



|                  |                             |
|------------------|-----------------------------|
| Application Type | <u>Amendment,<br/>Major</u> |
| Facility Type    | <u>Industrial</u>           |
| Major / Minor    | <u>Minor</u>                |

**NPDES PERMIT FACT SHEET  
INDIVIDUAL INDUSTRIAL WASTE (IW)  
AND IW STORMWATER**

|                  |                      |
|------------------|----------------------|
| Application No.  | <b>PA0001937 A-2</b> |
| APS ID           | <b>1123667</b>       |
| Authorization ID | <b>1502921</b>       |

**Applicant and Facility Information**

|                           |                                                                                             |                  |                                    |
|---------------------------|---------------------------------------------------------------------------------------------|------------------|------------------------------------|
| Applicant Name            | <b>Pennsylvania Transformer Technology, LLC</b>                                             | Facility Name    | <b>Canonsburg Plant</b>            |
| Applicant Address         | 30 Curry Avenue                                                                             | Facility Address | 30 Curry Avenue                    |
|                           | Canonsburg, PA 15317-1786                                                                   |                  | Canonsburg, PA 15317-0440          |
| Applicant Contact         | Kevin Adams                                                                                 | Facility Contact | ***same as applicant***            |
| Applicant Phone           | (724) 873-2329                                                                              | Facility Phone   | ***same as applicant***            |
| Applicant Email           | <a href="mailto:kadams@patransformer.com">kadams@patransformer.com</a>                      | Facility Email   | ***same as applicant***            |
| Client ID                 | 84104                                                                                       | Site ID          | 241871                             |
| SIC Code                  | 3612, 3613                                                                                  | Municipality     | Cecil Township, Canonsburg Borough |
| SIC Description           | Power, Distribution and Specialty Transformers; Switchgear and Switchboard Apparatus        | County           | Washington                         |
| Date Application Received | October 15, 2024                                                                            | EPA Waived?      | No                                 |
| Date Application Accepted | October 16, 2024                                                                            | If No, Reason    | TMDL                               |
| Purpose of Application    | Modification of water quality-based effluent limits based on site-specific data collection. |                  |                                    |

**Summary of Review**

On October 15, 2024, on behalf of Pennsylvania Transformer Technology, LLC (PTT), GES, Inc. submitted an application to amend NPDES Permit PA0001937 for discharges from PTT's Canonsburg Plant. On February 16, 2021, DEP renewed PA0001937 (2021 Permit) and included a schedule of compliance for new water quality-based effluent limitations (WQBELs) because PTT was not expected to achieve the new WQBELs on the effective date of the permit. Among other things, the 2021 Permit required PTT to collect site-specific data for the following: discharge pollutant concentration coefficients of variability, discharge and background Total Hardness concentrations, background / ambient pollutant concentrations, chemical translators, the slope and width of the receiving waters, the velocity of the receiving waters, the acute and chronic partial mix factors, and volatilization rates. The permit also required PTT to perform a Toxics Reduction Evaluation (TRE) including identification of the sources of toxic pollutants in the effluent (those subject to new WQBELs), an evaluation of methods to reduce or eliminate those sources to comply with the new WQBELs and the feasibility of those methods, and an evaluation of options for treatment to achieve the new WQBELs and the feasibility of those treatment options.

Pursuant to the requirements of the 2021 Permit, PTT's amendment application was accompanied by a WQBEL Compliance Report summarizing the findings of both the site-specific data collection and the TRE. The report also included all supporting data and calculations for the site-specific data summary.

DEP has reviewed the WQBEL Compliance Report and has modified WQBELs and/or water quality-based reporting requirements for Outfalls 001, 002, 003, 004, 005, 006, and Internal Monitoring Points 102 and 104 based on PTT's/GES's findings.

Toxics Reduction Evaluation (TRE)

| Approve | Deny | Signatures                                                                  | Date              |
|---------|------|-----------------------------------------------------------------------------|-------------------|
| ✓       |      | Ryan C. Decker<br>Ryan C. Decker, P.E. / Environmental Engineer             | February 28, 2025 |
| X       |      | Michael E. Fifth<br>Michael E. Fifth, P.E. / Environmental Engineer Manager | March 7, 2025     |

### Summary of Review

The WQBEL Compliance Report included a section on the TRE as required by the 2021 Permit. The permit's TRE condition required the following:

The permittee shall conduct a TRE in accordance with DEP's *Water Quality Toxics Management Strategy, Appendix C, Permittee Guidance for Conducting a Toxics Reduction Evaluation (TRE)* (361-0100-003). The permittee shall investigate and address the following as part of the TRE:

1. The source(s) of the toxic pollutants in the effluent through a comprehensive review of influent and effluent quality and contributors to the facility, if applicable.
2. An evaluation of approaches and strategies that exist to reduce or eliminate sources in order to achieve the final WQBELs.
3. An evaluation of approaches and strategies that exist to provide treatment to achieve the final WQBELs.
4. An analysis of the feasibility of the approaches and strategies identified in paragraphs 2 and 3, above.

The permittee shall develop a TRE work plan and submit the work plan to DEP for review and comment when requested by DEP. DEP's approval of the work plan is not necessary prior to commencing the TRE.

PTT's TRE in the WQBEL Compliance Report concludes, among other things, the following:

- Groundwater is sampled and reported on a semi-annual basis to continue evaluating the dissolved phase hydrocarbon plumes.
- Targeted removal/reduction efforts have been limited and are largely impractical because affected groundwater spans a relatively large area beneath current facility buildings and because challenging geology and hydrogeology limits available recovery options.
- Affected groundwater is currently treated and discharged through various systems across the facility as a method of source control rather than source reduction.
- PTT revisited previously proposed methods of source elimination such as segregation of storm water and impacted groundwater prior to combination inside the storm water conveyance system beneath the facility and modifications to existing pump and treat systems. Combining groundwater and storm water inside the storm water conveyance system beneath the facility remains unfeasible due to physical/geological constraints and cost effectiveness.
- Evaluation and approaches to eliminate historical impacted groundwater sources is ongoing as various constituents, from multiple locations across the facility, likely requiring different remedial technologies, must be considered.

With respect to the last item above and pursuant to the December 4, 2020 First Amendment to the Consent Order and Agreement entered into by DEP and PTT, PTT is currently implementing the following actions:

- Evaluation of light non-aqueous phase liquids (LNAPL) within the abandoned/former tank farm including a proposed LNAPL Recovery System. The recovery system will operate for a period of six months to evaluate the effectiveness of the planned remedy.
- Evaluation of the unnamed tributary passing through the facility with respects to tetrachloroethene (PCE). The purpose of the investigation is to determine the source of PCE within the system.
- Evaluation for operation of recovery wells in the area of the guardhouse. The operation of the recovery wells will evaluate the effectiveness of treatment for the dissolved phase hydrocarbon plume which discharges to Chartiers Creek.

PTT anticipates that it will be able to comply with most of the modified WQBELs (including those for which compliance will continue to be evaluated by reporting non-detect values at the level of DEP's Target QLs and those that will be above Target QLs) except for the modified WQBELs for benzo(a)anthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, and bis(2-

**Summary of Review**

ethylhexyl)phthalate at Internal Monitoring Point 102, which is the monitoring point for overflows from Sump 001B. The WQBEL Compliance Report states that PTT will continue to evaluate potential options to manage overflow water consistent with the COA.

Since TRE-related projects have not concluded, the amended permit will continue to require PTT to conduct TRE activities and to submit a report of ongoing and completed TRE activities with the NPDES permit renewal application.

To the extent that PTT expects ongoing non-compliance with the requirements of the amended permit, the First Amendment to the COA addresses the anticipated non-compliance which enables DEP to take an action on the permit. PTT's obligations under the Consent Order and Agreement, as amended, terminate on December 31, 2027.

**Public Participation**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Discharge, Receiving Waters and Water Supply Information                 |                                                 |                              |                                               |
|--------------------------------------------------------------------------|-------------------------------------------------|------------------------------|-----------------------------------------------|
| Outfall No.                                                              | 001                                             | Design Flow (MGD)            | 0.72                                          |
| Latitude                                                                 | 40° 16' 0"                                      | Longitude                    | 80° 10' 20"                                   |
| Quad Name                                                                | Canonsburg                                      | Quad Code                    | 1604                                          |
| Wastewater Description: Treated contaminated groundwater and storm water |                                                 |                              |                                               |
| Receiving Waters                                                         | Chartiers Creek                                 | Stream Code                  | 36777                                         |
| NHD Com ID                                                               | 134396089                                       | RMI                          | 27.59                                         |
| Drainage Area                                                            | 87                                              | Yield (cfs/mi <sup>2</sup> ) |                                               |
| Q <sub>7-10</sub> Flow (cfs)                                             | 2.00                                            | Q <sub>7-10</sub> Basis      | USGS StreamStats                              |
| Elevation (ft)                                                           | 916                                             | Slope (ft/ft)                | 0.002                                         |
| Watershed No.                                                            | 20F                                             | Chapter 93 Class.            |                                               |
| Existing Use                                                             | WWF                                             | Existing Use Qualifier       |                                               |
| Exceptions to Use                                                        |                                                 | Exceptions to Criteria       |                                               |
| Assessment Status                                                        | Impaired                                        |                              |                                               |
| Cause(s) of Impairment                                                   | Pathogens; PCB; Turbidity, Nutrients, Siltation |                              |                                               |
| Source(s) of Impairment                                                  | Unknown; Habitat Modification                   |                              |                                               |
| TMDL Status                                                              | Final04/09/2001,<br>Final04/09/2003             | Name                         | Chartiers Creek,<br>Chartiers Creek Watershed |
| Nearest Downstream Public Water Supply Intake                            | West View Borough Municipal Authority           |                              |                                               |
| PWS Waters                                                               | Ohio River                                      | Flow at Intake (cfs)         |                                               |
| PWS RMI                                                                  | 4.9                                             | Distance from Outfall (mi)   | approx. 30                                    |

| Discharge, Receiving Waters and Water Supply Information |                                                                                                                                                                                           |                              |                                               |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------|
| Outfall No.                                              | 002                                                                                                                                                                                       | Design Flow (MGD)            | Variable; 0.066 (estimate)                    |
| Latitude                                                 | 40° 16' 15"                                                                                                                                                                               | Longitude                    | 80° 10' 08"                                   |
| Quad Name                                                | Canonsburg                                                                                                                                                                                | Quad Code                    | 1604                                          |
| Wastewater Description:                                  | Contaminated groundwater and storm water overflows from Sump 001B (IMP 102) and contaminated groundwater, uncontaminated storm water from roof drains, and fire line leakage from IMP 202 |                              |                                               |
| Receiving Waters                                         | Unnamed trib. to Chartiers Creek                                                                                                                                                          | Stream Code                  | None                                          |
| NHD Com ID                                               |                                                                                                                                                                                           | RMI                          |                                               |
| Drainage Area                                            | 87.5                                                                                                                                                                                      | Yield (cfs/mi <sup>2</sup> ) |                                               |
| Q <sub>7-10</sub> Flow (cfs)                             | 2.00                                                                                                                                                                                      | Q <sub>7-10</sub> Basis      | USGS StreamStats                              |
| Elevation (ft)                                           | 913.9                                                                                                                                                                                     | Slope (ft/ft)                | 0.002                                         |
| Watershed No.                                            | 20F                                                                                                                                                                                       | Chapter 93 Class.            |                                               |
| Existing Use                                             | WWF                                                                                                                                                                                       | Existing Use Qualifier       |                                               |
| Exceptions to Use                                        |                                                                                                                                                                                           | Exceptions to Criteria       |                                               |
| Assessment Status                                        | Impaired                                                                                                                                                                                  |                              |                                               |
| Cause(s) of Impairment                                   | Pathogens; PCB; Turbidity, Nutrients, Siltation                                                                                                                                           |                              |                                               |
| Source(s) of Impairment                                  | Unknown; Habitat Modification                                                                                                                                                             |                              |                                               |
| TMDL Status                                              | Final04/09/2001,<br>Final04/09/2003                                                                                                                                                       | Name                         | Chartiers Creek,<br>Chartiers Creek Watershed |
| Nearest Downstream Public Water Supply Intake            | West View Borough Municipal Authority                                                                                                                                                     |                              |                                               |
| PWS Waters                                               | Ohio River                                                                                                                                                                                | Flow at Intake (cfs)         |                                               |
| PWS RMI                                                  | 4.9                                                                                                                                                                                       | Distance from Outfall (mi)   | approx. 30                                    |

| Discharge, Receiving Waters and Water Supply Information |                                                                                   |                   |       |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|-------|
| IMP No.                                                  | 102                                                                               | Design Flow (MGD) | 0.025 |
| Latitude                                                 | o ' "                                                                             | Longitude         | o ' " |
| Quad Name                                                | Canonsburg                                                                        | Quad Code         | 1604  |
| Wastewater Description:                                  | Overflows of contaminated groundwater and contaminated storm water from Sump 001B |                   |       |
| Receiving Waters                                         | Unnamed trib. to Chartiers Creek through Outfall 002                              | Stream Code       | 37035 |

| Discharge, Receiving Waters and Water Supply Information |                                                                                             |                   |          |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|----------|
| IMP No.                                                  | 202                                                                                         | Design Flow (MGD) | Variable |
| Latitude                                                 | o ' "                                                                                       | Longitude         | o ' "    |
| Quad Name                                                | Canonsburg                                                                                  | Quad Code         | 1604     |
| Wastewater Description:                                  | Contaminated groundwater, uncontaminated storm water from roof drains and fire line leakage |                   |          |
| Receiving Waters                                         | Unnamed trib. to Chartiers Creek through Outfall 002                                        | Stream Code       | 37035    |

| Discharge, Receiving Waters and Water Supply Information |                                                                                                                                                     |                              |                                               |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------|
| Outfall No.                                              | 003                                                                                                                                                 | Design Flow (MGD)            | 0.0144                                        |
| Latitude                                                 | 40° 16' 00"                                                                                                                                         | Longitude                    | 80° 10' 20"                                   |
| Quad Name                                                | Canonsburg                                                                                                                                          | Quad Code                    | 1604                                          |
| Wastewater Description:                                  | Treated contaminated groundwater and storm water runoff from the Building 20/25<br>Groundwater Recovery System and Tank Farm Area Collection System |                              |                                               |
| Receiving Waters                                         | Chartiers Creek                                                                                                                                     | Stream Code                  | 36777                                         |
| NHD Com ID                                               | 134396089                                                                                                                                           | RMI                          | 27.59                                         |
| Drainage Area                                            | 87                                                                                                                                                  | Yield (cfs/mi <sup>2</sup> ) |                                               |
| Q <sub>7-10</sub> Flow (cfs)                             | 2.00                                                                                                                                                | Q <sub>7-10</sub> Basis      | USGS StreamStats                              |
| Elevation (ft)                                           | 916                                                                                                                                                 | Slope (ft/ft)                | 0.002                                         |
| Watershed No.                                            | 20F                                                                                                                                                 | Chapter 93 Class.            |                                               |
| Existing Use                                             | WWF                                                                                                                                                 | Existing Use Qualifier       |                                               |
| Exceptions to Use                                        |                                                                                                                                                     | Exceptions to Criteria       |                                               |
| Assessment Status                                        | Impaired                                                                                                                                            |                              |                                               |
| Cause(s) of Impairment                                   | Pathogens; PCB; Turbidity, Nutrients, Siltation                                                                                                     |                              |                                               |
| Source(s) of Impairment                                  | Unknown; Habitat Modification                                                                                                                       |                              |                                               |
| TMDL Status                                              | Final04/09/2001,<br>Final04/09/2003                                                                                                                 | Name                         | Chartiers Creek,<br>Chartiers Creek Watershed |
| Nearest Downstream Public Water Supply Intake            | West View Borough Municipal Authority                                                                                                               |                              |                                               |
| PWS Waters                                               | Ohio River                                                                                                                                          | Flow at Intake (cfs)         |                                               |
| PWS RMI                                                  | 4.9                                                                                                                                                 | Distance from Outfall (mi)   | approx. 30                                    |

| Discharge, Receiving Waters and Water Supply Information |                                                                                                          |                              |                                               |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------|
| Outfall No.                                              | 004                                                                                                      | Design Flow (MGD)            | Variable; 0.096 (estimate)                    |
| Latitude                                                 | 40° 16' 00"                                                                                              | Longitude                    | 80° 10' 20"                                   |
| Quad Name                                                | Canonsburg                                                                                               | Quad Code                    | 1604                                          |
| Wastewater Description:                                  | Contaminated groundwater and storm water overflows from Sump 001A (IMP 104) and storm water from IMP 204 |                              |                                               |
| Receiving Waters                                         | Chartiers Creek                                                                                          | Stream Code                  | 36777                                         |
| NHD Com ID                                               | 134396089                                                                                                | RMI                          | 27.59                                         |
| Drainage Area                                            | 87                                                                                                       | Yield (cfs/mi <sup>2</sup> ) |                                               |
| Q <sub>7-10</sub> Flow (cfs)                             | 2.00                                                                                                     | Q <sub>7-10</sub> Basis      | USGS StreamStats                              |
| Elevation (ft)                                           | 916                                                                                                      | Slope (ft/ft)                | 0.002                                         |
| Watershed No.                                            | 20F                                                                                                      | Chapter 93 Class.            |                                               |
| Existing Use                                             | WWF                                                                                                      | Existing Use Qualifier       |                                               |
| Exceptions to Use                                        |                                                                                                          | Exceptions to Criteria       |                                               |
| Assessment Status                                        | Impaired                                                                                                 |                              |                                               |
| Cause(s) of Impairment                                   | Pathogens; PCB; Turbidity, Nutrients, Siltation                                                          |                              |                                               |
| Source(s) of Impairment                                  | Unknown; Habitat Modification                                                                            |                              |                                               |
| TMDL Status                                              | Final04/09/2001,<br>Final04/09/2003                                                                      | Name                         | Chartiers Creek,<br>Chartiers Creek Watershed |
| Nearest Downstream Public Water Supply Intake            | West View Borough Municipal Authority                                                                    |                              |                                               |
| PWS Waters                                               | Ohio River                                                                                               | Flow at Intake (cfs)         |                                               |
| PWS RMI                                                  | 4.9                                                                                                      | Distance from Outfall (mi)   | approx. 30                                    |

| Discharge, Receiving Waters and Water Supply Information |                                                                                   |                   |       |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------|-------|
| IMP No.                                                  | 104                                                                               | Design Flow (MGD) | 0.032 |
| Latitude                                                 | o ' "                                                                             | Longitude         | o ' " |
| Quad Name                                                | Canonsburg                                                                        | Quad Code         | 1604  |
| Wastewater Description:                                  | Overflows of contaminated groundwater and contaminated storm water from Sump 001A |                   |       |
| Receiving Waters                                         | Chartiers Creek through Outfall 004                                               | Stream Code       | 36777 |

| Discharge, Receiving Waters and Water Supply Information |                                                           |                   |          |
|----------------------------------------------------------|-----------------------------------------------------------|-------------------|----------|
| IMP No.                                                  | 204                                                       | Design Flow (MGD) | Variable |
| Latitude                                                 | o ' "                                                     | Longitude         | o ' "    |
| Quad Name                                                | Canonsburg                                                | Quad Code         | 1604     |
| Wastewater Description:                                  | Contaminated groundwater and storm water from roof drains |                   |          |
| Receiving Waters                                         | Chartiers Creek through Outfall 004                       | Stream Code       | 36777    |

| Discharge, Receiving Waters and Water Supply Information                            |                                                 |                              |                                               |
|-------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------|-----------------------------------------------|
| Outfall No.                                                                         | 005                                             | Design Flow (MGD)            | Variable                                      |
| Latitude                                                                            | 40° 16' 07"                                     | Longitude                    | 80° 10' 05"                                   |
| Quad Name                                                                           | Canonsburg                                      | Quad Code                    | 1604                                          |
| Wastewater Description: Storm water runoff from the parking lots and surface runoff |                                                 |                              |                                               |
| Receiving Waters                                                                    | Chartiers Creek                                 | Stream Code                  | 36777                                         |
| NHD Com ID                                                                          | 134396089                                       | RMI                          | 27.13                                         |
| Drainage Area                                                                       | 87.5                                            | Yield (cfs/mi <sup>2</sup> ) |                                               |
| Q <sub>7-10</sub> Flow (cfs)                                                        | 2.00                                            | Q <sub>7-10</sub> Basis      | USGS StreamStats                              |
| Elevation (ft)                                                                      |                                                 | Slope (ft/ft)                | 0.002                                         |
| Watershed No.                                                                       | 20F                                             | Chapter 93 Class.            |                                               |
| Existing Use                                                                        | WWF                                             | Existing Use Qualifier       |                                               |
| Exceptions to Use                                                                   |                                                 | Exceptions to Criteria       |                                               |
| Assessment Status                                                                   | Impaired                                        |                              |                                               |
| Cause(s) of Impairment                                                              | Pathogens; PCB; Turbidity, Nutrients, Siltation |                              |                                               |
| Source(s) of Impairment                                                             | Unknown; Habitat Modification                   |                              |                                               |
| TMDL Status                                                                         | Final04/09/2001,<br>Final04/09/2003             | Name                         | Chartiers Creek,<br>Chartiers Creek Watershed |
| Nearest Downstream Public Water Supply Intake                                       | West View Borough Municipal Authority           |                              |                                               |
| PWS Waters                                                                          | Ohio River                                      | Flow at Intake (cfs)         |                                               |
| PWS RMI                                                                             | 4.9                                             | Distance from Outfall (mi)   | approx. 30                                    |

| Discharge, Receiving Waters and Water Supply Information |                                                                                                                               |                              |                                               |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------|
| Outfall No.                                              | 006                                                                                                                           | Design Flow (MGD)            | 0.288                                         |
| Latitude                                                 | 40° 16' 00"                                                                                                                   | Longitude                    | 80° 10' 14"                                   |
| Quad Name                                                | Canonsburg                                                                                                                    | Quad Code                    | 1604                                          |
| Wastewater Description:                                  | Contaminated groundwater infiltration into the Abandoned Sanitary Sewer System and from the Guardhouse Seep Extraction System |                              |                                               |
| Receiving Waters                                         | Chartiers Creek                                                                                                               | Stream Code                  | 36777                                         |
| NHD Com ID                                               | 134396089                                                                                                                     | RMI                          | 27.59                                         |
| Drainage Area                                            | 87                                                                                                                            | Yield (cfs/mi <sup>2</sup> ) |                                               |
| Q <sub>7-10</sub> Flow (cfs)                             | 2.00                                                                                                                          | Q <sub>7-10</sub> Basis      | USGS StreamStats                              |
| Elevation (ft)                                           |                                                                                                                               | Slope (ft/ft)                | 0.002                                         |
| Watershed No.                                            | 20F                                                                                                                           | Chapter 93 Class.            |                                               |
| Existing Use                                             | WWF                                                                                                                           | Existing Use Qualifier       |                                               |
| Exceptions to Use                                        |                                                                                                                               | Exceptions to Criteria       |                                               |
| Assessment Status                                        | Impaired                                                                                                                      |                              |                                               |
| Cause(s) of Impairment                                   | Pathogens; PCB; Turbidity, Nutrients, Siltation                                                                               |                              |                                               |
| Source(s) of Impairment                                  | Unknown; Habitat Modification                                                                                                 |                              |                                               |
| TMDL Status                                              | Final04/09/2001,<br>Final04/09/2003                                                                                           | Name                         | Chartiers Creek,<br>Chartiers Creek Watershed |
| Nearest Downstream Public Water Supply Intake            | West View Borough Municipal Authority                                                                                         |                              |                                               |
| PWS Waters                                               | Ohio River                                                                                                                    | Flow at Intake (cfs)         |                                               |
| PWS RMI                                                  | 4.9                                                                                                                           | Distance from Outfall (mi)   | approx. 30                                    |

**Compliance History****Effluent Violations for Outfall 001, from: February 1, 2024 To: December 31, 2024**

| Parameter         | Date     | SBC       | DMR Value | Units | Limit Value | Units |
|-------------------|----------|-----------|-----------|-------|-------------|-------|
| Trichloroethylene | 08/31/24 | Avg Mo    | < 6.45    | ug/L  | 5.0         | ug/L  |
| Trichloroethylene | 08/31/24 | Daily Max | 12.4      | ug/L  | 10.0        | ug/L  |

**Effluent Violations for Outfall 002, from: February 1, 2024 To: December 31, 2024**

| Parameter           | Date     | SBC       | DMR Value | Units | Limit Value | Units |
|---------------------|----------|-----------|-----------|-------|-------------|-------|
| Hexavalent Chromium | 04/30/24 | Avg Mo    | < 22.5    | ug/L  | 20.6        | ug/L  |
| Total Lead          | 04/30/24 | Avg Mo    | < 7.77    | ug/L  | 6.32        | ug/L  |
| Total Lead          | 04/30/24 | Daily Max | < 18.00   | ug/L  | 9.86        | ug/L  |
| Tetrachloroethylene | 09/30/24 | Avg Mo    | 10.80     | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 05/31/24 | Avg Mo    | 6.69      | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 03/31/24 | Avg Mo    | 12.10     | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 04/30/24 | Avg Mo    | 12.20     | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 08/31/24 | Avg Mo    | 6.22      | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 05/31/24 | Avg Mo    | 6.69      | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 03/31/24 | Daily Max | 20.10     | ug/L  | 8.29        | ug/L  |
| Tetrachloroethylene | 09/30/24 | Daily Max | 14.40     | ug/L  | 8.29        | ug/L  |
| Tetrachloroethylene | 05/31/24 | Daily Max | 11.60     | ug/L  | 8.29        | ug/L  |
| Tetrachloroethylene | 04/30/24 | Daily Max | 25.30     | ug/L  | 8.29        | ug/L  |
| Tetrachloroethylene | 02/29/24 | Daily Max | 9.52      | ug/L  | 8.29        | ug/L  |
| Tetrachloroethylene | 05/31/24 | Daily Max | 11.60     | ug/L  | 8.29        | ug/L  |

| Parameter      | Date     | SBC       | DMR Value | Units | Limit Value | Units |
|----------------|----------|-----------|-----------|-------|-------------|-------|
| Vinyl Chloride | 06/30/24 | Avg Mo    | < 1.34    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 03/31/24 | Avg Mo    | 3.90      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 05/31/24 | Avg Mo    | 2.72      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 02/29/24 | Avg Mo    | < 1.28    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 04/30/24 | Avg Mo    | < 2.71    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 10/31/24 | Avg Mo    | < 1.31    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 08/31/24 | Avg Mo    | < 3.94    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 05/31/24 | Avg Mo    | 2.72      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 09/30/24 | Avg Mo    | 9.73      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 07/31/24 | Avg Mo    | < 1.55    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 08/31/24 | Daily Max | 7.08      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 02/29/24 | Daily Max | < 1.91    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 03/31/24 | Daily Max | 6.97      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 05/31/24 | Daily Max | 4.21      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 06/30/24 | Daily Max | < 1.80    | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 10/31/24 | Daily Max | 3.70      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 09/30/24 | Daily Max | 12.4      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 07/31/24 | Daily Max | 3.15      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 05/31/24 | Daily Max | 4.21      | ug/L  | .5          | ug/L  |
| Vinyl Chloride | 04/30/24 | Daily Max | < 6.12    | ug/L  | .5          | ug/L  |

## Effluent Violations for Outfall 102, from: February 1, 2024 To: December 31, 2024

| Parameter         | Date     | SBC       | DMR Value | Units | Limit Value | Units |
|-------------------|----------|-----------|-----------|-------|-------------|-------|
| Oil and Grease    | 05/31/24 | Avg Mo    | < 5.6     | mg/L  | 5.0         | mg/L  |
| Oil and Grease    | 05/31/24 | Avg Mo    | < 5.6     | mg/L  | 5.0         | mg/L  |
| Oil and Grease    | 06/30/24 | Avg Mo    | < 5.2     | mg/L  | 5.0         | mg/L  |
| Oil and Grease    | 07/31/24 | Avg Mo    | < 5.2     | mg/L  | 5.0         | mg/L  |
| Oil and Grease    | 05/31/24 | Daily Max | 10.1      | mg/L  | 10.0        | mg/L  |
| Oil and Grease    | 05/31/24 | Daily Max | 10.1      | mg/L  | 10.0        | mg/L  |
| PCB-1260          | 03/31/24 | Daily Max | < 0.310   | ug/L  | .25         | ug/L  |
| PCB-1260          | 07/31/24 | Daily Max | 0.4500    | ug/L  | .25         | ug/L  |
| Trichloroethylene | 03/31/24 | Avg Mo    | < 5.01    | ug/L  | 5.0         | ug/L  |
| Trichloroethylene | 02/29/24 | Avg Mo    | 7.85      | ug/L  | 5.0         | ug/L  |
| Trichloroethylene | 05/31/24 | Daily Max | 12.0      | ug/L  | 10.0        | ug/L  |
| Trichloroethylene | 05/31/24 | Daily Max | 12.0      | ug/L  | 10.0        | ug/L  |
| Trichloroethylene | 02/29/24 | Daily Max | 15.6      | ug/L  | 10.0        | ug/L  |
| Trichloroethylene | 03/31/24 | Daily Max | < 11.0    | ug/L  | 10.0        | ug/L  |

## Effluent Violations for Outfall 104, from: February 1, 2024 To: December 31, 2024

| Parameter | Date     | SBC       | DMR Value | Units | Limit Value | Units |
|-----------|----------|-----------|-----------|-------|-------------|-------|
| PCB-1260  | 05/31/24 | Avg Mo    | 0.331     | ug/L  | .25         | ug/L  |
| PCB-1260  | 05/31/24 | Avg Mo    | 0.331     | ug/L  | .25         | ug/L  |
| PCB-1260  | 08/31/24 | Daily Max | 0.280     | ug/L  | .25         | ug/L  |
| PCB-1260  | 05/31/24 | Daily Max | 1.00      | ug/L  | .25         | ug/L  |
| PCB-1260  | 06/30/24 | Daily Max | 0.310     | ug/L  | .25         | ug/L  |

| Parameter | Date     | SBC       | DMR Value | Units | Limit Value | Units |
|-----------|----------|-----------|-----------|-------|-------------|-------|
| PCB-1260  | 05/31/24 | Daily Max | 1.00      | ug/L  | .25         | ug/L  |
| PCB-1260  | 07/31/24 | Daily Max | 0.3300    | ug/L  | .25         | ug/L  |

**Effluent Violations for Outfall 202, from: February 1, 2024 To: December 31, 2024**

| Parameter           | Date     | SBC       | DMR Value | Units | Limit Value | Units |
|---------------------|----------|-----------|-----------|-------|-------------|-------|
| Tetrachloroethylene | 03/31/24 | Avg Mo    | < 5.65    | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 04/30/24 | Avg Mo    | 9.22      | ug/L  | 5.32        | ug/L  |
| Tetrachloroethylene | 04/30/24 | Daily Max | 13.1      | ug/L  | 8.29        | ug/L  |
| Tetrachloroethylene | 03/31/24 | Daily Max | < 10.80   | ug/L  | 8.29        | ug/L  |

**Development of Effluent Limitations**

|                                                                                 |            |                          |              |
|---------------------------------------------------------------------------------|------------|--------------------------|--------------|
| <b>Outfall No.</b>                                                              | 001        | <b>Design Flow (MGD)</b> | 0.72         |
| <b>Latitude</b>                                                                 | 40° 16' 0" | <b>Longitude</b>         | -80° 10' 20" |
| <b>Wastewater Description:</b> Treated contaminated groundwater and storm water |            |                          |              |

Under the current permit, Outfall 001 will be subject to the following effluent limitations and monitoring requirements beginning March 1, 2025.

**Table 1. Effluent Limits and Monitoring Requirements Effective March 1, 2025 for Outfall 001**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | 1/day                         | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | 12.5            | 2/month                       | Grab                 |
| Copper, Total              | —               | —             | 18.2                 | 28.4          | 45.5            | 1/week                        | 24-Hr Comp.          |
| Free Available Cyanide     | —               | —             | 11.2                 | 17.5          | 28.0            | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Anthracene         | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Benzo(k)Fluoranthene       | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| 3,4-Benzofluoranthene      | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | 10.6                 | 16.6          | 26.5            | 1/week                        | 24-Hr Comp.          |
| Chrysene                   | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene        | —               | —             | 5.0                  | 9.55          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |
| Trichloroethylene          | —               | —             | 5.0                  | 10.0          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |
| Vinyl Chloride             | —               | —             | 0.222                | 0.346         | 0.555           | 2/month                       | 4 Grabs/24 Hrs       |

Based on site-specific data in PTT's WQBEL Compliance Report, PTT seeks to modify the effluent limits in Table 1 to remove effluent limits for copper, benzo(a)anthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, bis(2-ethylhexyl)phthalate, chrysene, and vinyl chloride. WQBELs for free available cyanide would become more stringent.

Toxics Management Spreadsheet Water Quality Modeling Program and Procedures for Evaluating Reasonable Potential

WQBELs are developed pursuant to Section 301(b)(1)(C) of the Clean Water Act and, per 40 CFR § 122.44(d)(1)(i), are imposed to "control all pollutants or pollutant parameters (either conventional, nonconventional, or toxic pollutants) that are or may be discharged at a level that will cause, have the reasonable potential to cause, or contribute to an excursion above any state water quality standard, including state narrative criteria for water quality." The Department of Environmental Protection developed the DEP Toxics Management Spreadsheet (TMS) to facilitate calculations necessary to complete a reasonable potential (RP) analysis and determine WQBELs for discharges of toxic and nonconventional pollutants.

The TMS is a single discharge, mass-balance water quality modeling program for Microsoft Excel® that considers mixing, first-order decay, and other factors to determine WQBELs for toxic and nonconventional pollutants. Required input data including stream code, river mile index, elevation, drainage area, discharge flow rate, low-flow yield, and the hardness and pH of both the discharge and the receiving stream are entered into the TMS to establish site-specific discharge conditions. Other data such as reach dimensions, partial mix factors, and the background concentrations of pollutants in the stream also may be entered to further characterize the discharge and receiving stream. The pollutants to be analyzed by the model are identified by inputting the maximum concentration reported in the permit application or Discharge Monitoring Reports, or by inputting an Average Monthly Effluent Concentration (AMEC) calculated using DEP's TOXCONC.xls spreadsheet for datasets of 10 or more effluent samples. Pollutants with no entered concentration data and pollutants for which numeric water quality criteria in 25 Pa. Code Chapter 93 have not been promulgated are excluded from the modeling. If warranted, ammonia-nitrogen, CBOD-5, and dissolved oxygen are analyzed separately using DEP's WQM 7.0 model.

The TMS evaluates each pollutant by computing a wasteload allocation for each applicable criterion, determining the most stringent governing WQBEL, and comparing that governing WQBEL to the input discharge concentration to determine whether permit requirements apply in accordance with the following RP thresholds:

- Establish limits in the permit where the maximum reported effluent concentration or calculated AMEC equals or exceeds 50% of the WQBEL. Use the average monthly, maximum daily, and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- For non-conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 25% - 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported effluent concentration or calculated AMEC is between 10% - 50% of the WQBEL.

In most cases, pollutants with effluent concentrations that are not detectable at the level of DEP's Target Quantitation Limits are eliminated as candidates for WQBELs and water quality-based monitoring requirements.

#### Reasonable Potential Analysis and WQBEL Development for Outfall 001

Outfall 001 discharges to Chartiers Creek at river mile index 27.59, which is the same discharge location as Outfalls 003, 004, and 006. Since the TMS is a single discharge model and will not properly account for the combined effects of multiple discharges when calculating WQBELs, the normal TMS modeling procedure is modified. Modeling is still performed for each outfall, but the combined discharge flow of Outfalls 001, 003, 004 and 006 is used as the discharge flow for each model run. Also, the stream characteristics for each model run are the same since the discharge locations are the same. Input discharge concentrations, coefficients of variation, and chemical translators for each model run are specific to each outfall. As concentration limits, the WQBELs calculated for the combined flow can be imposed at any of the outfalls included in the combined flow analysis with the end-of-analysis comparison between outfall-specific discharge concentrations and the calculated WQBELs tailoring the reasonable potential analysis to each outfall's effluent characteristics. The combined discharge flow of Outfalls 001, 003, 004, and 006 is calculated as follows:

$$\begin{array}{cccc} \underline{001} & \underline{003} & \underline{004} & \underline{006} \\ 0.72 \text{ MGD} + 0.0144 \text{ MGD} + 0.43 \text{ MGD} + 0.288 \text{ MGD} & = 1.4524 \text{ MGD} \end{array}$$

**Table 2. TMS Inputs for Outfall 001**

| Discharge Characteristics             |             |                |
|---------------------------------------|-------------|----------------|
| Parameter                             | Value       |                |
| Discharge Flow (MGD)                  | 1.4524      |                |
| Hardness (mg/L)                       | 317.1       |                |
| pH (S.U.)                             | 7.15        |                |
| Receiving Stream Characteristics      |             |                |
| Parameter                             | Outfall 001 | End of Segment |
| Stream Code                           | 36777       | 36777          |
| River Mile Index                      | 27.59       | 27.36          |
| Drainage Area (mi <sup>2</sup> )      | 87.4        | 87.5           |
| Q <sub>7-10</sub> (cfs)               | 2           | 2              |
| Low-flow Yield (cfs/mi <sup>2</sup> ) | 0.02288     | 0.02288        |
| Elevation (ft)                        | 906.75      | 905.0          |
| Slope (ft/ft)                         | 0.0014      | 0.0011         |
| Width (ft)                            | 9.26        | 2.63           |
| Depth (ft)                            | 0.09        | 0.08           |
| Width/Depth Ratio (ft/ft)             | 18.625      | 17.541         |
| Velocity (fps)                        | 0.148       | 0.105          |
| Hardness (mg/L)                       | 288.2       |                |
| pH (S.U.)                             | 6.97        |                |
| Q <sub>harmonic</sub> (cfs)           | 25.2        | 25.2           |

The Outfall 001 flow is the maximum capacity of the 001 Treatment System (500 gpm or 0.72 MGD). The Outfall 003 flow is the maximum capacity of the 003 Treatment System (10 gpm or 0.0144 MGD). There is no design flow for Outfall 004, so the flow was conservatively estimated to be the average of the maximum flows reported at Outfall 004 in 2022-2024. The Outfall 006 flow is the maximum system capacity of the 006 Treatment System (200 gpm or 0.288 MGD).

Site-specific inputs are based on those developed by GES, Inc. as reported in the WQBEL Compliance Report (see summary tables in **Attachment A**). Some of the site-specific receiving stream characteristics are reported in Table 2. Discharge concentrations and related inputs (coefficients of variation and metal translators) are those developed specifically for Outfall 001.

Output from the TMS model is included in **Attachment B** to this Fact Sheet. As explained previously, the TMS compares the input discharge concentrations to the calculated WQBELs using DEP's Reasonable Potential thresholds to evaluate the need to impose WQBELs or monitoring requirements in the permit. Based on the updated water quality modeling, WQBELs at Outfall 001 will change as shown in Table 3. All other effluent limits and reporting requirements will remain in effect.

