

# Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

# NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.

APS ID

Authorization ID

PA0008486

954648

1323135

|                       | Applicant an                       | d Facility Information |                                    |
|-----------------------|------------------------------------|------------------------|------------------------------------|
| Applicant Name        | Ahlstrom-Munksjo Filtration LLC    | Facility Name          | Ahlstrom-Munksjo Filtration LLC    |
| Applicant Address     | 122 W Butler Street                | Facility Address       | 122 W Butler Street                |
|                       | Mount Holly Springs, PA 17065-1218 | <u></u>                | Mount Holly Springs, PA 17065-1218 |
| Applicant Contact     | Paul Wheeler                       | Facility Contact       | Mark Cassel                        |
| Applicant Phone       | (717) 486-3438                     | Facility Phone         | (717) 486-6431                     |
| Client ID             | 263758                             | Site ID                | 248354                             |
| SIC Code              | 2621                               | Municipality           | Mount Holly Springs Borough        |
| SIC Description       | Manufacturing - Paper Mills        | County                 | Cumberland                         |
| Date Application Rec  | eived August 11, 2020              | EPA Waived?            | Yes                                |
| Date Application Acce | epted August 24, 2020              | If No, Reason          |                                    |
| Purpose of Applicatio | n NPDES Renewal.                   |                        |                                    |

#### Summary of Review

Ahlstrom-Munksjo Filtration LLC (Ahlstrom) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on December 16, 2015 and became effective on January 1, 2016. During the last permit term, the permit was amended in 2018 to reflect a change in ownership from Ahlstrom Filtration LLC to Ahlstrom-Munksjo Filtration LLC. The permit expired on December 31, 2020 but the terms and conditions have been administratively extended since that time.

Based on the review, it is recommended that the permit be drafted.

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                                                    | Date         |
|---------|------|-----------------------------------------------------------------------------------------------|--------------|
| Х       |      | Jinsu Kim                                                                                     |              |
|         |      | Jinsu Kim / Environmental Engineering Specialist                                              | May 10, 2021 |
| Х       |      | Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager | May 13, 2021 |
| Х       |      | Maria D. Bebenek<br>Maria D. Bebenek, P.E. / Program Manager                                  | May 13, 2021 |

# NPDES Permit Fact Sheet Ahlstrom-Munksjo Filtration LLC

|                              | Discharge, Receiving Water     | ers and Water Supply Informat | tion           |
|------------------------------|--------------------------------|-------------------------------|----------------|
| Outfall No. 001              |                                | Design Flow (MGD)             | 0.569          |
| Latitude 40° 6               | 3' 14.00"                      | Longitude                     | 77° 10' 50.00" |
| Quad Name Mo                 | ount Holly Springs             | Quad Code                     | 1828           |
| Wastewater Descri            | ption: Process Wastewater from | manufacturing filter paper    |                |
| Receiving Waters             | Mountain Creek                 | Stream Code                   | 63167          |
| NHD Com ID                   | 56408189                       | RMI                           | 3.18           |
| Drainage Area                | 44.4                           | Yield (cfs/mi²)               | 0.313          |
| Q <sub>7-10</sub> Flow (cfs) | 13.89                          | Q <sub>7-10</sub> Basis       | USGS 01571500  |
| Elevation (ft)               | 481                            | Slope (ft/ft)                 |                |
| Watershed No.                | 7-E                            | Chapter 93 Class.             | TSF, MF        |
| Existing Use                 | TSF, MF                        | Existing Use Qualifier        |                |
| Exceptions to Use            |                                | Exceptions to Criteria        |                |
| Assessment Status            | Attaining Use(s)               |                               |                |
| Cause(s) of Impairr          | ment N/A                       |                               |                |
| Source(s) of Impair          | ment N/A                       |                               |                |
| TMDL Status                  | N/A                            | Name N/A                      |                |
| Nearest Downstrea            | m Public Water Supply Intake   | United Water                  |                |
| PWS Waters                   | Yellow Breeches Creek          | _ Flow at Intake (cfs)        | 80.5           |
| PWS RMI                      | 7.42                           | Distance from Outfall (mi)    | 27             |

#### Drainage Area

The discharge is to Mountain Creek at RM 3.18. A drainage area upstream of the discharge point is estimated to be 44.4 sq.mi, according to USGS StreamStats available at <a href="https://streamstats.usgs.gov/ss/">https://streamstats.usgs.gov/ss/</a>.

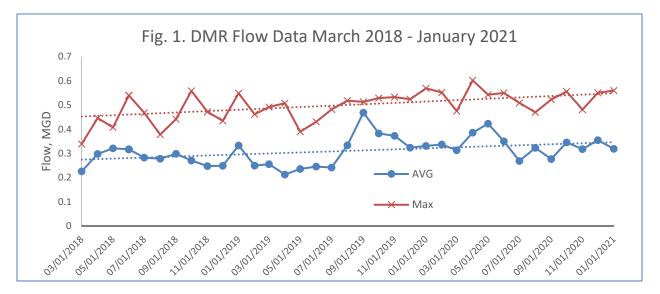
#### Streamflow

USGS gauge 01571500 on Yellow Breeches Creek 3.1 miles above mouth also measures the hatchery flow and springs at Huntsdale resulting in a greater yield rate in the basin than actually exists. The proposed monthly hatchery discharge is 12.384 MGD during September when a monthly analysis of streamflows for Yellow Breeches Creek indicates Q7-10 flow is most likely to occur and the gage flow should be adjusted by subtracting the hatchery discharge.

Gage flow = 86.8 - 12.384\*1.547 = 67.642 cfs Q7-10 runoff rate = 67.642/216 = .313 cfs/sq.mi. Q30-10:Q7-10 = 94/86.8 = 1.083:1 Q1-10:Q7-10 = 81.6/86.8 = .94:1 Q7-10 = 44.4\*0.313 = 13.89 cfs @ Ahlstrom Filtration

#### Mountain Creek

25 Pa Code §93.90 lists Mountain Creek from Mt. Holly Springs to Mouth as Trout Stocking and Migratory Fishes. No special protection waters are impacted by this discharge. Mountain Creek is considered both trout stocking and trout national reproduction water. However, it is not classified as a Class A Wild Trout Fishery stream. DEP's latest integrated water quality report finalized in 2020 indicates that the discharge is located within a stream segment listed as attaining uses.


#### Public Water Supply Intake

The nearest public water supply intake is United Water Company located on Yellow Breeches Creek, approximately 27 miles from the discharge. Given the distance, the discharge is not expected to affect the water supply.

#### **Facility Information**

Ahlstrom is a fiber-based material manufacturing company that manufactures and converts papers used for filtration applications. The plant located in Mt. Holly Springs, PA is a paper mill, manufacturing specialty papers (Standard Industrial Classification Codes: 2621, 2675, and 2679) with a total annual production rate of nearly 10 million pounds of products (i.e., about 5,000 tons). The average annual production rate has been about 30,000 pounds with the maximum monthly production rate of about 900,000 pounds. Wastewaters generated from this plant include water supply sand filter backwash, boiler blowdown, paper making process wastewater, Reverse Osmosis (RO) water treatment effluent, and other miscellaneous industrial wastewater. Sanitary wastewater is currently discharged to Mt. Holly Springs Borough sanitary sewer system and all industrial wastewaters are treated by onsite wastewater treatment system and discharged to Mountain Creek. An on-site well is used to supply water to the manufacturing plant. Within the Mountain Creek watershed, there are a number of point source dischargers such as Mt. Holly Specialty Paper Company (PA0008150), Mt. Holly Springs Borough STP (PA0023183), and Land O'Lakes (PA0044911) discharging treated wastewater directly into Mountain Creek. Discharges from these facilities have been taken into account for water quality analysis to develop water quality-based effluent limitations (WQBELs) in a multiple discharge wasteload allocation situation.

DEP developed previous NPDES permit requirements based on the effluent discharge rate of 0.569 MGD; yet, Ahlstrom reported 0.280 MGD as an average flow in the application. A review of past DMR data (figure 1) reveals that the facility has been consistently discharging about 0.3 MGD (average monthly) with the average daily maximum of 0.470 MGD. During the maximum production months in 2018 (September) and 2019 (August), the facility reported the average monthly effluent volumes of 0.299 MGD and 0.334 MGD with the daily maximum of 0.442 MGD and 0.518 MGD, respectively. It may not be appropriate to use 0.280 MGD to develop permit requirements as this number is lower than the typical effluent volumes reported in DMRs. In addition, the application reported that the production rate would be increased for the next five years as a result of increased medical market sales. For this permit renewal, DEP will continue to use 0.569 MGD as a design flow in water quality analyses.



Previously, a Water Quality Management permit no. 2189201 was issued for onsite wastewater treatment system. The existing treatment units, according to the application and past DEP inspection reports, are as follows:

Screening  $\rightarrow$  Equalization basin  $\rightarrow$  Krofta treatment units (DAF / Clarifier)  $\rightarrow$  Mountain Creek

Sludge is treated by an onsite sludge press unit prior to offsite disposal. Ahlstrom listed a number of chemical additives in the application that are currently used and expected to be present in effluent. All chemical additives listed in the application are also listed in DEP's approved list. The more detailed information along with the analysis is discussed later in this report.

Outfalls 002 through 008 receive stormwater drained from this facility, consisting of parking lots, storage areas, and buildings.

# NPDES Permit Fact Sheet Ahlstrom-Munksjo Filtration LLC

|                         | Compliance History                                                                                                                                                                       |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                          |
| Summary of DMRs:        | A summary of past 12-month DMR data is presented on the next page.                                                                                                                       |
| Summary of Inspections: | 10/15/2019: Mike Benham, DEP Water Quality Specialist, conducted a routine inspection. No violation was noted at the time of inspection.                                                 |
|                         | 05/30/2017: Patrick Bowen, former DEP Water Quality Specialist, conducted a routine inspection and noted that effluent appeared clear. No violation was noted at the time of inspection. |
| Other Comments:         | Since last permit renewal, no violation has been reported and identified by DEP. Also, there is no open violation associated with this permittee or facility at this time.               |

## **Effluent Data**

DMR Data for Outfall 001 (from February 1, 2020 to January 31, 2021)

| Parameter                 | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20  | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |
|---------------------------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)                |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Monthly           | 0.319  | 0.355  | 0.318  | 0.346  | 0.277   | 0.323  | 0.269  | 0.350  | 0.423  | 0.386  | 0.313  | 0.337  |
| Flow (MGD)                |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Maximum             | 0.560  | 0.551  | 0.481  | 0.556  | 0.523   | 0.470  | 0.509  | 0.550  | 0.543  | 0.602  | 0.475  | 0.552  |
| pH (S.U.)                 |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Minimum             | 6.8    | 7.4    | 6.9    | 6.6    | 6.7     | 6.8    | 7.0    | 7.0    | 7.4    | 6.5    | 6.5    | 6.3    |
| pH (S.U.)                 |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Maximum             | 8.1    | 8.5    | 8.8    | 8.1    | 8.9     | 8.0    | 8.9    | 8.8    | 8.5    | 8.4    | 8.7    | 8.1    |
| DO (mg/L)                 |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Minimum             | 7.330  | 8.27   | 7.90   | 5.51   | 7.31    | 8.1    | 6.3    | 7.9    | 8.5    | 5.3    | 7.0    | 6.5    |
| Temperature (°F)          |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Monthly           | 68     | 65.7   | 67     | 68.9   | 71      | 76     | 72.9   | 69.3   | 68.5   | 67     | 70.6   | 66     |
| Temperature (°F)          |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Maximum             | 81     | 73.2   | 75     | 80.8   | 85      | 82.6   | 85.6   | 83.1   | 78.1   | 75     | 82.7   | 74     |
| CBOD5 (lbs/day)           |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Monthly           | 11.57  | 10.54  | 10.15  | 9.38   | 12.67   | 9.62   | < 5.9  | 17.5   | < 14.5 | 9.1    | 7.5    | 8.3    |
| CBOD5 (lbs/day)           |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Maximum             | 27.55  | 21.59  | 33.29  | 18.08  | 33.1    | 19.99  | < 14.4 | 47.2   | 32     | 21.0   | 13.1   | 19.3   |
| CBOD5 (mg/L)              |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Monthly           | 4.35   | 3.5    | 3.82   | 3.25   | 5.43    | 3.575  | < 2.64 | 6      | < 4.1  | 2.8    | 2.9    | 3.0    |
| CBOD5 (mg/L)              |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Maximum             | 5.9    | 4.7    | 8.3    | 3.9    | 7.60    | 5.1    | < 3.4  | 10.3   | 7.2    | 4.2    | 3.3    | 4.2    |
| TSS (lbs/day)             |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Monthly           | 8.64   | 5.92   | 2.6    | 2.8    | < 5.84  | 3.4    | < 5.3  | 10.2   | 5.3    | 3.9    | < 2.6  | 2.8    |
| TSS (lbs/day)             |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Maximum             | 42.03  | 13.78  | 4.0    | 4.6    | < 30.53 | 7.8    | < 25.4 | 32.1   | 9.0    | 10.0   | < 4.0  | 4.6    |
| TSS (mg/L)                |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Monthly           | 3.25   | 2      | 1      | 1      | < 2.5   | 1.25   | < 2.4  | 3.5    | < 1.5  | 1.2    | < 1    | 1      |
| TSS (mg/L)                |        |        |        |        |         |        |        |        |        |        |        |        |
| Daily Maximum             | 9      | 3      | 1      | 1      | < 7.00  | 2      | < 6    | 7      | 2      | 2      | < 1    | 1      |
| Nitrate-Nitrite (lbs/day) |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Quarterly         |        | 0.90   |        |        | 0.485   |        |        | 1.16   |        |        | 0.72   |        |
| Nitrate-Nitrite (mg/L)    |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Quarterly         |        | 0.32   |        |        | 0.2     |        |        | 0.36   |        |        | 0.24   |        |
| Total Nitrogen            |        |        |        |        |         |        |        |        |        |        |        |        |
| (lbs/day)                 |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Quarterly         |        | 3.74   |        |        | 2.91    |        |        | 5.35   |        |        | 5.50   |        |
| Total Nitrogen (mg/L)     |        |        |        |        |         |        |        |        |        |        |        |        |
| Average Quarterly         |        | 1.32   |        |        | 1.2     |        |        | 1.66   |        |        | 1.84   |        |

### NPDES Permit Fact Sheet Ahlstrom-Munksjo Filtration LLC

| Parameter                         | JAN-21 | DEC-20  | NOV-20  | OCT-20  | SEP-20  | AUG-20  | JUL-20   | JUN-20  | MAY-20   | APR-20  | MAR-20   | FEB-20   |
|-----------------------------------|--------|---------|---------|---------|---------|---------|----------|---------|----------|---------|----------|----------|
| TKN (lbs/day)                     |        |         |         |         |         |         |          |         |          |         |          |          |
| Average Quarterly                 |        | 2.83    |         |         | 2.42    |         |          | 4.19    |          |         | 4.78     |          |
| TKN (mg/L)                        |        |         |         |         |         |         |          |         |          |         |          |          |
| Average Quarterly                 |        | 1       |         |         | 1       |         |          | 1.3     |          |         | 1.6      |          |
| Total Phosphorus                  |        |         |         |         |         |         |          |         |          |         |          |          |
| (lbs/day)                         |        |         |         |         |         |         |          |         |          |         |          |          |
| Average Monthly                   | 0.26   | 0.29    | 0.26    | 0.288   | 0.26    | 0.2     | < 0.25   | < 0.32  | < 0.35   | 1.5     | < 0.26   | < 0.35   |
| Total Phosphorus                  |        |         |         |         |         |         |          |         |          |         |          |          |
| (lbs/day)                         |        |         |         |         |         |         |          |         |          |         |          |          |
| Daily Maximum                     | 0.46   | 0.45    | 0.40    | 0.46    | 0.65    | 0.5     | < 0.67   | 0.68    | < 0.45   | 10.0    | < 0.396  | 0.82     |
| Total Phosphorus                  |        |         |         |         |         |         |          |         |          |         |          |          |
| (mg/L)                            | 0.4    | 0.4     | 0.4     | 0.4     | . 0.44  | 0.4     | . 0.44   | . 0.44  | .0.4     | 0.40    | .0.4     | .0.40    |
| Average Monthly                   | 0.1    | 0.1     | 0.1     | 0.1     | < 0.11  | 0.1     | < 0.11   | < 0.11  | < 0.1    | 0.48    | < 0.1    | < 0.12   |
| Total Phosphorus (mg/L)           |        |         |         |         |         |         |          |         |          |         |          |          |
| Daily Maximum                     | 0.1    | 0.1     | 0.1     | 0.1     | < 0.15  | 0.13    | < 0.16   | 0.15    | < 0.1    | 2.0     | < 0.1    | 0.18     |
| Total Cadmium                     | 0.1    | 0.1     | 0.1     | 0.1     | < 0.13  | 0.13    | < 0.10   | 0.13    | <u> </u> | 2.0     | < 0.1    | 0.10     |
| (lbs/day)                         |        |         |         |         |         |         | <        | <       |          |         |          |          |
| Average Monthly                   | 0.0005 | 0.00059 | 0.00053 | 0.00058 | 0.00048 | 0.00054 | 0.00048  | 0.00079 | < 0.0007 | 0.00066 | < 0.0005 | 0.0005   |
| Total Cadmium                     | 0.0000 | 0.0000  | 0.0000  | 0.0000  | 0.00010 | 0.00001 | 0.000.0  | 0.00010 | 1 0.0001 | 0.0000  | 10.000   | 0.0000   |
| (lbs/day)                         |        |         |         |         |         |         | <        |         |          |         |          |          |
| Daily Maximum                     | 0.0009 | 0.00092 | 0.00080 | 0.00093 | 0.00100 | 0.00078 | 0.00110  | 0.00220 | < 0.0009 | 0.0012  | < 0.0007 | 0.0002   |
| Total Cadmium (mg/L)              |        |         |         |         |         |         | <        | <       |          |         |          |          |
| Average Monthly                   | 0.0002 | 0.0002  | 0.00020 | 0.00020 | 0.00021 | 0.00020 | 0.00021  | 0.00027 | < 0.0002 | 0.00021 | < 0.0002 | < 0.0002 |
| Total Cadmium (mg/L)              |        |         |         |         |         |         | <        |         |          |         |          |          |
| Daily Maximum                     | 0.0002 | 0.0002  | 0.0002  | 0.0002  | 0.00023 | 0.0002  | 0.00026  | 0.00048 | < 0.0002 | 0.00024 | < 0.0002 | 0.0002   |
| Total Cadmium (mg/L)              |        |         |         |         |         |         |          |         |          |         |          |          |
| Instantaneous                     |        |         |         |         |         |         | <        |         |          |         |          |          |
| Maximum                           | 0.0002 | 0.0002  | 0.0002  | 0.0002  | 0.00023 | 0.0002  | 0.00026  | 0.00048 | < 0.0002 | 0.00024 | < 0.0002 | < 0.0002 |
| Total Copper (lbs/day)            |        | 0.040   |         |         |         | 0.040   | 0.04=4   |         |          |         | 0.040    | 0.040    |
| Average Monthly                   | 0.014  | 0.016   | 0.0162  | 0.01885 | 0.00957 | 0.012   | < 0.0174 | 0.037   | 0.0127   | 0.0277  | 0.013    | 0.019    |
| Total Copper (lbs/day)            | 0.005  | 0.054   | 0.0040  | 0.04007 | 0.00440 | 0.000   | . 0. 000 | 0.405   | 0.0004   | 0.055   | 0.000    | 0.050    |
| Daily Maximum Total Copper (mg/L) | 0.035  | 0.051   | 0.0312  | 0.04637 | 0.03446 | 0.006   | < 0.039  | 0.165   | 0.0204   | 0.055   | 0.030    | 0.050    |
| Average Monthly                   | 0.005  | 0.0056  | 0.00610 | 0.00653 | 0.00021 | 0.012   | < 0.007  | 0.012   | 0.0036   | 0.0086  | 0.0049   | < 0.0069 |
| Total Copper (mg/L)               | 0.003  | 0.0030  | 0.00010 | 0.00033 | 0.00021 | 0.012   | < 0.007  | 0.012   | 0.0030   | 0.0000  | 0.0049   | < 0.0009 |
| Daily Maximum                     | 0.007  | 0.011   | 0.0078  | 0.010   | 0.00023 | 0.024   | < 0.0092 | 0.036   | 0.0045   | 0.011   | 0.0076   | 0.011    |
| Pentachloro-phenol                | 0.001  | 0.011   | 0.0070  | 0.010   | 0.00020 | 0.027   | ₹ 0.0002 | 0.000   | 0.0040   | 0.011   | 0.0070   | 0.011    |
| (lbs/day)                         |        |         |         |         |         |         |          |         |          |         |          |          |
| Average Monthly                   | 0.015  | 0.016   | 0.00151 | 0.0016  | 0.00133 | 0.015   | < 0.012  | < 0.016 | 0.0200   | 0.0180  | < 0.014  | < 0.016  |
| Pentachloro-phenol                | 2.3.0  | 5.5.5   |         | 2.20.0  |         | 2.3.0   |          |         |          | 2.2.00  |          |          |
| (lbs/day)                         |        |         |         |         |         |         |          |         |          |         |          |          |
| Daily Maximum                     | 0.026  | 0.026   | 0.00229 | 0.0026  | 0.00249 | 0.022   | < 0.024  | < 0.026 | 0.0258   | 0.0286  | < 0.023  | 0.026    |

#### NPDES Permit No. PA0008486

| Parameter          | JAN-21 | DEC-20 | NOV-20  | OCT-20  | SEP-20  | AUG-20 | JUL-20   | JUN-20   | MAY-20   | APR-20 | MAR-20   | FEB-20   |
|--------------------|--------|--------|---------|---------|---------|--------|----------|----------|----------|--------|----------|----------|
| Pentachloro-phenol |        |        |         |         |         |        |          |          |          |        |          |          |
| (mg/L)             |        |        |         |         |         |        |          |          |          |        |          |          |
| Average Monthly    | 0.005  | 0.0057 | 0.00057 | 0.00057 | 0.00057 | 0.005  | < 0.005  | < 0.0057 | < 0.0057 | 0.0056 | < 0.0056 | < 0.0056 |
| Pentachloro-phenol |        |        |         |         |         |        |          |          |          |        |          |          |
| (mg/L)             |        |        |         |         |         |        |          |          |          |        |          |          |
| Daily Maximum      | 0.005  | 0.0057 | 0.00057 | 0.00057 | 0.00057 | 0.005  | < 0.0056 | < 0.0057 | < 0.0057 | 0.0057 | < 0.0057 | < 0.0056 |

DMR Data for Outfall 002 (from February 1, 2020 to January 31, 2021)

| and Data for Outlan 902 (from representatly 1, 2020 to Sandary 31, 2021) |        |        |        |        |        |        |        |        |        |        |        |        |
|--------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Parameter                                                                | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |
| BOD5 (mg/L)                                                              |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum                                                            |        | 2.0    |        |        |        |        |        |        |        |        |        |        |
| TSS (mg/L)                                                               |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum                                                            |        | 2      |        |        |        |        |        |        |        |        |        |        |
| TKN (mg/L)                                                               |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum                                                            |        | 1.0    |        |        |        |        |        |        |        |        |        |        |
| Total Iron (mg/L)                                                        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum                                                            |        | 0.063  |        |        |        |        |        |        |        |        |        |        |

DMR Data for Outfall 003 (from February 1, 2020 to January 31, 2021)

| Parameter         | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| BOD5 (mg/L)       |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 2.0    |        |        |        |        |        |        |        |        |        |        |
| TSS (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1      |        |        |        |        |        |        |        |        |        |        |
| TKN (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1      |        |        |        |        |        |        |        |        |        |        |
| Total Iron (mg/L) |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 0.030  |        |        |        |        |        |        |        |        |        |        |

