

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0009326

 APS ID
 275256

 Authorization ID
 1302741

Applicant and Facility Information

Applicant Name	Motts LLP	Facility Name	Motts Juice Proc Plant Aspers
Applicant Address	45 Aspers North Road	Facility Address	45 Aspers North Road
	Aspers, PA 17304-9486		Aspers, PA 17304-9486
Applicant Contact	Brian Group	Facility Contact	Christopher Moore
Applicant Phone	(717) 677-7121	Facility Phone	(717) 778-6279
Client ID	129964	Site ID	252196
SIC Code	2033,2037	Municipality	Menallen Township
SIC Description	Manufacturing - Canned Fruits and Vegetables, Manufacturing - Frozen Fruits And Vegetables	County	Adams
Date Application Receiv	ved January 21, 2020	EPA Waived?	No
Date Application Accep	ted January 23, 2020	If No, Reason	Significant CB Discharge
Purpose of Application	NPDES permit renewal.		

Summary of Review

The current NPDES permit was issued on September 2, 2015 and became effective on October 1, 2015. On January 9, 2020, POWER Engineers, Inc., on behalf of the permittee, submitted a renewal application for the current NPDES permit. The permit will expire on September 30, 2020.

The permittee currently operates an onsite industrial wastewater treatment facility with a design flow of 1.04 MGD. The Department issued two (2) Water Quality Management (WQM) permits (Nos. 0189201 & 0107203) for the construction and operation of the existing units. The WQM permit No. 0189201 allowed the permittee to spray treated wastewater on the company owned property. The WQM permit No. 0107203 authorized the construction and operation of this centrifuge.

Based on the review outlined in this fact sheet, it is recommended that the permit be drafted and published in the *Pennsylvania Bulletin* for public comments.

Any additional information or public review of documents associated with the discharge or the facility may be available at the PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file reviews, contact the SCRO File Review Coordinator at 717.705.4700.

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	August 7, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Clean Water Program Manager	

Discharge, Receiving Waters and Water Supply Inform	ation	
Outfall No. 001 Latitude 39° 58' 15.27" Quad Name Biglerville Wastewater Description: IW Process Effluent with El	Design Flow (MGD) Longitude Quad Code _G	1.04 -77º 13' 29.28"
Receiving Waters Opossum Creek (TSF)	Stream Code	09057
NHD Com ID 57470355	RMI	4.35
Drainage Area 17.3 mi. ²	Yield (cfs/mi ²)	0.3
Q ₇₋₁₀ Flow (cfs) _ 5.2	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft) 605	Slope (ft/ft)	
Watershed No. 7-F	Chapter 93 Class.	TSF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDL Status Tentative	Name _ Opossum Cr	reek
Nearest Downstream Public Water Supply Intake	Wrightsville Water Supply Cor	npany
PWS RMI 43.54 miles	Distance from Outfall (mi)	Approximate 77.0 miles

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is Opossum Creek at RMI 4.35 miles. A drainage area upstream of the discharge is estimated to be 17.3 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Stream Flow

According to USGS StreamStats, the point of first use at the confluence with Opossum Creek (Stream Code 09057) has a Q7-10 of 5.2 cfs and a drainage area of 17.3 mi.², which results in a Q7-10 low flow yield of 0.03 cfs/ mi.². This information is used to obtain a chronic or 30-day (Q30-10), and an acute or 1-day (Q1-10) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

Q7-10 = 5.2 cfs Low Flow Yield = 5.2 cfs / 17.3 mi.² = 0.3 cfs/ mi.² Q30-10 = 1.36 * 5.2 cfs = 7.07 cfs Q1-10 = 0.64 * 5.2 cfs = 3.33 cfs

The resulting Q7-10 dilution ratio is: Qstream / Qdischarge = 5.2 cfs / [1.04 MGD * (1.55 cfs/MGD)] = 3.23:1

Opossum Creek

25 Pa. Code § 93.90 classifies Opossum Creek as Trout Stocking Fishes (TSF) surface water which is described as *Maintenance of stocked trout from February 15 to July 31 and maintenance and propagation of fish species and additional flora and fauna which are indigenous to a warm water habitat* (25 Pa. Code § 93.3). Based on the 2018 Integrated Report, Opossum Creek, assessment unit ID 13022, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply

The closest water supply intake located downstream from the discharge in the Wrightsville Water Supply Company, Susquehanna River approximately 77.0 miles from the point of discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

	Tre	atment Facility Summa	ary	
Treatment Facility Na	me: Motts Juice Proc			
WQM Permit No.	Issuance Date			
0189021				
0107023	11/19/2007			
L I				
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Industrial	Biological (Industrial Waste)	Activated Sludge	UV	1.04
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
		Not Overloaded	Aerobic Digestion	Land Application

Changes Since Last Permit Issuance: none

The treatment process, according to the revised application, is as follows:

Pump Station \rightarrow Grit Removal \rightarrow Aeration lagoon (1) \rightarrow Final Clarifier (1) \rightarrow 1st polishing lagoon \rightarrow 2nd polishing lagoon \rightarrow Outfall 001