**Table 3. Outfall 001 WQBELs and Monitoring Requirements**

| Parameter                  | Current WQBELs<br>( $\mu\text{g}/\text{L}$ ) |           |       | New WQBELs<br>( $\mu\text{g}/\text{L}$ ) |           |      |
|----------------------------|----------------------------------------------|-----------|-------|------------------------------------------|-----------|------|
|                            | Avg. Mo.                                     | Daily Max | IMAX  | Avg. Mo.                                 | Daily Max | IMAX |
| Copper, Total              | 18.2                                         | 28.4      | 45.5  | —                                        | —         | —    |
| Cyanide, Free              | 11.2                                         | 17.5      | 28.0  | 7.56                                     | 11.8      | 18.9 |
| Benzo(a)Anthracene         | 0.034                                        | 0.053     | 0.085 | —                                        | —         | —    |
| 3,4-Benzofluoranthene      | 0.034                                        | 0.053     | 0.085 | —                                        | —         | —    |
| Benzo(k)Fluoranthene       | 0.034                                        | 0.053     | 0.085 | —                                        | —         | —    |
| Bis(2-Ethylhexyl)Phthalate | 10.6                                         | 16.6      | 26.5  | —                                        | —         | —    |
| Chrysene                   | 0.034                                        | 0.053     | 0.085 | —                                        | —         | —    |
| Vinyl Chloride             | 0.222                                        | 0.346     | 0.555 | —                                        | —         | —    |

Final effluent limits and monitoring requirements for Outfall 001 as modified in response to PTT's amendment application and WQBEL Compliance Report are summarized in Table 4.

**Table 4. Final Effluent Limits and Monitoring Requirements for Outfall 001**

| Parameter              | Mass (pounds)   |               | Concentration ( $\mu\text{g}/\text{L}$ ) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|------------------------|-----------------|---------------|------------------------------------------|---------------|-----------------|-------------------------------|----------------------|
|                        | Average Monthly | Daily Maximum | Average Monthly                          | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)             | Report          | Report        | —                                        | —             | —               | 1/day                         | Measured             |
| pH (S.U.)              | —               | —             | 6.0 (IMIN)                               | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)  | —               | —             | 5.0                                      | 10.0          | 12.5            | 2/month                       | Grab                 |
| Free Available Cyanide | —               | —             | 7.56                                     | 11.8          | 18.9            | 1/week                        | 24-Hr Comp.          |
| PCB-1260               | —               | —             | 0.000064                                 | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total            | —               | —             | 0.000064                                 | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene    | —               | —             | 5.0                                      | 9.55          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |
| Trichloroethylene      | —               | —             | 5.0                                      | 10.0          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |

Existing measurement frequencies and sampling types will remain unchanged.

**Development of Effluent Limitations**

|                                                                                                                                                                                                                          |                |                          |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------|----------------|
| <b>Outfall No.</b>                                                                                                                                                                                                       | 002            | <b>Design Flow (MGD)</b> | 0.253          |
| <b>Latitude</b>                                                                                                                                                                                                          | 40° 16' 15.00" | <b>Longitude</b>         | -80° 10' 8.00" |
| <b>Wastewater Description:</b> Contaminated groundwater and storm water overflows from Sump 001B (IMP 102) and contaminated groundwater, uncontaminated storm water from roof drains, and fire line leakage from IMP 202 |                |                          |                |

Under the current permit, Outfall 002 is subject to the following effluent limitations and monitoring requirements.

**Table 5. Effluent Limits and Monitoring Requirements for Outfall 002**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | 1/day                         | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/month                       | Grab                 |
| Aluminum, Total            | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Chromium, Hexavalent       | —               | —             | 20.6                 | 32.2          | 51.5            | 1/week                        | 24-Hr Comp.          |
| Iron, Total                | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Lead, Total                | —               | —             | 6.32                 | 9.86          | 15.8            | 1/week                        | 24-Hr Comp.          |
| Selenium, Total            | —               | —             | 9.91                 | 15.5          | 24.8            | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Anthracene         | —               | —             | 0.029                | 0.046         | 0.073           | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Pyrene             | —               | —             | 0.029                | 0.046         | 0.073           | 1/week                        | 24-Hr Comp.          |
| Benzo(k)Fluoranthene       | —               | —             | 0.029                | 0.046         | 0.073           | 1/week                        | 24-Hr Comp.          |
| 3,4-Benzofluoranthene      | —               | —             | 0.029                | 0.046         | 0.073           | 1/week                        | 24-Hr Comp.          |
| Chlorodibromomethane       | —               | —             | 3.08                 | 4.81          | 7.70            | 1/week                        | 4 Grabs/24 Hrs       |
| Dichlorobromomethane       | —               | —             | 4.24                 | 6.61          | 10.6            | 1/week                        | 4 Grabs/24 Hrs       |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Chloroform                 | —               | —             | 43.9                 | 68.5          | 110             | 1/week                        | 4 Grabs/24 Hrs       |
| Chrysene                   | —               | —             | 0.029                | 0.046         | 0.073           | 1/week                        | 24-Hr Comp.          |
| Dibenzo(a,h)Anthracene     | —               | —             | 0.029                | 0.046         | 0.073           | 1/week                        | 24-Hr Comp.          |
| Indeno(1,2,3-cd)Pyrene     | —               | —             | 0.029                | 0.046         | 0.073           | 1/week                        | 24-Hr Comp.          |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene        | —               | —             | 5.32                 | 8.29          | 13.3            | 2/month                       | 4 Grabs/24 Hrs       |
| Trichloroethylene          | —               | —             | 19.3                 | 30.1          | 48.3            | 2/month                       | 4 Grabs/24 Hrs       |
| Vinyl Chloride             | —               | —             | 0.193                | 0.301         | 0.483           | 2/month                       | 4 Grabs/24 Hrs       |

Based on site-specific data in PTT's WQBEL Compliance Report, PTT seeks to modify the effluent limits in Table 5 to remove effluent limits for hexavalent chromium, lead, selenium, chloroform, chlorodibromomethane, and dichlorobromomethane. Effluent limits for benzo(a)anthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene, and vinyl chloride would become less stringent and effluent limits for benzo(a)pyrene and dibenzo(a,h)anthracene would become more stringent.

Reasonable Potential Analysis and WQBEL Development for Outfall 002

**Table 6. TMS Inputs for Outfall 002**

| Discharge Characteristics             |                |
|---------------------------------------|----------------|
| Parameter                             | Value          |
| Discharge Flow (MGD)                  | 0.253          |
| Hardness (mg/L)                       | 390.3          |
| pH (S.U.)                             | 7.17           |
| Receiving Stream Characteristics      |                |
| Parameter                             | Outfall 002    |
|                                       | End of Segment |
| Stream Code                           | 36777          |
| River Mile Index                      | 27.36          |
| Drainage Area (mi <sup>2</sup> )      | 87.5           |
| Q <sub>7-10</sub> (cfs)               | 2              |
| Low-flow Yield (cfs/mi <sup>2</sup> ) | 0.02286        |
| Elevation (ft)                        | 905.5          |
| Slope (ft/ft)                         | 0.0011         |
| Width (ft)                            | 2.63           |
| Depth (ft)                            | 0.08           |
| Width/Depth Ratio (ft/ft)             | 17.541         |
| Velocity (fps)                        | 0.105          |
| Hardness (mg/L)                       | 288.2          |
| pH (S.U.)                             | 6.97           |
| Q <sub>harmonic</sub> (cfs)           | 25.2           |
|                                       | 25.2           |

Output from the TMS model is included in **Attachment B** to this Fact Sheet. As explained previously, the TMS compares the input discharge concentrations to the calculated WQBELs using DEP's Reasonable Potential thresholds to evaluate the need to impose WQBELs or monitoring requirements in the permit.

Based on the updated water quality modeling, WQBELs at Outfall 002 will change as shown in Table 7. All other effluent limits and existing monitoring frequencies and sample types will remain in effect.

**Table 7. Outfall 002 Effluent Limits and Monitoring Requirements**

| Parameter              | Current WQBELs<br>( $\mu\text{g/L}$ ) |           |       | New WQBELs<br>( $\mu\text{g/L}$ ) |           |        |
|------------------------|---------------------------------------|-----------|-------|-----------------------------------|-----------|--------|
|                        | Avg. Mo.                              | Daily Max | IMAX  | Avg. Mo.                          | Daily Max | IMAX   |
| Hexavalent Chromium    | 20.06                                 | 32.2      | 51.5  | Report                            | Report    | Report |
| Lead, Total            | 6.32                                  | 9.86      | 15.8  | —                                 | —         | —      |
| Selenium, Total        | 9.91                                  | 15.5      | 24.8  | —                                 | —         | —      |
| Benzo(a)Anthracene     | 0.029                                 | 0.046     | 0.073 | 0.065                             | 0.1       | 0.16   |
| Benzo(a)Pyrene         | 0.029                                 | 0.046     | 0.073 | 0.007                             | 0.01      | 0.016  |
| 3,4-Benzofluoranthene  | 0.029                                 | 0.046     | 0.073 | 0.065                             | 0.1       | 0.16   |
| Benzo(k)Fluoranthene   | 0.029                                 | 0.046     | 0.073 | 0.65                              | 1.02      | 1.63   |
| Chloroform             | 43.9                                  | 68.5      | 110.0 | —                                 | —         | —      |
| Chrysene               | 0.029                                 | 0.046     | 0.073 | Report                            | Report    | Report |
| Chlorodibromomethane   | 3.08                                  | 4.81      | 7.70  | —                                 | —         | —      |
| Dibenzo(a,h)Anthracene | 0.029                                 | 0.046     | 0.073 | 0.007                             | 0.01      | 0.016  |
| Dichlorobromomethane   | 4.24                                  | 6.61      | 10.6  | —                                 | —         | —      |
| Indeno(1,2,3-cd)Pyrene | 0.029                                 | 0.046     | 0.073 | 0.065                             | 0.1       | 0.16   |
| Vinyl Chloride         | 0.193                                 | 0.301     | 0.483 | 1.31                              | 1.86      | 3.27   |

Final effluent limits for Outfall 002 are summarized in Table 8.

**Table 8. Final Effluent Limits and Monitoring Requirements for Outfall 002**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | 1/day                         | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/month                       | Grab                 |
| Aluminum, Total            | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Chromium, Hexavalent       | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Iron, Total                | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Anthracene         | —               | —             | 0.065                | 0.10          | 0.16            | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Pyrene             | —               | —             | 0.007                | 0.01          | 0.016           | 1/week                        | 24-Hr Comp.          |
| Benzo(k)Fluoranthene       | —               | —             | 0.65                 | 1.02          | 1.63            | 1/week                        | 24-Hr Comp.          |
| 3,4-Benzofluoranthene      | —               | —             | 0.065                | 0.10          | 0.16            | 1/week                        | 24-Hr Comp.          |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Chrysene                   | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Dibenzo(a,h)Anthracene     | —               | —             | 0.007                | 0.01          | 0.016           | 1/week                        | 24-Hr Comp.          |
| Indeno(1,2,3-cd)Pyrene     | —               | —             | 0.065                | 0.10          | 0.16            | 1/week                        | 24-Hr Comp.          |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene        | —               | —             | 5.32                 | 8.29          | 13.3            | 2/month                       | 4 Grabs/24 Hrs       |
| Trichloroethylene          | —               | —             | 19.3                 | 30.1          | 48.3            | 2/month                       | 4 Grabs/24 Hrs       |
| Vinyl Chloride             | —               | —             | 1.31                 | 1.86          | 3.27            | 2/month                       | 4 Grabs/24 Hrs       |

Existing measurement frequencies and sampling types will remain unchanged.

**Development of Effluent Limitations**

**IMP No.** 102 **Design Flow (MGD)** 0.025  
**Wastewater Description:** Overflows of contaminated groundwater and contaminated storm water from Sump 001B

Under the current permit, Internal Monitoring Point 102 will be subject to the following effluent limitations and monitoring requirements beginning March 1, 2025.

**Table 19. Effluent Limits and Monitoring Requirements Effective March 1, 2025 for IMP 102**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | Continuous                    | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 2/discharge                   | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/discharge                   | Grab                 |
| Fecal Coliform (No./100mL) | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Arsenic, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Copper, Total              | —               | —             | 18.2                 | 28.4          | 45.5            | 2/discharge                   | Grab                 |
| Free Available Cyanide     | —               | —             | 11.2                 | 17.5          | 28.0            | 2/discharge                   | Grab                 |
| Cyanide, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Selenium, Total            | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Zinc, Total                | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Benzo(a)Anthracene         | —               | —             | 0.034                | 0.053         | 0.085           | 2/discharge                   | Grab                 |
| Benzo(k)Fluoranthene       | —               | —             | 0.034                | 0.053         | 0.085           | 2/discharge                   | Grab                 |
| 3,4-Benzofluoranthene      | —               | —             | 0.034                | 0.053         | 0.085           | 2/discharge                   | Grab                 |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | 10.6                 | 16.6          | 26.5            | 2/discharge                   | Grab                 |
| Chloroform                 | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Chrysene                   | —               | —             | 0.034                | 0.053         | 0.085           | 2discharge                    | Grab                 |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| cis-1,2-Dichloroethylene   | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| trans-1,2-Dichloroethylene | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| Tetrachloroethylene        | —               | —             | 5.0                  | 9.55          | 12.5            | 2discharge                    | Grab                 |
| Trichloroethylene          | —               | —             | 5.0                  | 10.0          | 12.5            | 2discharge                    | Grab                 |
| Vinyl Chloride             | —               | —             | 0.222                | 0.346         | 0.555           | 2discharge                    | Grab                 |

Based on site-specific data in PTT's WQBEL Compliance Report, PTT seeks to modify the effluent limits in **Table 19** to remove effluent limits for copper, free available cyanide, and chrysene. Effluent limits for benzo(a)anthracene, 3,4-benzofluoranthene, benzo(k)fluoranthene, and bis(2-ethylhexyl)phthalate would become less stringent and effluent limits for vinyl chloride would be replaced with a reporting requirement.

Pursuant to bypass requirements under 40 CFR § 122.41(m)(2), effluent limits imposed at IMP 102 are the same as those imposed at Outfall 001. Sections 102.A and 102.B of the Fact Sheet for the permit renewal in 2021 explained:

Section 102.A:

A discharge resulting from a bypass<sup>1</sup> or overflow of one of the wastewater collection sums would be composed of the same wastewaters that are discharged at Outfall 001, albeit not having undergone treatment. Such bypasses are allowed as long as they comply with bypass requirements per 40 CFR § 122.41(m)(2), which states:

*Bypass not exceeding limitations.* The permittee may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation.

<sup>1</sup> Bypass is defined at 40 CFR § 122.41(m)(1)(i) as "the intentional diversion of waste streams from any portion of a treatment facility."

For IMP 102, the effluent limitations that cannot be exceeded are those imposed at Outfall 001. An overflow of Sump 001B would constitute a bypass of Treatment System 001 and that bypass would be allowed as long as: 1) the discharge complies with effluent limits that would have been applicable to the wastewater had it been treated by Treatment System 001 and 2) the bypass is necessary for maintenance and operational purposes. DEP considers the bypasses to be essential in order to maintain the structural integrity of the collection and treatment systems that can only handle flows up to those systems' design capacities; a controlled bypass through a dedicated outfall pipe is preferable to an uncontrolled overflow. However, any bypass is undesirable, particularly given the highly toxic nature of PCBs present in the raw wastewater.

Based on these factors, the TBELs imposed at Outfall 001 also will be imposed at IMP 102. Note that the pollutants of concern at IMP 102 are the same as those at Outfall 001 because the wastewaters are from the same source.

Section 102.B:

As discussed in Section 102.A, waste streams diverted from any portion of a treatment facility cannot cause effluent limitations to be exceeded; this requirement is not limited to TBELs since treatment facilities must also be capable of meeting any WQBELs imposed on the discharges. Therefore, the WQBELs and related monitoring requirements imposed at Outfall 001 will be imposed at IMP 102 also.

Consistent with the preceding citations, effluent limits at IMP 102 were imposed based on the concept that effluent discharging through IMP 102 would normally discharge through Outfall 001 and be subject to 1) treatment by the 001 Treatment System and 2) the effluent limits at Outfall 001. This concept still applies. PTT performed a separate reasonable potential analysis to complete the WQBEL Compliance Report including site-specific data collection for IMP 102 and modeling using the flow rates of overflows from Sump 001B reported from 2022-2024. However, to the extent that IMP 102's wastewaters are subject to WQBELs (apart from WQBELs carried over from Outfall 001 pursuant to bypass requirements), WQBELs applicable to IMP 102's wastewaters are developed at Outfall 002 where wastewaters monitored at IMP 102 discharge to waters of the Commonwealth. Therefore, a separate water quality analysis is not necessary.

WQBELs at IMP 102 are modified to be equivalent to those calculated for Outfall 001 (see **Table 4** in this Fact Sheet) based on site-specific data for Outfall 001. As a result, Free Available Cyanide limits will change to those calculated for Outfall 001 in response to the WQBEL Compliance Report. Final effluent limits for IMP 102 are summarized in **Table 20**.

**Table 20. Final Effluent Limits and Monitoring Requirements for IMP 102**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | Continuous                    | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 2/discharge                   | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/discharge                   | Grab                 |
| Fecal Coliform (No./100mL) | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Arsenic, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Free Available Cyanide     | —               | —             | 7.56                 | 11.8          | 18.9            | 2/discharge                   | Grab                 |
| Cyanide, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Selenium, Total            | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Zinc, Total                | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Chloroform                 | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| cis-1,2-Dichloroethylene   | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| trans-1,2-Dichloroethylene | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| Tetrachloroethylene        | —               | —             | 5.0                  | 9.55          | 12.5            | 2discharge                    | Grab                 |
| Trichloroethylene          | —               | —             | 5.0                  | 10.0          | 12.5            | 2discharge                    | Grab                 |

Existing measurement frequencies and sampling types will remain unchanged.

**Development of Effluent Limitations**

|                                |            |                                                                                                                                                  |              |
|--------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| <b>Outfall No.</b>             | 003        | <b>Design Flow (MGD)</b>                                                                                                                         | 0.0144       |
| <b>Latitude</b>                | 40° 16' 0" | <b>Longitude</b>                                                                                                                                 | -80° 10' 20" |
| <b>Wastewater Description:</b> |            | Treated contaminated groundwater and storm water runoff from the Building 20/25 Groundwater Recovery System and Tank Farm Area Collection System |              |

Under the current permit, Outfall 003 will be subject to the following effluent limitations and monitoring requirements beginning March 1, 2025.

**Table 9. Effluent Limits and Monitoring Requirements Effective March 1, 2025 for Outfall 003**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | 1/day                         | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/month                       | Grab                 |
| Lead, Total                | —               | —             | 6.86                 | 10.7          | 17.2            | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Anthracene         | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Pyrene             | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Benzo(k)Fluoranthene       | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| 3,4-Benzofluoranthene      | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Chrysene                   | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Dibenzo(a,h)Anthracene     | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Indeno(1,2,3-cd)Pyrene     | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene        | —               | —             | 5.0                  | 9.55          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |
| Trichloroethylene          | —               | —             | 5.0                  | 10.0          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |
| Vinyl Chloride             | —               | —             | Report               | Report        | —               | 2/month                       | 4 Grabs/24 Hrs       |

Based on site-specific data in PTT's WQBEL Compliance Report, PTT seeks to modify the effluent limits in Table 9 to remove effluent limits for lead. Effluent limits for benzo(k)fluoranthene and chrysene would become less stringent and effluent limits for benzo(a)anthracene, 3,4-benzofluoranthene, and indeno(1,2,3-cd)pyrene would become more stringent.

Reasonable Potential Analysis and WQBEL Development for Outfall 003

As described previously, Outfalls 001, 003, 004, and 006 discharge to Chartiers Creek at the same location. Since the TMS is a single discharge model that will not properly account for the combined effects of multiple discharges when calculating WQBELs, discharges from those outfalls are modeled together as one discharge. The need for effluent limits at each outfall is determined based on a comparison of effluent limits calculated for the combined discharge and the discharge concentrations at each outfall. For Outfall 003, the site-specific receiving stream characteristics are the same as those reported in Table 2. Discharge concentrations and related inputs (coefficients of variation and metal translators) are those developed specifically for Outfall 003 (see **Attachment A**).

Output from the TMS model is included in **Attachment B** to this Fact Sheet. Based on the updated water quality modeling, WQBELs at Outfall 003 will change as shown in Table 10. All other effluent limits will remain in effect.

**Table 10. Outfall 003 WQBELs and Monitoring Requirements**

| Parameter          | Current WQBELs / Reporting Requirements (µg/L) |           |       | New WQBELs (µg/L) |           |       |
|--------------------|------------------------------------------------|-----------|-------|-------------------|-----------|-------|
|                    | Avg. Mo.                                       | Daily Max | IMAX  | Avg. Mo.          | Daily Max | IMAX  |
| Lead, Total        | 6.86                                           | 10.7      | 17.2  | —                 | —         | —     |
| Benzo(a)Anthracene | 0.034                                          | 0.053     | 0.085 | 0.012             | 0.019     | 0.031 |

**Table 10 (cont'd). Outfall 003 WQBELs and Monitoring Requirements**

| Parameter              | Current WQBELs<br>( $\mu\text{g}/\text{L}$ ) |           |       | New WQBELs<br>( $\mu\text{g}/\text{L}$ ) |           |       |
|------------------------|----------------------------------------------|-----------|-------|------------------------------------------|-----------|-------|
|                        | Avg. Mo.                                     | Daily Max | IMAX  | Avg. Mo.                                 | Daily Max | IMAX  |
| Benzo(k)Fluoranthene   | 0.034                                        | 0.053     | 0.085 | 0.12                                     | 0.19      | 0.31  |
| 3,4-Benzofluoranthene  | 0.034                                        | 0.053     | 0.085 | 0.012                                    | 0.019     | 0.031 |
| Chrysene               | 0.034                                        | 0.053     | 0.085 | 1.47                                     | 2.68      | 3.66  |
| Indeno(1,2,3-cd)Pyrene | 0.034                                        | 0.053     | 0.085 | 0.012                                    | 0.019     | 0.031 |

Final effluent limits for Outfall 003 are summarized in Table 11.

**Table 11. Final Effluent Limits and Monitoring Requirements for Outfall 003**

| Parameter                  | Mass (pounds)   |               | Concentration ( $\mu\text{g}/\text{L}$ ) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|------------------------------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly                          | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                                        | —             | —               | 1/day                         | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)                               | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                                      | 10.0          | —               | 2/month                       | Grab                 |
| Benzo(a)Anthracene         | —               | —             | 0.012                                    | 0.019         | 0.031           | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Pyrene             | —               | —             | Report                                   | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Benzo(k)Fluoranthene       | —               | —             | 0.12                                     | 0.19          | 0.31            | 1/week                        | 24-Hr Comp.          |
| 3,4-Benzofluoranthene      | —               | —             | 0.012                                    | 0.019         | 0.031           | 1/week                        | 24-Hr Comp.          |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | Report                                   | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Chrysene                   | —               | —             | 1.47                                     | 2.68          | 3.66            | 1/week                        | 24-Hr Comp.          |
| Dibenzo(a,h)Anthracene     | —               | —             | Report                                   | Report        | —               | 1/week                        | 24-Hr Comp.          |
| Indeno(1,2,3-cd)Pyrene     | —               | —             | 0.012                                    | 0.019         | 0.031           | 1/week                        | 24-Hr Comp.          |
| PCB-1260                   | —               | —             | 0.000064                                 | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total                | —               | —             | 0.000064                                 | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene        | —               | —             | 5.0                                      | 9.55          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |
| Trichloroethylene          | —               | —             | 5.0                                      | 10.0          | 12.5            | 2/month                       | 4 Grabs/24 Hrs       |
| Vinyl Chloride             | —               | —             | Report                                   | Report        | —               | 2/month                       | 4 Grabs/24 Hrs       |

Existing measurement frequencies and sampling types will remain unchanged.

Effluent limits for benzo(a)anthracene, benzo(k)fluoranthene, 3,4-benzofluoranthene, chrysene, and indeno(1,2,3-cd)pyrene continue to be less than DEP's Target QLs for those parameters, so PTT will continue to be required to demonstrate compliance with the modified WQBELs by reporting that effluent concentrations are not detectable at the level of DEP's Target QLs for those parameters.

**Development of Effluent Limitations**

|                                |             |                                                                                                          |              |
|--------------------------------|-------------|----------------------------------------------------------------------------------------------------------|--------------|
| <b>Outfall No.</b>             | 004         | <b>Design Flow (MGD)</b>                                                                                 | 0.43         |
| <b>Latitude</b>                | 40° 16' 00" | <b>Longitude</b>                                                                                         | -80° 10' 20" |
| <b>Wastewater Description:</b> |             | Contaminated groundwater and storm water overflows from Sump 001A (IMP 104) and storm water from IMP 204 |              |

Under the current permit, Outfall 004 will be subject to the following effluent limitations and monitoring requirements beginning March 1, 2025.

**Table 12. Effluent Limits and Monitoring Requirements Effective March 1, 2025 for Outfall 004**

| Parameter              | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                        | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)             | Report          | Report        | —                    | —             | —               | 2/month                       | Measured             |
| pH (S.U.)              | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 2/month                       | Grab                 |
| Oil and Grease (mg/L)  | —               | —             | 5.0                  | 10.0          | —               | 2/month                       | Grab                 |
| Aluminum, Total        | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Cadmium, Total         | —               | —             | 0.584                | 0.911         | 1.45            | 2/month                       | Grab                 |
| Chromium, Hexavalent   | —               | —             | 21.2                 | 33.0          | 53.0            | 2/month                       | Grab                 |
| Free Available Cyanide | —               | —             | 11.2                 | 17.5          | 28.0            | 2/month                       | Grab                 |
| Lead, Total            | —               | —             | 6.86                 | 10.7          | 17.2            | 2/month                       | Grab                 |
| Zinc, Total            |                 |               | 156                  | 243           | 390             | 2/month                       | Grab                 |
| Benzo(a)Anthracene     | —               | —             | 0.034                | 0.053         | 0.085           | 2/month                       | Grab                 |
| Benzo(a)Pyrene         | —               | —             | 0.034                | 0.053         | 0.085           | 2/month                       | Grab                 |
| Benzo(k)Fluoranthene   | —               | —             | 0.034                | 0.053         | 0.085           | 2/month                       | Grab                 |
| 3,4-Benzofluoranthene  | —               | —             | 0.034                | 0.053         | 0.085           | 2/month                       | Grab                 |
| Chrysene               | —               | —             | 0.034                | 0.053         | 0.085           | 2/month                       | Grab                 |
| Indeno(1,2,3-cd)Pyrene | —               | —             | 0.034                | 0.053         | 0.085           | 2/month                       | Grab                 |
| PCB-1260               | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2/month                       | Grab                 |
| PCBs, Total            | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2/month                       | Grab                 |
| Tetrachloroethylene    | —               | —             | 5.0                  | 9.55          | 12.5            | 2/month                       | Grab                 |
| Trichloroethylene      | —               | —             | 5.0                  | 10.0          | 12.5            | 2/month                       | Grab                 |
| Vinyl Chloride         | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |

Based on site-specific data in PTT's WQBEL Compliance Report, PTT seeks to modify the effluent limits in Table 12 to remove effluent limits for cadmium. Also, effluent limits for lead, zinc, benzo(k)fluoranthene, and chrysene would become less stringent and effluent limits for free available cyanide, benzo(a)anthracene, benzo(a)pyrene, 3,4-benzofluoranthene, and indeno(1,2,3-cd)pyrene would become more stringent. Average monthly and instantaneous maximum limits for hexavalent chromium would become more stringent and daily maximum limits would become less stringent.

Reasonable Potential Analysis and WQBEL Development for Outfall 004

As described previously, Outfalls 001, 003, 004, and 006 discharge to Chartiers Creek at the same location. Since the TMS is a single discharge model that will not properly account for the combined effects of multiple discharges when calculating WQBELs, discharges from those outfalls are modeled together as one discharge. The need for effluent limits at each outfall is determined based on a comparison of the effluent limits calculated for the combined discharge and the discharge concentrations at each outfall. For Outfall 004, the site-specific receiving stream characteristics are the same as those reported in Table 2. Discharge concentrations and related inputs (coefficients of variation and metal translators) are those developed specifically for Outfall 004 (see **Attachment A**).

Output from the TMS model is included in **Attachment B** to this Fact Sheet. Based on the updated water quality modeling, WQBELs at Outfall 004 will change as shown in Table 13. All other effluent limits will remain in effect.

**Table 13. Outfall 004 WQBELs and Monitoring Requirements**

| Parameter              | Current WQBELs<br>( $\mu\text{g/L}$ ) |           |       | New WQBELs<br>( $\mu\text{g/L}$ ) |           |       |
|------------------------|---------------------------------------|-----------|-------|-----------------------------------|-----------|-------|
|                        | Avg. Mo.                              | Daily Max | IMAX  | Avg. Mo.                          | Daily Max | IMAX  |
| Cadmium, Total         | 6.86                                  | 10.7      | 17.2  | Report                            | Report    | —     |
| Chromium, Hexavalent   | 0.034                                 | 0.053     | 0.085 | 19.6                              | 35.7      | 49.1  |
| Free Available Cyanide | 11.2                                  | 17.5      | 28.0  | 7.56                              | 11.8      | 18.9  |
| Lead, Total            | 6.86                                  | 10.7      | 17.2  | 23.4                              | 26.3      | 58.4  |
| Zinc, Total            | 156                                   | 243       | 390   | 447                               | 779       | 1117  |
| Benzo(a)Anthracene     | 0.034                                 | 0.053     | 0.085 | 0.012                             | 0.022     | 0.031 |
| Benzo(a)Pyrene         | 0.034                                 | 0.053     | 0.085 | 0.001                             | 0.002     | 0.003 |
| Benzo(k)Fluoranthene   | 0.034                                 | 0.053     | 0.085 | 0.12                              | 0.18      | 0.31  |
| 3,4-Benzofluoranthene  | 0.034                                 | 0.053     | 0.085 | 0.012                             | 0.019     | 0.031 |
| Chrysene               | 0.034                                 | 0.053     | 0.085 | 1.47                              | 2.68      | 3.66  |
| Indeno(1,2,3-cd)Pyrene | 0.034                                 | 0.053     | 0.085 | 0.012                             | 0.022     | 0.031 |

Final effluent limits for Outfall 004 are summarized in Table 14.

**Table 14. Final Effluent Limits and Monitoring Requirements for Outfall 004**

| Parameter              | Mass (pounds)   |               | Concentration ( $\mu\text{g/L}$ ) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|------------------------|-----------------|---------------|-----------------------------------|---------------|-----------------|-------------------------------|----------------------|
|                        | Average Monthly | Daily Maximum | Average Monthly                   | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)             | Report          | Report        | —                                 | —             | —               | 2/month                       | Measured             |
| pH (S.U.)              | —               | —             | 6.0 (IMIN)                        | —             | 9.0             | 2/month                       | Grab                 |
| Oil and Grease (mg/L)  | —               | —             | 5.0                               | 10.0          | —               | 2/month                       | Grab                 |
| Aluminum, Total        | —               | —             | Report                            | Report        | —               | 2/month                       | Grab                 |
| Cadmium, Total         | —               | —             | Report                            | Report        | —               | 2/month                       | Grab                 |
| Chromium, Hexavalent   | —               | —             | 19.6                              | 35.7          | 49.1            | 2/month                       | Grab                 |
| Free Available Cyanide | —               | —             | 7.56                              | 11.8          | 18.9            | 2/month                       | Grab                 |
| Lead, Total            | —               | —             | 23.4                              | 26.3          | 58.4            | 2/month                       | Grab                 |
| Zinc, Total            | —               | —             | 447                               | 779           | 1117            | 2/month                       | Grab                 |
| Benzo(a)Anthracene     | —               | —             | 0.012                             | 0.022         | 0.031           | 2/month                       | Grab                 |
| Benzo(a)Pyrene         | —               | —             | 0.001                             | 0.002         | 0.003           | 2/month                       | Grab                 |
| Benzo(k)Fluoranthene   | —               | —             | 0.12                              | 0.18          | 0.31            | 2/month                       | Grab                 |
| 3,4-Benzofluoranthene  | —               | —             | 0.012                             | 0.019         | 0.031           | 2/month                       | Grab                 |
| Chrysene               | —               | —             | 1.47                              | 2.68          | 3.66            | 2/month                       | Grab                 |
| Indeno(1,2,3-cd)Pyrene | —               | —             | 0.012                             | 0.022         | 0.031           | 2/month                       | Grab                 |
| PCB-1260               | —               | —             | 0.000064                          | 0.000128      | 0.00016         | 2/month                       | Grab                 |
| PCBs, Total            | —               | —             | 0.000064                          | 0.000128      | 0.00016         | 2/month                       | Grab                 |
| Tetrachloroethylene    | —               | —             | 5.0                               | 9.55          | 12.5            | 2/month                       | Grab                 |
| Trichloroethylene      | —               | —             | 5.0                               | 10.0          | 12.5            | 2/month                       | Grab                 |
| Vinyl Chloride         | —               | —             | Report                            | Report        | —               | 2/month                       | Grab                 |

Existing measurement frequencies and sampling types will remain unchanged.

Effluent limits for benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, 3,4-benzofluoranthene, chrysene, and indeno(1,2,3-cd)pyrene continue to be less than DEP's Target QLs for those parameters, so PTT will continue to be required to demonstrate compliance with the modified WQBELs by reporting that effluent concentrations are not detectable at the level of DEP's Target QLs for those parameters.

**Development of Effluent Limitations**

|                         |                                                                                   |                   |       |
|-------------------------|-----------------------------------------------------------------------------------|-------------------|-------|
| IMP No.                 | 104                                                                               | Design Flow (MGD) | 0.032 |
| Wastewater Description: | Overflows of contaminated groundwater and contaminated storm water from Sump 001A |                   |       |

**Table 21. Effluent Limits and Monitoring Requirements Effective March 1, 2025 for IMP 104**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | Continuous                    | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 2/discharge                   | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/discharge                   | Grab                 |
| Fecal Coliform (No./100mL) | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Arsenic, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Copper, Total              | —               | —             | 18.2                 | 28.4          | 45.5            | 2/discharge                   | Grab                 |
| Free Available Cyanide     | —               | —             | 11.2                 | 17.5          | 28.0            | 2/discharge                   | Grab                 |
| Cyanide, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Selenium, Total            | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Zinc, Total                | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Benzo(a)Anthracene         | —               | —             | 0.034                | 0.053         | 0.085           | 2/discharge                   | Grab                 |
| Benzo(k)Fluoranthene       | —               | —             | 0.034                | 0.053         | 0.085           | 2/discharge                   | Grab                 |
| 3,4-Benzofluoranthene      | —               | —             | 0.034                | 0.053         | 0.085           | 2/discharge                   | Grab                 |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | 10.6                 | 16.6          | 26.5            | 2/discharge                   | Grab                 |
| Chloroform                 | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Chrysene                   | —               | —             | 0.034                | 0.053         | 0.085           | 2discharge                    | Grab                 |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| cis-1,2-Dichloroethylene   | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| trans-1,2-Dichloroethylene | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| Tetrachloroethylene        | —               | —             | 5.0                  | 9.55          | 12.5            | 2discharge                    | Grab                 |
| Trichloroethylene          | —               | —             | 5.0                  | 10.0          | 12.5            | 2discharge                    | Grab                 |
| Vinyl Chloride             | —               | —             | 0.222                | 0.346         | 0.555           | 2discharge                    | Grab                 |

Based on site-specific data in PTT's WQBEL Compliance Report, PTT seeks to modify the effluent limits in **Table 21** to remove effluent limits for copper, free available cyanide, bis(2-ethylhexyl)phthalate, chrysene, and vinyl chloride. Effluent limits for benzo(a)anthracene and 3,4-benzofluoranthene would become less stringent and effluent limits for benzo(k)fluoranthene would be replaced with a reporting requirement.

Pursuant to bypass requirements under 40 CFR § 122.41(m)(2), effluent limits imposed at IMP 104 are the same as those imposed at Outfall 001. PTT performed a separate reasonable potential analysis to complete the WQBEL Compliance Report including site-specific data collection for IMP 104 and modeling using the flow rates of overflows from Sump 001A reported from 2022-2024. However, to the extent that IMP 104's wastewaters are subject to WQBELs (apart from WQBELs carried over from Outfall 001 pursuant to bypass requirements), WQBELs applicable to IMP 104's wastewaters are developed at Outfall 004 where wastewaters monitored at IMP 104 discharge to waters of the Commonwealth. Therefore, a separate water quality analysis is not necessary.

WQBELs at IMP 104 are modified to be equivalent to those calculated for Outfall 001 (see **Table 4** in this Fact Sheet) based on site-specific data for Outfall 001. As a result, Free Available Cyanide limits will change to those calculated for Outfall 001 in response to the WQBEL Compliance Report. Final effluent limits for IMP 104 are summarized in **Table 22**.

**Table 22. Final Effluent Limits and Monitoring Requirements for IMP 104**

| Parameter  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD) | Report          | Report        | —                    | —             | —               | Continuous                    | Measured             |

Table 22 (cont'd). Final Effluent Limits and Monitoring Requirements for IMP 104

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 2/discharge                   | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/discharge                   | Grab                 |
| Fecal Coliform (No./100mL) | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Arsenic, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Free Available Cyanide     | —               | —             | 7.56                 | 11.8          | 18.9            | 2/discharge                   | Grab                 |
| Cyanide, Total             | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Selenium, Total            | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Zinc, Total                | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| Chloroform                 | —               | —             | Report               | Report        | —               | 2/discharge                   | Grab                 |
| PCB-1260                   | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| PCBs, Total                | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2discharge                    | Grab                 |
| cis-1,2-Dichloroethylene   | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| trans-1,2-Dichloroethylene | —               | —             | Report               | Report        | —               | 2discharge                    | Grab                 |
| Tetrachloroethylene        | —               | —             | 5.0                  | 9.55          | 12.5            | 2discharge                    | Grab                 |
| Trichloroethylene          | —               | —             | 5.0                  | 10.0          | 12.5            | 2discharge                    | Grab                 |

Existing measurement frequencies and sampling types will remain unchanged.

**Development of Effluent Limitations**

|                                |                                                             |                          |                 |
|--------------------------------|-------------------------------------------------------------|--------------------------|-----------------|
| <b>Outfall No.</b>             | 005                                                         | <b>Design Flow (MGD)</b> | Variable        |
| <b>Latitude</b>                | 40° 16' 07.00"                                              | <b>Longitude</b>         | -80° 10' 05.00" |
| <b>Wastewater Description:</b> | Storm water runoff from the parking lots and surface runoff |                          |                 |

Under the current permit, Outfall 005 will be subject to the following effluent limitations and monitoring requirements beginning March 1, 2025.

