthly		0.00070	0.00060	0	0		0.00180		0.00010	0.00200	0.00480	0.00500
pH (S.U.)												
Minimum		7.5	8.0	7.9	7.26		7.38		7.85	6.98	6.86	6.81
pH (S.U.)												
Maximum		7.7	8.0	7.9	7.26		7.38		8.85	8.33	8.53	8.47
DO (mg/L)												
Minimum		9.4	9.0	8.1	8.4		8.1		8.6	6.7	7.5	8.8
TRC (mg/L)												
Average Monthly		0.048	0.0225	0.02	0.05		0.02		0.02	0.02	0.01	0.04
TRC (mg/L)												
Instantaneous												
Maximum		0.08	0.025	0.02	0.05		0.02		0.03	0.06	0.09	0.32
CBOD5 (mg/L)												
Average Monthly		1.19	1.39	1.24	2.48		Е		5.3	< 2.0	< 4.4	< 2.0
CBOD5 (mg/L)												
Instantaneous												
Maximum		1.19	1.39	1.24	2.48		Е		5.3	< 2.0	< 6.8	< 2.0
TSS (mg/L)												
Average Monthly		< 3.0	< 3.0	< 3.0	< 3.0		Е		10.0	< 3.0	< 3.0	< 3.0
TSS (mg/L)												
Instantaneous												
Maximum		< 3.0	< 3.0	< 3.0	< 3.0		Е		10.0	< 3.0	< 3.0	< 3.0
Fecal Coliform												
(No./100 ml)												
Average Monthly		< 1.0	< 1.0	< 1.0	< 1.0		Е		< 1	< 1.0	< 1	< 1.0
Fecal Coliform												
(No./100 ml)												
Instantaneous												
Maximum		< 1.0	< 1.0	< 1.0	< 1.0		E		< 1	< 1.0	< 1	< 1.0
Total Nitrogen (mg/L)												
Daily Maximum			< 3.87									
Ammonia (mg/L)												
Average Monthly		< 0.15	0.21	< 0.15	< 0.15		Е		< 0.15	< 0.15	< 0.15	< 1.415
Ammonia (mg/L)												
Instantaneous												
Maximum		< 0.15	0.21	< 0.15	< 0.15		Е		< 0.15	< 0.15	< 0.15	2.66
Total Phosphorus												
(mg/L)												
Daily Maximum			0.240									

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	0.00972			
Latitude	40° 7' 38.00"	Longitude	-80° 3' 37.00"			
Wastewater [Description: Sewage Effluent		_			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Ammonia Nitrogen	3.0	Average Monthly	WQM 7.0 Ver. 1.1
Total Residual Chlorine	0.49	Average Monthly	TRC Calc Spreadsheet
Total Residual Chlorine	1.6	IMAX	TRC Calc Spreadsheet

Comments: A seasonal multiplier of "3" is applied to ammonia nitrogen limits in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

The calculated ammonia nitrogen WQBELs are significantly more stringent than the previously calculated limits, mainly due to the revised stream flow, calculated discharge and stream pH, and new water quality criteria. Based on a review of eDMRs, the permittee should be able to meet the new limits consistently when the permit is renewed.

Best Professional Judgment (BPJ) Limitations

N/A

Additional Considerations

Monitoring for E. Coli, total nitrogen, and total phosphorus will be placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits."

Monitoring for D.O. will be placed in the permit instead of a limit of a minimum of 4.0 mg/l due to the type of treatment used (septic tank/sand filter).

Anti-Backsliding

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Flow (MGD)	Report	xxx	xxx	XXX	xxx	xxx	2/month	Measured
			6.0		9.0			
pH (S.U.)	XXX	XXX	Daily Min	XXX	Daily Max	XXX	1/day	Grab
			Report					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	2/month	Grab
TRC	XXX	XXX	XXX	0.49	XXX	1.6	1/day	Grab
CBOD5	XXX	XXX	XXX	25.0	XXX	50	2/month	Grab
TSS	XXX	XXX	XXX	30.0	XXX	60	2/month	Grab
Fecal Coliform (No./100 ml)	1			2000				
Oct 1 - Apr 30 `	XXX	XXX	XXX	Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
				Report				
Total Nitrogen	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab
Ammonia								_
Nov 1 - Apr 30	XXX	XXX	XXX	9.0	XXX	18.0	2/month	Grab
Ammonia	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2007	2007		2000			
May 1 - Oct 31	XXX	XXX	XXX	3.0	XXX	6.0	2/month	Grab
Total Dhasahama	VVV	VVV	VVV	Report	VVV	VVV	4 /	Onak
Total Phosphorus	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Grab