	Compliance History
Summary of DMRs:	DMRs reported last 12 months from July 1, 2019 to June 30, 2020 are summarized in the Table below (Pages 5, 6, & 7).
Summary of Inspections:	7/29/2020: Mr. Bettinger, DEP Environmental Trainee, conducted an administrative inspection to follow up on self-reported turbidity increase in treated waste-water effluent at Motts Juice Process that occurred on 7/25/2020. The increase in turbidity was likely a result of residual particles from flushing the line. The discharge was clear. There were no violations notice during inspection.
	12/6/2017: Mr. Bowen, DEP WQS, conducted compliant evaluation inspection. Discharge appeared clear. Field test results were within permit limits. Annual TN loading for 2016-2017 was 11,018 lbs, which was compliant with the facility's annual cap load.
	11/2/2016: Mr. Haines, DEP WQS, conducted compliant evaluation inspection. The outfall was clear. Field test results were within permit limits. In processing the NH ₃ -N, the NO ₂ -NO ₃ concentrations/loadings have increased causing the plant to exceed its annual Chesapeake Bay Total Nitrogen (TN) discharge limit and to meet compliance had to purchase TN credits for this compliance year.
Other Comments:	There are three open violations associated with the permittee or the facility.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from July 1, 2019 to June 30, 2020)

Parameter	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19
Flow (MGD)												
Average Monthly	0.36	0.29	0.37	0.34	0.31	0.33	0.24	0.3	0.38	0.28	0.37	0.37
Flow (MGD)												
Daily Maximum	0.53	0.49	0.6	0.53	0.49	0.54	0.5	0.48	0.6	0.59	0.67	0.7
pH (S.U.)												
Minimum	8.0	7.9	7.9	7.5	7.6	7.5	7.6	7.5	7.7	7.8	7.8	7.5
pH (S.U.)												
Maximum	8.4	8.3	8.2	8.0	8.0	8.1	8.1	7.9	8.3	8.3	8.3	8.5
DO (mg/L)												
Minimum	6.81	7.1	8.9	8.6	7.4	7.6	9.0	8.5	8.0	7.3	7.0	7.4
CBOD₅ (lbs/day)												
Average Monthly	< 10	< 8	< 11	< 10	< 10	< 9	< 7.0	< 10	< 12	< 7	< 12	< 14
CBOD₅ (lbs/day)												
Daily Maximum	12	< 10	< 13	< 11	< 11	< 11	< 13.0	< 11	< 14	< 10	< 13	< 18
CBOD₅ (mg/L)												
Average Monthly	< 3	< 3	< 3	< 3	< 3	< 3	< 3.0	< 3	< 3	< 3	< 3	< 3
CBOD₅ (mg/L)												
Daily Maximum	3	3	< 3	< 3	< 3	< 3	< 3.0	< 3	< 3	< 3	< 3	< 3
TSS (lbs/day)												
Average Monthly	15	8	10	9	22	20	6.0	7	6	9	11	26
TSS (lbs/day)				. –								
Daily Maximum	28	10	13	15	67	46	13.0	10	9	17	20	50
TSS (mg/L)				-	_							
Average Monthly	4	3	3	3	7	6	2.0	2	1	4	3	6
TSS (mg/L)						10			0		_	10
Daily Maximum	8	3	4	4	20	13	3.0	3	2	8	5	10
Total Dissolved Solids												
(IDS/day)	0705	0047	44.00	0450	4040	2000	0000	0700	4500	0444	4450	4505
Average Monthly	3725	3017	4193	3456	4210	3266	2000	3780	4536	2414	4453	4535
I otal Dissolved Solids												
(IDS/day)	4407	2142	5074	4007	6220	2602	4570	4406	5046	2160	4019	5906
Tatal Dissolved Calida	4197	2143	5274	4007	0329	3092	4579	4490	5046	3109	4910	2090
(IIIg/L) Average Monthly	1076	1083	1156	1070	1206	1057	1102	1160	1005	070	1105	082
Total Discolved Solida	1070	1003	1150	1070	1290	1057	1102	1100	1095	970	1105	902
Daily Maximum	1164	1168	1216	1232	2108	1104	1210	1238	1210	1000	1182	1030
(mg/L) Daily Maximum	1164	1168	1216	1232	2108	1104	1210	1238	1210	1000	1182	1030