**Table 15. Effluent Limits and Monitoring Requirements Effective March 1, 2025 for Outfall 005**

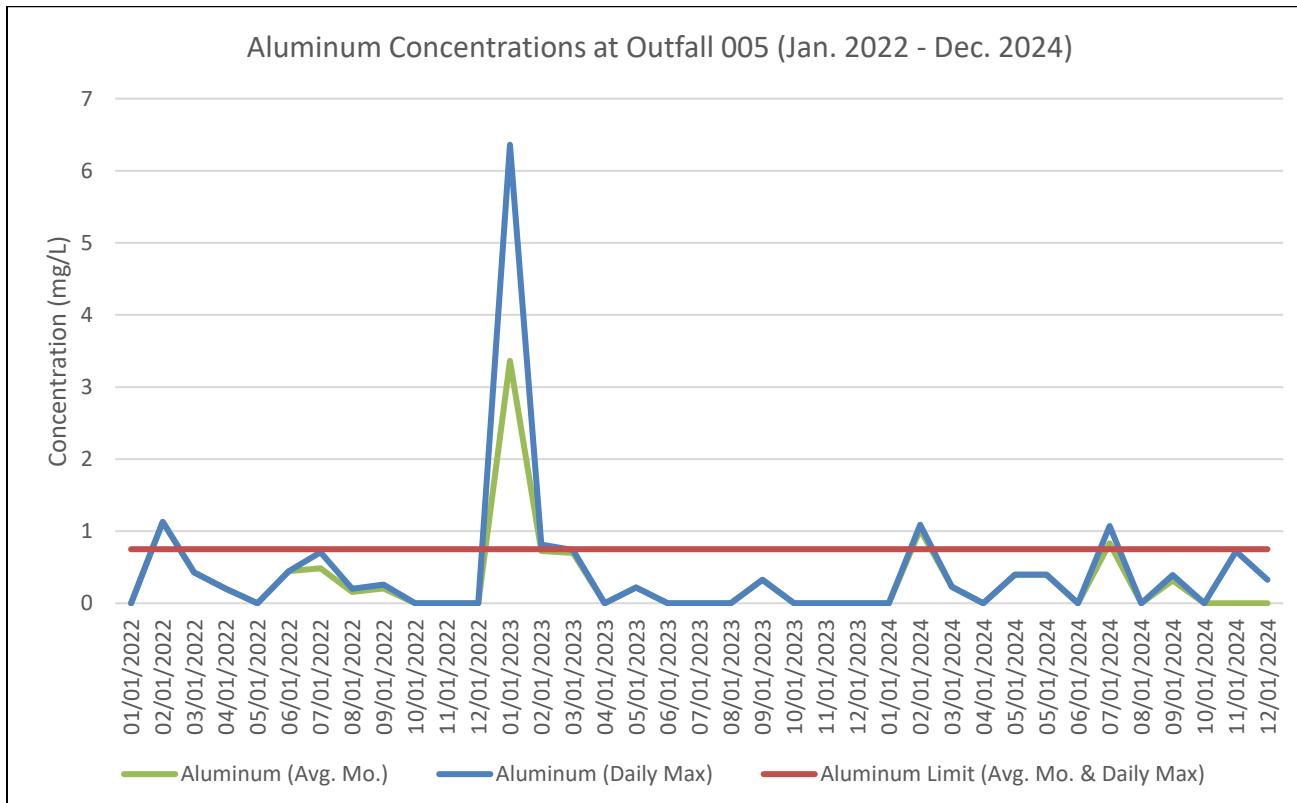
| Parameter                  | Mass (pounds)   |               | Concentration (mg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | 2/month                       | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 2/month                       | Grab                 |
| Oil and Grease             | —               | —             | 15.0                 | —             | 30.0            | 2/month                       | Grab                 |
| Fecal Coliform (No./100mL) | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Aluminum, Total            | —               | —             | 0.75                 | 0.75          | —               | 2/month                       | Grab                 |
| Chromium, Total            | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Free Available Cyanide     | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Cyanide, Total             | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Fluoride, Total            | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Iron, Dissolved            | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Iron, Total                | —               | —             | 1.5                  | 3.0           | —               | 2/month                       | Grab                 |
| Lead, Total                | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Manganese, Total           | —               | —             | 1.0                  | 2.0           | —               | 2/month                       | Grab                 |
| Mercury, Total             | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Nickel, Total              | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Sulfate, Total             | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| Zinc, Total                | —               | —             | Report               | Report        | —               | 2/month                       | Grab                 |
| PCB-1260 (µg/L)            | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2/month                       | Grab                 |
| PCBs, Total (µg/L)         | —               | —             | 0.000064             | 0.000128      | 0.00016         | 2/month                       | Grab                 |

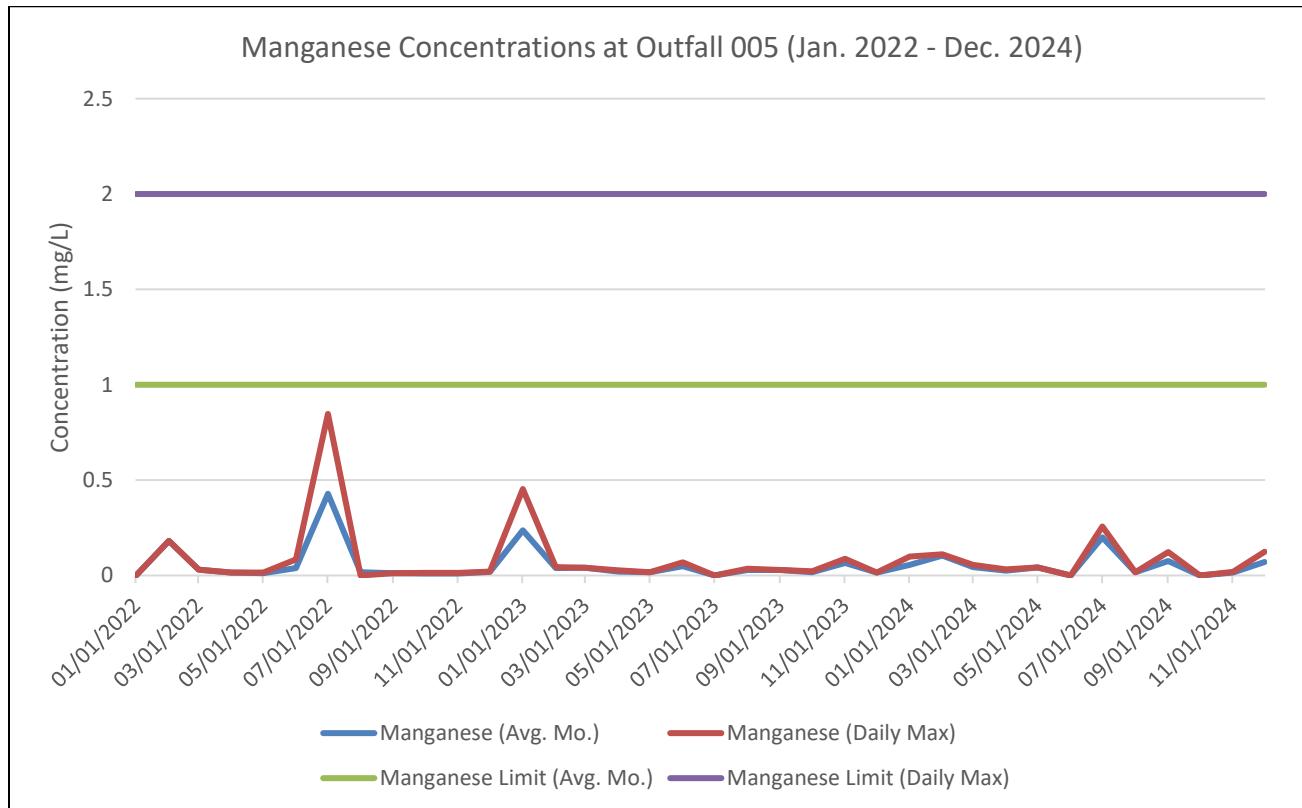
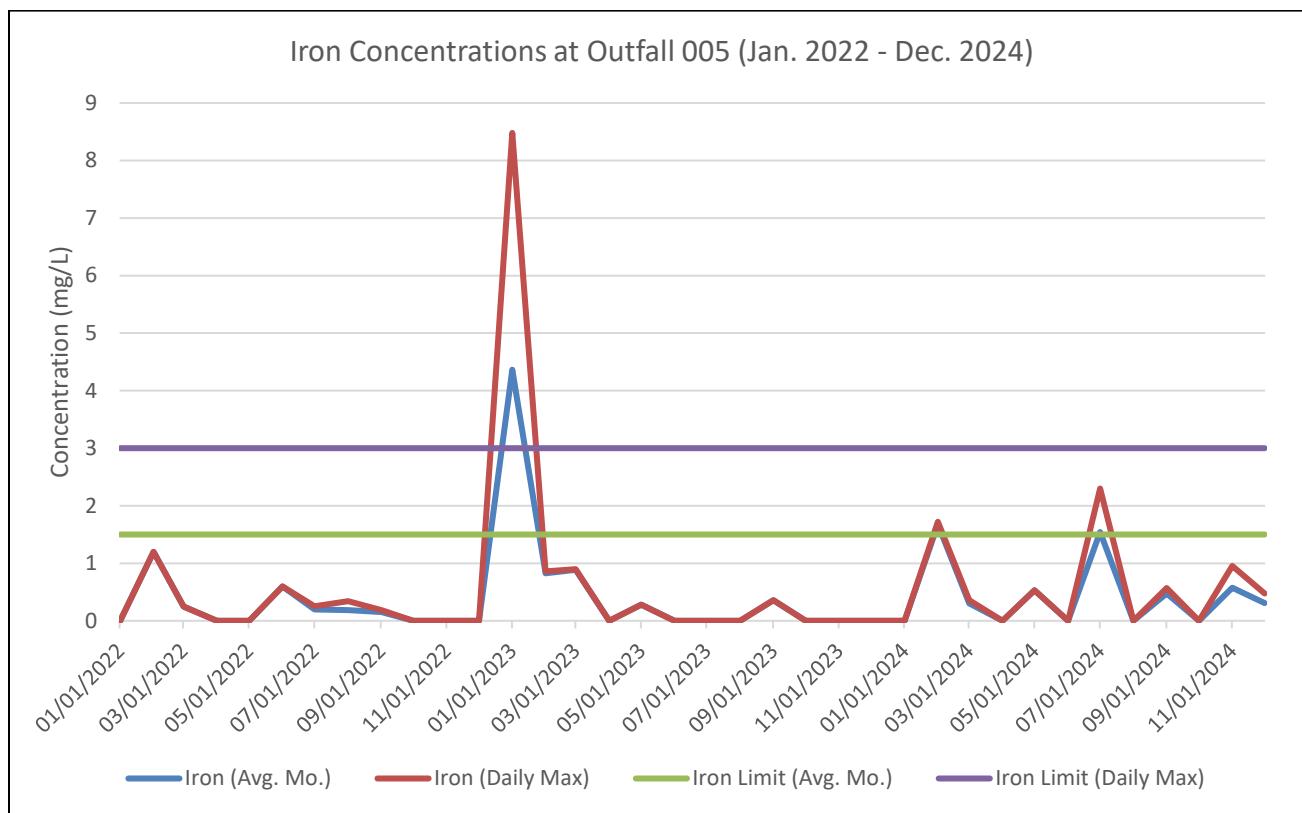
As communicated to PTT on October 4, 2021 in response to PTT's site-specific data collection studies and toxics reduction evaluation work plan, the site-specific data collection requirements in Part C, Condition II of the permit were imposed for pollutants with WQBELs developed using PENTOXSD and default input data for certain variables such as discharge coefficients of variation and stream hardness. However, the aluminum and iron WQBELs at Outfall 005 were based on the Chartiers Creek Watershed Total Maximum Daily Load and were not developed using PENTOXSD. Consequently, the WQBELs for aluminum and iron at Outfall 005 should have been excluded from the site-specific data collection requirements of Part C, Condition II. Since input data for variables in PENTOXSD were not used to establish effluent limitations for aluminum and iron, DEP indicated that it would exercise its discretion and not require PTT to collect the site-specific data required by Part C, Condition II of the permit for aluminum and iron at Outfall 005.

PTT did collect some site-specific data for Outfall 005 and modeled the discharge using DEP's Toxics Management Spreadsheet. Based on the results of the modeling, WQBELs for aluminum and iron would not apply. However, the WQBELs for those parameters were not based on a localized water quality analysis using PENTOXSD; they were based on the acid mine drainage TMDL for Chartiers Creek. DEP's Response to PTT Comment 7 in DEP's December 2020 Fact Sheet Addendum is reproduced below to clarify the basis for the current limits.

When the permit was drafted in 2016, DEP considered PTTI to be a contributor to the impairment [of Chartiers Creek] because the TMDL's metals are present in PTTI's effluent in concentrations greater than water quality criteria. This was explained on p.51 of the Fact Sheet:

Unlike other outfalls from the Canonsburg Plant, Outfall 005's effluent contains elevated concentrations (i.e., concentrations greater than water quality criteria) of aluminum and iron with both metals averaging to approximately 3.0 mg/L based on the last five years of DMR data; average manganese concentrations are


about 0.25 mg/L with only a few results exceeding the 1.0 mg/L manganese criterion. Since discharges at these levels would contribute to the acid mine drainage-based aquatic life use impairment of the Chartiers Creek watershed, it is necessary to limit discharges of these metals. Limiting aluminum, iron and manganese is appropriate even though Outfall 005 only discharges storm water because critical loading in the Chartiers Creek watershed can occur during both low and high flows (many of the abandoned mines contributing to the impairment discharge during high flow conditions).



In Comment 7, PTTI requested time to demonstrate that metals concentrations have decreased. More than three years have passed since DEP received PTTI's comment letter. DMR data show that effluent concentrations, on average, have decreased. The following table summarizes the long-term average concentrations of aluminum, iron, and manganese for the five-year period preceding the paving of the employee parking lot in November 2015 and for the three-year period after November 2015.

| Parameter | Outfall 005 Long-Term Average Concentration (mg/L) |                    | Effluent Limits (mg/L) |               |
|-----------|----------------------------------------------------|--------------------|------------------------|---------------|
|           | Pre-November 2015                                  | Post-November 2015 | Average Monthly        | Maximum Daily |
| Aluminum  | 3.28                                               | 0.654              | 0.75                   | 0.75          |
| Iron      | 3.25                                               | 1.05               | 1.5                    | 3.0           |
| Manganese | 0.335                                              | 0.069              | 1.0                    | 2.0           |

Since PTTI has not reported any recent elevated manganese concentrations that would have violated the manganese WQBELs, the manganese WQBELs will take effect immediately. A compliance schedule will be allowed for the aluminum and iron WQBELs because DMR results indicate that the concentrations of those metals intermittently exceed the WQBELs and PTTI may not be able to comply immediately. PTTI should evaluate possible sources of aluminum and iron and implement best management practices to minimize the potential for elevated discharge concentrations in storm water runoff.

PTT's data show that the long-term average effluent concentrations of aluminum, iron, and manganese at Outfall 005 are similar to those reported previously for the three-year period after November 2015. The long-term average concentrations are less than the WQBELs that will take effect on March 1, 2025. However, PTT intermittently reports results that exceed those WQBELs.





Since the limits originate from the Chartiers Creek TMDL and Outfall 005's discharges intermittently exceed the WQBELs, the WQBELs will not be removed from the permit. However, since 1) the long-term average concentrations comply with the WQBELs, 2) the results of PTT's modeling showing that limits are not necessary based on local mixing conditions, and (3) the source of Outfall 005's effluent is storm water, the monitoring frequencies for aluminum, iron, and manganese will be reduced to 2/6 months. All other effluent limits and monitoring requirements remain unchanged.

| Development of Effluent Limitations |             |  |                   |              |  |                                                                                                                               |
|-------------------------------------|-------------|--|-------------------|--------------|--|-------------------------------------------------------------------------------------------------------------------------------|
| Outfall No.                         | 006         |  | Design Flow (MGD) | 0.288        |  |                                                                                                                               |
| Latitude                            | 40° 16' 00" |  | Longitude         | -80° 10' 14" |  |                                                                                                                               |
| <b>Wastewater Description:</b>      |             |  |                   |              |  | Contaminated groundwater infiltration into the Abandoned Sanitary Sewer System and from the Guardhouse Seep Extraction System |
|                                     |             |  |                   |              |  |                                                                                                                               |

Under the current permit, Outfall 006 will be subject to the following effluent limitations and monitoring requirements beginning March 1, 2025.

**Table 16. Effluent Limits and Monitoring Requirements Effective March 1, 2025 for Outfall 006**

| Parameter                  | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                    | —             | —               | 1/day                         | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)           | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                  | 10.0          | —               | 2/month                       | Grab                 |
| Fecal Coliform (No./100mL) | —               | —             | Report               | Report        | —               | 1/week                        | Grab                 |
| Copper, Total              | —               | —             | 18.2                 | 28.4          | 45.5            | 1/week                        | 24-Hr Comp.          |
| Free Available Cyanide     | —               | —             | 11.2                 | 17.5          | 28.0            | 1/week                        | 24-Hr Comp.          |
| 4,6-dinitro-o-cresol       | —               | —             | 28.0                 | 43.7          | 70.0            | 1/week                        | 24-Hr Comp.          |
| 3,3-Dichlorobenzidine      | —               | —             | 0.186                | 0.291         | 0.465           | 1/week                        | 24-Hr Comp.          |
| Pentachlorophenol          | —               | —             | 2.40                 | 3.74          | 6.00            | 1/week                        | 24-Hr Comp.          |
| 2,4,6-Trichlorophenol      | —               | —             | 12.4                 | 19.4          | 31.0            | 1/week                        | 24-Hr Comp.          |
| Acrolein                   | —               | —             | 3.90                 | 6.08          | 9.75            | 1/week                        | 4 Grabs/24 Hrs       |
| Acrylonitrile              | —               | —             | 0.453                | 0.706         | 1.13            | 1/week                        | 4 Grabs/24 Hrs       |
| 1,3-Dichloropropylene      | —               | —             | 3.02                 | 4.71          | 7.55            | 1/week                        | 4 Grabs/24 Hrs       |
| Hexachlorobenzene          | —               | —             | 0.002                | 0.004         | 0.005           | 1/week                        | 24-Hr Comp.          |
| Benzene                    | —               | —             | Report               | Report        | —               | 1/week                        | 4 Grabs/24 Hrs       |
| Benzidine                  | —               | —             | 0.0008               | 0.001         | 0.002           | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Anthracene         | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Pyrene             | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Benzo(k)Fluoranthene       | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| 3,4-Benzofluoranthene      | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Bromoform                  | —               | —             | Report               | Report        | —               | 1/week                        | 4 Grabs/24 Hrs       |
| Carbon Tetrachloride       | —               | —             | 2.04                 | 3.18          | 5.10            | 1/week                        | 4 Grabs/24 Hrs       |
| Chlorodibromomethane       | —               | —             | 3.55                 | 5.54          | 8.88            | 1/week                        | 4 Grabs/24 Hrs       |
| 1,1,2-Trichloroethane      | —               | —             | 5.24                 | 8.17          | 13.1            | 1/week                        | 4 Grabs/24 Hrs       |
| 1,2-Dichloroethane         | —               | —             | 3.37                 | 5.26          | 8.43            | 1/week                        | 4 Grabs/24 Hrs       |
| 1,2-Diphenylhydrazine      | —               | —             | 0.319                | 0.498         | 0.798           | 1/week                        | 24-Hr Comp.          |
| Dichlorobromomethane       | —               | —             | 4.88                 | 7.62          | 12.2            | 1/week                        | 4 Grabs/24 Hrs       |
| 1,1,2,2-Tetrachloroethane  | —               | —             | 1.51                 | 2.35          | 3.78            | 1/week                        | 4 Grabs/24 Hrs       |
| Bis(2-Chloroethyl)Ether    | —               | —             | 0.266                | 0.415         | 0.665           | 1/week                        | 24-Hr Comp.          |
| Bis(2-Ethylhexyl)Phthalate | —               | —             | 10.6                 | 16.6          | 26.5            | 1/week                        | 24-Hr Comp.          |
| Chrysene                   | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Dibenzo(a,h)Anthracene     | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Hexachlorobutadiene        | —               | —             | 3.91                 | 6.09          | 9.78            | 1/week                        | 24-Hr Comp.          |
| Hexachlorocyclopentadiene  | —               | —             | 2.16                 | 3.37          | 5.40            | 1/week                        | 24-Hr Comp.          |
| Hexachloroethane           | —               | —             | 12.4                 | 19.4          | 31.0            | 1/week                        | 24-Hr Comp.          |
| Indeno(1,2,3-cd)Pyrene     | —               | —             | 0.034                | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Methylene Chloride         | —               | —             | Report               | Report        | —               | 1/week                        | 4 Grabs/24 Hrs       |
| N-Nitrosodimethylamine     | —               | —             | 0.006                | 0.010         | 0.015           | 1/week                        | 24-Hr Comp.          |
| N-Nitrosodi-N-Propylamine  | —               | —             | 0.044                | 0.069         | 0.110           | 1/week                        | 24-Hr Comp.          |
| N-Nitrosodiphenylamine     | —               | —             | Report               | Report        | —               | 1/week                        | 24-Hr Comp.          |

**Table 16 (cont'd). Effluent Limits and Monitoring Requirements Effective March 1, 2025 for Outfall 006**

| Parameter           | Mass (pounds)   |               | Concentration (µg/L) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|---------------------|-----------------|---------------|----------------------|---------------|-----------------|-------------------------------|----------------------|
|                     | Average Monthly | Daily Maximum | Average Monthly      | Daily Maximum | Instant Maximum |                               |                      |
| PCB-1260            | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total         | —               | —             | 0.000064             | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Phenanthrene        | —               | —             | 2.16                 | 3.37          | 5.40            | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene | —               | —             | 5.0                  | 9.55          | 12.5            | 1/week                        | 4 Grabs/24 Hrs       |
| Trichloroethylene   | —               | —             | 5.0                  | 10.0          | 12.5            | 1/week                        | 4 Grabs/24 Hrs       |
| Vinyl Chloride      | —               | —             | 0.222                | 0.346         | 0.555           | 1/week                        | 4 Grabs/24 Hrs       |

Based on site-specific data in PTT's WQBEL Compliance Report, PTT seeks to modify the effluent limits in **Table 16** to remove effluent limits for 2,4,6-trichlorophenol, acrolein, acrylonitrile, benzidine, carbon tetrachloride, chlorodibromomethane, dichlorobromomethane, 1,2-dichloroethane, 1,3-dichloropropylene, 1,2-diphenylhydrazine, bis(2-ethylhexyl)ether, bis(2-ethylhexyl)phthalate, hexachloroethane, n-nitrosodimethylamine, n-nitrosodi-n-propylene, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, and vinyl chloride. Also, effluent limits for benzo(k)fluoranthene and chrysene would become less stringent and effluent limits for free available cyanide, 4,6-dinitro-o-cresol, 3,3-dichlorobenzidine, pentachlorophenol, benzo(a)anthracene, benzo(a)pyrene, 3,4-benzofluoranthene, dibenzo(a,h)anthracene, hexachlorobutadiene, hexachlorocyclopentadiene, and phenanthrene would become more stringent.

Reasonable Potential Analysis and WQBEL Development for Outfall 006

As described previously, Outfalls 001, 003, 004, and 006 discharge to Chartiers Creek at the same location. Since the TMS is a single discharge model that will not properly account for the combined effects of multiple discharges when calculating WQBELs, discharges from those outfalls are modeled together as one discharge. The need for effluent limits at each outfall is determined based on a comparison of effluent limits calculated for the combined discharge and the discharge concentrations at each outfall. For Outfall 006, the site-specific receiving stream characteristics are the same as those reported in Table 2. Discharge concentrations and related inputs (coefficients of variation and metal translators) are those developed specifically for Outfall 006 (see **Attachment A**).

Output from the TMS model is included in **Attachment B** to this Fact Sheet. Based on the updated water quality modeling, WQBELs at Outfall 006 will change as shown in **Table 17**. All other effluent limits will remain in effect.

**Table 17. Outfall 006 WQBELs and Monitoring Requirements**

| Parameter              | Current WQBELs (µg/L) |           |       | New WQBELs (µg/L) |           |       |
|------------------------|-----------------------|-----------|-------|-------------------|-----------|-------|
|                        | Avg. Mo.              | Daily Max | IMAX  | Avg. Mo.          | Daily Max | IMAX  |
| Copper, Total          | 18.2                  | 28.4      | 45.5  | —                 | —         | —     |
| Free Available Cyanide | 11.2                  | 17.5      | 28.0  | 7.56              | 11.8      | 18.9  |
| 4,6-dinitro-o-cresol   | 28.0                  | 43.7      | 70.0  | 3.78              | 5.9       | 9.45  |
| 3,3-Dichlorobenzidine  | 0.186                 | 0.291     | 0.465 | —                 | —         | —     |
| Pentachlorophenol      | 2.40                  | 3.74      | 6.00  | 0.37              | 0.57      | 0.92  |
| 2,4,6-Trichlorophenol  | 12.4                  | 19.4      | 31.0  | —                 | —         | —     |
| Acrolein               | 3.90                  | 6.08      | 9.75  | —                 | —         | —     |
| Acrylonitrile          | 0.453                 | 0.706     | 1.13  | —                 | —         | —     |
| 1,3-Dichloropropylene  | 3.02                  | 4.71      | 7.55  | —                 | —         | —     |
| Hexachlorobenzene      | 0.002                 | 0.004     | 0.005 | —                 | —         | —     |
| Benzidine              | 0.0008                | 0.001     | 0.002 | —                 | —         | —     |
| Benzo(a)Anthracene     | 0.034                 | 0.053     | 0.085 | 0.012             | 0.019     | 0.031 |
| Benzo(a)Pyrene         | 0.034                 | 0.053     | 0.085 | 0.001             | 0.002     | 0.003 |
| Benzo(k)Fluoranthene   | 0.034                 | 0.053     | 0.085 | 0.12              | 0.19      | 0.31  |
| 3,4-Benzofluoranthene  | 0.034                 | 0.053     | 0.085 | 0.012             | 0.019     | 0.031 |
| Carbon Tetrachloride   | 2.04                  | 3.18      | 5.10  | —                 | —         | —     |
| Chlorodibromomethane   | 3.55                  | 5.54      | 8.88  | —                 | —         | —     |
| 1,1,2-Trichloroethane  | 5.24                  | 8.17      | 13.1  | —                 | —         | —     |

Table 17 (cont'd). Outfall 006 WQBELs and Monitoring Requirements

| Parameter                  | Current WQBELs / Reporting Requirements<br>( $\mu\text{g/L}$ ) |           |       | New WQBELs<br>( $\mu\text{g/L}$ ) |           |       |
|----------------------------|----------------------------------------------------------------|-----------|-------|-----------------------------------|-----------|-------|
|                            | Avg. Mo.                                                       | Daily Max | IMAX  | Avg. Mo.                          | Daily Max | IMAX  |
| 1,2-Dichloroethane         | 3.37                                                           | 5.26      | 8.43  | —                                 | —         | —     |
| 1,2-Diphenylhydrazine      | 0.319                                                          | 0.498     | 0.798 | —                                 | —         | —     |
| Dichlorobromomethane       | 4.88                                                           | 7.62      | 12.2  | —                                 | —         | —     |
| 1,1,2,2-Tetrachloroethane  | 1.51                                                           | 2.35      | 3.78  | —                                 | —         | —     |
| Bis(2-Chloroethyl)Ether    | 0.266                                                          | 0.415     | 0.665 | —                                 | —         | —     |
| Bis(2-Ethylhexyl)Phthalate | 10.6                                                           | 16.6      | 26.5  | —                                 | —         | —     |
| Chrysene                   | 0.034                                                          | 0.053     | 0.085 | 1.47                              | 2.29      | 3.66  |
| Dibenzo(a,h)Anthracene     | 0.034                                                          | 0.053     | 0.085 | 0.001                             | 0.002     | 0.003 |
| Hexachlorobutadiene        | 3.91                                                           | 6.09      | 9.78  | 0.12                              | 0.19      | 0.31  |
| Hexachlorocyclopentadiene  | 2.16                                                           | 3.37      | 5.40  | 1.89                              | 2.95      | 4.73  |
| Hexachloroethane           | 12.4                                                           | 19.4      | 31.0  | —                                 | —         | —     |
| Indeno(1,2,3-cd)Pyrene     | 0.034                                                          | 0.053     | 0.085 | 0.012                             | 0.019     | 0.031 |
| N-Nitrosodimethylamine     | 0.006                                                          | 0.010     | 0.015 | —                                 | —         | —     |
| N-Nitrosodi-N-Propylamine  | 0.044                                                          | 0.069     | 0.110 | —                                 | —         | —     |
| Phenanthrene               | 2.16                                                           | 3.37      | 5.40  | 1.89                              | 2.95      | 4.73  |
| Vinyl Chloride             | 0.222                                                          | 0.346     | 0.555 | —                                 | —         | —     |

Final effluent limits for Outfall 006 are summarized in **Table 18**.

Table 18. Final Effluent Limits and Monitoring Requirements for Outfall 006

| Parameter                  | Mass (pounds)   |               | Concentration ( $\mu\text{g/L}$ ) |               |                 | Minimum Measurement Frequency | Required Sample Type |
|----------------------------|-----------------|---------------|-----------------------------------|---------------|-----------------|-------------------------------|----------------------|
|                            | Average Monthly | Daily Maximum | Average Monthly                   | Daily Maximum | Instant Maximum |                               |                      |
| Flow (MGD)                 | Report          | Report        | —                                 | —             | —               | 1/day                         | Measured             |
| pH (S.U.)                  | —               | —             | 6.0 (IMIN)                        | —             | 9.0             | 1/week                        | Grab                 |
| Oil and Grease (mg/L)      | —               | —             | 5.0                               | 10.0          | —               | 2/month                       | Grab                 |
| Fecal Coliform (No./100mL) | —               | —             | Report                            | Report        | —               | 1/week                        | Grab                 |
| Free Available Cyanide     | —               | —             | 7.56                              | 11.8          | 18.9            | 1/week                        | 24-Hr Comp.          |
| 4,6-dinitro-o-cresol       | —               | —             | 3.78                              | 5.9           | 9.45            | 1/week                        | 24-Hr Comp.          |
| Pentachlorophenol          | —               | —             | 0.37                              | 0.57          | 0.92            | 1/week                        | 24-Hr Comp.          |
| Benzene                    | —               | —             | Report                            | Report        | —               | 1/week                        | 4 Grabs/24 Hrs       |
| Benzo(a)Anthracene         | —               | —             | 0.012                             | 0.019         | 0.031           | 1/week                        | 24-Hr Comp.          |
| Benzo(a)Pyrene             | —               | —             | 0.001                             | 0.002         | 0.003           | 1/week                        | 24-Hr Comp.          |
| Benzo(k)Fluoranthene       | —               | —             | 0.12                              | 0.19          | 0.31            | 1/week                        | 24-Hr Comp.          |
| 3,4-Benzofluoranthene      | —               | —             | 0.012                             | 0.019         | 0.031           | 1/week                        | 24-Hr Comp.          |
| Bromoform                  | —               | —             | Report                            | Report        | —               | 1/week                        | 4 Grabs/24 Hrs       |
| Chrysene                   | —               | —             | 1.47                              | 2.29          | 3.66            | 1/week                        | 24-Hr Comp.          |
| Dibenzo(a,h)Anthracene     | —               | —             | 0.001                             | 0.002         | 0.003           | 1/week                        | 24-Hr Comp.          |
| Hexachlorobutadiene        | —               | —             | 0.12                              | 0.19          | 0.31            | 1/week                        | 24-Hr Comp.          |
| Hexachlorocyclopentadiene  | —               | —             | 1.89                              | 2.95          | 4.73            | 1/week                        | 24-Hr Comp.          |
| Indeno(1,2,3-cd)Pyrene     | —               | —             | 0.034                             | 0.053         | 0.085           | 1/week                        | 24-Hr Comp.          |
| Methylene Chloride         | —               | —             | Report                            | Report        | —               | 1/week                        | 4 Grabs/24 Hrs       |
| N-Nitrosodiphenylamine     | —               | —             | Report                            | Report        | —               | 1/week                        | 24-Hr Comp.          |
| PCB-1260                   | —               | —             | 0.000064                          | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| PCBs, Total                | —               | —             | 0.000064                          | 0.000128      | 0.00016         | 1/week                        | 24-Hr Comp.          |
| Phenanthrene               | —               | —             | 1.89                              | 2.95          | 4.73            | 1/week                        | 24-Hr Comp.          |
| Tetrachloroethylene        | —               | —             | 5.0                               | 9.55          | 12.5            | 1/week                        | 4 Grabs/24 Hrs       |
| Trichloroethylene          | —               | —             | 5.0                               | 10.0          | 12.5            | 1/week                        | 4 Grabs/24 Hrs       |

Effluent limits for pentachlorophenol, benzo(a)anthracene, benzo(a)pyrene, benzo(k)fluoranthene, 3,4-benzofluoranthene, chrysene, dibenzo(a,h)anthracene, hexachlorobutadiene, hexachlorocyclopentadiene, and indeno(1,2,3-cd)pyrene are less than DEP's Target QLs for those parameters, so PTT will be required to demonstrate compliance with the modified WQBELs by reporting that effluent concentrations are not detectable at the level of DEP's Target QLs for those parameters.

| Tools and References Used to Develop Permit |                                                                                                                                                                                                                    |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <input type="checkbox"/>                    | WQM for Windows Model (see Attachment )                                                                                                                                                                            |
| <input checked="" type="checkbox"/>         | Toxics Management Spreadsheet (see Attachment B)                                                                                                                                                                   |
| <input type="checkbox"/>                    | TRC Model Spreadsheet (see Attachment )                                                                                                                                                                            |
| <input type="checkbox"/>                    | Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                    |
| <input type="checkbox"/>                    | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
| <input checked="" type="checkbox"/>         | Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
| <input type="checkbox"/>                    | Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| <input type="checkbox"/>                    | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| <input type="checkbox"/>                    | Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
| <input type="checkbox"/>                    | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
| <input type="checkbox"/>                    | Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
| <input type="checkbox"/>                    | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
| <input type="checkbox"/>                    | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
| <input type="checkbox"/>                    | Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
| <input type="checkbox"/>                    | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
| <input type="checkbox"/>                    | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
| <input type="checkbox"/>                    | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
| <input type="checkbox"/>                    | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
| <input type="checkbox"/>                    | Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
| <input type="checkbox"/>                    | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
| <input type="checkbox"/>                    | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
| <input type="checkbox"/>                    | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
| <input type="checkbox"/>                    | Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
| <input type="checkbox"/>                    | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
| <input type="checkbox"/>                    | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
| <input type="checkbox"/>                    | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
| <input checked="" type="checkbox"/>         | SOP: Standard Operating Procedure for Clean Water Program New and Reissuance Industrial Waste and Industrial Stormwater Individual NPDES Permit Applications, SOP No. BCW-PMT-001, February 5, 2024, Version 1.7.  |
| <input checked="" type="checkbox"/>         | SOP: Standard Operating Procedure for Clean Water Program Establishing Effluent Limitations for Individual Industrial Permits, SOP No. BCW-PMT-032, February 5, 2024, Version 1.7.                                 |
| <input type="checkbox"/>                    | Other:                                                                                                                                                                                                             |

## ATTACHMENT A

Site-Specific Data Tables from  
PTT's WQBEL Compliance Report

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 1  
Stream Stats Data Summary for Chartiers Creek at Outfall 001 and Outfall 002

**StreamStats Output Report**

State/Region ID  
Workspace ID  
Latitude  
Longitude  
Date-Time

**Basin Characteristics**

**Parameter Code**

BSLOPD  
BSLOPDRAW  
BSLPDRPA20  
CARBON  
CENTROXA83  
CENTROYA83  
DRN  
DRNAREA  
ELEV  
ELEVMAX  
FOREST  
GLACIATED  
IMPNLCD01  
LC01DEV  
LC11DEV  
LC11IMP  
LONG\_OUT  
MAXTEMP  
OUTLETXA83  
OUTLETYA83  
PRECIP  
ROCKDEP  
STORAGE  
STRDEN  
STRMTOT  
URBAN

**Parameter Description**

Mean basin slope measured in degrees  
Unadjusted basin slope, in degrees  
Unadjusted basin slope, in degrees, from PA v1  
Percentage of area of carbonate rock  
X coordinate of the centroid, in NAD\_1983\_Albers, meters  
Basin centroid horizontal (y) location in NAD 1983 Albers  
Drainage quality index from STATSGO  
Area that drains to a point on a stream  
Mean Basin Elevation  
Maximum basin elevation  
Percentage of area covered by forest  
Percentage of basin area that was historically covered by glaciers  
Percentage of impervious area determined from NLCD 2001 impervious dataset  
Land-use from NLCD 2001 classes 21-24 (developed - open space to High intensity)  
Percentage of developed (urban) land from NLCD 2011 classes 21-24  
Average percentage of impervious area determined from NLCD 2011 impervious dataset  
Longitude of Basin Outlet  
Mean annual maximum air temperature over basin area from PRISM 1971-2000 800-m grid  
X coordinate of the outlet, in NAD\_1983\_Albers, meters  
Y coordinate of the outlet, in NAD\_1983\_Albers, meters  
Mean Annual Precipitation  
Depth to rock  
Percentage of area of storage (lakes ponds reservoirs wetlands)  
Stream Density – total length of streams divided by drainage area  
total length of all mapped streams (1:24,000-scale) in the basin  
Percentage of basin with urban development

| <u>Outfall 001</u>     |  | <u>Outfall 002</u>     |  |
|------------------------|--|------------------------|--|
| PA20220506211910537000 |  | PA20220506220923946000 |  |
| 40.26678               |  | 40.26818               |  |
| -80.17048              |  | -80.1664               |  |
| 5/6/2022 5:19:36 PM    |  | 5/6/2022 6:09:49 PM    |  |

| <u>Outfall 001</u> |                   | <u>Outfall 002</u> |                   |
|--------------------|-------------------|--------------------|-------------------|
| Value              | Unit              | Value              | Unit              |
| 7.308              | degrees           | 7.307              | degrees           |
| 7.5262             | degrees           | 7.5252             | degrees           |
| 8.6994             | degrees           | 8.6989             | degrees           |
| 0                  | percent           | 0                  | percent           |
| -192289.6          | meters            | -192285.4          | meters            |
| 137932.1           | meters            | 137934.79          | meters            |
| 3.6                | dimensionless     | 3.6                | dimensionless     |
| 87.4               | square miles      | 87.5               | square miles      |
| 1162               | feet              | 1161               | feet              |
| 1513               | feet              | 1513               | feet              |
| 38                 | percent           | 38                 | percent           |
| 0                  | percent           | 0                  | percent           |
| 8                  | percent           | 8                  | percent           |
| 26                 | percent           | 26                 | percent           |
| 30                 | percent           | 30                 | percent           |
| 9                  | percent           | 9                  | percent           |
| -80.17038          | degrees           | -80.16644          | degrees           |
| 60.8               | degrees F         | 60.8               | degrees F         |
| -184582.4          | meters            | -184243.1          | meters            |
| 142905.61          | meters            | 143062.97          | meters            |
| 39                 | inches            | 39                 | inches            |
| 4.8                | feet              | 4.8                | feet              |
| 0.4                | percent           | 0.4                | percent           |
| 1.98               | miles/square mile | 1.98               | miles/square mile |
| 173.33             | miles             | 173.57             | miles             |
| 24.5844            | percent           | 24.6083            | percent           |

**Peak-Flow Statistics Parameters [100.0 Percent Peak Flow Region 2 SIR 2019 5094]**

Parameter Code  
DRNAREA  
STORAGE

Parameter Name      Units  
Drainage Area      Mile^2  
Percent Storage      percent

| <u>Outfall 001</u> |           | <u>Outfall 002</u> |       |
|--------------------|-----------|--------------------|-------|
| Value              | Min Limit | Max Limit          | Value |
| 87.4               | 0.92      | 1160               | 87.5  |
| 0.4                | 0         | 8.9                | 0.4   |

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 1  
Stream Stats Data Summary for Chartiers Creek at Outfall 001 and Outfall 002

Peak-Flow Statistics Flow Report [100.0 Percent Peak Flow Region 2 SIR 2019 5094]

| Statistic             | Unit   | Outfall 001 |      | Outfall 002 |      |
|-----------------------|--------|-------------|------|-------------|------|
|                       |        | Value       | ASEp | Value       | ASEp |
| 50-percent AEP flood  | ft^3/s | 2640        | 26.1 | 2650        | 26.1 |
| 20-percent AEP flood  | ft^3/s | 4080        | 27   | 4080        | 27   |
| 10-percent AEP flood  | ft^3/s | 5180        | 28.9 | 5180        | 28.9 |
| 4-percent AEP flood   | ft^3/s | 6760        | 31.6 | 6760        | 31.6 |
| 2-percent AEP flood   | ft^3/s | 8050        | 34.8 | 8060        | 34.8 |
| 1-percent AEP flood   | ft^3/s | 9470        | 37.8 | 9480        | 37.8 |
| 0.5-percent AEP flood | ft^3/s | 11000       | 41.6 | 11000       | 41.6 |
| 0.2-percent AEP flood | ft^3/s | 13300       | 46.1 | 13300       | 46.1 |

Low-Flow Statistics Parameters [100.0 Percent Low Flow Region 4]

Parameter Code

DRNAREA

ELEV

Low-Flow Statistics Flow Report [100.0 Percent Low Flow Region 4]

| Parameter Name          | Units  | Outfall 001 |           |           | Outfall 002 |           |           |
|-------------------------|--------|-------------|-----------|-----------|-------------|-----------|-----------|
|                         |        | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| Drainage Area           | Mile^2 | 87.4        | 2.26      | 1400      | 87.5        | 2.26      | 1400      |
| Mean Basin Elevation    | feet   | 1162        | 1050      | 2580      | 1161        | 1050      | 2580      |
| Statistic               | Unit   | Value       | SE        | ASEp      | Value       | SE        | ASEp      |
| 7 Day 2 Year Low Flow   | ft^3/s | 4.45        | 43        | 43        | 4.46        | 43        | 43        |
| 30 Day 2 Year Low Flow  | ft^3/s | 6.96        | 38        | 38        | 6.96        | 38        | 38        |
| 7 Day 10 Year Low Flow  | ft^3/s | 2           | 66        | 66        | 2           | 66        | 66        |
| 30 Day 10 Year Low Flow | ft^3/s | 3.05        | 54        | 54        | 3.05        | 54        | 54        |
| 90 Day 10 Year Low Flow | ft^3/s | 4.99        | 41        | 41        | 4.99        | 41        | 41        |

Annual Flow Statistics Parameters [100.0 Percent Statewide Mean and Base Flow]

Parameter Code

DRNAREA

ELEV

PRECIP

FOREST

URBAN

Annual Flow Statistics Flow Report [100.0 Percent Statewide Mean and Base Flow]

| Parameter Name            | Units   | Outfall 001 |           |           | Outfall 002 |           |           |
|---------------------------|---------|-------------|-----------|-----------|-------------|-----------|-----------|
|                           |         | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| Drainage Area             | Mile^2  | 87.4        | 2.26      | 1720      | 87.5        | 2.26      | 1720      |
| Mean Basin Elevation      | feet    | 1162        | 130       | 2700      | 1161        | 130       | 2700      |
| Mean Annual Precipitation | inches  | 39          | 33.1      | 50.4      | 39          | 33.1      | 50.4      |
| Percent Forest            | percent | 37.9956     | 5.1       | 100       | 37.9884     | 5.1       | 100       |
| Percent Urban             | percent | 24.5844     | 0         | 89        | 24.6083     | 0         | 89        |
| Statistic                 | Unit    | Value       | SE        | ASEp      | Value       | SE        | ASEp      |
| Mean Annual Flow          | ft^3/s  | 117         | 12        | 12        | 117         | 12        | 12        |

General Flow Statistics Parameters [100.0 Percent Statewide Mean and Base Flow]

Parameter Code

DRNAREA

PRECIP

CARBON

FOREST

URBAN

| Parameter Name            | Units   | Outfall 001 |           |           | Outfall 002 |           |           |
|---------------------------|---------|-------------|-----------|-----------|-------------|-----------|-----------|
|                           |         | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| Drainage Area             | Mile^2  | 87.4        | 2.26      | 1720      | 87.5        | 2.26      | 1720      |
| Mean Annual Precipitation | inches  | 39          | 33.1      | 50.4      | 39          | 33.1      | 50.4      |
| Percent Carbonate         | percent | 0           | 0         | 99        | 0           | 0         | 99        |
| Percent Forest            | percent | 37.9956     | 5.1       | 100       | 37.9884     | 5.1       | 100       |
| Percent Urban             | percent | 24.5844     | 0         | 89        | 24.6083     | 0         | 89        |

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 1  
Stream Stats Data Summary for Chartiers Creek at Outfall 001 and Outfall 002

General Flow Statistics Flow Report [100.0 Percent Statewide Mean and Base Flow]

| Statistic                 | Unit   | Outfall 001 |    |      | Outfall 002 |    |      |
|---------------------------|--------|-------------|----|------|-------------|----|------|
|                           |        | Value       | SE | ASEp | Value       | SE | ASEp |
| Harmonic Mean Stream flow | ft^3/s | 25.2        | 38 | 38   | 25.2        | 38 | 38   |

Base Flow Statistics Parameters [100.0 Percent Statewide Mean and Base Flow]

| Parameter Code | Parameter Name            | Units   | Outfall 001 |           |           | Outfall 002 |           |           |
|----------------|---------------------------|---------|-------------|-----------|-----------|-------------|-----------|-----------|
|                |                           |         | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| DRNAREA        | Drainage Area             | Mile^2  | 87.4        | 2.26      | 1720      | 87.5        | 2.26      | 1720      |
| PRECIP         | Mean Annual Precipitation | inches  | 39          | 33.1      | 50.4      | 39          | 33.1      | 50.4      |
| CARBON         | Percent Carbonate         | percent | 0           | 0         | 99        | 0           | 0         | 99        |
| FOREST         | Percent Forest            | percent | 37.9956     | 5.1       | 100       | 37.9884     | 5.1       | 100       |
| URBAN          | Percent Urban             | percent | 24.5844     | 0         | 89        | 24.6083     | 0         | 89        |

Base Flow Statistics Flow Report [100.0 Percent Statewide Mean and Base Flow]

| Statistic                             | Unit   | Outfall 001 |    |      | Outfall 002 |    |      |
|---------------------------------------|--------|-------------|----|------|-------------|----|------|
|                                       |        | Value       | SE | ASEp | Value       | SE | ASEp |
| Base Flow 10 Year Recurrence Interval | ft^3/s | 34.4        | 21 | 21   | 34.5        | 21 | 21   |
| Base Flow 25 Year Recurrence Interval | ft^3/s | 30.2        | 21 | 21   | 30.2        | 21 | 21   |
| Base Flow 50 Year Recurrence Interval | ft^3/s | 27.8        | 23 | 23   | 27.8        | 23 | 23   |

Bankfull Statistics Parameters [100.0 Percent Statewide Bankfull Noncarbonate 2018 5066]

| Parameter Code | Parameter Name    | Units   | Outfall 001 |           |           | Outfall 002 |           |           |
|----------------|-------------------|---------|-------------|-----------|-----------|-------------|-----------|-----------|
|                |                   |         | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| DRNAREA        | Drainage Area     | Mile^2  | 87.4        | 2.62      | 207       | 87.5        | 2.62      | 207       |
| CARBON         | Percent Carbonate | percent | 0           |           |           | 0           |           |           |

Bankfull Statistics Parameters [100.0 Percent Appalachian Highlands D Bieger 2015]

| Parameter Code | Parameter Name | Units  | Outfall 001 |           |           | Outfall 002 |           |           |
|----------------|----------------|--------|-------------|-----------|-----------|-------------|-----------|-----------|
|                |                |        | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| DRNAREA        | Drainage Area  | Mile^2 | 87.4        | 0.07722   | 940.1535  | 87.5        | 0.07722   | 940.1535  |

Bankfull Statistics Parameters [100.0 Percent Appalachian Plateaus P Bieger 2015]

| Parameter Code | Parameter Name | Units  | Outfall 001 |           |           | Outfall 002 |           |           |
|----------------|----------------|--------|-------------|-----------|-----------|-------------|-----------|-----------|
|                |                |        | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| DRNAREA        | Drainage Area  | Mile^2 | 87.4        | 0.081081  | 536.9956  | 87.5        | 0.081081  | 536.9956  |

Bankfull Statistics Parameters [100.0 Percent USA Bieger 2015]

| Parameter Code | Parameter Name | Units  | Outfall 001 |           |           | Outfall 002 |           |           |
|----------------|----------------|--------|-------------|-----------|-----------|-------------|-----------|-----------|
|                |                |        | Value       | Min Limit | Max Limit | Value       | Min Limit | Max Limit |
| DRNAREA        | Drainage Area  | Mile^2 | 87.4        | 0.07722   | 59927.739 | 87.5        | 0.07722   | 59927.739 |

Bankfull Statistics Flow Report [100.0 Percent Statewide Bankfull Noncarbonate 2018 5066]

| Statistic           | Unit   | Outfall 001 |    |  | Outfall 002 |    |  |
|---------------------|--------|-------------|----|--|-------------|----|--|
|                     |        | Value       | SE |  | Value       | SE |  |
| Bankfull Area       | ft^2   | 430         | 64 |  | 430         | 64 |  |
| Bankfull Streamflow | ft^3/s | 2140        | 74 |  | 2140        | 74 |  |
| Bankfull Width      | ft     | 111         | 59 |  | 111         | 59 |  |
| Bankfull Depth      | ft     | 3.82        | 56 |  | 3.82        | 56 |  |

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 1  
Stream Stats Data Summary for Chartiers Creek at Outfall 001 and Outfall 002

Bankfull Statistics Flow Report [100.0 Percent Appalachian Highlands D Bieger 2015]

| Statistic                             | Unit | Outfall 001 | Outfall 002 |
|---------------------------------------|------|-------------|-------------|
| Bieger_D_channel_width                | ft   | 97.1        | 97.2        |
| Bieger_D_channel_depth                | ft   | 4.04        | 4.05        |
| Bieger_D_channel_cross_sectional_area | ft^2 | 401         | 402         |

Bankfull Statistics Flow Report [100.0 Percent Appalachian Plateaus P Bieger 2015]

| Statistic                             | Unit | Outfall 001 | Outfall 002 |
|---------------------------------------|------|-------------|-------------|
| Bieger_P_channel_width                | ft   | 107         | 107         |
| Bieger_P_channel_depth                | ft   | 4.11        | 4.11        |
| Bieger_P_channel_cross_sectional_area | ft^2 | 438         | 438         |

Bankfull Statistics Flow Report [100.0 Percent USA Bieger 2015]

| Statistic                               | Unit | Outfall 001 | Outfall 002 |
|-----------------------------------------|------|-------------|-------------|
| Bieger_USA_channel_width                | ft   | 59.7        | 59.8        |
| Bieger_USA_channel_depth                | ft   | 3.12        | 3.12        |
| Bieger_USA_channel_cross_sectional_area | ft^2 | 191         | 191         |

Bankfull Statistics Flow Report [Area-Averaged]

| Statistic                               | Unit   | Outfall 001 | Outfall 002 |
|-----------------------------------------|--------|-------------|-------------|
| Bankfull Area                           | ft^2   | 430         | 64          |
| Bankfull Streamflow                     | ft^3/s | 2140        | 74          |
| Bankfull Width                          | ft     | 111         | 59          |
| Bankfull Depth                          | ft     | 3.82        | 56          |
| Bieger_D_channel_width                  | ft     | 97.1        | 97.2        |
| Bieger_D_channel_depth                  | ft     | 4.04        | 4.05        |
| Bieger_D_channel_cross_sectional_area   | ft^2   | 401         | 402         |
| Bieger_P_channel_width                  | ft     | 107         | 107         |
| Bieger_P_channel_depth                  | ft     | 4.11        | 4.11        |
| Bieger_P_channel_cross_sectional_area   | ft^2   | 438         | 438         |
| Bieger_USA_channel_width                | ft     | 59.7        | 59.8        |
| Bieger_USA_channel_depth                | ft     | 3.12        | 3.12        |
| Bieger_USA_channel_cross_sectional_area | ft^2   | 191         | 191         |

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.  
Application Version: 4.8.1, StreamStats Services Version: 1.2.22, NSS Services Version: 2.1.2

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania

Table 2



**Cross Section Measurement Data  
Chartiers Creek**

| Outfall #001 |                 |              |                |
|--------------|-----------------|--------------|----------------|
| Measurement  | Distance (feet) | Depth (feet) | velocity (fps) |
| 0            | 53.6            |              |                |
| 1            | 51              | 0.42         | 0              |
| 2            | 48.5            | 0.64         | 0.1            |
| 3            | 46              | 0.72         | 0.6            |
| 4            | 43.5            | 0.58         | 0.6            |
| 5            | 42              | 0.5          | 0.6            |
| 6            | 39.5            | 0.52         | 0.8            |
| 7            | 37              | 0.52         | 1.3            |
| 8            | 34.5            | 0.52         | 1.7            |
| 9            | 32              | 0.5          | 1              |
| 10           | 29.5            | 0.64         | 1.1            |
| 11           | 27              | 0.7          | 1              |
| 12           | 24.5            | 0.72         | 1.1            |
| 13           | 22              | 0.6          | 1.3            |
| 14           | 19.5            | 0.55         | 1              |
| 15           | 17              | 0.6          | 0.6            |
| 16           | 14.5            | 0.56         | 0.8            |
| 17           | 12              | 0.5          | 0.8            |
| 18           | 9.5             | 0.36         | 0.6            |
| 19           | 7               | 0.28         | 0.6            |
| 20           | 4.5             | 0.18         | 0.2            |
| 21           | 2               | 0.2          | 0              |
| 22           | 0               |              |                |
| 23           |                 |              |                |
| 24           |                 |              |                |

| Outfall #002 |                 |              |                |
|--------------|-----------------|--------------|----------------|
| Measurement  | Distance (feet) | Depth (feet) | velocity (fps) |
| 0            | 37.5            |              |                |
| 1            | 35.5            | 1.6          | 0.2            |
| 2            | 34              | 2.02         | 0.1            |
| 3            | 32.5            | 1.98         | 0.2            |
| 4            | 31              | 1.7          | 0.4            |
| 5            | 29.5            | 1.32         | 0.4            |
| 6            | 28              | 0.86         | 0.6            |
| 7            | 26.5            | 1.16         | 0.6            |
| 8            | 25              | 1.16         | 0.4            |
| 9            | 23.5            | 1.2          | 0.6            |
| 10           | 22              | 0.98         | 0.8            |
| 11           | 20.5            | 1            | 1              |
| 12           | 19              | 1.16         | 0.8            |
| 13           | 17.5            | 0.81         | 1.1            |
| 14           | 16              | 1.4          | 0.8            |
| 15           | 14.5            | 1.38         | 1              |
| 16           | 13              | 1.38         | 1.1            |
| 17           | 11.5            | 1.16         | 1.1            |
| 18           | 10              | 0.96         | 1              |
| 19           | 8.5             | 0.82         | 1              |
| 20           | 7               | 0.68         | 1              |
| 21           | 5.5             | 0.48         | 1              |
| 22           | 4               | 0.34         | 0.8            |
| 23           | 2.5             | 0.18         | 0.4            |
| 24           | 0               |              |                |

| Total width (feet) | Wetted Perimeter (feet) | Average Depth (feet) | Average Velocity (fps) |
|--------------------|-------------------------|----------------------|------------------------|
| 53.6               | 53.67                   | 0.51                 | 0.790                  |

| Total width (feet) | Wetted Perimeter (feet) | Average Depth (feet) | Average Velocity (fps) |
|--------------------|-------------------------|----------------------|------------------------|
| 37.5               | 38.54                   | 1.12                 | 0.713                  |

Cross-sectional Area (A) = width x average depth  
Hydraulic Radius (R) = Cross-sectional Area (A) / Wetted Perimeter (P)

=  
=

**Outfall #001**

27.627 ft<sup>2</sup>  
0.515 ft

**Outfall #002**

43.115 ft<sup>2</sup>  
1.119 ft

**Notes:**

fps = feet per second

Measurement Date: August 19, 2022

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 3A  
Daily CV Outfall Data Summary - Continuous Discharge Locations

| Analyte                    | Units | Outfall 001 - Continuous Discharge Location |                       |                     |                       |                       |                       |                     |                      |                       |                        |                        |                      |
|----------------------------|-------|---------------------------------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------|----------------------|-----------------------|------------------------|------------------------|----------------------|
|                            |       | Week #1<br>6/21-22/22                       | Week #2<br>6/28-29/22 | Week #3<br>7/5-6/22 | Week #4<br>7/12-13/22 | Week #5<br>7/19-20/22 | Week #6<br>7/26-27/22 | Week #7<br>8/2-3/22 | Week #8<br>8/9-10/22 | Week #9<br>8/16-17/22 | Week #10<br>8/23-24/22 | Week #11<br>8/30-31/22 | Week #12<br>9/6-7/22 |
| Copper, Total              | µg/L  | 0.707                                       | 0.421                 | 2.79                | < 0.107               | 0.251                 | 1.51                  | 0.907               | 0.448                | 0.436                 | 0.352                  | 0.515                  | 0.155                |
| Free Available Cyanide     | µg/L  | < 8                                         | < 8                   | < 8                 | < 8                   | < 5                   | < 8                   | < 8                 | < 8                  | < 8                   | < 8                    | < 8                    | < 8                  |
| Benzo(a)anthracene         | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.53                | < 2.50                 | < 2.50                 | < 2.50               |
| 3,4-Benzofluoranthene      | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.53                | < 2.50                 | < 2.50                 | < 2.50               |
| Benzo(k)Fluoranthene       | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.53                | < 2.50                 | < 2.50                 | < 2.50               |
| Chrysene                   | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.53                | < 2.50                 | < 2.50                 | < 2.50               |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | < 2.38                                      | 24.7                  | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.53                | < 2.50                 | < 2.50                 | 3.65                 |
| Vinyl Chloride             | µg/L  | < 0.160                                     | < 0.160               | < 0.160             | < 0.160               | < 0.160               | < 0.160               | < 0.160             | < 0.160              | < 0.160               | < 0.160                | < 0.160                | < 0.160              |
| pH                         | SU    | 7.01                                        | 7.52                  | 7.55                | 7.21                  | 7.42                  | 7.28                  | 6.49                | 7.01                 | 6.87                  | 6.88                   | 7.29                   | 7.27                 |
| Discharge Flow             | MGD   | 0.028                                       | 0.051                 | 0.075               | 0.019                 | 0.053                 | 0.083                 | 0.068               | 0.031                | 0.008                 | 0.059                  | 0.101                  | 0.059                |
| Analyte                    | Units | Outfall 002 - Continuous Discharge Location |                       |                     |                       |                       |                       |                     |                      |                       |                        |                        |                      |
|                            |       | Week #1<br>6/21-22/22                       | Week #2<br>6/28-29/22 | Week #3<br>7/5-6/22 | Week #4<br>7/12-13/22 | Week #5<br>7/19-20/22 | Week #6<br>7/26-27/22 | Week #7<br>8/2-3/22 | Week #8<br>8/9-10/22 | Week #9<br>8/16-17/22 | Week #10<br>8/23-24/22 | Week #11<br>8/30-31/22 | Week #12<br>9/6-7/22 |
| Hexavalent Chromium        | µg/L  | 10                                          | 7                     | < 4                 | 5                     | < 2                   | 6                     | 8                   | < 2                  | < 4                   | < 4                    | 6                      | < 2                  |
| Total Lead                 | µg/L  | 0.208                                       | 0.317                 | 0.922               | 1.55                  | 0.436                 | 0.518                 | 0.737               | 0.283                | 0.697                 | 0.327                  | 1.21                   | 0.603                |
| Total Selenium             | µg/L  | 1.38                                        | 1.3                   | 1.22                | 1.27                  | 1.02                  | 0.929                 | 0.423               | 1.25                 | 1.04                  | 0.828                  | 0.501                  | 0.929                |
| Benzo(a)Anthracene         | µg/L  | < 2.40                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Benzo(a)pyrene             | µg/L  | < 2.40                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| 3,4-Benzofluoranthene      | µg/L  | < 2.40                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Benzo(k)Fluoranthene       | µg/L  | < 2.40                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Chrysene                   | µg/L  | < 2.40                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Dibenzo(a,h)Anthracene     | µg/L  | < 2.40                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Indeno(1,2,3-cd)Pyrene     | µg/L  | < 2.40                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Dichlorodibromomethane     | µg/L  | < 0.200                                     | < 0.200               | < 0.200             | < 0.200               | < 0.200               | < 0.200               | < 0.200             | < 0.200              | < 0.200               | < 0.200                | < 0.200                | < 0.200              |
| Chlorodibromomethane       | µg/L  | < 0.200                                     | < 0.200               | < 0.200             | < 0.200               | < 0.200               | < 0.200               | < 0.200             | < 0.200              | < 0.200               | < 0.200                | < 0.200                | < 0.200              |
| Chloroform                 | µg/L  | < 0.10                                      | < 0.100               | < 0.100             | < 0.100               | < 0.100               | < 0.100               | < 0.100             | < 0.100              | < 0.100               | < 0.100                | < 0.100                | < 0.100              |
| Vinyl Chloride             | µg/L  | < 0.160                                     | < 0.160               | < 0.160             | < 0.160               | 0.890                 | 0.625                 | < 0.160             | 0.210                | < 0.160               | < 0.160                | 0.203                  | 0.550                |
| pH                         | SU    | 7.34                                        | 7.46                  | 7.49                | 7.56                  | 7.21                  | 7.10                  | 6.77                | 7.13                 | 6.90                  | 7.00                   | 7.14                   | 6.97                 |
| Discharge Flow             | MGD   | 0.011                                       | 0.033                 | 0.045               | 0.0073                | 0.247                 | 0.194                 | 0.089               | 0.024                | 0.035                 | 0.013                  | 0.207                  | 0.043                |
| Analyte                    | Units | Outfall 003 - Continuous Discharge Location |                       |                     |                       |                       |                       |                     |                      |                       |                        |                        |                      |
|                            |       | Week #1<br>6/21-22/22                       | Week #2<br>6/28-29/22 | Week #3<br>7/5-6/22 | Week #4<br>7/12-13/22 | Week #5<br>7/19-20/22 | Week #6<br>7/26-27/22 | Week #7<br>8/2-3/22 | Week #8<br>8/9-10/22 | Week #9<br>8/16-17/22 | Week #10<br>8/23-24/22 | Week #11<br>8/30-31/22 | Week #12<br>9/6-7/22 |
| Total Lead                 | µg/L  | < 0.051                                     | 0.107                 | 0.071               | < 0.051               | 0.14                  | < 0.051               | 0.059               | 0.140                | < 0.051               | < 0.051                | < 0.051                | < 0.051              |
| Benzo(a)Anthracene         | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.40              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| 3,4-Benzofluoranthene      | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.40              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Benzo(k)Fluoranthene       | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.40              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Chrysene                   | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.40              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| Indeno(1,2,3-cd)Pyrene     | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.40              | < 2.50               | < 2.55                | < 2.50                 | < 2.50                 | < 2.50               |
| pH                         | SU    | 7.38                                        | 7.34                  | 7.47                | 7.39                  | 7.47                  | 7.16                  | 7.11                | 7.06                 | 6.98                  | 6.98                   | 7.08                   |                      |
| Discharge Flow             | MGD   | 0.0002                                      | 0.0002                | 0.0004              | 0.0001                | 0.0001                | 0.0002                | 0.0002              | 0.0001               | 0.0006                | 0.0001                 | 0.0005                 | 0.00001              |

Table 3A  
Daily CV Outfall Data Summary - Continuous Discharge Locations

| Analyte                    | Units | Outfall 006 - Continuous Discharge Location |                       |                     |                       |                       |                       |                     |                      |                       |                        |                        |                      |
|----------------------------|-------|---------------------------------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------|----------------------|-----------------------|------------------------|------------------------|----------------------|
|                            |       | Week #1<br>6/21-22/22                       | Week #2<br>6/28-29/22 | Week #3<br>7/5-6/22 | Week #4<br>7/12-13/22 | Week #5<br>7/19-20/22 | Week #6<br>7/26-27/22 | Week #7<br>8/2-3/22 | Week #8<br>8/9-10/22 | Week #9<br>8/16-17/22 | Week #10<br>8/23-24/22 | Week #11<br>8/30-31/22 | Week #12<br>9/6-7/22 |
| Free Available Cyanide     | µg/L  | < 8                                         | < 8                   | < 8                 | < 8                   | < 5                   | < 8                   | < 8                 | < 8                  | < 8                   | < 8                    | < 8                    | < 8                  |
| Total Copper               | µg/L  | 0.995                                       | 0.809                 | 2.02                | 0.265                 | 0.690                 | 0.812                 | 2.47                | 0.946                | 0.655                 | 0.618                  | 1.39                   | 1.01                 |
| Benzidine                  | µg/L  | < 11.9                                      | < 11.8                | < 11.8              | < 11.8                | < 11.8                | < 11.8                | < 11.8              | < 12.6               | < 12.5                | < 12.5                 | < 12.5                 | < 12.5               |
| Benzo(a)anthracene         | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Benzo(a)pyrene             | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| 3,4-Benzofluoranthene      | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Benzo(k)fluoranthene       | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.50               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Bis(2-chloroethyl)ether    | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Chrysene                   | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Dibenzo(a,h)Anthracene     | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| 3,3-Dichlorobenzidine      | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| 1,2 Diphenylhydrazine      | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Hexachlorobenzene          | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Hexachlorobutadiene        | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Hexachlorocyclopentadiene  | µg/L  | < 4.76                                      | < 4.74                | < 4.74              | < 4.74                | < 4.74                | < 4.74                | < 4.74              | < 5.05               | < 5.00                | < 5.00                 | < 5.00                 | < 5.00               |
| Hexachloroethane           | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| 4,6-dinitro-o-cresol       | µg/L  | < 11.9                                      | < 11.8                | < 11.8              | < 11.8                | < 11.8                | < 11.8                | < 11.8              | < 12.6               | < 12.5                | < 12.5                 | < 12.5                 | < 12.5               |
| N-Nitrosodimethylamine     | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| N-Nitrosodi-N-propylamine  | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Pentachlorophenol          | µg/L  | < 11.9                                      | < 11.8                | < 11.8              | < 11.8                | < 11.8                | < 11.8                | < 11.8              | < 12.6               | < 12.5                | < 12.5                 | < 12.5                 | < 12.5               |
| Phenanthrene               | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| 2,4,6-Trichlorophenol      | µg/L  | < 2.38                                      | < 2.37                | < 2.37              | < 2.37                | < 2.37                | < 2.37                | < 2.37              | < 2.53               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Acrolein                   | µg/L  | < 1.90                                      | < 1.90                | < 1.90              | < 1.90                | < 1.90                | < 1.90                | < 1.90              | < 1.90               | < 1.90                | < 1.90                 | < 1.90                 | < 1.90               |
| Acrylonitrile              | µg/L  | < 2.50                                      | < 2.50                | < 2.50              | < 2.50                | < 2.50                | < 2.50                | < 2.50              | < 2.50               | < 2.50                | < 2.50                 | < 2.50                 | < 2.50               |
| Carbon Tetrachloride       | µg/L  | < 0.190                                     | < 0.190               | < 0.190             | < 0.190               | < 0.190               | < 0.190               | < 0.190             | < 0.190              | < 0.190               | < 0.190                | < 0.190                | < 0.190              |
| Dichlorobromomethane       | µg/L  | < 0.200                                     | < 0.200               | < 0.200             | < 0.200               | < 0.200               | < 0.200               | < 0.200             | < 0.200              | < 0.200               | < 0.200                | < 0.200                | < 0.200              |
| Chlorodibromomethane       | µg/L  | < 0.200                                     | < 0.200               | < 0.200             | < 0.200               | < 0.200               | < 0.200               | < 0.200             | < 0.200              | < 0.200               | < 0.200                | < 0.200                | < 0.200              |
| 1,2 Dichloroethane         | µg/L  | < 0.200                                     | < 0.200               | < 0.200             | < 0.200               | < 0.200               | < 0.200               | < 0.200             | < 0.200              | < 0.200               | < 0.200                | < 0.200                | < 0.200              |
| 1,3 Dichloropropylene      | µg/L  | < 0.220                                     | < 0.220               | < 0.220             | < 0.220               | < 0.220               | < 0.220               | < 0.220             | < 0.220              | < 0.220               | < 0.220                | < 0.220                | < 0.220              |
| 1,1,2-Trichloroethane      | µg/L  | < 0.100                                     | < 0.100               | < 0.100             | < 0.100               | < 0.100               | < 0.100               | < 0.100             | < 0.100              | < 0.100               | < 0.100                | < 0.100                | < 0.100              |
| 1,1,2,2-Tetrachloroethane  | µg/L  | < 0.140                                     | < 0.140               | < 0.140             | < 0.140               | < 0.140               | < 0.140               | < 0.140             | < 0.140              | < 0.140               | < 0.140                | < 0.140                | < 0.140              |
| Vinyl Chloride             | µg/L  | < 0.160                                     | < 0.160               | < 0.160             | < 0.160               | < 0.160               | < 0.160               | < 0.160             | < 0.160              | < 0.160               | < 0.160                | < 0.160                | < 0.160              |
| pH                         | SU    | 7.37                                        | 7.56                  | 7.34                | 7.42                  | 7.39                  | 7.14                  | 7.25                | 7.14                 | 7.06                  | 7.09                   | 7.14                   | 7.10                 |
| Discharge Flow             | MGD   | 0.013                                       | 0.017                 | 0.026               | 0.009                 | 0.026                 | 0.016                 | 0.016               | 0.010                | 0.017                 | 0.008                  | 0.005                  | 0.013                |

Notes:

µg/L = micrograms per Liter  
MGD = million gallons per day

SU = standard units

<# - less than the laboratory reporting limit or method detection limit of X

Table 3B  
Daily CV Outfall Data Summary - Batch Discharge Locations

| Analyte                    | Units | Outfall 004 - Batch Discharge Location |                    |                    |                    |                    |                    |                    |                    |                     |                      |                      |                      |
|----------------------------|-------|----------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|----------------------|----------------------|----------------------|
|                            |       | Week #1<br>7/18/22                     | Week #2<br>7/25/22 | Week #3<br>8/11/22 | Week #4<br>8/29/22 | Week #5<br>9/19/22 | Week #6<br>5/28/21 | Week #7<br>6/10/21 | Week #8<br>7/1/21  | Week #9<br>8/11/21  | Week #10<br>8/18/21  | Week #11<br>9/1/21   | Week #12<br>12/06/21 |
| Hexavalent Chromium        | µg/L  | < 2                                    | 9                  | < 4                | 8                  | < 4                | 40                 | < 15               | < 15               | 40                  | < 15                 | < 15                 | < 2                  |
| Free Available Cyanide     | µg/L  | < 5                                    | < 8                | < 8                | < 8                | < 8                | < 20               | < 20               | < 10               | < 6.0               | < 6.0                | < 6.0                | < 6.0                |
| Total Cadmium              | µg/L  | 0.118                                  | 0.065              | 0.079              | 0.087              | 0.101              | 1.11               | < 0.8              | < 0.8              | 0.159               | < 0.8                | < 0.8                | < 0.8                |
| Total Lead                 | µg/L  | 0.254                                  | 3.85               | 1.73               | 2.09               | 0.263              | 28.9               | < 0.8              | 1.52               | 0.779               | 1.11                 | 1.01                 | 1.14                 |
| Total Zinc                 | µg/L  | 40                                     | 40                 | 49                 | 29                 | 28                 | 269                | 78                 | 25                 | 77                  | 35                   | 24                   | 39                   |
| Benzo(a)Anthracene         | µg/L  | < 2.37                                 | < 2.37             | < 2.40             | < 2.84             | < 2.50             | 10.8               | 6.45               | < 1.02             | < 0.51              | < 0.51               | < 0.51               | < 2.50               |
| Benzo(a)Pyrene             | µg/L  | < 2.37                                 | < 2.37             | < 2.40             | < 2.84             | < 2.50             | 4.48               | 5.11               | < 1.02             | 0.811               | < 0.51               | < 0.51               | < 2.50               |
| 3,4-Benzofluoranthene      | µg/L  | < 2.37                                 | < 2.37             | < 2.40             | < 2.84             | < 2.50             | 1.69               | 2.81               | < 1.02             | 1.16                | < 0.51               | < 0.51               | < 2.50               |
| Benzo(k)Fluoranthene       | µg/L  | < 2.37                                 | < 2.37             | < 2.40             | < 2.84             | < 2.50             | 1.69               | 2.81               | < 1.02             | < 0.51              | < 0.51               | < 0.51               | < 2.50               |
| Chrysene                   | µg/L  | < 2.37                                 | < 2.37             | < 2.40             | < 2.84             | < 2.50             | 12.3               | 6.19               | < 1.02             | < 0.51              | < 0.51               | < 0.51               | < 2.50               |
| Indeno(1,2,3-cd)Pyrene     | µg/L  | < 2.37                                 | < 2.37             | < 2.40             | < 2.84             | < 2.50             | 2.47               | 3.59               | < 1.02             | 0.765               | < 0.51               | < 0.51               | < 2.50               |
| pH                         | SU    | 7.62                                   | 7.62               | 7.95               | 7.88               | 8.29               | 6.93               | 8.74               | 7.85               | 8.34                | 7.58                 | 8.10                 | 8.81                 |
| Discharge Flow             | MGD   | 0.0827                                 | 0.0644             | 0.0054             | 0.0129             | 0.0258             | 0.083              | 0.017              | 0.145              | 0.090               | 0.068                | 0.497                | 0.021                |
| Analyte                    | Units | Outfall 005- Batch Discharge Location  |                    |                    |                    |                    |                    |                    |                    |                     |                      |                      |                      |
|                            |       | Week #1<br>7/18/22                     | Week #2<br>7/25/22 | Week #3<br>8/5/22  | Week #4<br>8/11/22 | Week #5<br>8/29/22 | Week #6<br>9/19/22 | Week #7<br>7/1/21  | Week #8<br>8/11/21 | Week #9<br>8/18/21  | Week #10<br>10/22/21 | Week #11<br>11/18/21 | Week #12<br>12/06/21 |
| Total Aluminum             | µg/L  | 262                                    | 709                | 161                | 203                | 105                | 152                | < 200              | < 200              | < 200               | < 200                | < 200                | 252                  |
| Total Iron                 | µg/L  | 254                                    | 137                | 118                | 340                | 101                | 122                | < 200              | < 200              | < 200               | < 200                | < 200                | 218                  |
| pH                         | SU    | 7.63                                   | 7.34               | 7.56               | 7.83               | 7.64               | 8.19               | 7.86               | 8.2                | 7.78                | 8.44                 | 8.86                 | 8.11                 |
| Discharge Flow             | MGD   | 0.0002                                 | 0.0014             | 0.0001             | 0.0002             | 0.0003             | 0.001              | 0.0001             | 0.0002             | 0.0002              | 0.0001               | 0.00006              | 0.0001               |
| Analyte                    | Units | Outfall 102- Batch Discharge Location  |                    |                    |                    |                    |                    |                    |                    |                     |                      |                      |                      |
|                            |       | Week #1<br>7/18/22                     | Week #2<br>7/21/22 | Week #3<br>7/23/22 | Week #4<br>7/28/22 | Week #5<br>8/5/22  | Week #6<br>8/22/22 | Week #7<br>8/29/22 | Week #8<br>9/4/22  | event #9<br>9/19/22 | Week #10<br>8/20/21  | Week #11<br>10/25/21 | Week #12<br>11/01/21 |
| Copper, Total              | µg/L  | 4.95                                   | 24.8               | 5.57               | 114                | 115                | 51.2               | 102                | 7.48               | 8.79                | 5.72                 | 3.94                 | 7.04                 |
| Free Available Cyanide     | µg/L  | < 5                                    | < 8                | < 8                | < 8                | < 8                | < 8                | < 8                | < 8                | < 8                 | < 6                  | < 6                  | < 6                  |
| Benzo(a)anthracene         | µg/L  | < 4.74                                 | < 2.37             | < 2.40             | < 4.74             | < 2.40             | < 2.50             | < 5.0              | < 2.50             | < 2.50              | < 0.5                | < 0.5                | < 0.5                |
| 3,4-Benzofluoranthene      | µg/L  | < 4.74                                 | < 2.37             | < 2.40             | < 4.74             | < 2.40             | < 2.50             | < 5.0              | < 2.50             | < 2.50              | < 0.5                | < 0.5                | < 0.5                |
| Benzo(k)fluoranthene       | µg/L  | < 4.74                                 | < 2.37             | < 2.40             | < 4.74             | < 2.40             | < 2.50             | < 5.0              | < 2.50             | < 2.50              | < 0.5                | < 0.5                | < 0.5                |
| Chrysene                   | µg/L  | < 4.74                                 | < 2.37             | < 2.40             | < 4.74             | < 2.40             | < 2.50             | < 5.0              | < 2.50             | < 2.50              | < 0.5                | < 0.5                | < 0.5                |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | < 4.74                                 | 4.35               | 5.53               | 14.1               | 14.7               | 8.73               | 21                 | 26.1               | 12.8                | < 5                  | 92.6                 | 17.5                 |
| Vinyl Chloride             | µg/L  | 2.76                                   | 0.510              | 2.78               | 0.450              | 0.538              | 1.46               | 0.898              | 0.670              | 0.503               | 13.5                 | 12.7                 | 37.5                 |
| pH                         | SU    | 6.87                                   | 7.61               | 7.61               | 7.57               | 7.52               | 7.54               | 7.7                | 7.24               | 8.07                | 7.85                 | 8.33                 | 8.51                 |
| Discharge Flow             | MGD   | 0.5651                                 | 0.5651             | 0.5651             | 0.5651             | 0.0199             | 0.1511             | 0.0776             | 0.0285             | 0.0285              | 0.3138               | 0.126                | 1.528                |

