

Application Type
Facility Type
Major / Minor

Renewal
Industrial
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No. PA0008150
APS ID 706249
Authorization ID 1477613

Applicant and Facility Information

Applicant Name	<u>Mount Holly Springs Specialty Paper Inc.</u>	Facility Name	<u>Mount Holly Springs Specialty Paper, Inc.</u>
Applicant Address	<u>1 Mountain Street</u>	Facility Address	<u>1 Mountain Street</u>
	<u>Mount Holly Springs, PA 17065-1406</u>		<u>Mount Holly Springs, PA 17065-1406</u>
Applicant Contact	<u>Sean Beates</u>	Facility Contact	<u>Sean Beates</u>
Applicant Phone	<u>(717) 486-8500</u>	Facility Phone	<u>(717) 486-8500</u>
Client ID	<u>276918</u>	Site ID	<u>248339</u>
SIC Code	<u>2621</u>	Municipality	<u>Mount Holly Springs Borough</u>
SIC Description	<u>Manufacturing - Paper Mills</u>	County	<u>Cumberland</u>
Date Application Received	<u>March 20, 2024</u>	EPA Waived?	<u>Yes</u>
Date Application Accepted	<u>April 3, 2024</u>	If No, Reason	<u> </u>
Purpose of Application	<u>NPDES Renewal.</u>		

Summary of Review

Mount Holly Springs Specialty Paper Inc. has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on September 25, 2019 and became effective on October 1, 2019. The permit expired on September 30, 2024.

Based on the review, it is recommended that the permit be drafted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Jinsu Kim Jinsu Kim / Environmental Engineering Specialist	January 13, 2025
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	1.5
Latitude	40° 6' 52.00"	Longitude	-77° 11' 6.00"
Quad Name	Mount Holly Springs	Quad Code	1828
Wastewater Description: IW Process Effluent with ELG			
Receiving Waters	Mountain Creek	Stream Code	63167
NHD Com ID	56408095	RMI	2.14
Drainage Area	45.3 sq.mi.	Yield (cfs/mi ²)	
Q ₇₋₁₀ Flow (cfs)	67.642	Q ₇₋₁₀ Basis	See comments below
Elevation (ft)		Slope (ft/ft)	
Watershed No.	7-E	Chapter 93 Class.	See comments below
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment			
Source(s) of Impairment			
TMDL Status		Name	
Nearest Downstream Public Water Supply Intake		United Water	
PWS Waters	Yellow Breeches Creek	Flow at Intake (cfs)	80.5
PWS RMI	7.42	Distance from Outfall (mi)	25

Drainage Area

The discharge is to Mountain Creek at RMI 2.14. A drainage area upstream of the point of discharge is estimated to be 45.3 sq.mi. using USGS StreamStats available at <https://streamstats.usgs.gov/ss/>.

Streamflow

USGS gauge 01571500 on Yellow Breeches Creek 3.1 miles above mouth also measures the hatchery flow and springs at Huntsdale resulting in a greater yield rate in the basin than actually exists. The monthly hatchery discharge is 12.384 MGD during September when a monthly analysis of streamflows for Yellow Breeches Creek indicates Q₇₋₁₀ flow is most likely to occur and the gage flow should be adjusted by subtracting the hatchery discharge.

$$\begin{aligned}
 \text{Gage flow} &= 86.8 - 12.384 \times 1.547 = 67.642 \text{ cfs} \\
 \text{Q7-10 runoff rate} &= 67.642 / 213 = 0.317 \text{ cfs/sq.mi.} \\
 \text{Q30-10:Q7-10} &= 94/86.8 = 1.083:1 \\
 \text{Q1-10:Q7-10} &= 81.6/86.8 = .94:1 \\
 \text{Q7-10} &= 45.3 \times 0.313 = 14.4 \text{ cfs}
 \end{aligned}$$

Mountain Creek

Under 25 Pa Code §93.9o, Mountain Creek is designated as High Quality-Cold Water fishes from source to Toland, Cold Water Fishes from Toland to Mt. Holly Springs and Trout Stocking Fishes from Mt. Holly Springs to Mouth. The discharge is located near the point where the designation changes from Cold Water Fishes to Trout Stocking Fishes (overlapping point). Both designations have therefore been considered in developing permit requirements for this facility. Mountain Creek as well as Yellow Breeches Creek (main stem) are considered as both trout stocked and natural reproduction streams; however, are not classified as Class A streams. No Class A Wild Trout Fishery is therefore impacted by this discharge. The discharge is located in a stream segment listed as attaining uses.

Water Quality Network (WQN) Station no. 242 located on the Mountain Creek at Pine Grove Furnace has been inactive since 1987; therefore the data from this station is most likely obsolete. Since there is no active WQN Station available in the vicinity of the discharge, default values of pH (7.0 SU for freestone (WWF & TSF)), hardness (100 mg/L), and temperature (20°C for winter & 25°C for summer) have been used in water quality analysis.

Water Supply Intake

The nearest downstream public water supply intake is United Water Company located on the Yellow Breeches Creek approximately 25 miles from the discharge. Based on the dilution and nature of discharge, the discharge is not expected to impact the water supply intake.

Treatment Facility Summary				
Treatment Facility Name: Mount Holly Springs Specialty Paper Inc.				
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Industrial	Secondary	Activated Sludge/DAF	None	1.5
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
2.304		Not Overloaded	Dewatering	Landfill

Mount Holly Springs Specialty Paper Inc. manufactures unbleached paper products for dielectric industry (SIC Code 2621) by using deionized water and clean raw materials through two (2) fourdrinier type paper machines. These products are fine papers (i.e., ultra clean electronic grade tissue paper) particularly used in electrical applications such as capacitors, transformers, coils, batteries, etc., according to the permit renewal application. The application also states that about 1.0 MGD of groundwater from one deep well as a water source for manufacturing. Water from Mountain Creek is also used for the fire tower water supply. The permittee operates an on-site wastewater treatment plant (IWTP) to treat process wastewater resulting from the manufacturing operations. The treatment plant includes an aeration lagoon, dissolved air floatation (DAF) unit, polishing lagoon, and outfall structure to Mountain Creek. From the DAF unit, treated wastewater is sent to the "In" Tail Race then to the polishing lagoon. From this lagoon, flow is sent to the "Out" Tail Race prior to stream discharge. The treatment plant is designed to accommodate 2.3 MGD. The permittee also utilizes an acid/caustic waste neutralization system. Acid (sulfuric) and caustic (sodium hydroxide) chemicals are used to restore a deionizing mix bed that produces deionized water for paper manufacturing processes. These chemicals once used are separately sent to lined ponds located at the site. From these ponds, wastewater is drained to a valve system where the automated valves mix the acid and caustic to a target pH reading of 7.0 scale. The neutralized chemicals are then sent to the head of the IWTP for further treatment.

Any waste generated during the treatment process is sent to a dewatering filter press unit prior to being landfilled. Sulfuric acid and sodium hydroxide are used for regeneration of deionizing mix beds, Polymin P is a polymer used in paper machine to filter and save fines, Coagulant 2031 is coagulant for the DAF unit, Perlite Filter Aid 1800 is used as filtration aid for the filter press, and Anionic Polyacrylamide 1668 is used as a polymer for the DAF unit.

Stormwater drained from the site is also discharged into Mountain Creek via Outfall 001. Mt. Holly Springs Water Authority provides water supply for sanitary sources; sanitary wastewater is then then to a local municipal wastewater treatment plant.

Compliance History	
Summary of DMRs:	A summary of 12-month DMR is presented on the DMR.
Summary of Inspections:	12/16/2022: DEP conducted a routine inspection and noted that permit violations were identified at the time of inspection.
Other Comments:	Since the last permit reissuance, there are a number of permit violations associated with this permittee or facility. These violations are listed on page 6 of this fact sheet. DEP's database shows that there are two (2) open violations associated with this permittee or facility. A draft permit cover letter will specify that the permit may not be finalized until all pending violations are resolved and closed out.

Effluent Data

DMR Data for Outfall 001 (from October 1, 2023 to September 30, 2024)

Parameter	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23
Flow (MGD) Average Monthly	0.990	1.035		1.053	1.102	1.234	1.055	1.113	0.969	0.865	0.895	0.980
Flow (MGD) Daily Maximum	1.090	1.122		1.163	1.204	1.475	1.188	1.434	1.434	1.055	1.011	1.173
pH (S.U.) Instantaneous Minimum	6.6	6.7		7.0	6.8	6.7	6.7	6.7	6.7	6.6	6.7	6.7
pH (S.U.) Instantaneous Maximum	7.5	7.6		7.7	7.7	7.6	7.4	7.6	7.7	7.6	7.5	7.6
DO (mg/L) Daily Minimum	9.12	8.79		8.82	8.98	9.21	9.14	9.1	8.18	9.21	9.02	8.29
Temperature (Day 1 thru 15) (°F) Daily Maximum				69.8	65.6						56.0	57.2
Temperature (Day 16 thru End of Month) (°F) Daily Maximum	64.9			62.3	65.5	64.4					56.5	62.2
Temperature (°F) Daily Maximum		67.1				63.3	61.3	60.9	57.4	56.7		
BOD5 (lbs/day) Average Monthly	45.77	40.87		47.08	42.73	58.17	62.5	57.04	54.27	52.73	49.83	49.17
BOD5 (lbs/day) Daily Maximum	52.47	41.60		52.74	51.51	68.53	65.06	65.19	62.96	57.18	53.73	52.47
BOD5 (mg/L) Average Monthly	5.15	4.60		5.25	4.35	5.48	6.70	6.0	6.0	6.9	6.25	5.95
TSS (lbs/day) Average Monthly	44.58	53.36		45.35	49.02	52.69	46.63	47.53	48.27	50.12	43.94	41.78
TSS (lbs/day) Daily Maximum	45.43	55.47		48.17	49.53	58.07	47.14	53.43	59.03	58.86	49.59	44.98
TSS (mg/L) Average Monthly	< 5.0	6.0		< 5.0	< 5.0	< 5.0	< 5.0	5.0	5.33	6.50	5.50	< 5.0
Nitrate-Nitrite (mg/L) Daily Maximum	2.5			2.3			2.3			2.4		
Total Nitrogen (mg/L) Daily Maximum	3.51			3.27			3.71			3.47		

NPDES Permit Fact Sheet
Mount Holly Springs Specialty Paper, Inc.