NPDES Permit No. PA0009326

Nitrate-Nitrite (mg/L)												
Average Monthly	< 2.32	< 3.49	< 2.32	< 1.95	< 2.82	< 1.51	< 0.8	< 0.83	< 0.8	< 0.8	< 0.8	< 1.09
Nitrate-Nitrite (lbs)												
Total Monthly	< 246.2	< 351.5	< 240.2	< 194	< 259.8	< 131.5	< 58.6	< 68.9	< 93.9	< 52	< 78.8	< 113.2
Total Nitrogen (mg/L)												
Average Monthly	< 3.39	< 4.59	< 3.4	< 2.62	< 3.35	< 2.15	< 1.3	< 1.35	< 1.3	< 1.3	< 1.31	< 1.71
Total Nitrogen (lbs)												
Effluent Net, Total												
Monthly	358.5	< 463.1	< 348.8	< 260.8	< 307.6	< 188.6	< 95.2	< 111.4	< 152.5	< 84.6	< 129.4	< 178.1
Total Nitrogen (lbs)		100.1				100.0					100.1	170.4
I otal Monthly	< 358.5	< 463.1	< 348.8	< 260.8	< 307.6	< 188.6	< 95.2	< 111.4	< 152.5	< 84.6	< 129.4	< 1/8.1
Total Nitrogen (lbs)												
Effluent Net, Total										10475		
										< 10475		
Total Nitrogen (IDS)										10475		
										< 10475		
Ammonia (Ibs/day)	- 0 0	. 1	.09	.02	10.4	.02	.0.2	102	10.1	.0.2	102	102
Average Monthly	< 0.9	< 1	< 0.0	< 0.5	< 0.4	< 0.5	< 0.2	< 0.5	< 0.4	< 0.5	< 0.5	< 0.3
Doily Moximum	2	2	Λ	- 0.1	0.7	-01	-04	- 1	- 0.5	0.7	- 0.4	- 0.6
	3	3	4	< 0.4	0.7	< 0.4	< 0.4	< 4	< 0.5	0.7	< 0.4	< 0.0
Ammonia (mg/L) Average Monthly	< 0.2	0.4	< 0.2	- 0 1	< 0.1	- 0 1	- 0 1	- 0 1	- 0 1	< 0.2	- 01	< 0.1
Ammonia (mg/L)	< 0.2	0.4	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1
Daily Maximum	0.83	0.86	0.89	0.13	0.28	< 0.1	< 0.1	< 0.1	0.1	03	< 0.1	< 0.1
Ammonia (lbs)	0.00	0.00	0.00	0.10	0.20	< 0.1	< 0.1	< 0.1	0.1	0.0	< 0.1	< 0.1
Total Monthly	< 26.4	< 37.9	< 22.6	< 10.4	< 12.4	< 9	< 7.3	< 8.3	< 11.7	< 10.4	< 9.9	< 10.3
Ammonia (lbs)	0							. 010				
Total Annual										< 207		
TKN (ma/L)												
Average Monthly	1.07	1.1	1.07	< 0.67	< 0.53	< 0.64	< 0.5	< 0.52	< 0.5	< 0.5	0.51	< 0.62
TKN (lbs)												
Total Monthly	112.3	111.6	108.7	< 66.9	< 47.8	< 57.2	< 36.6	< 42.6	< 58.6	< 32.6	< 50.6	< 64.9
Total Phosphorus												
(mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phosphorus												
(mg/L)												
Daily Maximum	0.11	0.1	0.14	< 0.01	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phosphorus (lbs)												
Effluent Net, Total						_						
Monthly	< 10.6	< 10.1	< 10.4	< 10.1	< 9.1	< 9	< 7.3	< 8.3	< 11.7	< 13.5	< 9.9	< 10.3
Total Phosphorus (lbs)	10.0	40.4	40.4		<u> </u>	•				40 -		10.0
I otal Monthly	< 10.6	< 10.1	< 10.4	< 10	< 9.1	< 9	< 7.3	< 8.3	< 11.7	< 13.5	< 9.9	< 10.3
Total Phosphorus (lbs)												
Effluent Net, I otal										407		
Annual										< 137		

NPDES Permit No. PA0009326

Total Phosphorus (lbs)	-											
Total Annual										< 137		
Sulfate (lbs/day)												
Average Monthly	659	536	939	619	507	479	376	611	828	521	740	743
Sulfate (lbs/day)												
Daily Maximum	748	602	1258	567	646	585	709	713	972	729	806	851
Sulfate (mg/L)												
Average Monthly	190	193	250	193	153	155	154	188	200	208	185	162
Sulfate (mg/L)												
Daily Maximum	230	210	290	224	180	180	170	190	220	230	210	170
Chloride (lbs/day)												
Average Monthly	884	741	1141	664	844	859	734	1044	947	598	1037	1267
Chloride (lbs/day)												
Daily Maximum	917	856	1648	901	934	981	1334	1351	1141	792	1171	1601
Chloride (mg/L)												
Average Monthly	256	265	302	201	255	278	306	320	228	240	258	274
Chloride (mg/L)												
Daily Maximum	280	280	380	260	280	300	320	380	240	250	270	320
Bromide (lbs/day)												
Average Monthly	4	3	4	3	3	2	2.0	3	7	2	< 3	< 3
Bromide (lbs/day)												
Daily Maximum	5	3	5	4	4	3	4.0	4	9	4	5	4
Bromide (mg/L)												
Average Monthly	1.09	0.94	1.02	1.07	0.81	0.79	1.0	1.06	1.74	0.99	< 0.81	< 0.6
Bromide (mg/L)												
Daily Maximum	1.4	1	1.1	1.3	1.0	0.97	1.1	1.2	2.8	1.7	1.1	0.72

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	1.04
Latitude	39º 58' 15.36		Longitude	-77º 13' 29.22"
Wastewater De	escription:	IW Process Effluent with ELG		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	12	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
May 1 – Oct 31	24	Daily Maximum	-	-
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
Nov 1 – Apr 30	50	Daily Maximum	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended	60	Daily Maximum	133.102(b)(2)	92a.47(a)(2)
Solids	75	IMAX	-	-
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
	2.0	Average Monthly	-	BPJ, 96.5 (c)
	4.0	Daily Maximum	-	-
Total Phosphorus	5.0	IMAX	-	-

Water Quality-Based Limitations

Flow

Flow monitoring requirements will remain in the permit. These requirements are consistent with other typical industrial wastewater discharges throughout the region and are recommended by Table 6-4 of the permit guidance, Technical Guidance for the Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits (385-0400-001).

CBOD₅, Dissolved Oxygen (D.O.), and Ammonia-Nitrogen (NH₃-N)

The following are limitations that are included in the current NPDES permit.