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 3B  
Daily CV Outfall Data Summary - Batch Discharge Locations

| Analyte                    | Units | Outfall 104- Batch Discharge Location |                    |                    |                    |                    |                     |                     |                   |                    |                     |                    |                     |
|----------------------------|-------|---------------------------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|-------------------|--------------------|---------------------|--------------------|---------------------|
|                            |       | Week #1<br>7/17/22                    | Week #2<br>7/28/22 | Week #3<br>8/18/22 | Week #4<br>8/21/22 | Week #5<br>8/30/22 | Week #6<br>09/01/21 | Week #7<br>12/25/21 | Week #8<br>5/6/22 | Week #9<br>4/20/22 | Week #10<br>3/14/22 | Week #11<br>1/6/22 | Week #12<br>10/1/22 |
| Copper, Total              | µg/L  | 3.00                                  | 7.66               | 3.88               | 3.9                | 2.4                | 9.18                | 2.06                | 2.44              | 2.91               | 1.81                | 5.45               | 2                   |
| Free Available Cyanide     | µg/L  | < 10.0                                | < 8                | < 8                | < 8                | < 8                | < 6                 | < 6                 | < 8               | 11                 | < 6                 | < 6                | < 6                 |
| Benzo(a)anthracene         | µg/L  | < 2.37                                | < 2.37             | < 2.37             | < 2.50             | < 2.55             | < 0.500             | < 0.500             | < 0.474           | < 0.505            | < 0.532             | < 0.500            | < 2.50              |
| 3,4-Benzofluoranthene      | µg/L  | < 2.37                                | < 2.37             | < 2.37             | < 2.50             | < 2.55             | < 0.500             | < 0.500             | < 0.474           | < 0.505            | < 0.532             | < 0.500            | < 2.50              |
| Benzo(k)fluoranthene       | µg/L  | < 2.37                                | < 2.37             | < 2.37             | < 2.50             | < 2.55             | < 0.500             | < 0.500             | < 0.474           | < 0.505            | < 0.532             | < 0.500            | < 2.50              |
| Chrysene                   | µg/L  | < 2.37                                | < 2.37             | < 2.37             | < 2.50             | < 2.55             | < 0.500             | < 0.500             | < 0.474           | < 0.505            | < 0.532             | < 0.500            | < 2.50              |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | < 2.37                                | < 2.37             | < 2.37             | < 2.50             | < 2.55             | < 5.00              | 8.58                | < 4.74            | < 5.05             | < 5.32              | 9.57               | < 2.50              |
| Vinyl Chloride             | µg/L  | < 0.160                               | < 0.160            | < 0.160            | < 0.160            | < 0.160            | < 1                 | < 0.500             | < 0.500           | < 0.500            | < 0.500             | < 0.500            | < 0.160             |
| pH                         | SU    | 7.52                                  | 7.69               | 7.00               | 7.21               | 7.63               | 7.68                | 8.67                | 6.89              | 6.97               | 7.51                | 8.18               | 8.16                |
| Discharge Flow             | MGD   | 0.0021                                | 0.0021             | 0.0014             | 0.0014             | 0.0014             | 0.00006             | 0.0036              | 0.0084            | 0.0045             | 0.0005              | 0.0085             | 0.0022              |

**Notes:**

µg/L = micrograms per Liter

MGD = million gallons per day

SU = standard units

<# = less than the laboratory reporting limit or method detection limit of #

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania

Table 4A  
Hourly CV Outfall Data Summary - Continuous Discharge Locations



| Analyte                    | Units | Outfall 001 - Continuous Discharge Location |                   |                   |                   |
|----------------------------|-------|---------------------------------------------|-------------------|-------------------|-------------------|
|                            |       | Day #1<br>7/11/22                           | Day #2<br>7/12/22 | Day #3<br>7/13/22 | Day #4<br>7/14/22 |
| Copper, Total              | µg/L  | 0.866                                       | 1.36              | 6.39              | 0.279             |
| Free Available Cyanide     | µg/L  | < 0.008                                     | < 0.008           | < 0.008           | < 0.008           |
| Benzo(a)Anthracene         | µg/L  | < 2.37                                      | < 2.37            | < 2.47            | < 2.37            |
| 3,4-Benzofluoranthene      | µg/L  | < 2.37                                      | < 2.37            | < 2.47            | < 2.37            |
| Benzo(k)Fluoranthene       | µg/L  | < 2.37                                      | < 2.37            | < 2.47            | < 2.37            |
| Chrysene                   | µg/L  | < 2.37                                      | < 2.37            | < 2.47            | < 2.37            |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | 3.51                                        | < 2.37            | < 2.47            | < 2.37            |
| Vinyl Chloride             | µg/L  | < 0.160                                     | < 0.160           | < 0.160           | < 0.160           |
| Discharge Flow             | MGD   | 0.082                                       | 0.025             | 0.012             | 0.031             |
| Analyte                    | Units | Outfall 002 - Continuous Discharge Location |                   |                   |                   |
|                            |       | Day #1<br>7/11/22                           | Day #2<br>7/12/22 | Day #3<br>7/13/22 | Day #4<br>7/14/22 |
| Hexavalent Chromium        | µg/L  | < 2                                         | 3                 | 6                 | < 4               |
| Total Lead                 | µg/L  | 0.455                                       | 0.333             | 0.383             | 0.514             |
| Total Selenium             | µg/L  | 1.31                                        | 1.32              | 1.29              | 1.03              |
| Benzo(a)Anthracene         | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Benzo(a)pyrene             | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| 3,4-Benzofluoranthene      | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Benzo(k)Fluoranthene       | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Chrysene                   | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Dibenz(a,h)Anthracene      | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Indeno(1,2,3-cd)Pyrene     | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Dichlorodibromomethane     | µg/L  | < 0.200                                     | < 0.200           | < 0.200           | < 0.200           |
| Chlorodibromomethane       | µg/L  | < 0.200                                     | < 0.200           | < 0.200           | < 0.200           |
| Chloroform                 | µg/L  | < 0.100                                     | < 0.100           | < 0.100           | < 0.100           |
| Vinyl Chloride             | µg/L  | < 0.160                                     | < 0.160           | < 0.160           | < 0.160           |
| Discharge Flow             | MGD   | 0.043                                       | 0.008             | 0.006             | 0.008             |
| Analyte                    | Units | Outfall 003 - Continuous Discharge Location |                   |                   |                   |
|                            |       | Day #1<br>7/11/22                           | Day #2<br>7/12/22 | Day #3<br>7/13/22 | Day #4<br>7/14/22 |
| Total Lead                 | µg/L  | < 0.051                                     | 0.058             | < 0.051           | 0.092             |
| Benzo(a)Anthracene         | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| 3,4-Benzofluoranthene      | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Benzo(k)Fluoranthene       | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Chrysene                   | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Indeno(1,2,3-cd)Pyrene     | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Discharge Flow             | MGD   | 0.0004                                      | 0.0001            | 0.0001            | 0.0001            |

WQBEL Compliance Report  
 Pennsylvania Transformer Technology, Inc.  
 Canonsburg, Pennsylvania



Table 4A  
 Hourly CV Outfall Data Summary - Continuous Discharge Locations

| Analyte                    | Units | Outfall 006 - Continuous Discharge Location |                   |                   |                   |
|----------------------------|-------|---------------------------------------------|-------------------|-------------------|-------------------|
|                            |       | Day #1<br>7/11/22                           | Day #2<br>7/12/22 | Day #3<br>7/13/22 | Day #4<br>7/14/22 |
| Free Available Cyanide     | µg/L  | < 0.008                                     | < 0.008           | < 0.008           | < 0.008           |
| Total Copper               | µg/L  | 0.407                                       | 0.367             | 0.370             | 0.390             |
| Benzidine                  | µg/L  | < 11.8                                      | < 11.8            | < 11.8            | < 11.8            |
| Benzo(a)anthracene         | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Benzo(a)pyrene             | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| 3,4-Benzofluoranthene      | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Benzo(k)fluoranthene       | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Bis(2-chloroethyl)ether    | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Chrysene                   | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Dibenzo(a,h)Anthracene     | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| 3,3-Dichlorobenzidine      | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| 1,2 Diphenylhydrazine      | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | < 2.37                                      | 4.13              | 4.13              | < 2.37            |
| Hexachlorobenzene          | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Hexachlorobutadiene        | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Hexachlorocyclopentadiene  | µg/L  | < 4.74                                      | < 4.74            | < 4.74            | < 4.74            |
| Hexachloroethane           | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| 4,6-dinitro-o-cresol       | µg/L  | < 11.8                                      | < 11.8            | < 11.8            | < 11.8            |
| N-Nitrosodimethylamine     | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| N-Nitrosodi-N-propylamine  | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Pentachlorophenol          | µg/L  | < 11.8                                      | < 11.8            | < 11.8            | < 11.8            |
| Phenanthrene               | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| 2,4,6-Trichlorophenol      | µg/L  | < 2.37                                      | < 2.37            | < 2.37            | < 2.37            |
| Acrolein                   | µg/L  | < 1.90                                      | < 1.90            | < 1.90            | < 1.90            |
| Acrylonitrile              | µg/L  | < 2.50                                      | < 2.50            | < 2.50            | < 2.50            |
| Carbon Tetrachloride       | µg/L  | < 0.190                                     | < 0.190           | < 0.190           | < 0.190           |
| Dichlorobromomethane       | µg/L  | < 0.200                                     | < 0.200           | < 0.200           | < 0.200           |
| Chlorodibromomethane       | µg/L  | < 0.200                                     | < 0.200           | < 0.200           | < 0.200           |
| 1,2 Dichloroethane         | µg/L  | < 0.200                                     | < 0.200           | < 0.200           | < 0.200           |
| 1,3 Dichloropropylene      | µg/L  | < 0.220                                     | < 0.220           | < 0.220           | < 0.220           |
| 1,1,2-Trichloroethane      | µg/L  | < 0.100                                     | < 0.100           | < 0.100           | < 0.100           |
| 1,1,2,2-Tetrachloroethane  | µg/L  | < 0.140                                     | < 0.140           | < 0.140           | < 0.140           |
| Vinyl Chloride             | µg/L  | < 0.160                                     | < 0.160           | < 0.160           | < 0.160           |
| Discharge Flow             | MGD   | 0.027                                       | 0.010             | 0.009             | 0.009             |

Notes:

µg/L = micrograms per Liter

MGD = million gallons per day

<# = less than the laboratory reporting limit of #

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 4B

Hourly CV Outfall Data Summary - Batch Discharge Locations

|                            |       | Outfall 004 - Batch Discharge Location |
|----------------------------|-------|----------------------------------------|
| Analyte                    | Units | 8/11/2022                              |
| Hexavalent Chromium        | µg/L  | < 4                                    |
| Free Available Cyanide     | µg/L  | < 8                                    |
| Total Cadmium              | µg/L  | 0.079                                  |
| Total Lead                 | µg/L  | 1.73                                   |
| Total Zinc                 | µg/L  | 49                                     |
| Benzo(a)Anthracene         | µg/L  | < 2.40                                 |
| Benzo(a)pyrene             | µg/L  | < 2.40                                 |
| 3,4-Benzofluoranthene      | µg/L  | < 2.40                                 |
| Benzo(k)Fluoranthene       | µg/L  | < 2.40                                 |
| Chrysene                   | µg/L  | < 2.40                                 |
| Indeno(1,2,3-cd)Pyrene     | µg/L  | < 2.40                                 |
| Discharge Flow             | MGD   | 0.0054                                 |
|                            |       | Outfall 005 - Batch Discharge Location |
| Analyte                    | Units | 8/11/2022                              |
| Total Aluminum             | µg/L  | 203                                    |
| Total Iron                 | µg/L  | 340                                    |
| Discharge Flow             | MGD   | 0.0002                                 |
|                            |       | Outfall 102 - Batch Discharge Location |
| Analyte                    | Units | 7/18/2022                              |
| Copper, Total              | µg/L  | 13                                     |
| Free Available Cyanide     | µg/L  | < 5                                    |
| Benzo(a)anthracene         | µg/L  | < 4.74                                 |
| 3,4-Benzofluoranthene      | µg/L  | < 4.74                                 |
| Benzo(k)fluoranthene       | µg/L  | < 4.74                                 |
| Chrysene                   | µg/L  | < 4.74                                 |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | < 4.74                                 |
| Vinyl Chloride             | µg/L  | 2.50                                   |
| Discharge Flow             | MGD   | 0.5651                                 |
|                            |       | Outfall 104 - Batch Discharge Location |
| Analyte                    | Units | 7/17/2022                              |
| Copper, Total              | µg/L  | 3                                      |
| Free Available Cyanide     | µg/L  | < 5                                    |
| Benzo(a)anthracene         | µg/L  | < 2.37                                 |
| 3,4-Benzofluoranthene      | µg/L  | < 2.37                                 |
| Benzo(k)fluoranthene       | µg/L  | < 2.37                                 |
| Chrysene                   | µg/L  | < 2.37                                 |
| Bis(2-Ethylhexyl)Phthalate | µg/L  | < 2.37                                 |
| Vinyl Chloride             | µg/L  | < 0.160                                |
| Discharge Flow             | MGD   | 0.0021                                 |

Notes:

µg/L = micrograms per Liter

MGD = million gallons per day

<# = less than the laboratory reporting limit of #

WQBEL Compliance Report  
Pennsylvania Technology Transformer, Inc.  
Canonsburg, Pennsylvania



Table 5  
Site-Specific Stream Water Quality Data Summary

| Analyte                                       | Units                   | Site-Specific Water Quality: Chartiers Creek (Upgradient of Outfall 001) |                    |                   |                    |                    |                   |                   |                    |                    |                     |
|-----------------------------------------------|-------------------------|--------------------------------------------------------------------------|--------------------|-------------------|--------------------|--------------------|-------------------|-------------------|--------------------|--------------------|---------------------|
|                                               |                         | Week #1<br>6/20/22                                                       | Week #2<br>6/28/22 | Week #3<br>7/5/22 | Week #4<br>7/11/22 | Week #5<br>7/20/22 | Week #6<br>8/1/22 | Week #7<br>8/8/22 | Week #8<br>8/15/22 | Week #9<br>8/24/22 | Week #10<br>8/29/22 |
| Alkalinity                                    | mg CaCO <sub>3</sub> /L | 189                                                                      | 172                | 192               | 157                | 166                | 168               | 173               | 171                | 166                | 155                 |
| Ammonia as Nitrogen                           | mg/L                    | < 0.30                                                                   | < 0.30             | < 0.30            | < 0.30             | < 0.30             | < 0.30            | < 0.30            | < 0.30             | < 0.30             | < 0.30              |
| Biochemical Oxygen Demand (BOD <sub>5</sub> ) | mg/L                    | < 4.0                                                                    | 11.3               | < 4.0             | < 4.0              | < 4.0              | < 4.0             | < 4.0             | < 4.0              | < 4.0              | < 4.0               |
| Specific Conductivity <sup>a</sup>            | ms/cm                   | 1.14                                                                     | 1.24               | 1.36              | 1.18               | 1.27               | 1.41              | 1.12              | 1.46               | 1.04               | 1.24                |
| Chloride                                      | mg/L                    | 95.3                                                                     | 76.4               | 100               | 114                | 86.5               | 107               | 92.3              | 113                | 89.5               | 107                 |
| Fecal Coliforms                               | MPN/100 mL              | 579                                                                      | < 1                | 579               | 980                | 1046               | 579               | 770               | 613                | 387                | 613                 |
| Fluoride                                      | mg/L                    | 0.41                                                                     | < 0.50             | < 0.50            | 0.55               | 0.61               | 0.55              | < 0.50            | 1.1                | 0.84               | 0.91                |
| Hardness                                      | mg/L                    | 299                                                                      | 260                | 289               | 306                | 267                | 296               | 287               | 309                | 261                | 308                 |
| Surfactants - MBAS                            | mg/L                    | < 0.200                                                                  | < 0.200            | < 0.200           | < 0.200            | < 0.200            | < 0.200           | < 0.200           | < 0.200            | < 0.200            | < 0.200             |
| Nitrate as Nitrogen                           | mg/L                    | 1.63                                                                     | < 2.0              | 2.36              | 2.45               | < 2.0              | < 2.0             | < 2.0             | 2.7                | < 2.0              | 3.15                |
| Nitrite as Nitrogen                           | mg/L                    | < 0.03                                                                   | < 0.13             | 0.13              | < 0.13             | < 0.13             | < 0.13            | < 0.13            | < 0.13             | < 0.13             | < 0.13              |
| Osmotic Pressure                              | mOsm/kg                 | 15                                                                       | 16                 | 17                | 18                 | 12                 | 18                | < 10              | 20                 | 13                 | 18                  |
| pH <sup>a</sup>                               | SU                      | 6.28                                                                     | 7.32               | 6.88              | 7.13               | 6.72               | 7.26              | 6.98              | 7.01               | 7.09               | 7.05                |
| Phenols                                       | mg/L                    | < 0.0050                                                                 | < 0.0050           | < 0.0050          | < 0.0056           | 0.0069             | < 0.0050          | < 0.0055          | 0.0065             | < 0.0050           | < 0.0050            |
| Sulfate                                       | mg/L                    | 167                                                                      | 140                | 154               | 218                | 156                | 204               | 178               | 243                | 188                | 221                 |
| Total Suspended Solids                        | mg/L                    | < 5.0                                                                    | < 5.0              | < 5.0             | 6.5                | < 5.0              | < 5.0             | < 5.0             | < 5.0              | < 5.0              | < 5.0               |
| Total Dissolved Solids                        | mg/L                    | 596                                                                      | 546                | 616               | 702                | 580                | 676               | 558               | 698                | 574                | 722                 |
| Total Aluminum                                | mg/L                    | < 0.200                                                                  | < 0.200            | < 0.200           | < 0.200            | 0.247              | < 0.200           | < 0.200           | < 0.200            | < 0.200            | < 0.200             |
| Dissolved Aluminum                            | mg/L                    | < 0.200                                                                  | < 0.200            | < 0.200           | < 0.200            | < 0.200            | < 0.200           | < 0.200           | < 0.200            | < 0.200            | < 0.200             |
| Total Copper                                  | mg/L                    | < 0.007                                                                  | < 0.007            | < 0.007           | < 0.007            | < 0.007            | < 0.007           | < 0.007           | < 0.007            | < 0.007            | < 0.007             |
| Dissolved Copper                              | mg/L                    | < 0.007                                                                  | < 0.007            | 0.007             | 0.007              | < 0.007            | < 0.007           | < 0.007           | < 0.007            | < 0.007            | < 0.007             |
| Total Iron                                    | mg/L                    | 0.412                                                                    | 0.476              | 0.553             | 0.531              | 0.641              | 0.444             | 0.498             | 0.458              | 0.458              | 0.449               |
| Dissolved Iron                                | mg/L                    | < 0.200                                                                  | < 0.200            | < 0.200           | < 0.200            | < 0.200            | < 0.200           | < 0.200           | < 0.200            | < 0.200            | < 0.200             |
| Total Lead                                    | mg/L                    | < 0.007                                                                  | < 0.007            | < 0.007           | < 0.007            | < 0.007            | < 0.007           | < 0.007           | < 0.007            | < 0.007            | < 0.007             |
| Dissolved Lead                                | mg/L                    | < 0.007                                                                  | < 0.007            | < 0.007           | < 0.007            | < 0.007            | < 0.007           | < 0.007           | < 0.007            | < 0.007            | < 0.007             |
| Total Manganese                               | mg/L                    | 0.0579                                                                   | 0.0826             | 0.0913            | 0.0694             | 0.0816             | 0.0637            | 0.0741            | 0.0721             | 0.0663             | 0.0510              |
| Dissolved Manganese                           | mg/L                    | 0.001                                                                    | 0.075              | 0.081             | 0.043              | 0.053              | 0.060             | 0.061             | 0.065              | 0.057              | 0.051               |
| Total Nickel                                  | mg/L                    | < 0.0065                                                                 | < 0.0065           | < 0.0065          | < 0.0065           | < 0.0065           | < 0.0065          | < 0.0065          | < 0.0065           | < 0.0065           | 0.061               |
| Total Phosphorus                              | mg/L                    | 0.230                                                                    | 0.316              | 2.24              | 0.411              | 0.200              | 0.288             | 0.199             | 0.376              | 0.242              | 0.520               |
| Total Selenium                                | mg/L                    | < 0.001                                                                  | < 0.004            | < 0.0020          | < 0.002            | < 0.002            | < 0.002           | < 0.0020          | < 0.0020           | < 0.0020           | < 0.0020            |
| Dissolved Selenium                            | mg/L                    | < 0.020                                                                  | < 0.020            | < 0.020           | < 0.020            | < 0.020            | < 0.020           | < 0.0020          | < 0.0020           | < 0.0020           | < 0.0020            |
| Total Zinc                                    | mg/L                    | 0.025                                                                    | < 0.010            | < 0.010           | 0.011              | < 0.010            | < 0.010           | < 0.010           | < 0.010            | < 0.010            | < 0.010             |
| Dissolved Zinc                                | mg/L                    | 0.031                                                                    | < 0.010            | < 0.010           | < 0.010            | < 0.010            | < 0.010           | < 0.010           | < 0.010            | < 0.010            | < 0.010             |
| Flow <sup>a</sup>                             | ft <sup>3</sup> /sec    | 157                                                                      | 152                | 121               | 113                | 147                | 113               | 113               | 93.8               | 117                | 86.8                |

Notes:

mg/L = milligrams per Liter  
mg CaCO<sub>3</sub>/L - milligrams per Liter of calcium carbonate  
MPN/100 mL = most probable number per 100 milliliters  
ms/cm = millisiemens per centimeter

SU = standard units  
mOsm/kg - milliosmoles per kilogram  
<sup>a</sup> = designates a field collected value  
ft<sup>3</sup>/sec = cubic feet

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 6A  
Site-Specific Hardness Data Summary - Normal Operations

| Analyte                               | Units | Week #1<br>6/21-22/22 | Week #2<br>6/28-29/22 | Week #3<br>7/5-6/22 | Week #4<br>7/12-13/22 | Week #5<br>7/19-20/22 | Week #6<br>7/26-27/22 | Week #7<br>8/2-3/22 | Week #8<br>8/9-10/22 | Week #9<br>8/16-17/22 | Week #10<br>8/23-24/22 | Minimum | Maximum | Average |
|---------------------------------------|-------|-----------------------|-----------------------|---------------------|-----------------------|-----------------------|-----------------------|---------------------|----------------------|-----------------------|------------------------|---------|---------|---------|
| <b>Outfall 001 (Normal Operation)</b> |       |                       |                       |                     |                       |                       |                       |                     |                      |                       |                        |         |         |         |
| Hardness                              | mg/L  | 393                   | 270                   | 397                 | 390                   | 161                   | 279                   | 328                 | 310                  | 322                   | 321                    | 161     | 397     | 317.1   |
| Flow                                  | MGD   | 0.028                 | 0.051                 | 0.075               | 0.019                 | 0.053                 | 0.083                 | 0.068               | 0.031                | 0.008                 | 0.059                  | 0.008   | 0.083   | 0.0475  |
| <b>Outfall 002 (Normal Operation)</b> |       |                       |                       |                     |                       |                       |                       |                     |                      |                       |                        |         |         |         |
| Hardness                              | mg/L  | 447                   | 393                   | 415                 | 421                   | 342                   | 420                   | 269                 | 445                  | 421                   | 330                    | 269     | 447     | 390.3   |
| Flow                                  | MGD   | 0.011                 | 0.033                 | 0.045               | 0.0073                | 0.247                 | 0.194                 | 0.089               | 0.024                | 0.035                 | 0.013                  | 0.0073  | 0.247   | 0.06983 |
| <b>Outfall 003 (Normal Operation)</b> |       |                       |                       |                     |                       |                       |                       |                     |                      |                       |                        |         |         |         |
| Hardness                              | mg/L  | 270                   | 251                   | 234                 | 229                   | 219                   | 237                   | 261                 | 247                  | 271                   | 263                    | 219     | 271     | 248.2   |
| Flow                                  | MGD   | 0.0002                | 0.0002                | 0.0004              | 0.0001                | 0.0001                | 0.0002                | 0.0002              | 0.0001               | 0.0006                | 0.0001                 | 0.0001  | 0.0006  | 0.00022 |
| <b>Outfall 006 (Normal Operation)</b> |       |                       |                       |                     |                       |                       |                       |                     |                      |                       |                        |         |         |         |
| Hardness                              | mg/L  | 423                   | 312                   | 416                 | 440                   | 273                   | 376                   | 334                 | 423                  | 365                   | 340                    | 273     | 440     | 370.2   |
| Flow                                  | MGD   | 0.013                 | 0.0064                | 0.0092              | 0.0094                | 0.0236                | 0.014                 | 0.016               | 0.0255               | 0.0289                | 0.0080                 | 0.0064  | 0.0289  | 0.0154  |

mg/L = milligram per Liter

MGD = million gallons per day

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 6B  
Site-Specific Hardness Data Summary - Rainfall Events

| Analyte                                        | Units | Event #1<br>7/18/22 | Event #2<br>7/25/22 | Event #3<br>8/11/22 | Event #4<br>8/29/22 | Event #5<br>9/19/22 | Event #6<br>5/28/21 | Event #7<br>6/10/21 | Event #8<br>7/1/21 | Event #9<br>8/11/21 | Event #10<br>8/18/21 | Minimum | Maximum | Average  |
|------------------------------------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|---------------------|----------------------|---------|---------|----------|
| <b>Outfall 004 (During Rainfall Event)</b>     |       |                     |                     |                     |                     |                     |                     |                     |                    |                     |                      |         |         |          |
| Hardness                                       | mg/L  | 24.7                | 19.3                | 4.56                | 6.61                | 3.21                | 26.5                | 9.59                | 122                | 8.15                | 87.8                 | 3.21    | 122     | 31.242   |
| Flow                                           | MGD   | 0.0827              | 0.0644              | 0.0054              | 0.0129              | 0.0258              | 0.083               | 0.017               | 0.145              | 0.0902              | 0.068                | 0.0054  | 0.145   | 0.06944  |
| <b>Outfall 005 (During Rainfall Event)</b>     |       |                     |                     |                     |                     |                     |                     |                     |                    |                     |                      |         |         |          |
| Hardness                                       | mg/L  | 26.0                | 49.4                | 28.4                | 16.9                | 18.8                | 10.1                | 77.6                | 28.8               | 50.5                | 22.0                 | 10.1    | 77.6    | 32.85    |
| Flow                                           | MGD   | 0.0002              | 0.0014              | 0.0001              | 0.0002              | 0.0003              | 0.0002              | 0.0001              | 0.0902             | 0.00029             | 0.0001               | 0.0001  | 0.0902  | 0.009309 |
| <b>Outfall/IMP-102 (During Rainfall Event)</b> |       |                     |                     |                     |                     |                     |                     |                     |                    |                     |                      |         |         |          |
| Hardness                                       | mg/L  | 59.3                | 48.2                | 63.5                | 83.9                | 152                 | 63.8                | 68.4                | 81.5               | 37.1                | 221                  | 37.1    | 221     | 87.87    |
| Flow                                           | MGD   | 0.5651              | 0.5651              | 0.5651              | 0.5651              | 0.0199              | 0.1511              | 0.0776              | 0.0285             | 0.0022              | 0.314                | 0.0022  | 0.5651  | 0.28537  |
| <b>Outfall/IMP-104 (During Rainfall Event)</b> |       |                     |                     |                     |                     |                     |                     |                     |                    |                     |                      |         |         |          |
| Hardness                                       | mg/L  | 23.6                | 19.4                | 416                 | 15.2                | 53                  | 131                 | 112                 | 24                 | 328                 | 407                  | 15.2    | 416     | 152.92   |
| Flow                                           | MGD   | 0.0021              | 0.0021              | 0.0014              | 0.0014              | 0.0014              | 0.0006              | 0.0035              | 0.0084             | 0.0045              | 0.005                | 0.0006  | 0.0084  | 0.002986 |

mg/L = milligram per Liter

MGD = million gallons per day

\* = non-rain event (pump malfunction)

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 7A  
Chemical Translator Data Summary

Downstream of Outfalls 001, 003, 004, and 006 (Downstream-01)

|                           |                      | Week #1<br>6/20/22 | Week #2<br>6/28/22 | Week #3<br>7/5/22 | Week #4<br>7/11/22 | Week #5<br>7/20/22 | Week #5*<br>7/17/22 | Week #6<br>8/1/22 | Week #6*<br>7/25/22 | Week #7<br>8/8/22 | Week #7*<br>8/11/22 | Week #8<br>8/15/22 | Week #9<br>8/24/22 | Week #10<br>8/29/22 | Week #10*<br>8/29/22 |
|---------------------------|----------------------|--------------------|--------------------|-------------------|--------------------|--------------------|---------------------|-------------------|---------------------|-------------------|---------------------|--------------------|--------------------|---------------------|----------------------|
| Total Hexavalent Chromium | µg/L                 | < 4                | 5 J                | < 4               | 10 J               | < 2                | 10 H,J              | < 4               | 6 J                 | < 4               | < 2                 | 6 J                | 8 J                | < 4                 | 6 H,J                |
| Total Cadmium             | µg/L                 | < 0.600            | 0.054 J            | 0.05 J            | 0.063 J            | < 0.038            | 0.063 J             | 0.053 L           | 0.098 J             | < 0.038           | 0.084 J             | 0.046 J            | 0.048 J            | 0.05 J              | 0.07 J               |
| Dissolved Cadmium         | µg/L                 | < 0.600            | < 0.800            | < 0.800           | < 0.800            | < 0.800            | < 0.800             | < 0.800           | < 0.800             | < 0.800           | < 0.800             | < 0.800            | < 0.800            | < 0.800             | < 0.800              |
| Total Copper              | µg/L                 | 2.88               | 3.3                | 2.58              | 4.23               | 3.01 B2            | 5.38 B2             | 2.36              | 6.82 B2             | 2.68              | 6.11                | 2.52               | 2.92               | 3.11                | 3.62                 |
| Dissolved Copper          | µg/L                 | 7.66               | < 7                | 2.21 B            | 4.41               | 2.58               | 3.48                | 2.12              | 3.31                | 1.89              | 4.14                | 2.13               | 2.10               | 2.33                | 2.94                 |
| Total Lead                | µg/L                 | 2.40               | 0.632              | 0.414             | 1.47               | 0.978              | 2.14                | 0.712             | 4.04                | 0.838             | 1.7                 | 0.474              | 0.684              | 0.892               | 1.05                 |
| Dissolved Lead            | µg/L                 | 1440 D3            | < 7                | < 0.800           | < 0.800            | < 0.800            | < 0.800             | < 0.800           | < 0.800             | < 0.800           | < 0.800             | < 0.800            | < 0.800            | < 0.800             | < 0.800              |
| Total Zinc                | µg/L                 | < 20               | 6 J                | < 5               | 26                 | 6 J                | 20                  | 6 J               | 25                  | 5 J               | 19                  | 6 J                | 6 J                | 10                  | 11                   |
| Dissolved Zinc            | µg/L                 | < 30               | < 10 B1            | < 10              | 25                 | < 10               | < 10                | < 10              | < 10                | < 10              | < 10                | < 10               | < 10               | < 10                | < 10                 |
| Flow                      | ft <sup>3</sup> /sec | 143                | 147                | 109               | 105                | 152                | 185                 | 113               | 176                 | 125               | 105                 | 105                | 121                | 86.8                | 86.8                 |

Downatream of Outfalls 002 and 005 (Downstream-02)

|                           |                      | Week #1<br>6/20/22 | Week #2<br>6/28/22 | Week #3<br>7/5/22 | Week #4<br>7/11/22 | Week #5<br>7/20/22 | Week #5*<br>7/17/22 | Week #6<br>8/1/22 | Week #6*<br>7/25/22 | Week #7<br>8/8/22 | Week #7*<br>8/11/22 | Week #8<br>8/15/22 | Week #9<br>8/24/22 | Week #10<br>8/29/22 | Week #10*<br>8/29/22 |
|---------------------------|----------------------|--------------------|--------------------|-------------------|--------------------|--------------------|---------------------|-------------------|---------------------|-------------------|---------------------|--------------------|--------------------|---------------------|----------------------|
| Total Hexavalent Chromium | µg/L                 | 6 J                | 8 J                | < 2               | 5 J                | < 2                | 6 H,J               | < 2               | 30 J                | < 2               | < 2                 | 4 J                | 8 J                | < 2                 | 8 H,J                |
| Total Aluminum            | µg/L                 | < 160              | 131 J              | 324               | 109 J              | 484                | 1,230               | 514               | 2,950               | 361               | 426                 | 122 J              | 504                | 192 J               | 1,020                |
| Dissolved Aluminum        | µg/L                 | < 200 Y            | < 200              | < 200             | < 200              | < 200              | < 200               | < 200             | 303                 | < 200             | < 200               | < 200              | < 200              | < 200               | < 200                |
| Total Copper              | µg/L                 | 2.92               | 3.16               | 2.9               | 3.05               | 3.31 B2            | 5.53                | 2.99              | 8.14 B2             | 9.77              | 4.92                | 2.59               | 3.48               | 4.25                | 7.64                 |
| Dissolved Copper          | µg/L                 | 4.1                | 2.52 B             | 2.63 B            | 2.6                | 2.4                | 3.26                | 1.73              | 2.14                | 2.00              | 2.78                | 1.97               | 2.02               | 2.43                | 3.00                 |
| Total Iron                | µg/L                 | 305                | 332                | 864               | 462                | 844                | 1,580               | 1,080             | 3,980               | 798               | 883                 | 482                | 816                | 563                 | 1,730                |
| Dissolved Iron            | µg/L                 | < 20 Y             | 118 J              | 44 J              | 29 J               | 28 J               | 27 J                | 35 J              | 51 J                | 34 J              | 27 J                | 36 J               | 25 J               | 22 J                | 30 J                 |
| Total Lead                | µg/L                 | 1.05               | 0.356              | 0.994             | 0.418              | 1.28               | 3.21                | 1.63              | 40.3                | 1.23              | 7.08                | 0.452              | 1.16               | 0.664               | 17.6                 |
| Dissolved Lead            | µg/L                 | 56.8               | < 0.800            | < 0.800           | < 0.800            | < 0.800            | < 0.800             | < 0.800           | < 0.800             | < 0.800           | < 0.800             | < 0.800            | < 0.800            | < 0.800             | < 0.800              |
| Total Selenium            | µg/L                 | 0.53 Ja            | 0.789              | 0.558             | 0.722              | 0.559              | 0.478               | < 0.407           | 0.489               | < 0.407           | 0.735               | 0.654              | 0.462              | 0.456               | < 0.407              |
| Dissolved Selenium        | µg/L                 | < 1.00             | < 2.0              | < 2.0             | < 2.0              | < 2.0              | < 2.0               | < 2.0             | < 2.0               | < 2.0             | < 2.0               | < 2.0              | < 2.0              | < 2.0               | < 2.0                |
| Flow                      | ft <sup>3</sup> /sec | 143                | 147                | 109               | 105                | 147                | 162                 | 113               | 176                 | 125               | 101                 | 105                | 121                | 86.8                | 86.8                 |

Notes:

ug/L = micrograms per liter

ft<sup>3</sup>/sec = cubic feet per second

< = less than laboratory reporting limit of #

\* = designates a rain event

H = Analyte was prepared and/or analyzed outside of the analytical method holding time.

J = Analyte concentration is estimated.

B = Analyte found in blank at or above the method acceptance limit.

B1 = Target analyte was detected in the method blank at or above the reporting limit. The sample concentration is below the reporting limit.

B2 = Target analyte was detected in the method blank at or above the reporting limit. The sample concentration is 10 times that found in the blank.

D3 = Dilution was performed due to high target analyte concentration.

Ja = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

Y = This analyte is not on the laboratory's current scope of accreditation.

Table 7B

Chemical Translators - Site-Specific Calculations

| Analyte <sup>(1,2,3,4)</sup>              | Units | Downstream of Outfall 001 (Downstream-01) |                    |                   |                    |                    |                     |                   |                     |                   |                     |                    |                    |                     |                      |                         |
|-------------------------------------------|-------|-------------------------------------------|--------------------|-------------------|--------------------|--------------------|---------------------|-------------------|---------------------|-------------------|---------------------|--------------------|--------------------|---------------------|----------------------|-------------------------|
|                                           |       | Week #1<br>6/20/22                        | Week #2<br>6/28/22 | Week #3<br>7/5/22 | Week #4<br>7/11/22 | Week #5<br>7/20/22 | Week #5*<br>7/17/22 | Week #6<br>8/1/22 | Week #6*<br>7/25/22 | Week #7<br>8/8/22 | Week #7*<br>8/11/22 | Week #8<br>8/15/22 | Week #9<br>8/24/22 | Week #10<br>8/29/22 | Week #10*<br>8/29/22 | Geometric Mean of $f_D$ |
| Dissolved Cadmium                         | µg/L  | -                                         | 0.019              | 0.019             | 0.019              | -                  | 0.019               | 0.019             | 0.019               | -                 | 0.019               | 0.019              | 0.019              | 0.019               | 0.019                |                         |
| Total Cadmium                             | µg/L  | -                                         | 0.054              | 0.05              | 0.063              | -                  | 0.063               | 0.053             | 0.098               | -                 | 0.084               | 0.046              | 0.048              | 0.05                | 0.070                |                         |
| $f_D$                                     |       | -                                         | 0.35               | 0.38              | 0.30               | -                  | 0.30                | 0.36              | 0.19                | -                 | 0.23                | 0.41               | 0.40               | 0.38                | 0.27                 |                         |
| Dissolved Copper                          | µg/L  | 7.66                                      | 1                  | 2.21              | 4.41               | 2.58               | 3.48                | 2.12              | 3.31                | 1.89              | 4.14                | 2.13               | 2.10               | 2.33                | 2.94                 |                         |
| Total Copper                              | µg/L  | 2.89                                      | 3.3                | 2.58              | 4.23               | 3.01               | 5.38                | 2.36              | 6.82                | 2.68              | 6.11                | 2.52               | 2.92               | 3.11                | 3.62                 |                         |
| $f_D$                                     |       | 2.65                                      | 0.30               | 0.86              | 1.04               | 0.86               | 0.65                | 0.90              | 0.49                | 0.71              | 0.68                | 0.85               | 0.72               | 0.75                | 0.81                 |                         |
| Dissolved Lead                            | µg/L  | 1440                                      | 1                  | 0.4               | 0.4                | 0.4                | 0.4                 | 0.4               | 0.4                 | 0.4               | 0.4                 | 0.4                | 0.4                | 0.4                 | 0.4                  |                         |
| Total Lead                                | µg/L  | 2.40                                      | 0.632              | 0.414             | 1.47               | 0.978              | 2.14                | 0.712             | 4.04                | 0.838             | 1.7                 | 0.474              | 0.684              | 0.892               | 1.05                 |                         |
| $f_D$                                     |       | --                                        | 1.58               | 0.97              | 0.27               | 0.41               | 0.19                | 0.56              | 0.10                | 0.48              | 0.24                | 0.84               | 0.58               | 0.45                | 0.38                 |                         |
| Dissolved Zinc                            | µg/L  | -                                         | 5                  | -                 | 25                 | 5                  | 5                   | 5                 | 5                   | 5                 | 5                   | 5                  | 5                  | 5                   | 5                    |                         |
| Total Zinc                                | µg/L  | -                                         | 6                  | -                 | 26                 | 6                  | 20                  | 6                 | 25                  | 5                 | 19                  | 6                  | 6                  | 10                  | 11                   |                         |
| $f_D$                                     |       | -                                         | 0.83               | -                 | 0.96               | 0.83               | 0.25                | 0.83              | 0.2                 | 1                 | 0.26                | 0.83               | 0.83               | 0.5                 | 0.45                 |                         |
| Downstream of Outfall 002 (Downstream-02) |       |                                           |                    |                   |                    |                    |                     |                   |                     |                   |                     |                    |                    |                     |                      |                         |
| Analyte <sup>(1,2,3,4)</sup>              | Units | Week #1<br>6/20/22                        | Week #2<br>6/28/22 | Week #3<br>7/5/22 | Week #4<br>7/11/22 | Week #5<br>7/20/22 | Week #5*<br>7/17/22 | Week #6<br>8/1/22 | Week #6*<br>7/25/22 | Week #7<br>8/8/22 | Week #7*<br>8/11/22 | Week #8<br>8/15/22 | Week #9<br>8/24/22 | Week #10<br>8/29/22 | Week #10*<br>8/29/22 | Geometric Mean of $f_D$ |
|                                           |       | -                                         | 100                | 100               | 100                | 100                | 100                 | 100               | 303                 | 100               | 100                 | 100                | 100                | 100                 | 100                  |                         |
| Dissolved Aluminum                        | µg/L  | -                                         | 100                | 100               | 100                | 100                | 100                 | 100               | 303                 | 100               | 100                 | 100                | 100                | 100                 | 100                  |                         |
| Total Aluminum                            | µg/L  | -                                         | 131                | 324               | 109                | 484                | 1,230               | 514               | 2,950               | 361               | 426                 | 122                | 504                | 192                 | 1,020                |                         |
| $f_D$                                     |       | -                                         | 0.76               | 0.31              | 0.92               | 0.21               | 0.08                | 0.19              | 0.10                | 0.28              | 0.23                | 0.82               | 0.20               | 0.52                | 0.10                 |                         |
| Dissolved Copper                          | µg/L  | 4.1                                       | 2.52               | 2.63              | 2.6                | 2.4                | 3.26                | 1.73              | 2.14                | 2.00              | 2.78                | 1.97               | 2.02               | 2.43                | 3.00                 |                         |
| Total Copper                              | µg/L  | 2.92                                      | 3.16               | 2.9               | 3.05               | 3.31               | 5.53                | 2.99              | 8.14                | 9.77              | 4.92                | 2.59               | 3.48               | 4.25                | 7.64                 |                         |
| $f_D$                                     |       | 1.40                                      | 0.80               | 0.91              | 0.85               | 0.73               | 0.59                | 0.58              | 0.26                | 0.20              | 0.57                | 0.76               | 0.58               | 0.57                | 0.39                 |                         |
| Dissolved Iron                            | µg/L  | 10                                        | 118                | 44                | 29                 | 28                 | 27                  | 35                | 51                  | 34                | 27                  | 36                 | 25                 | 22                  | 30                   |                         |
| Total Iron                                | µg/L  | 305                                       | 332                | 864               | 482                | 844                | 1,580               | 1,080             | 3,980               | 798               | 883                 | 482                | 816                | 563                 | 1,730                |                         |
| $f_D$                                     |       | 0.03                                      | 0.36               | 0.05              | 0.06               | 0.03               | 0.02                | 0.03              | 0.01                | 0.04              | 0.03                | 0.07               | 0.03               | 0.04                | 0.02                 |                         |
| Dissolved Lead                            | µg/L  | 56.8                                      | 0.026              | 0.4               | 0.4                | 0.4                | 0.026               | 0.4               | 0.4                 | 0.4               | 0.4                 | 0.4                | 0.4                | 0.4                 | 0.4                  |                         |
| Total Lead                                | µg/L  | 1.05                                      | 0.356              | 0.994             | 0.419              | 1.29               | 3.21                | 1.63              | 40.3                | 1.23              | 7.08                | 0.452              | 1.16               | 0.664               | 17.6                 |                         |
| $f_D$                                     |       | --                                        | 0.07               | 0.40              | 0.95               | 0.31               | 0.01                | 0.25              | 0.01                | 0.33              | 0.06                | 0.88               | 0.34               | 0.60                | 0.02                 |                         |
| Dissolved Selenium                        | µg/L  | 0.5                                       | 0.204              | 0.204             | 0.204              | 0.204              | 0.204               | -                 | 0.204               | -                 | 0.204               | 0.204              | 0.204              | 0.204               |                      |                         |
| Total Selenium                            | µg/L  | 0.530                                     | 0.789              | 0.558             | 0.722              | 0.559              | 0.478               | -                 | 0.489               | -                 | 0.735               | 0.654              | 0.462              | 0.456               | -                    |                         |
| $f_D$                                     |       | 0.94                                      | 0.26               | 0.37              | 0.28               | 0.36               | 0.43                | -                 | 0.42                | -                 | 0.28                | 0.31               | 0.44               | 0.45                | 0.39                 |                         |

Notes:

µg/L = micrograms per liter

< = less than laboratory reporting limit of #

- = non-detect value

-- = dissolved concentration higher than total not allowing for calculation

<sup>1)</sup> Where both concentrations were non-detect, data set was not utilized in accordance with EPA document 823-B-96-007 (June, 1996) and data replaced with dashes.

<sup>2)</sup> Where dissolved non-detect reporting limit values were reported higher than total concentrations, the method detection limit was used per the PADEP correspondence dated February 8, 2023.

<sup>3)</sup> Where a constituent is reported as non-detect, half the reporting limit or method detection limit were used in accordance with EPA document 823-B-96-007 (June, 1996).

<sup>4)</sup> Less than signs and laboratory qualifiers were omitted for calculation purposes.

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 8  
Partial Mixing Factor Calculations

**4.3 Design Stream Flow (qs)**

|                        | <b>OF 001</b> | <b>OF 002</b> |                                       |
|------------------------|---------------|---------------|---------------------------------------|
| qs(tracer) =           | 15.91         | 13.11 cfs     | Q from Dye Tracer Test                |
| qs(transect) =         | 17.46         | 24.59 cfs     | Q from Transect Measurements          |
| qr <sub>(7-10)</sub> = | 2             | 2 cfs         | Q <sub>(7-10)</sub> from Stream Stats |
| qh =                   | 25.2          | 25.2 cfs      | Q <sub>hm</sub> from Stream Stats     |

**4.4 Discharge Analysis Flow (qd)**

|                                                                   | <b>OF 001</b> | <b>OF 002</b> |                                               |
|-------------------------------------------------------------------|---------------|---------------|-----------------------------------------------|
| qd =                                                              | 1.73016       | 0.1021 cfs    | Discharge rates from PA0001937                |
| qd in cfs = design discharge in million gallons/day (mgd) x 1.547 |               |               | OF001 (0.72) + OF003 (0.0144) + OF004 (0.096) |
| 1.547 = Conversion factor from mgd to cfs                         |               |               | + OF006(0.288) = 1.1184 mgd                   |
|                                                                   |               |               | OF002 (0.066 mgd)                             |

**4.5 Partial Mixing Factor (yc)**

If a mix factor is entered for each criterion, then the value is used directly.  
If complete mix times are entered instead of the mix factors, then they are used to compute the mixing factors.  
If neither are entered, then the partial mix factors are estimated by first determining the complete mix time.  
The complete mix time is computed using the width, depth and the slope.

**Reach Slope (sl)**

|       | <b>OF 001</b> | <b>OF 002</b> |                                      |
|-------|---------------|---------------|--------------------------------------|
| slr = | 0.0014        | 0.0011 ft/ft  | flood insurance study cross sections |
|       | 1.75          | 0.5 ft        | Difference in streambed elevations   |
|       | 1,240         | 460 ft        | Distance between cross sections      |

**Reach Depth (d)**

|                                  | <b>OF 001</b> | <b>OF 002</b> |                                         |
|----------------------------------|---------------|---------------|-----------------------------------------|
| dr(Measured) =                   | 0.51          | 1.12 ft       | Average depth measured at each transect |
| Calculated d(tracer) =           | 0.93          | 1.17 ft       | qs(tracer), wr and v(tracer)            |
| Calculated d(transect) =         | 0.97          | 1.54 ft       | qs(transect), wr and v(transect)        |
| Calculated d <sub>(7-10)</sub> = | 0.09          | 0.08 ft       | q <sub>(7-10)</sub> , wr, vr            |
| Calculated d(h) =                | 0.64          | 0.92 ft       | qh, wr, vr                              |

where:

qs = Design stream flow from equations in Box 4.3 (cfs)  
qd = Discharge analysis flow from equation 4.4a or 4.4b (cfs)  
v = DEP Velocity Equation or entered by the user (ft/sec)  
w = User-supplied width (ft)

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 8  
Partial Mixing Factor Calculations

Reach Width (w)

4.5.3a = User entered reach width (wr)

4.5.3b = Calculated reach width per the below equation.

$$w = (qs + qd) / (v \times d)$$

where:

qs = Design stream flow from equations in Box 4.3 (cfs)

qd = Discharge analysis flow from equation 4.4a (cfs)

v = DEP Velocity Equation or entered by the user (ft/sec)

w = User-supplied depth (ft)

|                                  | <u>OF 001</u> | <u>OF 002</u> |                                        |
|----------------------------------|---------------|---------------|----------------------------------------|
| wr(Measured) =                   | 53.67         | 38.54 ft      | Measured at each transect              |
| Calculated w(tracer) =           | 53.74         | 38.44 ft      | qs(tracer), v(tracer), d(tracer)       |
| Calculated w(transect) =         | 53.47         | 38.46 ft      | qs(transect), v(transect), d(transect) |
| Calculated w <sub>(7-10)</sub> = | 9.26          | 2.63 ft       | q <sub>(7-10)</sub> , dr, vr           |
| Calculated w(h) =                | 53.26         | 38.57 ft      | qh, dr, vr                             |

Velocity vr = user entered or velocity equation

Measured velocity at each transect

DEP Velocity Equation:

$$v = (A \times (qs + qd)^{0.56} \times (sl \times 5280)^B \times da^C) / 16.3636$$

where:

16.3636 = the constant to convert miles/day to ft/second

qs = Design stream flow from equations in Box 4.3 (cfs)

qd = Discharge analysis flow from equation 4.4a or 4.4b (cfs)

sl = reach slope (ft/ft)

da = Drainage Area mi<sup>2</sup>

If Discharge area (da) < 500 sq mi, then

A = 2.62

B = 0.083

C = -0.22

|                                  | <u>OF 001</u> | <u>OF 002</u> |                           |
|----------------------------------|---------------|---------------|---------------------------|
| vr(Measured) =                   | 0.790         | 0.713 fps     | Measured at each transect |
| Calculated v(tracer) =           | 0.353         | 0.294 fps     | qs(tracer)                |
| Calculated v(transect) =         | 0.370         | 0.417 fps     | qs(transect)              |
| Calculated v <sub>(7-10)</sub> = | 0.148         | 0.105 fps     | q <sub>(7-10)</sub>       |
| Calculated v(h) =                | 0.447         | 0.423 fps     | qh                        |

da = OF 001 87.4 OF 002 87.5 mi<sup>2</sup> USGS Stream Stats

Width/Depth ratio (W\_D)

$$W_D = [-0.0073 + 0.141 \times (qs + qd)^{-0.077} + 0.06 \times da^{-0.445} + 0.0001 \times (5280 \times sl)^{1.075}]^{1.429}$$

|                        | <u>OF 001</u> | <u>OF 002</u> |                     |
|------------------------|---------------|---------------|---------------------|
| W_D ratio (tracer) =   | 22.043        | 21.419 ft_ft  | qs(tracer)          |
| W_D ratio (transect) = | 22.245        | 22.924 ft_ft  | qs(transect)        |
| W_D ratio (Q7-10) =    | 18.625        | 17.541 ft_ft  | q <sub>(7-10)</sub> |
| W_D ratio (h) =        | 23.076        | 22.984 ft_ft  | qh                  |

where:

qs = Design stream flow from equations in Box 4.3 (cfs)

qd = Discharge analysis flow from equation 4.4a or 4.4b (cfs)

sl = reach slope (ft/ft)

da = cumulative drainage area

WQBEL Compliance Report  
Pennsylvania Transformer Technology, Inc.  
Canonsburg, Pennsylvania



Table 8  
Partial Mixing Factor Calculations

Complete Mix Time (cmt)

4.5.4a = complete mix time measured (minutes)

4.5.4b = Calculation for cmt

$$cmt = (0.28 \times (w \times (qs / (qs + qd)))^2) / (0.6 \times d \times (\sqrt{32.2 \times d \times sl}) \times 60)$$

where:

qs = Design stream flow from equations in Box 4.3 (cfs)

qd = Discharge analysis flow from equation 4.4a or 4.4b (cfs)

sl = reach slope (ft/ft)

d = User-supplied stream depth (ft)

w = User-supplied width (ft)

0.28 = the degree of uniformity expected in the channel that also produces a complete mix

relationship with the variability in instream concentration of 20%

0.6 = the amount of discharge diffusion associated with an average discharge

OF 001    OF 002

|                |        |            |                                                                 |
|----------------|--------|------------|-----------------------------------------------------------------|
| cmtr(Measured) | 26.23  | 13.83 min. | Measured by the dye tracer test                                 |
| cmt(tracer)    | 95.391 | 47.983     | qs(tracer), w(tracer), d(tracer)                                |
| cmt(transect)  | 90.895 | 32.014     | qs(transect), w(transect), D(transect)                          |
| cmt(7-10)      | 34.453 | 12.325     | s <sub>(7-10)</sub> , w <sub>(7-10)</sub> , d <sub>(7-10)</sub> |
| cmt(hm)        | 179.05 | 69.444     | qh, w(hm), d(hm)                                                |

4.5.5 Partial Mixing Factor (yc): Represents the fraction of design stream flow (qs) that mixes with the discharge at the criteria compliance time (tc)

4.5.5a = User supplied partial mix factor (ycr) in decimal percent.

yc = ycr

4.5.5b = user does not enter the partial mix factor

yc = min [ sqrt (tc/cmt) , 1 ]

where:

tc = Criteria compliance time (minutes)

cmt = complete mix time (minutes)

min [ ] = the minimum of the two values or expressions separated by a comma

Criteria compliance times (tc) for each criterion

|                               |             |
|-------------------------------|-------------|
| Acute Fish Criterion (AFC)    | 15 minutes  |
| Chronic Fish Criterion (CFC)  | 720 minutes |
| Threshold Human Health (THH)  | 720 minutes |
| Carcinogenic Risk Level (CRL) | 720 minutes |

yc calculations via formula 4.5.5b

OF 001    OF 002

|                                                             |       |   |
|-------------------------------------------------------------|-------|---|
| yc for AFC using Calculated cmt for Q <sub>(7-10)</sub>     | 0.660 | 1 |
| yc for cfc using calculated cmt for Q <sub>(7-10)</sub>     | 1     | 1 |
| yc for THH using the calculated cmt for Q <sub>(7-10)</sub> | 1     | 1 |
| yc for THH using the calculated cmt for Q <sub>n</sub>      | 1     | 1 |

Source:

PA Department of Environmental Protection, May 22, 2004. "Technical Reference Guide PENTOXSD for Windows PA Single Discharge Wasteload Allocation Program for Toxics Version 2.0," Bureau of Water Supply and Wastewater Management, Document number 391-2000-011.

**NPDES Permit Fact Sheet**  
**Pennsylvania Transformer Technology, Inc.**

**NPDES Permit No. PA0001937**

Pennsylvania Transformer Technology, LLC  
 Canonsburg, Pennsylvania

WQBEL Permit Limits\_July 2024



| Outfall | Constituent                | PADEP Proposed 2025 NPDES Values |                      |             | PTT Proposed NPDES Values <sup>(1)</sup> |                      |             | Microbac Laboratory Reporting Limits (µg/L) |
|---------|----------------------------|----------------------------------|----------------------|-------------|------------------------------------------|----------------------|-------------|---------------------------------------------|
|         |                            | Average Monthly (µg/L)           | Maximum Daily (µg/L) | IMAX (µg/L) | Average Monthly (µg/L)                   | Maximum Daily (µg/L) | IMAX (µg/L) |                                             |
| 001     | Total Copper               | 18.2                             | 28.4                 | 45.5        | No Monitoring Required                   |                      |             | --                                          |
|         | Free Available Cyanide     | 11.2                             | 17.5                 | 28.0        | 7.56                                     | 11.8                 | 18.9        | 1.00                                        |
|         | Benzo(a)Anthracene         | 0.034                            | 0.053                | 0.085       | No Monitoring Required                   |                      |             | --                                          |
|         | 3,4-Benzofluoranthene      | 0.034                            | 0.053                | 0.085       | No Monitoring Required                   |                      |             | --                                          |
|         | Benzo(k)Fluoranthene       | 0.034                            | 0.053                | 0.085       | No Monitoring Required                   |                      |             | --                                          |
|         | Bis(2-Ethylhexyl)Phthalate | 10.6                             | 16.6                 | 26.5        | No Monitoring Required                   |                      |             | --                                          |
|         | Chrysene                   | 0.034                            | 0.053                | 0.085       | No Monitoring Required                   |                      |             | --                                          |
| 002     | Vinyl Chloride             | 0.222                            | 0.346                | 0.555       | No Monitoring Required                   |                      |             | --                                          |
|         | Hexavalent Chromium        | 20.6                             | 32.2                 | 51.5        | Report                                   | Report               | Report      | --                                          |
|         | Total Lead                 | 3.62                             | 9.86                 | 15.8        | No Monitoring Required                   |                      |             | --                                          |
|         | Total Selenium             | 9.91                             | 15.5                 | 24.8        | No Monitoring Required                   |                      |             | --                                          |
|         | Benzo(a)Anthracene         | 0.029                            | 0.046                | 0.073       | 0.065                                    | 0.1                  | 0.16        | 0.50                                        |
|         | Benzo(a)Pyrene             | 0.029                            | 0.046                | 0.073       | 0.007                                    | 0.01                 | 0.016       | 0.50                                        |
|         | 3,4-Benzofluoranthene      | 0.029                            | 0.046                | 0.073       | 0.065                                    | 0.1                  | 0.16        | 0.50                                        |
|         | Benzo(k)Fluoranthene       | 0.029                            | 0.046                | 0.073       | 0.65                                     | 1.02                 | 1.63        | 0.50                                        |
|         | Chloroform                 | 43.9                             | 68.5                 | 110         | No Monitoring Required                   |                      |             | --                                          |
|         | Chrysene                   | 0.029                            | 0.046                | 0.073       | Report                                   | Report               | Report      | --                                          |
|         | Chlorodibromomethane       | 3.08                             | 4.81                 | 7.70        | No Monitoring Required                   |                      |             | --                                          |
|         | Dibenzo(a,h)Anthracene     | 0.029                            | 0.046                | 0.073       | 0.007                                    | 0.01                 | 0.016       | 0.50                                        |
|         | Dichlorobromomethane       | 4.24                             | 6.61                 | 10.6        | No Monitoring Required                   |                      |             | --                                          |
| 003     | Indeno(1,2,3-cd)Pyrene     | 0.029                            | 0.046                | 0.073       | 0.065                                    | 0.1                  | 0.16        | 0.50                                        |
|         | Vinyl Chloride             | 0.193                            | 0.301                | 0.483       | 1.31                                     | 1.86                 | 3.27        | 0.50                                        |
|         | Total Lead                 | 6.86                             | 10.7                 | 17.2        | No Monitoring Required                   |                      |             | --                                          |
|         | Benzo(a)Anthracene         | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.019                | 0.031       | 0.50                                        |
|         | 3,4-Benzofluoranthene      | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.019                | 0.031       | 0.50                                        |
| 004     | Benzo(k)Fluoranthene       | 0.034                            | 0.053                | 0.085       | 0.12                                     | 0.19                 | 0.31        | 0.50                                        |
|         | Chrysene                   | 0.034                            | 0.053                | 0.085       | 1.47                                     | 2.29                 | 3.66        | 0.50                                        |
|         | Indeno(1,2,3-cd)Pyrene     | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.019                | 0.031       | 0.50                                        |
|         | Total Cadmium              | 0.584                            | 0.911                | 1.46        | Report                                   | Report               | Report      | --                                          |
|         | Hexavalent Chromium        | 21.2                             | 33.0                 | 53.0        | 19.6                                     | 35.7                 | 49.1        | 15.00                                       |
|         | Free Available Cyanide     | 11.2                             | 17.5                 | 28.0        | 7.56                                     | 11.8                 | 18.9        | 1.00                                        |
|         | Total Lead                 | 6.86                             | 10.7                 | 17.2        | 23.4                                     | 26.3                 | 58.4        | 0.80                                        |
| 005     | Total Zinc                 | 156                              | 243                  | 390         | 447                                      | 779                  | 1117        | 10.00                                       |
|         | Benzo(a)Anthracene         | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.022                | 0.031       | 0.50                                        |
|         | Benzo(a)Pyrene             | 0.034                            | 0.053                | 0.085       | 0.001                                    | 0.002                | 0.003       | 0.50                                        |
|         | 3,4-Benzofluoranthene      | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.02                 | 0.031       | 0.50                                        |
|         | Benzo(k)Fluoranthene       | 0.034                            | 0.053                | 0.085       | 0.12                                     | 0.18                 | 0.31        | 0.50                                        |
|         | Chrysene                   | 0.034                            | 0.053                | 0.085       | 1.47                                     | 2.68                 | 3.66        | 0.50                                        |
|         | Indeno(1,2,3-cd)Pyrene     | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.022                | 0.031       | 0.50                                        |
|         | Total Aluminum             | 0.75                             | 0.75                 | --          | No Monitoring Required                   |                      |             | --                                          |
|         | Total Iron                 | 1.5                              | 3.0                  | --          | No Monitoring Required                   |                      |             | --                                          |
| 006     | Total Copper               | 18.2                             | 28.4                 | 45.5        | No Monitoring Required                   |                      |             | --                                          |
|         | Free Available Cyanide     | 11.2                             | 17.5                 | 28.0        | 7.56                                     | 11.8                 | 18.9        | 1.00                                        |
|         | 4,6-dinitro-o-cresol       | 28.0                             | 43.7                 | 70.0        | 3.78                                     | 5.9                  | 9.45        | 2.00                                        |
|         | 3,3-Dichlorobenzene        | 0.186                            | 0.291                | 0.465       | No Monitoring Required                   |                      |             | --                                          |
|         | Pentachlorophenol          | 2.40                             | 3.74                 | 6.00        | 0.37                                     | 0.57                 | 0.92        | 2.00                                        |
|         | 2,4,6-Trichlorophenol      | 12.4                             | 19.4                 | 31.0        | No Monitoring Required                   |                      |             | --                                          |
|         | Acrolein                   | 3.90                             | 6.08                 | 9.75        | No Monitoring Required                   |                      |             | --                                          |
|         | Acrylonitrile              | 0.453                            | 0.706                | 1.13        | No Monitoring Required                   |                      |             | --                                          |
|         | Benzidine                  | 0.0008                           | 0.001                | 0.002       | No Monitoring Required                   |                      |             | --                                          |
|         | Benzo(a)Anthracene         | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.019                | 0.031       | 0.50                                        |
|         | Benzo(a)Pyrene             | 0.034                            | 0.053                | 0.085       | 0.001                                    | 0.002                | 0.003       | 0.50                                        |
|         | 3,4-Benzofluoranthene      | 0.034                            | 0.053                | 0.085       | 0.012                                    | 0.019                | 0.031       | 0.50                                        |
|         | Benzo(k)Fluoranthene       | 0.034                            | 0.053                | 0.085       | 0.12                                     | 0.19                 | 0.31        | 0.50                                        |
|         | Carbon Tetrachloride       | 2.04                             | 3.18                 | 5.10        | No Monitoring Required                   |                      |             | --                                          |
|         | Chlorodibromomethane       | 3.55                             | 5.54                 | 8.88        | No Monitoring Required                   |                      |             | --                                          |
|         | Dichlorobromomethane       | 4.88                             | 7.62                 | 12.2        | No Monitoring Required                   |                      |             | --                                          |
|         | 1,2-Dichloroethane         | 3.37                             | 5.26                 | 8.43        | No Monitoring Required                   |                      |             | --                                          |
|         | 1,3-Dichloropropylene      | 3.02                             | 4.71                 | 7.55        | No Monitoring Required                   |                      |             | --                                          |
|         | 1,2-Diphenylhydrazine      | 0.319                            | 0.498                | 0.798       | No Monitoring Required                   |                      |             | --                                          |
|         | Bis(2-Ethylhexyl)Ether     | 0.266                            | 0.415                | 0.665       | No Monitoring Required                   |                      |             | --                                          |
|         | Bis(2-Ethylhexyl)Phthalate | 10.6                             | 16.6                 | 26.5        | No Monitoring Required                   |                      |             | --                                          |
|         | Chrysene                   | 0.034                            | 0.053                | 0.085       | 1.47                                     | 2.29                 | 3.66        | 0.50                                        |
|         | Dibenzo(a,h)Anthracene     | 0.034                            | 0.053                | 0.085       | 0.001                                    | 0.002                | 0.003       | 0.50                                        |
|         | Hexachlorobenzene          | 0.002                            | 0.004                | 0.005       | No Monitoring Required                   |                      |             | --                                          |
|         | Hexachlorobutadiene        | 3.91                             | 6.09                 | 9.78        | 0.12                                     | 0.19                 | 0.31        | 0.50                                        |
|         | Hexachlorocyclopentadiene  | 2.16                             | 3.37                 | 5.40        | 1.89                                     | 2.95                 | 4.73        | 2.00                                        |
|         | Hexachloroethane           | 12.4                             | 19.4                 | 31.0        | No Monitoring Required                   |                      |             | --                                          |
|         | N-Nitrosodimethylamine     | 0.006                            | 0.010                | 0.015       | No Monitoring Required                   |                      |             | --                                          |
|         | N-Nitrosodi-N-Propylamine  | 0.044                            | 0.069                | 0.110       | No Monitoring Required                   |                      |             | --                                          |
|         | Phenanthrene               | 2.16                             | 3.37                 | 5.40        | 1.89                                     | 2.95                 | 4.73        | 0.50                                        |
|         | 1,1,2,2-Tetrachloroethane  | 1.51                             | 2.35                 | 3.78        | No Monitoring Required                   |                      |             | --                                          |
|         | 1,1,2-Trichloroethane      | 5.24                             | 8.17                 | 13.1        | No Monitoring Required                   |                      |             | --                                          |
|         | Vinyl Chloride             | 0.222                            | 0.346                | 0.555       | No Monitoring Required                   |                      |             | --                                          |

**NPDES Permit Fact Sheet**  
**Pennsylvania Transformer Technology, Inc.**

**NPDES Permit No. PA0001937**

Pennsylvania Transformer Technology, LLC  
 Canonsburg, Pennsylvania

WQBEL Permit Limits\_July 2024



| Outfall | Constituent                | PADEP Proposed 2025 NPDES Values   |                                  |                      | PTT Proposed NPDES Values <sup>(1)</sup> |                                  |                      | Microbac<br>Laboratory<br>Reporting<br>Limits<br>( $\mu$ g/L) |
|---------|----------------------------|------------------------------------|----------------------------------|----------------------|------------------------------------------|----------------------------------|----------------------|---------------------------------------------------------------|
|         |                            | Average<br>Monthly<br>( $\mu$ g/L) | Maximum<br>Daily<br>( $\mu$ g/L) | IMAX<br>( $\mu$ g/L) | Average<br>Monthly<br>( $\mu$ g/L)       | Maximum<br>Daily<br>( $\mu$ g/L) | IMAX<br>( $\mu$ g/L) |                                                               |
| 102     | Total Copper               | 18.2                               | 28.4                             | 45.5                 | No Monitoring Required                   |                                  |                      | --                                                            |
|         | Free Available Cyanide     | 11.2                               | 17.5                             | 28.0                 | No Monitoring Required                   |                                  |                      | --                                                            |
|         | Benzo(a)Anthracene         | 0.034                              | 0.053                            | 0.085                | 0.65                                     | 1.02                             | 1.63                 | 0.50                                                          |
|         | 3,4-Benzoanthracene        | 0.034                              | 0.053                            | 0.085                | 0.65                                     | 1.02                             | 1.63                 | 0.50                                                          |
|         | Benzo(k)Fluoranthene       | 0.034                              | 0.053                            | 0.085                | 6.53                                     | 10.2                             | 16.3                 | 0.50                                                          |
|         | Bis(2-Ethylhexyl)Phthalate | 10.6                               | 16.6                             | 26.5                 | 14.7                                     | 27.1                             | 36.8                 | 5.00                                                          |
|         | Chrysene                   | 0.034                              | 0.053                            | 0.085                | No Monitoring Required                   |                                  |                      | --                                                            |
|         | Vinyl Chloride             | 0.222                              | 0.346                            | 0.555                | Report                                   | Report                           | Report               | --                                                            |
| 104     | Total Copper               | 18.2                               | 28.4                             | 45.5                 | No Monitoring Required                   |                                  |                      | --                                                            |
|         | Free Available Cyanide     | 11.2                               | 17.5                             | 28.0                 | No Monitoring Required                   |                                  |                      | --                                                            |
|         | Benzo(a)Anthracene         | 0.034                              | 0.053                            | 0.085                | 0.51                                     | 0.8                              | 1.28                 | 0.50                                                          |
|         | 3,4-Benzoanthracene        | 0.034                              | 0.053                            | 0.085                | 0.51                                     | 0.8                              | 1.28                 | 0.50                                                          |
|         | Benzo(k)Fluoranthene       | 0.034                              | 0.053                            | 0.085                | Report                                   | Report                           | Report               | --                                                            |
|         | Bis(2-Ethylhexyl)Phthalate | 10.6                               | 16.6                             | 26.5                 | No Monitoring Required                   |                                  |                      | --                                                            |
|         | Chrysene                   | 0.034                              | 0.053                            | 0.085                | No Monitoring Required                   |                                  |                      | --                                                            |
|         | Vinyl Chloride             | 0.222                              | 0.346                            | 0.555                | No Monitoring Required                   |                                  |                      | --                                                            |

**Notes:**

$\mu$ g/L = micrograms per Liter

IMAX = instantaneous maximum

RED = Decrease in proposed NPDES Values

GREEN = Increase in proposed NPDES values

-- = Not Applicable (no proposed NPDES Values for comparison)

Highlight = Constituents which have NPDES Values below laboratory reporting limits

1) Calculations used current NPDES Flow Assumptions for 001 (0.72), 003 (0.0144), and 006 (0.288). The system average (2022-2024) was used for 002 (0.253). The 2022-2024 values were used for 004 (0.43), 005 (0.0003), IMP102 (0.025), and IMP104 (0.032). Flow values were added for 001, 003, 004 and 006 per PADEP requirements.

## ATTACHMENT B

### Toxics Management Spreadsheet Results



**OUTFALL 001**

**Discharge Information**

Instructions **Discharge** Stream

Facility: PTTI NPDES Permit No.: PA0001937 Outfall No.: 001

Evaluation Type Major Sewage / Industrial Waste Wastewater Description: Treated groundwater and storm water

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |     |     |     |                          |                |
|-----------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 1.4524                | 317.1            | 7.15     | 0.66                       | 1   | 1   | 1   | 34.453                   |                |

|         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |               |
|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|---------------|
|         |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteri a Mod |
| Group 1 | Total Dissolved Solids (PWS)    | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chloride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromide                         | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Sulfate (PWS)                   | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Fluoride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
| Group 2 | Total Aluminum                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Antimony                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Arsenic                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Barium                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Beryllium                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Boron                     | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cadmium                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Chromium (III)            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Hexavalent Chromium             | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cobalt                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Copper                    | µg/L  | 2.79               |                 |             | 3.5               | 10        | 2.09            |            |                 | 0.78          |
|         | Free Cyanide                    | µg/L  | < 8                |                 |             |                   |           |                 |            |                 |               |
|         | Total Cyanide                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Dissolved Iron                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Iron                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Lead                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Manganese                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Mercury                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Nickel                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Phenols (Phenolics) (PWS) | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Selenium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Silver                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Thallium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Zinc                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Molybdenum                | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrolein                        | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrylamide                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrylonitrile                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Benzene                         | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromoform                       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Carbon Tetrachloride            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorobenzene                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorodibromomethane            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chloroethane                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | 2-Chloroethyl Vinyl Ether       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |



|         |                             |      |        |  |  |      |     |  |  |  |
|---------|-----------------------------|------|--------|--|--|------|-----|--|--|--|
| Group 3 | Chloroform                  | µg/L |        |  |  |      |     |  |  |  |
|         | Dichlorobromomethane        | µg/L |        |  |  |      |     |  |  |  |
|         | 1,1-Dichloroethane          | µg/L |        |  |  |      |     |  |  |  |
|         | 1,2-Dichloroethane          | µg/L |        |  |  |      |     |  |  |  |
|         | 1,1-Dichloroethylene        | µg/L |        |  |  |      |     |  |  |  |
|         | 1,2-Dichloropropane         | µg/L |        |  |  |      |     |  |  |  |
|         | 1,3-Dichloropropylene       | µg/L |        |  |  |      |     |  |  |  |
|         | 1,4-Dioxane                 | µg/L |        |  |  |      |     |  |  |  |
|         | Ethylbenzene                | µg/L |        |  |  |      |     |  |  |  |
|         | Methyl Bromide              | µg/L |        |  |  |      |     |  |  |  |
|         | Methyl Chloride             | µg/L |        |  |  |      |     |  |  |  |
|         | Methylene Chloride          | µg/L |        |  |  |      |     |  |  |  |
|         | 1,1,2,2-Tetrachloroethane   | µg/L |        |  |  |      |     |  |  |  |
|         | Tetrachloroethylene         | µg/L |        |  |  |      |     |  |  |  |
|         | Toluene                     | µg/L |        |  |  |      |     |  |  |  |
|         | 1,2-trans-Dichloroethylene  | µg/L |        |  |  |      |     |  |  |  |
|         | 1,1,1-Trichloroethane       | µg/L |        |  |  |      |     |  |  |  |
|         | 1,1,2-Trichloroethane       | µg/L |        |  |  |      |     |  |  |  |
|         | Trichloroethylene           | µg/L |        |  |  |      |     |  |  |  |
| Group 4 | Vinyl Chloride              | µg/L | < 0.16 |  |  | 0.5  | 0.5 |  |  |  |
|         | 2-Chlorophenol              | µg/L |        |  |  |      |     |  |  |  |
|         | 2,4-Dichlorophenol          | µg/L |        |  |  |      |     |  |  |  |
|         | 2,4-Dimethylphenol          | µg/L |        |  |  |      |     |  |  |  |
|         | 4,6-Dinitro-o-Cresol        | µg/L |        |  |  |      |     |  |  |  |
|         | 2,4-Dinitrophenol           | µg/L |        |  |  |      |     |  |  |  |
|         | 2-Nitrophenol               | µg/L |        |  |  |      |     |  |  |  |
|         | 4-Nitrophenol               | µg/L |        |  |  |      |     |  |  |  |
|         | p-Chloro-m-Cresol           | µg/L |        |  |  |      |     |  |  |  |
|         | Pentachlorophenol           | µg/L |        |  |  |      |     |  |  |  |
| Group 5 | Phenol                      | µg/L |        |  |  |      |     |  |  |  |
|         | 2,4,6-Trichlorophenol       | µg/L |        |  |  |      |     |  |  |  |
|         | Acenaphthene                | µg/L |        |  |  |      |     |  |  |  |
|         | Acenaphthylene              | µg/L |        |  |  |      |     |  |  |  |
|         | Anthracene                  | µg/L |        |  |  |      |     |  |  |  |
|         | Benzidine                   | µg/L |        |  |  |      |     |  |  |  |
|         | Benzo(a)Anthracene          | µg/L | < 2.5  |  |  | 0.5  | 0.5 |  |  |  |
|         | Benzo(a)Pyrene              | µg/L |        |  |  |      |     |  |  |  |
|         | 3,4-Benzo fluoranthene      | µg/L | < 2.5  |  |  | 0.5  | 0.5 |  |  |  |
|         | Benzo(ghi)Perylene          | µg/L |        |  |  |      |     |  |  |  |
|         | Benzo(k)Fluoranthene        | µg/L | < 2.5  |  |  | 0.5  | 0.5 |  |  |  |
|         | Bis(2-Chloroethoxy)Methane  | µg/L |        |  |  |      |     |  |  |  |
|         | Bis(2-Chloroethyl)Ether     | µg/L |        |  |  |      |     |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether | µg/L |        |  |  |      |     |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate  | µg/L | < 2.5  |  |  | 1.48 | 0.5 |  |  |  |
|         | 4-Bromophenyl Phenyl Ether  | µg/L |        |  |  |      |     |  |  |  |
|         | Butyl Benzyl Phthalate      | µg/L |        |  |  |      |     |  |  |  |
|         | 2-Chloronaphthalene         | µg/L |        |  |  |      |     |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether | µg/L |        |  |  |      |     |  |  |  |
|         | Chrysene                    | µg/L | < 2.5  |  |  | 0.5  | 0.5 |  |  |  |
|         | Dibenzo(a,h)Anthracene      | µg/L |        |  |  |      |     |  |  |  |
|         | 1,2-Dichlorobenzene         | µg/L |        |  |  |      |     |  |  |  |
|         | 1,3-Dichlorobenzene         | µg/L |        |  |  |      |     |  |  |  |
|         | 1,4-Dichlorobenzene         | µg/L |        |  |  |      |     |  |  |  |
|         | 3,3-Dichlorobenzidine       | µg/L |        |  |  |      |     |  |  |  |
|         | Diethyl Phthalate           | µg/L |        |  |  |      |     |  |  |  |
|         | Dimethyl Phthalate          | µg/L |        |  |  |      |     |  |  |  |
|         | Di-n-Butyl Phthalate        | µg/L |        |  |  |      |     |  |  |  |
|         | 2,4-Dinitrotoluene          | µg/L |        |  |  |      |     |  |  |  |
|         | 2,6-Dinitrotoluene          | µg/L |        |  |  |      |     |  |  |  |
|         | Di-n-Octyl Phthalate        | µg/L |        |  |  |      |     |  |  |  |
|         | 1,2-Diphenylhydrazine       | µg/L |        |  |  |      |     |  |  |  |
|         | Fluoranthene                | µg/L |        |  |  |      |     |  |  |  |
|         | Fluorene                    | µg/L |        |  |  |      |     |  |  |  |
|         | Hexachlorobenzene           | µg/L |        |  |  |      |     |  |  |  |
|         | Hexachlorobutadiene         | µg/L |        |  |  |      |     |  |  |  |
|         | Hexachlorocyclopentadiene   | µg/L |        |  |  |      |     |  |  |  |
|         | Hexachloroethane            | µg/L |        |  |  |      |     |  |  |  |
|         | Indeno(1,2,3-cd)Pyrene      | µg/L |        |  |  |      |     |  |  |  |