NPDES Permit No. PA0008150

Parameter	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23
TKN (mg/L) Daily Maximum	< 1.0			< 1.0			1.4			< 1.0		
Total Phosphorus (mg/L) Daily Maximum	< 0.10			< 0.10			< 0.10			< 0.10		
Total Copper (lbs/day) Average Monthly	< 0.0632	0.102		0.089	0.076	< 0.086	0.121	0.129	0.103	0.108	0.096	0.097
Total Copper (lbs/day) Daily Maximum	0.08	0.11		0.10	0.08	0.13	0.13	0.13	0.12	0.13	0.12	0.12
Total Copper (mg/L) Average Monthly	< 0.0071	0.012		0.010	0.008	< 0.0081	0.013	0.014	0.011	0.014	0.012	0.012
Total Copper (mg/L) Daily Maximum	0.009	0.012		0.010	0.008	< 0.011	0.014	0.015	0.012	0.015	0.015	0.015

Compliance History

Permit Violations Since Last Reissuance

Date	Description	Parameter	Results	Limits	Units	SBC
12/1/2019	Violation of permit condition	Copper, Total	0.019	0.018	mg/L	Average Monthly
10/1/2020	Violation of permit condition	Temperature (deg F)	64.6	63.4	°F	Daily Maximum
9/1/2021	Violation of permit condition	Temperature (deg F)	68.7	67.8	°F	Daily Maximum
10/1/2021	Violation of permit condition	Temperature (deg F)	64.1	63.4	°F	Daily Maximum
11/1/2021	Late DMR Submission					
8/1/2022	Violation of permit condition	Copper, Total	0.044	0.036	mg/L	Daily Maximum
10/1/2022	Violation of permit condition	Temperature (deg F)	63.9	63.4	°F	Daily Maximum
2/1/2024	Late DMR Submission					
10/1/2024	Violation of permit condition	Temperature (deg F)	61.7	59.4	°F	Daily Maximum
10/1/2024	Violation of permit condition	Temperature (deg F)	65.1	63.4	°F	Daily Maximum

Existing Effluent Limits and Monitoring Requirements

The table below summarizes effluent limits and monitoring requirements specified in the existing permit.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
Temperature (deg F) (°F) Jan 1 - 31	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Feb 1 - 28	XXX	XXX	XXX	XXX	Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Mar 1 - 31	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Apr 1 - 30	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) May 1 - 15	XXX	XXX	XXX	XXX	87.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) May 16 - 31	XXX	XXX	XXX	XXX	91.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Jun 1 - 15	XXX	XXX	XXX	XXX	82.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Jun 16 - 30	XXX	XXX	XXX	XXX	86.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Jul 1 - 31	XXX	XXX	XXX	XXX	82.5 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Aug 1 - 31	XXX	XXX	XXX	XXX	79.7 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Sep 1 - 15	XXX	XXX	XXX	XXX	73.8 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Sep 16 - 30	XXX	XXX	XXX	XXX	67.8 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Oct 1 - 15	XXX	XXX	XXX	XXX	63.4 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Oct 16 - 31	XXX	XXX	XXX	XXX	59.4 Daily Max	XXX	1/day	I-S

NPDES Permit Fact Sheet
Mount Holly Springs Specialty Paper, Inc.

NPDES Permit No. PA0008150

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum		
Temperature (deg F) (⁰ F) Nov 1 - 15	XXX	XXX	XXX	XXX	56.8 Daily Max	XXX	1/day	I-S
Temperature (deg F) (⁰ F) Nov 16 - 30	XXX	XXX	XXX	XXX	61.7 Daily Max	XXX	1/day	I-S
Temperature (deg F) (⁰ F) Dec 1 - 31	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Biochemical Oxygen Demand (BOD5)	214	390	XXX	Report	XXX	42	1/week	24-Hr Composite
Total Suspended Solids	171	351	XXX	Report	XXX	34	1/week	24-Hr Composite
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation
Total Kjeldahl Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Copper, Total	0.225	0.45	XXX	0.018	0.036 Daily Max	0.045	1/week	24-Hr Composite

Development of Effluent Limitations

Outfall No. 001
Latitude 40° 6' 52.00"
Wastewater Description: IW Process Effluent with ELG

Design Flow (MGD) 1.5
Longitude -77° 11' 6.00"

Effluent Flow

The application reported 2.3 MGD as a design flow which includes stormwater run-off volume. The application then reported 0.954 MGD and 1.753 MGD for the average and maximum flow, respectively, during production. The previous permit renewal used 1.5 MGD to develop permit requirements. Effluent flow data reported on the DMRs over the past 58 months (January 2019 thru October 2024) have been analyzed as follows:

	30-Day Average (MGD)	Daily Maximum (MGD)
Average	1.04	1.36
Maximum	1.49	2.38
Median	0.99	1.17
90 th Percentile	1.31	1.91

Based on this, it is still reasonable to develop permit requirements using 1.5 MGD.

Technology-Based Limitations

Given the facility's SIC code (i.e., 2621), its production type and the material used in production, the facility is subject to the federal effluent limitations and guidelines (ELGs) found in 40 CFR §430 Subpart K – Fine/Lightweight Papers from Purchased Pulp Subcategory, particularly “electrical grade papers subdivision”. 40 CFR §430.112 lists BPT limits for TSS, BOD5, and pH and 40 CFR §430.114 lists BAT limits for toxic pollutants including pentachlorophenol and trichlorophenol in which these BAT limits are only applicable to those facilities using chlorophenol-containing biocides. The permittee previously confirmed that the facility is not using such biocides at this time. The published BAT limits are therefore not applicable.

For pH, because the state effluent standards found in 25 Pa Code §95.2(1) are more stringent than those listed in §430, the state effluent standards have been applied to the permit in accordance with 25 Pa Code §92a.12(b). As shown below, BOD5 and TSS loadings have been calculated based on an average daily production rate during the highest annual production year within the past five years (i.e., 4,900,881 lbs/yr. / (21.92 production days/month*12 months/yr.) = 18,632 lbs per production day):

Parameter	BAT ELG		NPDES Limits		Existing NPDES Limits	
	Kg/kkg (or pounds per 1,000 lbs.) of product		Daily Maximum	30-Day Average	Daily Maximum	30-Day Average
	Daily Maximum	30-Day Average				
BOD5	38.0	20.9	708	389	390	214
TSS	34.2	16.7	637	311	351	171

As shown above, the proposed NPDES limits for both CBOD5 and TSS are less stringent than those specified in the current permit renewal as the average production rate during the highest production year has increased over the years. While the increased production rate resulted in less stringent limits in which such relaxation may be warranted under 40 CFR §§122.44(I)(i)(A) or (B)(1), the discharge is to a High-Quality stream. Under 25 Pa Code 93.4a(c), the water quality of High-Quality Waters must be maintained and protected to ensure anti-degradation of High-Quality waters. As a result, existing limits will be included in the permit as opposed to the newly calculated limits unless water quality-based effluent limits or alternate effluent limits developed using the best professional judgement are more stringent and necessary to ensure the protection of water quality standards.

Water Quality-Based Limitations

CBOD5 & Dissolved Oxygen

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the

model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. First, the above-referenced BOD5 limits have been converted into “assumed” CBOD5 concentration-based effluent limits by using 1.5 MGD and a typical ratio of 1.2 (BOD5) to 1.0 (CBOD5) to compare water quality protection values recommended by instream water quality models. The results are shown below:

	BOD5 Limits (lbs/day)	BOD5 Limits (mg/L)	Converted CBOD5 Limits (mg/L)
30-Day Average	389	31.09	25.9
Daily Maximum	708	56.6	47.2

A multiple discharge analysis is necessary as there are a number of facilities located in the close vicinity of the discharge that have similar effluent characteristics. Accordingly, an upstream discharger, Ahlstrom (PA0008486; 0.569 MGD) and downstream dischargers, Mt. Holly Springs STP (PA0023183; 0.6 MGD), Land O’ Lakes (PA0044911; 0.81 MGD) are included in the analysis. All of these facilities are located within 3 RMI. It is noteworthy that ammonia-nitrogen is generally not a pollutant of concern for paper mills like Mount Holly Springs Specialty Paper Inc. in which the facility manufactures paper products from purchased pulp. No ammonia-based chemicals are used at the facility. The application reported an influent ammonia-nitrogen concentration of <2.5 mg/L and effluent ammonia-nitrogen concentration of 0.57 mg/L. This effluent concentration value is lower than the 30-day average criteria listed in DEP’s technical guidance no. 391-200-013 (i.e., 1.96 mg/L based on assumed pH of 7 and temperature of 20°C). The need of water quality-based effluent limits for ammonia-nitrogen has therefore been ruled out. This approach has been consistently applied for the past permit renewals. The model output indicates that existing limits for all above-referenced facilities are still protective of water quality.