Table1. Existing Limitations for CBOD ₅ , D.O. and NH ₃ -N								
	CBOD₅ (Summer)	CBOD₅ (Winter)	D.O.	NH₃-N (Summer)	NH₃-N (Winter)			
Average Monthly Concentration	12 mg/L	25 mg/L	6.0 mg/L Minimum	1.5 mg/L	2.5 mg/L			
Maximum Daily Concentration	24 mg/L	50 mg/L		3.0 mg/L	5.0 mg/L			
Instantaneous Concentration	30 mg/L	62.5 mg/L		3.75 mg/L	6.25 mg/L			
Average Monthly Mass	104 lbs/day	217 lbs/day		N/A	N/A			
Maximum Daily Mass	208 lbs/day	434 lbs/day		N/A	N/A			

CBOD₅ and Ammonia-Nitrogen (NH₃-N) are common pollutants for any fruit processing facilities as these facilities use fresh fruits (i.e., washing, sorting, and peeling processes) for their products on a daily basis. Limitations displayed on Table 1 are water quality-based that were previously recommended by WQM 7.0, a water quality model for CBOD₅, NH₃-N, and Dissolved Oxygen (D.O.).

WQM 7.0 model was re-utilized for this permit renewal. Based on the modeling results, the Department is able to determine if existing WQBELs for these pollutants are still protective of water quality. Using existing limits, new Q7-10, and the design flow of the facility, the model was utilized and recommended that existing limits are still appropriate to protect water quality standards in the receiving stream. The permittee has been consistently meeting these limits; accordingly, existing limits will remain in the proposed permit. Seasonal limits were previously established based on achieving the "target" instream CBOD₅ concentration of 10 mg/L to prevent or reduce the impacts of filamentous bacteria which has a direct relationship with floc (i.e., settleability, floc structure/abundance, etc.). Due to this reason, seasonal limits will be maintained in the proposed permit. Seasonal limitation strategies were derived from Table 8-1 of the Department's guidance, Determining Water Quality-Based Effluent Limits (391-2000-003).

pН

25 Pa. Code § 95.2(1) requires industrial wastes to control a pH effluent level of not less than 6.0 and not greater than 9.0 standard units (S.U.). These pH limits are currently specified in the existing permit. Sample results reported on past Discharge Monitoring Reports (DMRs) indicate that the effluent pH has ranged from 7.5 to 8.5 S.U. Accordingly, existing pH limits will remain unchanged.

Total Suspended Solids (TSS)

Accordingly, existing TSS limits of 30 mg/L (average monthly), 60 mg/L (daily maximum), and 75 mg/L (instantaneous maximum) will remain unchanged in the proposed permit. The average monthly limit is based on traditional secondary treatment standards found in 40 CFR § 133.102. The daily maximum and instantaneous maximum limits were previously determined using multipliers of 2 and 2.5, respectively.

Total Phosphorus (TP)

TP limits were previously included in the permit on a case-by-case basis using best professional judgment (BPJ). As determined previously, the discharge of phosphorus from this facility is of concern as facilities with lagoons are generally having issues with algal growth. It is well known that the level of phosphorus is directly related to algal growth in the steam which may cause to adverse environmental impacts on aquatic life and potential nutrient enrichment in the stream. In order to prevent or to minimize these issues, the effluent phosphorus level must be controlled in accordance with 25 Pa Code § 96.5(c). The Department has determined that limits specified in the existing permit are appropriate (i.e., 2.0 mg/L (average monthly), 4.0 mg/L (daily maximum), 5.0 mg/L (instantaneous maximum)) as these limits have been assigned to other facilities with similar technology. Accordingly, existing TP limits will remain in the proposed permit. See the EPA guidance, Nutrient Criteria Technical Guidance Manual - Rivers and Streams, 07/2000 EPA-822-B-00-002, for more information about nutrient impacts on streams.

Oil and Grease

Oil and Grease can also be of concern if facilities utilize or store any oil-based materials for their products at the place that may potentially come in contact with stormwater. 25 Pa. Code § 95.2 (2) requires all oil-bearing wastewaters must achieve less than 15 mg/L for average monthly and 30 mg/L for instantaneous maximum. However, the sample results reported in the renewal application detected no Oil and Grease (6.0 mg/L). The Department's SOP also states that no monitoring or limitation is necessary if the sample result is less than 4 mg/L. At this time, the facility historically had no issues in regard to the presence of Oil and Grease in the effluent (also no visible film on the surface of the receiving water). Accordingly, no monitoring of Oil and Grease is necessary.

Total Residual Chlorine (TRC)

The facility currently utilizes UV disinfection for their well water but uses chlorine-based chemical (i.e., Sodium Hypochlorite 12.5%) for sanitizing purposes (i.e., tank cleaning). Nevertheless, the application indicates that this chemical will not be expected to be present in the effluent. Accordingly, water quality modeling for TRC is not necessary as it is not a parameter of concern.

Temperature

Previously, non-contact cooling water (NCCW) was discharged via two (2) different outfalls; Outfalls 001 and 002. The permittee has decided to convey this flow directly into the treatment facility. The volume of this NCCW is insignificant as opposed to other wastewater. Also, the discharge of NCCW is to the existing aeration lagoon where significant cooling can be expected. Accordingly, temperature is not of concern at this time and no monitoring or limitation is necessary.