## Stream / Surface Water Information

PTTI, NPDES Permit No. PA0001937, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Chartiers Creek**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 036777       | 27.59 | 906.75          | 87.4                   | 0.0014        |                      | Yes                  |
| End of Reach 1     | 036777       | 27.36 | 905             | 87.5                   | 0.0011        | 0                    | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |      | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|------|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH*  | Hardness | pH |
| Point of Discharge | 27.59 | 0.1                         | 2          |           | 18.625    | 9.26       | 0.09       | 0.148          |             |           |    | 288.2     | 6.97 |          |    |
| End of Reach 1     | 27.36 | 0.1                         | 2          |           | 17.541    | 2.63       | 0.08       | 0.105          |             |           |    | 288.2     | 6.97 |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 27.59 |                             | 25.2       |           | 23.076    | 53.26      | 0.64       | 0.447          |             |           |    | 100       | 7   |          |    |
| End of Reach 1     | 27.36 |                             | 25.2       |           | 22.984    | 38.57      | 0.92       | 0.423          |             |           |    | 100       | 7   |          |    |



## Model Results

PTTI, NPDES Permit No. PA0001937, Outfall 001

|                                             |                                        |                                                 |                                            |                                      |                           |                                         |                               |                              |
|---------------------------------------------|----------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|-------------------------------|------------------------------|
| <input type="button" value="Instructions"/> | <input type="button" value="Results"/> | <input type="button" value="RETURN TO INPUTS"/> | <input type="button" value="SAVE AS PDF"/> | <input type="button" value="PRINT"/> | <input type="radio"/> All | <input checked="" type="radio"/> Inputs | <input type="radio"/> Results | <input type="radio"/> Limits |
|---------------------------------------------|----------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|-------------------------------|------------------------------|

**Hydrodynamics**

**Q<sub>7-10</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.59 | 2                 |                      | 2                     | 2.247                         | 0.001         | 0.09       | 9.26       | 18.625    | 0.148          | 0.095       | 34.453                  |
| 27.36 | 2                 | 0.                   | 2                     |                               |               |            |            | 17.541    |                |             |                         |

**Q<sub>b</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.59 | 25.20             |                      | 25.20                 | 2.247                         | 0.001         | 0.205      | 9.26       | 23.076    | 0.447          | 0.031       | 179.05                  |
| 27.36 | 25.2              | 0.                   | 25.20                 |                               |               |            |            | 22.984    | 0.423          |             |                         |

**Wasteload Allocations**

**AFC**

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants                 | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                        |
|----------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|---------------------------------|
| Total Copper               | 3.5         | 0         |                  | 0         | 38.597     | 49.5          | 76.5       | Chem Translator of 0.78 applied |
| Free Cyanide               | 0           | 0         |                  | 0         | 22         | 22.0          | 34.9       |                                 |
| Vinyl Chloride             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Benzo(a)Anthracene         | 0           | 0         |                  | 0         | 0.5        | 0.5           | 0.79       |                                 |
| 3,4-Benzo(a)Anthracene     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Benzo(k)Fluoranthene       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Bis(2-Ethylhexyl)Phthalate | 0           | 0         |                  | 0         | 4,500      | 4,500         | 7,144      |                                 |
| Chrysene                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
|                            |             |           |                  |           |            |               |            |                                 |
|                            |             |           |                  |           |            |               |            |                                 |
|                            |             |           |                  |           |            |               |            |                                 |

**CFC**

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
|            |             |           |                  |           |            |               |            |          |

|                            |     |   |  |   |        |      |       |                                 |
|----------------------------|-----|---|--|---|--------|------|-------|---------------------------------|
| Total Copper               | 3.5 | 0 |  | 0 | 23.126 | 29.6 | 52.9  | Chem Translator of 0.78 applied |
| Free Cyanide               | 0   | 0 |  | 0 | 5.2    | 5.2  | 9.83  |                                 |
| Vinyl Chloride             | 0   | 0 |  | 0 | N/A    | N/A  | N/A   |                                 |
| Benzo(a)Anthracene         | 0   | 0 |  | 0 | 0.1    | 0.1  | 0.19  |                                 |
| 3,4-Benzofluoranthene      | 0   | 0 |  | 0 | N/A    | N/A  | N/A   |                                 |
| Benzo(k)Fluoranthene       | 0   | 0 |  | 0 | N/A    | N/A  | N/A   |                                 |
| Bis(2-Ethylhexyl)Phthalate | 0   | 0 |  | 0 | 910    | 910  | 1,720 |                                 |
| Chrysene                   | 0   | 0 |  | 0 | N/A    | N/A  | N/A   |                                 |
|                            |     |   |  |   |        |      |       |                                 |
|                            |     |   |  |   |        |      |       |                                 |
|                            |     |   |  |   |        |      |       |                                 |

THH

CCT (min): 34.453

THH PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

PWS PMF: 1

| Pollutants                 | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|----------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Copper               | 3.5         | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Free Cyanide               | 0           | 0         |                  | 0         | 4          | 4.0           | 7.56       |          |
| Vinyl Chloride             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Anthracene         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 3,4-Benzofluoranthene      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(k)Fluoranthene       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Bis(2-Ethylhexyl)Phthalate | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chrysene                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
|                            |             |           |                  |           |            |               |            |          |
|                            |             |           |                  |           |            |               |            |          |
|                            |             |           |                  |           |            |               |            |          |

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

| Pollutants                 | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|----------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Copper               | 3.5         | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Free Cyanide               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Vinyl Chloride             | 0           | 0         |                  | 0         | 0.02       | 0.02          | 0.24       |          |
| Benzo(a)Anthracene         | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |
| 3,4-Benzofluoranthene      | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |
| Benzo(k)Fluoranthene       | 0           | 0         |                  | 0         | 0.01       | 0.01          | 0.12       |          |
| Bis(2-Ethylhexyl)Phthalate | 0           | 0         |                  | 0         | 0.32       | 0.32          | 3.91       |          |
| Chrysene                   | 0           | 0         |                  | 0         | 0.12       | 0.12          | 1.47       |          |
|                            |             |           |                  |           |            |               |            |          |
|                            |             |           |                  |           |            |               |            |          |
|                            |             |           |                  |           |            |               |            |          |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

| Mass Limits | Concentration Limits |
|-------------|----------------------|
|-------------|----------------------|

| Pollutants   | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML  | MDL  | IMAX | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                        |
|--------------|------------------|------------------|------|------|------|-------|--------------------|----------------|---------------------------------|
| Free Cyanide | 0.092            | 0.14             | 7.56 | 11.8 | 18.9 | µg/L  | 7.56               | THH            | Discharge Conc ≥ 50% WQBEL (RP) |
|              |                  |                  |      |      |      |       |                    |                |                                 |
|              |                  |                  |      |      |      |       |                    |                |                                 |
|              |                  |                  |      |      |      |       |                    |                |                                 |
|              |                  |                  |      |      |      |       |                    |                |                                 |
|              |                  |                  |      |      |      |       |                    |                |                                 |

**Other Pollutants without Limits or Monitoring**

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                 | Governing<br>WQBEL | Units | Comments                   |
|----------------------------|--------------------|-------|----------------------------|
| Total Copper               | 52.9               | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Vinyl Chloride             | N/A                | N/A   | Discharge Conc < TQL       |
| Benzo(a)Anthracene         | N/A                | N/A   | Discharge Conc < TQL       |
| 3,4-Benzofluoranthene      | N/A                | N/A   | Discharge Conc < TQL       |
| Benzo(k)Fluoranthene       | N/A                | N/A   | Discharge Conc < TQL       |
| Bis(2-Ethylhexyl)Phthalate | N/A                | N/A   | Discharge Conc < TQL       |
| Chrysene                   | N/A                | N/A   | Discharge Conc < TQL       |



**OUTFALL 002**

**Discharge Information**

Instructions **Discharge** Stream

Facility: **PTTI** NPDES Permit No.: **PA0001937** Outfall No.: **002**

Evaluation Type **Major Sewage / Industrial Waste** Wastewater Description: **Treated groundwater and storm water**

| Discharge Characteristics |                  |          |                            |     |     |     |                          |                |
|---------------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
| Design Flow (MGD)*        | Hardness (mg/l)* | pH (SU)* | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                           |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 0.253                     | 390.3            | 7.17     | 1                          | 1   | 1   | 1   | 12.325                   |                |

|         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |               |
|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|---------------|
|         |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteri a Mod |
| Group 1 | Total Dissolved Solids (PWS)    | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chloride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromide                         | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Sulfate (PWS)                   | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Fluoride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
| Group 2 | Total Aluminum                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Antimony                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Arsenic                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Barium                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Beryllium                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Boron                     | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cadmium                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Chromium (III)            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Hexavalent Chromium             | µg/L  | 10                 |                 |             | 0.22              | 0.38      |                 |            |                 |               |
|         | Total Cobalt                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Copper                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Free Cyanide                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cyanide                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Dissolved Iron                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Iron                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Lead                      | µg/L  | 1.55               |                 |             | 0.68              | 0.19      |                 |            |                 | 0.15          |
|         | Total Manganese                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Mercury                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Nickel                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Phenols (Phenolics) (PWS) | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Selenium                  | µg/L  | 1.36               |                 |             | 0.02              | 0.12      |                 |            |                 | 0.39          |
|         | Total Silver                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Thallium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Zinc                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Molybdenum                | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrolein                        | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrylamide                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrylonitrile                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Benzene                         | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromoform                       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Carbon Tetrachloride            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorobenzene                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorodibromomethane            | µg/L  | < 0.2              |                 |             | 0.5               | 0.5       |                 |            |                 |               |
|         | Chloroethane                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | 2-Chloroethyl Vinyl Ether       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |

|         |                             |      |      |      |  |  |      |     |  |  |  |
|---------|-----------------------------|------|------|------|--|--|------|-----|--|--|--|
| Group 3 | Chloroform                  | µg/L | <    | 0.1  |  |  | 0.5  | 0.5 |  |  |  |
|         | Dichlorobromomethane        | µg/L | <    | 0.2  |  |  | 0.5  | 0.5 |  |  |  |
|         | 1,1-Dichloroethane          | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,2-Dichloroethane          | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,1-Dichloroethylene        | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,2-Dichloropropane         | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,3-Dichloropropylene       | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,4-Dioxane                 | µg/L |      |      |  |  |      |     |  |  |  |
|         | Ethylbenzene                | µg/L |      |      |  |  |      |     |  |  |  |
|         | Methyl Bromide              | µg/L |      |      |  |  |      |     |  |  |  |
|         | Methyl Chloride             | µg/L |      |      |  |  |      |     |  |  |  |
|         | Methylene Chloride          | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,1,2,2-Tetrachloroethane   | µg/L |      |      |  |  |      |     |  |  |  |
|         | Tetrachloroethylene         | µg/L |      |      |  |  |      |     |  |  |  |
|         | Toluene                     | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,2-trans-Dichloroethylene  | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,1,1-Trichloroethane       | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,1,2-Trichloroethane       | µg/L |      |      |  |  |      |     |  |  |  |
|         | Trichloroethylene           | µg/L |      |      |  |  |      |     |  |  |  |
| Group 4 | Vinyl Chloride              | µg/L | 0.89 |      |  |  | 4.01 | 0.5 |  |  |  |
|         | 2-Chlorophenol              | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2,4-Dichlorophenol          | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2,4-Dimethylphenol          | µg/L |      |      |  |  |      |     |  |  |  |
|         | 4,6-Dinitro-o-Cresol        | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2,4-Dinitrophenol           | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2-Nitrophenol               | µg/L |      |      |  |  |      |     |  |  |  |
|         | 4-Nitrophenol               | µg/L |      |      |  |  |      |     |  |  |  |
|         | p-Chloro-m-Cresol           | µg/L |      |      |  |  |      |     |  |  |  |
|         | Pentachlorophenol           | µg/L |      |      |  |  |      |     |  |  |  |
| Group 5 | Phenol                      | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2,4,6-Trichlorophenol       | µg/L |      |      |  |  |      |     |  |  |  |
|         | Acenaphthene                | µg/L |      |      |  |  |      |     |  |  |  |
|         | Acenaphthylene              | µg/L |      |      |  |  |      |     |  |  |  |
|         | Anthracene                  | µg/L |      |      |  |  |      |     |  |  |  |
|         | Benzidine                   | µg/L |      |      |  |  |      |     |  |  |  |
|         | Benzo(a)Anthracene          | µg/L | <    | 2.55 |  |  | 0.5  | 0.5 |  |  |  |
|         | Benzo(a)Pyrene              | µg/L | <    | 2.55 |  |  | 0.5  | 0.5 |  |  |  |
|         | 3,4-Benzo fluoranthene      | µg/L | <    | 2.55 |  |  | 0.5  | 0.5 |  |  |  |
|         | Benzo(ghi)Perylene          | µg/L |      |      |  |  |      |     |  |  |  |
|         | Benzo(k)Fluoranthene        | µg/L | <    | 2.55 |  |  | 0.5  | 0.5 |  |  |  |
|         | Bis(2-Chloroethoxy)Methane  | µg/L |      |      |  |  |      |     |  |  |  |
|         | Bis(2-Chloroethyl)Ether     | µg/L |      |      |  |  |      |     |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether | µg/L |      |      |  |  |      |     |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate  | µg/L |      |      |  |  |      |     |  |  |  |
|         | 4-Bromophenyl Phenyl Ether  | µg/L |      |      |  |  |      |     |  |  |  |
|         | Butyl Benzyl Phthalate      | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2-Chloronaphthalene         | µg/L |      |      |  |  |      |     |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether | µg/L |      |      |  |  |      |     |  |  |  |
|         | Chrysene                    | µg/L | <    | 2.55 |  |  | 0.5  | 0.5 |  |  |  |
|         | Dibenzo(a,h)Anthracene      | µg/L | <    | 2.55 |  |  | 0.5  | 0.5 |  |  |  |
|         | 1,2-Dichlorobenzene         | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,3-Dichlorobenzene         | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,4-Dichlorobenzene         | µg/L |      |      |  |  |      |     |  |  |  |
|         | 3,3-Dichlorobenzidine       | µg/L |      |      |  |  |      |     |  |  |  |
|         | Diethyl Phthalate           | µg/L |      |      |  |  |      |     |  |  |  |
|         | Dimethyl Phthalate          | µg/L |      |      |  |  |      |     |  |  |  |
|         | Di-n-Butyl Phthalate        | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2,4-Dinitrotoluene          | µg/L |      |      |  |  |      |     |  |  |  |
|         | 2,6-Dinitrotoluene          | µg/L |      |      |  |  |      |     |  |  |  |
|         | Di-n-Octyl Phthalate        | µg/L |      |      |  |  |      |     |  |  |  |
|         | 1,2-Diphenylhydrazine       | µg/L |      |      |  |  |      |     |  |  |  |
|         | Fluoranthene                | µg/L |      |      |  |  |      |     |  |  |  |
|         | Fluorene                    | µg/L |      |      |  |  |      |     |  |  |  |
|         | Hexachlorobenzene           | µg/L |      |      |  |  |      |     |  |  |  |
|         | Hexachlorobutadiene         | µg/L |      |      |  |  |      |     |  |  |  |
|         | Hexachlorocyclopentadiene   | µg/L |      |      |  |  |      |     |  |  |  |
|         | Hexachloroethane            | µg/L |      |      |  |  |      |     |  |  |  |
|         | Indeno(1,2,3-cd)Pyrene      | µg/L | <    | 2.55 |  |  | 0.5  | 0.5 |  |  |  |





## Stream / Surface Water Information

PTTI, NPDES Permit No. PA0001937, Outfall 002

Instructions **Discharge** Stream

Receiving Surface Water Name: **Chartiers Creek**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 036777       | 27.36 | 905.5           | 87.5                   | 0.0011        |                      | Yes                  |
| End of Reach 1     | 036777       | 27.3  | 905             | 87.5                   | 0.0011        | 0                    | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |      | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|------|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH*  | Hardness | pH |
| Point of Discharge | 27.36 | 0.1                         | 2          |           | 17.541    | 2.63       | 0.08       | 0.105          |             |           |    | 288.2     | 6.97 |          |    |
| End of Reach 1     | 27.3  | 0.1                         | 2          |           | 17.541    | 2.63       | 0.08       | 0.105          |             |           |    | 288.2     | 6.97 |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 27.36 |                             | 25.2       |           | 22.984    | 38.57      | 0.92       | 0.423          |             |           |    | 100       | 7   |          |    |
| End of Reach 1     | 27.3  |                             | 25.2       |           | 22.984    | 38.57      | 0.92       | 0.423          |             |           |    | 100       | 7   |          |    |



## Model Results

PTTI, NPDES Permit No. PA0001937, Outfall 002

Instructions **Results** [RETURN TO INPUTS](#) [SAVE AS PDF](#) [PRINT](#)  All  Inputs  Results  Limits

**Hydrodynamics**

**Q<sub>7-10</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.36 | 2                 |                      | 2                     | 0.391                         | 0.001         | 0.08       | 2.63       | 17.541    | 0.105          | 0.035       | 12.325                  |
| 27.3  | 2                 | 0.                   | 2                     |                               |               |            |            | 17.541    |                |             |                         |

**Q<sub>b</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.36 | 25.20             |                      | 25.20                 | 0.391                         | 0.001         | 0.227      | 2.63       | 22.984    | 0.423          | 0.009       | 69.444                  |
| 27.3  | 25.2              | 0.                   | 25.20                 |                               |               |            |            | 22.984    | 0.423          |             |                         |

**Wasteload Allocations**

**AFC**

CCT (min): 12.325

PMF: 1

Analysis Hardness (mg/l): 304.91

Analysis pH: 7.00

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Hexavalent Chromium    | 0           | 0         |                  | 0         | 16         | 16.3          | 99.6       | Chem Translator of 0.982 applied |
| Total Lead             | 0           | 0         |                  | 0         | 212.141    | 1,414         | 8,641      | Chem Translator of 0.15 applied  |
| Total Selenium         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        | Chem Translator of 0.39 applied  |
| Chlorodibromomethane   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloroform             | 0           | 0         |                  | 0         | 1,900      | 1,900         | 11,609     |                                  |
| Dichlorobromomethane   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Vinyl Chloride         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | 0.5        | 0.5           | 3.05       |                                  |
| Benzo(a)Pyrene         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| 3,4-Benzoanthracene    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chrysene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Dibenzo(a,h)Anthracene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |

**CFC**

CCT (min): 12.325

PMF: 1

Analysis Hardness (mg/l): 304.91

Analysis pH: 7.00

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Hexavalent Chromium    | 0           | 0         |                  | 0         | 10         | 10.4          | 63.5       | Chem Translator of 0.962 applied |
| Total Lead             | 0           | 0         |                  | 0         | 8.267      | 55.1          | 337        | Chem Translator of 0.15 applied  |
| Total Selenium         | 0           | 0         |                  | 0         | 4.600      | 11.8          | 72.1       | Chem Translator of 0.39 applied  |
| Chlorodibromomethane   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chloroform             | 0           | 0         |                  | 0         | 390        | 390           | 2,383      |                                  |
| Dichlorobromomethane   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Vinyl Chloride         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | 0.1        | 0.1           | 0.61       |                                  |
| Benzo(a)Pyrene         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| 3,4-Benzofluoranthene  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chrysene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Dibenzo(a,h)Anthracene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |

**THH** CCT (min): 12.325 THH PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A PWS PMF: 1

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Hexavalent Chromium    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chlorodibromomethane   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chloroform             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dichlorobromomethane   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Vinyl Chloride         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Pyrene         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 3,4-Benzofluoranthene  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chrysene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dibenzo(a,h)Anthracene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

**CRL** CCT (min): 69.444 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

| Pollutants           | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|----------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Hexavalent Chromium  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead           | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Selenium       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chlorodibromomethane | 0           | 0         |                  | 0         | 0.8        | 0.8           | 52.3       |          |
| Chloroform           | 0           | 0         |                  | 0         | 5.7        | 5.7           | 373        |          |
| Dichlorobromomethane | 0           | 0         |                  | 0         | 0.95       | 0.95          | 62.1       |          |
| Vinyl Chloride       | 0           | 0         |                  | 0         | 0.02       | 0.02          | 1.31       |          |
| Benzo(a)Anthracene   | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.065      |          |

|                        |   |   |  |   |        |        |       |  |
|------------------------|---|---|--|---|--------|--------|-------|--|
| Benzo(a)Pyrene         | 0 | 0 |  | 0 | 0.0001 | 0.0001 | 0.007 |  |
| 3,4-Benzofluoranthene  | 0 | 0 |  | 0 | 0.001  | 0.001  | 0.065 |  |
| Benzo(k)Fluoranthene   | 0 | 0 |  | 0 | 0.01   | 0.01   | 0.65  |  |
| Chrysene               | 0 | 0 |  | 0 | 0.12   | 0.12   | 7.85  |  |
| Dibenzo(a,h)Anthracene | 0 | 0 |  | 0 | 0.0001 | 0.0001 | 0.007 |  |
| Indeno(1,2,3-cd)Pyrene | 0 | 0 |  | 0 | 0.001  | 0.001  | 0.065 |  |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

| Pollutants             | Mass Limits   |               | Concentration Limits |        |        |       | Governing WQBEL | WQBEL Basis | Comments                           |
|------------------------|---------------|---------------|----------------------|--------|--------|-------|-----------------|-------------|------------------------------------|
|                        | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL    | IMAX   | Units |                 |             |                                    |
| Hexavalent Chromium    | Report        | Report        | Report               | Report | Report | µg/L  | 58.1            | AFC         | Discharge Conc > 10% WQBEL (no RP) |
| Vinyl Chloride         | 0.003         | 0.004         | 1.31                 | 1.86   | 3.27   | µg/L  | 1.31            | CRL         | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzo(a)Anthracene     | 0.0001        | 0.0002        | 0.065                | 0.1    | 0.16   | µg/L  | 0.065           | CRL         | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzo(a)Pyrene         | 0.00001       | 0.00002       | 0.007                | 0.01   | 0.016  | µg/L  | 0.007           | CRL         | Discharge Conc ≥ 50% WQBEL (RP)    |
| 3,4-Benzofluoranthene  | 0.0001        | 0.0002        | 0.065                | 0.1    | 0.16   | µg/L  | 0.065           | CRL         | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzo(k)Fluoranthene   | 0.001         | 0.002         | 0.65                 | 1.02   | 1.63   | µg/L  | 0.65            | CRL         | Discharge Conc ≥ 50% WQBEL (RP)    |
| Chrysene               | Report        | Report        | Report               | Report | Report | µg/L  | 7.85            | CRL         | Discharge Conc > 25% WQBEL (no RP) |
| Dibenzo(a,h)Anthracene | 0.00001       | 0.00002       | 0.007                | 0.01   | 0.016  | µg/L  | 0.007           | CRL         | Discharge Conc ≥ 50% WQBEL (RP)    |
| Indeno(1,2,3-cd)Pyrene | 0.0001        | 0.0002        | 0.065                | 0.1    | 0.16   | µg/L  | 0.065           | CRL         | Discharge Conc ≥ 50% WQBEL (RP)    |

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants           | Governing WQBEL | Units | Comments                   |
|----------------------|-----------------|-------|----------------------------|
| Total Lead           | 337             | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Selenium       | 72.1            | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Chlorodibromomethane | N/A             | N/A   | Discharge Conc < TQL       |
| Chloroform           | N/A             | N/A   | Discharge Conc < TQL       |
| Dichlorobromomethane | N/A             | N/A   | Discharge Conc < TQL       |
|                      |                 |       |                            |
|                      |                 |       |                            |
|                      |                 |       |                            |



**OUTFALL 003**

**Discharge Information**

Instructions **Discharge** Stream

Facility: PTTI NPDES Permit No.: PA0001937 Outfall No.: 003

Evaluation Type Major Sewage / Industrial Waste Wastewater Description: Treated groundwater and storm water

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |     |     |     |                          |                |
|-----------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 1.4524                | 284.2            | 7.2      | 0.66                       | 1   | 1   | 1   | 34.453                   |                |

|         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |              |
|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|--------------|
|         |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteria Mod |
| Group 1 | Total Dissolved Solids (PWS)    | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Chloride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Bromide                         | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Sulfate (PWS)                   | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Fluoride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |              |
| Group 2 | Total Aluminum                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Antimony                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Arsenic                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Barium                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Beryllium                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Boron                     | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Cadmium                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Chromium (III)            | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Hexavalent Chromium             | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Cobalt                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Copper                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Free Cyanide                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Cyanide                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Dissolved Iron                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Iron                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Lead                      | µg/L  | 0.14               |                 |             | 10                | 0.5       |                 |            |                 | 0.43         |
|         | Total Manganese                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Mercury                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Nickel                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Phenols (Phenolics) (PWS) | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Selenium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Silver                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Thallium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Zinc                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Total Molybdenum                | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Acrolein                        | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Acrylamide                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Acrylonitrile                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Benzene                         | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Bromoform                       | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Carbon Tetrachloride            | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Chlorobenzene                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Chlorodibromomethane            | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | Chloroethane                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |
|         | 2-Chloroethyl Vinyl Ether       | µg/L  |                    |                 |             |                   |           |                 |            |                 |              |

|         |                             |      |        |  |  |     |     |  |  |  |  |
|---------|-----------------------------|------|--------|--|--|-----|-----|--|--|--|--|
| Group 3 | Chloroform                  | µg/L |        |  |  |     |     |  |  |  |  |
|         | Dichlorobromomethane        | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,1-Dichloroethane          | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,2-Dichloroethane          | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,1-Dichloroethylene        | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,2-Dichloropropane         | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,3-Dichloropropylene       | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,4-Dioxane                 | µg/L |        |  |  |     |     |  |  |  |  |
|         | Ethylbenzene                | µg/L |        |  |  |     |     |  |  |  |  |
|         | Methyl Bromide              | µg/L |        |  |  |     |     |  |  |  |  |
|         | Methyl Chloride             | µg/L |        |  |  |     |     |  |  |  |  |
|         | Methylene Chloride          | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,1,2,2-Tetrachloroethane   | µg/L |        |  |  |     |     |  |  |  |  |
|         | Tetrachloroethylene         | µg/L |        |  |  |     |     |  |  |  |  |
|         | Toluene                     | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,2-trans-Dichloroethylene  | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,1,1-Trichloroethane       | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,1,2-Trichloroethane       | µg/L |        |  |  |     |     |  |  |  |  |
|         | Trichloroethylene           | µg/L |        |  |  |     |     |  |  |  |  |
|         | Vinyl Chloride              | µg/L |        |  |  |     |     |  |  |  |  |
| Group 4 | 2-Chlorophenol              | µg/L |        |  |  |     |     |  |  |  |  |
|         | 2,4-Dichlorophenol          | µg/L |        |  |  |     |     |  |  |  |  |
|         | 2,4-Dimethylphenol          | µg/L |        |  |  |     |     |  |  |  |  |
|         | 4,6-Dinitro-o-Cresol        | µg/L |        |  |  |     |     |  |  |  |  |
|         | 2,4-Dinitrophenol           | µg/L |        |  |  |     |     |  |  |  |  |
|         | 2-Nitrophenol               | µg/L |        |  |  |     |     |  |  |  |  |
|         | 4-Nitrophenol               | µg/L |        |  |  |     |     |  |  |  |  |
|         | p-Chloro-m-Cresol           | µg/L |        |  |  |     |     |  |  |  |  |
|         | Pentachlorophenol           | µg/L |        |  |  |     |     |  |  |  |  |
|         | Phenol                      | µg/L |        |  |  |     |     |  |  |  |  |
| Group 5 | 2,4,6-Trichlorophenol       | µg/L |        |  |  |     |     |  |  |  |  |
|         | Acenaphthene                | µg/L |        |  |  |     |     |  |  |  |  |
|         | Acenaphthylene              | µg/L |        |  |  |     |     |  |  |  |  |
|         | Anthracene                  | µg/L |        |  |  |     |     |  |  |  |  |
|         | Benzidine                   | µg/L |        |  |  |     |     |  |  |  |  |
|         | Benzo(a)Anthracene          | µg/L | < 2.55 |  |  | 0.5 | 0.5 |  |  |  |  |
|         | Benzo(a)Pyrene              | µg/L |        |  |  |     |     |  |  |  |  |
|         | 3,4-Benzoanthracene         | µg/L | < 2.55 |  |  | 0.5 | 0.5 |  |  |  |  |
|         | Benzo(ghi)Perylene          | µg/L |        |  |  |     |     |  |  |  |  |
|         | Benzo(k)Fluoranthene        | µg/L | < 2.55 |  |  | 0.5 | 0.5 |  |  |  |  |
|         | Bis(2-Chloroethoxy)Methane  | µg/L |        |  |  |     |     |  |  |  |  |
|         | Bis(2-Chloroethyl)Ether     | µg/L |        |  |  |     |     |  |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether | µg/L |        |  |  |     |     |  |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate  | µg/L |        |  |  |     |     |  |  |  |  |
|         | 4-Bromophenyl Phenyl Ether  | µg/L |        |  |  |     |     |  |  |  |  |
|         | Butyl Benzyl Phthalate      | µg/L |        |  |  |     |     |  |  |  |  |
|         | 2-Chloronaphthalene         | µg/L |        |  |  |     |     |  |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether | µg/L |        |  |  |     |     |  |  |  |  |
|         | Chrysene                    | µg/L | < 2.55 |  |  | 0.5 | 0.5 |  |  |  |  |
|         | Dibenzo(a,h)Anthracene      | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,2-Dichlorobenzene         | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,3-Dichlorobenzene         | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,4-Dichlorobenzene         | µg/L |        |  |  |     |     |  |  |  |  |
|         | 3,3-Dichlorobenzidine       | µg/L |        |  |  |     |     |  |  |  |  |
|         | Diethyl Phthalate           | µg/L |        |  |  |     |     |  |  |  |  |
|         | Dimethyl Phthalate          | µg/L |        |  |  |     |     |  |  |  |  |
|         | Di-n-Butyl Phthalate        | µg/L |        |  |  |     |     |  |  |  |  |
|         | 2,4-Dinitrotoluene          | µg/L |        |  |  |     |     |  |  |  |  |
|         | 2,6-Dinitrotoluene          | µg/L |        |  |  |     |     |  |  |  |  |
|         | Di-n-Octyl Phthalate        | µg/L |        |  |  |     |     |  |  |  |  |
|         | 1,2-Diphenylhydrazine       | µg/L |        |  |  |     |     |  |  |  |  |
|         | Fluoranthene                | µg/L |        |  |  |     |     |  |  |  |  |
|         | Fluorene                    | µg/L |        |  |  |     |     |  |  |  |  |
|         | Hexachlorobenzene           | µg/L |        |  |  |     |     |  |  |  |  |
|         | Hexachlorobutadiene         | µg/L |        |  |  |     |     |  |  |  |  |
|         | Hexachlorocyclopentadiene   | µg/L |        |  |  |     |     |  |  |  |  |
|         | Hexachloroethane            | µg/L |        |  |  |     |     |  |  |  |  |
|         | Indeno(1,2,3-cd)Pyrene      | µg/L | < 2.55 |  |  | 0.5 | 0.5 |  |  |  |  |





## Stream / Surface Water Information

PTTI, NPDES Permit No. PA0001937, Outfall 003

Instructions **Discharge** Stream

Receiving Surface Water Name: **Chartiers Creek**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 036777       | 27.59 | 906.75          | 87.4                   | 0.0014        |                      | Yes                  |
| End of Reach 1     | 036777       | 27.36 | 905             | 87.5                   | 0.0011        | 0                    | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |       | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-------|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH*   | Hardness | pH |
| Point of Discharge | 27.59 | 0.1                         | 2          |           | 18.625    | 9.26       | 0.09       | 0.148          |             |           |    | 288.2     | 6.972 |          |    |
| End of Reach 1     | 27.36 | 0.1                         | 2          |           | 17.541    | 2.63       | 0.08       | 0.105          |             |           |    | 288.2     | 6.972 |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 27.59 |                             | 25.2       |           | 23.076    | 53.26      | 0.64       | 0.447          |             |           |    | 100       | 7   |          |    |
| End of Reach 1     | 27.36 |                             | 25.2       |           | 22.984    | 38.57      | 0.92       | 0.423          |             |           |    | 100       | 7   |          |    |



## Model Results

PTTI, NPDES Permit No. PA0001937, Outfall 003

|                                             |                                                   |                                                 |                                            |                                      |                           |                                         |                               |                              |
|---------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|-------------------------------|------------------------------|
| <input type="button" value="Instructions"/> | <input checked="" type="button" value="Results"/> | <input type="button" value="RETURN TO INPUTS"/> | <input type="button" value="SAVE AS PDF"/> | <input type="button" value="PRINT"/> | <input type="radio"/> All | <input checked="" type="radio"/> Inputs | <input type="radio"/> Results | <input type="radio"/> Limits |
|---------------------------------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|-------------------------------|------------------------------|

**Hydrodynamics**

**Q<sub>7-10</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.59 | 2                 |                      | 2                     | 2.247                         | 0.001         | 0.09       | 9.26       | 18.625    | 0.148          | 0.095       | 34.453                  |
| 27.36 | 2                 | 0.                   | 2                     |                               |               |            |            | 17.541    |                |             |                         |

**Q<sub>b</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.59 | 25.20             |                      | 25.20                 | 2.247                         | 0.001         | 0.205      | 9.26       | 23.076    | 0.447          | 0.031       | 293.326                 |
| 27.36 | 25.2              | 0.                   | 25.20                 |                               |               |            |            | 22.984    | 0.423          |             |                         |

**Wasteload Allocations**

**AFC**

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                        |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|---------------------------------|
| Total Lead             | 0           | 0         |                  | 0         | 198.207    | 461           | 732        | Chem Translator of 0.43 applied |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | 0.5        | 0.5           | 0.79       |                                 |
| 3,4-Benzofluoranthene  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Chrysene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
|                        |             |           |                  |           |            |               |            |                                 |
|                        |             |           |                  |           |            |               |            |                                 |
|                        |             |           |                  |           |            |               |            |                                 |
|                        |             |           |                  |           |            |               |            |                                 |
|                        |             |           |                  |           |            |               |            |                                 |
|                        |             |           |                  |           |            |               |            |                                 |
|                        |             |           |                  |           |            |               |            |                                 |

**CFC**

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
|            |             |           |                  |           |            |               |            |          |

|                        |   |   |  |   |       |      |      |                                 |
|------------------------|---|---|--|---|-------|------|------|---------------------------------|
| Total Lead             | 0 | 0 |  | 0 | 7.735 | 18.0 | 34.0 | Chem Translator of 0.43 applied |
| Benzo(a)Anthracene     | 0 | 0 |  | 0 | 0.1   | 0.1  | 0.19 |                                 |
| 3,4-Benzofluoranthene  | 0 | 0 |  | 0 | N/A   | N/A  | N/A  |                                 |
| Benzo(k)Fluoranthene   | 0 | 0 |  | 0 | N/A   | N/A  | N/A  |                                 |
| Chrysene               | 0 | 0 |  | 0 | N/A   | N/A  | N/A  |                                 |
| Indeno(1,2,3-cd)Pyrene | 0 | 0 |  | 0 | N/A   | N/A  | N/A  |                                 |
|                        |   |   |  |   |       |      |      |                                 |
|                        |   |   |  |   |       |      |      |                                 |
|                        |   |   |  |   |       |      |      |                                 |
|                        |   |   |  |   |       |      |      |                                 |
|                        |   |   |  |   |       |      |      |                                 |
|                        |   |   |  |   |       |      |      |                                 |
|                        |   |   |  |   |       |      |      |                                 |

THH

CCT (min): 34.453

THH PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

PWS PMF: 1

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Lead             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 3,4-Benzofluoranthene  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chrysene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Lead             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |
| 3,4-Benzofluoranthene  | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | 0.01       | 0.01          | 0.12       |          |
| Chrysene               | 0           | 0         |                  | 0         | 0.12       | 0.12          | 1.47       |          |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |
|                        |             |           |                  |           |            |               |            |          |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

| Mass Limits | Concentration Limits |
|-------------|----------------------|
|-------------|----------------------|

| Pollutants             | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML   | MDL   | IMAX  | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                             |
|------------------------|------------------|------------------|-------|-------|-------|-------|--------------------|----------------|--------------------------------------|
| Benzo(a)Anthracene     | 0.0001           | 0.0002           | 0.012 | 0.019 | 0.031 | µg/L  | 0.012              | CRL            | Discharge Conc $\geq$ 50% WQBEL (RP) |
| 3,4-Benzofluoranthene  | 0.0001           | 0.0002           | 0.012 | 0.019 | 0.031 | µg/L  | 0.012              | CRL            | Discharge Conc $\geq$ 50% WQBEL (RP) |
| Benzo(k)Fluoranthene   | 0.001            | 0.002            | 0.12  | 0.19  | 0.31  | µg/L  | 0.12               | CRL            | Discharge Conc $\geq$ 50% WQBEL (RP) |
| Chrysene               | 0.018            | 0.028            | 1.47  | 2.29  | 3.66  | µg/L  | 1.47               | CRL            | Discharge Conc $\geq$ 50% WQBEL (RP) |
| Indeno(1,2,3-cd)Pyrene | 0.0001           | 0.0002           | 0.012 | 0.019 | 0.031 | µg/L  | 0.012              | CRL            | Discharge Conc $\geq$ 50% WQBEL (RP) |
|                        |                  |                  |       |       |       |       |                    |                |                                      |

*Other Pollutants without Limits or Monitoring*

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g.,  $\leq$  Target QL).

| Pollutants | Governing<br>WQBEL | Units | Comments                        |
|------------|--------------------|-------|---------------------------------|
| Total Lead | 34.0               | µg/L  | Discharge Conc $\leq$ 10% WQBEL |
|            |                    |       |                                 |
|            |                    |       |                                 |
|            |                    |       |                                 |
|            |                    |       |                                 |
|            |                    |       |                                 |