Temperature

The facility is subject to 25 Pa Code §96.6 as thermal discharge is expected during production. The current permit renewal contains monthly effluent limits for temperature which were wasteload allocations (WLAs) derived from DEP’s Thermal Discharge Limit (TDL) worksheet. For this permit renewal, DEP reutilized the TDL worksheet and the results are as follows:

Months	Existing Limits	Recommended WLAs under each aquatic life use(s)		Most Stringent
		Cold Water Fishes	Trout Stocking Fishes	
Jan 1-31	Report	110.0	110.0	Report
Feb 1-29	Report	103.2	110.0	103.2
Mar 1-31	Report	110.0	110.0	Report
Apr 1-15	Report	110.0	110.0	Report
Apr 16-30	Report	110.0	110.0	Report
May 1-15	Report	87.6	110.0	87.6
May 16-31	Report	91.6	110.0	91.6
Jun 1-15	Report	82.6	110.0	82.6
Jun 16-30	Report	86.6	110.0	86.6
Jul 1-31	Report	82.5	84.5	82.5
Aug 1-15	Report	79.7	110.0	79.7
Aug 16-31	Report	79.7	110.0	79.7
Sep 1-15	73.8	73.8	110.0	73.8
Sep 16-30	67.8	67.8	110.0	67.8
Oct 1-15	63.4	63.4	110.0	63.4
Oct 16-31	59.4	59.4	110.0	59.4
Nov 1-15	56.8	56.9	110.0	56.8
Nov 16-30	61.7	61.9	110.0	61.7
Dec 1-31	Report	110.0	110.0	Report

Because the discharge is to a stream segment that has a stream designation overlapping between cold water fishes and trout stocking fishes, it is reasonable to review WLAs developed under the water quality criteria associated with both cold water fishes and trout stocking fishes critical uses. The most stringent of recommended WLAs and the existing limits will be written in the permit in accordance with 40 CFR 122.44(d). DEP’s TDL worksheet confirmed that effluent limits from May through November are required for protection of cold water fishes critical uses. Consequently, effluent limits listed in the table above will be written in the draft permit.

Toxics Pollutants

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP’s Toxics Management Spreadsheet (TMS) to develop appropriate permit requirements for toxic pollutants of concern. TMS output indicates that

effluent limits for Total Copper are still required; and existing limits are still adequate for water quality protection. Therefore, no change is recommended. TMS output also shows there is no new toxic pollutant of concern.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

A minimum of 5.0 mg/L for DO is an existing effluent limit and is a current state water quality criterion found in 25 Pa. Code § 93.7(a). This effluent limit will remain unchanged for the upcoming permit renewal to ensure the protection of water quality standards. This requirement has also been assigned to other facilities throughout the state.

BOD & TSS Instantaneous Maximum Effluent Limitations

The permit contains instantaneous maximum effluent limits (IMAX) for BOD5 and TSS. These limits were developed using a multiplier of 2.5 based on the “assumed” average monthly concentrations converted from the mass load effluent limits. This is consistent with DEP’s technical guidance no. 362-0400-001. These IMAX effluent limits are primarily designed to serve as basic reference points for comparing effluent grab samples during compliance inspections. Consequently, existing IMAX limits will remain unchanged for

Additional Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR §122.44(i)(1)(ii).

Chesapeake Bay TMDL

Mount Holly Springs Specialty Paper Inc. is not currently considered a significant discharger that would exceed 75 lbs/day of TN or 25 lbs/day of TP in the effluent. For any non-significant industrial waste facilities, according to DEP’s current Supplement to Chesapeake Bay TMDL Phase 2 WIP, monitoring of nutrients would be required when such facility has the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing. This document recommends monthly sampling for any lumber and paper processing facilities. However, given historical data, it appears the facility does not discharge nutrients at levels significant enough to warrant the monthly monitoring requirement. The discharge still occasionally contains detectable levels of nutrients. The existing quarterly monitoring of nutrients will therefore remain in the permit for the next permit term.

Stormwater Requirements

As mentioned before, the facility utilizes an existing outfall for stormwater discharges in which stormwater is introduced at the “In” Trail race and commingled with treated industrial wastewater prior to discharges into the existing polishing lagoon. While the facility can be subject to stormwater requirements in accordance with 40 CFR §122.26(b)(14)(ix), the application indicates that there is no exposure of industrial materials and activities to precipitation. Based on the review, DEP determined that the facility is eligible for an exemption from stormwater permit requirements in accordance with 40 CFR §122.26(g). Consequently, in lieu of standard stormwater conditions in Part C of the permit, it is recommended that the following condition be included in Part C of the permit:

“The permittee has certified that there will be no exposure of industrial activities and materials to stormwater during this permit term. This site condition must be maintained throughout this permit term to remain eligible for an exemption from permit requirements associated with stormwater discharges. If the site condition changes during this permit term, the permittee must notify DEP. For any subsequent permit renewal application, the permittee must complete and submit the No Exposure Certification Form (3850-PM-BCW0083e) available at www.dep.pa.gov along with the permit renewal application”.

Chemical Additives

The application lists a number of chemicals used for wastewater treatment but does not report any chemical additives used for cleaning, disinfection or maintenance that have been introduced to any waste stream. No chemical additives have been therefore reviewed for this permit renewal.

Antidegradation Requirements

All effluent limitations and monitoring requirements have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected.

Anti-Backsliding Requirements

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as permit requirements specified in the existing permit renewal in accordance with 40 CFR §122.44(l)(1).

Proposed Effluent Limitations and Monitoring Requirements

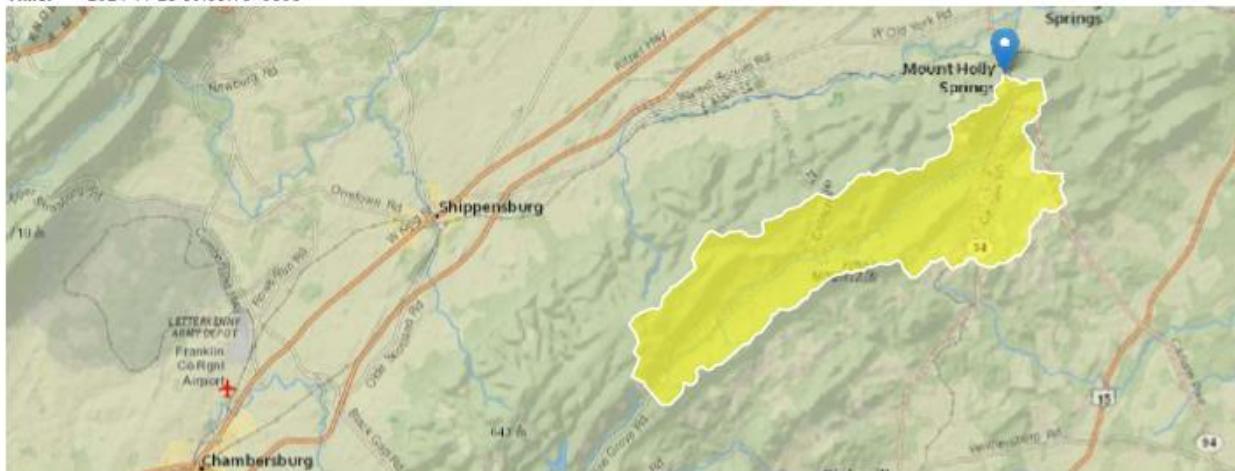
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
Temperature (deg F) (°F) Jan 1 - 31	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Feb 1 - 28	XXX	XXX	XXX	XXX	103.2 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Mar 1 - 31	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Apr 1 - 30	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) May 1 - 15	XXX	XXX	XXX	XXX	87.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) May 16 - 31	XXX	XXX	XXX	XXX	91.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Jun 1 - 15	XXX	XXX	XXX	XXX	82.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Jun 16 - 30	XXX	XXX	XXX	XXX	86.6 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Jul 1 - 31	XXX	XXX	XXX	XXX	82.5 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Aug 1 - 31	XXX	XXX	XXX	XXX	79.7 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Sep 1 - 15	XXX	XXX	XXX	XXX	73.8 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Sep 16 - 30	XXX	XXX	XXX	XXX	67.8 Daily Max	XXX	1/day	I-S

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum		
Temperature (deg F) (°F) Oct 1 - 15	XXX	XXX	XXX	XXX	63.4 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Oct 16 - 31	XXX	XXX	XXX	XXX	59.4 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Nov 1 - 15	XXX	XXX	XXX	XXX	56.8 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Nov 16 - 30	XXX	XXX	XXX	XXX	61.7 Daily Max	XXX	1/day	I-S
Temperature (deg F) (°F) Dec 1 - 31	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/day	I-S
Biochemical Oxygen Demand (BOD5)	214	390	XXX	Report	XXX	42	1/week	24-Hr Composite
Total Suspended Solids	171	351	XXX	Report	XXX	34	1/week	24-Hr Composite
Nitrate-Nitrite as N	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation
Total Kjeldahl Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Copper, Total	0.225	0.45	XXX	0.018	0.036 Daily Max	0.045	1/week	24-Hr Composite

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input type="checkbox"/>	Toxics Management Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	TRC Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input type="checkbox"/>	SOP: [REDACTED]
<input type="checkbox"/>	Other: [REDACTED]


StreamStats Report

Region ID: PA

Workspace ID: PA20241120135950668000

Clicked Point (Latitude, Longitude): 40.11394, -77.18722

Time: 2024-11-20 09:00:15 -0500

[Collapse All](#)

» Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	13.28	percent
DRNAREA	Area that drains to a point on a stream	45.2	square miles
PRECIP	Mean Annual Precipitation	41	inches
ROCKDEP	Depth to rock	5	feet
STRDEN	Stream Density -- total length of streams divided by drainage area	1.19	miles per square mile

» Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	45.2	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	41	inches	35	50.4
STRDEN	Stream Density	1.19	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	5	feet	3.32	5.65
CARBON	Percent Carbonate	13.28	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PIL: Lower 90% Prediction Interval, PIU: Upper 90% Prediction Interval, ASEp: Average Standard Error of Prediction, SE: Standard Error, PC: Percent Correct, RMSE: Root Mean Squared Error, PseudoR²: Pseudo R Squared (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	11.3	ft ³ /s	38	38
30 Day 2 Year Low Flow	13.7	ft ³ /s	33	33

Statistic	Value	Unit	SE	ASEp
7 Day 10 Year Low Flow	7	ft ³ /s	51	51
30 Day 10 Year Low Flow	8.32	ft ³ /s	46	46
90 Day 10 Year Low Flow	11.2	ft ³ /s	36	36

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.24.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
07E		63167 MOUNTAIN CREEK	3.180	585.00	44.40	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp	pH	Stream Temp	pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.313	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data