Total Maximum Daily Loads (TMDLs)

A TMDL was developed in 2013 to address impairments noted in 303(d) list as well as other nonpoint sources such as agriculture. Although it has not been finalized yet, this document contains wasteload allocations (WLAs) for the following point source dischargers in the Opossum Creek watershed:

Table 2. Opossum Creek TMDL (Reference: page # 13: Opossum Creek Watershed TMDL)						
Name	NPDES Permit #	Sediment WLA	Sediment WLA	Basis		
		(lb/yr)	(lb/day)			
Motts Incorporated	PA0009326	79,194.0500	216.9700	25.0 mg/L		
Rice Foods	PA0088455	3,655.1100	10.0140	30.0 mg/L		
Opossum Valley	PA0247154	19,965.3300	30.0420	30.0 mg/L		
Municipal Authority				-		
Bulk Reserve	-	83,146.4160	227.7984	-		
Total	-	176,960.906	484.8244	-		

It is unknown as to when this TMDL document will be finalized or approved by the U.S. Environmental Protection Agency (US-EPA). Consequently, the permit will be drafted without including the TMDL requirement. The permit, during the permit term, can be modified or reopened to include requirements/conditions based on new information that was not available at the time of permit issuance (40 CFR § 122.62 (a)). Accordingly, it is recommended that the following reopener clause be included in Part C of the permit:

NPDES Permit No. PA0009326

"On April 30, 2013, the Total Maximum Daily Load (TMDL) was developed to provide a full picture of and solution to water quality problems identified in the Opossum Creek watershed. Once the Opossum Creek Watershed TMDL is finalized, the Department may reopen the permit to reflect the allocated Total Suspended Solids loading addressed in the TMDL."

Chesapeake Bay

In the Phase 2 WIP Wastewater Supplement revised on December 17, 2019, Table 7 of this document shows that Motts LLP has been allocated 18,645 lbs/year of TN and 729 lbs/year of TP. This approach is consistent with the Chesapeake Bay TMDL was based on the actual performance data previously evaluated by the Department. Since the permittee is easily capable of achieving compliance with these loads, the Department determines that no "compliance schedule" for the requirements associated with the Chesapeake Bay Strategy is necessary. Accordingly, the Chesapeake Bay nutrient existing limitations and monitoring requirements will remain in the proposed permit.

Toxic

Toxic pollutants are not generally considered pollutants of concern for facilities involved with fruits and vegetables processing. The wastewater treatment facility currently receives "brine waste" from the company's reverse osmosis (RO) system for their water use. Also, the facility has been utilizing wastewater treatment additives that may contain toxic chemicals. Based on these facts, the Department needs to evaluate toxic pollutants of concern for water quality modeling and to facilitate determinations of reasonable potential to cause an excursion above water quality standards by using the "Toxic Screening Analysis" spreadsheet. The maximum effluent concentrations of pollutants reported in the application (i.e., Pages # 15) were entered in the spreadsheet. The results are as follows:

	TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7								
	Motts LLP Analysis Hardness (mg/L): 19 Stream Flow, Q ₇₋₁₀ (cfs): 5.2			NPDES Permit N Discharge Flow (I	lo.: MGD):	PA00093 1.04	3 <mark>26</mark> Anal	Outfall: 001 ysis pH (SU): 7	
	Parameter	aximum Concentration in pplication or DMRs (µg/L)	ncentration in Most Stringent Candidate for rDMRs (μg/L) Criterion (μg/L) PENTOXSD Model		didate for (SD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation		
	Total Dissolved Solids		1328000	500000	Yes			Monitor	
5	Chloride		460000	250000	Yes			Monitor	
	Bromide	<	1300	N/A	No			Monitor	
්	Sulfate		260000	250000	Yes			Monitor	
	Fluoride	<	200	2000	No (Value < QL)				
	Total Aluminum	<	1.5	750	No (\	/alue < QL)	13,946.26		
	Total Antimony	<		5.6					
	Total Arsenic			10					
	Total Barium	<		2400					
	Total Beryllium	<		N/A					
	Total Boron	<		1600					

The minimum measurement frequencies and sample types for all existing parameters such as TDS, Sulfate, Chloride, and Bromide will remain in the proposed permit. These requirements are either based on BPJ or recommended by Table 6-4 of the permit guidance.

Chemical Additives Analysis

Module 1 Section Chemical Additives of the application indicates that the facility is currently using following chemical additives: AC55-5 Red, AC-101, Enforce LP, Exelerate HS, Oxonia Active, Quorum Yellow II, Hydrogen Peroxide, Sodium Hypochlorite, Vortexx, Lubri-Klenz S, Quorum Purple, Synergex, Ster-Bac Quat, Quorum Pink II HF, and Lift RT. These chemical additives are generally used for cleaning purposes. The application (Module 1) also indicates that none of these chemical additives are expected to be present in the effluent; accordingly, there is no potential for toxicity in the effluent in regard to these chemical additives. Part C of the draft permit will contain standard "chemical additives" conditions.

Mass Loading Limitations

The current NPDES permit contains average monthly and maximum daily mass loading limitations for CBOD₅ and Total Suspended Solids as recommended by Table 5-2 of the permit guidance. These limitations were previously established based on the formula: The design flow (MGD) x concentration at the design flow (mg/L) x 8.34 (conversion factor). For this renewal, it is recommended to include mass loading limitations for NH₃-N as recommended Table 5-2 of the permit guidance.

Antidegradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

NPDES Permit Fact Sheet Motts Juice Proc Plant Aspers 303d Listed Streams

The discharge is not located on a 303d listed stream segment. The stream segment that receives the discharge is listed as attaining its used for aquatic life and fish consumption.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

All proposed limitations and monitoring requirements established based on BPJ, water quality, and state/federal effluent standards meet the antibacksliding requirements found in 40 CFR § 122.44(I)(1) and (2). These proposed limitations and monitoring requirements specified in the draft permit are at least as stringent as requirements/conditions specified in the current NPDES permit.

WQM7.0 / PENTOXSD Data

There are no other nearby upstream or downstream WWTPs. The following two nodes were used in the modeling effort.

Node 1:	Outfall 001 on UNT Ope Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	ossum Creek (09057) 605 ft (USGS National Map Viewer) 17.3 mi. ² (USGS PA StreamStats) 4.35 (PA DEP eMapPA) 0.3 cfs/mi. ² 1.04 MGD
Node 2:	Just before confluence Elevation: Drainage Area: River Mile Index: Low Flow Yield:	with UNT 09097 of Opossum Creek 598 ft (USGS National Map Viewer) 18.4 mi. ² (USGS PA StreamStats) 4.2 (PA DEP eMapPA) 0.3 cfs/mi. ²

0.0 MGD

Discharge Flow:

	Anal	ysis Results WQM 7.0			- 0	\times
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	Effluent Limitat	ions	
	nimi Discharge	e Name	(mga)			
l l	4.35 Motts LLP	V PA0009	3326 1.0400			
		Effluent Limit	Effluent Limit Efflue	nt Limit		
	Parameter	30 Day Average	e Maximum Mini	imum		
		(11975)	(mg/L) (m	g/L)		
	NH3-N	9.66	19.32			
	Dissolved Oxygen			5		
R	ecord: I 4 4 1 of 1	🕨 🕨 👫 🧏 😵 No Filter	Search			
Print	< <u>B</u> ack	<u>N</u> ext >	<u>A</u> rchive	<u>c</u>	ancel	

E Analys	is Results WQI	M 7.0		_		C
Hydrodynamics NH3-N Allocations	D.O. Allocatio	ons D.O. Si	mulation Efflue	ent Limitations		
RMI Total Discharge Flow (mgd)	Analysis T	Analysis Temperature (®C)				
4.350 1.040	21.183		7.000			
Reach Width (ft) Reach Depth (ft)	<u>Reac</u>	<u>h WD Ratio</u>	<u>Reach Velocity (I</u>			
29.198 0.677		43.153	0.344			
Reach C-BOD5 (mg/L) Reach Kc (1/days)	<u>Reach I</u>	NH3-N (mg/L)	Reach Kn (1/da	<u>hs]</u>		
7.44 1.187 Reach DO (mailt) Reach Kr (1/daus)	Kal	- 2.29 Equation	U.767 Beach DO Goal (m			
		zivodlou	<u>neach dù dùarjii</u> 5			
7.470 20.724	Cuba a b Da	sivogiou	5	_		
TravTime	CBOD5 NH	3-N D.O.				
0.027 (days)	(mg/L) (m	g/L) (mg/L)				
0.002	7.42	2.20 7.52				
0.005	7.42	2.20 7.53				
0.003	7.33	2.20 7.50				
0.000	7.37	2.27 7.69				
0.011	7.34	2.27 7.00				
0.015	7.32	2.20 7.72				
0.010	7.00	2.20 7.70				
0.013	7.27	2.25 7.00				
0.021	7.23	2.23 7.03				
0.024	7.22	2.24 7.89				
0.027	7.20	2.24 7.05				
Record: I4 4 1 of 1 + H +* 🐒 No Fil	ter Search					
Print Sack	Next >		Archive	Cancel	1	

F	rptGeneral	_		\times	F	rptHyd	ro	_		\times
Data in a second	Inpat Disks WCM 7. Bits Cols Bits Mill I 207 Bits OFCIELLOOSIK 4.38 207 Bits OFCIELLOOSIK 4.38 207 Bits OFCIELLOOSIK 4.38 208 Bits OFCIELLOOSIK 4.38 209 Bits OFCIELLOOSIK 4.38 200 Bits OFCIELLOOSIK 5.38 200 Bits OFCIELLOOSIK 6.38 200 Bits OFCIELLOOSIK 10.30 200 Bits OFCIELOSIK 10.30	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• РИЗ Арф Вольная РС Горба 200 — — — — — — — — — — — — — — — — — —			UCCAT 7. Lift Mail ex Table Ball Ball Filter Ball Ball Solution Ball Ball Solution Ball Solution Ball Solutit is and install Solutit is and instal	0 Hydrodynamio Out k Iaan Pradu Dyn Mide Wil 1894 07 90 01 0 000 07 90 01 0 00000 A77 902 415 0 00000 NA NA NA 0 000000 NA NA NA	Data Second Sconder Sconder Sconder Sconder	nh: Andgah p pl 4 7.00 2 7.00 1 7.00	
Pilip Aqual Page: 14	7,305 Versies135 € 1 ► ► ► ► ► ► ₹ rptGeneral	& No Filter	Page1 st2	×	Page:	ride, Aquit, 200	Voder 10k	No Filte	Page 1 d 1	×
0	None Cont Source Source None None	Image: Discrete	PRO: Window Apply PC 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00			View 27 Sec. 2 18 Sec. 2 19 Se	M 7.0 Wastelood Allo (a Baufae Uklick U des Baufae Uklick U 1994) 1000 1000 1000 1994 1000 1000 1000 100 1000 1000 1000 100 1000 10	Collions Mana Connect Mana Mana Mana Mana Mana Mana Mana Man	nand Table ef able B balance T	
Page: 14	7,205 Verder 1/6	k No Filter	Pige 3 vl 2		Page:	Pidag, August 7, 2020	Venter 13k	No Filte	Papelal 1	