DMR Data for Outfall 004 (from February 1, 2020 to January 31, 2021)

| Will Data for Outrain | int Data for Outlan 604 (from February 1, 2020 to Sandary 51, 2021) |        |        |        |        |        |        |        |        |        |        |        |  |
|-----------------------|---------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Parameter             | JAN-21                                                              | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |  |
| BOD5 (mg/L)           |                                                                     |        |        |        |        |        |        |        |        |        |        |        |  |
| Daily Maximum         |                                                                     | 2.0    |        |        |        |        |        |        |        |        |        |        |  |
| TSS (mg/L)            |                                                                     |        |        |        |        |        |        |        |        |        |        |        |  |
| Daily Maximum         |                                                                     | 3      |        |        |        |        |        |        |        |        |        |        |  |
| TKN (mg/L)            |                                                                     |        |        |        |        |        |        |        |        |        |        |        |  |
| Daily Maximum         |                                                                     | 1.0    |        |        |        |        |        |        |        |        |        |        |  |
| Total Iron (mg/L)     |                                                                     |        |        |        |        |        |        |        |        |        |        |        |  |
| Daily Maximum         |                                                                     | 0.030  |        |        |        |        |        |        |        |        |        |        |  |

#### NPDES Permit Fact Sheet Ahlstrom-Munksjo Filtration LLC

DMR Data for Outfall 005 (from February 1, 2020 to January 31, 2021)

| Parameter         | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| BOD5 (mg/L)       |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 2.0    |        |        |        |        |        |        |        |        |        |        |
| TSS (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1      |        |        |        |        |        |        |        |        |        |        |
| TKN (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1.0    |        |        |        |        |        |        |        |        |        |        |
| Total Iron (mg/L) |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 0.030  |        |        |        |        |        |        |        |        |        |        |

DMR Data for Outfall 006 (from February 1, 2020 to January 31, 2021)

| Parameter         | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| BOD5 (mg/L)       |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 2.0    |        |        |        |        |        |        |        |        |        |        |
| TSS (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1      |        |        |        |        |        |        |        |        |        |        |
| TKN (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1.0    |        |        |        |        |        |        |        |        |        |        |
| Total Iron (mg/L) |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 0.030  |        |        |        |        |        |        |        |        |        |        |

DMR Data for Outfall 007 (from February 1, 2020 to January 31, 2021)

| Parameter         | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| BOD5 (mg/L)       |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 2.0    |        |        |        |        |        |        |        |        |        |        |
| TSS (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1      |        |        |        |        |        |        |        |        |        |        |
| TKN (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1.0    |        |        |        |        |        |        |        |        |        |        |
| Total Iron (mg/L) |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 0.030  |        |        |        |        |        |        |        |        |        |        |

DMR Data for Outfall 008 (from February 1, 2020 to January 31, 2021)

| Parameter         | JAN-21 | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 |
|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| BOD5 (mg/L)       |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 2.0    |        |        |        |        |        |        |        |        |        |        |
| TSS (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1      |        |        |        |        |        |        |        |        |        |        |
| TKN (mg/L)        |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 1.0    |        |        |        |        |        |        |        |        |        |        |
| Total Iron (mg/L) |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum     |        | 0.030  |        |        |        |        |        |        |        |        |        |        |

# **Existing Effluent Limitations and Monitoring Requirements**

Tables below summarize effluent limits and monitoring requirements specified in the current permit:

### Outfall 001

|                                                    |                     |                  | Effluent L | imitations          |                  |                     | Monitoring Re            | quirements         |
|----------------------------------------------------|---------------------|------------------|------------|---------------------|------------------|---------------------|--------------------------|--------------------|
| Barameter                                          | Mass Unit           | s (lbs/day)      |            | Concentrat          | ions (mg/L)      |                     | Minimum                  | Required           |
| Parameter                                          | Average<br>Monthly  | Daily<br>Maximum | Minimum    | Average<br>Monthly  | Daily<br>Maximum | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type     |
| Flow (MGD)                                         | Report              | Report           | XXX        | XXX                 | XXX              | XXX                 | Continuous               | Measured           |
| pH (S.U.)                                          | XXX                 | XXX              | 6.0        | XXX                 | XXX              | 9.0                 | 1/day                    | Grab               |
| Dissolved Oxygen                                   | XXX                 | XXX              | 5.0        | XXX                 | XXX              | XXX                 | 1/day                    | Grab               |
| Temperature (°F) Jul 1-31                          | XXX                 | XXX              | XXX        | Report              | 96.7             | XXX                 | 1/day                    | I-S                |
| Temperature (°F)<br>Jan 1 - Jun 30, Aug 1 - Nov 30 | XXX                 | XXX              | XXX        | Report              | 110              | XXX                 | 1/day                    | I-S                |
| Temperature (°F) Dec 1-31                          | XXX                 | XXX              | XXX        | Report              | 106              | XXX                 | 1/day                    | I-S                |
| CBOD5                                              | 85                  | 170              | XXX        | 18                  | 36               | 45                  | 1/week                   | 24-Hr<br>Composite |
| Total Suspended Solids                             | 142                 | 284              | XXX        | 30                  | 60               | 75                  | 1/week                   | 24-Hr<br>Composite |
| Total Phosphorus                                   | 9.5                 | 19               | XXX        | 2.0                 | 4.0              | 5.0                 | 1/week                   | 24-Hr<br>Composite |
| Total Copper                                       | 0.104               | 0.208            | XXX        | 0.022               | 0.044            | 0.055               | 1/week                   | 24-Hr<br>Composite |
| Pentachlorophenol                                  | 0.095               | 0.19             | XXX        | 0.02                | 0.04             | 0.05                | 1/week                   | 24-Hr<br>Composite |
| Total Cadmium                                      | Report              | Report           | XXX        | Report              | Report           | Report              | 1/week                   | 24-Hr<br>Composite |
| Nitrate-Nitrite as N                               | Report<br>Avg Qrtly | XXX              | XXX        | Report<br>Avg Qrtly | XXX              | XXX                 | 1/quarter                | 24-Hr<br>Composite |
| Total Kjeldahl Nitrogen                            | Report<br>Avg Qrtly | XXX              | XXX        | Report<br>Avg Qrtly | XXX              | XXX                 | 1/quarter                | 24-Hr<br>Composite |
| Total Nitrogen                                     | Report<br>Avg Qrtly | XXX              | XXX        | Report<br>Avg Qrtly | XXX              | XXX                 | 1/quarter                | Calculation        |

# **Existing Effluent Limitations and Monitoring Requirements (continued)**

Outfalls 002 through 008 (formerly S01 through S07)

|                         |                    |             | Effluent L | imitations         |              |                     | Monitoring Red           | quirements     |
|-------------------------|--------------------|-------------|------------|--------------------|--------------|---------------------|--------------------------|----------------|
| Parameter               | Mass Units         | s (lbs/day) |            | Concentrat         | tions (mg/L) |                     | Minimum                  | Required       |
|                         | Average<br>Monthly |             | Minimum    | Average<br>Monthly | Maximum      | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
| BOD5                    | XXX                | XXX         | XXX        | XXX                | Report       | XXX                 | 1/year                   | Grab           |
| Total Suspended Solids  | XXX                | XXX         | XXX        | XXX                | Report       | XXX                 | 1/year                   | Grab           |
| Total Kjeldahl Nitrogen | XXX                | XXX         | XXX        | XXX                | Report       | XXX                 | 1/year                   | Grab           |
| Total Iron              | xxx                | XXX         | xxx        | XXX                | Report       | XXX                 | 1/year                   | Grab           |

|                                        | Development of Effluent Limitations and Monitoring Requirements |  |           |                 |  |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------|--|-----------|-----------------|--|--|--|--|--|--|
| Outfall No. 001 Design Flow (MGD) .569 |                                                                 |  |           |                 |  |  |  |  |  |  |
| Latitude                               | 40° 6' 14.00'                                                   |  | Longitude | -77° 10' 50.00" |  |  |  |  |  |  |
| Wastewater D                           | Wastewater Description: IW Process Effluent with ELG            |  |           |                 |  |  |  |  |  |  |

#### **Technology-Based Limitations**

Given the current industrial activities, Ahlstrom continues to be regulated under 40CFR Part 430 Subpart L technology limits for Tissue, Filter, Non-woven, and Paperboard from purchased pulp. As shown on the table below, §430.122 lists BPT ELGs (existing dischargers) for BOD5, TSS and pH and §430.124 lists BAT ELGs (existing dischargers) for Pentachlorophenol and Trichlorophenol where chlorophenolic-containing biocides are used. The previous fact sheet addressed that this facility does not use biocides containing chlorophenolic compounds. This was re-confirmed by Mark Cassel of Ahlstrom on March 16, 2021. Therefore, BAT ELGs are not applicable for Ahlstrom.

| Pollutant          | Kg/kkg                | g (or pounds per 1,000 lb) of produ             | ct                              |
|--------------------|-----------------------|-------------------------------------------------|---------------------------------|
| or                 | Continu               | Non-continuous                                  |                                 |
| pollutant property | Maximum for any 1 day | Average of daily values for 30 consecutive days | dischargers<br>(annual average) |
| BOD5               | 29.6                  | 16.3                                            | 9.1                             |
| TSS                | 26.6                  | 13.0                                            | 7.4                             |
| рН                 | With                  | in the range of 5.0 to 9.0 at all times         |                                 |

BPT effluent limitations for non-integrated mills where filter and non-woven papers are produced from purchased pulp

If a mill is a non-continuous discharger, the mill is subject to annual average limits instead of average and maximum mass limitations per 40CFR430.122. The definition of a non-continuous discharge is "...a mill which is prohibited from discharging pollutants during specific periods of time..." according to 40CFR430.01. The application reported that the average production days are about 24 days per month as it seems no production occurs during the weekend. There is no indication that the facility is not prohibited from discharging during specific times. It is considered continuous for the purpose of setting limitations based on ELGs and annual average limits are not applicable.

BPT ELGs for BOD5 and TSS, specified in lbs/1000 lbs of product, are production-based effluent limitations. To develop mass-based effluent limitations, EPA allows permit writers to use the average daily production rate calculated using the highest annual production from the previous 3 to 5 years. According to the updated application, the year 2018 had the highest production rate with an average daily rate of 31,574 lbs/day. Consequently, technology-based limits for BOD5 and TSS are as follows:

|                  | BPT ELG (lbs   | /1000 lbs product) | Tech Permit Limit (lbs |         |  |  |
|------------------|----------------|--------------------|------------------------|---------|--|--|
| <u>Parameter</u> | <u>Average</u> | Day Max            | <u>Average</u>         | Day Max |  |  |
| BOD5             | 16.3           | 29.6               | 514                    | 934     |  |  |
| TSS              | 13             | 26.6               | 410                    | 839     |  |  |

25 Pa Code  $\S95.2(1)$  requires a pH effluent level of less than 6.0 and not greater than 9.0. Since this is more stringent than the ELG, the permit will include pH limits of 6.0 - 9.0.

25 Pa Code §95.2(4) recommends an instantaneous maximum dissolved iron limit of 7.0 mg/L; however, since the application reported that dissolved iron was non-detected in effluent using a detection level of 0.06 mg/L, no limit is recommended.

25 Pa Code § 95.2(2)(ii) requires an average monthly Oil and Grease limit of 15 mg/L and instantaneous maximum limit of 30 mg/L for any oil-bearing wastewaters. DEP's SOP also recommends these limits to control oil and grease effluent level if the samples contain more than 8.0 mg/L of oil and grease. Samples reported in the application show oil and grease was non-detected in effluent using a detection level of 3.9 mg/L. Accordingly, no limit is recommended.

Three (3) samples were collected for Total Residual Chlorine (TRC). One of them was non-detected and the maximum value of all three samples was 0.02 mg/L. No TRC monitoring is necessary at this time. Further review may be conducted during the next permit renewal application review process.

All abovementioned technology-based limitations apply, subject to water quality analysis and BPJ where applicable.

#### **Water Quality-Based Limitations**

#### CBOD5, NH3-N and Dissolved Oxygen

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. A multi-discharge analysis has been conducted as there are other discharges located within the Mountain Creek watershed. The model output recommends the WQBEL for NH3-N. However, the application reported the maximum influent concentration of 0.323 mg/L for NH3-N. In the opinion of DEP, NH3-N is not a pollutant of concern for this facility. Accordingly, no limits are recommended for NH3-N.

The ratio of  $BOD_5$  and  $CBOD_5$  at secondary treatment levels of 30 mg/l and 25 mg/l is 1.2:1. Applying this ratio to the tech limit of 514 lbs/day  $BOD_5$  yields an equivalent  $CBOD_5$  limit of 428 lbs/day compared to the average WQBEL of 85 lbs/day (i.e., 18 mg/L x 8.34 x 0.569 MGD). The Day Max tech limit of 934 lbs./day yields an equivalent  $CBOD_5$  limit of 778 lbs/day compared to the Daily Max WQBEL of 170 lbs/ day (i.e., 85 lbs/day x 2). The WQBEL  $CBOD_5$  limits are more stringent than the ELG limits and will therefore be written. Past DMRs demonstrate that the facility is able to meet these mass load effluent limits.

#### Toxics Pollutants

DEP utilizes a Toxics Management Spreadsheet (TMS; last modified on March 2021 ver. 1.3) to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet combines the functionality of DEP's Toxics Screening Analysis worksheet and PENTOXSD. This spreadsheet recommends a routine monitoring of Total Aluminum. The current permit contains WQBELs for Total Copper and Pentachlorophenol and a routine monitoring requirement for Total Cadmium. Over the past three (3) years, Pentachlorophenol has been consistently non-detected in effluent at 0.0056 mg/L which is lower than the current DEP target Quantitation Limit of 0.01 mg/L. If detected, it was still reported as 0.0056 mg/L. The current treatment technology equipped at this facility does not treat Pentachlorophenol; therefore, the influent concentration level would be identical to the effluent concentration level. Based on these datasets, DEP has determined that Pentachlorophenol is not a pollutant of concern for this facility. Therefore, it is recommended that the existing WQBELs for this pollutant be removed from this permit. Total Copper has been consistently detected in the effluent and Total Cadmium has been detected in the effluent but not as often as Total Copper. The past 2-year DMR results (daily maximum) for these pollutants were first entered into DEP's TOXCONC worksheet to produce a coefficient of variation and statistical average monthly effluent concentrations. These values were then used in TMS and the TMS output indicates that no permit requirement is needed for Total Cadmium and monitoringonly requirement is needed for Total Copper. As a result, it is recommended that the existing monitoring requirement for Total Cadmium be removed and the existing WQBELs for Total Copper be replaced with the monitoring-only requirement. The relaxation or removal of these pollutants including Pentachlorophenol is supported by 40 CFR §122.44(I)(i)(B)(1) as now DEP has much more data to evaluate the effluent quality.

#### Thermal Discharge

Considering the incomplete mix condition in the stream and another noncontact cooling water discharger (i.e., Specialty Papers Permit No PA0008150) located about a mile downstream from Ahlstrom, flows need to be adjusted to simulate this condition and to allocate the resource among these dischargers. Accordingly, Ahlstrom and Specialty Papers were combined and modeled at the Specialty Papers discharge location. DEP's Thermal Analysis Spreadsheet was used and the output shows that effluent limits are needed for July and December. As July is determined to be a critical month, DEP determined that a further review with better information would be necessary to ensure that effluent limits are properly developed. The default ambient temperature for July is 73 °F. The water quality network station no. WQN 262 on the Mountain Creek has reported median temperature of 65 °F for July which would warrant a reduction in ambient temperature. This station is however located in the CWF portion of Mountain Creek where the default temperature is 71 °F. Based on this, DEP determined that it would be reasonable to reduce the ambient temperature during July to the CWF ambient temperature of 71 °F as this value gives a better representation of actual stream temperature for Mountain Creek than the default TSF ambient temperature. The spreadsheet was reutilized and the output shows that effluent limits of 96.7 °F and 106 °F are needed during July and December respectively. The permittee is required to meet 110 °F during the remainder of the year.

#### **Best Professional Judgment Limitations**

#### **Total Suspended Solids**

An average monthly TSS limit of 30 mg/l was previously imposed in the permit and was based on the standard found in 25 Pa. 92a.47(a)(1). This is a reasonable approach as Ahlstrom currently utilizes secondary treatment for its wastewater. The

#### NPDES Permit Fact Sheet Ahlstrom-Munksjo Filtration LLC

daily maximum limit of 60 mg/L was developed using a multiplier of 2. This results in mass load limits of 142 lbs/day average monthly and 285 lbs/day daily maximum. These limits are more stringent than the ELGs and will therefore be written in the permit.

#### <u>Dissolved Oxygen</u>

A minimum DO limit of 5.0 mg/L is included in the current permit and will remain unchanged to ensure that the facility continues to meet the criteria found in 25 Pa. Code § 93.7(a). WQM 7.0 also recommends a minimum level of 5.0 mg/L.

#### **Phosphorus**

The permit contains an average monthly limit of 2.0 mg/L (multipliers of 2 for daily max and 2.5 for IMAX). Total Phophorus has been consistently detected in the effluent. In the opinion of DEP, there is no reason to relax or remove the existing permit requirements. Therefore, recommend retaining limits because of anti-backsliding requirements of the Clean Water Act, Section 402(o).

#### **Additional Considerations**

#### TDS, Sulfate, Chloride and Bromide

Total Dissolved Solids (TDS) and its constituents have become major parameters of concern for waters of the Commonwealth. Per DEP Central Office directive, these parameters are to be monitored if the discharge exceeds 0.10 MGD and the TDS exceeds 1,000 mg/l. The daily maximum TDS level reported in the application is 638 mg/l so monitoring is not required. Bromide is not detected at 0.6 mg/l so monitoring is not required. 1,4-Dioxane is less than 0.0028 mg/L so monitoring is not required.

#### Chesapeake Bay

Ahlstrom Filtration is not a significant Bay discharger. WIP III requires discharges associated with paper processing with the potential to introduce a net TN or TP increase to the load contained within the intake water used in processing be monitored one/month for TN and TP. Processing source water is a well. The company purchases pulp making paper directly from the pulp with minimal pulp processing. Since there is minimal potential to increase TN and TP loading, monitoring was reduced to quarterly for TN during the last permit renewal. These quarterly sample results are summarized below:

|            | Quarterly Total Nitrogen Sample Results (mg/L) |            |      |  |  |  |  |  |  |  |
|------------|------------------------------------------------|------------|------|--|--|--|--|--|--|--|
| 10/25/2018 | 3.37                                           | 01/28/2020 | 1.42 |  |  |  |  |  |  |  |
| 02/04/2019 | 2.34                                           | 04/27/2020 | 1.84 |  |  |  |  |  |  |  |
| 04/26/2019 | 2.38                                           | 07/27/2020 | 1.66 |  |  |  |  |  |  |  |
| 05/24/2019 | 2.4                                            | 10/27/2020 | 1.2  |  |  |  |  |  |  |  |
| 10/28/2019 | < 1.38                                         | 01/25/2021 | 1.32 |  |  |  |  |  |  |  |

The effluent levels for Total Nitrogen are very low consistently. No significant net increase is expected. The monitoring requirement for Total Nitrogen is therefore removed from the permit.

#### **Chemical Additives**

According to the application, there are two (2) chemical additives that the permittee wishes to use; Genesys-Genesol 38 and Genesys-Genesol 703. These chemicals were on the approved list just before the permit renewal application submitted; therefore, DEP has not yet received a chemical additive notification form. The use of these chemical additives will be reviewed once the notification forms are submitted for these chemical additives.

#### Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

#### Class A Wild Trout Streams

No Class A Wild Trout Fishery is impacted by this discharge.

#### 303d Listed Streams

The discharge is in a stream segment listed as attaining uses.

|              | Development of Effluent Limitations and Monitoring Requirements |                   |                |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------|-------------------|----------------|--|--|--|--|--|--|
| Outfall No.  | 002 through 008                                                 | Design Flow (MGD) | N/A            |  |  |  |  |  |  |
| Latitude     | 40° 6' 14.00"                                                   | Longitude         | 77° 10' 48.00" |  |  |  |  |  |  |
| Wastewater [ | Description: Stormwater                                         | <del></del>       |                |  |  |  |  |  |  |

For stormwater discharges covered under industrial waste NPDES permits, DEP generally developed permit requirements that are aligned with permit requirements specified in DEP's PAG-03 General Permit for Stormwater Associated with Industrial Activities. This approach was used in past permit renewals and it is still reasonable to apply for this permit renewal. This facility would be categorized under Appendix E of DEP's PAG-03 General Permit given the SIC code of 2621. Appendix E applies to paper and allied products facilities. PAG-03 General Permit requires the following monitoring requirements for these parameters.

| Parameter | Minimum<br>Measurement<br>Frequency | Sample Type |
|-----------|-------------------------------------|-------------|
| pН        | 1/6 months                          | Grab        |
| COD       | 1/6 months                          | Grab        |
| TSS       | 1/6 months                          | Grab        |

These monitoring requirements will be included in the permit along with standard Part C conditions pertaining to stormwater requirements.