Name	Permit Number	Existing Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	Disc Temp	Disc pH
		(mgd)	(mgd)	(mgd)			
Ahlstrom	PA0008486	0.5690	0.5690	0.5690	0.000	26.00	7.30
Parameter Data							
Parameter Name		Disc Conc	Trib Conc	Stream Conc	Fate Coef		
		(mg/L)	(mg/L)	(mg/L)	(1/days)		
CBOD5		18.00	2.00	0.00	1.50		
Dissolved Oxygen		5.00	8.24	0.00	0.00		
NH3-N		25.00	0.00	0.00	0.70		

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
07E		63167 MOUNTAIN CREEK	2.140	547.00	45.60	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp	pH	Stream Temp	pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.313	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data

Name	Permit Number	Existing Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	Disc Temp	Disc pH
		(mgd)	(mgd)	(mgd)			
Specialty Paper	PA0008150	1.5000	1.5000	1.5000	0.000	23.00	7.00
Parameter Data							
Parameter Name		Disc Conc	Trib Conc	Stream Conc	Fate Coef		
		(mg/L)	(mg/L)	(mg/L)	(1/days)		
CBOD5		23.90	2.00	0.00	1.50		
Dissolved Oxygen		5.00	8.24	0.00	0.00		
NH3-N		25.00	0.00	0.00	0.70		

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
07E		63167 MOUNTAIN CREEK	1.780	540.00	46.00	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp	pH	Stream Temp	pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.313	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data

Name	Permit Number	Existing Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	Disc Temp	Disc pH
		(mgd)	(mgd)	(mgd)			
Mt. Holly	PA0023183	0.7000	0.7000	0.7000	0.000	20.00	7.00
Parameter Data							
Parameter Name		Disc Conc	Trib Conc	Stream Conc	Fate Coef		
		(mg/L)	(mg/L)	(mg/L)	(1/days)		
CBOD5		20.00	2.00	0.00	1.50		
Dissolved Oxygen		5.00	8.24	0.00	0.00		
NH3-N		2.50	0.00	0.00	0.70		

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
07E		63167 MOUNTAIN CREEK	0.750	514.30	46.20	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp	pH	Stream Temp	pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.313	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data

Name	Permit Number	Existing Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	Disc Temp	Disc pH
		(mgd)	(mgd)	(mgd)			
Land O'Lakes	PA00449110	0.9500	0.9500	0.9500	0.000	20.00	7.00
Parameter Data							
Parameter Name		Disc Conc	Trib Conc	Stream Conc	Fate Coef		
		(mg/L)	(mg/L)	(mg/L)	(1/days)		
CBOD5		10.00	2.00	0.00	1.50		
Dissolved Oxygen		5.00	8.24	0.00	0.00		
NH3-N		1.50	0.00	0.00	0.70		

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
07E		63167 MOUNTAIN CREEK	0.000	490.50	47.60	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp	pH	Stream Temp	pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.313	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data

Name	Permit Number	Existing Disc Flow	Permitted Disc Flow	Design Disc Flow	Reserve Factor	Disc Temp	Disc pH
		(mgd)	(mgd)	(mgd)			
		0.0000	0.0000	0.0000	0.000	0.00	7.00
Parameter Data							
Parameter Name		Disc Conc	Trib Conc	Stream Conc	Fate Coef		
		(mg/L)	(mg/L)	(mg/L)	(1/days)		
CBOD5		25.00	2.00	0.00	1.50		
Dissolved Oxygen		3.00	8.24	0.00	0.00		
NH3-N		25.00	0.00	0.00	0.70		

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>		
07E	63167	MOUNTAIN CREEK		
<u>RMI</u> 3.180	<u>Total Discharge Flow (mgd)</u> 0.569	<u>Analysis Temperature (°C)</u> 20.357	<u>Analysis pH</u> 7.013	
<u>Reach Width (ft)</u> 45.480	<u>Reach Depth (ft)</u> 0.768	<u>Reach WDRatio</u> 59.256	<u>Reach Velocity (fps)</u> 0.423	
<u>Reach CBOD5 (mg/L)</u> 2.95	<u>Reach Kc (1/days)</u> 0.506	<u>Reach NH3-N (mg/L)</u> 0.95	<u>Reach Kn (1/days)</u> 0.720	
<u>Reach DO (mg/L)</u> 8.050	<u>Reach Kr (1/days)</u> 20.162	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5	
<u>Reach Travel Time (days)</u> 0.150	<u>Subreach Results</u>			
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.015	2.93	0.94	8.19
	0.030	2.91	0.93	8.19
	0.045	2.89	0.92	8.19
	0.060	2.86	0.91	8.19
	0.075	2.84	0.90	8.19
	0.090	2.82	0.89	8.19
	0.105	2.80	0.88	8.19
	0.120	2.78	0.87	8.19
	0.135	2.75	0.86	8.19
	0.150	2.73	0.85	8.19
<u>RMI</u> 2.140	<u>Total Discharge Flow (mgd)</u> 2.069	<u>Analysis Temperature (°C)</u> 20.701	<u>Analysis pH</u> 7.011	
<u>Reach Width (ft)</u> 51.123	<u>Reach Depth (ft)</u> 0.779	<u>Reach WDRatio</u> 65.614	<u>Reach Velocity (fps)</u> 0.439	
<u>Reach CBOD5 (mg/L)</u> 5.53	<u>Reach Kc (1/days)</u> 1.045	<u>Reach NH3-N (mg/L)</u> 1.92	<u>Reach Kn (1/days)</u> 0.739	
<u>Reach DO (mg/L)</u> 7.766	<u>Reach Kr (1/days)</u> 11.209	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5	
<u>Reach Travel Time (days)</u> 0.050	<u>Subreach Results</u>			
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.005	5.50	1.91	7.76
	0.010	5.47	1.91	7.76
	0.015	5.44	1.90	7.75
	0.020	5.41	1.89	7.75
	0.025	5.38	1.89	7.75
	0.030	5.35	1.88	7.74
	0.035	5.32	1.87	7.74
	0.040	5.29	1.86	7.74
	0.045	5.27	1.86	7.74
	0.050	5.24	1.85	7.74

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>		
07E	63167	MOUNTAIN CREEK		
<u>RMI</u> 1.780	<u>Total Discharge Flow (mgd)</u> 2.769	<u>Analysis Temperature (°C)</u> 20.655	<u>Analysis pH</u> 7.010	
<u>Reach Width (ft)</u> 51.311	<u>Reach Depth (ft)</u> 0.785	<u>Reach WDRatio</u> 65.398	<u>Reach Velocity (fps)</u> 0.464	
<u>Reach CBOD5 (mg/L)</u> 6.07	<u>Reach Kc (1/days)</u> 1.088	<u>Reach NH3-N (mg/L)</u> 1.88	<u>Reach Kn (1/days)</u> 0.736	
<u>Reach DO (mg/L)</u> 7.582	<u>Reach Kr (1/days)</u> 15.199	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5	
<u>Reach Travel Time (days)</u> 0.136	<u>Subreach Results</u>			
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.014	5.98	1.86	7.65
	0.027	5.89	1.84	7.71
	0.041	5.80	1.82	7.77
	0.054	5.71	1.80	7.81
	0.068	5.63	1.78	7.85
	0.081	5.54	1.77	7.89
	0.095	5.46	1.75	7.92
	0.109	5.38	1.73	7.94
	0.122	5.29	1.71	7.97
	0.136	5.21	1.70	7.99
<u>RMI</u> 0.750	<u>Total Discharge Flow (mgd)</u> 3.719	<u>Analysis Temperature (°C)</u> 20.606	<u>Analysis pH</u> 7.010	
<u>Reach Width (ft)</u> 51.554	<u>Reach Depth (ft)</u> 0.793	<u>Reach WDRatio</u> 64.992	<u>Reach Velocity (fps)</u> 0.494	
<u>Reach CBOD5 (mg/L)</u> 5.55	<u>Reach Kc (1/days)</u> 1.093	<u>Reach NH3-N (mg/L)</u> 1.68	<u>Reach Kn (1/days)</u> 0.733	
<u>Reach DO (mg/L)</u> 7.775	<u>Reach Kr (1/days)</u> 20.566	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5	
<u>Reach Travel Time (days)</u> 0.093	<u>Subreach Results</u>			
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.009	5.50	1.67	7.87
	0.019	5.44	1.66	7.95
	0.028	5.38	1.64	8.02
	0.037	5.33	1.63	8.08
	0.046	5.27	1.62	8.13
	0.056	5.22	1.61	8.15
	0.065	5.16	1.60	8.15
	0.074	5.11	1.59	8.15
	0.083	5.06	1.58	8.15
	0.093	5.00	1.57	8.15

Discharge Information

Instructions **Discharge** Stream

Facility: Mt. Holly Springs Specialty Paper NPDES Permit No.: PA0008150 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Industrial Waste

Discharge Characteristics								
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)		
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
1.5	123	7						

	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod
Group 1	Total Dissolved Solids (PWS)	mg/L	236								
	Chloride (PWS)	mg/L	6.9								
	Bromide	mg/L	< 1								
	Sulfate (PWS)	mg/L	103								
	Fluoride (PWS)	mg/L	< 0.2								
Group 2	Total Aluminum	µg/L	140								
	Total Antimony	µg/L	< 1								
	Total Arsenic	µg/L	< 1.5								
	Total Barium	µg/L	28								
	Total Beryllium	µg/L	< 0.5								
	Total Boron	µg/L	< 50								
	Total Cadmium	µg/L	< 0.2								
	Total Chromium (III)	µg/L	0.44								
	Hexavalent Chromium	µg/L	0.81								
	Total Cobalt	µg/L	< 2.5								
	Total Copper	mg/L	18								
	Free Cyanide	µg/L									
	Total Cyanide	µg/L	< 4								
	Dissolved Iron	µg/L	< 60								
	Total Iron	µg/L	31								
	Total Lead	µg/L	< 1								
	Total Manganese	µg/L	5.1								
	Total Mercury	µg/L	< 0.2								
	Total Nickel	µg/L	< 2.5								
	Total Phenols (Phenolics) (PWS)	µg/L	< 5								
	Total Selenium	µg/L	< 2								
	Total Silver	µg/L	< 0.5								
	Total Thallium	µg/L	< 0.5								
	Total Zinc	µg/L	7.6								
	Total Molybdenum	µg/L	< 1								
	Acrolein	µg/L	< 2								
	Acrylamide	µg/L									
	Acrylonitrile	µg/L	< 0.5								
	Benzene	µg/L	< 0.5								
	Bromoform	µg/L	< 1								
	Carbon Tetrachloride	µg/L	< 0.5								

Group 3	Chlorobenzene	µg/L	<	0.5																
	Chlorodibromomethane	µg/L	<	1																
	Chloroethane	µg/L	<	5																
	2-Chloroethyl Vinyl Ether	µg/L	<	0.5																
	Chloroform	µg/L	<	0.5																
	Dichlorobromomethane	µg/L	<	0.5																
	1,1-Dichloroethane	µg/L	<	0.5																
	1,2-Dichloroethane	µg/L	<	0.5																
	1,1-Dichloroethylene	µg/L	<	0.5																
	1,2-Dichloropropane	µg/L	<	0.5																
	1,3-Dichloropropylene	µg/L	<	1																
	1,4-Dioxane	µg/L		0.87																
	Ethylbenzene	µg/L	<	0.5																
	Methyl Bromide	µg/L	<	1																
	Methyl Chloride	µg/L	<	1																
	Methylene Chloride	µg/L	<	1																
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5																
	Tetrachloroethylene	µg/L	<	0.5																
	Toluene	µg/L	<	0.5																
	1,2-trans-Dichloroethylene	µg/L	<	0.5																
	1,1,1-Trichloroethane	µg/L	<	0.5																
	1,1,2-Trichloroethane	µg/L	<	0.5																
	Trichloroethylene	µg/L	<	0.5																
	Vinyl Chloride	µg/L	<	0.5																
Group 4	2-Chlorophenol	µg/L	<	3																
	2,4-Dichlorophenol	µg/L	<	3																
	2,4-Dimethylphenol	µg/L	<	3																
	4,6-Dinitro-o-Cresol	µg/L	<	6.1																
	2,4-Dinitrophenol	µg/L	<	6.1																
	2-Nitrophenol	µg/L	<	3																
	4-Nitrophenol	µg/L	<	3																
	p-Chloro-m-Cresol	µg/L	<	3																
	Pentachlorophenol	µg/L	<	6.1																
	Phenol	µg/L	<	8.1																
Group 5	2,4,6-Trichlorophenol	µg/L	<	3																
	Acenaphthene	µg/L	<	1.5																
	Acenaphthylene	µg/L	<	1.5																
	Anthracene	µg/L	<	1.5																
	Benzidine	µg/L	<	4.1																
	Benzo(a)Anthracene	µg/L	<	1.5																
	Benzo(a)Pyrene	µg/L	<	1.5																
	3,4-Benzofluoranthene	µg/L	<	1.5																
	Benzo(ghi)Perylene	µg/L	<	1.5																
	Benzo(k)Fluoranthene	µg/L	<	1.5																
	Bis(2-Chloroethoxy)Methane	µg/L	<	3																
	Bis(2-Chloroethyl)Ether	µg/L	<	3																
	Bis(2-Chloroisopropyl)Ether	µg/L	<	3																
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	3																
	4-Bromophenyl Phenyl Ether	µg/L	<	3																
	Butyl Benzyl Phthalate	µg/L	<	3																
	2-Chloronaphthalene	µg/L	<	3																
	4-Chlorophenyl Phenyl Ether	µg/L	<	3																
	Chrysene	µg/L	<	1.5																
	Dibenzo(a,h)Anthracene	µg/L	<	1.5																
	1,2-Dichlorobenzene	µg/L	<	1																
	1,3-Dichlorobenzene	µg/L	<	1																
	1,4-Dichlorobenzene	µg/L	<	1																
	3,3-Dichlorobenzidine	µg/L	<	3																
	Diethyl Phthalate	µg/L	<	3																
	Dimethyl Phthalate	µg/L	<	3																
	Di-n-Butyl Phthalate	µg/L	<	3																
	2,4-Dinitrotoluene	µg/L	<	3																
	2,6-Dinitrotoluene	µg/L	<	3																
	Di-n-Octyl Phthalate	µg/L	<	3																

Stream / Surface Water Information

Mt. Holly Springs Specialty Paper, NPDES Permit No. PA0008150, Outfall 001

Toxics Management Spreadsheet
Version 1.4, May 2023

Receiving Surface Water Name: Mountain Creek

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	063167	2.14	547	45.6			Yes
End of Reach 1	063167	1.78	540	46			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (hrs)	Tributary	Stream	Analysis
			Stream	Tributary				Hardness	pH	Hardness
Point of Discharge	2.14	0.313							28	7
End of Reach 1	1.78	0.131								

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (hrs)	Tributary	Stream	Analysis
			Stream	Tributary				Hardness	pH	Hardness
Point of Discharge	2.14									
End of Reach 1	1.78									

Model Results

Toxics Management Spreadsheets
Version 1.4, May 2023

Mt. Holly Springs Specialty Paper, NPDES Permit No. PA0008150, Outfall 001

Instructions		Results		RETURN TO INPUTS		SAVE AS PDF		PRINT		All			
<input checked="" type="checkbox"/> Waste/Load Allocations		<input checked="" type="checkbox"/> AFC		CCT (min): <input type="text" value="15"/>		PMF: <input type="text" value="0.493"/>		Analysis Hardness (mg/L): <input type="text" value="51,576"/>		Analysis pH: <input type="text" value="7.00"/>			
<input checked="" type="checkbox"/> Hydraulics													
Pollutants	Stream Conc (µg/L)	Stream CV	trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments					
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Fluoride (PWS)	0	0		0	N/A	N/A	N/A						
Total Aluminum	0	0		0	750	750	3,022						
Total Antimony	0	0		0	1,100	1,100	4,432						
Total Arsenic	0	0		0	340	340	1,370	Chem Translator of 1 applied					
Total Barium	0	0		0	21,000	21,000	84,619						
Total Boron	0	0		0	8,100	8,100	32,639						
Total Cadmium	0	0		0	1,057	1,057	4,38	Chem Translator of 0.972 applied					
Total Chromium (III)	0	0		0	331,277	1,048	4,224	Chem Translator of 0.316 applied					
Hexavalent Chromium	0	0		0	16	16	65.7	Chem Translator of 0.982 applied					
Total Cobalt	0	0		0	95	95.0	383						
Total Copper	0	0		0	7,202	7,5	30,2	Chem Translator of 0.96 applied					
Dissolved Iron	0	0		0	N/A	N/A	N/A						
Total Iron	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	31,192	35.1	142	Chem Translator of 0.887 applied					
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Mercury	0	0		0	1,400	1,65	6,64	Chem Translator of 0.85 applied					
Total Nickel	0	0		0	267,422	268	1,080	Chem Translator of 0.998 applied					
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A						
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.882 applied					
Total Silver	0	0		0	1,030	1,21	4,88	Chem Translator of 0.85 applied					
Total Thallium	0	0		0	65	65.0	262	Chem Translator of 0.85 applied					
Total Zinc	0	0		0	66,867	68.4	276	Chem Translator of 0.978 applied					
Acrolein	0	0		0	3	3.0	12.1						
Acrylonitrile	0	0		0	650	650	2,619						
Benzene	0	0		0	640,137,202,640	640,137,202,640	2,579						
Model Results													

Bromoform	0	0	0	1,800	1,800	7,253
Carbon Tetrachloride	0	0	0	2,800	2,800	11,282
Chlorobenzene	0	0	0	1,200	1,200	4,835
Chlorodibromomethane	0	0	0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	72,530
Chloroform	0	0	0	1,900	1,900	7,858
Dichlorobromomethane	0	0	0	N/A	N/A	N/A
1,2-Dichlorethane	0	0	0	15,000	15,000	60,442
1,1-Dichloroethylene	0	0	0	7,500	7,500	30,221
1,2-Dichloropropane	0	0	0	11,000	11,000	44,324
1,3-Dichloropropylene	0	0	0	310	310	1,249
Ethylbenzene	0	0	0	2,900	2,900	11,685
Methyl Bromide	0	0	0	550	550	2,216
Methyl Chloride	0	0	0	28,000	28,000	112,825
Methylene Chloride	0	0	0	12,000	12,000	48,354
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	4,029
Tetrachloroethylene	0	0	0	700	700	2,821
Toluene	0	0	0	1,700	1,700	6,850
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	27,400
1,1,1,1-Tetrachloroethane	0	0	0	3,000	3,000	12,088
1,1,2-Trichloroethane	0	0	0	3,400	3,400	13,700
Trichloroethylene	0	0	0	2,300	2,300	9,268
Vinyl Chloride	0	0	0	N/A	N/A	N/A
2-Chlorophenol	0	0	0	580	580	2,256
2,4-Dichlorophenol	0	0	0	1,700	1,700	6,850
2,4-Dimethylphenol	0	0	0	880	880	2,659
4,8-Dinitro-o-Cresol	0	0	0	80	80	322
2,4-Dinitrophenol	0	0	0	880	880	2,659
2-Nitrophenol	0	0	0	8,000	8,000	32,236
4-Nitrophenol	0	0	0	2,300	2,300	9,268
p-Chloro-m-Cresol	0	0	0	180	180	645
Pentachlorophenol	0	0	0	8,723	8,723	35,2
Phenol	0	0	0	N/A	N/A	N/A
2,4,6-Trichlorophenol	0	0	0	480	480	1,854
Acenaphthene	0	0	0	83	83	334
Anthracene	0	0	0	N/A	N/A	N/A
Benzidine	0	0	0	300	300	1,209
Benz(a)Anthracene	0	0	0	0.5	0.5	2.01
Benz(a)Pyrene	0	0	0	N/A	N/A	N/A
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	120,884
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	18,133
4-Bromophenyl Phenyl Ether	0	0	0	270	270	1,088
Ethyloxybenzyl Phthalate	0	0	0	140	140	564
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A
Chrysene	0	0	0	N/A	N/A	N/A
Dibenz(o,a,h)Anthracene	0	0	0	N/A	N/A	N/A