	rptEffLimits	- 0	×		rptMo	delSpecs			×
	Wom 7.0 Efficient Linn 197 and Decomposition 197 and Decomposition 198 November 2000 198 November 2000	Region FIEL Loss: BIE Loss: BIE Loss: Display: (mpl.) (mpl.) Region 32.20 Region 3		P4 80 00 00 00 00 00 00 00 00 00 00 00 00	WQ1 A la fad (2077 16 fada 18 Goff 18 Robe 2 Baradon 2 Goff	A 7.0 Modeling Specific Raft Dar Spelari BUPK Dar Spelari BUPK Dar Spelari BU Dar Spelari	Stions 21 Mard (20 MFA a. 2 80 File 80 File Alged for 2 Falseburg 2		
Page: 14	Pring, Argui 7, 2020 Version 13 k	Papertet 1 No Filter		Page: 14	August 1,202	Vesker13s	₹ No Filte	Page 1at 1	
	rptDOSim	— C	C	<					
	Wight 7.0 D.0. Simulation 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million 100 million	ation has an an a	-						
Page:	<u>Pide</u> , Agel1, 202 Vester 10. <	×-14	<u>.</u>						

NPDES Permit No. PA0009326

Parameter Code Parameter Description Value Unit DRNAREA Area that drains to a point on a stream 17.3 square minits Basin Delineated voit Mean basin slope measured in degrees 7.1 degrees	
StreamStats DRNAREA Area that drains to a point on a stream 17.3 square mi Basin Delineated BSLOPD Mean basin slope measured in degrees 7.1 degrees	
BSLOPD Mean basin slope measured in degrees 7.1 degrees	niles
Basin Demeated V	
ROCKDEP Depth to rock 5.2 feet	
SELECT SCENARIOS V URBAN Percentage of basin with urban development 0 percent	
REPORT Report Built >	
Low-Flow Statistics Parameters(100 Percent (17.3 square miles) Low Flow Region 1)	
Step 1: You can modify computed basin Parameter Code Parameter Name Value Units Min Limit Max L	Limit
characteristics here, then select the DRNAREA Drainage Area 17.3 square miles 4.78 1150	
hen click the "Build Report" button BSLOPD Mean Basin Slope degrees 7.1 degrees 1.7 6.4	
ROCKDEP Depth to Rock 5.2 feet 4.13 5.21	
Show Basin Characteristics URBAN Percent Urban 0 percent 0 89	
Low-Flow Statistics Disclaimers(100 Percent (17.3 separe miles) Low Flow Region 1]	
One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown	'n
asin Characteristics Report errors	
enario Flow Reports Low-Flow Statistics Flow Report;(100 Percent (17.3 square miles) Low Flow Region 1]	
Continue Statistic Value Unit	
7 Day 2 Year Low Flow 8.65 ft*3/s	
30 Day 2 Year Low Flow 9.62 ft^3/s	
POWERED BY WIM 7 Day 10 Year Low Flow 5.2 ft*3/s	
30 Day 10 Year Low Flow 5.81 ft*3/s	
Home Contact USGS Search USGS 90 Day 10 Year Low Flow 6.83 ft*3/s	
Parameter Code Parameter Description Value Unit DRNAREA Area that drains to a point on a stream 18.4 square mill	iles
Basin Delineated BSLOPD Mean basin slope measured in degrees 6.9 degrees	
ROCKDEP Depth to rock 5.2 feet	
SELECT SCENARIOS V URBAN Percentage of basin with urban development 1 percent	
A REPORT Report Built >	
Low-Flow Statistics Parameters(100 Percent (18.4 square miles) Low Region 1]	
Step 1: You can modify computed basin Parameter Code Parameter Name Value Units Min Limit Max Li characteristics here, then select the	Limit
pes of reports you wish to generate. DRNAREA Drainage Area 18.4 square miles 4.78 1150 hen click the "Build Report" button	
BSLOPD Mean Basin Slope degrees 6.9 degrees 1.7 6.4	
Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21	
Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 URBAN Percent Urban 1 percent 0 89	
Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 URBAN Percent Urban 1 percent 0 89 Low-Flow Statistics Disclaimers(100 Percent (18.4 square miles) Low Flow Region 1) VERSION Flow Region 1) VERSION Flow Region 1)	
Now Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 URBAN Percent Urban 1 percent 0 89 Low-Flow Statistics Disclaimers/100 Percent (18.4 square mday) Low Flow Region 1 0 0 89 Basin Characteristics Report One or more of the parameters is outside the suggested range. Estimates were estimated with unknown errors 0 0 0	,
 Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 ROCKDEP Depth to Rock 9.2 feet 4.13 5.21 ROCKDEP Depth to Rock 9.2 feet 4.13 5.21 RockDep Depth to Rock 1 percent 0 89 Concertine of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors Scenario Flow Reports Low-Flow Statistics Flow Report; 100 Parcent (16.4 requeer miles) Low Flow Report 1	,
 Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 URBAN Percent Urban percent percent 0 seain Characteristics Reports Low-Flow Statistics Disclaimers@ix0Prevent(18.4 square mfm) Low Flow Region 1) Concernatio Flow Reports Low-Flow Statistics Flow Report;100 Prevent (18.4 square mfm) Low Flow Region 1) Low-Flow Statistics Flow Report;100 Prevent (18.4 square mfm) Low Flow Region 1) Statistic Value Unit 	,
Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 URBAN Percent Urban 1 percent 0 89 vailable reports to display: Low-Flow Statistics Disclaimers(tion Percent (18.4 square miles) Low Flow Region 1) 0 89 One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors One or more of the parameters (18.4 square miles) Low Flow Region 1) Concortinue Statistic Statistic Flow Report; (18.4 square miles) Low Flow Region 1) Value Unit 7 Day 2 Year Low Flow 9.06 ft*3/s	,
Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 URBAN Percent Urban 1 percent 0 89 vailable reports to display: Low-Flow Statistics DisclaimerS(too Percent (18.4 square miles) Low Flow Region 1) 89 One or more of the parameters is outside the suggested range. Estimates were estrapolated with unknown errors Low-Flow Statistics Flow Report; (18.4 square miles) Low Flow Region 1] Continue Statistic Statistics Flow Report; (18.4 square miles) Low Flow Region 1] 10 T Day 2 Year Low Flow 9.06 ft*3/s </td <td></td>	
Show Basin Characteristics ROCKDEP Depth to Rock 5.2 available reports to display: Concernments Concernments Concernments Concernments	
ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 URBAN Percent Urban 1 percent 0 89 available reports to display: Low-Flow Statistics Disclaimers(100 Percent (18.4 square miles) Low Flow Region 1)	
Show Basin Characteristics ROCKDEP Depth to Rock 5.2 feet 4.13 5.21 urgasin Characteristics urgasin Characteristics Report urgasin Characteristics urgasin Characteristics urgasin Characteristics urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin urgasin <	