Compliance Sampling Location: Outfall 001 (after disinfection)

Input Data WQM 7.0

	SWP Basin	Strea		Stre	am Nam	e	RMI	Eleva		Drainage Area (sq mi)	Slop (ft/ft	With	WS drawal ngd)	Apply FC
	19C	397	723 CENTI	ER BRAN	CH PIGE	ON CREEK	1.85	50 9	93.00	4.37	7 0.000	000	0.00	✓
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	_ Temp	<u>Tributary</u> o pH	-	<u>Strea</u> Temp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)			(°C)		
Q7-10 Q1-10 Q30-10	0.011	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000)	0.00	0.00	25	.00 8	.00	0.00	0.00	
						Discharge [Data							
			Name	Per	mit Numb	Disc	Permitte Disc Flow (mgd)	ed Desigr Disc Flow (mgd)	Rese Fac	erve Te stor	sc mp C)	Disc pH		
		Some	erset Portal	PAC	0001350	0.0097	7 0.000	0.00	00 0	.000	20.00	8.10		
						Parameter I	Data							
			F	Parameter	r Name		onc C	Conc (tream Conc	Fate Coef				
	_					(m	g/L) (n	ng/L) (ı	mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	7.54	0.00	0.00				
			NH3-N			í	25.00	0.02	0.00	0.70				

Input Data WQM 7.0

	SWP Basir	10700000		Stre	eam Nam	е	RMI		evation (ft)	Drainage Area (sq mi)	Slop (ft/f	With	NS drawal ngd)	Apply FC
	19C	397	723 CENT	ER BRAN	ICH PIGE	ON CREEK	0.0	01	966.00	6.8	34 0.00	0000	0.00	✓
						Stream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> np p	Н	<u>Strea</u> Temp	m pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	:)		(°C)		
Q7-10 Q1-10 Q30-10	0.011	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000)	0.00	0.0	00 2	5.00	8.00	0.00	0.00	
						Discharge I	Data							
			Name	Per	rmit Numl	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Res	erve T ctor	Disc emp (°C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	25.00	7.00		
						Parameter I	Data							
			1	Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
			*	1 WALLAND BANGER COM	a questionistation	(m	g/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			į	25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	m Code				Stream	<u>Name</u>			
		19C	3	9723		CI	ENTER B	RANCH	PIGEON	CREEK		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
1.850	0.05	0.00	0.05	.015	0.00277	.343	6.05	17.68	0.03	3.619	23.84	8.02
Q1-1	0 Flow											
1.850	0.03	0.00	0.03	.015	0.00277	NA	NA	NA	0.03	4.338	23.40	8.03
Q30-	10 Flow	,										
1.850	0.07	0.00	0.07	.015	0.00277	NA	NA	NA	0.04	3.157	24.09	8.02

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Wednesday, May 12, 2021 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19C	39723	CENTER BRANCH PIGEON CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
1.85	0 Somerset Portal	2.79	8.64	2.79	8.64	0	0
H3-N (Chronic Allocati	ons					
H3-N (Chronic Allocati	ons Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBC	DD5	<u>NH</u>	<u>3-N</u>	Dissolved	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
1.85	Somerset Portal	25	25	3.11	3.11	4	4	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	SWP Basin Stream Code			Stream Name	
19C	39723		CENTER	BRANCH PIGEON CRI	EEK
<u>RMI</u>	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C)	Analysis pH
1.850	0.010	0.010		23.839	8.021
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
6.054	0.343	3		17.676	0.031
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
7.34	0.30	\$11		0.74	0.941
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
6.718	16.90	8		Owens	5
Reach Travel Time (days)		Subreach	Results		
3.619	Tra∨Time	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.362	6.45	0.53	7.54	
	0.724	5.66	0.37	7.54	
	1.086	4.97	0.27	7.54	
	1.448	4.36	0.19	7.54	
	1.810	3.83	0.13	7.54	
	2.172	3.36	0.10	7.54	
	2.534	2.95	0.07	7.54	
	2.896	2.59	0.05	7.54	
	3.258	2.28	0.03	7.54	
	3.619	2.00	0.02	7.54	