#### **Proposed Effluent Limitations and Monitoring Requirements**

NPDES Permit No. PA0008486

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

#### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                                    |                    |                          | Effluent L          | imitations          |                  |                     | Monitoring Red           | quirements         |
|----------------------------------------------------|--------------------|--------------------------|---------------------|---------------------|------------------|---------------------|--------------------------|--------------------|
| Parameter                                          | Mass Units         | (lbs/day) <sup>(1)</sup> |                     | Concentrat          | ions (mg/L)      |                     | Minimum <sup>(2)</sup>   | Required           |
| Farameter                                          | Average<br>Monthly | Daily<br>Maximum         | Instant.<br>Minimum | Average<br>Monthly  | Daily<br>Maximum | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type     |
| Flow (MGD)                                         | Report             | Report                   | XXX                 | XXX                 | XXX              | XXX                 | Continuous               | Measured           |
| pH (S.U.)                                          | XXX                | XXX                      | 6.0                 | XXX                 | 9.0              | XXX                 | 1/day                    | Grab               |
| DO                                                 | XXX                | XXX                      | 5.0<br>Daily Min    | XXX                 | XXX              | XXX                 | 1/day                    | Grab               |
| Temperature (°F)<br>Jan 1 - Jun 30, Aug 1 - Nov 30 | XXX                | XXX                      | XXX                 | Report              | 110              | XXX                 | 1/day                    | I-S                |
| Temperature (°F) Jul 1 - 31                        | XXX                | XXX                      | XXX                 | Report              | 96.7             | XXX                 | 1/day                    | I-S                |
| Temperature (°F) Dec 1 - 31                        | XXX                | XXX                      | XXX                 | Report              | 106              | XXX                 | 1/day                    | I-S                |
| CBOD5                                              | 85                 | 170                      | XXX                 | 18                  | 36               | 45                  | 1/week                   | 24-Hr<br>Composite |
| TSS                                                | 142                | 284                      | XXX                 | 30                  | 60               | 75                  | 1/week                   | 24-Hr<br>Composite |
| Total Phosphorus                                   | 9.5                | 19                       | XXX                 | 2.0                 | 4.0              | 5                   | 1/week                   | 24-Hr<br>Composite |
| ·                                                  |                    |                          |                     | Report              |                  |                     |                          | 24-Hr              |
| Total Aluminum                                     | Report             | Report                   | Report              | Daily Max           | XXX              | XXX                 | 1/week                   | Composite          |
| Total Copper                                       | Report             | Report                   | Report              | Report<br>Daily Max | XXX              | XXX                 | 1/week                   | 24-Hr<br>Composite |

# **Proposed Effluent Limitations and Monitoring Requirements (continued)**

Outfalls 002 through 008 (formerly S01 through S07)

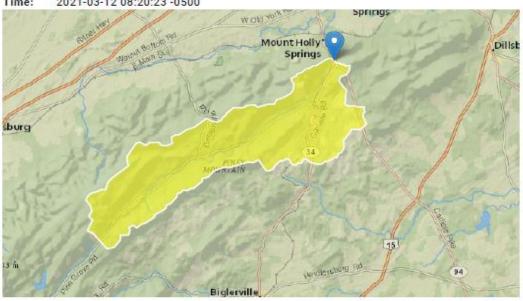
|                        |                    |           | Effluent L | imitations         |              |                     | Monitoring Red           | quirements     |
|------------------------|--------------------|-----------|------------|--------------------|--------------|---------------------|--------------------------|----------------|
| Parameter              | Mass Units         | (lbs/day) |            | Concentrat         | tions (mg/L) |                     | Minimum                  | Required       |
|                        | Average<br>Monthly |           | Minimum    | Average<br>Monthly | Maximum      | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type |
| pH (S.U.)              | XXX                | XXX       | XXX        | XXX                | Report       | XXX                 | 1/6 month                | Grab           |
| Chemical Oxygen Demand | XXX                | XXX       | XXX        | XXX                | Report       | XXX                 | 1/6 month                | Grab           |
| Total Suspended Solids | xxx                | XXX       | XXX        | xxx                | Report       | xxx                 | 1/6 month                | Grab           |

|       | Tools and References Used to Develop Permit                                                                                                                                                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>_ |                                                                                                                                                                                                                    |
|       | WQM for Windows Model (see Attachment )                                                                                                                                                                            |
|       | Toxics Management Spreadsheet (see Attachment )                                                                                                                                                                    |
|       | TRC Model Spreadsheet (see Attachment )                                                                                                                                                                            |
|       | Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                    |
|       | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
|       | Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.                                                                                                             |
|       | Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.                                                                                                                                                |
|       | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.                                                                                                                  |
|       | Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.                                                                                                                       |
|       | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.                                                                                                      |
|       | Pennsylvania CSO Policy, 385-2000-011, 9/08.                                                                                                                                                                       |
|       | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
|       | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.                                                                                           |
|       | Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                                                                              |
|       | Implementation Guidance Design Conditions, 391-2000-006, 9/97.                                                                                                                                                     |
|       | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.                                                    |
|       | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.                                                                             |
|       | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.                                                                   |
|       | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.                                                              |
|       | Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.                                                                                                                                    |
|       | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.                                             |
|       | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.                                                                                                                           |
|       | Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.                                                                                                                                              |
|       | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.                                                                                                       |
|       | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.       |
|       | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.                                                                               |
|       | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. |
|       | Design Stream Flows, 391-2000-023, 9/98.                                                                                                                                                                           |
|       | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.                                     |
|       | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.                                                                                                                         |
|       | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
|       | SOP:                                                                                                                                                                                                               |
| i     | Othor                                                                                                                                                                                                              |

#### Attachments

#### 1. StreamStats

3/12/2021


# StreamStats Report

Region ID: PA

Workspace ID: PA20210312132006471000

Clicked Point (Latitude, Longitude): 40.10378, -77.18052

2021-03-12 08:20:23 -0500



StreamStats

| Parameter |                                                                 |       |                          |
|-----------|-----------------------------------------------------------------|-------|--------------------------|
| Code      | Parameter Description                                           | Value | Unit                     |
| DRNAREA   | Area that drains to a point on a stream                         | 44.3  | square miles             |
| PRECIP    | Mean Annual Precipitation                                       | 41    | inches                   |
| STRDEN    | Stream Density total length of streams divided by drainage area | 1.2   | miles per<br>square mile |
| ROCKDEP   | Depth to rock                                                   | 5     | feet                     |
| CARBON    | Percentage of area of carbonate rock                            | 13.1  | percent                  |

https://streamstats.usgs.gov/ss/

3/12/2021 StreamStats

Low-Flow Statistics Parameters [100 Percent (44.3 square miles) Low Flow Region 2]

| Parameter<br>Code | Parameter Name               | Value | Units                    | Min<br>Limit | Max<br>Limit |
|-------------------|------------------------------|-------|--------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                | 44.3  | square miles             | 4.93         | 1280         |
| PRECIP            | Mean Annual<br>Precipitation | 41    | inches                   | 35           | 50.4         |
| STRDEN            | Stream Density               | 1.2   | miles per square<br>mile | 0.51         | 3.1          |
| ROCKDEP           | Depth to Rock                | 5     | feet                     | 3.32         | 5.65         |
| CARBON            | Percent Carbonate            | 13.1  | percent                  | 0            | 99           |

Low-Flow Statistics Flow Report[100 Percent (44.3 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic               | Value | Unit   | SE | SEp |
|-------------------------|-------|--------|----|-----|
| 7 Day 2 Year Low Flow   | 11    | ft^3/s | 38 | 38  |
| 30 Day 2 Year Low Flow  | 13.3  | ft^3/s | 33 | 33  |
| 7 Day 10 Year Low Flow  | 6.76  | ft^3/s | 51 | 51  |
| 30 Day 10 Year Low Flow | 8.04  | ft^3/s | 46 | 46  |
| 90 Day 10 Year Low Flow | 10.8  | ft^3/s | 36 | 36  |

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

https://streamstats.usgs.gov/ss/

### 2. WQM ver. 1.1

# Input Data WQM 7.0

| Stream Data    |                          |        |       |           |          |             |                |              |              |             |                |         |      |        |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|-------|-----------|----------|-------------|----------------|--------------|--------------|-------------|----------------|---------|------|--------|----------|
| Stream Data   Stream Data   Stream   Cond.   |                          |        |       |           | Stre     | eam Name    |                | RMI          |              |             | Area           |         | With | drawal |          |
| Design Cond.   Cofs   Flow Flow Flow   Traw   Velocity   Ratio   Width   Depth   Temp   pH   Temp   pH   Temp   pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 07E    | 631   | 167 MOUN  | ITAIN CR | EEK         |                | 3.18         | 80           | 585.00      | 44.4           | 40 0.00 | 0000 | 0.00   | <b>~</b> |
| Plow   Flow   Tray   Velocity   Ratio   Width   Depth   Temp   pH   Temp   pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |       |           |          | St          | ream Dat       | a            |              |             |                |         |      |        |          |
| (cfsm)         (cfs)         (cfs)         (days)         (fps)         (ft)         (ft)         (°C)         (°C)           7-10         0.313         0.00         0.00         0.000         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Design                   | LFY    |       |           | Trav     |             |                |              |              |             |                |         |      |        |          |
| 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cona.                    | (cfsm) | (cfs) | (cfs)     |          | (fps)       |                | (ft)         | (ft)         | (°C         | )              |         | (°C) |        |          |
| Name   Permit Number   Existing   Permitted Design   Disc   Dis | Q7-10<br>Q1-10<br>Q30-10 | 0.313  | 0.00  | 0.00      | 0.000    | 0.000       | 0.0            | 0.00         | 0.00         | ) 2         | 0.00           | 7.00    | 0.00 | 0.00   |          |
| Name   Permit Number   Disc   Disc   Disc   Reserve   Temp   pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        |       |           |          | Di          | ischarge (     | Data         |              |             |                |         |      | 7      |          |
| Parameter Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |        |       | Name      | Per      | rmit Number | Disc<br>r Flow | Disc<br>Flow | Disc<br>Flow | Res<br>V Fa | erve T<br>ctor | emp     |      |        |          |
| Disc Trib Stream Fate   Conc Conc Conc Coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |        | Ahlst | rom       | PA       | 0008486     | 0.5690         | 0.569        | 0 0.56       | 390         | 0.000          | 26.00   | 7.30 | 1      |          |
| Conc   Conc   Coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |        |       |           |          | Pa          | arameter (     | Data         |              |             |                |         |      |        |          |
| CBOD5 18.00 2.00 0.00 1.50 Dissolved Oxygen 5.00 8.24 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        |       | ı         | Paramete | r Name      | C              | onc C        | onc          | Conc        | Coef           |         |      |        |          |
| Dissolved Oxygen 5.00 8.24 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | -      |       |           |          |             | (m             | g/L) (n      | ig/L)        | (mg/L)      | (I/days)       |         |      |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        |       | CBOD5     |          |             |                | 18.00        | 2.00         | 0.00        | 1.50           |         |      |        |          |
| NH3-N 25.00 0.00 0.00 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |        |       | Dissolved | Oxygen   |             |                | 5.00         | 8.24         | 0.00        | 0.00           |         |      |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | L      |       | NH3-N     |          |             | :              | 25.00        | 0.00         | 0.00        | 0.70           | l       |      |        |          |

|                          |              |                      |                      |                         | ıııpı           | ut Dati     | u w Qi                           | 1 7.0        |                          |                                |                  |                     |         |            |
|--------------------------|--------------|----------------------|----------------------|-------------------------|-----------------|-------------|----------------------------------|--------------|--------------------------|--------------------------------|------------------|---------------------|---------|------------|
|                          | SWP<br>Basin |                      |                      | Stre                    | eam Name        |             | RMI                              |              | ration<br>ft)            | Drainage<br>Area<br>(sq mi)    | Slope<br>(ft/ft) | PW<br>Withd<br>(mg  | rawal   | Appl<br>FC |
|                          | 07E          | 631                  | 67 MOUN              | ITAIN CR                | REEK            |             | 2.14                             | 10           | 547.00                   | 45.60                          | 0.00000          | 0                   | 0.00    | <b>✓</b>   |
|                          |              |                      |                      |                         | St              | ream Dat    | ta                               |              |                          |                                |                  |                     |         |            |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width                     | Rch<br>Depth | Tem                      | Tributary<br>np pH             | Ter              | <u>Strean</u><br>mp | n<br>pH |            |
| Cond.                    | (cfsm)       | (cfs)                | (cfs)                | (days)                  | (fps)           |             | (ft)                             | (ft)         | (°C                      | )                              | (°               | C)                  |         |            |
| Q7-10<br>Q1-10<br>Q30-10 | 0.313        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000           | 0.0         | 0.00                             | 0.00         | ) 2                      | 0.00 7.                        | 00               | 0.00                | 0.00    |            |
|                          |              |                      |                      |                         | Di              | scharge     | Data                             |              |                          |                                |                  |                     | 1       |            |
|                          |              |                      | Name                 | Per                     | rmit Number     | Disc        | Permitt<br>Disc<br>Flow<br>(mgd) | Disc<br>Flow | Res<br>V Fa              | Dis<br>erve Ten<br>ctor<br>(°C | np               | )isc<br>pH          |         |            |
|                          |              | Speci                | alty Paper           | PA                      | 0008150         | 1.500       | 0 1.500                          | 00 1.50      | 000                      | 0.000 2                        | 23.00            | 7.00                |         |            |
|                          |              |                      |                      |                         | Pa              | arameter    | Data                             |              |                          |                                |                  |                     |         |            |
|                          |              |                      | ı                    | Paramete                | r Name          | С           | one (                            | Conc         | Stream<br>Conc<br>(mg/L) | Fate<br>Coef<br>(1/days)       |                  |                     |         |            |
|                          | -            |                      |                      |                         |                 | (11         | ig/L) (i                         | ilg/L)       | (mg/L)                   | (1/days)                       |                  | -                   |         |            |
|                          |              |                      | CBOD5                |                         |                 |             | 23.90                            | 2.00         | 0.00                     | 1.50                           |                  |                     |         |            |
|                          |              |                      | Dissolved            | Oxygen                  |                 |             | 5.00                             | 8.24         | 0.00                     | 0.00                           |                  |                     |         |            |
|                          |              |                      | NH3-N                |                         |                 |             | 25.00                            | 0.00         | 0.00                     | 0.70                           |                  |                     |         |            |

Monday, May 10, 2021 Version 1.1 Page 2 of 5

|                          |              |                      |                      |                         | ııı p           | ut Dut      | u w Qn                            | 1 7.0        |               |                             |                  |                    |         |          |
|--------------------------|--------------|----------------------|----------------------|-------------------------|-----------------|-------------|-----------------------------------|--------------|---------------|-----------------------------|------------------|--------------------|---------|----------|
|                          | SWP<br>Basin |                      |                      | Stre                    | eam Name        |             | RMI                               | Eleva<br>(fi |               | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft) | PW<br>Withd<br>(mg | rawal   | Apply    |
|                          | 07E          | 631                  | 167 MOUN             | ITAIN CR                | EEK             |             | 1.78                              | 30 5         | 540.00        | 46.00                       | 0.0000           | 0                  | 0.00    | <b>~</b> |
|                          |              |                      |                      |                         | St              | ream Dat    | ta                                |              |               |                             |                  |                    |         |          |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth | Tem           | <u>Tributary</u><br>ip pH   | Te               | Stream<br>mp       | n<br>pH |          |
| cond.                    | (cfsm)       | (cfs)                | (cfs)                | (days)                  | (fps)           |             | (ft)                              | (ft)         | (°C           | )                           | (°               | C)                 |         |          |
| Q7-10<br>Q1-10<br>Q30-10 | 0.313        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 |                 | 0.0         | 0.00                              | 0.00         | 2             | 0.00 7.                     | .00              | 0.00               | 0.00    |          |
|                          |              |                      |                      |                         | Di              | scharge     | Data                              |              |               |                             |                  |                    | ]       |          |
|                          |              |                      | Name                 | Per                     | rmit Number     | Disc        | Permitte<br>Disc<br>Flow<br>(mgd) | Disc<br>Flow | Res<br>Fa     | ctor                        | sc (<br>mp<br>C) | pH                 |         |          |
|                          |              | Mt. H                | olly                 | PA                      | 0023183         | 0.700       | 0 0.700                           | 0.70         | 00 (          | 0.000                       | 20.00            | 7.00               |         |          |
|                          |              |                      |                      |                         | Pa              | rameter     | Data                              |              |               |                             |                  |                    |         |          |
|                          |              |                      |                      | Paramete                | r Name          |             |                                   |              | tream<br>Conc | Fate<br>Coef                |                  |                    |         |          |
|                          | _            |                      |                      |                         |                 | (m          | ng/L) (n                          | ng/L) (i     | mg/L)         | (1/days)                    |                  | _                  |         |          |
|                          |              |                      | CBOD5                |                         |                 |             | 20.00                             | 2.00         | 0.00          | 1.50                        |                  |                    |         |          |
|                          |              |                      | Dissolved            | Oxygen                  |                 |             | 5.00                              | 8.24         | 0.00          | 0.00                        |                  |                    |         |          |
|                          |              |                      | NH3-N                |                         |                 |             | 2.50                              | 0.00         | 0.00          | 0.70                        |                  |                    |         |          |

22

|                          | SWP<br>Basir |                      |                      | Stream Name             |                         | RMI         |                                 | vation<br>(ft) | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft)          | PW<br>Withd<br>(mg | rawal               | Apply<br>FC |          |
|--------------------------|--------------|----------------------|----------------------|-------------------------|-------------------------|-------------|---------------------------------|----------------|-----------------------------|---------------------------|--------------------|---------------------|-------------|----------|
|                          | 07E          | 631                  | 87 MOUN              | ITAIN CR                | EEK                     |             | 0.7                             | 50             | 514.30                      | 46.20                     | 0.0000             | 0                   | 0.00        | <b>~</b> |
|                          |              |                      |                      |                         | St                      | ream Dat    | a                               |                |                             |                           |                    |                     |             |          |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow       | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                    | Rch<br>Depth   |                             | <u>Tributary</u><br>IP pH | Te                 | <u>Strean</u><br>mp | n<br>pH     |          |
| Cond.                    | (cfsm)       | (cfs)                | (cfs)                | (days)                  | (fps)                   |             | (ft)                            | (ft)           | (°C                         | )                         | (°                 | C)                  |             |          |
| Q7-10<br>Q1-10<br>Q30-10 | 0.313        | 0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0         | 0.00                            | 0.0            | 0 2                         | 0.00 7                    | .00                | 0.00                | 0.00        |          |
|                          |              |                      |                      |                         | Di                      | scharge (   | Data                            |                |                             |                           |                    |                     | 1           |          |
|                          |              |                      | Name                 | Per                     | rmit Number             | Disc        | Permitt<br>Disc<br>Flow<br>(mgd | Dis<br>Flo     | c Res<br>w Fa               | ctor                      |                    | pH                  |             |          |
|                          |              | Land (               | O'Lakes              | PAG                     | 00449110                | 0.8100      | 0.810                           | 00 0.8         | 100                         | 0.000                     | 20.00              | 7.00                |             |          |
|                          |              |                      |                      |                         | Pa                      | rameter (   | Data                            |                |                             |                           |                    |                     |             |          |
|                          |              |                      |                      | Paramete                | r Name                  |             |                                 | Trib<br>Conc   | Stream<br>Conc              | Fate<br>Coef              |                    |                     |             |          |
|                          |              |                      |                      | aramete                 | rvame                   | (m          | g/L) (r                         | ng/L)          | (mg/L)                      | (1/days)                  |                    | _                   |             |          |
|                          |              | (                    | CBOD5                |                         |                         |             | 10.00                           | 2.00           | 0.00                        | 1.50                      |                    |                     |             |          |
|                          |              | ı                    | Dissolved            | Oxygen                  |                         |             | 5.00                            | 8.24           | 0.00                        | 0.00                      |                    |                     |             |          |
|                          |              | 1                    | NH3-N                |                         |                         |             | 1.50                            | 0.00           | 0.00                        | 0.70                      |                    |                     |             |          |

23

|                          |              |                      |                |                         | ıııp                    | ut Date     | 4 11 0                          | W 7.0          |                |                                |                  |                      |                     |            |
|--------------------------|--------------|----------------------|----------------|-------------------------|-------------------------|-------------|---------------------------------|----------------|----------------|--------------------------------|------------------|----------------------|---------------------|------------|
|                          | SWP<br>Basin |                      |                | Stre                    | eam Name                |             | RMI                             |                | vation<br>(ft) | Drainage<br>Area<br>(sq mi)    | Slope<br>(ft/ft) | Withd                | /S<br>Irawal<br>gd) | Appl<br>FC |
|                          | 07E          | 631                  | 167 MOUN       | ITAIN CR                | EEK                     |             | 0.0                             | 00             | 490.50         | 47.60                          | 0.0000           | 00                   | 0.00                | <b>~</b>   |
|                          |              |                      |                |                         | St                      | ream Dat    | ta                              |                |                |                                |                  |                      |                     |            |
| Design<br>Cond.          | LFY          | Trib<br>Flow         | Stream<br>Flow | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                    | Rch<br>Depth   | Ten            | <u>Tributary</u><br>p pH       | Т                | <u>Strear</u><br>emp | n<br>pH             |            |
| Cona.                    | (cfsm)       | (cfs)                | (cfs)          | (days)                  | (fps)                   |             | (ft)                            | (ft)           | (°C            | )                              | (                | °C)                  |                     |            |
| Q7-10<br>Q1-10<br>Q30-10 | 0.313        | 0.00<br>0.00<br>0.00 | 0.00           | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0         | 0.00                            | 0.0            | 0 2            | 0.00 7.                        | 00               | 0.00                 | 0.00                |            |
|                          |              |                      |                |                         | Di                      | scharge l   | Data                            |                |                |                                |                  |                      | 1                   |            |
|                          |              |                      | Name           | Per                     | rmit Number             | Disc        | Permitt<br>Disc<br>Flow<br>(mgd | Disc<br>Flo    | c Res<br>w Fa  | Di:<br>erve Ter<br>ctor<br>(°( | mp               | Disc<br>pH           |                     |            |
|                          |              |                      |                |                         |                         | 0.000       | 0.00                            | 0.0            | 000            | 0.000                          | 0.00             | 7.00                 |                     |            |
|                          |              |                      |                |                         | Pa                      | arameter    | Data                            |                |                |                                |                  |                      |                     |            |
|                          |              |                      |                | Paramete                | r Name                  | _           |                                 | Trib 5<br>Conc | Stream<br>Conc | Fate<br>Coef                   |                  |                      |                     |            |
|                          | _            |                      |                |                         |                         | (m          | ng/L) (i                        | mg/L)          | (mg/L)         | (1/days)                       |                  | _                    |                     |            |
|                          |              |                      | CBOD5          |                         |                         |             | 25.00                           | 2.00           | 0.00           | 1.50                           |                  |                      |                     |            |
|                          |              |                      | Dissolved      | Oxygen                  |                         |             | 3.00                            | 8.24           | 0.00           | 0.00                           |                  |                      |                     |            |
|                          |              |                      | NH3-N          |                         |                         |             | 25.00                           | 0.00           | 0.00           | 0.70                           |                  |                      |                     |            |

Monday, May 10, 2021 Version 1.1 Page 5 of 5

# WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | •        |
|--------------------|--------|-------------------------------------|----------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |          |
| Q1-10/Q7-10 Ratio  | 0.94   | Use Inputted Reach Travel Times     |          |
| Q30-10/Q7-10 Ratio | 1.083  | Temperature Adjust Kr               | <b>✓</b> |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | ✓        |
| D.O. Goal          | 5      |                                     |          |

# WQM 7.0 Hydrodynamic Outputs

|       | SWP Basin Stream Code |             |                       |                          |         | Stream Name |       |              |          |              |                  |                |  |
|-------|-----------------------|-------------|-----------------------|--------------------------|---------|-------------|-------|--------------|----------|--------------|------------------|----------------|--|
|       |                       | 07E         | 6                     | 3167                     |         |             | МС    | UNTAIN       | CREEK    |              |                  |                |  |
| RMI   | Stream<br>Flow        | PWS<br>With | Net<br>Stream<br>Flow | Disc<br>Analysis<br>Flow |         | Depth       | Width | W/D<br>Ratio | Velocity | Trav<br>Time | Analysis<br>Temp | Analysis<br>pH |  |
|       | (cfs)                 | (cfs)       | (cfs)                 | (cfs)                    | (ft/ft) | (ft)        | (ft)  |              | (fps)    | (days)       | (°C)             |                |  |
| Q7-10 | 0 Flow                |             |                       |                          |         |             |       |              |          |              |                  |                |  |
| 3.180 | 13.90                 | 0.00        | 13.90                 | .8802                    | 0.00692 | .768        | 45.48 | 59.26        | 0.42     | 0.150        | 20.36            | 7.01           |  |
| 2.140 | 14.27                 | 0.00        | 14.27                 | 3.2007                   | 0.00368 | .779        | 51.12 | 65.61        | 0.44     | 0.050        | 20.70            | 7.01           |  |
| 1.780 | 14.40                 | 0.00        | 14.40                 | 4.2836                   | 0.00473 | .785        | 51.31 | 65.4         | 0.46     | 0.136        | 20.66            | 7.01           |  |
| 0.750 | 14.46                 | 0.00        | 14.46                 | 5.5367                   | 0.00601 | .792        | 51.37 | 64.83        | 0.49     | 0.093        | 20.61            | 7.01           |  |
| Q1-1  | 0 Flow                |             |                       |                          |         |             |       |              |          |              |                  |                |  |
| 3.180 | 13.06                 | 0.00        | 13.06                 | .8802                    | 0.00692 | NA          | NA    | NA           | 0.41     | 0.155        | 20.38            | 7.01           |  |
| 2.140 | 13.42                 | 0.00        | 13.42                 | 3.2007                   | 0.00368 | NA          | NA    | NA           | 0.43     | 0.052        | 20.74            | 7.01           |  |
| 1.780 | 13.53                 | 0.00        | 13.53                 | 4.2836                   | 0.00473 | NA          | NA    | NA           | 0.45     | 0.139        | 20.69            | 7.01           |  |
| 0.750 | 13.59                 | 0.00        | 13.59                 | 5.5367                   | 0.00601 | NA          | NA    | NA           | 0.48     | 0.096        | 20.64            | 7.01           |  |
| Q30-  | 10 Flow               | ,           |                       |                          |         |             |       |              |          |              |                  |                |  |
| 3.180 | 15.05                 | 0.00        | 15.05                 | .8802                    | 0.00692 | NA          | NA    | NA           | 0.44     | 0.144        | 20.33            | 7.01           |  |
| 2.140 | 15.46                 | 0.00        | 15.46                 | 3.2007                   | 0.00368 | NA          | NA    | NA           | 0.46     | 0.048        | 20.66            | 7.01           |  |
| 1.780 | 15.59                 | 0.00        | 15.59                 | 4.2836                   | 0.00473 | NA          | NA    | NA           | 0.48     | 0.131        | 20.62            | 7.01           |  |
| 0.750 | 15.66                 | 0.00        | 15.66                 | 5.5367                   | 0.00601 | NA          | NA    | NA           | 0.51     | 0.090        | 20.58            | 7.01           |  |

Monday, May 10, 2021 Version 1.1 Page 1 of 1

# WQM 7.0 D.O.Simulation

|                                                                                         |                                                                              |                                                                                                                                                                                                                                                                                                            | Stream Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                              |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 63167                                                                                   |                                                                              | М                                                                                                                                                                                                                                                                                                          | OUNTAIN CREEK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                              |
| 0.566<br><u>Reach Dej</u><br>0.766<br><u>Reach Kc (</u><br>0.506<br><u>Reach Kr (</u> ; | oth (ft)<br>3<br>1/days)<br>3<br>1/days)                                     |                                                                                                                                                                                                                                                                                                            | 20.357<br>Reach WDRatio<br>59.256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis pH 7.013 Reach Velocity (fps) 0.423 Reach Kn (1/days) 0.720 Reach DO Goal (mg/L) 5                                                  |
| TravTime<br>(days)                                                                      |                                                                              |                                                                                                                                                                                                                                                                                                            | D.O.<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |
| 0.015<br>0.030<br>0.045<br>0.060<br>0.075<br>0.090<br>0.105<br>0.120<br>0.135           | 2.93<br>2.91<br>2.89<br>2.86<br>2.84<br>2.82<br>2.80<br>2.78<br>2.75<br>2.73 | 0.94<br>0.93<br>0.92<br>0.91<br>0.90<br>0.89<br>0.87<br>0.86<br>0.85                                                                                                                                                                                                                                       | 8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19<br>8.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                              |
| 2.060<br>Reach Der<br>0.770<br>Reach Kc (1<br>1.040<br>Reach Kr (1                      | oth (ft)<br>)<br>1/days)<br>5<br>1/days)                                     |                                                                                                                                                                                                                                                                                                            | 20.701<br>Reach WDRatio<br>65.614                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis pH 7.011 Reach Velocity (fps) 0.439 Reach Kn (1/days) 0.739 Reach DO Goal (mg/L) 5                                                  |
| (days)  0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045                           | 5.50<br>5.47<br>5.44<br>5.41<br>5.38<br>5.35<br>5.32<br>5.29<br>5.27         | NH3-N<br>(mg/L)<br>1.91<br>1.90<br>1.89<br>1.88<br>1.87<br>1.86<br>1.86                                                                                                                                                                                                                                    | D.O.<br>(mg/L)<br>7.76<br>7.76<br>7.75<br>7.75<br>7.75<br>7.74<br>7.74<br>7.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                              |
|                                                                                         | Total Discharge                                                              | Total Discharge Flow (mgd)   0.569   Reach Depth (ft)   0.768   Reach Kc (1/days)   0.508   Reach Kc (1/days)   20.162     Subreach CBOD5 (mg/L)     0.015   2.93   0.030   2.91   0.045   2.89   0.060   2.86   0.075   2.84   0.090   2.82   0.105   2.73     0.120   2.78   0.135   2.75   0.150   2.73 | Total Discharge Flow (mgd)   Ana   0.509     Reach Depth (ft)   0.768     Reach Kr (1/days)   20.162     TravTime (days)   2.93   0.94     0.030   2.91   0.93     0.045   2.89   0.92     0.060   2.86   0.91     0.075   2.84   0.90     0.090   2.82   0.89     0.105   2.80   0.88     0.120   2.78   0.87     0.135   2.75   0.86     0.150   2.73   0.85      Total Discharge Flow (mgd)   Ana     2.069   Reach C (1/days)   1.045     Reach Kr (1/days)   1.045     Reach Kr (1/days)   1.209     TravTime (days)   1.209     TravTime (days)   5.50   1.91     0.010   5.47   1.91     0.010   5.47   1.91     0.015   5.44   1.90     0.020   5.41   1.89     0.030   5.35   1.88     0.035   5.32   1.87     0.040   5.29   1.86     0.040   5.29   1.86     0.045   5.27   1.86     0.045   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.047   0.046   5.27   1.86     0.048   0.046   5.27   1.86     0.048   0.046   5.27   1.86     0.048   0.046   5.27   1.86     0.048   0.046   5.27   1.86     0.048   0.046   5.27   1.86     0.048   0.046   0.046   0.046     0.048   0.046   0.046   0.046     0.048   0.046   0.046   0.046     0.048   0.046   0.046   0.046     0.048   0.046   0.046   0.046     0.048   0.046   0.046   0.046 | Total Discharge Flow (mgd)   0.569   20.357   Reach Depth (ft)   0.768   59.256   Reach Kc (1/days)   0.508   0.95   Kr Equation   Tsivoglou |

Monday, May 10, 2021

Page 2 of 2

# WQM 7.0 D.O.Simulation

| SWP Basin St                      | ream Code           |                             |                            | Stream Name                      |                            |
|-----------------------------------|---------------------|-----------------------------|----------------------------|----------------------------------|----------------------------|
| 07E                               | 63167               |                             | М                          | OUNTAIN CREEK                    |                            |
| <u>RMI</u><br>1.780               | Total Discharge     |                             | ) Ana                      | lysis Temperature (°C)<br>20.655 | Analysis pH<br>7.010       |
| Reach Width (ft)                  | Reach De            | pth (ft)                    |                            | Reach WDRatio                    | Reach Velocity (fps)       |
| 51.311                            | 0.78                | _                           |                            | 65.398                           | 0.464                      |
| Reach CBOD5 (mg/L)                | Reach Kc (          |                             | <u>R</u>                   | each NH3-N (mg/L)                | Reach Kn (1/days)          |
| 6.07                              | 1.08                |                             |                            | 1.88<br>Va Favortica             | 0.738                      |
| Reach DO (mg/L)<br>7.582          | Reach Kr (<br>15.19 | •                           |                            | Kr Equation<br>Tsivoglou         | Reach DO Goal (mg/L)<br>5  |
| Reach Travel Time (days)          |                     | Subreach                    | Results                    |                                  |                            |
| 0.136                             | TravTime<br>(days)  |                             | NH3-N<br>(mg/L)            | D.O.<br>(mg/L)                   |                            |
|                                   | 0.014               | 5.98                        | 1.86                       | 7.65                             |                            |
|                                   | 0.027               | 5.89                        | 1.84                       | 7.71                             |                            |
|                                   | 0.041               | 5.80                        | 1.82                       | 7.77                             |                            |
|                                   | 0.054               | 5.71                        | 1.80                       | 7.81                             |                            |
|                                   | 0.068               | 5.63                        | 1.78                       | 7.85                             |                            |
|                                   | 0.081               | 5.54                        | 1.77                       | 7.89                             |                            |
|                                   | 0.095               | 5.46                        | 1.75                       | 7.92                             |                            |
|                                   | 0.109               | 5.38                        | 1.73                       | 7.94                             |                            |
|                                   | 0.122               | 5.29                        | 1.71                       | 7.97                             |                            |
|                                   | 0.136               | 5.21                        | 1.70                       | 7.99                             |                            |
| RMI<br>0.750                      | Total Discharge     |                             | ) Ana                      | lysis Temperature (°C)<br>20.612 | Analysis pH.<br>7.010      |
| Reach Width (ft)                  | Reach De            |                             |                            | Reach WDRatio                    | Reach Velocity (fps)       |
| 51.368<br>Reach CBOD5 (mg/L)      | 0.79<br>Reach Kc (  |                             | R                          | 64.832<br>each NH3-N (mg/L)      | 0.491<br>Reach Kn (1/days) |
| 5.50                              | 1.08                |                             | _                          | 1.68                             | 0.734                      |
| Reach DO (mg/L)                   | Reach Kr (          | 1/days)                     |                            | Kr Equation                      | Reach DO Goal (mg/L)       |
| 7.805                             | 20.44               | 16                          |                            | Tsivoglou                        | 5                          |
| Reach Travel Time (days)<br>0.093 | TravTime<br>(days)  | Subreach<br>CBOD5<br>(mg/L) | Results<br>NH3-N<br>(mg/L) | D.O.<br>(mg/L)                   |                            |
|                                   |                     |                             |                            |                                  |                            |
|                                   | 0.009               | 5.45                        | 1.67                       | 7.90                             |                            |
|                                   | 0.019               | 5.39                        | 1.66                       | 7.97                             |                            |
|                                   | 0.028               | 5.34                        | 1.65                       | 8.04                             |                            |
|                                   | 0.037               | 5.28                        | 1.63                       | 8.09                             |                            |
|                                   | 0.047               | 5.23                        | 1.62                       | 8.14                             |                            |
|                                   | 0.056               | 5.17                        | 1.61                       | 8.15                             |                            |
|                                   | 0.065               | 5.12                        | 1.60                       | 8.15                             |                            |
|                                   | 0.075               | 5.06                        | 1.59                       | 8.15                             |                            |
|                                   | 0.084               | 5.01                        | 1.58                       | 8.15                             |                            |
|                                   | 0.093               | 4.96                        | 1.57                       | 8.15                             |                            |
|                                   |                     |                             |                            |                                  |                            |

Version 1.1

# WQM 7.0 Wasteload Allocations

 SWP Basin
 Stream Code
 Stream Name

 07E
 63167
 MOUNTAIN CREEK

#### NH3-N Acute Allocations

| RMI   | Discharge Name  | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
|-------|-----------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|
| 3.180 | ) Ahlstrom      | 16.04                           | 50                        | 16.04                           | 50                        | 0                 | 0                    |
| 2.140 | Specialty Paper | 16.16                           | 50                        | 15.61                           | 50                        | 0                 | 0                    |
| 1.780 | Mt. Holly       | 16.76                           | 5                         | 15.68                           | 5                         | 0                 | 0                    |
| 0.750 | Land O'Lakes    | 16.76                           | 3                         | 15.75                           | 3                         | 0                 | 0                    |

#### NH3-N Chronic Allocations

| RMI  | Discharge Name    | Baseline<br>Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |
|------|-------------------|---------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|
| 3.18 | 0 Ahlstrom        | 1.84                            | 25                        | 1.84                            | 15.99                     | 2                 | 36                   |
| 2.14 | 0 Specialty Paper | 1.84                            | 14.1                      | 1.8                             | 9.02                      | 2                 | 36                   |
| 1.78 | 0 Mt. Holly       | 1.89                            | 2.5                       | 1.81                            | 2.5                       | 0                 | 0                    |
| 0.75 | 0 Land O'Lakes    | 1.89                            | 1.5                       | 1.81                            | 1.5                       | 0                 | 0                    |

#### Dissolved Oxygen Allocations

|      |                 | CBC                | DD5                | NH                 | 3-N                | Dissolve           | d Oxygen           | Critical | Percent   |
|------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|-----------|
| RMI  | Discharge Name  | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Baseline<br>(mg/L) | Multiple<br>(mg/L) | Reach    | Reduction |
| 3.18 | Ahlstrom        | 18                 | 18                 | 15.99              | 15.99              | 5                  | 5                  | 0        | 0         |
| 2.14 | Specialty Paper | 23.9               | 23.9               | 9.02               | 9.02               | 5                  | 5                  | 0        | 0         |
| 1.78 | Mt. Holly       | 20                 | 20                 | 2.5                | 2.5                | 5                  | 5                  | 0        | 0         |
| 0.75 | Land O'Lakes    | 10                 | 10                 | 1.5                | 1.5                | 5                  | 5                  | 0        | 0         |

# WQM 7.0 Effluent Limits

|       | SWP Basin St<br>07E | ream Code<br>63167 | ode <u>Stream Name</u><br>MOUNTAIN CREEK |                  |                                      |                                  |                                  |  |  |  |  |  |
|-------|---------------------|--------------------|------------------------------------------|------------------|--------------------------------------|----------------------------------|----------------------------------|--|--|--|--|--|
| RMI   | Name                | Permit<br>Number   | Disc<br>Flow<br>(mgd)                    | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) |                                  | Effl. Limit<br>Minimum<br>(mg/L) |  |  |  |  |  |
| 3.180 | Ahlstrom            | PA0008486          | 0.569                                    | CBOD5            | 18                                   |                                  |                                  |  |  |  |  |  |
|       |                     |                    |                                          | NH3-N            | 15.99                                | 31.98                            |                                  |  |  |  |  |  |
|       |                     |                    |                                          | Dissolved Oxygen |                                      |                                  | 5                                |  |  |  |  |  |
| RMI   | Name                | Permit<br>Number   | Disc<br>Flow<br>(mgd)                    | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |  |  |  |  |  |
| 2.140 | Specialty Paper     | PA0008150          | 1.500                                    | CBOD5            | 23.9                                 |                                  |                                  |  |  |  |  |  |
|       |                     |                    |                                          | NH3-N            | 9.02                                 | 18.04                            |                                  |  |  |  |  |  |
|       |                     |                    |                                          | Dissolved Oxygen |                                      |                                  | 5                                |  |  |  |  |  |
| RMI   | Name                | Permit<br>Number   | Disc<br>Flow<br>(mgd)                    | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) | Effl. Limit<br>Maximum<br>(mg/L) | Effl. Limit<br>Minimum<br>(mg/L) |  |  |  |  |  |
| 1.780 | Mt. Holly           | PA0023183          | 0.700                                    | CBOD5            | 20                                   |                                  |                                  |  |  |  |  |  |
|       |                     |                    |                                          | NH3-N            | 2.5                                  | 5                                |                                  |  |  |  |  |  |
|       |                     |                    |                                          | Dissolved Oxygen |                                      |                                  | 5                                |  |  |  |  |  |
| RMI   | Name                | Permit<br>Number   | Disc<br>Flow<br>(mgd)                    | Parameter        | Effl. Limit<br>30-day Ave.<br>(mg/L) |                                  | Effl. Limit<br>Minimum<br>(mg/L) |  |  |  |  |  |
| 0.750 | Land O'Lakes        | PA00449110         | 0.810                                    | CBOD5            | 10                                   |                                  |                                  |  |  |  |  |  |
|       |                     |                    |                                          | NH3-N            | 1.5                                  | 3                                |                                  |  |  |  |  |  |
|       |                     |                    |                                          | Dissolved Oxygen |                                      |                                  | 5                                |  |  |  |  |  |

#### 3. Toxics Management Spreadsheet



Toxics Management Spreadsheet Version 1.3, March 2021

# **Discharge Information**

| Instructions Disc | harge Stream                    |                                          |                  |
|-------------------|---------------------------------|------------------------------------------|------------------|
|                   |                                 |                                          |                  |
| Facility: Ahlstr  | om-Munksjo Filtration LLC       | NPDES Permit No.: PA0008486              | Outfall No.: 001 |
|                   |                                 | · · · · · · · · · · · · · · · · · · ·    |                  |
| Evaluation Type:  | Major Sewage / Industrial Waste | Wastewater Description: Industrial Waste |                  |
|                   |                                 |                                          |                  |
|                   | Disabase                        | as Characteristics                       |                  |

|             |                   |          | Discharge | Characterist  | tics        |     |                   |               |
|-------------|-------------------|----------|-----------|---------------|-------------|-----|-------------------|---------------|
| Design Flow | Handanan (m.m/l)t | -U (CID+ | P         | artial Mix Fa | actors (PMF | 5)  | Complete Mi       | x Times (min) |
| (MGD)*      | Hardness (mg/l)*  | pH (SU)* | AFC       | CFC           | THH         | CRL | Q <sub>7-10</sub> | Qh            |
| 0.569       | 125               | 7        |           |               |             |     |                   |               |

|       |                                 |       |    |                     | 0 If let     | t blank        | 0.5 lf le   | eft blank    |               |               | 1 If lef | t blank          |                |
|-------|---------------------------------|-------|----|---------------------|--------------|----------------|-------------|--------------|---------------|---------------|----------|------------------|----------------|
|       | Discharge Pollutant             | Units | Ma | x Discharge<br>Conc | Trib<br>Conc | Stream<br>Conc | Daily<br>CV | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff | FOS      | Criteri<br>a Mod | Chem<br>Transl |
|       | Total Dissolved Solids (PWS)    | mg/L  |    | 118                 |              |                |             |              |               |               |          |                  |                |
| 7     | Chloride (PWS)                  | mg/L  |    | 55                  |              |                |             |              |               |               |          |                  |                |
| Group | Bromide                         | mg/L  | ٧  | 0.6                 |              |                |             |              |               |               |          |                  |                |
| 5     | Sulfate (PWS)                   | mg/L  |    | 331                 |              |                |             |              |               |               |          |                  |                |
|       | Fluoride (PWS)                  | mg/L  |    | 0.16                |              |                |             |              |               |               |          |                  |                |
|       | Total Aluminum                  | μg/L  |    | 620                 |              |                |             |              |               |               |          |                  |                |
|       | Total Antimony                  | μg/L  | ٧  | 0.001               |              |                |             |              |               |               |          |                  |                |
|       | Total Arsenic                   | μg/L  |    | 0.66                |              |                |             |              |               |               |          |                  |                |
|       | Total Barium                    | μg/L  |    | 66                  |              |                |             |              |               |               |          |                  |                |
|       | Total Beryllium                 | μg/L  | <  | 0.0005              |              |                |             |              |               |               |          |                  |                |
|       | Total Boron                     | μg/L  |    | 460                 |              |                |             |              |               |               |          |                  |                |
|       | Total Cadmium                   | μg/L  |    | 0.2691              |              |                | 1.2671      |              |               |               |          |                  |                |
|       | Total Chromium (III)            | μg/L  |    | 0.44                |              |                |             |              |               |               |          |                  |                |
|       | Hexavalent Chromium             | μg/L  |    | 0.15                |              |                |             |              |               |               |          |                  |                |
|       | Total Cobalt                    | μg/L  | <  | 0.0025              |              |                |             |              |               |               |          |                  |                |
|       | Total Copper                    | μg/L  |    | 35.6                |              |                | 1.5362      |              |               |               |          |                  |                |
| 2     | Free Cyanide                    | μg/L  |    |                     |              |                |             |              |               |               |          |                  |                |
| 1     | Total Cyanide                   | μg/L  |    | 1.2                 |              |                |             |              |               |               |          |                  |                |
| Group | Dissolved Iron                  | μg/L  | <  | 0.03                |              |                |             |              |               |               |          |                  |                |
|       | Total Iron                      | μg/L  | <  | 0.06                |              |                |             |              |               |               |          |                  |                |
|       | Total Lead                      | μg/L  | <  | 0.001               |              |                |             |              |               |               |          |                  |                |
|       | Total Manganese                 | μg/L  |    | 4.8                 |              |                |             |              |               |               |          |                  |                |
|       | Total Mercury                   | μg/L  |    | 0.00036             |              |                |             |              |               |               |          |                  |                |
|       | Total Nickel                    | μg/L  | <  | 0.0025              |              |                |             |              |               |               |          |                  |                |
|       | Total Phenols (Phenolics) (PWS) | μg/L  |    | 0.002               |              |                |             |              |               |               |          |                  |                |
|       | Total Selenium                  | μg/L  | <  | 0.002               |              |                |             |              |               |               |          |                  |                |
|       | Total Silver                    | μg/L  |    | 0.0005              |              |                |             |              |               |               |          |                  |                |
|       | Total Thallium                  | μg/L  | <  | 0.0005              |              |                |             |              |               |               |          |                  |                |
|       | Total Zinc                      | μg/L  |    | 8.7                 |              |                |             |              |               |               |          |                  |                |
|       | Total Molybdenum                | μg/L  |    | 0.65                |              |                |             |              |               |               |          |                  |                |
|       | Acrolein                        | μg/L  | <  | 2.5                 |              |                |             |              |               |               |          |                  |                |
|       | Acrylamide                      | μg/L  | <  |                     |              |                |             |              |               |               |          |                  |                |
|       | Acrylonitrile                   | μg/L  | <  | 5                   |              |                |             |              |               |               |          |                  |                |
|       | Benzene                         | μg/L  | <  | 0.5                 |              |                |             |              |               |               |          |                  |                |
|       | Bromoform                       | μg/L  | <  | 0.5                 |              |                |             |              |               |               |          |                  |                |