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Baramatar	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0	xxx	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0	XXX	XXX	XXX	1/day	Grab
CBOD₅ May 1 - Oct 31	104	208	xxx	12	24	30	1/week	24-Hr Composite
CBOD ₅ Nov 1 - Apr 30	217	434	XXX	25	50	62.5	1/week	24-Hr Composite
	217	500		20	00			24-Hr
1SS	260	520	XXX	30	60	/5	1/week	Composite
May 1 - Oct 31	13	26	XXX	1.5	3.0	3.75	2/week	Z4-Hr Composite
Ammonia Nov 1 - Apr 30	22	43	xxx	2.5	5.0	6.25	2/week	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	2.0	4.0	5.0	2/week	24-Hr Composite
								24-Hr
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX	1/week	Composite
Sulfate	Report	Report	xxx	Report	Report	xxx	1/week	24-Hr Composite
Chloride	Report	Report	xxx	Report	Report	xxx	1/week	24-Hr Composite
Bromide	Report	Report	xxx	Report	Report	XXX	1/week	24-Hr Composite

Existing Effluent Limitations and Monitoring Requirements (cont.)

			Monitoring Requirements					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falametei	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
						2007		24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen (lbs)	Report	18,645	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus (lbs)	Report	729	XXX	XXX	XXX	XXX	1/month	Calculation

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Baramatar	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	ххх	xxx	6.0	xxx	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0	xxx	XXX	XXX	1/day	Grab
CBOD₅ May 1 - Oct 31	104	208	xxx	12.0	24.0	30.0	1/week	24-Hr Composite
CBOD₅ Nov 1 - Apr 30	217	434	XXX	25.0	50.0	62.5	1/week	24-Hr Composite
TSS	260	520	XXX	30.0	60.0	75.0	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	13.0	26.0	xxx	1.5	3.0	3.75	2/week	24-Hr Composite
Ammonia Nov 1 - Apr 30	22.0	43.0	XXX	2.5	5.0	6.25	2/week	24-Hr Composite
Total Phosphorus	XXX	xxx	xxx	2.0	4.0	5.0	2/week	24-Hr Composite
Total Dissolved Solids	Peport	Penort	YYY	Peport	Peport		1/wook	24-Hr
							17Week	24-Hr
Sulfate	Report	Report	XXX	Report	Report	XXX	1/week	Composite
Chloride	Report	Report	XXX	Report	Report	xxx	1/week	24-Hr Composite
Bromide	Report	Report	XXX	Report	Report	XXX	1/week	24-Hr Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Requirements				
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	ххх	2/week	24-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	xxx	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	ХХХ	1/month	Calculation
Total Phosphorus	Report	Report	xxx	Report	xxx	ххх	2/week	24-Hr Composite
Net Total Nitrogen (lbs)	Report	18,645	XXX	XXX	XXX	ХХХ	1/month	Calculation
Net Total Phosphorus (lbs)	Report	729	xxx	xxx	XXX	ххх	1/month	Calculation

Compliance Sampling Location:

Other Comments:

Tools and References Used to Develop Permit

\square	WQM for Windows Model (see Attachment)
	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
\boxtimes	Toxics Screening Analysis Spreadsheet (see Attachment
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
\boxtimes	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\boxtimes	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: