

Northcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0007854

APS ID 996639

Authorization ID 1279089

Applicant Name	PA American Water Co.	Facility Name	Milton Water System		
Applicant Address	105 Sodom Road	Facility Address	702 S Front Street		
	Milton, PA 17847-9232		Milton, PA 17847-1020		
Applicant Contact	Scott Sharp	Facility Contact	Laura Walter		
Applicant Phone	(570) 538-4438	Facility Phone	(570) 742-4612		
Client ID	87712	Site ID	257187		
SIC Code	4941	Municipality	Milton Borough		
SIC Description	Trans. & Utilities - Water Supply	County	Northumberland		
Date Application Rec	eived July 2, 2019	EPA Waived?	Yes		
Date Application Acc	epted _ July 17, 2019	If No, Reason			

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Nicholas W. Hartranft	
Λ		Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	May 6, 2020
Х		Thomas M. Randis	
Α		Thomas M. Randis / Environmental Program Manager	May 7, 2020

	Design Flow (MGD)	0.1
.44"	Longitude	-76° 51' 56.56"
	Quad Code	1031
n: Water Treatment Plant Wa	astewater	
est Branch Susquehanna River	r	
VWF, MF)	Stream Code	18668
6919807	RMI	10.98
680	Yield (cfs/mi²)	0.122
17.5	Q ₇₋₁₀ Basis	Gage No. 01553500
50	Slope (ft/ft)	N/A
)-D	Chapter 93 Class.	WWF, MF
/A	Existing Use Qualifier	N/A
/A	Exceptions to Criteria	N/A
Impaired	_	
POLYCHLORINATED BIF	PHENYLS (PCBS)	
nt SOURCE UNKNOWN		
Final	Name West Branch	h Susquehanna
Public Water Supply Intake	Sunbury Municipal Water Aut	hority
quehanna River	Flow at Intake (cfs)	2.430
<u>.11</u>	Distance from Outfall (mi)	12.39
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	est Branch Susquehanna River WWF, MF) 9919807 880 17.5 50 0-D A Impaired POLYCHLORINATED BIF SOURCE UNKNOWN Final Public Water Supply Intake	Quad Code The Water Treatment Plant Wastewater Test Branch Susquehanna River WWF, MF) Stream Code RMI S80 Yield (cfs/mi²) 7.5 Qr-10 Basis Slope (ft/ft) Chapter 93 Class. A Existing Use Qualifier Exceptions to Criteria Impaired The POLYCHLORINATED BIPHENYLS (PCBS) SOURCE UNKNOWN Final Public Water Supply Intake Quad Code Stream Code RMI Yield (cfs/mi²) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria Impaired PolyCHLORINATED BIPHENYLS (PCBS) SOURCE UNKNOWN Final Name West Branch Public Water Supply Intake Quad Code Stream Code RMI Yield (cfs/mi²) National Supply Municipal Water Auter Supply Municipal Water

Changes Since Last Permit Issuance: The drainage area was changed slightly from 6681 mi^2 to 6680 mi^2 based on results from USGS Streamstats (Attached). The Q_{7-10} was re-evaluated. Data from a USGS document titled, *Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania*, was used to derive the Q_{7-10} . A representative reference gage located on the West Branch Susquehanna River near Lewisburg (Gage No. 01553500) was listed to have a drainage area of $6,847 \text{ mi}^2$ and a Q_{7-10} of 838 cfs. The drainage area ratio analysis resulted in a Q_{7-10} at Outfall 001 of 817.5 cfs.

Treatment Facility Summary

Treatment Facility Name: Milton District Water Filtration Plant

Wastewater treated from the Milton District Water Filtration Plant consists of filter backwash water, sludge settling supernatant, pump cooling water, and analyzer wastewater. The combined wastewater stream is conveyed to one of two lagoons (North Lagoon or South Lagoon) for solids settling prior to discharge to the West Branch Susquehanna River.

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial	Physical (Industrial Waste)	Sedimentation	No Disinfection	0.1
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.187	N/A	Not Overloaded	Sludge Lagoon	Hauled Off

Changes Since Last Permit Issuance: None

Other Comments: N/A

Compliance History

DMR Data for Outfall 001 (from March 1, 2019 to February 29, 2020)

Parameter	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19
Flow (MGD)												
Average Monthly	0.101	0.082	0.066	0.060	0.062	0.0734	0.059	0.0628	0.069	0.0629	0.0667	0.073
Flow (MGD)												
Daily Maximum	0.143	0.135	0.121	0.129	0.128	0.165	0.093	0.092	0.140	0.103	0.102	0.105
pH (S.U.)												
Instantaneous												
Minimum	7.0	7.0	7.0	7.0	7.2	7.1	7.2	7.1	6.9	7.1	7.0	7.1
pH (S.U.)												
Instantaneous												
Maximum	7.4	7.6	7.4	7.4	7.6	7.5	7.5	7.5	7.3	7.3	7.5	7.6
TRC (mg/L)												
Average Monthly	0.30	0.29	0.40	0.036	0.17	0.14	0.25	0.23	0.15	0.12	0.19	0.31
TRC (mg/L)												
Instantaneous												
Maximum	0.62	0.52	0.78	0.64	0.27	0.35	1.14	1.22	0.52	0.35	0.42	0.84
TSS (mg/L)												
Average Monthly	1.0	< 1.60	3.4	2.00	2.40	1.8	3.2	2.8	2.0	3.6	2.2	1.4
TSS (mg/L)												
Daily Maximum	1.0	< 1.60	3.4	2.00	2.40	1.80	3.2	2.8	2.0	3.6	2.2	1.4
Total Aluminum												
(mg/L)												
Average Monthly	0.185	< 0.100	0.475	0.400	0.410	0.251	0.356	0.364	0.199	0.219	0.328	0.208
Total Aluminum												
(mg/L)												
Daily Maximum	0.185	< 0.100	0.475	0.400	0.410	0.251	0.356	0.364	0.199	0.219	0.328	0.208
Total Iron (mg/L)												
Average Monthly	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.20	< 0.200	< 0.200	< 0.20	< 0.20	< 0.300	< 0.300
Total Iron (mg/L)												
Daily Maximum	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.200	< 0.20	< 0.20	< 0.300	< 0.300
Total Manganese												
(mg/L)	0.0007	0.400	0.0400	0.0054	0.0705	0.0500	0.470	0.005	0.050	0.0000	0.0000	0.007
Average Monthly	0.0367	0.106	0.0439	0.0251	0.0765	0.0588	0.178	0.235	0.053	0.0828	0.0339	0.037
Total Manganese												
(mg/L)	0.0007	0.400	0.0400	0.0054	0.0705	0.0500	0.470	0.005	0.050	0.0000	0.0000	0.007
Daily Maximum	0.0367	0.106	0.0439	0.0251	0.0765	0.0588	0.178	0.235	0.053	0.0828	0.0339	0.037

Compliance History

Summary of DMRs:	Throughout the past 12 months, no effluent violations have been noted.
Summary of Inspections:	The Department last conducted a compliance evaluation inspection of this facility on January 30, 2020. No violations were noted during the inspection. Discharge was observed from the outfall during the inspection.

Other Comments:

Below is a summary of open violations from a report pulled on April 24, 2020 for the client (ID No. 87712). Two violations noted are for a different facility under the NCRO Clean Water Program's jurisdiction.

FACILITY	INSP PROGRAM	PROGRAM SPECIFIC ID	VIOLATION DATE	VIOLATION	INSP REGION
STEELTON WATER FILTRATION PLT	Storage Tanks	22-63836	12/11/2019	Failure to meet containment requirements	SCRO
STEELTON WATER FILTRATION PLT	Storage Tanks	22-63836	12/11/2019	Failure to meet containment requirements	SCRO
PA AMERICAN WATER COMPANY SCRANTON WWTP	WPC NPDES	PA0026492	12/20/2019	NPDES - Violation of Part C permit condition(s)	NERO
TURBOTVILLE WWTP	WPC NPDES	PA0028100	03/23/2020	NPDES - Violation of effluent limits in Part A of permit	NCRO
TURBOTVILLE WWTP	WPC NPDES	PA0028100	03/23/2020	NPDES - Violation of effluent limits in Part A of permit	NCRO
PA AMER WATER POCONO COUNTRY PLACE WWTP	WPC NPDES	PA0060097	12/23/2019	NPDES - Violation of Part C permit condition(s)	NERO

Existing Effluent Limitations

Outfall 001

			Monitoring Requirements					
Parameter	Mass Unit	s (lbs/day) ⁽¹⁾		Concentra	ations (mg/L)	Minimum ⁽²⁾	Required	
raramotor	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/month	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/month	Grab
Total Residual Chlorine	xxx	XXX	XXX	0.5	XXX	2.3	1/week	Grab
Total Suspended Solids	XXX	XXX	XXX	30	60	75	1/month	Composite (3)
Total Aluminum	XXX	XXX	xxx	4.0	8.0	10	1/month	Composite (3)
Total Iron	XXX	XXX	XXX	2.0	4.0	5.0	1/month	Composite (3)
Total Manganese	XXX	XXX	XXX	1.0	2.0	2.5	1/month	Composite (3)

Footnotes

- (1) When sampling to determine compliance with mass effluent limitations, the discharge flow at the time of sampling must be measured and recorded.
- (2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events.
- (3) A composite for batch discharge mode of operation is defined as three equal volume grab samples to be taken as follows. The first is to be taken exactly 10 minutes after the commencement of the discharge. The second sample should be taken when approximately 1/3 of the total volume has been discharged. The third grab is to be taken when approximately 2/3 of the total volume has been discharged. The three grab samples should then be combined as a composite and analyzed.

Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	0.1			
Latitude	41° 0' 34.00"	Longitude	-76° 51' 47.00"			
Wastewater D	Description: Water Treatment Plant Effluent	_				

Technology-Based Limitations

Guidance

The following technology-based limitations are recommended by *Technology-Based Control Requirements for Water Treatment Plant Wastes* (362-2183-003, 10/1/97) for wastewater from treatment of water treatment plant sludges and filter backwash.

Limit (mg/l)	SBC
30	Monthly Avg
60	Daily Max
2.0	Monthly Avg
4.0	Daily Max
4.0	Monthly Avg
8.0	Daily Max
	30 60 2.0 4.0 4.0

Total Managanasa	1.0	Monthly Avg
Total Manganese	2.0	Daily Max
*Ha	6.0	Minimum
рп	9.0	IMAX
Total Residual Chlorine	0.5	Monthly Avg
Total Residual Chiorine	N/A	Daily Max

^{*}Also required by 25 Pa. Code 95.32(1)

Comments: These recommended effluent limitations are all currently established in the permit.

Water Quality-Based Limitations

Total Residual Chlorine (TRC)

Total Residual Chlorine (TRC) limitations were reevaluated using the TRC_CALC spreadsheet (attached). The spreadsheet indicates that the existing TRC TBEL of 0.5 mg/L required by 25 Pa. Code § 92a.48(b)(2) is protective. However, the spreadsheet indicates that an instantaneous maximum (IMAX) limit of 1.1 should be employed. This change is proposed for this permit term. Given sample results from the past 12 months for IMAX TRC, on two occasion the proposed IMAX TRC limit slightly exceeded at 1.14 and 1.22 mg/L respectively.

Toxic Pollutants

Sample results representing maximum concentrations from the current permit term from Pollutant Groups 1 and 2 provided in the application were run through the Toxic Screening Analysis (TSA) Spreadsheet model. The TSA is used to determine if any pollutants were candidates for PENTOXSD modeling by comparing effluent concentrations to the most stringent criterion. Where the TSA spreadsheet recommended modeling, the parameters were entered into PENTOXSD v2.0d. Based on the TSA, selenium, cadmium, copper, and fluoride were recommended for PENTOXSD modeling due to sample analysis being conducted at higher quantitation limits (QL) than the minimum QLs required. For selenium, cadmium, copper, and fluoride, the QL was used as the discharge concentration for modeling purposes.

Following modeling, the PENTOXSD recommended WQBELs are also entered in the Toxics Screening Analysis spreadsheet. Based on the data and PENTOXSD model output, the spreadsheet will either recommend no action, monitoring or effluent limitations.

Modeling input/output data has been attached. The model required no action with no WQBELs being established.

Chesapeake Bay

This discharge will not produce a net increase in TN and TP loadings. Consequently, monitoring requirements and/or cap loads are not necessary.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

		Effluent Limitations							
Parameter	Mass Unit	s (lbs/day)		Concentra	Minimum	Required			
r ai ailletei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	2/month	Measured	
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	1/month	Grab	
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.1	1/week	Grab	
Total Suspended Solids	XXX	XXX	XXX	30.0	60.0	75	1/month	Grab- Composite*	
Total Aluminum	XXX	XXX	XXX	4.0	8.0	10	1/month	Grab- Composite*	
Total Iron	XXX	XXX	XXX	2.0	4.0	5	1/month	Grab- Composite*	
Total Manganese	XXX	XXX	XXX	1.0	2.0	2.5	1/month	Grab- Composite*	

^(*) A composite for batch discharge mode of operation is defined as three equal volume grab samples to be taken as follows. The first is to be taken exactly 10 minutes after the commencement of the discharge. The second sample should be taken when approximately 1/3 of the total volume has been discharged. The three grab samples should then be combined as a composite and analyzed.

This language will be included in Part A of the draft permit as a footnote.