| ı        |                             |      |   | -    | В=           | - | - |   |  |  |  | -          |                | ==             |
|----------|-----------------------------|------|---|------|--------------|---|---|---|--|--|--|------------|----------------|----------------|
|          | Carbon Tetrachloride        | μg/L | < | 1    | #            | H | ÷ |   |  |  |  | ₽          | H              | $\blacksquare$ |
|          | Chlorobenzene               | μg/L | < | 0.5  |              |   | Ï |   |  |  |  |            |                |                |
|          | Chlorodibromomethane        | μg/L | < | 0.5  |              |   | Į |   |  |  |  | $\Box$     |                | $\Box$         |
|          | Chloroethane                | μg/L | < | 1    | -            | H | ł |   |  |  |  | 4          | $\exists$      | +              |
|          | 2-Chloroethyl Vinyl Ether   | μg/L | < | 5    |              | П | T |   |  |  |  | ٣          |                |                |
|          | Chloroform                  | μg/L |   | 1.7  |              |   | Ţ |   |  |  |  |            |                |                |
|          | Dichlorobromomethane        | μg/L | < | 0.5  | #            | H | ŧ |   |  |  |  |            |                | -              |
|          | 1.1-Dichloroethane          | μg/L | < | 0.5  | ₩            | + | t |   |  |  |  | +          | H              | H              |
|          | 1,2-Dichloroethane          | μg/L | < | 0.5  |              |   | Ť |   |  |  |  |            |                | 3              |
| 3        | -                           |      | - |      | +            | ₩ | ÷ |   |  |  |  | +          | $\vdash$       | +              |
| Group    | 1,1-Dichloroethylene        | μg/L | < | 0.5  | ₩            | ₩ | ÷ |   |  |  |  | +          | H              | +              |
| 1,5      | 1,2-Dichloropropane         | μg/L | < | 0.5  |              |   | ÷ |   |  |  |  |            |                |                |
| 1        | 1,3-Dichloropropylene       | μg/L | < |      |              |   | I |   |  |  |  |            |                |                |
|          | 1,4-Dioxane                 | μg/L | < | 2.8  | $\mathbb{H}$ | H | Ł |   |  |  |  | $\vdash$   | Н              | +              |
|          | Ethylbenzene                | μg/L | < | 0.5  | -            | H | t |   |  |  |  | +          | Н              |                |
|          | Methyl Bromide              | μg/L | < | 1    |              | П | Ţ |   |  |  |  | Ţ          |                | $\Box$         |
|          | Methyl Chloride             | μg/L |   |      | #            | H | Ŧ |   |  |  |  | -          | Ħ              | #              |
|          | Methylene Chloride          | μg/L |   | 0.41 | ₩            | _ | Ť |   |  |  |  |            |                | _              |
|          | 1,1,2,2-Tetrachloroethane   | μg/L | < | 0.5  | t            |   | ŧ | _ |  |  |  |            | Ħ              | #              |
|          |                             |      | < | 0.5  | ₩            | H | ÷ |   |  |  |  | +          | H              | +              |
|          | Tetrachloroethylene         | μg/L | - |      | +            | + | + |   |  |  |  | +          |                | +              |
|          | Toluene                     | μg/L | < | 0.5  |              |   | Ì |   |  |  |  |            |                |                |
|          | 1,2-trans-Dichloroethylene  | μg/L | < | 0.5  |              | Щ | T |   |  |  |  | H          |                | 4              |
|          | 1,1,1-Trichloroethane       | μg/L | < | 0.5  | $\vdash$     | H | Ł |   |  |  |  | ₽          | Н              | +              |
|          | 1,1,2-Trichloroethane       | μg/L | < | 0.5  |              |   | 1 |   |  |  |  |            |                |                |
|          | Trichloroethylene           | μg/L | < | 0.5  |              | П | Ţ |   |  |  |  | Ļ          |                |                |
|          | Vinyl Chloride              | μg/L | < | 0.5  | #            | H | Ŧ |   |  |  |  | F          | Ħ              | -              |
| $\vdash$ | 2-Chlorophenol              | μg/L | < | 2.8  | ₩            | Ħ | Ť |   |  |  |  | ⇈          | Ħ              | #              |
|          | 2,4-Dichlorophenol          | μg/L | < | 2.8  | T.           |   | ŧ | _ |  |  |  |            |                | $\mp$          |
|          | 2,4-Dimethylphenol          | μg/L | < | 2.8  | ₩            | Ħ | ŧ |   |  |  |  | +          | Ħ              | #              |
|          |                             |      | _ | 2.0  | ₩            | H | ÷ | - |  |  |  | ₩          | Ħ              | +              |
| 4        | 4,6-Dinitro-o-Cresol        | μg/L | _ |      |              |   | ŧ |   |  |  |  | E          |                | #              |
| <u>a</u> | 2,4-Dinitrophenol           | μg/L | < | 5.7  | -            | Н | + |   |  |  |  |            | Ш              | Ш              |
|          | 2-Nitrophenol               | μg/L | < | 2.8  | #            | ₩ | ÷ |   |  |  |  | +          | H              | $\pm$          |
| Θ        | 4-Nitrophenol               | μg/L | < | 2.8  |              |   | Ĺ |   |  |  |  |            |                |                |
|          | p-Chloro-m-Cresol           | μg/L |   |      | 1            | H | Ļ |   |  |  |  | 4          | $\square$      | $\perp$        |
|          | Pentachlorophenol           | μg/L | < | 5.6  | $\mathbb{R}$ | H | Ŧ |   |  |  |  | ₽          | Н              | 7              |
|          | Phenol                      | μg/L | < | 7.5  | i            | П | T |   |  |  |  | T          |                | $\overline{}$  |
|          | 2,4,6-Trichlorophenol       | μg/L | < | 2.8  | T.           | П | Ţ |   |  |  |  |            |                | $\blacksquare$ |
| $\vdash$ | Acenaphthene                | μg/L | < | 1.4  | ₩            | Ħ | t |   |  |  |  | ┿          | Ħ              | #              |
|          | Acenaphthylene              | μg/L | < | 1.4  | to           |   | İ |   |  |  |  |            | ┙              |                |
|          | Anthracene                  | µg/L | < | 1.4  |              | H | ŧ | _ |  |  |  | +          |                | #              |
|          |                             |      | < | 3.8  | ₩            | Н | + |   |  |  |  | Н          | Н              | +              |
|          | Benzidine                   | μg/L |   |      | #            | Ħ | ÷ |   |  |  |  | ×          | Ħ              |                |
|          | Benzo(a)Anthracene          | μg/L | < | 1.4  |              | щ | Ţ |   |  |  |  | Ų.         |                | _              |
|          | Benzo(a)Pyrene              | μg/L | < | 1.4  | #            | 4 | ÷ |   |  |  |  | Ł          | $\blacksquare$ | 4              |
|          | 3,4-Benzofluoranthene       | μg/L |   |      |              |   | 1 |   |  |  |  | $^{\perp}$ |                |                |
|          | Benzo(ghi)Perylene          | μg/L | < | 1.4  |              |   | Ι |   |  |  |  | $\Box$     |                |                |
|          | Benzo(k)Fluoranthene        | μg/L | < | 1.4  | $\mathbb{R}$ | H | Ŧ |   |  |  |  | $\vdash$   | Н              | -              |
|          | Bis(2-Chloroethoxy)Methane  | μg/L | < | 2.8  | H            | Ħ | Ť |   |  |  |  |            | Ħ              | 7              |
|          | Bis(2-Chloroethyl)Ether     | μg/L | < | 2.8  |              |   | Τ |   |  |  |  |            |                |                |
|          | Bis(2-Chloroisopropyl)Ether | μg/L | < | 2.8  |              | H | ŧ |   |  |  |  |            | Ħ              | #              |
|          | Bis(2-Ethylhexyl)Phthalate  | μg/L | < | 2.8  | #            | H | + |   |  |  |  | $\vdash$   | Н              | +              |
|          |                             |      | < |      | 10           |   | ŧ | _ |  |  |  |            |                |                |
|          | 4-Bromophenyl Phenyl Ether  | μg/L |   | 2.8  | #            | H | ÷ |   |  |  |  | +          | $\vdash$       | +              |
|          | Butyl Benzyl Phthalate      | μg/L | < | 2.8  | ₩            | H | ÷ |   |  |  |  | ₽          | H              | #              |
|          | 2-Chloronaphthalene         | μg/L | < | 2.8  | 芷            |   | Ϊ |   |  |  |  | 芷          |                |                |
|          | 4-Chlorophenyl Phenyl Ether | μg/L | < | 2.8  |              |   | Į |   |  |  |  | $\Box$     |                |                |
|          | Chrysene                    | μg/L | < | 1.4  | -            |   | + | - |  |  |  | +          |                |                |
|          | Dibenzo(a,h)Anthrancene     | μg/L | < | 1.4  |              |   | T |   |  |  |  |            |                | T              |
|          | 1,2-Dichlorobenzene         | μg/L | < | 1    |              |   | I |   |  |  |  |            |                |                |
|          | 1,3-Dichlorobenzene         | μg/L | < | 1    | -            |   | + |   |  |  |  |            | Ħ              |                |
|          | 1,4-Dichlorobenzene         | μg/L | < | 1    |              |   | + |   |  |  |  |            |                | +              |
| 5        | 3,3-Dichlorobenzidine       |      | < | 2.8  |              |   |   |   |  |  |  |            |                |                |
| l n      |                             | µg/L | _ |      | -            | H | + |   |  |  |  | H          |                | -              |
| Group    | Diethyl Phthalate           | μg/L | < | 2.8  | -            | - | + |   |  |  |  | -          |                | +              |
|          | Dimethyl Phthalate          | μg/L | < | 2.8  |              |   | 1 |   |  |  |  |            |                |                |
|          | Di-n-Butyl Phthalate        | μg/L |   |      | 1            | Щ | + |   |  |  |  |            | Ш              | 4              |
|          | 2,4-Dinitrotoluene          | μg/L | < | 2.8  | -            | + | + |   |  |  |  | +          |                | +              |
|          |                             |      |   |      |              |   |   |   |  |  |  |            |                |                |

| ı        | 2,6-Dinitrotoluene        | uell   | -  | 2.8   |  |   |  |   |  |
|----------|---------------------------|--------|----|-------|--|---|--|---|--|
|          | *                         | µg/L   | «  | 2.0   |  | _ |  |   |  |
|          | DI-n-Octyl Phthalate      | µg/L   |    |       |  |   |  |   |  |
|          | 1,2-Diphenyihydrazine     | μg/L   | *  | 2.8   |  |   |  |   |  |
|          | Fluoranthene              | µg/L   | *  | 1.4   |  |   |  |   |  |
|          | Fluorene                  | μg/L   | ٧  | 1.4   |  |   |  |   |  |
|          | Hexachlorobenzene         | µg/L   | *  | 2.8   |  |   |  |   |  |
|          | Hexachlorobutadiene       | μg/L   | ٧  | 0.5   |  |   |  |   |  |
|          | Hexachiorocyclopentadiene | µg/L   | *  | 2.8   |  |   |  |   |  |
|          | Hexachloroethane          | μg/L   | *  | 2.8   |  |   |  |   |  |
|          | Indeno(1,2,3-cd)Pyrene    | µg/L   | *  | 1.4   |  |   |  |   |  |
|          | Isophorone                |        | *  | 2.8   |  |   |  |   |  |
|          |                           | µg/L   | ٠, |       |  | _ |  | _ |  |
|          | Naphthaiene               | μg/L   |    | 1.4   |  |   |  |   |  |
|          | Nitrobenzene              | μg/L   | *  | 2.8   |  |   |  |   |  |
|          | n-Nitrosodimethylamine    | µg/L   | *  | 2.8   |  |   |  |   |  |
|          | n-Nitrosodi-n-Propylamine | µg/L   | *  | 2.8   |  |   |  |   |  |
|          | n-Nitrosodiphenylamine    | µg/L   | *  | 2.8   |  |   |  |   |  |
|          | Phenanthrene              | μg/L   | *  | 1.4   |  |   |  |   |  |
|          | Pyrene                    | µg/L   | *  | 1.4   |  |   |  |   |  |
|          | 1,2,4-Trichiorobenzene    | µg/L   | *  | 0.5   |  |   |  |   |  |
|          | Aldrin                    | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | alpha-BHC                 | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | beta-BHC                  |        | *  | 0.019 |  |   |  |   |  |
|          |                           | µg/L   | -  |       |  |   |  |   |  |
|          | gamma-BHC                 | μg/L   | *  | 0.019 |  |   |  |   |  |
|          | delta BHC                 | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | Chlordane                 | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | 4,4-DDT                   | μg/L   | ٧  | 0.019 |  |   |  |   |  |
|          | 4,4-DDE                   | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | 4,4-DDD                   | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | Dieldrin                  | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | alpha-Endosulfan          | µg/L   | <  | 0.019 |  |   |  |   |  |
|          | beta-Endosulfan           | µg/L   | *  | 0.019 |  |   |  |   |  |
| 9        | Endosulfan Sulfate        |        | *  | 0.019 |  | _ |  | _ |  |
| ₽        |                           | µg/L   |    |       |  |   |  |   |  |
| Group    | Endrin                    | µg/L   | *  | 0.019 |  |   |  |   |  |
| ဇ        | Endrin Aldehyde           | µg/L   | *  | 0.019 |  |   |  |   |  |
|          | Heptachlor                | μg/L   | *  | 0.019 |  |   |  |   |  |
|          | Heptachior Epoxide        | μg/L   | *  | 0.019 |  |   |  |   |  |
|          | PCB-1016                  | µg/L   | ٧  | 0.47  |  |   |  |   |  |
|          | PCB-1221                  | µg/L   | ٧  | 0.47  |  |   |  |   |  |
|          | PCB-1232                  | µg/L   | ٧  | 0.47  |  |   |  |   |  |
|          | PCB-1242                  | µg/L   | ٧  | 0.47  |  |   |  |   |  |
|          | PCB-1248                  | µg/L   | *  | 0.47  |  |   |  |   |  |
|          | PCB-1254                  |        | <  | 0.47  |  |   |  |   |  |
|          | PCB-1254<br>PCB-1260      | µg/L   | ٠. | 0.47  |  |   |  |   |  |
|          |                           | µg/L   |    | 0.47  |  |   |  |   |  |
|          | PCBs, Total               | μg/L   | <  | 0.17  |  |   |  |   |  |
|          | Toxaphene                 | µg/L   | «  | 0.47  |  |   |  |   |  |
| <u> </u> | 2,3,7,8-TCDD              | ng/L   | *  |       |  |   |  |   |  |
|          | Gross Alpha               | pCl/L  |    |       |  |   |  |   |  |
| ~        | Total Beta                | pCl/L  | ٧  |       |  |   |  |   |  |
| 9        | Radium 226/228            | pCl/L  | *  |       |  |   |  |   |  |
| 12       | Total Strontium           | μg/L   | <  |       |  |   |  |   |  |
| O        | Total Uranium             | μg/L   | <  |       |  |   |  |   |  |
|          | Osmotic Pressure          | mOs/kg |    |       |  |   |  |   |  |
| _        |                           | 29     |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |
|          |                           |        |    |       |  |   |  |   |  |

Discharge Information 5/10/2021 Page 3



Toxics Management Spreadsheet Version 1.3, March 2021

# Stream / Surface Water Information

Ahlstrom-Munksjo Filtration LLC, NPDES Permit No. PA0008486, Outfall 001

| Instructions Disch  | arge Str   | eam                    |           |         |          |               |        |                  |        |                     |          |      |               |      |          |     |
|---------------------|------------|------------------------|-----------|---------|----------|---------------|--------|------------------|--------|---------------------|----------|------|---------------|------|----------|-----|
| Receiving Surface W | ater Name: | Mountain               | Creek     |         |          |               | No. Re | aches to         | Mode   | el: <u>1</u>        | <u></u>  | _    | tewide Criter |      |          |     |
| Location            | Stream Coo | ie* RN                 | MI* Eleva |         | A (mi²)* | Slope (ft/ft) |        | Withdrav<br>MGD) | val    | Apply F<br>Criteria |          | O OR | SANCO Crite   | eria |          |     |
| Point of Discharge  | 063167     | 3.1                    | 18 58     | 5       | 44.4     |               |        |                  |        | Yes                 |          |      |               |      |          |     |
| End of Reach 1      | 063167     | 2.                     | 14 54     | 7       | 45.6     |               |        |                  | $\neg$ | Yes                 |          |      |               |      |          |     |
| Q 7-10              | RMI        | LFY                    |           | w (cfs) |          | /D Width      | Depth  | Velocit          |        | avei<br>ime         | Tributa  | агу  | Strea         |      | Analys   | sis |
| Location            | IXIMI      | (cfs/mi <sup>2</sup> ) | Stream    | Tribut  | ary Ra   | atio (ft)     | (ft)   | y (fps)          | _      | nue)                | Hardness | pН   | Hardness*     | pH*  | Hardness | pН  |
| Point of Discharge  | 3.18       | 0.313                  |           |         |          |               |        |                  |        |                     |          |      | 100           | 7    |          |     |
| End of Reach 1      | 2.14       | 0.313                  |           |         |          |               |        |                  |        |                     |          |      |               |      |          |     |
| Q <sub>h</sub>      |            |                        | •         |         |          | ·             |        |                  |        |                     |          |      |               |      |          |     |
| Location            | RMI        | LFY                    | Flor      | w (cfs) | W        | /D Width      | Depth  | Velocit          |        | ime                 | Tributa  | агу  | Strea         | m    | Analys   | sis |
| Location            | PUVII      | (cfs/mi <sup>2</sup> ) | Stream    | Tribut  | ary Ra   | tio (ft)      | (ft)   | y (fps)          | _      | ime                 | Hardness | pН   | Hardness      | pН   | Hardness | pН  |
| Point of Discharge  | 3.18       |                        |           |         |          |               |        |                  |        |                     |          |      |               |      |          |     |
| End of Reach 1      | 2.14       |                        |           |         |          |               |        |                  |        | $\neg \neg$         |          |      |               |      |          |     |

Chem Translator of 0.943 applied Chem Translator of 0.316 applied

Chem Translator of 0.982 applied

Chem Translator of 0.96 applied



Total Boron

Total Cadmium Total Chromium (III)

Hexavalent Chromium Total Cobalt

Total Copper

0

0

0

0

0

0

Toxics Management Spreadsheet Version 1.3, March 2021

#### **Model Results**

Ahlstrom-Munksjo Filtration LLC, NPDES Permit No. PA0008486, Outfall 001

| Instruction | s Results                     |                   | RETURN   | I TO INPU               | тѕ                  | SAVE AS                  | PDF           |           | PRINT            |            | All        | ○ Inputs  | O Results         | O Limits       |                            |
|-------------|-------------------------------|-------------------|----------|-------------------------|---------------------|--------------------------|---------------|-----------|------------------|------------|------------|-----------|-------------------|----------------|----------------------------|
| ✓ Hydrod    | lynamics                      |                   |          |                         |                     |                          |               |           |                  |            |            |           |                   |                |                            |
| RMI         | Stream<br>Flow (cfs)          | PWS With<br>(cfs) |          | Net Strear<br>Flow (cfs |                     | arge Analy<br>Flow (cfs) | /sis Slope    | e (ft/ft) |                  |            | /idth (ft) | W/D Ratio | Velocity<br>(fps) | Time<br>(days) | Complete Mix Time<br>(min) |
| 3.18        | 13.90                         |                   |          | 13.90                   |                     | 0.88                     | 0.0           | 007       | 0.768            | 8          | 45.48      | 59.256    | 0.423             | 0.15           | 44.826                     |
| 2.14        | 14.27                         |                   |          | 14.2728                 |                     |                          |               |           |                  |            |            |           |                   |                |                            |
| Qh          |                               |                   |          |                         |                     |                          |               |           |                  |            |            |           |                   |                |                            |
| RMI         | Stream<br>Flow (cfs)          | PWS With (cfs)    |          | Net Strear<br>Flow (cfs |                     | arge Analy<br>Flow (cfs) | /sis Slope    | e (ft/ft) | Depth (          | (ft) W     | idth (ft)  | W/D Ratio | Velocity<br>(fps) | Time<br>(days) | Complete Mix Time<br>(min) |
| 3.18        | 74.12                         |                   |          | 74.12                   |                     | 0.88                     | 0.0           | 007       | 1.569            | 9          | 45.48      | 28.996    | 1.051             | 0.06           | 16.945                     |
| 2.14        | 75.863                        |                   |          | 75.86                   |                     |                          |               |           |                  |            |            |           |                   |                |                            |
| ✓ Wastel    | oad Allocatio                 |                   | T (min): | 15                      | PMF:                | 0.578                    |               | nalysis   | Hardnes          | ss (mg/l)  | ): 10      | 2.47      | Analysis pH:      | 7.00           |                            |
|             | Pollutants                    |                   | Conc     | Stream<br>CV            | Trib Cond<br>(µg/L) | Coef                     | WQC<br>(µg/L) |           | /Q Obj<br>(µg/L) | WLA (µ     | ıg/L)      |           | C                 | omments        |                            |
|             | ssolved Solid                 |                   | 0        | 0                       |                     | 0                        | N/A           |           | N/A              | N/A        |            |           |                   |                |                            |
|             | Chloride (PWS                 |                   | 0        | 0                       |                     | 0                        | N/A           |           | N/A              | N/A        | -          |           |                   |                |                            |
|             | Sulfate (PWS<br>Fluoride (PWS |                   | 0        | 0                       |                     | 0                        | N/A<br>N/A    |           | N/A<br>N/A       | N/A<br>N/A |            |           |                   |                |                            |
|             | Total Aluminu                 |                   | 0        | 0                       |                     | 0                        | 750           | +         | 750              | 7.60       |            |           |                   |                |                            |
|             | Total Antimon                 |                   | 0        | 0                       |                     | Ö                        | 1,100         | _         | 1,100            | 11,14      |            |           |                   |                |                            |
|             | Total Arsenio                 |                   | 0        | 0                       |                     | 0                        | 340           |           | 340              | 3,44       |            |           | Chem Tran         | slator of 1 ap | plied                      |
|             | Total Barium                  |                   | 0        | 0                       |                     | 0                        | 21,000        | 2         | 21,000           | 212,7      | 89         |           |                   |                |                            |
|             |                               |                   |          |                         |                     |                          |               |           |                  |            |            |           |                   |                |                            |

Model Results 5/10/2021 Page 5

8,100 2.062

581.251

13.751

0

ō

0

0

ō

8,100 2.19 1,839

16.3

95.0

14.3

18,638

165

963

145

### NPDES Permit Fact Sheet Ahlstrom-Munksjo Filtration LLC

| Dissolved Iron                  | 0 | 0 | 0 | N/A     | N/A    | N/A     |                                                                   |
|---------------------------------|---|---|---|---------|--------|---------|-------------------------------------------------------------------|
| Total Iron                      | 0 | 0 | 0 | N/A     | N/A    | N/A     |                                                                   |
| Total Lead                      | 0 | 0 | 0 | 66.317  | 84.2   | 853     | Chem Translator of 0.787 applied                                  |
| Total Manganese                 | 0 | 0 | 0 | N/A     | N/A    | N/A     | Chem Hansator of 0.707 applied                                    |
| Total Mercury                   | 0 | Ö | Ö | 1.400   | 1.65   | 16.7    | Chem Translator of 0.85 applied                                   |
| Total Nickel                    | 0 | 0 | 0 | 477.991 | 479    | 4.853   | Chem Translator of 0.898 applied                                  |
| Total Phenols (Phenolics) (PWS) | 0 | 0 | 0 | N/A     | N/A    | N/A     | Cheff Halfslator of 0.000 applied                                 |
| Total Selenium                  | 0 | 0 | 0 | N/A     | N/A    | N/A     | Chem Translator of 0.922 applied                                  |
| Total Silver                    | 0 | 0 | 0 | 3.354   | 3.95   | 40.0    | Chem Translator of 0.822 applied  Chem Translator of 0.85 applied |
| Total Silver Total Thallium     | 0 | 0 | 0 | 85      | 65.0   | 659     | Chem Translator of 0.80 applied                                   |
| Total Thailium Total Zinc       | 0 | 0 | 0 | 119.626 | 122    | 1,239   | Ober Terrelate of 0.070 emiled                                    |
|                                 | _ | _ |   |         |        | 30.4    | Chem Translator of 0.978 applied                                  |
| Acrolein                        | 0 | 0 | 0 | 3       | 3.0    |         |                                                                   |
| Acrylonitrile                   | 0 | 0 | 0 | 650     | 650    | 6,586   |                                                                   |
| Benzene                         | 0 | 0 | 0 | 640     | 640    | 6,485   |                                                                   |
| Bromoform                       | 0 | 0 | 0 | 1,800   | 1,800  | 18,239  |                                                                   |
| Carbon Tetrachloride            | 0 | 0 | 0 | 2,800   | 2,800  | 28,372  |                                                                   |
| Chlorobenzene                   | 0 | 0 | 0 | 1,200   | 1,200  | 12,159  |                                                                   |
| Chlorodibromomethane            | 0 | 0 | 0 | N/A     | N/A    | N/A     |                                                                   |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 | 0 | 18,000  | 18,000 | 182,391 |                                                                   |
| Chloroform                      | 0 | 0 | 0 | 1,900   | 1,900  | 19,252  |                                                                   |
| Dichlorobromomethane            | 0 | 0 | 0 | N/A     | N/A    | N/A     |                                                                   |
| 1,2-Dichloroethane              | 0 | 0 | 0 | 15,000  | 15,000 | 151,992 |                                                                   |
| 1,1-Dichloroethylene            | 0 | 0 | 0 | 7,500   | 7,500  | 75,996  |                                                                   |
| 1,2-Dichloropropane             | 0 | 0 | 0 | 11,000  | 11,000 | 111,461 |                                                                   |
| Ethylbenzene                    | 0 | 0 | 0 | 2,900   | 2,900  | 29,385  |                                                                   |
| Methyl Bromide                  | 0 | 0 | 0 | 550     | 550    | 5,573   |                                                                   |
| Methylene Chloride              | 0 | 0 | 0 | 12,000  | 12,000 | 121,594 |                                                                   |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 | 0 | 1,000   | 1,000  | 10,133  |                                                                   |
| Tetrachloroethylene             | 0 | 0 | 0 | 700     | 700    | 7,093   |                                                                   |
| Toluene                         | 0 | 0 | 0 | 1,700   | 1,700  | 17,226  |                                                                   |
| 1,2-trans-Dichloroethylene      | 0 | 0 | 0 | 6,800   | 6,800  | 68,903  |                                                                   |
| 1,1,1-Trichloroethane           | 0 | 0 | 0 | 3,000   | 3,000  | 30,398  |                                                                   |
| 1,1,2-Trichloroethane           | 0 | 0 | 0 | 3,400   | 3,400  | 34,452  |                                                                   |
| Trichloroethylene               | 0 | 0 | 0 | 2.300   | 2.300  | 23.306  |                                                                   |
| Vinyl Chloride                  | 0 | 0 | 0 | N/A     | N/A    | N/A     |                                                                   |
| 2-Chlorophenol                  | 0 | 0 | 0 | 560     | 560    | 5,674   |                                                                   |
| 2.4-Dichlorophenol              | 0 | 0 | 0 | 1.700   | 1.700  | 17,226  |                                                                   |
| 2.4-Dimethylphenol              | 0 | 0 | 0 | 660     | 660    | 6.688   |                                                                   |
| 2.4-Dinitrophenol               | 0 | 0 | 0 | 660     | 660    | 6.688   |                                                                   |
| 2-Nitrophenol                   | 0 | Ö | ō | 8.000   | 8.000  | 81.063  |                                                                   |
| 4-Nitrophenol                   | 0 | 0 | 0 | 2.300   | 2,300  | 23,306  |                                                                   |
| Pentachlorophenol               | 0 | 0 | 0 | 8.723   | 8.72   | 88.4    |                                                                   |
| Phenol                          | 0 | 0 | 0 | N/A     | N/A    | N/A     |                                                                   |
| 2,4,6-Trichlorophenol           | 0 | 0 | 0 | 460     | 460    | 4.661   |                                                                   |
| Acenaphthene                    | 0 | 0 | 0 | 83      | 83.0   | 841     |                                                                   |
| Anthracene                      | 0 | 0 | 0 | N/A     | N/A    | N/A     |                                                                   |
| Benzidine                       | 0 | 0 | 0 | 300     | 300    | 3.040   |                                                                   |
| Benzo(a)Anthracene              | 0 | 0 | 0 | 0.5     | 0.5    | 5.07    |                                                                   |
| berizo(a)Aritriacene            | U | U | U | 0.0     | 0.0    | 0.07    |                                                                   |