Model Results

1/13/2025

Page 6

1,2-Dichlorobenzene	0	0	0	820	820	3,304
1,3-Dichlorobenzene	0	0	0	350	350	1,410
1,4-Dichlorobenzene	0	0	0	730	730	2,942
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A
Diethyl Phthalate	0	0	0	4,000	4,000	16,118
Dimethyl Phthalate	0	0	0	2,500	2,500	10,074
Di-n-Butyl Phthalate	0	0	0	110	110	443
2,4-Dinitrotoluene	0	0	0	1,600	1,600	6,447
2,6-Dinitrotoluene	0	0	0	990	990	3,989
1,2-Diphenylhydrazine	0	0	0	15	15.0	60.4
Fluoranthene	0	0	0	200	200	806
Fluorene	0	0	0	N/A	N/A	N/A
Hexachlorobenzene	0	0	0	N/A	N/A	N/A
Hexachlorobutadiene	0	0	0	10	10.0	40.3
Hexachlorocyclopentadiene	0	0	0	5	5.0	20.1
Hexachloroethane	0	0	0	60	60.0	242
Indeno[1,2,3-cd]Pyrene	0	0	0	N/A	N/A	N/A
Isophorone	0	0	0	10,000	10,000	40,295
Naphthalene	0	0	0	140	140	564
Nitrobenzene	0	0	0	4,000	4,000	16,118
n-Nitrosodimethylamine	0	0	0	17,000	17,000	68,501
n-Nitrosodipropylamine	0	0	0	N/A	N/A	N/A
n-Nitrosodiphenylamine	0	0	0	300	300	1,209
Phenanthrene	0	0	0	5	5.0	20.1
Pyrene	0	0	0	N/A	N/A	N/A
1,2,4-Trichlorobenzene	0	0	0	130	130	524
Aldrin	0	0	0	3	3.0	12.1
alpha-BHC	0	0	0	N/A	N/A	N/A
beta-BHC	0	0	0	N/A	N/A	N/A
gamma-BHC	0	0	0	0.95	0.95	3.83
Chlordane	0	0	0	2.4	2.4	9.67
4,4-DDT	0	0	0	1.1	1.1	4.43
4,4-DDE	0	0	0	1.1	1.1	4.43
4,4-DDD	0	0	0	1.1	1.1	4.43
Dieldrin	0	0	0	0.24	0.24	0.97
alpha-Endosulfan	0	0	0	0.22	0.22	0.89
beta-Endosulfan	0	0	0	0.22	0.22	0.89
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A
Endrin	0	0	0	0.086	0.086	0.35
Endrin Aldehyde	0	0	0	N/A	N/A	N/A
Heptachlor	0	0	0	0.52	0.52	2.1
Heptachlor Epoxide	0	0	0	0.5	0.5	2.01
Toxaphene	0	0	0	0.73	0.73	2.94

Comments	WLA (µg/L)	WQ Obj (µg/L)	Fate Coef	Stream CV	Stream Conc (µg/L)	Pollutants
Initial Results	100	100	1.0	100	100	100

Total Dissolved Solids (PWS)	0	0	0	N/A	N/A	N/A
Chloride (PWS)	0	0	0	N/A	N/A	N/A
Sulfate (PWS)	0	0	0	N/A	N/A	N/A
Fluoride (PWS)	0	0	0	N/A	N/A	N/A
Total Aluminum	0	0	0	N/A	N/A	N/A
Total Antimony	0	0	0	220	220	1,573
Total Arsenic	0	0	0	150	150	1,073
Total Barium	0	0	0	4,100	4,100	28,318
Total Boron	0	0	0	1,600	1,600	11,441
Total Cadmium	0	0	0	0.133	0.14	1.0
Total Chromium (III)	0	0	0	35,912	41.8	299
Hexavalent Chromium	0	0	0	10	10.4	74.3
Total Cobalt	0	0	0	19	19.0	136
Total Copper	0	0	0	4,205	4,38	31.3
Dissolved Iron	0	0	0	N/A	N/A	N/A
Total Iron	0	0	0	1,500	1,500	10,726
Total Lead	0	0	0	0.949	1.03	7.38
Total Manganese	0	0	0	N/A	N/A	N/A
Total Mercury	0	0	0	0.770	0.91	6.48
Total Nickel	0	0	0	24,805	24.7	176
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A
Total Selenium	0	0	0	4,600	4,99	35.7
Total Silver	0	0	0	N/A	N/A	N/A
Total Thallium	0	0	0	13	13.0	93.0
Total Zinc	0	0	0	55,829	56.6	405
Acrolein	0	0	0	3	3.0	21.5
Acrylonitrile	0	0	0	130	130	930
Benzene	0	0	0	130	130	930
Bromoform	0	0	0	370	370	2,646
Carbon Tetrachloride	0	0	0	560	560	4,004
Chlorobenzene	0	0	0	240	240	1,716
Chlorodibromomethane	0	0	0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	26,028
Chloroform	0	0	0	390	390	2,789
Dichlorobromomethane	0	0	0	N/A	N/A	N/A
1,2-Dichloroethane	0	0	0	3,100	3,100	22,167
1,1-Dichloroethylene	0	0	0	1,500	1,500	10,726
1,2-Dichloropropane	0	0	0	2,200	2,200	15,732
1,3-Dichloropropylene	0	0	0	81	61.0	436
Ethylbenzene	0	0	0	580	580	4,147
Methyl Bromide	0	0	0	110	110	787
Methyl Chloride	0	0	0	5,500	5,500	39,329
Methylene Chloride	0	0	0	2,400	2,400	17,162
1,1,2,2-Tetrachloroethane	0	0	0	210	210	1,502
Tetrachloroethylene	0	0	0	140	140	1,001
Toluene	0	0	0	330	330	2,360
1,2-Etrans-Dichloroethylene	0	0	0	1,409	1,409	10,011

1,1,1-Trichloroethane	0	0	0	610	610	4,362
1,1,2-Trichloroethane	0	0	0	680	680	4,863
Trichloroethylene	0	0	0	450	450	3,218
Vinyl Chloride	0	0	0	N/A	N/A	N/A
2-Chlorophenol	0	0	0	110	110	787
2,4-Dichlorophenol	0	0	0	340	340	2,431
2,4-Dimethylphenol	0	0	0	130	130	930
4,6-Dinitro- <i>o</i> -Cresol	0	0	0	16	16	114
2,4-Dinitrophenol	0	0	0	130	130	930
2-Nitrophenol	0	0	0	1,600	1,600	11,441
4-Nitrophenol	0	0	0	470	470	3,361
<i>p</i> -Chloro- <i>m</i> -Cresol	0	0	0	500	500	3,575
Pentachlorophenol	0	0	0	6,693	6,693	47.9
Phenol	0	0	0	N/A	N/A	N/A
2,4,6-Trichlorophenol	0	0	0	91	91.0	651
Acenaphthene	0	0	0	17	17	122
Anthracene	0	0	0	N/A	N/A	N/A
Benzidine	0	0	0	59	59.0	422
Benzol(a)Anthracene	0	0	0	0.1	0.1	0.72
Benzol(a)Pyrene	0	0	0	N/A	N/A	N/A
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	42,904
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	6,507
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	386
Butyl Benzyl Phthalate	0	0	0	35	35.0	250
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A
Chrysene	0	0	0	N/A	N/A	N/A
Dibenz(a,h)Anthracene	0	0	0	N/A	N/A	N/A
1,2-Dichlorobenzene	0	0	0	160	160	1,144
1,3-Dichlorobenzene	0	0	0	69	69.0	493
1,4-Dichlorobenzene	0	0	0	150	150	1,073
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A
Diethyl Phthalate	0	0	0	800	800	5,721
Dimethyl Phthalate	0	0	0	500	500	3,575
Di-n-Butyl Phthalate	0	0	0	21	21.0	150
2,4-Dinitrotoluene	0	0	0	320	320	2,288
2,6-Dinitrotoluene	0	0	0	200	200	1,430
1,2-Diphenyldiazine	0	0	0	3	3	21.5
Fluoranthene	0	0	0	40	40.0	286
Fluorene	0	0	0	N/A	N/A	N/A
Hexachlorobenzene	0	0	0	N/A	N/A	N/A
Hexachlorobutadiene	0	0	0	2	2	14.3
Hexachlorocyclooctadiene	0	0	0	1	1	7.15
Hexachlorocyclooctadiene	0	0	0	N/A	N/A	N/A
Iodoethane	0	0	0	12	12.0	85.8
Iodobenzene	0	0	0	N/A	N/A	N/A

Isophorone	0	0	0	2,100	2,100	15,017
Naphthalene	0	0	0	43	43.0	307
Nitrobenzene	0	0	0	810	810	5,792
n-Nitrosodimethylamine	0	0	0	3,400	3,400	24,313
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A
n-Nitrosodiphenylamine	0	0	0	59	59.0	422
Phenanthrene	0	0	0	1	1.0	7.15
Pyrene	0	0	0	N/A	N/A	N/A
1,2,4-Trichlorobenzene	0	0	0	26	26.0	186
Aldrin	0	0	0	0.1	0.1	0.72
alpha-BHC	0	0	0	N/A	N/A	N/A
beta-BHC	0	0	0	N/A	N/A	N/A
gamma-BHC	0	0	0	N/A	N/A	N/A
Chlordane	0	0	0	0.0043	0.004	0.031
4,4-DDT	0	0	0	0.001	0.001	0.007
4,4-DDE	0	0	0	0.001	0.001	0.007
4,4-DDD	0	0	0	0.001	0.001	0.007
Dieldrin	0	0	0	0.056	0.056	0.4
alpha-Endosulfan	0	0	0	0.056	0.056	0.4
beta-Endosulfan	0	0	0	0.056	0.056	0.4
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A
Endrin	0	0	0	0.036	0.036	0.26
Endrin Aldehyde	0	0	0	N/A	N/A	N/A
Heptachlor	0	0	0	0.0038	0.004	0.027
Heptachlor Epoxyde	0	0	0	0.0038	0.004	0.027
Toxaphene	0	0	0	0.0002	0.0002	0.001

<input checked="" type="checkbox"/> THH	CCT (min):	61,832	PMF:	<input type="checkbox"/> 1	Analysis Hardness (mg/l):	<input type="checkbox"/> N/A
					Comments	<input type="checkbox"/> Analysis pH: <input type="checkbox"/> N/A
Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WLA (µg/L)
Total Dissolved Solids (PWS)	0	0	0	0	500,000	500,000
Chloride (PWS)	0	0	0	0	250,000	250,000
Sulfate (PWS)	0	0	0	0	250,000	250,000
Fluoride (PWS)	0	0	0	2,000	2,000	N/A
Total Aluminum	0	0	0	N/A	N/A	N/A
Total Antimony	0	0	0	5.6	5.6	40.0
Total Arsenic	0	0	0	10	10.0	71.5
Total Barium	0	0	0	2,400	2,400	17,162
Total Boron	0	0	0	3,100	3,100	22,167
Total Cadmium	0	0	0	N/A	N/A	N/A
Total Chromium (III)	0	0	0	N/A	N/A	N/A
Hexavalent Chromium	0	0	0	N/A	N/A	N/A
Total Cobalt	0	0	0	N/A	N/A	N/A
Total Copper	0	0	0	N/A	N/A	N/A
Model Results Dissolved Iron	0	0	0	300 _{1/13/2023} 0	300 _{1/13/2023} 0	2,145

Total Iron	0	0	0	N/A	N/A	N/A	N/A
Total Lead	0	0	0	N/A	N/A	N/A	N/A
Total Manganese	0	0	0	1,000	1,000	7,151	
Total Mercury	0	0	0	0.050	0.05	0.36	
Total Nickel	0	0	0	0	0	4,362	
Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	1.72	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	0	3	3.0	21.5
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	715	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	40.8	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	236	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	486	
Methyl Bromide	0	0	0	100	100.0	715	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	408	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	715	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	71,507	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	215	
2,4-Dichlorophenol	0	0	0	10	10.0	71.5	
2,4-Dimethylphenol	0	0	0	100	100.0	715	
4,8-Dinitro- <i>o</i> -Cresol	0	0	0	2	2.0	14.3	
2,4-Dinitrophenol	0	0	0	10	10.0	71.5	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro- <i>m</i> -Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	28,603	
Model Residue-6-Trichlorophenol	0	0	0	N/A	N/A	N/A	

Acenaphthene	0	0	0	70	70.0	501
Anthracene	0	0	0	300	300	2,145
Benzidine	0	0	0	N/A	N/A	N/A
Benzol(a)Anthracene	0	0	0	N/A	N/A	N/A
Benzol(a)Pyrene	0	0	0	N/A	N/A	N/A
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A
Benzol(k)Fluoranthene	0	0	0	N/A	N/A	N/A
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	1,430
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.72
2-Chloronaphthalene	0	0	0	800	800	5,721
Chrysene	0	0	0	N/A	N/A	N/A
Dibenzo(a,h)Anthracene	0	0	0	N/A	N/A	N/A
1,2-Dichlorobenzene	0	0	0	1,000	1,000	7,151
1,3-Dichlorobenzene	0	0	0	7	7.0	50.1
1,4-Dichlorobenzene	0	0	0	300	300	2,145
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A
Diethyl Phthalate	0	0	0	800	800	4,290
Dimethyl Phthalate	0	0	0	2,000	2,000	14,301
Di-n-Butyl Phthalate	0	0	0	20	20.0	143
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A
Fluoranthene	0	0	0	20	20.0	143
Fluorene	0	0	0	50	50.0	358
Hexachlorobenzene	0	0	0	N/A	N/A	N/A
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A
Hexachlorocyclooctadiene	0	0	0	4	4.0	28.6
Hexachloroethane	0	0	0	N/A	N/A	N/A
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A
Isophorone	0	0	0	34	34.0	243
Naphthalene	0	0	0	N/A	N/A	N/A
Nitrobenzene	0	0	0	10	10.0	71.5
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A
n-Nitrosod-n-Propylamine	0	0	0	N/A	N/A	N/A
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A
Phenanthrene	0	0	0	20	20.0	143
Pyrene	0	0	0	0.07	0.07	0.5
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A
Aldrin	0	0	0	N/A	N/A	N/A
alpha-BHC	0	0	0	N/A	N/A	N/A
beta-BHC	0	0	0	N/A	N/A	N/A
gamma-BHC	0	0	0	4.2	4.2	30.0
Chlordane	0	0	0	N/A	N/A	N/A
Model Results	4,4-DDT	0	0	N/A	N/A	N/A

4,4'-DDE	0	0	0	0	N/A	N/A	N/A
4,4'-DDD	0	0	0	0	N/A	N/A	N/A
Dieldrin	0	0	0	0	N/A	N/A	N/A
alpha-Endosulfan	0	0	0	20	20.0	143	
beta-Endosulfan	0	0	0	20	20.0	143	
Endosulfan Sulfate	0	0	0	0	20	20.0	143
Endrin	0	0	0	0	0.03	0.03	0.21
Endrin Aldehyde	0	0	0	0	1	1.0	7.15
Heptachlor	0	0	0	0	N/A	N/A	N/A
Heptachlor Epoxide	0	0	0	0	N/A	N/A	N/A
Toxaphene	0	0	0	0	N/A	N/A	N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	Comments
							N/A
Total Dissolved Solids (PWS)	0	0	0	0	N/A	N/A	N/A
Chloride (PWS)	0	0	0	0	N/A	N/A	N/A
Sulfate (PWS)	0	0	0	0	N/A	N/A	N/A
Fluoride (PWS)	0	0	0	0	N/A	N/A	N/A
Total Aluminum	0	0	0	0	N/A	N/A	N/A
Total Antimony	0	0	0	0	N/A	N/A	N/A
Total Arsenic	0	0	0	0	N/A	N/A	N/A
Total Barium	0	0	0	0	N/A	N/A	N/A
Total Boron	0	0	0	0	N/A	N/A	N/A
Total Cadmium	0	0	0	0	N/A	N/A	N/A
Total Chromium (III)	0	0	0	0	N/A	N/A	N/A
Hexavalent Chromium	0	0	0	0	N/A	N/A	N/A
Total Cobalt	0	0	0	0	N/A	N/A	N/A
Total Copper	0	0	0	0	N/A	N/A	N/A
Dissolved Iron	0	0	0	0	N/A	N/A	N/A
Total Iron	0	0	0	0	N/A	N/A	N/A
Total Lead	0	0	0	0	N/A	N/A	N/A
Total Manganese	0	0	0	0	N/A	N/A	N/A
Total Mercury	0	0	0	0	N/A	N/A	N/A
Total Nickel	0	0	0	0	N/A	N/A	N/A
Total Phenols (Phenolics) (PWS)	0	0	0	0	N/A	N/A	N/A
Total Selenium	0	0	0	0	N/A	N/A	N/A
Total Silver	0	0	0	0	N/A	N/A	N/A
Total Thallium	0	0	0	0	N/A	N/A	N/A
Total Zinc	0	0	0	0	N/A	N/A	N/A
Acrolein	0	0	0	0	N/A	N/A	N/A
Acrylonitrile	0	0	0	0	0.06	0.06	2.02
Benzene	0	0	0	0	0.58	0.58	19.5
Bromoform	0	0	0	0	7	7.0	236
Model Result/Carbon Tetrachloride	0	0	0	0	0.4 _{1/13/2020} 0.4	13.5	

Chlorobenzene	0	0	0	0	N/A	N/A	N/A
Chlorodibromomethane	0	0	0	0.8	0.8	27.0	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	32.0	
1,2-Dichloroethane	0	0	0	9.9	9.9	334	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	30.3	
1,3-Dichloropropylene	0	0	0	0.27	0.27	9.1	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	674	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	6.74	
Tetrachloroethylene	0	0	0	10	10.0	337	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	18.5	
Trichloroethylene	0	0	0	0.8	0.8	20.2	
Vinyl Chloride	0	0	0	0.02	0.02	0.67	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro- <i>o</i> -Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro- <i>m</i> -Cresol	0	0	0	0.030	0.03	1.01	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	0.001	0.001	0.034	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	50.5	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.003	
Benzol(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzol(a)Pyrene	0	0	0	0.0001	0.0001	0.003	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.034	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.34	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	1.01	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	10.8	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chlorophthalene	0	0	0	0.12	0.12	4.04	
Chrysene	0	0	0	0.0001	0.0001	0.003	
Model Resin	0	0	0	0.0001	0.0001	0.003	
(a,h)Anthracene	0	0	0	0.0001	0.0001	0.003	