**OUTFALL 004**

**Discharge Information**

Instructions **Discharge** Stream

Facility: PTTI NPDES Permit No.: PA0001937 Outfall No.: 004

Evaluation Type Major Sewage / Industrial Waste Wastewater Description: Treated groundwater and storm water

| Design Flow<br>(MGD)* | Hardness (mg/l)* | pH (SU)* | Discharge Characteristics  |     |     |     |                          |                |
|-----------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
|                       |                  |          | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                       |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 1.4524                | 122              | 7.97     | 0.66                       | 1   | 1   | 1   | 34.453                   |                |

|         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |               |
|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|---------------|
|         |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteri a Mod |
| Group 1 | Total Dissolved Solids (PWS)    | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chloride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromide                         | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Sulfate (PWS)                   | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Fluoride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
| Group 2 | Total Aluminum                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Antimony                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Arsenic                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Barium                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Beryllium                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Boron                     | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cadmium                   | µg/L  | 1.11               |                 |             | 8.29              | 0.5       |                 |            |                 | 0.32          |
|         | Total Chromium (III)            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Hexavalent Chromium             | µg/L  | 40                 |                 |             | 0.96              | 0.5       |                 |            |                 |               |
|         | Total Cobalt                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Copper                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Free Cyanide                    | µg/L  | < 20               |                 |             |                   |           |                 |            |                 |               |
|         | Total Cyanide                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Dissolved Iron                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Iron                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Lead                      | µg/L  | 28.9               |                 |             | 10                | 0.5       |                 |            |                 | 0.43          |
|         | Total Manganese                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Mercury                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Nickel                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Phenols (Phenolics) (PWS) | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Selenium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Silver                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Thallium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Zinc                      | µg/L  | 269                |                 |             | 0.025             | 0.76      | 0.5             |            |                 | 0.57          |
|         | Total Molybdenum                | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrolein                        | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrylamide                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrylonitrile                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Benzene                         | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromoform                       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Carbon Tetrachloride            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorobenzene                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorodibromomethane            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chloroethane                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | 2-Chloroethyl Vinyl Ether       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |

|         |                             |      |      |  |      |     |  |  |  |  |
|---------|-----------------------------|------|------|--|------|-----|--|--|--|--|
| Group 3 | Chloroform                  | µg/L |      |  |      |     |  |  |  |  |
|         | Dichlorobromomethane        | µg/L |      |  |      |     |  |  |  |  |
|         | 1,1-Dichloroethane          | µg/L |      |  |      |     |  |  |  |  |
|         | 1,2-Dichloroethane          | µg/L |      |  |      |     |  |  |  |  |
|         | 1,1-Dichloroethylene        | µg/L |      |  |      |     |  |  |  |  |
|         | 1,2-Dichloropropane         | µg/L |      |  |      |     |  |  |  |  |
|         | 1,3-Dichloropropylene       | µg/L |      |  |      |     |  |  |  |  |
|         | 1,4-Dioxane                 | µg/L |      |  |      |     |  |  |  |  |
|         | Ethylbenzene                | µg/L |      |  |      |     |  |  |  |  |
|         | Methyl Bromide              | µg/L |      |  |      |     |  |  |  |  |
|         | Methyl Chloride             | µg/L |      |  |      |     |  |  |  |  |
|         | Methylene Chloride          | µg/L |      |  |      |     |  |  |  |  |
|         | 1,1,2,2-Tetrachloroethane   | µg/L |      |  |      |     |  |  |  |  |
|         | Tetrachloroethylene         | µg/L |      |  |      |     |  |  |  |  |
|         | Toluene                     | µg/L |      |  |      |     |  |  |  |  |
|         | 1,2-trans-Dichloroethylene  | µg/L |      |  |      |     |  |  |  |  |
|         | 1,1,1-Trichloroethane       | µg/L |      |  |      |     |  |  |  |  |
|         | 1,1,2-Trichloroethane       | µg/L |      |  |      |     |  |  |  |  |
|         | Trichloroethylene           | µg/L |      |  |      |     |  |  |  |  |
| Group 4 | Vinyl Chloride              | µg/L |      |  |      |     |  |  |  |  |
|         | 2-Chlorophenol              | µg/L |      |  |      |     |  |  |  |  |
|         | 2,4-Dichlorophenol          | µg/L |      |  |      |     |  |  |  |  |
|         | 2,4-Dimethylphenol          | µg/L |      |  |      |     |  |  |  |  |
|         | 4,6-Dinitro-o-Cresol        | µg/L |      |  |      |     |  |  |  |  |
|         | 2,4-Dinitrophenol           | µg/L |      |  |      |     |  |  |  |  |
|         | 2-Nitrophenol               | µg/L |      |  |      |     |  |  |  |  |
|         | 4-Nitrophenol               | µg/L |      |  |      |     |  |  |  |  |
|         | p-Chloro-m-Cresol           | µg/L |      |  |      |     |  |  |  |  |
|         | Pentachlorophenol           | µg/L |      |  |      |     |  |  |  |  |
| Group 5 | Phenol                      | µg/L |      |  |      |     |  |  |  |  |
|         | 2,4,6-Trichlorophenol       | µg/L |      |  |      |     |  |  |  |  |
|         | Acenaphthene                | µg/L |      |  |      |     |  |  |  |  |
|         | Acenaphthylene              | µg/L |      |  |      |     |  |  |  |  |
|         | Anthracene                  | µg/L |      |  |      |     |  |  |  |  |
|         | Benzidine                   | µg/L |      |  |      |     |  |  |  |  |
|         | Benzo(a)Anthracene          | µg/L | 6.45 |  | 0.89 | 0.5 |  |  |  |  |
|         | Benzo(a)Pyrene              | µg/L | 5.11 |  | 1.52 | 0.5 |  |  |  |  |
|         | 3,4-Benzo fluoranthene      | µg/L | 2.81 |  | 0.56 | 0.5 |  |  |  |  |
|         | Benzo(ghi)Perylene          | µg/L |      |  |      |     |  |  |  |  |
|         | Benzo(k)Fluoranthene        | µg/L | 2.81 |  | 0.44 | 0.5 |  |  |  |  |
|         | Bis(2-Chloroethoxy)Methane  | µg/L |      |  |      |     |  |  |  |  |
|         | Bis(2-Chloroethyl)Ether     | µg/L |      |  |      |     |  |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether | µg/L |      |  |      |     |  |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate  | µg/L |      |  |      |     |  |  |  |  |
|         | 4-Bromophenyl Phenyl Ether  | µg/L |      |  |      |     |  |  |  |  |
|         | Butyl Benzyl Phthalate      | µg/L |      |  |      |     |  |  |  |  |
|         | 2-Chloronaphthalene         | µg/L |      |  |      |     |  |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether | µg/L |      |  |      |     |  |  |  |  |
|         | Chrysene                    | µg/L | 12.3 |  | 1    | 0.5 |  |  |  |  |
|         | Dibenzo(a,h)Anthracene      | µg/L |      |  |      |     |  |  |  |  |
|         | 1,2-Dichlorobenzene         | µg/L |      |  |      |     |  |  |  |  |
|         | 1,3-Dichlorobenzene         | µg/L |      |  |      |     |  |  |  |  |
|         | 1,4-Dichlorobenzene         | µg/L |      |  |      |     |  |  |  |  |
|         | 3,3-Dichlorobenzidine       | µg/L |      |  |      |     |  |  |  |  |
|         | Diethyl Phthalate           | µg/L |      |  |      |     |  |  |  |  |
|         | Dimethyl Phthalate          | µg/L |      |  |      |     |  |  |  |  |
|         | Di-n-Butyl Phthalate        | µg/L |      |  |      |     |  |  |  |  |
|         | 2,4-Dinitrotoluene          | µg/L |      |  |      |     |  |  |  |  |
|         | 2,6-Dinitrotoluene          | µg/L |      |  |      |     |  |  |  |  |
|         | Di-n-Octyl Phthalate        | µg/L |      |  |      |     |  |  |  |  |
|         | 1,2-Diphenylhydrazine       | µg/L |      |  |      |     |  |  |  |  |
|         | Fluoranthene                | µg/L |      |  |      |     |  |  |  |  |
|         | Fluorene                    | µg/L |      |  |      |     |  |  |  |  |
|         | Hexachlorobenzene           | µg/L |      |  |      |     |  |  |  |  |
|         | Hexachlorobutadiene         | µg/L |      |  |      |     |  |  |  |  |
|         | Hexachlorocyclopentadiene   | µg/L |      |  |      |     |  |  |  |  |
|         | Hexachloroethane            | µg/L |      |  |      |     |  |  |  |  |
|         | Indeno(1,2,3-cd)Pyrene      | µg/L | 3.59 |  | 1.02 | 0.5 |  |  |  |  |





## Stream / Surface Water Information

PTTI, NPDES Permit No. PA0001937, Outfall 004

Instructions **Discharge** Stream

Receiving Surface Water Name: **Chartiers Creek**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 036777       | 27.59 | 906.75          | 87.4                   | 0.0014        |                      | Yes                  |
| End of Reach 1     | 036777       | 27.36 | 905             | 87.5                   | 0.0011        | 0                    | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |      | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|------|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH*  | Hardness | pH |
| Point of Discharge | 27.59 | 0.1                         | 2          |           | 18.625    | 9.26       | 0.09       | 0.148          |             |           |    | 288.2     | 6.97 |          |    |
| End of Reach 1     | 27.36 | 0.1                         | 2          |           | 17.541    | 2.63       | 0.08       | 0.105          |             |           |    | 288.2     | 6.97 |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 27.59 |                             | 25.2       |           | 23.076    | 53.26      | 0.64       | 0.447          |             |           |    | 100       | 7   |          |    |
| End of Reach 1     | 27.36 |                             | 25.2       |           | 22.984    | 38.57      | 0.92       | 0.423          |             |           |    | 100       | 7   |          |    |



## Model Results

PTTI, NPDES Permit No. PA0001937, Outfall 004

|                     |                |                                  |                             |                       |                           |                                         |                               |                              |
|---------------------|----------------|----------------------------------|-----------------------------|-----------------------|---------------------------|-----------------------------------------|-------------------------------|------------------------------|
| <b>Instructions</b> | <b>Results</b> | <a href="#">RETURN TO INPUTS</a> | <a href="#">SAVE AS PDF</a> | <a href="#">PRINT</a> | <input type="radio"/> All | <input checked="" type="radio"/> Inputs | <input type="radio"/> Results | <input type="radio"/> Limits |
|---------------------|----------------|----------------------------------|-----------------------------|-----------------------|---------------------------|-----------------------------------------|-------------------------------|------------------------------|

**Hydrodynamics**

**Q<sub>7-10</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.59 | 2                 |                      | 2                     | 2.247                         | 0.001         | 0.09       | 9.26       | 18.625    | 0.148          | 0.095       | 34.453                  |
| 27.36 | 2                 | 0.                   | 2                     |                               |               |            |            | 17.541    |                |             |                         |

**Q<sub>b</sub>**

| RMI   | Stream Flow (cfs) | PWS Withdrawal (cfs) | Net Stream Flow (cfs) | Discharge Analysis Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity (fps) | Travel Time | Complete Mix Time (min) |
|-------|-------------------|----------------------|-----------------------|-------------------------------|---------------|------------|------------|-----------|----------------|-------------|-------------------------|
| 27.59 | 25.20             |                      | 25.20                 | 2.247                         | 0.001         | 0.205      | 9.26       | 23.076    | 0.447          | 0.031       | 293.326                 |
| 27.36 | 25.2              | 0.                   | 25.20                 |                               |               |            |            | 22.984    | 0.423          |             |                         |

**Wasteload Allocations**

**AFC**

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                         |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------------------------------|
| Total Cadmium          | 0           | 0         |                  | 0         | 3.632      | 11.4          | 18.0       | Chem Translator of 0.32 applied  |
| Hexavalent Chromium    | 0           | 0         |                  | 0         | 16         | 16.3          | 25.9       | Chem Translator of 0.982 applied |
| Free Cyanide           | 0           | 0         |                  | 0         | 22         | 22.0          | 34.9       |                                  |
| Total Lead             | 0           | 0         |                  | 0         | 124.231    | 289           | 459        | Chem Translator of 0.43 applied  |
| Total Zinc             | 0.025       | 0         |                  | 0         | 195.996    | 344           | 546        | Chem Translator of 0.57 applied  |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | 0.5        | 0.5           | 0.79       |                                  |
| Benzo(a)Pyrene         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| 3,4-Benzofluoranthene  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Chrysene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                  |

**CFC**

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

| Pollutants | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
|------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|

|                        |       |   |  |   |         |      |      |                                  |
|------------------------|-------|---|--|---|---------|------|------|----------------------------------|
| Total Cadmium          | 0     | 0 |  | 0 | 0.398   | 1.24 | 2.35 | Chem Translator of 0.32 applied  |
| Hexavalent Chromium    | 0     | 0 |  | 0 | 10      | 10.4 | 19.6 | Chem Translator of 0.962 applied |
| Free Cyanide           | 0     | 0 |  | 0 | 5.2     | 5.2  | 9.83 |                                  |
| Total Lead             | 0     | 0 |  | 0 | 5.313   | 12.4 | 23.4 | Chem Translator of 0.43 applied  |
| Total Zinc             | 0.025 | 0 |  | 0 | 212.790 | 373  | 706  | Chem Translator of 0.57 applied  |
| Benzo(a)Anthracene     | 0     | 0 |  | 0 | 0.1     | 0.1  | 0.19 |                                  |
| Benzo(a)Pyrene         | 0     | 0 |  | 0 | N/A     | N/A  | N/A  |                                  |
| 3,4-Benzo fluoranthene | 0     | 0 |  | 0 | N/A     | N/A  | N/A  |                                  |
| Benzo(k)Fluoranthene   | 0     | 0 |  | 0 | N/A     | N/A  | N/A  |                                  |
| Chrysene               | 0     | 0 |  | 0 | N/A     | N/A  | N/A  |                                  |
| Indeno(1,2,3-cd)Pyrene | 0     | 0 |  | 0 | N/A     | N/A  | N/A  |                                  |

THH

CCT (min): 34.453

THH PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

PWS PMF:

1

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Cadmium          | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Free Cyanide           | 0           | 0         |                  | 0         | 4          | 4.0           | 7.56       |          |
| Total Lead             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc             | 0.025       | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Pyrene         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 3,4-Benzo fluoranthene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chrysene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

| Pollutants             | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Cadmium          | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexavalent Chromium    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Free Cyanide           | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Lead             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Total Zinc             | 0.025       | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Anthracene     | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |
| Benzo(a)Pyrene         | 0           | 0         |                  | 0         | 0.0001     | 0.0001        | 0.001      |          |
| 3,4-Benzo fluoranthene | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |
| Benzo(k)Fluoranthene   | 0           | 0         |                  | 0         | 0.01       | 0.01          | 0.12       |          |
| Chrysene               | 0           | 0         |                  | 0         | 0.12       | 0.12          | 1.47       |          |
| Indeno(1,2,3-cd)Pyrene | 0           | 0         |                  | 0         | 0.001      | 0.001         | 0.012      |          |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

| Mass Limits | Concentration Limits |
|-------------|----------------------|
|-------------|----------------------|

| Pollutants             | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML    | MDL    | IMAX   | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
|------------------------|------------------|------------------|--------|--------|--------|-------|--------------------|----------------|------------------------------------|
| Total Cadmium          | Report           | Report           | Report | Report | Report | µg/L  | 2.35               | CFC            | Discharge Conc > 10% WQBEL (no RP) |
| Hexavalent Chromium    | 0.24             | 0.43             | 19.6   | 35.7   | 49.1   | µg/L  | 19.6               | CFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Free Cyanide           | 0.092            | 0.14             | 7.56   | 11.8   | 18.9   | µg/L  | 7.56               | THH            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Total Lead             | 0.28             | 0.32             | 23.4   | 26.3   | 58.4   | µg/L  | 23.4               | CFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Total Zinc             | 5.41             | 9.43             | 447    | 779    | 1,117  | µg/L  | 447                | AFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzo(a)Anthracene     | 0.0001           | 0.0003           | 0.012  | 0.022  | 0.031  | µg/L  | 0.012              | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzo(a)Pyrene         | 0.00001          | 0.00003          | 0.001  | 0.002  | 0.003  | µg/L  | 0.001              | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| 3,4-Benzofluoranthene  | 0.0001           | 0.0002           | 0.012  | 0.02   | 0.031  | µg/L  | 0.012              | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzo(k)Fluoranthene   | 0.001            | 0.002            | 0.12   | 0.18   | 0.31   | µg/L  | 0.12               | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Chrysene               | 0.018            | 0.032            | 1.47   | 2.68   | 3.66   | µg/L  | 1.47               | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Indeno(1,2,3-cd)Pyrene | 0.0001           | 0.0003           | 0.012  | 0.022  | 0.031  | µg/L  | 0.012              | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |

**Other Pollutants without Limits or Monitoring**

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., < Target QL).

| Pollutants | Governing<br>WQBEL | Units | Comments |
|------------|--------------------|-------|----------|
|            |                    |       |          |
|            |                    |       |          |
|            |                    |       |          |
|            |                    |       |          |
|            |                    |       |          |
|            |                    |       |          |



**OUTFALL 006**

**Discharge Information**

Instructions Discharge Stream

Facility: PTTI

NPDES Permit No.: PA0001937

Outfall No.: 006

Evaluation Type Major Sewage / Industrial Waste

Wastewater Description: Treated groundwater and storm water

| Discharge Characteristics |                  |          |                            |     |     |     |                          |                |
|---------------------------|------------------|----------|----------------------------|-----|-----|-----|--------------------------|----------------|
| Design Flow (MGD)*        | Hardness (mg/l)* | pH (SU)* | Partial Mix Factors (PMFs) |     |     |     | Complete Mix Times (min) |                |
|                           |                  |          | AFC                        | CFC | THH | CRL | Q <sub>7-10</sub>        | Q <sub>h</sub> |
| 1.4524                    | 370.2            | 7.25     | 0.66                       | 1   | 1   | 1   | 34.453                   |                |

|         | Discharge Pollutant             | Units | Max Discharge Conc | 0 if left blank |             | 0.5 if left blank |           | 0 if left blank |            | 1 if left blank |               |
|---------|---------------------------------|-------|--------------------|-----------------|-------------|-------------------|-----------|-----------------|------------|-----------------|---------------|
|         |                                 |       |                    | Trib Conc       | Stream Conc | Daily CV          | Hourly CV | Stream CV       | Fate Coeff | FOS             | Criteri a Mod |
| Group 1 | Total Dissolved Solids (PWS)    | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chloride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromide                         | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Sulfate (PWS)                   | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Fluoride (PWS)                  | mg/L  |                    |                 |             |                   |           |                 |            |                 |               |
| Group 2 | Total Aluminum                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Antimony                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Arsenic                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Barium                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Beryllium                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Boron                     | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cadmium                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Chromium (III)            | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Hexavalent Chromium             | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Cobalt                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Copper                    | µg/L  | 2.47               |                 |             | 0.5               | 0.5       |                 |            |                 | 0.78          |
|         | Free Cyanide                    | µg/L  | < 8                |                 |             | 0.5               | 0.5       |                 |            |                 |               |
|         | Total Cyanide                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Dissolved Iron                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Iron                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Lead                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Manganese                 | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Mercury                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Nickel                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Phenols (Phenolics) (PWS) | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Selenium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Silver                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Thallium                  | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Zinc                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Total Molybdenum                | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrolein                        | µg/L  | < 1.9              |                 |             | 0.5               | 0.5       |                 |            |                 |               |
|         | Acrylamide                      | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Acrylonitrile                   | µg/L  | < 2.5              |                 |             | 0.5               | 0.5       |                 |            |                 |               |
|         | Benzene                         | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Bromoform                       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Carbon Tetrachloride            | µg/L  | < 0.19             |                 |             | 0.5               | 0.5       |                 |            |                 |               |
|         | Chlorobenzene                   | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | Chlorodibromomethane            | µg/L  | < 0.2              |                 |             | 0.5               | 0.5       |                 |            |                 |               |
|         | Chloroethane                    | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |
|         | 2-Chloroethyl Vinyl Ether       | µg/L  |                    |                 |             |                   |           |                 |            |                 |               |

|         |                             |      |        |  |  |  |     |      |  |  |  |  |
|---------|-----------------------------|------|--------|--|--|--|-----|------|--|--|--|--|
| Group 3 | Chloroform                  | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Dichlorobromomethane        | µg/L | < 0.2  |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | 1,1-Dichloroethane          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,2-Dichloroethane          | µg/L | < 0.2  |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | 1,1-Dichloroethylene        | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,2-Dichloropropane         | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,3-Dichloropropylene       | µg/L | < 0.22 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | 1,4-Dioxane                 | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Ethylbenzene                | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Methyl Bromide              | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Methyl Chloride             | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Methylene Chloride          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,1,2,2-Tetrachloroethane   | µg/L | < 0.14 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Tetrachloroethylene         | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Toluene                     | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,2-trans-Dichloroethylene  | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,1,1-Trichloroethane       | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,1,2-Trichloroethane       | µg/L | < 0.1  |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Trichloroethylene           | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Vinyl Chloride              | µg/L | < 0.16 |  |  |  | 0.5 | 0.5  |  |  |  |  |
| Group 4 | 2-Chlorophenol              | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 2,4-Dichlorophenol          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 2,4-Dimethylphenol          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 4,6-Dinitro-o-Cresol        | µg/L | < 12.6 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | 2,4-Dinitrophenol           | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 2-Nitrophenol               | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 4-Nitrophenol               | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | p-Chloro-m-Cresol           | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Pentachlorophenol           | µg/L | < 12.6 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Phenol                      | µg/L |        |  |  |  |     |      |  |  |  |  |
| Group 5 | 2,4,6-Trichlorophenol       | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Acenaphthene                | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Acenaphthylene              | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Anthracene                  | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Benzidine                   | µg/L | < 12.6 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Benzo(a)Anthracene          | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Benzo(a)Pyrene              | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | 3,4-Benzo fluoranthene      | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Benzo(ghi)Perylene          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Benzo(k)Fluoranthene        | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Bis(2-Chloroethoxy)Methane  | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Bis(2-Chloroethyl)Ether     | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Bis(2-Chloroisopropyl)Ether | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Bis(2-Ethylhexyl)Phthalate  | µg/L | < 2.53 |  |  |  | 0.5 | 0.36 |  |  |  |  |
|         | 4-Bromophenyl Phenyl Ether  | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Butyl Benzyl Phthalate      | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 2-Chloronaphthalene         | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 4-Chlorophenyl Phenyl Ether | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Chrysene                    | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Dibenzo(a,h)Anthracene      | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | 1,2-Dichlorobenzene         | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,3-Dichlorobenzene         | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,4-Dichlorobenzene         | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 3,3-Dichlorobenzidine       | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Diethyl Phthalate           | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Dimethyl Phthalate          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Di-n-Butyl Phthalate        | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 2,4-Dinitrotoluene          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 2,6-Dinitrotoluene          | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Di-n-Octyl Phthalate        | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | 1,2-Diphenylhydrazine       | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Fluoranthene                | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Fluorene                    | µg/L |        |  |  |  |     |      |  |  |  |  |
|         | Hexachlorobenzene           | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Hexachlorobutadiene         | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Hexachlorocyclopentadiene   | µg/L | < 5.05 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Hexachloroethane            | µg/L | < 2.53 |  |  |  | 0.5 | 0.5  |  |  |  |  |
|         | Indeno(1,2,3-cd)Pyrene      | µg/L |        |  |  |  |     |      |  |  |  |  |





## Stream / Surface Water Information

PTTI, NPDES Permit No. PA0001937, Outfall 006

Instructions **Discharge** Stream

Receiving Surface Water Name: **Chartiers Creek**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI*  | Elevation (ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal (MGD) | Apply Fish Criteria* |
|--------------------|--------------|-------|-----------------|------------------------|---------------|----------------------|----------------------|
| Point of Discharge | 036777       | 27.59 | 906.75          | 87.4                   | 0.0014        |                      | Yes                  |
| End of Reach 1     | 036777       | 27.36 | 905             | 87.5                   | 0.0011        | 0                    | Yes                  |

**Q<sub>7-10</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |      | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|------|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH*  | Hardness | pH |
| Point of Discharge | 27.59 | 0.1                         | 2          |           | 18.625    | 9.26       | 0.09       | 0.148          |             |           |    | 288.2     | 6.97 |          |    |
| End of Reach 1     | 27.36 | 0.1                         | 2          |           | 17.541    | 2.63       | 0.08       | 0.105          |             |           |    | 288.2     | 6.97 |          |    |

**Q<sub>h</sub>**

| Location           | RMI   | LFY (cfs/mi <sup>2</sup> )* | Flow (cfs) |           | W/D Ratio | Width (ft) | Depth (ft) | Velocity (fps) | Travel Time | Tributary |    | Stream    |     | Analysis |    |
|--------------------|-------|-----------------------------|------------|-----------|-----------|------------|------------|----------------|-------------|-----------|----|-----------|-----|----------|----|
|                    |       |                             | Stream     | Tributary |           |            |            |                |             | Hardness  | pH | Hardness* | pH* | Hardness | pH |
| Point of Discharge | 27.59 |                             | 25.2       |           | 23.076    | 53.26      | 0.64       | 0.447          |             |           |    | 100       | 7   |          |    |
| End of Reach 1     | 27.36 |                             | 25.2       |           | 22.984    | 38.57      | 0.92       | 0.423          |             |           |    | 100       | 7   |          |    |

|                            |   |   |  |   |        |        |        |  |
|----------------------------|---|---|--|---|--------|--------|--------|--|
| Benzo(a)Anthracene         | 0 | 0 |  | 0 | 0.5    | 0.5    | 0.79   |  |
| Benzo(a)Pyrene             | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 3,4-Benzofluoranthene      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Benzo(k)Fluoranthene       | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Chloroethyl)Ether    | 0 | 0 |  | 0 | 30,000 | 30,000 | 47,625 |  |
| Bis(2-Ethylhexyl)Phthalate | 0 | 0 |  | 0 | 4,500  | 4,500  | 7,144  |  |
| Chrysene                   | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Dibenzo(a,h)Anthracene     | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 3,3-Dichlorobenzidine      | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| 1,2-Diphenylhydrazine      | 0 | 0 |  | 0 | 15     | 15.0   | 23.8   |  |
| Hexachlorobenzene          | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Hexachlorobutadiene        | 0 | 0 |  | 0 | 10     | 10.0   | 15.9   |  |
| Hexachlorocyclopentadiene  | 0 | 0 |  | 0 | 5      | 5.0    | 7.94   |  |
| Hexachloroethane           | 0 | 0 |  | 0 | 60     | 60.0   | 95.2   |  |
| n-Nitrosodimethylamine     | 0 | 0 |  | 0 | 17,000 | 17,000 | 26,987 |  |
| n-Nitrosodi-n-Propylamine  | 0 | 0 |  | 0 | N/A    | N/A    | N/A    |  |
| Phenanthrene               | 0 | 0 |  | 0 | 5      | 5.0    | 7.94   |  |

CFC

CCT (min): 34.453

PMF: 1

Analysis Hardness (mg/l): 331.58

Analysis pH: 7.10

| Pollutants                 | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments                        |
|----------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|---------------------------------|
| Total Copper               | 0           | 0         |                  | 0         | 24.943     | 32.0          | 60.4       | Chem Translator of 0.78 applied |
| Free Cyanide               | 0           | 0         |                  | 0         | 5.2        | 5.2           | 9.83       |                                 |
| Acrolein                   | 0           | 0         |                  | 0         | 3          | 3.0           | 5.67       |                                 |
| Acrylonitrile              | 0           | 0         |                  | 0         | 130        | 130           | 246        |                                 |
| Carbon Tetrachloride       | 0           | 0         |                  | 0         | 560        | 560           | 1,058      |                                 |
| Chlorodibromomethane       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Dichlorobromomethane       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| 1,2-Dichloroethane         | 0           | 0         |                  | 0         | 3,100      | 3,100         | 5,859      |                                 |
| 1,3-Dichloropropylene      | 0           | 0         |                  | 0         | 61         | 61.0          | 115        |                                 |
| 1,1,2,2-Tetrachloroethane  | 0           | 0         |                  | 0         | 210        | 210           | 397        |                                 |
| 1,1,2-Trichloroethane      | 0           | 0         |                  | 0         | 680        | 680           | 1,285      |                                 |
| Vinyl Chloride             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| 4,6-Dinitro-o-Cresol       | 0           | 0         |                  | 0         | 16         | 16.0          | 30.2       |                                 |
| Pentachlorophenol          | 0           | 0         |                  | 0         | 7.585      | 7.58          | 14.3       |                                 |
| 2,4,6-Trichlorophenol      | 0           | 0         |                  | 0         | 91         | 91.0          | 172        |                                 |
| Benzidine                  | 0           | 0         |                  | 0         | 59         | 59.0          | 112        |                                 |
| Benzo(a)Anthracene         | 0           | 0         |                  | 0         | 0.1        | 0.1           | 0.19       |                                 |
| Benzo(a)Pyrene             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| 3,4-Benzofluoranthene      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Benzo(k)Fluoranthene       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Bis(2-Chloroethyl)Ether    | 0           | 0         |                  | 0         | 6,000      | 6,000         | 11,341     |                                 |
| Bis(2-Ethylhexyl)Phthalate | 0           | 0         |                  | 0         | 910        | 910           | 1,720      |                                 |
| Chrysene                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| Dibenzo(a,h)Anthracene     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| 3,3-Dichlorobenzidine      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |                                 |
| 1,2-Diphenylhydrazine      | 0           | 0         |                  | 0         | 3          | 3.0           | 5.67       |                                 |

NPDES Permit Fact Sheet  
Pennsylvania Transformer Technology, Inc.

NPDES Permit No. PA0001937

|                           |   |   |  |   |       |       |       |  |
|---------------------------|---|---|--|---|-------|-------|-------|--|
| Hexachlorobenzene         | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Hexachlorobutadiene       | 0 | 0 |  | 0 | 2     | 2.0   | 3.78  |  |
| Hexachlorocyclopentadiene | 0 | 0 |  | 0 | 1     | 1.0   | 1.89  |  |
| Hexachloroethane          | 0 | 0 |  | 0 | 12    | 12.0  | 22.7  |  |
| n-Nitrosodimethylamine    | 0 | 0 |  | 0 | 3,400 | 3,400 | 6,426 |  |
| n-Nitrosodi-n-Propylamine | 0 | 0 |  | 0 | N/A   | N/A   | N/A   |  |
| Phenanthrene              | 0 | 0 |  | 0 | 1     | 1.0   | 1.89  |  |

THH

CCT (min): 34.453

THH PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

PWS PMF: 1

| Pollutants                 | Stream Conc | Stream CV | Trib Conc (µg/L) | Fate Coef | WQC (µg/L) | WQ Obj (µg/L) | WLA (µg/L) | Comments |
|----------------------------|-------------|-----------|------------------|-----------|------------|---------------|------------|----------|
| Total Copper               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Free Cyanide               | 0           | 0         |                  | 0         | 4          | 4.0           | 7.56       |          |
| Acrolein                   | 0           | 0         |                  | 0         | 3          | 3.0           | 5.67       |          |
| Acrylonitrile              | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Carbon Tetrachloride       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chlorodibromomethane       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dichlorobromomethane       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 1,2-Dichloroethane         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 1,3-Dichloropropylene      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 1,1,2,2-Tetrachloroethane  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 1,1,2-Trichloroethane      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Vinyl Chloride             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 4,6-Dinitro-o-Cresol       | 0           | 0         |                  | 0         | 2          | 2.0           | 3.78       |          |
| Pentachlorophenol          | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 2,4,6-Trichlorophenol      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzidine                  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Anthracene         | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(a)Pyrene             | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 3,4-Benzofluoranthene      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Benzo(k)Fluoranthene       | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Bis(2-Chloroethyl)Ether    | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Bis(2-Ethylhexyl)Phthalate | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Chrysene                   | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Dibenzo(a,h)Anthracene     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 3,3-Dichlorobenzidine      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| 1,2-Diphenylhydrazine      | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexachlorobenzene          | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexachlorobutadiene        | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Hexachlorocyclopentadiene  | 0           | 0         |                  | 0         | 4          | 4.0           | 7.56       |          |
| Hexachloroethane           | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| n-Nitrosodimethylamine     | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| n-Nitrosodi-n-Propylamine  | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |
| Phenanthrene               | 0           | 0         |                  | 0         | N/A        | N/A           | N/A        |          |

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH:

N/A

| Pollutants | Stream | Stream | Trib Conc | Fate | WQC | WQ Obj | WLA (µg/L) | Comments |
|------------|--------|--------|-----------|------|-----|--------|------------|----------|
|------------|--------|--------|-----------|------|-----|--------|------------|----------|

| Pollutants                 | Conc | CV | ( $\mu\text{g/L}$ ) | Coef | ( $\mu\text{g/L}$ ) | ( $\mu\text{g/L}$ ) | WQL ( $\mu\text{g/L}$ ) | Comments |
|----------------------------|------|----|---------------------|------|---------------------|---------------------|-------------------------|----------|
| Total Copper               | 0    | 0  |                     | 0    | N/A                 | N/A                 | N/A                     |          |
| Free Cyanide               | 0    | 0  |                     | 0    | N/A                 | N/A                 | N/A                     |          |
| Acrolein                   | 0    | 0  |                     | 0    | N/A                 | N/A                 | N/A                     |          |
| Acrylonitrile              | 0    | 0  |                     | 0    | 0.06                | 0.06                | 0.73                    |          |
| Carbon Tetrachloride       | 0    | 0  |                     | 0    | 0.4                 | 0.4                 | 4.89                    |          |
| Chlorodibromomethane       | 0    | 0  |                     | 0    | 0.8                 | 0.8                 | 9.77                    |          |
| Dichlorobromomethane       | 0    | 0  |                     | 0    | 0.95                | 0.95                | 11.6                    |          |
| 1,2-Dichloroethane         | 0    | 0  |                     | 0    | 9.9                 | 9.9                 | 121                     |          |
| 1,3-Dichloropropylene      | 0    | 0  |                     | 0    | 0.27                | 0.27                | 3.3                     |          |
| 1,1,2,2-Tetrachloroethane  | 0    | 0  |                     | 0    | 0.2                 | 0.2                 | 2.44                    |          |
| 1,1,2-Trichloroethane      | 0    | 0  |                     | 0    | 0.55                | 0.55                | 6.72                    |          |
| Vinyl Chloride             | 0    | 0  |                     | 0    | 0.02                | 0.02                | 0.24                    |          |
| 4,6-Dinitro-o-Cresol       | 0    | 0  |                     | 0    | N/A                 | N/A                 | N/A                     |          |
| Pentachlorophenol          | 0    | 0  |                     | 0    | 0.030               | 0.03                | 0.37                    |          |
| 2,4,6-Trichlorophenol      | 0    | 0  |                     | 0    | 1.5                 | 1.5                 | 18.3                    |          |
| Benzidine                  | 0    | 0  |                     | 0    | 0.0001              | 0.0001              | 0.001                   |          |
| Benzo(a)Anthracene         | 0    | 0  |                     | 0    | 0.001               | 0.001               | 0.012                   |          |
| Benzo(a)Pyrene             | 0    | 0  |                     | 0    | 0.0001              | 0.0001              | 0.001                   |          |
| 3,4-Benzo[fluoranthene     | 0    | 0  |                     | 0    | 0.001               | 0.001               | 0.012                   |          |
| Benzo(k)Fluoranthene       | 0    | 0  |                     | 0    | 0.01                | 0.01                | 0.12                    |          |
| Bis(2-Chloroethyl)Ether    | 0    | 0  |                     | 0    | 0.03                | 0.03                | 0.37                    |          |
| Bis(2-Ethylhexyl)Phthalate | 0    | 0  |                     | 0    | 0.32                | 0.32                | 3.91                    |          |
| Chrysene                   | 0    | 0  |                     | 0    | 0.12                | 0.12                | 1.47                    |          |
| Dibenzo(a,h)Anthracene     | 0    | 0  |                     | 0    | 0.0001              | 0.0001              | 0.001                   |          |
| 3,3-Dichlorobenzidine      | 0    | 0  |                     | 0    | 0.05                | 0.05                | 0.61                    |          |
| 1,2-Diphenylhydrazine      | 0    | 0  |                     | 0    | 0.03                | 0.03                | 0.37                    |          |
| Hexachlorobenzene          | 0    | 0  |                     | 0    | 0.00008             | 0.00008             | 0.001                   |          |
| Hexachlorobutadiene        | 0    | 0  |                     | 0    | 0.01                | 0.01                | 0.12                    |          |
| Hexachlorocyclopentadiene  | 0    | 0  |                     | 0    | N/A                 | N/A                 | N/A                     |          |
| Hexachloroethane           | 0    | 0  |                     | 0    | 0.1                 | 0.1                 | 1.22                    |          |
| n-Nitrosodimethylamine     | 0    | 0  |                     | 0    | 0.0007              | 0.0007              | 0.009                   |          |
| n-Nitrosodi-n-Propylamine  | 0    | 0  |                     | 0    | 0.005               | 0.005               | 0.061                   |          |
| Phenanthrene               | 0    | 0  |                     | 0    | N/A                 | N/A                 | N/A                     |          |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

| Pollutants             | Mass Limits   |               | Concentration Limits |       |       |                 | Governing WQBEL | WQBEL Basis | Comments                             |
|------------------------|---------------|---------------|----------------------|-------|-------|-----------------|-----------------|-------------|--------------------------------------|
|                        | AML (lbs/day) | MDL (lbs/day) | AML                  | MDL   | IMAX  | Units           |                 |             |                                      |
| Free Cyanide           | 0.092         | 0.14          | 7.56                 | 11.8  | 18.9  | $\mu\text{g/L}$ | 7.56            | THH         | Discharge Conc $\geq$ 50% WQBEL (RP) |
| 4,6-Dinitro-o-Cresol   | 0.046         | 0.071         | 3.78                 | 5.9   | 9.45  | $\mu\text{g/L}$ | 3.78            | THH         | Discharge Conc $\geq$ 50% WQBEL (RP) |
| Pentachlorophenol      | 0.004         | 0.007         | 0.37                 | 0.57  | 0.92  | $\mu\text{g/L}$ | 0.37            | CRL         | Discharge Conc $\geq$ 50% WQBEL (RP) |
| Benzo(a)Anthracene     | 0.0001        | 0.0002        | 0.012                | 0.019 | 0.031 | $\mu\text{g/L}$ | 0.012           | CRL         | Discharge Conc $\geq$ 50% WQBEL (RP) |
| Benzo(a)Pyrene         | 0.00001       | 0.00002       | 0.001                | 0.002 | 0.003 | $\mu\text{g/L}$ | 0.001           | CRL         | Discharge Conc $\geq$ 50% WQBEL (RP) |
| 3,4-Benzo[fluoranthene | 0.0001        | 0.0002        | 0.012                | 0.019 | 0.031 | $\mu\text{g/L}$ | 0.012           | CRL         | Discharge Conc $\geq$ 50% WQBEL (RP) |
| Benzo(k)Fluoranthene   | 0.001         | 0.002         | 0.12                 | 0.19  | 0.31  | $\mu\text{g/L}$ | 0.12            | CRL         | Discharge Conc $\geq$ 50% WQBEL (RP) |

|                           |         |         |       |       |       |      |       |     |                                 |
|---------------------------|---------|---------|-------|-------|-------|------|-------|-----|---------------------------------|
| Chrysene                  | 0.018   | 0.028   | 1.47  | 2.29  | 3.66  | µg/L | 1.47  | CRL | Discharge Conc ≥ 50% WQBEL (RP) |
| Dibenzo(a,h)Anthracene    | 0.00001 | 0.00002 | 0.001 | 0.002 | 0.003 | µg/L | 0.001 | CRL | Discharge Conc ≥ 50% WQBEL (RP) |
| Hexachlorobutadiene       | 0.001   | 0.002   | 0.12  | 0.19  | 0.31  | µg/L | 0.12  | CRL | Discharge Conc ≥ 50% WQBEL (RP) |
| Hexachlorocyclopentadiene | 0.023   | 0.036   | 1.89  | 2.95  | 4.73  | µg/L | 1.89  | CFC | Discharge Conc ≥ 50% WQBEL (RP) |
| Phenanthrene              | 0.023   | 0.036   | 1.89  | 2.95  | 4.73  | µg/L | 1.89  | CFC | Discharge Conc ≥ 50% WQBEL (RP) |

**Other Pollutants without Limits or Monitoring**

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g.,  $\leq$  Target QL).