WQM 7.0 Effluent Limits

	<u>'Code</u> '23	CE	<u>Stream Nam</u> NTER BRANCH PIGE			
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Somerset Portal	PA0001350	0.010	CBOD5	25		
			NH3-N	3.11	6.22	
			Dissolved Oxygen			4
	Name	Name Permit Number	Disc Name Permit Flow Number (mgd)	Name Permit Flow (mgd) Parameter Somerset Portal PA0001350 0.010 CBOD5 NH3-N	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Somerset Portal PA0001350 0.010 CBOD5 25 NH3-N 3.11	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Somerset Portal PA0001350 0.010 CBOD5 25 NH3-N 3.11 6.22

1A	В	С	D	Е	F	G
2	TRC EVALU	ATION		Somer	set Portal S	ГР
3		CONTRACTOR DESCRIPTION OF A PARTY	B4:B8 and E4:E7			
4		= Q stream (N57/		= CV Daily	
5	16/0/10/00/00/00/00/00/00/00/00/00/00/00/0	= Q discharg		10000000	= CV Hourly	
6		= no. sample			= AFC_Partial N	
7	1000000	A CONTRACTOR OF THE	emand of Stream	140	= CFC_Partial N	
8			emand of Discharge		(A)	Compliance Time (min)
9		= BAT/BPJ V	THE STATE OF THE S		17 20 20 10 17 17 17 17	Compliance Time (min)
10	Source	Reference	of Safety (FOS) AFC Calculations	U	=Decay Coeffic Reference	CFC Calculations
11	TRC	1.3.2.iii	WLA afc =	1.073	1.3.2.iii	WLA cfc = 1.039
040000	PENTOXSD TRG	1505/F05.00-02564	LTAMULT afc =	0.00000 (0.0)	5.1c	LTAMULT cfc = 0.581
	PENTOXSD TRO	The state of the s	LTA afc=	THE DESCRIPTION	5.1d	LTA cfc = 0.604
14		12 122 22	Ţ.		10 de 10 com	-
15	Source		Effluent	Limit Cald	culations	
	PENTOXSD TRG			L MULT =		
	PENTOXSD TRG	5.1g	AVG MON LIMI	22 SEA 2011		AFC
18			INST MAX LIMI	T (mg/l) =	1.610	
	WLA afc	(70)	FC_tc)) + [(AFC_Yc*Q C_Yc*Qs*Xs/Qd)]*(1-F		d*e(-k*AFC_tc)).	
	LTAMULT afc	97.0	(cvh^2+1))-2.326*LN(0.00	^0.5)	
	LTA_afc	wla_afc*LTA	Annual transfer to the contract of the contrac		aseruates . ₽6	
	WLA_cfc	PRODUCE FROM SECTION STORE STORE	FC_tc) + [(CFC_Yc*Q		l*e(-k*CFC_tc)).	•••
		Accessor to the contract of the contract of	C_Yc*Qs*Xs/Qd)]*(1-l		N/ 180/	
	LTAMULT_cfc LTA_cfc	wla cfc*LTA	(cvd^2/no_samples+1))-2.326^L	_N(cvd^2/no_sai	mpies+1)^U.5)
	LIM_CIC	wia_cic=LTA	MOET_CIC			
	AML MULT	EXP(2.326*L	N((cvd^2/no_samples	+1)^0.5)-	0.5*LN(cvd^2/nc	o_samples+1))
	AVG MON LIMIT		J,MIN(LTA_afc,LTA_c			
	INST MAX LIMIT		n_limit/AML_MULT)/L		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	