1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	N/A
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	N/A
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	N/A
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	1.68	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	N/A
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	N/A
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	N/A
2,4-Dinitrotoluene	0	0	0	0.05	0.05	1.68	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	1.68	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	1.01	
Fluoranthene	0	0	0	N/A	N/A	N/A	N/A
Fluorene	0	0	0	N/A	N/A	N/A	N/A
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.003	
Hexachlorobutadiene	0	0	0	0.01	0.01	0.34	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	N/A
Hexachloroethane	0	0	0	0.1	0.1	3.37	
Indeno[1,2,3-cd]Pyrene	0	0	0	0.001	0.001	0.034	
Isophorone	0	0	0	N/A	N/A	N/A	N/A
Naphthalene	0	0	0	N/A	N/A	N/A	N/A
Nitrobenzene	0	0	0	N/A	N/A	N/A	N/A
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.024	
n-Nitrosodimethylamine	0	0	0	0.005	0.005	0.17	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	111	
Phenanthrene	0	0	0	N/A	N/A	N/A	N/A
Pyrene	0	0	0	N/A	N/A	N/A	N/A
1,2,4,7-Trichlorobenzene	0	0	0	N/A	N/A	N/A	N/A
Aldrin	0	0	0	0.000008	8.00E-07	0.00003	
alpha-BHC	0	0	0	0.0004	0.0004	0.013	
beta-BHC	0	0	0	0.008	0.008	0.27	
gamma-BHC	0	0	0	N/A	N/A	N/A	N/A
Chlordane	0	0	0	0.0003	0.0003	0.01	
4,4-DDT	0	0	0	0.00003	0.00003	0.001	
4,4-DDE	0	0	0	0.00002	0.00002	0.0007	
4,4-DDD	0	0	0	0.0001	0.0001	0.003	
Dieldrin	0	0	0	0.00001	0.00001	0.0003	
alpha-Endosulfan	0	0	0	N/A	N/A	N/A	N/A
beta-Endosulfan	0	0	0	N/A	N/A	N/A	N/A
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	N/A
Endrin	0	0	0	N/A	N/A	N/A	N/A
Endrin Alddehyde	0	0	0	N/A	N/A	N/A	N/A
Heptachlor	0	0	0	0.00006	0.00006	0.002	
Heptachlor Epoxide	0	0	0	0.00003	0.00003	0.001	
Toxaphene	0	0	0	0.0007	0.0007	0.024	

Recommended WOEBS & Monitoring Requirements

Federal Register

No. Samples/Month:

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., < Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	1,937	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	17,162	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	11,441	$\mu\text{g/L}$	Discharge Conc < TQL
Total Cadmium	1.0	$\mu\text{g/L}$	Discharge Conc < TQL
Total Chromium (III)	299	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Hexavalent Chromium	42.1	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Cobalt	136	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	2,145	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Iron	10,726	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Lead	7.38	$\mu\text{g/L}$	Discharge Conc < TQL
Total Manganese	7,151	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Mercury	0.36	$\mu\text{g/L}$	Discharge Conc < TQL
Total Nickel	176	$\mu\text{g/L}$	Discharge Conc < TQL
Total Phenols (Phenolics) (PWS)		$\mu\text{g/L}$	Discharge Conc < TQL
Total Selenium	35.7	$\mu\text{g/L}$	Discharge Conc < TQL
Total Thallium	1.72	$\mu\text{g/L}$	Discharge Conc < TQL
Total Zinc	177	$\mu\text{g/L}$	Discharge Conc \leq 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	7.75	$\mu\text{g/L}$	Discharge Conc < TQL

Acrylonitrile	2.02	µg/L	Discharge Conc < TQL
Benzene	19.5	µg/L	Discharge Conc < TQL
Bromofrom	236	µg/L	Discharge Conc ≤ 25% WQBEL
Carbon Tetrachloride	13.5	µg/L	Discharge Conc < TQL
Chlorobenzene	715	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	27.0	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	25.028	µg/L	Discharge Conc < TQL
Chloroform	40.8	µg/L	Discharge Conc < TQL
Dichlorobromomethane	32.0	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	334	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	236	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	30.3	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	9.1	µg/L	Discharge Conc ≤ 25% WQBEL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	486	µg/L	Discharge Conc < TQL
Methyl Bromide	715	µg/L	Discharge Conc ≤ 25% WQBEL
Methyl Chloride	38.329	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	674	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,2,2-Tetrachloroethane	6.74	µg/L	Discharge Conc < TQL
Tetrachloroethylene	337	µg/L	Discharge Conc < TQL
Toluene	408	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	715	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	4,362	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	18.5	µg/L	Discharge Conc < TQL
Trichloroethylene	20.2	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.67	µg/L	Discharge Conc < TQL
2-Chlorophenol	215	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	71.5	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	715	µg/L	Discharge Conc < TQL
4,6-Dinitro- <i>o</i> -Cresol	14.3	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	71.5	µg/L	Discharge Conc < TQL
2-Nitrophenol	11,441	µg/L	Discharge Conc < TQL
4-Nitrophenol	3,361	µg/L	Discharge Conc < TQL
<i>p</i> -Chloro- <i>m</i> -Cresol	413	µg/L	Discharge Conc < TQL
Pentachlorophenol	1.01	µg/L	Discharge Conc < TQL
Phenol	28,603	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	50.5	µg/L	Discharge Conc < TQL
Acenaphthene	122	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	2,145	µg/L	Discharge Conc < TQL
Benzidine	0.003	µg/L	Discharge Conc < TQL
Benz(a)Anthracene	0.034	µg/L	Discharge Conc < TQL
Benz(a)Pyrene	0.003	µg/L	Discharge Conc < TQL
3,4-Benzo[ghi]Fluoranthene	0.034	µg/L	Discharge Conc < TQL
Model Result Benzene	N/A	N/A	No WQS 1/13/2025

Benzoyl(k)Fluoranthene	0.34	µg/L	Discharge Conc < TQL	
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS	
Bis(2-Chloroethyl)Ether	1.01	µg/L	Discharge Conc < TQL	
Bis(2-Chloroisopropyl)Ether	1.430	µg/L	Discharge Conc < TQL	
Bis(2-Ethylhexyl)Phthalate	10.8	µg/L	Discharge Conc < TQL	
4-Bromophenyl Phenyl Ether	386	µg/L	Discharge Conc < TQL	
Butyl Benzyl Phthalate	0.72	µg/L	Discharge Conc < TQL	
2-Chloronaphthalene	5.721	µg/L	Discharge Conc < TQL	
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS	
Chrysene	4.04	µg/L	Discharge Conc < TQL	
Dibenzo(a,h)Anthracene	0.003	µg/L	Discharge Conc < TQL	
1,2-Dichlorobenzene	1.144	µg/L	Discharge Conc ≤ 25% WQBEL	
1,3-Dichlorobenzene	50.1	µg/L	Discharge Conc ≤ 25% WQBEL	
1,4-Dichlorobenzene	1.073	µg/L	Discharge Conc ≤ 25% WQBEL	
3,3-Dichlorobenzidine	1.68	µg/L	Discharge Conc < TQL	
Diethyl Phthalate	4,290	µg/L	Discharge Conc < TQL	
Dimethyl Phthalate	3,575	µg/L	Discharge Conc < TQL	
Di-n-Butyl Phthalate	143	µg/L	Discharge Conc < TQL	
2,4-Dinitrotoluene	1.68	µg/L	Discharge Conc < TQL	
2,6-Dinitrotoluene	1.68	µg/L	Discharge Conc < TQL	
Di-n-Octyl Phthalate	N/A	N/A	No WQS	
1,2-Diphenylhydrazine	1.01	µg/L	Discharge Conc < TQL	
Fluoranthene	143	µg/L	Discharge Conc < TQL	
Fluorene	358	µg/L	Discharge Conc < TQL	
Hexachlorobenzene	0.003	µg/L	Discharge Conc < TQL	
Hexachlorobutadiene	0.34	µg/L	Discharge Conc < TQL	
Hexachlorocyclopentadiene	7.15	µg/L	Discharge Conc < TQL	
Hexachloroethane	3.37	µg/L	Discharge Conc < TQL	
Indeno(1,2,3-cd)Pyrene	0.034	µg/L	Discharge Conc < TQL	
Isophorone	243	µg/L	Discharge Conc < TQL	
Naphthalene	307	µg/L	Discharge Conc ≤ 25% WQBEL	
Nitrobenzene	71.5	µg/L	Discharge Conc < TQL	
n-Nitrosodimethylamine	0.024	µg/L	Discharge Conc < TQL	
n-Nitrosodi-n-Propylamine	0.17	µg/L	Discharge Conc < TQL	
n-Nitrosodiphenylamine	111	µg/L	Discharge Conc < TQL	
Phenanthrene	7.15	µg/L	Discharge Conc < TQL	
Pyrene	143	µg/L	Discharge Conc < TQL	
1,2,4-Trichlorobenzene	0.5	µg/L	Discharge Conc < TQL	
Aldrin	0.00003	µg/L	Discharge Conc < TQL	
alpha-BHC	0.013	µg/L	Discharge Conc < TQL	
beta-BHC	0.27	µg/L	Discharge Conc < TQL	
gamma-BHC	2.45	µg/L	Discharge Conc < TQL	
delta BHC	N/A	N/A	No WQS	
Chlordane	0.01	µg/L	Discharge Conc < TQL	
4,4-DDT	0.001	µg/L	Discharge Conc < TQL	
4,4-DDE	0.0007	µg/L	Discharge Conc < TQL	
Model Results	4,4-DDD	0.003	µg/L	Discharge Conc < TQL 1/19/2025

			Discharge Conc < TQL
Dieldrin	0.00003	µg/L	Discharge Conc < TQL
alpha-Endosulfan	0.4	µg/L	Discharge Conc < TQL
beta-Endosulfan	0.4	µg/L	Discharge Conc < TQL
Endosulfan Sulfate	143	µg/L	Discharge Conc < TQL
Endrin	0.21	µg/L	Discharge Conc < TQL
Endrin Aldehyde	7.15	µg/L	Discharge Conc < TQL
Heptachlor	0.0002	µg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.001	µg/L	Discharge Conc < TQL
PCB-1010	N/A	N/A	No WQS
PCB-1221	N/A	N/A	No WQS
PCB-1232	N/A	N/A	No WQS
PCB-1242	N/A	N/A	No WQS
PCB-1248	N/A	N/A	No WQS
PCB-1254	N/A	N/A	No WQS
PCB-1260	N/A	N/A	No WQS
Toxaphene	0.001	µg/L	Discharge Conc < TQL