Model Results 5/10/2021 Page 6

| D(-)D                       | 0 |   |   | N/A    | N/A    | N/A     | T |
|-----------------------------|---|---|---|--------|--------|---------|---|
| Benzo(a)Pyrene              | _ | 0 | 0 |        |        |         |   |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | 30,000 | 30,000 | 303,985 |   |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | 4,500  | 4,500  | 45,598  |   |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | 270    | 270    | 2,738   |   |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | 140    | 140    | 1,419   |   |
| 2-Chloronaphthalene         | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Chrysene                    | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Dibenzo(a,h)Anthrancene     | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| 1,2-Dichlorobenzene         | 0 | 0 | 0 | 820    | 820    | 8,309   |   |
| 1,3-Dichlorobenzene         | 0 | 0 | 0 | 350    | 350    | 3,546   |   |
| 1,4-Dichlorobenzene         | 0 | 0 | 0 | 730    | 730    | 7,397   |   |
| 3,3-Dichlorobenzidine       | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Diethyl Phthalate           | 0 | 0 | 0 | 4,000  | 4,000  | 40,531  |   |
| Dimethyl Phthalate          | 0 | 0 | 0 | 2,500  | 2,500  | 25,332  |   |
| 2,4-Dinitrotoluene          | 0 | 0 | 0 | 1,600  | 1,600  | 16,213  |   |
| 2,6-Dinitrotoluene          | 0 | 0 | 0 | 990    | 990    | 10,031  |   |
| 1,2-Diphenylhydrazine       | 0 | 0 | 0 | 15     | 15.0   | 152     |   |
| Fluoranthene                | 0 | 0 | 0 | 200    | 200    | 2,027   |   |
| Fluorene                    | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Hexachlorobenzene           | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Hexachlorobutadiene         | 0 | 0 | 0 | 10     | 10.0   | 101     |   |
| Hexachlorocyclopentadiene   | 0 | 0 | 0 | 5      | 5.0    | 50.7    |   |
| Hexachloroethane            | 0 | 0 | 0 | 60     | 60.0   | 608     |   |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Isophorone                  | ō | ō | 0 | 10.000 | 10.000 | 101,328 |   |
| Naphthalene                 | 0 | ō | 0 | 140    | 140    | 1.419   |   |
| Nitrobenzene                | ō | Ö | 0 | 4,000  | 4,000  | 40,531  |   |
| n-Nitrosodimethylamine      | Ö | ō | 0 | 17,000 | 17,000 | 172,258 |   |
| n-Nitrosodi-n-Propylamine   | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| n-Nitrosodiphenylamine      | 0 | 0 | 0 | 300    | 300    | 3.040   |   |
| Phenanthrene                | 0 | 0 | 0 | 5      | 5.0    | 50.7    |   |
| Pyrene                      | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| 1,2,4-Trichlorobenzene      | 0 | 0 | 0 | 130    | 130    | 1,317   |   |
| Aldrin                      | 0 | 0 | 0 | 3      | 3.0    | 30.4    |   |
| alpha-BHC                   | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| beta-BHC                    | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| gamma-BHC                   | 0 | 0 | 0 | 0.95   | 0.95   | 9.63    |   |
| gamma-BHC<br>Chlordane      | 0 | 0 | 0 | 2.4    | 2.4    | 24.3    |   |
| 4.4-DDT                     | 0 | 0 | 0 | 1.1    | 1.1    | 11.1    |   |
| 4.4-DDE                     | 0 | 0 | 0 | 1.1    | 1.1    | 11.1    |   |
| 4,4-DDD<br>4,4-DDD          | 0 | 0 | 0 | 1.1    | 1.1    | 11.1    |   |
| Dieldrin                    | 0 | 0 | 0 | 0.24   | 0.24   | 2.43    |   |
|                             |   | 0 |   | 0.24   | 0.24   | 2.43    |   |
| alpha-Endosulfan            | 0 |   | 0 |        |        | 2.23    |   |
| beta-Endosulfan             | 0 | 0 | 0 | 0.22   | 0.22   |         |   |
| Endosulfan Sulfate          | 0 | 0 | 0 | N/A    | N/A    | N/A     |   |
| Endrin                      | 0 | 0 | 0 | 0.086  | 0.086  | 0.87    |   |

| Endrin Aldehyde    | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
|--------------------|---|---|---|------|------|------|--|
| Heptachlor         | 0 | 0 | 0 | 0.52 | 0.52 | 5.27 |  |
| Heptachlor Epoxide | 0 | 0 | 0 | 0.5  | 0.5  | 5.07 |  |
| Toxaphene          | 0 | 0 | 0 | 0.73 | 0.73 | 7.4  |  |

☑ CFC CCT (min): 44.826 PMF: 1 Analysis Hardness (mg/l): 101.49 Analysis pH: 7.00

| Pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | Sueam |        |        |      |         |        |            |                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------|--------|--------|------|---------|--------|------------|----------------------------------|
| Total Dissolved Solids (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pollutants                      | Conc  | Stream |        | Fate | WQC     | WQ Obj | WLA (µg/L) | Comments                         |
| Chloride (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T-1-10:1-10-E1-(DHO)            |       |        | (µg/L) |      |         |        |            |                                  |
| Sulfate (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | _     | _      |        | _    |         |        |            |                                  |
| Fluoride (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | _     | _      |        |      |         |        |            |                                  |
| Total Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | _     | _      |        | _    |         |        |            |                                  |
| Total Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , ,                             |       |        |        | _    |         |        |            |                                  |
| Total Arsenic   0   0   0   150   150   2,518   Chem Translator of 1 applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | _     | _      |        | _    |         |        |            |                                  |
| Total Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                               |       | _      |        | _    |         |        |            |                                  |
| Total Boron         0         0         1,600         1,600         26,881           Total Cadmium         0         0         0.249         0.27         4.59         Chem Translator of 0.908 applied           Total Chromium (III)         0         0         0.75.017         87.2         1,484         Chem Translator of 0.86 applied           Hexavalent Chromium         0         0         10         10.4         175         Chem Translator of 0.962 applied           Total Cobalt         0         0         19         19.0         319         Chem Translator of 0.96 applied           Total Copper         0         0         9.070         9.45         159         Chem Translator of 0.96 applied           Dissolved Iron         0         0         N/A         N/A         N/A           Total Iron         0         0         1,500         25,182         WQC = 30 day average; PMF = 1 |                                 |       | _      |        | _    |         |        |            | Chem Translator of 1 applied     |
| Total Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | _     | _      |        | _    |         |        |            |                                  |
| Total Chromium (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | _     | _      |        | 0    |         |        |            |                                  |
| Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Cadmium                   | 0     | 0      |        | 0    | 0.249   |        | 4.59       |                                  |
| Total Cobalt         0         0         19         19.0         319           Total Copper         0         0         0         9.45         159         Chem Translator of 0.96 applied           Dissolved Iron         0         0         N/A         N/A         N/A           Total Iron         0         0         1,500         1,500         25,182         WQC = 30 day average; PMF = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |       | _      |        | _    |         |        |            |                                  |
| Total Copper         0         0         9.070         9.45         159         Chem Translator of 0.96 applied           Dissolved Iron         0         0         N/A         N/A         N/A           Total Iron         0         0         1,500         1,500         25,182         WQC = 30 day average; PMF = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hexavalent Chromium             | 0     | 0      |        | 0    | 10      | 10.4   |            | Chem Translator of 0.962 applied |
| Dissolved Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Cobalt                    | 0     | 0      |        | 0    |         |        |            |                                  |
| Total Iron 0 0 0 1,500 1,500 25,182 WQC = 30 day average; PMF = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Copper                    | 0     | 0      |        | 0    | 9.070   | 9.45   | 159        | Chem Translator of 0.96 applied  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dissolved Iron                  | 0     | 0      |        | 0    |         |        |            |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Iron                      | 0     | 0      |        | 0    | 1,500   | 1,500  | 25,182     | WQC = 30 day average; PMF = 1    |
| Total Lead 0 0 0 2.557 3.24 54.4 Chem Translator of 0.789 applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Lead                      | 0     | 0      |        | 0    | 2.557   | 3.24   | 54.4       | Chem Translator of 0.789 applied |
| Total Manganese 0 0 0 N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Manganese                 | 0     | 0      |        | 0    | N/A     | N/A    | N/A        |                                  |
| Total Mercury 0 0 0 0.770 0.91 15.2 Chem Translator of 0.85 applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Mercury                   | 0     | 0      |        | 0    | 0.770   | 0.91   | 15.2       | Chem Translator of 0.85 applied  |
| Total Nickel 0 0 0 52.661 52.8 887 Chem Translator of 0.997 applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Nickel                    | 0     | 0      |        | 0    | 52.661  | 52.8   | 887        | Chem Translator of 0.997 applied |
| Total Phenolis (Phenolics) (PWS) 0 0 0 N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Phenols (Phenolics) (PWS) | 0     | 0      |        | 0    | N/A     | N/A    | N/A        |                                  |
| Total Selenium 0 0 0 4.600 4.99 83.8 Chem Translator of 0.922 applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Selenium                  | 0     | 0      |        | 0    | 4.600   | 4.99   | 83.8       | Chem Translator of 0.922 applied |
| Total Silver 0 0 0 N/A N/A N/A Chem Translator of 1 applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Silver                    | 0     | 0      |        | 0    | N/A     | N/A    | N/A        | Chem Translator of 1 applied     |
| Total Thallium 0 0 0 13 13.0 218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Thallium                  | 0     | 0      |        | 0    | 13      | 13.0   | 218        | •                                |
| Total Zinc 0 0 0 119.628 121 2,037 Chem Translator of 0.986 applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Zinc                      | 0     | 0      |        | 0    | 119.628 | 121    | 2,037      | Chem Translator of 0.986 applied |
| Acrolein 0 0 0 3 3.0 50.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acrolein                        | 0     | 0      |        | 0    | 3       | 3.0    | 50.4       |                                  |
| Acrylonitrile 0 0 0 130 130 2,182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acrylonitrile                   | 0     | 0      |        | 0    | 130     | 130    | 2,182      |                                  |
| Benzene 0 0 0 130 130 2,182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzene                         | 0     | 0      |        | 0    | 130     | 130    | 2,182      |                                  |
| Bromoform 0 0 0 370 370 6,212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bromoform                       | 0     | 0      |        | 0    | 370     | 370    | 6,212      |                                  |
| Carbon Tetrachloride 0 0 0 560 560 9,401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbon Tetrachloride            | 0     | 0      |        | 0    | 560     | 560    | 9,401      |                                  |
| Chlorobenzene 0 0 0 240 240 4,029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chlorobenzene                   | 0     | 0      |        | 0    | 240     | 240    | 4,029      |                                  |
| Chlorodibromomethane 0 0 0 N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chlorodibromomethane            | 0     | 0      |        | 0    | N/A     | N/A    | N/A        |                                  |
| 2-Chloroethyl Vinyl Ether 0 0 0 3,500 3,500 58,758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Chloroethyl Vinyl Ether       | 0     | 0      |        | 0    | 3,500   | 3,500  | 58,758     |                                  |
| Chloroform 0 0 0 390 390 6.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | _     | _      |        | _    |         | -1     |            |                                  |
| Dichlorobromomethane 0 0 0 N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dichlorobromomethane            | 0     | 0      |        | 0    | N/A     | N/A    |            |                                  |
| 1.2-Dichloroethane 0 0 0 3.100 3.100 52.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |       | _      |        |      |         |        |            |                                  |
| 1,1-Dichloroethylene 0 0 0 1,500 1,500 25,182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4 Dieblessethutere            | _     | -      |        | -    |         |        | 05.400     |                                  |

| 1,2-Dichloropropane         | 0 | 0 | 0 | 2,200 | 2,200 | 36,933  |  |
|-----------------------------|---|---|---|-------|-------|---------|--|
| Ethylbenzene                | 0 | 0 | 0 | 580   | 580   | 9,737   |  |
| Methyl Bromide              | 0 | 0 | 0 | 110   | 110   | 1,847   |  |
| Methylene Chloride          | 0 | 0 | 0 | 2,400 | 2,400 | 40,291  |  |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 | 0 | 210   | 210   | 3,525   |  |
| Tetrachloroethylene         | 0 | 0 | 0 | 140   | 140   | 2.350   |  |
| Toluene                     | 0 | 0 | 0 | 330   | 330   | 5,540   |  |
| 1,2-trans-Dichloroethylene  | 0 | 0 | 0 | 1,400 | 1,400 | 23,503  |  |
| 1,1,1-Trichloroethane       | 0 | 0 | 0 | 610   | 610   | 10,241  |  |
| 1,1,2-Trichloroethane       | 0 | 0 | 0 | 680   | 680   | 11,416  |  |
| Trichloroethylene           | 0 | 0 | 0 | 450   | 450   | 7,555   |  |
| Vinyl Chloride              | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| 2-Chlorophenol              | 0 | 0 | 0 | 110   | 110   | 1,847   |  |
| 2,4-Dichlorophenol          | 0 | 0 | 0 | 340   | 340   | 5,708   |  |
| 2,4-Dimethylphenol          | 0 | 0 | 0 | 130   | 130   | 2,182   |  |
| 2,4-Dinitrophenol           | 0 | 0 | 0 | 130   | 130   | 2,182   |  |
| 2-Nitrophenol               | 0 | 0 | 0 | 1,600 | 1,600 | 26,861  |  |
| 4-Nitrophenol               | 0 | 0 | 0 | 470   | 470   | 7,890   |  |
| Pentachlorophenol           | 0 | 0 | 0 | 6.693 | 6.69  | 112     |  |
| Phenol                      | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| 2,4,6-Trichlorophenol       | 0 | 0 | 0 | 91    | 91.0  | 1,528   |  |
| Acenaphthene                | 0 | 0 | 0 | 17    | 17.0  | 285     |  |
| Anthracene                  | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| Benzidine                   | 0 | 0 | 0 | 59    | 59.0  | 990     |  |
| Benzo(a)Anthracene          | 0 | 0 | 0 | 0.1   | 0.1   | 1.68    |  |
| Benzo(a)Pyrene              | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | 6,000 | 6.000 | 100,727 |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | 910   | 910   | 15,277  |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | 54    | 54.0  | 907     |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | 35    | 35.0  | 588     |  |
| 2-Chloronaphthalene         | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| Chrysene                    | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| Dibenzo(a,h)Anthrancene     | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| 1.2-Dichlorobenzene         | 0 | 0 | 0 | 160   | 160   | 2,686   |  |
| 1,3-Dichlorobenzene         | 0 | 0 | 0 | 69    | 69.0  | 1,158   |  |
| 1,4-Dichlorobenzene         | 0 | 0 | 0 | 150   | 150   | 2,518   |  |
| 3,3-Dichlorobenzidine       | 0 | 0 | 0 | N/A   | N/A   | N/A     |  |
| Diethyl Phthalate           | 0 | 0 | 0 | 800   | 800   | 13,430  |  |
| Dimethyl Phthalate          | 0 | 0 | 0 | 500   | 500   | 8,394   |  |
| 2,4-Dinitrotoluene          | 0 | 0 | 0 | 320   | 320   | 5,372   |  |
| 2,6-Dinitrotoluene          | 0 | 0 | 0 | 200   | 200   | 3,358   |  |
| 1,2-Diphenylhydrazine       | 0 | 0 | 0 | 3     | 3.0   | 50.4    |  |
| Fluoranthene                | 0 | 0 | 0 | 40    | 40.0  | 672     |  |

Analysis pH: N/A

### NPDES Permit Fact Sheet Ahlstrom-Munksjo Filtration LLC

✓ THH

| Fluorene                  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
|---------------------------|---|---|---|--------|--------|--------|--|
| Hexachlorobenzene         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Hexachlorobutadiene       | 0 | 0 | 0 | 2      | 2.0    | 33.6   |  |
| Hexachlorocyclopentadiene | 0 | 0 | 0 | 1      | 1.0    | 16.8   |  |
| Hexachloroethane          | 0 | 0 | 0 | 12     | 12.0   | 201    |  |
| Indeno(1,2,3-cd)Pyrene    | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Isophorone                | 0 | 0 | 0 | 2,100  | 2,100  | 35,255 |  |
| Naphthalene               | 0 | 0 | 0 | 43     | 43.0   | 722    |  |
| Nitrobenzene              | 0 | 0 | 0 | 810    | 810    | 13,598 |  |
| n-Nitrosodimethylamine    | 0 | 0 | 0 | 3,400  | 3,400  | 57,079 |  |
| n-Nitrosodi-n-Propylamine | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| n-Nitrosodiphenylamine    | 0 | 0 | 0 | 59     | 59.0   | 990    |  |
| Phenanthrene              | 0 | 0 | 0 | 1      | 1.0    | 16.8   |  |
| Pyrene                    | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,2,4-Trichlorobenzene    | 0 | 0 | 0 | 26     | 26.0   | 436    |  |
| Aldrin                    | 0 | 0 | 0 | 0.1    | 0.1    | 1.68   |  |
| alpha-BHC                 | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| beta-BHC                  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| gamma-BHC                 | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Chlordane                 | 0 | 0 | 0 | 0.0043 | 0.004  | 0.072  |  |
| 4,4-DDT                   | 0 | 0 | 0 | 0.001  | 0.001  | 0.017  |  |
| 4,4-DDE                   | 0 | 0 | 0 | 0.001  | 0.001  | 0.017  |  |
| 4,4-DDD                   | 0 | 0 | 0 | 0.001  | 0.001  | 0.017  |  |
| Dieldrin                  | 0 | 0 | 0 | 0.056  | 0.056  | 0.94   |  |
| alpha-Endosulfan          | 0 | 0 | 0 | 0.056  | 0.056  | 0.94   |  |
| beta-Endosulfan           | 0 | 0 | 0 | 0.056  | 0.056  | 0.94   |  |
| Endosulfan Sulfate        | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Endrin                    | 0 | 0 | 0 | 0.038  | 0.036  | 0.6    |  |
| Endrin Aldehyde           | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Heptachlor                | 0 | 0 | 0 | 0.0038 | 0.004  | 0.064  |  |
| Heptachlor Epoxide        | 0 | 0 | 0 | 0.0038 | 0.004  | 0.064  |  |
| Toxaphene                 | 0 | 0 | 0 | 0.0002 | 0.0002 | 0.003  |  |

| Pollutants                   | Conc | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments |
|------------------------------|------|--------------|---------------------|--------------|---------------|------------------|------------|----------|
| Total Dissolved Solids (PWS) | 0    | 0            |                     | 0            | 500,000       | 500,000          | N/A        |          |
| Chloride (PWS)               | 0    | 0            |                     | 0            | 250,000       | 250,000          | N/A        |          |
| Sulfate (PWS)                | 0    | 0            |                     | 0            | 250,000       | 250,000          | N/A        |          |
| Fluoride (PWS)               | 0    | 0            |                     | 0            | 2,000         | 2,000            | N/A        |          |
| Total Aluminum               | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |          |
| Total Antimony               | 0    | 0            |                     | 0            | 5.6           | 5.6              | 94.0       |          |
| Total Arsenic                | 0    | 0            |                     | 0            | 10            | 10.0             | 168        |          |
| Total Barium                 | 0    | 0            |                     | 0            | 2,400         | 2,400            | 40,291     |          |

Analysis Hardness (mg/l): N/A

PMF: 1

CCT (min): 44.826

| Total Boron                     | 0 | 0 | 0 | 3,100  | 3,100  | 52.043        |  |
|---------------------------------|---|---|---|--------|--------|---------------|--|
| Total Cadmium                   | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Total Chromium (III)            | 0 | ō | 0 | N/A    | N/A    | N/A           |  |
| Hexavalent Chromium             | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Total Cobalt                    | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Total Copper                    | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Dissolved Iron                  | 0 | 0 | 0 | 300    | 300    | 5,036         |  |
| Total Iron                      | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Total Lead                      | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Total Manganese                 | 0 | 0 | 0 | 1.000  | 1.000  | 16.788        |  |
| Total Mercury                   | 0 | 0 | 0 | 0.050  | 0.05   | 0.84          |  |
| Total Nickel                    | 0 | 0 | 0 | 610    | 610    | 10,241        |  |
| Total Phenols (Phenolics) (PWS) | 0 | 0 | 0 | 5      | 5.0    | 10,241<br>N/A |  |
| Total Selenium                  | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
|                                 | _ |   | _ |        |        |               |  |
| Total Silver                    | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Total Thallium                  | 0 | 0 | 0 | 0.24   | 0.24   | 4.03          |  |
| Total Zinc                      | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Acrolein                        | 0 | 0 | 0 | 3      | 3.0    | 50.4          |  |
| Acrylonitrile                   | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Benzene                         | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Bromoform                       | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Carbon Tetrachloride            | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Chlorobenzene                   | 0 | 0 | 0 | 100    | 100.0  | 1,679         |  |
| Chlorodibromomethane            | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Chloroform                      | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Dichlorobromomethane            | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| 1,2-Dichloroethane              | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| 1,1-Dichloroethylene            | 0 | 0 | 0 | 33     | 33.0   | 554           |  |
| 1,2-Dichloropropane             | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Ethylbenzene                    | 0 | 0 | 0 | 68     | 68.0   | 1,142         |  |
| Methyl Bromide                  | 0 | 0 | 0 | 100    | 100.0  | 1,679         |  |
| Methylene Chloride              | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Tetrachloroethylene             | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Toluene                         | 0 | 0 | 0 | 57     | 57.0   | 957           |  |
| 1,2-trans-Dichloroethylene      | 0 | 0 | 0 | 100    | 100.0  | 1,679         |  |
| 1.1.1-Trichloroethane           | 0 | 0 | 0 | 10.000 | 10.000 | 167.879       |  |
| 1,1,2-Trichloroethane           | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Trichloroethylene               | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| Vinyl Chloride                  | 0 | 0 | 0 | N/A    | N/A    | N/A           |  |
| 2-Chlorophenol                  | 0 | 0 | 0 | 30     | 30.0   | 504           |  |
| 2,4-Dichlorophenol              | 0 | 0 | 0 | 10     | 10.0   | 168           |  |
| 2,4-Dimethylphenol              | 0 | 0 | 0 | 100    | 100.0  | 1,679         |  |
| 2,4-Dinitrophenol               | 0 | 0 | 0 | 10     | 10.0   | 168           |  |
| 2,4-Dinitrophenoi               | U | U | U | 10     | 10.0   | 100           |  |

| 2-Nitrophenol               | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
|-----------------------------|---|---|---|-------|-------|--------|--|
| 4-Nitrophenol               | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Pentachlorophenol           | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Phenol                      | 0 | 0 | 0 | 4.000 | 4.000 | 67,152 |  |
| 2,4,6-Trichlorophenol       | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Acenaphthene                | 0 | 0 | 0 | 70    | 70.0  | 1.175  |  |
| Anthracene                  | 0 | 0 | 0 | 300   | 300   | 5.038  |  |
| Benzidine                   | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Benzo(a)Anthracene          | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Benzo(a)Pyrene              | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | 200   | 200   | 3,358  |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | 0.1   | 0.1   | 1.68   |  |
| 2-Chloronaphthalene         | 0 | 0 | 0 | 800   | 800   | 13,430 |  |
| Chrysene                    | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Dibenzo(a,h)Anthrancene     | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| 1,2-Dichlorobenzene         | 0 | 0 | 0 | 1,000 | 1,000 | 16,788 |  |
| 1.3-Dichlorobenzene         | 0 | 0 | 0 | 7     | 7.0   | 118    |  |
| 1,4-Dichlorobenzene         | 0 | 0 | 0 | 300   | 300   | 5,036  |  |
| 3,3-Dichlorobenzidine       | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Diethyl Phthalate           | 0 | 0 | 0 | 600   | 600   | 10,073 |  |
| Dimethyl Phthalate          | 0 | 0 | 0 | 2.000 | 2.000 | 33,576 |  |
| 2,4-Dinitrotoluene          | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| 2,6-Dinitrotoluene          | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| 1,2-Diphenylhydrazine       | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Fluoranthene                | 0 | 0 | 0 | 20    | 20.0  | 336    |  |
| Fluorene                    | 0 | 0 | 0 | 50    | 50.0  | 839    |  |
| Hexachlorobenzene           | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Hexachlorobutadiene         | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Hexachlorocyclopentadiene   | 0 | 0 | 0 | 4     | 4.0   | 67.2   |  |
| Hexachloroethane            | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Isophorone                  | 0 | 0 | 0 | 34    | 34.0  | 571    |  |
| Naphthalene                 | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Nitrobenzene                | 0 | 0 | 0 | 10    | 10.0  | 168    |  |
| n-Nitrosodimethylamine      | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| n-Nitrosodiphenylamine      | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Phenanthrene                | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |
| Pyrene                      | 0 | 0 | 0 | 20    | 20.0  | 336    |  |
| 1,2,4-Trichlorobenzene      | 0 | 0 | 0 | 0.07  | 0.07  | 1.18   |  |
| Aldrin                      | 0 | 0 | 0 | N/A   | N/A   | N/A    |  |

| alpha-BHC          | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
|--------------------|---|---|---|------|------|------|--|
| beta-BHC           | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| gamma-BHC          | 0 | 0 | 0 | 4.2  | 4.2  | 70.5 |  |
| Chlordane          | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| 4,4-DDT            | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| 4,4-DDE            | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| 4,4-DDD            | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| Dieldrin           | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| alpha-Endosulfan   | 0 | 0 | 0 | 20   | 20.0 | 336  |  |
| beta-Endosulfan    | 0 | 0 | 0 | 20   | 20.0 | 336  |  |
| Endosulfan Sulfate | 0 | 0 | 0 | 20   | 20.0 | 336  |  |
| Endrin             | 0 | 0 | 0 | 0.03 | 0.03 | 0.5  |  |
| Endrin Aldehyde    | 0 | 0 | 0 | 1    | 1.0  | 16.8 |  |
| Heptachlor         | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| Heptachlor Epoxide | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
| Toxaphene          | 0 | 0 | 0 | N/A  | N/A  | N/A  |  |
|                    |   |   |   |      |      |      |  |

| ☑ CRL C                         | CT (min): 16 | .945         | PMF:                | 1            | Ana           | alysis Hardne    | ess (mg/l): | N/A Analysis pH: N/A |
|---------------------------------|--------------|--------------|---------------------|--------------|---------------|------------------|-------------|----------------------|
| Pollutants                      | Conc         | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L)  | Comments             |
| Total Dissolved Solids (PWS)    | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Chloride (PWS)                  | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Sulfate (PWS)                   | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Fluoride (PWS)                  | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Aluminum                  | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Antimony                  | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Arsenic                   | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Barium                    | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Boron                     | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Cadmium                   | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Chromium (III)            | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Hexavalent Chromium             | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Cobalt                    | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Copper                    | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Dissolved Iron                  | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Iron                      | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Lead                      | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Manganese                 | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Mercury                   | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Nickel                    | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Phenols (Phenolics) (PWS) | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Selenium                  | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Silver                    | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |
| Total Thallium                  | 0            | 0            |                     | 0            | N/A           | N/A              | N/A         |                      |

| Total Zinc                  | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
|-----------------------------|---|---|---|--------|--------|-------|--|
| Acrolein                    | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Acrylonitrile               | 0 | 0 | 0 | 0.08   | 0.08   | 5.11  |  |
| Benzene                     | 0 | 0 | 0 | 0.58   | 0.58   | 49.4  |  |
| Bromoform                   | 0 | 0 | 0 | 7      | 7.0    | 596   |  |
| Carbon Tetrachloride        | 0 | 0 | 0 | 0.4    | 0.4    | 34.1  |  |
| Chlorobenzene               | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Chlorodibromomethane        | 0 | 0 | 0 | 0.8    | 0.8    | 68.2  |  |
| 2-Chloroethyl Vinyl Ether   | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Chloroform                  | 0 | 0 | 0 | 5.7    | 5.7    | 486   |  |
| Dichlorobromomethane        | 0 | 0 | 0 | 0.95   | 0.95   | 80.9  |  |
|                             | _ | _ | _ |        |        |       |  |
| 1,2-Dichloroethane          | 0 | 0 | 0 | 9.9    | 9.9    | 843   |  |
| 1,1-Dichloroethylene        | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 1,2-Dichloropropane         | 0 | 0 | 0 | 0.9    | 0.9    | 76.7  |  |
| Ethylbenzene                | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Methyl Bromide              | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Methylene Chloride          | 0 | 0 | 0 | 20     | 20.0   | 1,704 |  |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 | 0 | 0.2    | 0.2    | 17.0  |  |
| Tetrachloroethylene         | 0 | 0 | 0 | 10     | 10.0   | 852   |  |
| Toluene                     | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 1,2-trans-Dichloroethylene  | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 1,1,1-Trichloroethane       | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 1,1,2-Trichloroethane       | 0 | 0 | 0 | 0.55   | 0.55   | 46.9  |  |
| Trichloroethylene           | 0 | 0 | 0 | 0.6    | 0.6    | 51.1  |  |
| Vinyl Chloride              | 0 | 0 | 0 | 0.02   | 0.02   | 1.7   |  |
| 2-Chlorophenol              | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 2,4-Dichlorophenol          | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 2,4-Dimethylphenol          | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 2,4-Dinitrophenol           | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 2-Nitrophenol               | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 4-Nitrophenol               | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Pentachlorophenol           | 0 | 0 | 0 | 0.030  | 0.03   | 2.56  |  |
| Phenol                      | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| 2,4,6-Trichlorophenol       | 0 | 0 | 0 | 1.5    | 1.5    | 128   |  |
| Acenaphthene                | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Anthracene                  | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Benzidine                   | 0 | 0 | 0 | 0.0001 | 0.0001 | 0.009 |  |
| Benzo(a)Anthracene          | 0 | 0 | 0 | 0.001  | 0.001  | 0.085 |  |
| Benzo(a)Pyrene              | 0 | 0 | 0 | 0.0001 | 0.0001 | 0.009 |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | 0.01   | 0.01   | 0.85  |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | 0.03   | 0.03   | 2.56  |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | 0.32   | 0.32   | 27.3  |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | N/A    | N/A    | N/A   |  |
| butyi berizyi Prithaiate    | U | U | U | N/A    | N/A    | NA    |  |

| 2-Chloronaphthalene                      | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
|------------------------------------------|---|---|---|-----------|----------|---------|--|
| Chrysene                                 | 0 | 0 | 0 | 0.12      | 0.12     | 10.2    |  |
| Dibenzo(a,h)Anthrancene                  | 0 | 0 | 0 | 0.0001    | 0.0001   | 0.009   |  |
| 1.2-Dichlorobenzene                      | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| 1.3-Dichlorobenzene                      | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| 1.4-Dichlorobenzene                      | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| 3,3-Dichlorobenzidine                    | 0 | 0 | 0 | 0.05      | 0.05     | 4.26    |  |
| Diethyl Phthalate                        | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Dimethyl Phthalate                       | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| 2.4-Dinitrotoluene                       | 0 | 0 | 0 | 0.05      | 0.05     | 4.26    |  |
| 2,4-Dinitrotoluene<br>2.6-Dinitrotoluene | 0 | 0 | 0 | 0.05      | 0.05     | 4.26    |  |
| -                                        | _ | _ |   |           |          |         |  |
| 1,2-Diphenylhydrazine                    | 0 | 0 | 0 | 0.03      | 0.03     | 2.56    |  |
| Fluoranthene                             | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Fluorene                                 | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Hexachlorobenzene                        | 0 | 0 | 0 | 0.00008   | 0.00008  | 0.007   |  |
| Hexachlorobutadiene                      | 0 | 0 | 0 | 0.01      | 0.01     | 0.85    |  |
| Hexachlorocyclopentadiene                | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Hexachloroethane                         | 0 | 0 | 0 | 0.1       | 0.1      | 8.52    |  |
| Indeno(1,2,3-cd)Pyrene                   | 0 | 0 | 0 | 0.001     | 0.001    | 0.085   |  |
| Isophorone                               | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Naphthalene                              | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Nitrobenzene                             | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| n-Nitrosodimethylamine                   | 0 | 0 | 0 | 0.0007    | 0.0007   | 0.06    |  |
| n-Nitrosodi-n-Propylamine                | 0 | 0 | 0 | 0.005     | 0.005    | 0.43    |  |
| n-Nitrosodiphenylamine                   | 0 | 0 | 0 | 3.3       | 3.3      | 281     |  |
| Phenanthrene                             | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Pyrene                                   | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| 1.2.4-Trichlorobenzene                   | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Aldrin                                   | 0 | 0 | 0 | 0.0000008 | 8.00E-07 | 0.00007 |  |
| alpha-BHC                                | 0 | 0 | 0 | 0.0004    | 0.0004   | 0.034   |  |
| beta-BHC                                 | 0 | 0 | 0 | 0.008     | 0.008    | 0.68    |  |
| gamma-BHC                                | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Chlordane                                | 0 | 0 | 0 | 0.0003    | 0.0003   | 0.026   |  |
| 4.4-DDT                                  | 0 | 0 | 0 | 0.00003   | 0.00003  | 0.003   |  |
| 4,4-DDE                                  | 0 | 0 | 0 | 0.00002   | 0.00002  | 0.002   |  |
| 4.4-DDD                                  | 0 | 0 | 0 | 0.0001    | 0.0001   | 0.009   |  |
| Dieldrin                                 | 0 | 0 | 0 | 0.000001  | 0.000001 | 0.00009 |  |
| alpha-Endosulfan                         | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| beta-Endosulfan                          | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Endosulfan Sulfate                       | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Endrin                                   | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Endrin Aldehyde                          | 0 | 0 | 0 | N/A       | N/A      | N/A     |  |
| Heptachlor                               | 0 | 0 | 0 | 0.000006  | 0.000006 | 0.0005  |  |
| Heptachlor Epoxide                       | 0 | 0 | 0 | 0.00003   | 0.00003  | 0.0003  |  |
| Toxaphene                                | 0 | 0 | 0 | 0.0007    | 0.0007   | 0.003   |  |
| Toxapnene                                | U | U | 0 | 0.0007    | 0.0007   | 0.00    |  |

#### ☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

|                | Mass             | Limits           | Concentration Limits |        |        |       |                    |                |                                    |
|----------------|------------------|------------------|----------------------|--------|--------|-------|--------------------|----------------|------------------------------------|
| Pollutants     | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML                  | MDL    | IMAX   | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
| Total Aluminum | Report           | Report           | Report               | Report | Report | μg/L  | 4,871              | AFC            | Discharge Conc > 10% WQBEL (no RP) |
| Total Copper   | Report           | Report           | Report               | Report | Report | μg/L  | 159                | CFC            | Discharge Conc > 10% WQBEL (no RP) |

#### Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                      | Governing<br>WQBEL | Units | Comments                   |
|---------------------------------|--------------------|-------|----------------------------|
| Total Dissolved Solids (PWS)    | N/A                | N/A   | PWS Not Applicable         |
| Chloride (PWS)                  | N/A                | N/A   | PWS Not Applicable         |
| Bromide                         | N/A                | N/A   | No WQS                     |
| Sulfate (PWS)                   | N/A                | N/A   | PWS Not Applicable         |
| Fluoride (PWS)                  | N/A                | N/A   | PWS Not Applicable         |
| Total Antimony                  | N/A                | N/A   | Discharge Conc < TQL       |
| Total Arsenic                   | 168                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Barium                    | 40,291             | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium                 | N/A                | N/A   | No WQS                     |
| Total Boron                     | 26,861             | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cadmium                   | 4.59               | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Chromium (III)            | 1,464              | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Hexavalent Chromium             | 106                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cobalt                    | 319                | μg/L  | Discharge Conc < TQL       |
| Total Cyanide                   | N/A                | N/A   | No WQS                     |
| Dissolved Iron                  | 5,036              | μg/L  | Discharge Conc < TQL       |
| Total Iron                      | 25,182             | μg/L  | Discharge Conc < TQL       |
| Total Lead                      | 54.4               | μg/L  | Discharge Conc < TQL       |
| Total Manganese                 | 16,788             | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Mercury                   | 0.84               | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Nickel                    | 887                | μg/L  | Discharge Conc < TQL       |
| Total Phenols (Phenolics) (PWS) |                    | μg/L  | PWS Not Applicable         |
| Total Selenium                  | 83.8               | μg/L  | Discharge Conc < TQL       |
| Total Silver                    | 25.6               | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Thallium                  | 4.03               | μg/L  | Discharge Conc < TQL       |
| Total Zinc                      | 794                | μg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Molybdenum                | N/A                | N/A   | No WQS                     |
| Acrolein                        | 19.5               | μg/L  | Discharge Conc ≤ 25% WQBEL |

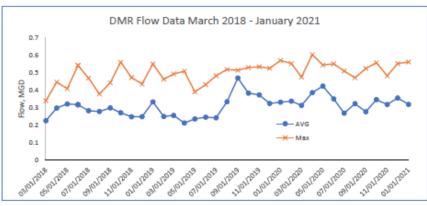
| Acrylonitrile                              | 5.11        | μg/L         | Discharge Conc < TQL       |
|--------------------------------------------|-------------|--------------|----------------------------|
| Benzene                                    | 49.4        | μg/L         | Discharge Conc < TQL       |
| Bromoform                                  | 596         | μg/L         | Discharge Conc < TQL       |
| Carbon Tetrachloride                       | 34.1        | μg/L         | Discharge Conc ≤ 25% WQBEL |
| Chlorobenzene                              | 1,679       | μg/L         | Discharge Conc < TQL       |
| Chlorodibromomethane                       | 68.2        | μg/L         | Discharge Conc < TQL       |
| Chloroethane                               | N/A         | N/A          | No WQS                     |
| 2-Chloroethyl Vinyl Ether                  | 58,758      | μg/L         | Discharge Conc < TQL       |
| Chloroform                                 | 486         | μg/L         | Discharge Conc ≤ 25% WQBEL |
| Dichlorobromomethane                       | 80.9        | μg/L         | Discharge Conc < TQL       |
| 1,1-Dichloroethane                         | N/A         | N/A          | No WQS                     |
| 1,2-Dichloroethane                         | 843         | μg/L         | Discharge Conc < TQL       |
| 1,1-Dichloroethylene                       | 554         | μg/L         | Discharge Conc < TQL       |
| 1,2-Dichloropropane                        | 76.7        | μg/L         | Discharge Conc < TQL       |
| 1,4-Dioxane                                | N/A         | N/A          | No WQS                     |
| Ethylbenzene                               | 1,142       | μg/L         | Discharge Conc < TQL       |
| Methyl Bromide                             | 1,679       | μg/L         | Discharge Conc ≤ 25% WQBEL |
| Methylene Chloride                         | 1,704       | μg/L         | Discharge Conc ≤ 25% WQBEL |
| 1,1,2,2-Tetrachloroethane                  | 17.0        | μg/L         | Discharge Conc < TQL       |
| Tetrachloroethylene                        | 852         | μg/L         | Discharge Conc < TQL       |
| Toluene                                    | 957         | μg/L         | Discharge Conc < TQL       |
| 1,2-trans-Dichloroethylene                 | 1,679       | μg/L         | Discharge Conc < TQL       |
| 1.1.1-Trichloroethane                      | 10.241      | μg/L         | Discharge Conc < TQL       |
| 1,1,2-Trichloroethane                      | 46.9        | μg/L         | Discharge Conc < TQL       |
| Trichloroethylene                          | 51.1        | μg/L         | Discharge Conc < TQL       |
| Vinyl Chloride                             | 1.7         | μg/L         | Discharge Conc < TQL       |
| 2-Chlorophenol                             | 504         | μg/L         | Discharge Conc < TQL       |
| 2.4-Dichlorophenol                         | 168         | μg/L         | Discharge Conc < TQL       |
| 2,4-Dimethylphenol                         | 1.679       | μg/L         | Discharge Conc < TQL       |
| 2,4-Dinitrophenol                          | 168         | μg/L         | Discharge Conc < TQL       |
| 2-Nitrophenol                              | 26,861      | μg/L         | Discharge Conc < TQL       |
| 4-Nitrophenol                              | 7.890       | μg/L         | Discharge Conc < TQL       |
| Pentachlorophenol                          | 2.56        | μg/L         | Discharge Conc < TQL       |
| Phenol                                     | 67,152      | μg/L         | Discharge Conc < TQL       |
| 2,4,6-Trichlorophenol                      | 128         | μg/L         | Discharge Conc < TQL       |
| Acenaphthene                               | 285         | μg/L         | Discharge Conc < TQL       |
| Acenaphthylene                             | N/A         | N/A          | No WQS                     |
| Anthracene                                 | 5.036       | μg/L         | Discharge Conc < TQL       |
| Benzidine                                  | 0.009       | μg/L         | Discharge Conc < TQL       |
| Benzo(a)Anthracene                         | 0.085       | μg/L         | Discharge Conc < TQL       |
| Benzo(a)Pyrene                             | 0.009       | μg/L<br>μg/L | Discharge Conc < TQL       |
| Benzo(ghi)Perylene                         | N/A         | N/A          | No WQS                     |
| Benzo(gni)reryiene<br>Benzo(k)Fluoranthene | 0.85        |              | Discharge Conc < TQL       |
| Bis(2-Chloroethoxy)Methane                 | 0.85<br>N/A | μg/L<br>N/A  | No WQS                     |
| Dis(2-Unioroetnoxy)methane                 |             |              |                            |
| Bis(2-Chloroethyl)Ether                    | 2.56        | μg/L         | Discharge Conc < TQL       |

| Bis(2-Chloroisopropyl)Ether                         | 3,358        | μg/L         | Discharge Conc < TQL                         |
|-----------------------------------------------------|--------------|--------------|----------------------------------------------|
| Bis(2-Ethylhexyl)Phthalate                          | 27.3         | μg/L         | Discharge Conc < TQL                         |
| 4-Bromophenyl Phenyl Ether                          | 907          | μg/L         | Discharge Conc < TQL                         |
| Butyl Benzyl Phthalate                              | 1.68         | μg/L         | Discharge Conc < TQL                         |
| 2-Chloronaphthalene                                 | 13,430       | μg/L         | Discharge Conc < TQL                         |
| 4-Chlorophenyl Phenyl Ether                         | N/A          | N/A          | No WQS                                       |
| Chrysene                                            | 10.2         | μg/L         | Discharge Conc < TQL                         |
| Dibenzo(a,h)Anthrancene                             | 0.009        | μg/L         | Discharge Conc < TQL                         |
| 1.2-Dichlorobenzene                                 | 2.686        | μg/L         | Discharge Conc ≤ 25% WQBEL                   |
| 1.3-Dichlorobenzene                                 | 118          | μg/L         | Discharge Conc ≤ 25% WQBEL                   |
| 1.4-Dichlorobenzene                                 | 2.518        | μg/L         | Discharge Conc ≤ 25% WQBEL                   |
| 3.3-Dichlorobenzidine                               | 4.26         | μg/L         | Discharge Conc < TQL                         |
| Diethyl Phthalate                                   | 10.073       | μg/L         | Discharge Conc < TQL                         |
| Dimethyl Phthalate                                  | 8.394        | μg/L         | Discharge Conc < TQL                         |
| 2.4-Dinitrotoluene                                  | 4.26         | μg/L         | Discharge Conc < TQL                         |
| 2.6-Dinitrotoluene                                  | 4.26         | μg/L         | Discharge Conc < TQL                         |
| 1,2-Diphenylhydrazine                               | 2.56         | μg/L         | Discharge Conc < TQL                         |
| Fluoranthene                                        | 336          | μg/L         | Discharge Conc < TQL                         |
| Fluorene                                            | 839          | μg/L         | Discharge Conc < TQL                         |
| Hexachlorobenzene                                   | 0.007        | μg/L<br>μg/L | Discharge Conc < TQL                         |
| Hexachlorobutadiene                                 | 0.85         | μg/L         | Discharge Conc < TQL                         |
| Hexachlorocyclopentadiene                           | 16.8         | μg/L         | Discharge Conc < TQL                         |
| Hexachloroethane                                    | 8.52         | μg/L         | Discharge Conc < TQL                         |
| Indeno(1,2,3-cd)Pyrene                              | 0.085        | μg/L<br>μg/L | Discharge Conc < TQL                         |
| Isophorone                                          | 571          | μg/L         | Discharge Conc < TQL                         |
| Naphthalene                                         | 722          | μg/L         | Discharge Conc ≤ 25% WQBEL                   |
| Nitrobenzene                                        | 168          | μg/L         | Discharge Conc < TQL                         |
| n-Nitrosodimethylamine                              | 0.06         | μg/L<br>μg/L | Discharge Conc < TQL                         |
| n-Nitrosodi-n-Propylamine                           | 0.43         | μg/L<br>μg/L | Discharge Conc < TQL                         |
| n-Nitrosodi-n-Propylamine<br>n-Nitrosodiphenylamine | 281          |              | Discharge Conc < TQL                         |
| n-ivitrosodiphenylamine<br>Phenanthrene             | 16.8         | μg/L         | Discharge Conc < TQL                         |
| Pyrene                                              | 336          | μg/L         | Discharge Conc < TQL                         |
| 1,2,4-Trichlorobenzene                              | 1.18         | μg/L         | Discharge Conc < TQL                         |
| Aldrin                                              | 0.00007      | μg/L         | Discharge Conc < TQL                         |
| alpha-BHC                                           | 0.00007      | μg/L         | Discharge Conc < TQL                         |
| beta-BHC                                            |              | μg/L         |                                              |
| gamma-BHC                                           | 0.68<br>6.17 | μg/L         | Discharge Conc < TQL<br>Discharge Conc < TQL |
|                                                     |              | μg/L         |                                              |
| delta BHC<br>Chlordane                              | N/A<br>0.026 | N/A          | No WQS<br>Discharge Conc < TQL               |
|                                                     |              | μg/L         |                                              |
| 4,4-DDT                                             | 0.003        | μg/L         | Discharge Conc < TQL                         |
| 4,4-DDE                                             |              | μg/L         | Discharge Conc < TQL                         |
| 4,4-DDD                                             | 0.009        | μg/L         | Discharge Conc < TQL                         |
| Dieldrin                                            | 0.00009      | μg/L         | Discharge Conc < TQL                         |
| alpha-Endosulfan                                    | 0.94         | μg/L         | Discharge Conc < TQL                         |
| beta-Endosulfan                                     | 0.94         | μg/L         | Discharge Conc < TQL                         |

| Endosulfan Sulfate | 336    | μg/L | Discharge Conc < TQL |
|--------------------|--------|------|----------------------|
| Endrin             | 0.5    | μg/L | Discharge Conc < TQL |
| Endrin Aldehyde    | 16.8   | μg/L | Discharge Conc < TQL |
| Heptachlor         | 0.0005 | μg/L | Discharge Conc < TQL |
| Heptachlor Epoxide | 0.003  | μg/L | Discharge Conc < TQL |
| PCB-1016           | N/A    | N/A  | No WQS               |
| PCB-1221           | N/A    | N/A  | No WQS               |
| PCB-1232           | N/A    | N/A  | No WQS               |
| PCB-1242           | N/A    | N/A  | No WQS               |
| PCB-1248           | N/A    | N/A  | No WQS               |
| PCB-1254           | N/A    | N/A  | No WQS               |
| PCB-1260           | N/A    | N/A  | No WQS               |
| Toxaphene          | 0.003  | μg/L | Discharge Conc < TQL |

### 4. Effluent Volume Data




0.308919 0.498351

0.602

0.469

AVG

MAX



## 5. TOXCONC

| Facility:<br>NPDES #:<br>Outfall No:<br>n (Samples/Month):<br>Reviewer/Permit Engineer: |                 | Ahistrom<br>PA0008486<br>001<br>4<br>Jinsu Kim |                                                  |                                                  |                                                  |          |         |
|-----------------------------------------------------------------------------------------|-----------------|------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------|---------|
| Parameter Name                                                                          | Total Cadmium   | Total Copper                                   |                                                  |                                                  |                                                  |          | Т       |
| Units                                                                                   | mg/L            | mg/L                                           |                                                  |                                                  |                                                  |          | †       |
| Detection Limit                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | †       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | t       |
| Sample Date                                                                             | When entering v | alues below the                                | detection limit, e                               | nter "ND" or use                                 | the < notation (eq                               | . <0.02) | _       |
| 01/01/2019                                                                              | < 0.0002        | < 0.0063                                       |                                                  |                                                  |                                                  |          | Т       |
| 02/01/2019                                                                              | < 0.0002        | 0.0035                                         |                                                  |                                                  |                                                  |          | +       |
| 03/01/2019                                                                              | < 0.0002        | 0.0046                                         |                                                  |                                                  |                                                  |          | +       |
| 04/01/2019                                                                              | < 0.0002        | 0.0035                                         |                                                  |                                                  |                                                  |          | +       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | +       |
| 05/01/2019                                                                              | 0.0004          | 0.027                                          |                                                  |                                                  |                                                  |          | 4       |
| 06/01/2019                                                                              | < 0.0002        | 0.0075                                         |                                                  |                                                  |                                                  |          | 4       |
| 07/01/2019                                                                              | < 0.0002        | 0.0033                                         |                                                  |                                                  |                                                  |          | $\perp$ |
| 08/01/2019                                                                              | < 0.0002        | < 0.0025                                       |                                                  |                                                  |                                                  |          | Τ       |
| 09/01/2019                                                                              | < 0.0002        | < 0.0047                                       |                                                  |                                                  |                                                  |          | T       |
| 10/01/2019                                                                              | < 0.0002        | 0.0029                                         |                                                  |                                                  |                                                  |          | †       |
| 11/01/2019                                                                              | < 0.0002        | 0.0039                                         |                                                  |                                                  |                                                  |          | +       |
| 12/01/2019                                                                              | < 0.0002        | 0.011                                          |                                                  |                                                  |                                                  |          | +       |
| 01/01/2020                                                                              | < 0.0002        | 0.012                                          |                                                  |                                                  |                                                  |          | +       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 4       |
| 02/01/2020                                                                              | 0.0002          | 0.011                                          |                                                  |                                                  |                                                  |          | 4       |
| 03/01/2020                                                                              | < 0.0002        | 0.0076                                         |                                                  |                                                  |                                                  |          | ┙       |
| 04/01/2020                                                                              | 0.00024         | 0.011                                          |                                                  |                                                  |                                                  |          |         |
| 05/01/2020                                                                              | < 0.0002        | 0.0045                                         |                                                  |                                                  |                                                  |          | T       |
| 06/01/2020                                                                              | 0.00048         | 0.036                                          |                                                  |                                                  |                                                  |          | †       |
| 07/01/2020                                                                              | < 0.00026       | < 0.0092                                       |                                                  |                                                  |                                                  |          | +       |
| 08/01/2020                                                                              | 0.0002          | 0.024                                          |                                                  |                                                  |                                                  |          | +       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | +       |
| 09/01/2020                                                                              | 0.00023         | 0.00023                                        |                                                  |                                                  |                                                  |          | 4       |
| 10/01/2020                                                                              | 0.0002          | 0.01                                           |                                                  |                                                  |                                                  |          | 4       |
| 11/01/2020                                                                              | 0.0002          | 0.0078                                         |                                                  |                                                  |                                                  |          | $\perp$ |
| 12/01/2020                                                                              | 0.0002          | 0.011                                          |                                                  |                                                  |                                                  |          | T       |
| 01/01/2021                                                                              | 0.0002          | 0.007                                          |                                                  |                                                  |                                                  |          | T       |
| 02/01/2021                                                                              | 0.0002          | 0.0064                                         |                                                  |                                                  |                                                  |          | †       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | +       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | +       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | +       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 4       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 4       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 4       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | ╛       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | Ī       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 1       |
|                                                                                         |                 |                                                |                                                  |                                                  | 1                                                |          | †       |
|                                                                                         |                 |                                                |                                                  |                                                  | <del>                                     </del> |          | +       |
|                                                                                         |                 |                                                |                                                  | <del>                                     </del> |                                                  |          | +       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 4       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 4       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | ┙       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | ſ       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | J       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 1       |
|                                                                                         |                 |                                                | 1                                                |                                                  | 1                                                |          | †       |
|                                                                                         |                 |                                                |                                                  | <del>                                     </del> |                                                  |          | +       |
|                                                                                         | _               |                                                | <del>                                     </del> | <del>                                     </del> | <del>                                     </del> |          | +       |
|                                                                                         |                 |                                                | -                                                |                                                  |                                                  |          | 4       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | 4       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | ┙       |
|                                                                                         |                 |                                                |                                                  |                                                  |                                                  |          | J       |
|                                                                                         |                 |                                                | 1                                                |                                                  | 1                                                |          | 1       |

Reviewer/Permit Engineer: Jinsu Kim Facility: Ahlstrom NPDES #: PA0008486 Outfall No: 001 n (Samples/Month): Parameter Distribution Applied | Coefficient of Variation (daily) | Avg. Monthly 1.2671309 Total Cadmium (mg/L) 0.0002691 Delta-Lognormal Total Copper (mg/L) Delta-Lognormal 1.5362441 0.0356065

TOXCON Output 5/10/2021

|                           | Ahlstrom<br>PA0008486<br>001<br>4 |              |                                                  |
|---------------------------|-----------------------------------|--------------|--------------------------------------------------|
| Parameter Name            | Total Cadmium                     | Total Copper |                                                  |
|                           |                                   |              |                                                  |
| Number of Samples         | 26                                | 26           |                                                  |
| Samples Nondetected       | 15                                | 4            |                                                  |
| LOGNORMAL                 |                                   |              |                                                  |
| Log MEAN                  | NA                                | NA           |                                                  |
| Log VAR.                  | INO                               | INA          | <del>                                     </del> |
| (LTA) [E(x)]              |                                   |              | <del>                                     </del> |
| Variance [V(x)]           |                                   |              |                                                  |
| CV (raw)                  |                                   |              |                                                  |
| CV (n)                    |                                   |              |                                                  |
| Monthly Avg. (99%, n-day) |                                   |              |                                                  |
|                           |                                   |              |                                                  |
|                           |                                   |              |                                                  |
| DELTA-LOGNORMAL           |                                   |              |                                                  |
| Delta-Log MEAN            | -8.3453114                        | -4.9976890   |                                                  |
| Delta-Log VAR.            | 0.0974696                         | 1.0449005    |                                                  |
| (LTA) [E(x)]              | 0.0001055                         | 0.0096356    |                                                  |
| Variance [V(x)]           | 0.0000000                         | 0.0002191    |                                                  |
| CV (raw)                  | 1.2671309                         | 1.5362441    |                                                  |
| Delta-Log VAR. (n)        | 0.2200619                         | 0.4631809    |                                                  |
| A, Table E-2, TSD         | 0.4014052                         | 0.5900114    |                                                  |
| B, Table E-2, TSD         | 0.0000000                         | 0.0000000    |                                                  |
| C, Table E-2, TSD         | 0.0000000                         | 0.0000000    |                                                  |
| Delta-Log MEAN (n)        | -9.1493953                        | -4.8733229   |                                                  |
| phi (Φ)                   | 0.9763636                         | 0.9881818    |                                                  |
| Z*                        | 1.9800000                         | 2.2600000    |                                                  |
| Monthly Avg. (99%, n-day) | 0.0002691                         | 0.0356065    |                                                  |
|                           |                                   |              | +                                                |
| NORMAL                    |                                   |              |                                                  |
| MEAN                      | NA                                | NA           |                                                  |
| VAR.                      | NA                                | NA           | +                                                |
| (LTA) [E(x)]              |                                   |              | + +                                              |
| Variance [V(x)]           |                                   |              | + +                                              |
| CV (raw)                  |                                   |              | + +                                              |
| CV (rav)                  |                                   |              | +                                                |
| Monthly Avg. (99%, n-day) |                                   |              | <del>                                     </del> |

| Parameter Name | Total Cadmium | Total Copper             |
|----------------|---------------|--------------------------|
|                |               |                          |
| y(i)           |               |                          |
|                |               | 5.0540000                |
|                |               | -5.6549923               |
|                |               | -5.3816990               |
|                | 7.0240400     | -5.6549923               |
|                | -7.8240460    | -3.6119184<br>-4.8928523 |
|                |               | -4.0920523<br>-5.7138328 |
|                |               | -5.7 130320              |
|                |               |                          |
|                |               | -5.8430445               |
|                |               | -5 5467787               |
|                |               | -4.5098600               |
|                |               | -4.4228486               |
|                | -8.5171932    | -4.5098600               |
|                |               | -4.8796070               |
|                | -8.3348716    | -4.5098600               |
|                |               | -5.4036779               |
|                | -7.6417245    | -3.3242363               |
|                |               |                          |
|                | -8.5171932    | -3.7297014               |
|                | -8.3774312    | -8.3774312               |
|                | -8.5171932    | -4.6051702               |
|                | -8.5171932    | -4.8536315               |
|                | -8.5171932    | -4.5098600               |
|                | -8.5171932    | -4.9618451               |
|                | -8.5171932    | -5.0514573               |

### 6. Thermal Limits

Flow Data for Thermal Discharge Analysis

Facility: Ahlstrom Filtration & Mt Holly Speciality Papers

Permit Number: PA0008486 & PA0008150

Stream Name: Mountain Creek Analyst/Engineer: Jinsu Kim Stream Q7-10 (cfs): 14.27

|           |                    | Facilit              | y Flows <sup>1</sup>  |           | Stream                    | Flows                                  |
|-----------|--------------------|----------------------|-----------------------|-----------|---------------------------|----------------------------------------|
|           | Stream<br>(Intake) | External<br>(Intake) | Consumptive<br>(Loss) | Discharge | Adj. Q7-10<br>Stream Flow | Downstream <sup>2</sup><br>Stream Flow |
|           | (MGD)              | (MGD)                | (MGD)                 | (MGD)     | (cfs)                     | (cfs)                                  |
| Jan 1-31  | 0                  | 2.069                | 0                     | 2.069     | 45.7                      | 48.9                                   |
| Feb 1-29  | 0                  | 2.069                | 0                     | 2.069     | 49.9                      | 53.1                                   |
| Mar 1-31  | 0                  | 2.069                | 0                     | 2.069     | 99.9                      | 103.1                                  |
| Apr 1-15  | 0                  | 2.069                | 0                     | 2.069     | 132.7                     | 135.9                                  |
| Apr 16-30 | 0                  | 2.069                | 0                     | 2.069     | 132.7                     | 135.9                                  |
| May 1-15  | 0                  | 2.069                | 0                     | 2.069     | 72.8                      | 76.0                                   |
| May 16-30 | 0                  | 2.069                | 0                     | 2.069     | 72.8                      | 76.0                                   |
| Jun 1-15  | 0                  | 2.069                | 0                     | 2.069     | 42.8                      | 46.0                                   |
| Jun 16-30 | 0                  | 2.069                | 0                     | 2.069     | 42.8                      | 46.0                                   |
| Jul 1-31  | 0                  | 2.069                | 0                     | 2.069     | 24.3                      | 27.5                                   |
| Aug 1-15  | 0                  | 2.069                | 0                     | 2.069     | 20.0                      | 23.2                                   |
| Aug 16-31 | 0                  | 2.069                | 0                     | 2.069     | 20.0                      | 23.2                                   |
| Sep 1-15  | 0                  | 2.069                | 0                     | 2.069     | 15.7                      | 18.9                                   |
| Sep 16-30 | 0                  | 2.069                | 0                     | 2.069     | 15.7                      | 18.9                                   |
| Oct 1-15  | 0                  | 2.069                | 0                     | 2.069     | 17.1                      | 20.3                                   |
| Oct 16-31 | 0                  | 2.069                | 0                     | 2.069     | 17.1                      | 20.3                                   |
| Nov 1-15  | 0                  | 2.069                | 0                     | 2.069     | 22.8                      | 26.0                                   |
| Nov 16-30 | 0                  | 2.069                | 0                     | 2.069     | 22.8                      | 26.0                                   |
| Dec 1-31  | 0                  | 2.069                | 0                     | 2.069     | 34.2                      | 37.4                                   |

<sup>1</sup> Facility flows are not required (and will not affect the permit limits) if all intake flow is from the receiving stream (Case 1), consumptive losses are small, and permit limits will be expressed as Million BTUs/day.

Please forward all comments to Tom Starosta at 717-787-4317, tstarosta@state.pa.us.

Version 1.0 -- 08/01/2004 Reference: Implementation Guidance for Temperature Criteria, DEP-ID: 391-2000-017 NOTE: The user can only edit fields that are blue.

NOTE: MGD x 1.547 = cfs.

Thermal limits 5/10/2021

<sup>&</sup>lt;sup>2</sup> Downstream Stream Flow Includes the discharge flow.

Thermal Discharge Recommended Permit Limits

Trout Stocking (TSF) Stream

Facility: Ahlstrom Filtration & Mt Holly Speciality Papers

Permit Number: PA0008486 & PA0008150

Stream: Mountain Creek

|           | TSF              |                      |                | TSF                | TSF              |              |
|-----------|------------------|----------------------|----------------|--------------------|------------------|--------------|
|           | Ambient Stream   | Ambient Stream       | Target Maximum | Daily              | Daily            |              |
|           | Temperature (°F) | Temperature (°F)     | Stream Temp.1  | WLA <sup>2</sup>   | WLA <sup>3</sup> | at Discharge |
|           | (Default)        | (Site-specific data) | (°F)           | (Million BTUs/day) | (°F)             | Flow (MGD)   |
| Jan 1-31  | 34               | 0                    | 40             | N/A Case 2         | 110.0            | 2.069        |
| Feb 1-29  | 35               | 0                    | 40             | N/A Case 2         | 110.0            | 2.069        |
| Mar 1-31  | 39               | 0                    | 46             | N/A Case 2         | 110.0            | 2.069        |
| Apr 1-15  | 46               | 0                    | 52             | N/A Case 2         | 110.0            | 2.069        |
| Apr 16-30 | 52               | 0                    | 58             | N/A Case 2         | 110.0            | 2.069        |
| May 1-15  | 56               | 0                    | 64             | N/A Case 2         | 110.0            | 2.069        |
| May 16-30 | 60               | 0                    | 68             | N/A Case 2         | 110.0            | 2.069        |
| Jun 1-15  | 65               | 0                    | 70             | N/A Case 2         | 110.0            | 2.069        |
| Jun 16-30 | 69               | 0                    | 72             | N/A Case 2         | 110.0            | 2.069        |
| Jul 1-31  | 73               | 71                   | 74             | N/A Case 2         | 96.7             | 2.069        |
| Aug 1-15  | 72               | 0                    | 80             | N/A Case 2         | 110.0            | 2.069        |
| Aug 16-31 | 70               | 0                    | 87             | N/A Case 2         | 110.0            | 2.069        |
| Sep 1-15  | 68               | 0                    | 84             | N/A Case 2         | 110.0            | 2.069        |
| Sep 16-30 | 62               | 0                    | 78             | N/A Case 2         | 110.0            | 2.069        |
| Oct 1-15  | 57               | 0                    | 72             | N/A Case 2         | 110.0            | 2.069        |
| Oct 16-31 | 53               | 0                    | 66             | N/A Case 2         | 110.0            | 2.069        |
| Nov 1-15  | 47               | 0                    | 58             | N/A Case 2         | 110.0            | 2.069        |
| Nov 16-30 | 41               | 0                    | 50             | N/A Case 2         | 110.0            | 2.069        |
| Dec 1-31  | 36               | 0                    | 42             | N/A Case 2         | 106.2            | 2.069        |

<sup>&</sup>lt;sup>1</sup> This is the maximum of the TSF WQ criterion or the ambient temperature. The ambient temperature may be either the design (median) temperature for TSF, or the ambient stream temperature based on site-specific data entered by the user. A minimum of 1°F above ambient stream temperature is allocated.

Thermal limits 5/10/2021

<sup>&</sup>lt;sup>2</sup> The WLA expressed in Million BTUs/day is valid for Case 1 scenarios, and disabled for Case 2 scenarios.

<sup>&</sup>lt;sup>3</sup> The WLA expressed in °F is valid only if the limit is tied to a daily discharge flow limit (may be used for Case 1 or Case 2). WLAs greater than 110°F are displayed as 110°F.

# 7. Effluent Data for Total Copper, Total Cadmium and Pentachlorophenol

|            | Cadmium   |           | Copper   |          | Pentachlor | ophenol  |
|------------|-----------|-----------|----------|----------|------------|----------|
|            | AVG       | MAX       | AVG      | MAX      | AVG        | MAX      |
| 09/01/2018 | 0.0002    | 0.0002    | 0.006    | 0.007    | 0.0056     | 0.0056   |
| 10/01/2018 | < 0.0002  | < 0.0002  | 0.006    | 0.016    | < 0.0056   | < 0.0056 |
| 11/01/2018 | < 0.0002  | < 0.0002  | < 0.003  | 0.0048   | < 0.0056   | < 0.0056 |
| 12/01/2018 | < 0.0002  | < 0.0002  | 0.0046   | 0.0083   | < 0.0056   | < 0.0057 |
| 01/01/2019 | < 0.0002  | < 0.0002  | < 0.0032 | < 0.0063 | < 0.0056   | < 0.0057 |
| 02/01/2019 | < 0.0002  | < 0.0002  | 0.0028   | 0.0035   | < 0.0056   | < 0.0056 |
| 03/01/2019 | < 0.0002  | < 0.0002  | < 0.0030 | 0.0046   | < 0.0056   | < 0.0056 |
| 04/01/2019 | < 0.0002  | < 0.0002  | < 0.0029 | 0.0035   | < 0.0056   | < 0.0056 |
| 05/01/2019 | < 0.0002  | 0.0004    | < 0.0098 | 0.027    | < 0.0057   | 0.006    |
| 06/01/2019 | < 0.0002  | < 0.0002  | < 0.0038 | 0.0075   | < 0.0057   | < 0.0059 |
| 07/01/2019 | < 0.0002  | < 0.0002  | < 0.0026 | 0.0033   | < 0.0056   | < 0.0056 |
| 08/01/2019 | < 0.0002  | < 0.0002  | < 0.0025 | < 0.0025 | < 0.0056   | < 0.0056 |
| 09/01/2019 | < 0.0002  | < 0.0002  | < 0.0030 | < 0.0047 | < 0.0056   | < 0.0057 |
| 10/01/2019 | < 0.0002  | < 0.0002  | < 0.0025 | 0.0029   | < 0.0056   | < 0.0056 |
| 11/01/2019 | < 0.0002  | < 0.0002  | < 0.0029 | 0.0039   | < 0.0056   | < 0.0056 |
| 12/01/2019 | < 0.0002  | < 0.0002  | < 0.0056 | 0.011    | < 0.0056   | < 0.0056 |
| 01/01/2020 | < 0.0002  | < 0.0002  | < 0.007  | 0.012    | < 0.0056   | < 0.0056 |
| 02/01/2020 | < 0.0002  | 0.0002    | < 0.0069 | 0.011    | < 0.0056   | < 0.0056 |
| 03/01/2020 | < 0.0002  | < 0.0002  | 0.0049   | 0.0076   | < 0.0056   | < 0.0057 |
| 04/01/2020 | 0.00021   | 0.00024   | 0.0086   | 0.011    | 0.0056     | 0.0057   |
| 05/01/2020 | < 0.0002  | < 0.0002  | 0.0036   | 0.0045   | < 0.0057   | < 0.0057 |
| 06/01/2020 | < 0.00027 | 0.00048   | 0.012    | 0.036    | < 0.0057   | < 0.0057 |
| 07/01/2020 | < 0.00021 | < 0.00026 | < 0.007  | < 0.0092 | < 0.005    | < 0.0056 |
| 08/01/2020 | 0.0002    | 0.0002    | 0.012    | 0.024    | 0.005      | 0.005    |
| 09/01/2020 | 0.00021   | 0.00023   | 0.00021  | 0.00023  | 0.00057    | 0.00057  |
| 10/01/2020 | 0.0002    | 0.0002    | 0.00653  | 0.01     | 0.00057    | 0.00057  |
| 11/01/2020 | 0.0002    | 0.0002    | 0.0061   | 0.0078   | 0.00057    | 0.00057  |
| 12/01/2020 | 0.0002    | 0.0002    | 0.0056   | 0.011    | 0.0057     | 0.0057   |
| 01/01/2021 | 0.0002    | 0.0002    | 0.005    | 0.007    | 0.005      | 0.005    |
| 02/01/2021 | 0.0002    | 0.0002    | 0.0051   | 0.0064   | 0.0056     | 0.0057   |

| AVG                | 0.000203 | 0.000246 | 0.005996 | 0.009686 | 0.003801 | 0.004041 |
|--------------------|----------|----------|----------|----------|----------|----------|
| MAX                | 0.00021  | 0.00048  | 0.012    | 0.036    | 0.0057   | 0.006    |
| MEDIAN             | 0.0002   | 0.0002   | 0.0058   | 0.00755  | 0.005    | 0.0053   |
| No. of Non-Detects | 21       | 18       | 15       | 4        | 21       | 20       |