

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0010502

APS ID 928053

Authorization ID 1360608

	Applicant an	d Facility Information	
Applicant Name	Letterkenny Army Depot	Facility Name	Letterkenny Army Depot WWTF
Applicant Address	1 Overcash Avenue Bldg 14	Facility Address	1 Overcash Avenue Bldg 14
	Chambersburg, PA 17201-4150		Chambersburg, PA 17201-4150
Applicant Contact	Randall Quinn	Facility Contact	Randall Quinn
Applicant Phone	(717) 267-9022	Facility Phone	(717) 267-9022
Client ID	83807	Site ID	249465
SIC Code	3489	Municipality	Greene Township
SIC Description	Manufacturing - Ordnance And Accessories, Nec	County	Franklin
Date Application Rec	eivedJuly 7, 2021	EPA Waived?	No
Date Application Acce	pted July 21, 2021	If No, Reason	Discharges to TMDL
Purpose of Applicatio	n NPDES Renewal.		

Summary of Review

Letterkenny Army Depot (LEAD) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on December 27, 2016 and became effective on January 1, 2017. The permit expired on December 31, 2021.

Based on the review, it is recommended that the permit be drafted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		์ Jinsu Kim / Environmental Engineering Specialist	February 23, 2022
х		Maria D. Bebeuek for Daniel W. Martin, P.E. / Environmental Engineer Manager	March 1, 2022
х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	March 1, 2022

Outfall No. 001			Design Flow (MGD)	0.29
Latitude 40°	0' 32.05"		Longitude	-77º 37' 52.41"
Quad Name F	Roxbury		Quad Code	1824
Wastewater Desc	ription:	IW Process Effluent with E	ELG	
Receiving Waters	Rowe	Run	Stream Code	10668
NHD Com ID	56410)815	RMI	4.57
Drainage Area	2.21		Yield (cfs/mi²)	0.46
Q ₇₋₁₀ Flow (cfs)	1.02		Q ₇₋₁₀ Basis	Please see below
Elevation (ft)	639		Slope (ft/ft)	
Watershed No.	7-B		Chapter 93 Class.	CWF, MF
Existing Use	None		Existing Use Qualifier	N/A
Exceptions to Use	None		Exceptions to Criteria	N/A
Assessment Stati	ıs	Impaired		
Cause(s) of Impa	irment	Organic Enrichment/Low [D.O., Siltation	
Source(s) of Impa	irment	Agriculture, Agriculture		
TMDL Status		Final	Name Conodoguin	et Creek Watershed
Nearest Downstre	am Publi	c Water Supply Intake	Carlisle Borough Municipal Au	uthority Water System
PWS Waters	Conodo	guinet Creek	_ Flow at Intake (cfs)	48
PWS RMI	35.95		Distance from Outfall (mi)	44.93

Drainage Area

The discharge is to Rowe Run at RM 4.57. Previously, DEP determined that the discharge point is to a dry stream and the point of first use (POFU) is determined to be further downstream (1.62 miles) from the discharge point. A drainage area upstream of this POFU was previously determined to be 2.21 sq.mi.

Streamflow

Nearest USGS Streamgage is 01570000 on Conodoguinet Creek near Hogestown is located about 350' below the PA American Water Co. intake and is affected to some degree by the withdrawal. Recent stream flow retrievals resulted in a Q7-10 of 69.3 cfs for a record period of 1971-2008 at this gage. USGS split the record period to incorporate the PA American PWS intake. The average daily PWS withdrawal has been 6 MGD or 9.28 cfs according to Source Water Assessment Summary for Silver Spring Water Plant. This results in a total flow of 78.58 cfs at the gage after adjustment for the PWS intake. The drainage area is reported to be 470 mi² at the stream gage and 2.21 mi² at the point of first use.

 $Q_{7\text{-}10} \text{ runoff rate} = (69.3 + 9.28) / 470 = 0.167 \text{ cfs/mi}^2.$ $Q_{30\text{-}10}: Q_{7\text{-}10} = 78.3 / 69.3 = 1.13:1$ $Q_{1\text{-}10}: Q_{7\text{-}10} = 63.1 / 69.3 = 0.91:1$ $Q_{7\text{-}10} = 0.167^* 2.21 = 0.369 \text{ cfs}$

Daily measurements of streamflow from January 1, 1995 to September 30, 1996 at Rowe Run at T433 bridge was collected and discussed in previous protection report. In summary, the flows were compared to Conodoguinet Creek streamflows at the Hogestown USGS gage during same time period, in accordance with DEP's SOP tilted "Design Stream Flows", Document number 391-2000-023, effective date September 14, 1998. The Q7-10 was 82.7% of the lowest flow at Hogestown during the period. 82.7% of the lowest measured flow at Rowe Run was 1.23*0.827 = 1.02 cfs which will be used for WQM and other required modeling purposes. Using this Q_{7-10} flow, the yield is 1.02/2.21 or 0.46 cfs/mi² which will be used to calculate the flow at node 2 for modeling purposes.

NPDES Permit Fact Sheet Letterkenny Army Depot

Rowe Run

Rowe Run is designated as cold water fishes and supports migratory fishes. The discharge is located in a stream segment that is Recreational and Aquatic Life impaired. Recreational impairment is due to pathogens and the source is unknown. This designation was achieved on October 10, 2015. Aquatic life impairment is due to siltation and organic enrichment/low DO and the source is agricultural activities. A Total Maximum Daily Load (TMDL) was developed in December 2000 for the Conodoguinet Creek Watershed which includes Rowe Run. More details will be discussed later in this report.

Public Water Supply Intake

The nearest downstream PWS intake is Carlisle Borough on the Conodoguinet Creek in North Middleton Township at RMI 35.95 about 44.93 miles downstream of discharge. The Q₇₋₁₀ at the intake is about 48 cfs so the discharge will not have an impact on the PWS because of the additional dilution, distance, and effluent limitations.

	Tr	eatment Facility Summar	у	
Treatment Facility Na	me: Letterkenny Army De	pot		
WQM Permit No.	Issuance Date			
2890201 10-1	06/14/2010			
2890201 A-2	09/06/2016			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Chemical (Industrial			•
Industrial	Treatment)	Chemical Precipitation	No Disinfection	0.29
			·	
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.29		Not Overloaded		•

Under Standard Industrial Classification Codes of 3489, 3471, 3483, industrial activities performed at LEAD are vehicle repairing, paint work, specialized maintenance, electroplating, degreasing, and washing. The permittee also holds a groundwater treatment permit (PA0087378) and Industrial Stormwater (OB/OD) permit (PA0246891.). All industrial wastewater generated during these activities are treated by an onsite wastewater treatment facility operated by LEAD. This facility is designed for 0.29 MGD. The maximum daily discharge rate is 0.1117 MGD and the average discharge rate is 0.0510 MGD. According to the permit application, the plant operates 17 hours/day, 260 days/year.

Influent flows to an equalization tank for pH adjustment and then passes through the skimmer for oil and grease. Followed by oil/grease separation, wastewater is mixed with lime, sodium sulfide, and ferric chloride and pass through flocculation, coagulation and setting stages. Wastewater is then treated via Moving Bed Biofilm Reactor (MBBR) biological treatment process in which phosphoric Acid, defoamer, Ammonia, and carbon source all are added and mixed in the MBBR. From MBBR, flow is directed to a secondary clarifiers, then to sand filters and Granular Activated Carbon (GAC) filtration system (for backwash water). pH is once again adjusted during these stages with sodium hydroxide. Effluent from these stages is to Rowe Run via Outfall 001.

According to the application, there are no chemical additives used at this facility. All chemicals used at this facility are for wastewater treatment purpose(s).

Sludge from primary and secondary clarifiers goes to sludge holding tanks and is dewatered in the filter press. The sludge is sent for disposal and the filtrates are directed to influent wet well.

The stormwater outfalls are outfalls S01, S02, and SO3 which were formerly known as Outfall 002, 004, and 005, respectively. The stormwater outfall S02 discharges at the same point as outfall 001. The stormwater outfalls will be discussed in more detail in the stormwater section of the report.

Compliance History													
Summary of DMRs:	A summary of past 12-month DI	MR data is presented on the ne	ext page.										
Summary of Inspections:	1/23/2019: Mike Benham, former DEP Water Quality Specialist, conducted an incide inspection in response to 250 gallons of purged groundwater from RCRA monitoring wel sent to the industrial wastewater treatment plant. The industrial wastewater treatment pla is not intended to treat groundwater. 01/31/2018: Pat Bowen, former DEP Water Quality Specialist, conducted a routir inspection. No issues were identified at the time of inspection.												
Other Comments:	A number of permit violations or	ccurred previously. These viola	ations are	iden	tifie	d below.							
	Date Violation Type	PARAMETER	Sample Results	Limits	Units	SBC							
	Jan-18 Late DMR Submission												
	Sep-18 Effluent Violation	Cadmium, Total			_	Average Monthly							
	Sep-18 Effluent Violation	Cadmium, Total				Daily Maximum							
	Oct-18 Effluent Violation	Cadmium, Total				Average Monthly							
	Dec-18 Effluent Violation	Cadmium, Total			_	Average Monthly							
	Dec-18 Effluent Violation	Cadmium, Total	0.0025	0.0023	mg/L	Daily Maximum							
	Jan-19 Late DMR Submission												
	Jun-19 Late DMR Submission Jul-19 Late DMR Submission												
	Dec-19 Late DMR Submission												
	Jan-20 Effluent Violation	Total Suspended Solids	22	20	ma/I	Daily Maximum							
	Feb-20 Late DMR Submission	Total Suspended Solids	22	20	IIIg/L	Daily Waxiiiluiii							
	Mar-20 Effluent Violation	Cadmium, Total	0.0025	0.0023	ma/I	Daily Maximum							
	Jun-20 Late DMR Submission	Caumum, rotai	0.0025	0.0023	mg/ L	Daily Waxiiiiuiii							
	Jan-21 Late DMR Submission												
	Jan-21 Effluent Violation	Cadmium, Total	0.002	0.0015	mø/I	Average Monthly							
	Jan-21 Late DMR Submission	Coarmon, rotal	0.002	0,0025	8/ -	Average month							
	Feb-21 Late DMR Submission												
	Feb-21 Effluent Violation	Cadmium, Total	0.0024	0.0023	mg/L	Daily Maximum							
	Jun-21 Sample collection less frequent than required	Bis(2-Ethylhexyl)Phthalate											
	Jun-21 Sample collection less frequent than required	Cadmium, Total											
	Jun-21 Sample collection less frequent than required	Carbonaceous Biochemical Oxygen Demand (CBOD5)											
	Jun-21 Sample collection less frequent than required	Chromium, Total											
	Jun-21 Sample collection less frequent than required	Copper, Total											
	Jun-21 Sample collection less frequent than required	Cyanide, Total											
	Jun-21 Sample collection less frequent than required	Lead, Total											
	Jun-21 Sample collection less frequent than required	Nickel, Total											
	Jun-21 Sample collection less frequent than required	Oil and Grease											
	Jun-21 Sample collection less frequent than required	Total Phosphorus											
	Jun-21 Sample collection less frequent than required	Total Suspended Solids											
	Jun-21 Sample collection less frequent than required	Zinc, Total											
	Aug-21 Late DMR Submission												
	Sep-21 Late DMR Submission	Tatal Commanded Calida		-	Is	Della Mari							
	Sep-21 Effluent Violation	Total Suspended Solids	23	20	mg/L	Daily Maximum							
	Oct-21 Late DMR Submission Dec-21 Effluent Violation	Cadmium Total	0.003	0.0015	me/	Average Monthly							
	Dec-21 Effluent Violation Dec-21 Effluent Violation	Cadmium, Total				Average Monthly Daily Maximum							

Effluent Data

DMR Data for Outfall 001 (from January 1, 2021 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Flow (MGD)												
Average Monthly	0.0168	0.0155	0.0221	0.0327	0.0253	0.0245	0.0223	0.0212	0.0231	0.0294	0.0252	0.0192
Flow (MGD)												
Daily Maximum	0.0466	0.0463	0.058	0.0627	0.0669	0.0609	0.0520	0.0626	0.0548	0.0683	0.0551	0.0545
pH (S.U.)												
Minimum	6.7	6.5	6.9	6.7	6.8	6.7	6.9	6.7	6.6	6.8	6.4	6.7
pH (S.U.)												
Instantaneous												
Maximum	7.3	7.4	7.3	7.4	7.6	7.7	7.5	7.6	7.8	8.0	7.8	7.8
CBOD5 (lbs/day)												
Average Monthly	0.9	0.7	< 1.1	3.6	1.6	2.2	1.6	2.3	1.7	1.2	1.9	< 1.0
CBOD5 (lbs/day)												
Daily Maximum	1.3	1.1	1.6	8.1	2.4	3.0	2.00	3.5	2.7	2.3	3.1	1.4
CBOD5 (mg/L)						4 -						
Average Monthly	3.5	2.5	< 2.5	8.3	3.8	4.5	4.1	5.1	4.1	2.9	4.4	< 2.6
CBOD5 (mg/L)				40 =			- 0					
Daily Maximum	4.9	3.0	3.4	19.7	6.3	6.4	5.3	8.7	6.0	4.6	6.8	3.2
TSS (lbs/day)								4.0				
Average Monthly	1.4	2.0	3.4	3.7	3.0	2.6	1.1	< 1.8	2.1	1.8	2.2	1.0
TSS (lbs/day)	0.0	4.0	5.0	40.0	5.0	2.5	0.5	2.0	2.0	0.5	4.0	
Daily Maximum	2.2	4.8	5.3	10.6	5.9	3.5	2.5	3.2	3.2	2.5	4.0	1.4
TSS (mg/L)	6.0	6.8	8.0	0.0	6.3	F 2	3.0	. 4.0	5.3	4.4	F 2	2.5
Average Monthly	6.3	0.8	8.0	8.0	0.3	5.3	3.0	< 4.0	5.3	4.4	5.3	2.5
TSS (mg/L) Daily Maximum	14.0	14.0	11.0	23.0	11.0	7.0	7.00	8.0	7.0	5.0	10.0	3.0
Oil and Grease	14.0	14.0	11.0	23.0	11.0	7.0	7.00	6.0	7.0	5.0	10.0	3.0
(lbs/day)												
Average Monthly	< 1.0	< 1.0	< 1.6	< 2.0	< 1.7	< 1.9	< 1.5	< 1.7	< 1.5	< 1.6	< 1.6	< 1.7
Oil and Grease	V 1.0	V 1.0	V 1.0	\ 2.0	<u> </u>	V 1.5	V 1.5	<u> </u>	<u> </u>	V 1.0	V 1.0	<u> </u>
(lbs/day)												
Daily Maximum	< 1.3	< 1.4	< 1.8	< 2.6	< 2.0	< 2.0	< 1.7	< 2.0	< 1.7	< 2.1	< 1.8	< 1.8
Oil and Grease (mg/L)	11.0	- 1.1	, 1.0	, 2.0	1 2.0	1 2.0	7 1.7	`	- 1.7	`	11.0	1.0
Average Monthly	< 3.9	< 3.9	< 3.8	< 4.2	< 3.8	< 3.9	< 3.9	< 3.9	< 3.8	< 3.9	< 3.8	< 4.3
Oil and Grease (mg/L)	1 3.0	1 3.0	1 3.0		1 3.0	1 3.0	1 3.0	1 3.0	1 3.0	1 3.0	1 3.0	10
Daily Maximum	< 4.0	< 3.9	< 4.0	< 5.7	< 3.9	< 3.9	< 4.1	< 3.9	< 3.9	< 4.1	< 3.9	< 5.7
Total Phosphorus				-								-
(lbs/day)												
Average Monthly	< 0.04	< 0.03	< 0.04	< 0.05	< 0.04	< 0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.04	< 0.04

NPDES Permit Fact Sheet Letterkenny Army Depot

NPDES Permit No. PA0010502

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Total Phosphorus												
(lbs/day)												
Daily Maximum	0.04	< 0.04	0.06	< 0.05	< 0.05	0.08	0.09	< 0.05	0.07	0.07	< 0.05	< 0.05
Total Phosphorus												
(mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.10	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total Phosphorus												
(mg/L)												
Daily Maximum	0.24	< 0.1	0.13	< 0.1	< 0.1	0.15	0.3	0.11	0.16	0.13	0.1	0.12
Total Cadmium												
(lbs/day)												
Average Monthly	0.0006	0.0003	0.0003	< 0.0003	< 0.0003	0.0003	0.0002	0.0003	< 0.0004	0.0003	0.0005	0.0006
Total Cadmium												
(lbs/day)												
Daily Maximum	0.0008	0.0005	0.0004	< 0.0005	< 0.0005	0.0004	0.0002	0.0004	< 0.0008	0.0007	0.001	0.0009
Total Cadmium (mg/L)												
Average Monthly	0.0030	0.0010	0.0008	< 0.0006	< 0.0007	0.0006	0.00049	0.0007	< 0.0011	0.0007	0.0010	0.0020
Total Cadmium (mg/L)												
Daily Maximum	0.0052	0.0016	0.00087	< 0.0010	< 0.0010	0.0009	0.00058	0.00076	< 0.0020	0.0013	0.0024	0.0023
Total Chromium												
(lbs/day)												
Average Monthly	0.001	0.0007	0.002	< 0.001	< 0.0009	0.001	< 0.0009	0.0008	< 0.001	0.0007	0.0008	0.0006
Total Chromium												
(lbs/day)												
Daily Maximum	0.002	0.001	0.004	0.001	0.001	0.001	0.002	0.0009	< 0.004	0.0009	0.0009	0.0008
Total Chromium												
(mg/L)												
Average Monthly	0.005	0.003	0.006	< 0.002	< 0.002	0.002	< 0.002	0.002	< 0.004	0.002	0.002	0.002
Total Chromium												
(mg/L)		0.004							0.04			
Daily Maximum	0.0072	0.004	0.0094	0.0033	0.0021	0.0028	0.004	0.002	< 0.01	0.0025	0.0022	0.0017
Total Copper (lbs/day)												
Average Monthly	< 0.0007	< 0.0008	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.003	< 0.001	< 0.001	< 0.002
Total Copper (lbs/day)	0.0005	0.004	0.000	0.000	0.000	0.004	0.004	0.004	0.000	0.000	0.000	0.004
Daily Maximum	< 0.0008	0.001	0.002	0.002	0.002	< 0.001	< 0.001	< 0.001	< 0.009	0.003	0.003	0.004
Total Copper (mg/L)											0.005	0.005
Average Monthly	< 0.003	< 0.003	< 0.003	< 0.003	< 0.004	< 0.003	< 0.003	< 0.003	< 0.009	< 0.003	< 0.003	< 0.005
Total Copper (mg/L)	0.000-	0.0006	0.0046	0.0046	0.005				0.005	0.0050	0.0055	0.000
Daily Maximum	< 0.0025	0.0036	0.0049	0.0042	< 0.005	< 0.0025	0.003	< 0.0025	< 0.025	0.0058	0.0055	0.0093
Total Cyanide												
(lbs/day)	0.004	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.000
Average Monthly	< 0.001	< 0.001	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.0008	< 0.002

NPDES Permit Fact Sheet Letterkenny Army Depot

NPDES Permit No. PA0010502

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Total Cyanide												
(lbs/day)												
Daily Maximum	< 0.002	< 0.002	< 0.002	0.003	< 0.003	< 0.003	0.003	< 0.003	0.003	< 0.003	< 0.0009	< 0.007
Total Cyanide (mg/L)												
Average Monthly	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.002	< 0.006
Total Cyanide (mg/L)												
Daily Maximum	< 0.005	< 0.005	< 0.005	0.0059	< 0.005	< 0.005	0.007	< 0.005	0.0057	< 0.005	< 0.002	< 0.017
Total Lead (lbs/day)												
Average Monthly	< 0.0003	< 0.0003	< 0.0004	< 0.0005	< 0.0004	< 0.005	< 0.0004	< 0.0004	< 0.001	< 0.0004	< 0.0004	< 0.0004
Total Lead (lbs/day)												
Daily Maximum	< 0.0003	< 0.0004	< 0.0005	< 0.0005	< 0.0005	< 0.005	0.0004	< 0.0005	< 0.004	< 0.0006	< 0.0005	0.0005
Total Lead (mg/L)												
Average Monthly	< 0.001	< 0.001	< 0.001	< 0.001	< 0.0008	< 0.001	< 0.0010	< 0.001	< 0.003	< 0.001	< 0.001	< 0.001
Total Lead (mg/L)												
Daily Maximum	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0010	< 0.001	< 0.010	< 0.001	< 0.001	0.0011
Total Nickel (lbs/day)												
Average Monthly	0.006	0.004	0.01	0.009	0.008	0.008	0.007	0.007	< 0.006	0.003	0.004	0.006
Total Nickel (lbs/day)												
Daily Maximum	0.008	0.005	0.01	0.01	0.009	0.01	0.01	0.009	< 0.009	0.004	0.007	0.01
Total Nickel (mg/L)												
Average Monthly	0.02	0.02	0.03	0.02	0.02	0.02	0.02	0.02	< 0.02	0.007	0.010	0.01
Total Nickel (mg/L)												
Daily Maximum	0.028	0.017	0.037	0.0264	0.021	0.021	0.030	0.018	< 0.025	0.0078	0.017	0.027
Total Silver (lbs/day)												
Average Monthly	< 0.0001	< 0.0001	< 0.0002	< 0.0003	< 0.0007	< 0.0002	< 0.0002	< 0.0002	< 0.0006	< 0.0002	< 0.0002	< 0.0002
Total Silver (lbs/day)												
Daily Maximum	< 0.0002	< 0.0002	< 0.0002	< 0.0005	< 0.002	< 0.0003	< 0.0002	< 0.0003	< 0.002	< 0.0003	< 0.0002	< 0.0002
Total Silver (mg/L)												
Average Monthly	< 0.0005	< 0.0005	< 0.0005	< 0.0006	< 0.002	< 0.0005	< 0.0005	< 0.0005	< 0.002	< 0.0005	< 0.0005	< 0.0005
Total Silver (mg/L)												
Daily Maximum	< 0.0005	< 0.0005	< 0.0005	< 0.001	< 0.005	< 0.0005	< 0.0005	< 0.0005	< 0.005	< 0.0005	< 0.0005	< 0.0005
Total Zinc (lbs/day)	0.000	0.004	0.007	0.000	0.004	0.000	0.000	0.000	0.004	0.000	0.004	0.004
Average Monthly	0.003	0.001	0.007	0.003	0.004	0.003	0.002	0.003	< 0.004	0.002	0.004	0.004
Total Zinc (lbs/day)	0.000	0.000	0.04	0.004	0.007	0.004	0.000	0.004	0.000	0.004	0.000	0.000
Daily Maximum	0.003	0.002	0.01	0.004	0.007	0.004	0.003	0.004	< 0.009	0.004	0.006	0.006
Total Zinc (mg/L)	0.040	0.006	0.000	0.000	0.000	0.006	0.000	0.000	- 0.010	0.000	0.040	0.010
Average Monthly	0.010	0.006	0.020	0.006	0.009	0.006	0.006	0.006	< 0.010	0.006	0.010	0.010
Total Zinc (mg/L)	0.000	0.0070	0.004	0.0077	0.0400	0.0004	0.007	0.0070	. 0.005	0.0077	0.044	0.014
Daily Maximum	0.022	0.0072	0.024	0.0077	0.0182	0.0081	0.007	0.0072	< 0.025	0.0077	0.014	0.014
Bis(2-Ethyl- hexyl)Phthalate												
(lbs/day)												
Average Monthly	< 0.001	< 0.0008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Average Monthly	< 0.001	< 0.0008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

NPDES Permit Fact Sheet Letterkenny Army Depot

NPDES Permit No. PA0010502

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
Bis(2-Ethyl-												
hexyl)Phthalate												
(lbs/day)												
Daily Maximum	< 0.002	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001
Bis(2-Ethyl-												
hexyl)Phthalate (mg/L)												
Average Monthly	< 0.005	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Bis(2-Ethyl-												
hexyl)Phthalate (mg/L)												
Daily Maximum `	< 0.012	< 0.0029	< 0.0029	< 0.0029	< 0.0029	< 0.0029	< 0.003	< 0.0029	< 0.0029	< 0.0029	< 0.0028	< 0.0029

DMR Data for Outfall 002 (from January 1, 2021 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
pH (S.U.)												
Semi-Annual Average							8.0					
CBOD5 (mg/L)												
Semi-Annual Average							19.4					
COD (mg/L)												
Semi-Annual Average							36					
TSS (mg/L)												
Semi-Annual Average							99					
Oil and Grease (mg/L)												
Semi-Annual Average							< 4.0					
Nitrate-Nitrite (mg/L)												
Semi-Annual Average							< 1.7					
TKN (mg/L)												
Semi-Annual Average							2.3					
Total Phosphorus												
(mg/L)												
Semi-Annual Average							0.34					<u> </u>
Total Aluminum												
(mg/L)												
Semi-Annual Average							2.3					
Total Iron (mg/L)												
Semi-Annual Average							0.75					
Total Zinc (mg/L)												
Semi-Annual Average							0.20					<u> </u>

DMR Data for Outfall 004 (from January 1, 2021 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
pH (S.U.)												
Semi-Annual Average							8.2					
CBOD5 (mg/L)												
Semi-Annual Average							12.8					
COD (mg/L)												
Semi-Annual Average							< 15.0					
TSS (mg/L)												
Semi-Annual Average							77					
Oil and Grease (mg/L)												
Semi-Annual Average							< 3.9					
Nitrate-Nitrite (mg/L)												
Semi-Annual Average							< 0.74					
TKN (mg/L)												
Semi-Annual Average							1.2					
Total Phosphorus												
(mg/L)												
Semi-Annual Average							0.14					
Total Aluminum												
(mg/L)												
Semi-Annual Average							0.67					
Total Iron (mg/L)												
Semi-Annual Average							0.96					

DMR Data for Outfall 005 (from January 1, 2021 to December 31, 2021)

Parameter	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21
pH (S.U.)												
Semi-Annual Average							8.0					
CBOD5 (mg/L)												
Semi-Annual Average							3.9					
COD (mg/L)												
Semi-Annual Average							< 15					
TSS (mg/L)												
Semi-Annual Average							20					
Oil and Grease (mg/L)												
Semi-Annual Average							< 4.0					
Nitrate-Nitrite (mg/L)												
Semi-Annual Average							< 2.8					
TKN (mg/L)												
Semi-Annual Average							< 1.0					

NPDES Permit Fact Sheet Letterkenny Army Depot

NPDES Permit No. PA0010502

Total Phosphorus							
(mg/L)							
Semi-Annual Average				< 0.1			
Total Aluminum							
(mg/L)							
Semi-Annual Average				0.18			
Total Iron (mg/L)							
Semi-Annual Average				0.27			
Total Zinc (mg/L)							
Semi-Annual Average				< 0.01			

Existing Effluent Limits and Monitoring Requirements

Tables below summarize effluent limits and monitoring requirements specified in the existing permit.

Outfall 001

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	48	97	XXX	20.0	40.0	50	1/week	24-Hr Composite
Total Suspended Solids	24	48	XXX	10.0	20.0	25	1/week	24-Hr Composite
Oil and Grease	36	72	XXX	15.0	30.0	30	1/week	Grab
Total Phosphorus	4.8	9.7	XXX	2.0	4.0	5	1/week	24-Hr Composite
Cadmium, Total	0.004	0.005	XXX	0.0015	0.0023	0.0038	1/week	24-Hr Composite
Chromium, Total	4.13	6.7	XXX	1.71	2.77	4.25	1/week	24-Hr Composite
Copper, Total	0.13	0.2	XXX	0.054	0.084	0.135	1/week	24-Hr Composite
Cyanide, Total	Report	Report	XXX	0.65	1.2	1.62	1/week	24-Hr Composite
Lead, Total	0.059	0.092	XXX	0.024	0.038	0.061	1/week	24-Hr Composite
Nickel, Total	0.73	1.13	XXX	0.3	0.469	0.75	1/week	24-Hr Composite
Silver, Total	0.061	0.094	XXX	0.025	0.039	0.063	1/month	24-Hr Composite
Zinc, Total	1.07	1.67	XXX	0.443	0.692	1.108	1/week	24-Hr Composite
Total Toxic Organics	XXX	XXX	XXX	XXX	2.13	XXX	1/year	24-Hr Composite
Bis(2-Ethylhexyl)Phthalate	0.052	0.081	XXX	0.021	0.033	0.054	1/week	24-Hr Composite

NPDES Permit Fact Sheet Letterkenny Army Depot

Outfall S01

			Effluent L	imitations			Monitoring Requiremen	
Parameter	Mass Units	(lbs/day) (1)		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
raianietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab

Outfall S02

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentra	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab

NPDES Permit No. PA0010502

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Cadmium, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chromium, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Copper, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Cyanide, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Nickel, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Silver, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Toxic Organics	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Outfall S03

		Effluent Limitations							
Parameter	Mass Units (lbs/day) (1)			Concentra	Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab	

NPDES Permit Fact Sheet Letterkenny Army Depot

NPDES Permit No. PA0010502

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
r ai ailletei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab

Development of Effluent Limitations and Monitoring Requirements

Outfall No.
Latitude001Design Flow (MGD)
40° 0' 32.00".29Wastewater Description:IW Process Effluent with ELGLongitude-77° 37' 52.00"

Technology-Based Limitations

Given the type of industrial activities performed at the site, the facility is subject to federal effluent limitations and guidelines (ELGs) found in 40 CFR Part 433 Subpart A – ELGs for Metal Finishing which specifies the following BAT effluent limits:

	Concentrations (mg/L)						
Regulated parameter	Maximum Daily	Maximum Monthly Avg.					
Cadmium Total	0.69	0.26					
Chromium Total	2.77	1.71					
Copper Total	3.38	2.07					
Lead Total	0.69	0.43					
Nickel Total	3.98	2.3					
Silver Total	0.43	0.24					
Zinc Total	2.61	1.48					
Cyanide Total	1.20	0.65					
TTO	2.13						

Along with these limitations, the facility is also subject to state standards found in 25 Pa Code §§§92a.47, 92a.48 and 95.2. These standards are shown below.

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

The facility reported effluent fecal coliform of 6, 8, <1, and 579 MPN/100 mL with influent fecal coliform of 1,730 MPN/100 mL. It does not seem fecal coliform is a parameter of concern. No requirements are therefore recommended.

The existing effluent limits for Total Suspended Solids are 10 mg/L (average monthly), 20 mg/L (Daily Max) and 25 mg/L (IMAX) which are derived from DEP's technical guidance no. 391-2000-014 as the discharge is to a dry stream.

The existing effluent limits for Oil and Grease are derived from 25 Pa Code §95.2(2)(ii). While the facility has been consistently reporting non-detect values for effluent Oil and Grease, the facility is equipped with a gravity oil separator that could potentially remove Oil and Grease. The existing limits will remain unchanged in the permit to ensure that the facility is consistently meeting the industrial waste effluent standards.

The more stringent of these standards will be written in the permit unless more stringent requirements are needed based on the BPJ analysis and water quality analysis.

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's technical guidance no. 391-2000-007 describes the technical methods contained in the model for conducting wasteload allocation analyses and for determining recommended limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model output shows that existing WQBELs for CBOD5 are still protective of water quality. The model also recommended WQBELs for ammonia-nitrogen; however, in the past DEP has ruled out the need of effluent limits for ammonia-nitrogen as effluent concentrations were very low. For this renewal, LEAD collected samples and the results showed effluent NH3-N concentrations of 0.03 mg/L, 0.028 mg/L with influent concentration of 0.109 mg/L. DEP once again determined that effluent limits for NH3-N are not needed. No change is therefore recommended.

Toxics

DEP utilizes a Toxics Management Spreadsheet (TMS) to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet combines the functionality of DEP's previous water quality models including Toxics Screening Analysis worksheet and PENTOXSD. For this renewal, each toxic pollutant will be evaluated based on the current requirements in the permit. It is noteworthy that stream hardness of 300 mg/L from the past permit renewal has been used in the analysis as no latest data is available.

1) Existing Pollutants (Effluent Limits)

The current permit includes effluent limits for the following toxic pollutants:

Pollutants	Avg. Monthly (mg/L)	Basis
Total Cadmium	0.0015	WQBEL
Total Chromium	1.71	ELG
Total Copper	0.054	WQBEL
Total Cyanide	0.65	ELG
Total Lead	0.024	WQBEL
Total Nickel	0.3	WQBEL
Total Silver	0.025	WQBEL
Total Zinc	0.443	WQBEL
Total Toxic Organics	2.13 (maximum)	ELG
Bis(2-Ethylhexyl)Phthalate	0.021	WQBEL

DEP's TOXCONC worksheet was utilized as ample datasets were obtained during the last permit renewal. The worksheet provided the following statistical average monthly concentrations with daily coefficient of variation:

Pollutants	AMEC (mg/L)	Daily CV
Total Cadmium	0.0039705	1.0063503
Total Chromium	0.0091310	0.7658663
Total Copper	0.0108777	1.6955783
Total Cyanide	0.0109070	1.5337965
Total Nickel	0.0314692	0.4532414
Total Zinc	0.0424251	0.7238212

It is noteworthy that Total Lead, Total Silver and Bis(2-Ethylhexyl)Phthalate have been consistently not detected in effluent (<0.001 mg/L, <0.0005 mg/L & <0.003 mg/L respectively). As a result, these pollutants have been ruled out from TOXCON statistical analysis. For the other pollutants, those AMEC and Daily CV were entered into TMS. TMS shows Total Cadmium still requires WQBELs but Total Copper, Total Chromium, Total Cyanide, Total Nickel, and Total Zinc no longer requires WQBELs.

The relaxation or removal of effluent limits is warranted when no reasonable potential for the concerned pollutant(s) is determined; however, if the facility has implemented treatment to remove such pollutant(s), existing WQBEL should remain in the permit. This is primarily because pollutant(s) has been eliminated or treated only through the treatment process and no source of these pollutants has been identified and eliminated.

For Bis(2-Ethylhexyl)Phthalate, because the facility does not treat this pollutant, DEP assumes that effluent concentration for this pollutant is simply the same as influent concentration. As such, removal of this pollutant is

NPDES Permit Fact Sheet Letterkenny Army Depot

warranted as no reasonable potential has been determined and there is no known source for this pollutant. This decision is supported by 40 CFR §122.44(I)(2)(i)(B)(1) that ample datasets which are considered new information show that these pollutants are not of concern.

2) New Pollutants

TMS was utilized for all other toxic pollutants that have been sampled as part of the application. TMS output recommends effluent limits or monitoring requirements for the following pollutants:

	Mass Limits		Concentration Limits (mg/L)					
	AML	MDL				Governing	WQBEL	
Pollutants	(lbs/day)	(lbs/day)	AML	MDL	IMAX	WQBEL	Basis	Comments
								Discharge Conc>
Total								50%WQBEL
Aluminum	3.8	5.92	1.57	2.45	3.93	1.57	AFC	(RP)
								Discharge Conc>
Total								10%WQBEL
Antimony	Report	Report	Report	Report	Report	0.018	THH	(RP)
								Discharge Conc>
Total								50%WQBEL
Mercury	0.0004	0.0006	0.0002	0.0003	0.0004	0.0002	THH	(RP)

These effluent limits and monitoring requirements will be included in the permit in accordance with 40 CFR §122.44(d)(1)(i).

Any methodology used to conduct water quality analyses for this permit renewal is consistent with DEP's SOP nos. BCW-PMT-032 and BCW-PMT-037. All modeling efforts will be included in this fact sheet as attachments.

Best Professional Judgment (BPJ) Limitations

Total Phosphorus

25 Pa Code §96.5(c) requires facilities to meet the average monthly Total Phosphorus concentration limit of 2.0 mg/L when the discharge lone or in combination with the discharge of other pollutants contributes or threatens to impair existing or designated uses of surface waters. The discharge is to Rowe Run which is part of the Conodoguinet Creek Watershed TMDL. The existing concentration effluent limits will remain unchanged in the permit; however, the annual WLA specified will be included in the permit. More details will be discussed later in this report.

Other Considerations

Flow Monitoring

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Total Dissolved Solids

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- -Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

NPDES Permit Fact Sheet Letterkenny Army Depot

-Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/L.

The application reported a maximum effluent TDS concentration of 1,630 mg/L. Therefore, the requirement to monitor for TDS along with sulfate, chloride and bromide is recommended.

Chesapeake Bay TMDL

The discharge is located within the Chesapeake Bay watershed and is considered under the Supplement to Phase III Watershed Implementation Plan (WIP) a non-significant IW facility based on the industrial activities performed at the site. No further monitoring is recommended.

Conodoguinet Creek Watershed TMDL

A TMDL was developed in December 2000 to address the impairments identified in the Conodoguinet Creek watershed. As part of the this TMDL, a wasteload allocation (WLA) of 1,765 lbs/yr of Total Phosphorous was developed specifically for this facility which equates about 2.0 mg/L. This annual WLA was not included in the last permit but instead included the average monthly and daily maximum mass loading limits of 4.8 lbs/yr and 9.7 lbs/yr respectively. In lieu of these average monthly and daily maximum mass loading limits, the annual WLA specified in the TMDL will be included in the permit along with the existing concentration limits of 2.0 mg/L (average monthly) and 4.0 mg/L (IMAX).

Mass Loadings & Concentrations Limits

The mass load effluent limits will be assigned to those pollutants that have water quality based concentration effluent limits. The mass load effluent limits are calculated using a formula: Design Flow (0.29 MGD) * Concentrations (mg/L) * 8.34 (conversion factor).

Monitoring Frequency and Sample Type

All monitoring frequencies and sample types will remain unchanged given a number of non-compliance identified during the last permit renewal term.

Anti-Backsliding Requirements

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as permit requirements specified in the existing permit renewal in accordance with 40 CFR §122.44(I)(1).

Class A Wild Trout Fishery

No Class A Wild Trout Fishery is impacted by this discharge.

Development of Effluent Limitations and Monitoring Requirements

PERMIT REQUIREMENTS FOR STORMWATER OUTFALLS

As mentioned earlier, LEAD also utilizes three (3) outfalls receiving stormwater drained throughout the site.

Outfall No.	Area Drained (sq.ft)	Latitude	Longitude	Description
				Parking Lot, Oil/Grease, Anti-
002 (S01)	25,971,750	39° 59' 04"	77° 37' 57"	free, mud
				Parking Lot, Oil/Grease, Anti-
004 (S02)	21,126,600	40° 00' 36"	77° 37' 54"	free, mud
				Parking Lot, Oil/Grease, Anti-
005 (S03)	72,745,200	39° 58' 56"	77° 41' 20"	free, mud

The permit currently requires semi-annual sampling of the following parameters:

S01 (002)	S02 (004)	S03 (005)
pH (S.U.)	pH (S.U.)	pH (S.U.)
CBOD5	CBOD5	CBOD5
COD	COD	COD
Total Suspended Solids	Total Suspended Solids	Total Suspended Solids
Oil and Grease	Oil and Grease	Oil and Grease
Nitrate-Nitrite as N	Nitrate-Nitrite as N	Nitrate-Nitrite as N
Total Kjeldahl Nitrogen	Total Kjeldahl Nitrogen	Total Kjeldahl Nitrogen
Total Phosphorus	Total Phosphorus	Total Phosphorus
Aluminum, Total	Aluminum, Total	Aluminum, Total
Iron, Total	Cadmium, Total (1/yr)	Iron, Total
Zinc, Total	Chromium, Total (1/yr)	Zinc, Total
	Copper, Total (1/yr)	
	Cyanide, Total (1/yr)	
	Iron, Total (1/yr)	
	Lead, Total (1/yr)	
	Nickel, Total (1/yr)	
	Silver, Total (1/yr)	
	Zinc, Total (1/yr)	
	Total Toxic Organics (1/yr)	

In general, DEP uses DEP's NPDES PAG-03 General Permit for Industrial Stormwater as guidance to develop stormwater monitoring requirements for the individual IW permit. Given the SIC codes of 3489, 3471, 3483, the facility would have been classified under Appendix U of the latest PAG-03 permit which requires semi-annual monitoring of pH, TSS, Nitrate + Nitrate-Nitrogen, Total Aluminum, Total Iron and Total Zinc.

A review of sample results shows Oil and Grease, Total Silver, TTO, and Total Nickel have been consistently not detected in stormwater samples. These pollutants will be removed from the permit. All other pollutants will remain in the permit. A standard Part C stormwater discharge condition will be included in the permit.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
CBOD5	48	97	XXX	20.0	40.0	50	1/week	24-Hr Composite
TSS	Report	Report	XXX	10.0	20.0	25	1/week	24-Hr Composite
Oil and Grease	Report	Report	XXX	15.0	30.0	30	1/week	Grab
Total Phosphorus	Report	Report	XXX	2.0	4.0	5	1/week	24-Hr Composite
Total Phosphorus (Total Loads, lbs)	XXX	1,765 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Cadmium	0.004	0.005	XXX	0.0015	0.0023	0.0038	1/week	24-Hr Composite
Total Chromium	Report	Report	XXX	1.71	2.77	4.25	1/week	24-Hr Composite
Total Copper	0.13	0.2	XXX	0.054	0.084	0.135	1/week	24-Hr Composite
Total Cyanide	Report	Report	XXX	0.65	1.2	1.62	1/week	24-Hr Composite
Total Lead	0.059	0.092	XXX	0.024	0.038	0.061	1/week	24-Hr Composite
Total Nickel	0.73	1.13	XXX	0.3	0.469	0.75	1/week	24-Hr Composite
Total Silver	0.061	0.094	XXX	0.025	0.039	0.063	1/month	24-Hr Composite
Total Zinc	1.07	1.67	XXX	0.443	0.692	1.108	1/week	24-Hr Composite

NPDES Permit No. PA0010502

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Aluminum	3.8	5.92	XXX	1.57	2.45	3.93	1/week	24-Hr Composite
Total / Wallington	0.0	0.02	7000	1.07	2.10	0.00	17WOOK	24-Hr
Total Mercury	0.0004	0.0006	XXX	0.0002	0.0003	0.0004	1/week	Composite
Total Antimony	Report	Report	XXX	Report	Report	XXX	1/week	24-Hr Composite
Total Dissolved Solids	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Sulfate, Total	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Chloride	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Bromide	Report	Report	xxx	Report	Report	XXX	1/month	24-Hr Composite
Total Toxic Organics	XXX	XXX	XXX	XXX	2.13	XXX	1/year	24-Hr Composite

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002 (S01), Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 004 (S02), Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
i arameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Cadmium, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chromium, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Copper, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Cyanide, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Lead, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 005 (S03), Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab
Zinc, Total	XXX	XXX	XXX	Report	XXX	XXX	1/6 months	Grab

	Tools and References Used to Develop Permit
_	
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
]	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
]	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
]	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
]	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other

Attachments

1. WQM 7.0 ver. 1.1

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	Eleva (fl		Drainage Area (sq mi)	Slope (ft/ft)	PW: Withdra (mgd	awal	Apply FC
	07B	10	668 ROWE	RUN			4.57	70 6	39.00	2.21	0.00000		0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ter	<u>Stream</u> np	pН	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C	C)		
Q7-10 Q1-10 Q30-10	0.460	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.0	00	0.00	0.00	
					Di	ischarge	Data							
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese	Dis erve Ten ctor (°C	np	isc pH		
		LEAD) IW	PAG	0010502	0.290	0 0.290	0.29	00 0	0.000 2	0.00	7.00		
					Pa	arameter	Data							
			1	Paramete	r Name	C	onc C	onc (tream Conc	Fate Coef				
	_					(m	ıg/L) (n	ng/L) (i	mg/L)	(1/days)		_		
			CBOD5				20.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	am Name		RMI	Elevat (ft)	Ar	nage rea mi)	With	WS drawal ngd)	Apply FC
	07B	106	68 ROWE	RUN			2.66	8 62	22.00	2.60	0.00000	0.00	✓
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>tary</u> pH	<u>Strea</u> Temp	a <u>m</u> pH	
Condi	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10	0.460	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00	
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								
					Di	scharge l	Data						
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH		
						0.000	0.000	0.000	0.000	0.	.00 7.00		
					Pa	rameter l	Data						
				Paramete	r Name				eam Fa onc Co				
						(m	g/L) (m	ng/L) (m	ng/L) (1/da	ave)			

25.00

3.00

25.00

2.00

8.24

0.00

0.00

0.00

0.00

1.50

0.00

0.70

CBOD5

NH3-N

Dissolved Oxygen

WQM 7.0 Hydrodynamic Outputs

	SWP Basin Stream Code 07B 10668					Stream Name ROWE RUN							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10	0 Flow												
4.570	1.02	0.00	1.02	.4486	0.00169	.549	13.36	24.34	0.20	0.582	20.00	7.00	
Q1-10	0 Flow												
4.570	0.93	0.00	0.93	.4486	0.00169	NA	NA	NA	0.19	0.603	20.00	7.00	
Q30-	10 Flow	,											
4.570	1.15	0.00	1.15	.4486	0.00169	NA	NA	NA	0.21	0.554	20.00	7.00	

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.91	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.13	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Tuesday, February 22, 2022 Version 1.1 Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07B	10668	ROWE RUN

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
4.57	0 LEAD IW	16.76	50	16.76	50	0	0
H3-N (Chronic Allocati	ions					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction

Dissolved Oxygen Allocations

		CBOD5		<u>NH3-N</u>		Dissolved Oxygen		Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline	Multiple (mg/L)		Reduction	
4.57 LE	EAD IW	20	20	6.72	6.72	5	5	0	0	

WQM 7.0 D.O.Simulation

SWP Basin S 07B	tream Code 10668	ROWE RUN					
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	°C) Analysis pH			
4.570	0.29	0		20.000	7.000		
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)		
13.361	0.54	9		24.338	0.200		
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)		
7.51	1.10	-		2.06	0.700		
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)		
7.250	3.21	3		Tsivoglou	5		
Reach Travel Time (days)		Subreach	Results				
0.582	TravTime	CBOD5	NH3-N	D.O.			
	(days)	(mg/L)	(mg/L)	(mg/L)			
	0.058	7.04	1.98	6.59			
	0.116	6.60	1.90	6.10			
	0.175	6.19	1.82	5.75			
	0.233	5.81	1.75	5.50			
	0.291	5.44	1.68	5.34			
	0.349	5.10	1.61	5.25			
	0.407	4.79	1.55	5.21			
	0.465	4.49	1.49	5.22			
	0.524	4.21	1.43	5.26			
	0.582	3.95	1.37	5.33			

WQM 7.0 Effluent Limits

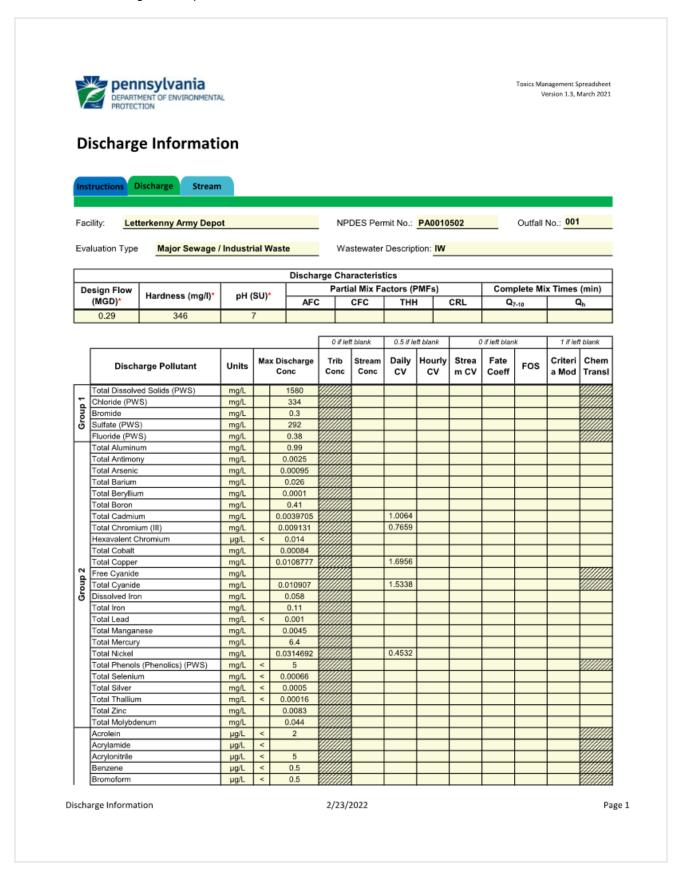
	SWP Basin 07B	Stream Code 10668		Stream Name ROWE RUN			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
4.570	LEAD IW	PA0010502	0.290	CBOD5	20		
				NH3-N	6.72	13.44	
				Dissolved Oxygen			5

2. TOXCONC Worksheet

z	Fadility: NPDE8#: Outrall No:		LEAD PA0010502 001			
	n (Samples/Mon Reviewer/Permi		4 Jinsu Kim			
Parameter Name	Cadmium	Chromium	Copper	Total Cyanide	Total Nickel	Total Zinc
Units	mgL	mg/L	mg/L	mgL	mgL	mg/L
Detection Limit						1 1
Sample Date	When entering	values below the	detection limit.	enter "ND" or use	the < notation (e	n <0.02
Mar-18	0.0016	0.017	< 0.0025	0.015	0.019	0.033
Apr-18	0.001	0.005	0.004	< 0.005	0.03	0.02
May-18	0.0015	0.004	0.003	< 0.005	0.026	0.028
Jun-18	0.0012	0.003	< 0.003	< 0.01	0.019	0.028
Jul-18	0.0016	0.004	0.006	< 0.005	0.025	0.017
Aug-18	0.001	0.003	< 0.003	0.005	0.025	0.009
Sep-18	0.0066	0.025	< 0.003	< 0.005	0.027	0.066
Oct-18	0.0022	0.018	< 0.004	0.003	0.015	0.031
Nov-18	0.0009	0.003	0.003	< 0.002	0.015	0.025
Dac-18	0.0025	0.004	< 0.003	< 0.002	0.015	0.033
Jan-19	0.0039	0.009	< 0.013	0.004	0.041	0.033
Feb-19	0.002	0.003	0.003	0.004	0.028	0.028
Mar-19	0.001	0.003	0.004	0.005	0.019	0.027
Apr-19	0.0008	0.007	< 0.003	0.003	0.025	0.024
May-19	0.00055	0.003	< 0.0025	0.0047	0.013	0.0093
Jun-19	0.00039	0.0027	< 0.0025	0.0099	0.0093	0.01
Jul-19	< 0.0004	0.0024	< 0.005	0.0038	0.005	0.011
Aug-19	0.00026	0.0039	< 0.0025	< 0.002	0.015	0.011
Sep-19 Oct-19	0.00037	0.0032	< 0.0025	0.0064	0.0096	0.0068
Nov-19	0.0013	0.0072	< 0.0025	0.0032	0.013	0.0074
Dac-19	0.0013	0.0034	0.0054	< 0.002	0.012	0.017
Jan-20	0.00091	0.0034	< 0.0025	< 0.002	0.012	0.015
Feb-20	0.0013	0.0037	< 0.004	0.0023	0.015	0.038
Mar-20 Apr-20	0.0025	0.003	< 0.0025	0.0027	0.025	0.029
Apr-20 May-20	0.0009	0.0026		0.0021	0.014	
			0.0099			0.017
Jun-20	0.00096	0.0025	0.0047	< 0.01	0.013	0.011
Jul-20	0.00082	0.0022	0.0039	0.0051	0.022	0.017
Aug-20	0.0011	0.0017	0.0032	0.012	0.011	0.0098
Sep-20	0.00098	0.0016	< 0.0025	< 0.025	0.0087	0.01
Oct-20	0.0007	0.0015	< 0.0025	0.0027	0.01	0.012
Nov-20	0.00064	0.0011	0.0031	0.0028	0.023	0.02
Dec-20	0.0014	0.0017	0.0056	< 0.017	0.017	0.019
Jan-21	0.0023	0.0017	0.0093	< 0.017	0.027	0.014
Feb-21	0.0024	0.0022	0.0056	< 0.002	0.017	0.014
Mar-21	0.0013	0.0025	0.0058	< 0.005	0.0078	0.0077
Apr-21 May-21	< 0.0020 0.014	< 0.01	< 0.025	0.0057 < 0.005	< 0.025	< 0.025
May-21 Jun-21	0.0009	0.0021	0.025	0.007	0.025	0.02
Jul-21	0.00055	0.0024	< 0.0025	< 0.005	0.025	0.0071
Aug-21	< 0.0010	0.0024	< 0.005	< 0.005	0.021	0.0081
Aug-21 Sep-21	< 0.0010	0.0033	0.0042	0.009	0.0254	0.0077
Od-21	0.00087	0.0094	0.0049	< 0.005	0.0254	0.024
Nov-21	0.0016	0.004	0.0036	< 0.005	0.017	0.0072
Dac-21	0.0052	0.0072	< 0.0025	< 0.005	0.017	0.022
DIE-21	0.0052	uour2	< 0.0025	< 01005	0.028	0.022

Reviewer/Permit Engineer: Jinsu Kim

Facility: LE AD
NPDE S #: PA0010502
Outfall No: 001
n (Samples/Month): 4


Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Cadmium (mg/L)	Delta-Lognormal	1.0063503	0.0039705
Chromium (mg/L)	Delta-Lognormal	0.7658663	0.0091310
Copper (mg/L)	Delta-Lognormal	1.6955783	0.0108777
Total Cyanide (mg/L)	Delta-Lognormal	1.5337965	0.0109070
Total Nickel (mg/L)	Delta-Lognormal	0.4532414	0.0314692
Total Zinc (mg/L)	Delta-Lognormal	0.7238212	0.0424251

TOXCON Output 2/23/2022

NPDES Permit Fact Sheet Letterkenny Army Depot

	Facility:		LEAD			
	NPDES #:		PA0010502			
	Outfall No:		001			
	n (Samples/Mon	th):	4			
	•	,				
Parameter Name	Cadmium	Chromium	Copper	Total Cyanide	Total Nickel	Total Zinc
Number of Samples	46	46	46	46	46	46
Samples Nondetected	4	1	24	22	1	1
LOGNORMAL						
	NA	NA	NA	NA	NA	NA
Log MEAN Log VAR.	INA	INA	INA	IVA	IVA	INA
(LTA) [E(x)]						
Variance [V(x)] CV (raw)						
CV (raw)						-
Monthly Avg. (99%, n-day)						
Monthly Avg. (55 %, 11-day)						
DELTA-LOGNORMAL						
Delta-Log MEAN	-6.7171526	-5.6799747	-5.3202878	-5.3201952	-4.0111071	-4.0865713
Delta-Log VAR.	0.6085257	0.4395837	0.6169431	0.5591282	0.1648556	0.3993052
(LTA) [E(x)]	0.0014976	0.0041603	0.0031846	0.0033755	0.0192420	0.0200626
Variance [V(x)]	0.0000023	0.0000102	0.0000292	0.0000268	0.0000761	0.0002109
CV (raw)	1.0063503	0.7658663	1.6955783	1.5337965	0.4532414	0.7238212
Delta-Log VAR. (n)	0.2256313	0.1368338	0.4646070	0.4088217	0.0500814	0.1230837
A, Table E-2, TSD	0.2531852	0.1466378	0.7187465	0.5881329	0.0513569	0.1309793
B, Table E-2, TSD	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
C, Table E-2, TSD	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Delta-Log MEAN (n)	-6.6166200	-5.5505784	-5.9047305	-5.8418922	-3.9756987	-3.9704392
phi (Φ)	0.9890476	0.9897778	0.9790909	0.9808333	0.9897778	0.9897778
Z*	2.2900000	2.3100000	2.0300000	2.0700000	2.3100000	2.3100000
Monthly Avg. (99%, n-day)	0.0039705	0.0091310	0.0108777	0.0109070	0.0314692	0.0424251
North						
NORMAL						
MEAN	NA	NA	NA	NA	NA	NA
VAR.						
(LTA) [E(x)]						
Variance [V(x)]						
CV (raw)						
CV (n) Monthly Avg. (99%, n-day)						
ivioninity Avg. (55%, n-day)			1			

3. Toxics Management Spreadsheet

I	Carbon Tetrachloride	µg/L	<	0.5						
	Chlorobenzene	µg/L	_	0.5						
	Chlorodibromomethane		<	0.5			_			
		μg/L	-							
	Chloroethane	μg/L	<	0.5						
	2-Chloroethyl Vinyl Ether	µg/L	<	5						
	Chloroform	μg/L	<	0.5						
	Dichlorobromomethane	μg/L	<	0.5						
	1,1-Dichloroethane	µg/L	<	0.5						
₆	1,2-Dichloroethane	μg/L	<	0.5	///////					
<u> </u>	1.1-Dichloroethylene	µg/L	<	0.5						
Group	1,2-Dichloropropane		<	0.5						
ច	1 1	µg/L	-		/////////////////////////////////////		_			*********
-	1,3-Dichloropropylene	µg/L	<	0.5						
	1,4-Dioxane	μg/L	<							
	Ethylbenzene	µg/L	<	0.5						
	Methyl Bromide	μg/L	<	0.5						
	Methyl Chloride	μg/L	٧	0.5						
	Methylene Chloride	µg/L	<	0.5						
	1,1,2,2-Tetrachloroethane	μg/L	<	0.5						
	Tetrachloroethylene	µg/L	<	0.5		-				
			~				_			
	Toluene	µg/L	-	0.5						
	1,2-trans-Dichloroethylene	μg/L	<	0.5						
	1,1,1-Trichloroethane	μg/L	<	0.5						
	1,1,2-Trichloroethane	μg/L	<	0.5						
	Trichloroethylene	μg/L	<	0.5						
	Vinyl Chloride	μg/L	<	0.5						
	2-Chlorophenol	µg/L	<	10						
	2,4-Dichlorophenol	µg/L	<	10						
	2,4-Dimethylphenol		<	10						
		μg/L								
4	4,6-Dinitro-o-Cresol	µg/L	<	10						
ď	2,4-Dinitrophenol	µg/L	<	10						
Group	2-Nitrophenol	μg/L	<	10						
ලි	4-Nitrophenol	μg/L	<	10						
	p-Chloro-m-Cresol	µg/L	<	10						
	Pentachlorophenol	μg/L	<	10						////////
	Phenol	µg/L	<	10						
	2,4,6-Trichlorophenol	µg/L	<	10						
			-							
	Acenaphthene	μg/L	<	2.5		_				
	Acenaphthylene	μg/L	<	2.5						
	Anthracene	μg/L	<	2.5						
	Benzidine	μg/L	<	50						
	Benzo(a)Anthracene	μg/L	<	2.5						
	Benzo(a)Pyrene	µg/L	<	2.5						
	3,4-Benzofluoranthene	µg/L	<	2.5						
	Benzo(ghi)Perylene	µg/L	<	2.5						
			~	2.5						
	Benzo(k)Fluoranthene	µg/L	-							
	Bis(2-Chloroethoxy)Methane	μg/L	<	5						
	Bis(2-Chloroethyl)Ether	μg/L	<	5						
	Bis(2-Chloroisopropyl)Ether	µg/L	<	5						
	Bis(2-Ethylhexyl)Phthalate	mg/L	<	0.003						
	4-Bromophenyl Phenyl Ether	μg/L	<	5						
	Butyl Benzyl Phthalate	µg/L	<	5						
	2-Chloronaphthalene	µg/L	<	5						
	4-Chlorophenyl Phenyl Ether		<	5						
		µg/L	-							
	Chrysene	µg/L	<	2.5	///////					
	Dibenzo(a,h)Anthrancene	μg/L	<	2.5						
	1,2-Dichlorobenzene	μg/L	<	0.5						
	1,3-Dichlorobenzene	µg/L	<	0.5						
ıo.	1,4-Dichlorobenzene	μg/L	<	0.5						
	3,3-Dichlorobenzidine	μg/L	<	5						
	Diethyl Phthalate	µg/L	<	5						
ত	Dimethyl Phthalate		<	5	//////////////////////////////////////					
1		µg/L	<	5						
	Di-n-Butyl Phthalate 2,4-Dinitrotoluene	μg/L μg/L	~	5	/////////////////////////////////////					

2,6-Dinitrotolu	jene	µg/L	<	5	///////	1						//////
Di-n-Octyl Ph		µg/L	<	5								
1,2-Diphenyl		µg/L	<	10								
Fluoranthene		µg/L	<	2.5							_	
Fluorene			<	2.5		-		_				944
		μg/L				_	_	_		_	_	
Hexachlorobe		μg/L	<	5								
Hexachlorobu		µg/L	<	0.5								
Hexachlorocy	clopentadiene	µg/L	<	5								
Hexachloroet	hane	μg/L	<	5								
Indeno(1,2,3-	cd)Pyrene	μg/L	<	2.5								
Isophorone		µg/L	<	5								
Naphthalene		µg/L	<	0.5								
Nitrobenzene		µg/L	<	5	<i>\(\)</i>							
n-Nitrosodime		µg/L	<	5								999
			_				_	_			_	999
n-Nitrosodi-n-		µg/L	<	5		-	_		 	-		
n-Nitrosodiph		µg/L	<	5								
Phenanthren	9	µg/L	<	2.5								
Pyrene		μg/L	<	2.5								
1,2,4-Trichlor	obenzene	μg/L	<	0.5								
Aldrin		µg/L	<									
alpha-BHC		µg/L	<		///////							11111
beta-BHC		µg/L	<									11111
gamma-BHC			<									11111
		µg/L					_	_			_	999
delta BHC		μg/L	<		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	-	_	_		-	_	/////
Chlordane		μg/L	<									
4,4-DDT		µg/L	<									
4,4-DDE		μg/L	<									
4,4-DDD		μg/L	<									
Dieldrin		µg/L	<									
alpha-Endosu	ılfan	µg/L	<		<i>\(\(\) \(</i>							11111
beta-Endosul		µg/L	<		<i>\(\)</i>							11111
Endosulfan S			<			1						
	ullate	µg/L	_			-	_	_			_	
Endrin		µg/L	<		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	_	_					/////
Endrin Aldeh	yde	μg/L	<									
Heptachlor		µg/L	<									
Heptachlor E	poxide	μg/L	<									
PCB-1016		μg/L	<									
PCB-1221		µg/L	<									/////
PCB-1232		µg/L	<		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>							
PCB-1242		µg/L	<									
PCB-1248			<		<i>/////////////////////////////////////</i>	1	_	_		_	_	
		µg/L			<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	1		_		_	_	444
PCB-1254		µg/L	<									
PCB-1260		µg/L	<									
PCBs, Total		μg/L	<									
Toxaphene		µg/L	<									
2,3,7,8-TCDD)	ng/L	<									
Gross Alpha		pCi/L			///////							/////
Total Beta		pCi/L	<									11111
Radium 226/2	228	pCi/L	<									11111
Total Strontiu		_	~									
		µg/L	_		W//////							11111
Total Uraniun		µg/L	<		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>							////
Osmotic Pres	sure	mOs/kg										
						1						
					///////							
					VIIIII							
					V//////							
					VIIIIII							
						1						
					V///////							

Discharge Information 2/23/2022 Page 3

Toxics Management Spreadsheet Version 1.3, March 2021

pennsylvania
DEPARTMENT OF ENVIRONMENTAL
PROTECTION

Stream / Surface Water Information

Stream

Discharge

nstructions

Letterkenny Army Depot, NPDES Permit No. PA0010502, Outfall 001

 Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria Apply Fish Criteria* Yes No. Reaches to Model: PWS Withdrawal (MGD) Slope (ft/ft) DA (mi²)* 2.21 Elevation 639 € 4.57 RM Receiving Surface Water Name: Rowe Run Stream Code 010668 Point of Discharge End of Reach 1 Location

Hardness* pH* Stream 300 펍 Tributary Hardness Time Velocit y (fps) Depth (ft) Width (ft) W/D Ratio Tributary Flow (cfs) Stream (cfs/mi²)* 0.46 EM M 4.57 Point of Discharge Location

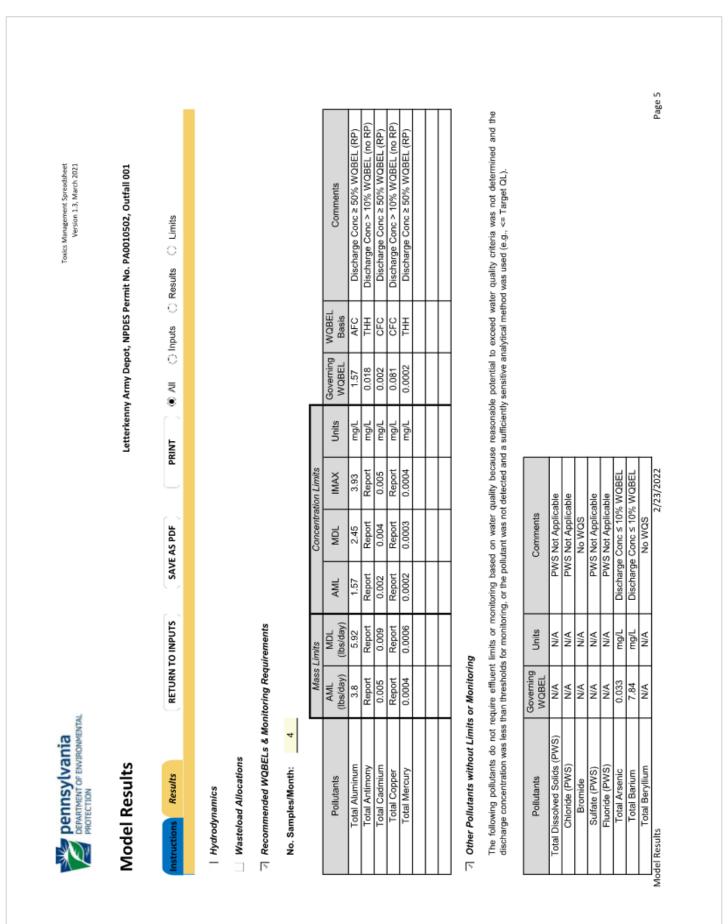
픕

Analysis Hardness

Hardness pH Analysis Ħ Stream Hardness 핍 Tributary Hardness Time Velocit y (fps) Depth (ft) Width (ft) W/D Ratio Tributary Flow (cfs) Stream (cfs/mi²) FF 2.668 4.57 Z M Point of Discharge End of Reach 1 Location

2/23/2022

Page 4


Stream / Surface Water Information

0.46

2.668

End of Reach 1

Q 7.10

age 6

		4	
lotal Boron	57.5	mg/L	Discharge Conc s 10% WQBEL
lotal Chromium (III)	0.72	mg/L	Discharge Conc ≥ 10% WQBEL
Hexavalent Chromium	34.0	hg/L	Discharge Conc < TQL
Total Cobalt	0.062	T/6ш	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	0.98	mg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	4.9	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	0.045	mg/L	Discharge Conc < TQL
Total Manganese	3.27	mg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	0.45	mg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		mg/L	PWS Not Applicable
Total Selenium	0.016	mg/L	Discharge Conc < TQL
Total Silver	0.057	T/6w	Discharge Conc ≤ 10% WQBEL
Total Thallium	0.0008	mg/L	Discharge Conc < TQL
Total Zinc	99.0	mg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	V/N	No WQS
Acrolein	6.28	hg/L	Discharge Conc < TQL
Acrylonitrile	1.07	T/6rl	Discharge Conc < TQL
Benzene	10.3	T/6rl	Discharge Conc < TQL
Bromoform	125	hg/L	Discharge Conc < TQL
Carbon Tetrachloride	7.12	7/6rl	Discharge Conc < TQL
Chlorobenzene	327	T/6rl	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	14.2	1/6rl	Discharge Conc < TQL
Chloroethane	N/A	V/N	No WQS
2-Chloroethyl Vinyl Ether	11,431	hg/L	Discharge Conc < TQL
Chloroform	101	hg/L	Discharge Conc < TQL
Dichlorobromomethane	16.9	hg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	176	hg/L	Discharge Conc < TQL
1,1-Dichloroethylene	108	1/6rl	Discharge Conc < TQL
1,2-Dichloropropane	16.0	hg/L	Discharge Conc < TQL
1,3-Dichloropropylene	4.81	7/6rl	Discharge Conc < TQL
Ethylbenzene	222	hg/L	Discharge Conc < TQL
Methyl Bromide	327	T/6rl	Discharge Conc < TQL
Methyl Chloride	17,963	hg/L	Discharge Conc < TQL
Methylene Chloride	356	hg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	3.56	hg/L	Discharge Conc < TQL
Tetrachloroethylene	178	T/6rl	Discharge Conc < TQL
Toluene	186	hg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	327	hg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	1,992	hg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	9.79	1/6rl	Discharge Conc < TQL
Trichloroethylene	10.7	1/6rl	Discharge Conc < TQL
Vinyl Chloride	0.36	hg/L	Discharge Conc < TQL
2-Chlorophenol	98.0	hg/L	Discharge Conc < TQL
2,4-Dichlorophenol	32.7	T/6rl	Discharge Conc < TQL
2,4-Dimethylphenol	327	hg/L	Discharge Conc < TQL
1.18			4 444 444 4

el Results

И	q	J	
٠	ñ	í	١
G	ä	î	•
ä	ľ	•	
	1		

			2000 2000
2,4-Dinitrophenol	32.7	ng/L	Discharge Conc < TQL
2-Nitrophenol	5,226	hg/L	Discharge Conc < TQL
4-Nitrophenol	1,535	hg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	335	hg/L	Discharge Conc < TQL
Pentachlorophenol	0.53	hg/L	Discharge Conc < TQL
Phenol	13,064	hg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	26.7	T/6rl	Discharge Conc < TQL
Acenaphthene	55.5	hg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	980	hg/L	Discharge Conc < TQL
Benzidine	0.002	hg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.018	T/6rl	Discharge Conc < TQL
Benzo(a)Pyrene	0.002	T/6rl	Discharge Conc < TQL
3,4-Benzofluoranthene	0.018	1/6rl	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	V/N	No WQS
Benzo(k)Fluoranthene	0.18	hg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	V/V	No WQS
Bis(2-Chloroethyl)Ether	0.53	hg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	653	hg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	900.0	mg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	176	hg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.33	hg/L	Discharge Conc < TQL
2-Chloronaphthalene	2,613	hg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	2.14	hg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.002	1/6rl	Discharge Conc < TQL
1,2-Dichlorobenzene	523	hg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	22.9	hg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	490	hg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.89	hg/L	Discharge Conc < TQL
Diethyl Phthalate	1,960	hg/L	Discharge Conc < TQL
Dimethyl Phthalate	1,633	hg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	65.3	hg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	0.89	hg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.89	hg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.53	T/6rl	Discharge Conc < TQL
Fluoranthene	65.3	hg/L	Discharge Conc < TQL
Fluorene	163	hg/L	Discharge Conc < TQL
Hexachlorobenzene	0.001	hg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.18	1/6rl	Discharge Conc < TQL
Hexachlorocyclopentadiene	3.27	1/6rl	Discharge Conc < TQL
Hexachloroethane	1.78	hg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.018	hg/L	Discharge Conc < TQL
Isophorone	111	T/6rl	Discharge Conc < TQL

Model Results

5 5 5 5 5 5	7
Discharge Conc < TQL	Discharge Conc < Ti
	hg/L
32.7 µg/ 0.012 µg/ 0.089 µg/ 58.7 µg/ 3.27 µg/ 65.3 µd/	0.23

4. Effluent Data (Outfall 001)

	Cadmium	n	Chromiu	m	Copper		Total Cya	anide	Total Lea	id	Total Nic	ckel	Total Sil	ver	Total Zir	IC	Bis(2-Eth	nyihexi)Phthala
	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
/ar-18	0.001	0.0016	0.007	0.017	< 0.003	< 0.0025	< 0.008	0.015	< 0.001	< 0.001	< 0.01	0.019	< 0.001	0.0033	0.03	0.033	0.003	0.0028
pr-18	0.001	0.001	0.004	0.005	< 0.003	0.004	< 0.005	< 0.005	< 0.001	< 0.001	0.02	0.03	< 0.0005	< 0.0005	0.02	0.02	< 0.003	< 0.003
lay-18	< 0.0010	0.0015	< 0.003	0.004	< 0.003	0.003	< 0.005	< 0.005	< 0.001	< 0.001	< 0.02	0.026	< 0.0005	< 0.0005	< 0.020	0.028	< 0.003	< 0.0028
un-18	0.0008	0.0012	0.002	0.003	< 0.003	< 0.003	< 0.01	< 0.01	< 0.001	< 0.001	0.02	0.019	< 0.0005	< 0.0005	0.02	0.028	0.003	0.003
Jul-18	0.0013	0.0016	0.003	0.004	< 0.004	0.006	< 0.005	< 0.005	< 0.001	< 0.001	0.02	0.025	< 0.0005		0.012	0.017	< 0.003	< 0.003
\ug-18	0.0007	0.001	0.002	0.003	< 0.003	< 0.003	< 0.005	0.005	< 0.001	0.001	0.01	0.025	< 0.0005		0.007	0.009	< 0.003	< 0.0028
Sep-18	0.0021	0.0066	0.007	0.025	< 0.003	< 0.003	< 0.005	< 0.005	< 0.002	0.005	0.01	0.027	< 0.0005		0.021	0.066	< 0.003	< 0.003
Oct-18	0.0021	0.0022	0.007	0.023	< 0.003	< 0.003	< 0.003	0.003	< 0.0010	0.003	0.012	0.015	< 0.0005		0.021	0.031	< 0.003	< 0.003
lov-18	0.0010	0.0022	0.007	0.003	< 0.003	0.003	< 0.002	< 0.003	< 0.0010	< 0.0011	0.012	0.015	< 0.0005		0.013	0.025	< 0.003	< 0.003
	0.0007	0.0005	0.002	0.003	< 0.003	< 0.003	< 0.002	< 0.002		< 0.001	0.012		< 0.0005		0.019	0.023		
ec-18									< 0.001			0.015					< 0.003	< 0.003
lan-19	0.002	0.0039	0.004	0.009	< 0.005	< 0.013	< 0.002	0.004	< 0.002	< 0.005	0.02	0.041	< 0.0009	< 0.0025	0.019	0.033	< 0.003	< 0.003
eb-19	0.0015	0.002	0.003	0.003	< 0.003	0.003	< 0.003	0.004	< 0.0010	< 0.0010	0.02	0.028	< 0.0005		0.024	0.028	< 0.003	< 0.003
/lar-19	0.0009	0.001	0.002	0.003	< 0.003	0.004	< 0.003	0.005	< 0.001	< 0.001	0.016	0.019	< 0.0005		0.02	0.027	< 0.003	< 0.003
\pr-19	0.0006	0.0008	0.004	0.007	< 0.003	< 0.003	< 0.002	0.003	< 0.001	< 0.001	0.02	0.025	< 0.0005		0.01	0.024	< 0.003	< 0.003
lay-19	< 0.0003	0.00055	0.003	0.0033	< 0.003	< 0.0025	< 0.003	0.0047	< 0.001	< 0.001	0.01	0.013	< 0.0005		0.006	0.0093	< 0.003	< 0.0034
lun-19	< 0.0003	0.00039	0.002	0.0027	< 0.003	< 0.0025	< 0.004	0.0059	< 0.001	< 0.001	0.008	0.0093	< 0.0005	< 0.0005	0.008	0.01	< 0.003	< 0.003
Jul-19	< 0.0002	< 0.0004	< 0.002	0.0024	< 0.003	< 0.005	< 0.003	0.0038	< 0.001	< 0.002	0.01	0.015	< 0.0006	< 0.001	0.009	0.011	< 0.003	0.003
\ug-19	< 0.0002	0.00026	0.002	0.0039	< 0.003	< 0.0025	< 0.002	< 0.002	< 0.001	< 0.001	0.009	0.015	< 0.0005	< 0.0005	0.009	0.011	< 0.003	< 0.0029
Sep-19	0.0003	0.00037	0.003	0.0032	< 0.003	< 0.0025	< 0.003	0.0064	< 0.001	< 0.001	0.008	0.0096	< 0.0005	< 0.0005	0.006	0.0068	< 0.003	< 0.0029
Oct-19	0.0004	0.00043	0.003	0.0032	< 0.003	< 0.0025	< 0.002	0.0032	< 0.001	< 0.001	0.009	0.013	< 0.0005	< 0.0005	0.006	0.0074	< 0.003	< 0.0028
lov-19	0.0006	0.0013	0.004	0.0072	< 0.003	< 0.0025	< 0.02	0.071	< 0.001	< 0.001	0.01	0.018	< 0.0005	< 0.0005	0.01	0.017	< 0.003	< 0.0028
ec-19	0.0006	0.00076	0.002	0.0034	0.004	0.0054	< 0.002	< 0.002	< 0.001	< 0.001	0.01	0.012	< 0.0005	< 0.0005	0.01	0.015	< 0.003	< 0.0028
lan-20	0.0009	0.00091	0.002	0.0031	< 0.003	< 0.0025	< 0.002	< 0.002	< 0.001	< 0.001	0.008	0.011	< 0.0005	< 0.0005	0.01	0.017	< 0.003	< 0.0029
eb-20	0.0008	0.0013	0.003	0.0037	< 0.003	< 0.004	< 0.002	0.0023	< 0.001	< 0.001	0.01	0.015	< 0.0005	< 0.0005	0.02	0.038	< 0.003	< 0.0028
/ar-20	0.0015	0.0025	0.002	0.003	< 0.003	< 0.0025	< 0.002	0.0027	< 0.001	< 0.001	0.01	0.025	< 0.0005		0.02	0.029	< 0.003	< 0.0028
Apr-20	0.0007	0.0011	0.002	0.002	< 0.003	0.0027	< 0.002	0.0021	< 0.001	< 0.001	0.01	0.014	< 0.0005		0.007	0.008	< 0.003	< 0.0029
/ay-20	0.0006	0.0009	0.002	0.0026	< 0.003	0.0059	< 0.002	0.003	< 0.001	< 0.001	0.02	0.035	< 0.0005		0.01	0.017	< 0.003	< 0.0028
lun-20	0.0005	0.00095	0.002	0.0025	0.004	0.0033	< 0.002	< 0.01	< 0.001	< 0.001	0.01	0.013	< 0.0005		0.008	0.011	< 0.0028	
Jul-20	0.0005	0.00082	0.002	0.0023	< 0.004	0.0047	< 0.004	0.0051	< 0.001	< 0.001	0.01	0.013	< 0.0005		0.000	0.017	< 0.0028	< 0.0028
Aug-20	0.0007	0.0011	0.001	0.0017	< 0.003	0.0032	< 0.008	0.012	< 0.001	< 0.001	0.01	0.011	< 0.0005		0.007	0.0098	< 0.003	< 0.0029
Sep-20	0.0008	0.00098	< 0.001	0.0016	< 0.003	< 0.0025	< 0.01	< 0.025	< 0.001	< 0.001	0.007	0.0087	< 0.0005		0.009	0.01	< 0.003	< 0.0029
Oct-20	0.0005	0.0007	< 0.001	0.0015	< 0.003	< 0.0025	< 0.002	0.0027	< 0.001	< 0.001	0.008	0.01	< 0.0005		0.01	0.012	< 0.003	< 0.0029
lov-20	0.0005	0.00064	< 0.001	0.0011	< 0.003	0.0031	< 0.002	0.0028	< 0.001	0.0011	0.01	0.023	< 0.0005		0.01	0.02	< 0.003	< 0.0029
ec-20	0.001	0.0014	< 0.0010	0.0017	< 0.003	0.0055	< 0.005	< 0.017	< 0.001	< 0.001	0.01	0.017	< 0.0005		0.01	0.019	< 0.003	< 0.0029
an-21	0.002	0.0023	0.002	0.0017	< 0.005	0.0093	< 0.006	< 0.017	< 0.001	0.0011	0.01	0.027	< 0.0005		0.01	0.014	< 0.003	< 0.0029
eb-21	0.001	0.0024	0.002	0.0022	< 0.003	0.0055	< 0.002	< 0.002	< 0.001	< 0.001	0.01	0.017	< 0.0005		0.01	0.014	< 0.003	< 0.0028
Mar-21	0.0007	0.0013	0.002	0.0025	< 0.003	0.0058	< 0.005	< 0.005	< 0.001	< 0.001	0.007	0.0078	< 0.0005	< 0.0005	0.006	0.0077	< 0.003	< 0.0029
Apr-21	< 0.0011	< 0.0020	< 0.004	< 0.01	< 0.009	< 0.025	< 0.005	0.0057	< 0.003	< 0.010	< 0.02	< 0.025	< 0.002	< 0.005	< 0.010	< 0.025	< 0.003	< 0.0029
/ay-21	0.005	0.014	0.002	0.0019	< 0.040	0.12	< 0.005	< 0.005	< 0.001	0.0019	< 0.01	0.016	< 0.0005	< 0.0005	0.04	0.12	< 0.003	< 0.0029
lun-21	0.00059	0.00059	0.0021	0.0021	< 0.0025	0.0025	0.006	0.007	0.0010	0.001	0.0225	0.025	< 0.0005	< 0.0005	0.0062	0.0071	< 0.0028	< 0.0028
Jul-21	0.0004	0.00055	0.002	0.0024	< 0.003	< 0.0025	< 0.005	< 0.005	< 0.001	< 0.001	0.02	0.021	< 0.0005	< 0.0005	0.007	0.0081	< 0.003	< 0.0029
Aug-21	< 0.0007	< 0.0010	< 0.002	0.0021	< 0.004	< 0.005	< 0.005	< 0.005	< 0.0008	< 0.001	0.02	0.021	< 0.002	< 0.005	0.009	0.0182	< 0.003	< 0.0029
Sep-21	< 0.0006	< 0.0010	< 0.002	0.0033	< 0.003	0.0042	< 0.005	0.0059	< 0.001	< 0.001	0.02	0.0264	< 0.0006	< 0.001	0.006	0.0077	< 0.003	< 0.0029
Oct-21	0.0008	0.00087	0.006	0.0094	< 0.003	0.0049	< 0.005	< 0.005	< 0.001	< 0.001	0.03	0.037	< 0.0005	< 0.0005	0.02	0.024	< 0.003	< 0.0029
lov-21	0.001	0.0016	0.003	0.004	< 0.003	0.0036	< 0.005	< 0.005	< 0.001	< 0.001	0.02	0.017	< 0.0005	< 0.0005	0.006	0.0072	< 0.003	< 0.0029
Dec-21	0.003	0.0052	0.005	0.0072	< 0.003	< 0.0025	< 0.005	< 0.005	< 0.001	< 0.001	0.02	0.028	< 0.0005		0.000	0.022	< 0.005	< 0.012

5. Effluent Data (Stormwater Outfalls)

	501			502			503	
Jan-18	Aluminum, Total	0.36	Jan-18	Aluminum, Total	0.38	Jan-18	Aluminum, Total	0.079
Jul-18	Aluminum, Total	0.84	Jul-18	Aluminum, Total	0.74	Jul-18	Aluminum, Total	0.14
Jan-19	Aluminum, Total	0.24	Jan-19	Aluminum, Total	0.34	Jan-19	Aluminum, Total	0.05
Jul-19	Aluminum, Total	0.21	Jul-19	Aluminum, Total	0.87	Jul-19	Aluminum, Total	0.17
Jan-20	Aluminum, Total	0.7	Jan-20	Aluminum, Total	0.48	Jan-20	Aluminum, Total	0.15
Jul-20	Aluminum, Total	0.21	Jul-20	Aluminum, Total	0.24	Jul-20	Aluminum, Total	0.15
Jan-21	Aluminum, Total	2.3	Jan-21	Aluminum, Total	0.67	Jan-21	Aluminum, Total	0.18
Jul-21	Aluminum, Total	1.24	Jul-21	Aluminum, Total	1.69	Jul-21	Aluminum, Total	< 0.09
Jan-18	CBOD5	6.5	Jan-18	Cadmium, Total	0.00091	Jan-18	CBOD5	5.7
Jul-18	CBOD5	3	Jan-19	Cadmium, Total	0.00077	Jul-18	CBOD5	< 2.0
Jan-19	CBOD5	3.9	Jan-20	Cadmium, Total	0.0011	Jan-19	CBOD5	<2
Jul-19	CBOD5	3.5	Jan-21	Cadmium, Total	< 0.0010	Jul-19	CBOD5	< 2.0
Jan-20	CBOD5	17.8	Jan-18	CBOD5	2.6	Jan-20	CBOD5	3.5
Jul-20	CBOD5	4.1	Jul-18	CBOD5	3.7	Jul-20	CBOD5	4.0
Jan-21	CBOD5	19.4	Jan-19	CBOD5	2.5	Jan-21	CBOD5	3.9
Jul-21	CBOD5	< 10.7	Jul-19	CBOD5	4.4	Jul-21	CBOD5	< 1.95
Jan-18	COD	29	Jan-20	CBOD5	2.3	Jan-18	COD	< 15
Jul-18	COD	< 15.0	Jul-20	CBOD5	5.2	Jul-18	COD	< 15.0
Jan-19	COD	28	Jan-21	CBOD5	12.8	Jan-19	COD	< 15
Jul-19	COD	22	Jul-21	CBOD5	< 6.4	Jul-19	COD	21
Jan-20	COD	30	Jan-18	ΦD	17	Jan-20	COD	< 15
Jul-20	COD	21	Jul-18	ΦD	< 15.0	Jul-20	COD	< 15.0
Jan-21	COD	36	Jan-19	ΦD	29	Jan-21	COD	< 15
Jul-21	COD	< 18.0	Jul-19	ΦD	23	Jul-21	COD	< 15.0

Jun-18	SOI Iron, Total	0.62	Jan-20	COD	20	Jian-18	SD3 Iron, Total	0.31
Jul-18	Iron, Total	13	Jul-20	coo	< 15.0	Jul-18	Iron, Total	0.27
Jan-19	Iron, Total	0.24	Jan-21	COD	< 15.0	Jan-19	Iron, Total	0.23
Jul-19	Iron, Total	0.27	Jul-21	COD	< 15.0	Jul-19	Iron, Total	0.53
Jan-20	Iron, Total	1	Jan-18	Chromium , Total	0.0027	Jan-20	Iron, Total	0.24
Jul-20	Iron, Total	0.28	Jan-19	Chromium , Total	0.0029	Jul-20	Iron, Total	0.40
Jan-21	Iron, Total	0.75	Jan-20	Chromium , Total	0.0023	Jan-21	Iron, Total	0.27
3421	Iron, Total	0.54	Jan-21	Chromium , Total	0.0032	Jul-21	Iron, Total	0.21
	NErsie- NErse as N	< 0.8	Jan-18	Copper, Total	2,000	Jan-18	Nitrale- Nitrile six N	1.79
Jul-18	Nitrate- Nitrite as N	< 0.20	Jian-19	Copper, Total	0.00875	Jul-18	Nitrale- Nitrale as N	< 2.95
	NErste- NErse as N	< 0.74	Jan-20	Copper, Total	7800.0	Jan-19	Nitrale- Nitrile as N	< 1.9
	NErsie- NErse as N	< 0.72	Jan-21	Copper, Total	0.012	Jul-19	Nitrale- Nitrile six N	< 0.58
	Nitrate- Nitrite as N	< 0.88	Jan-18	Cyanida, Total	< 0.005	Jan-20	Nitrate- Nitrite as N	< 2.40
	NErste- NErste as N	0.78	Jan-19	Cyanida, Total	< 0.00345	Jul-20	Nitrate- Nitrite as N	0.38
	NErsie- NErse as N	<1.7	Jan-20	Cyanide, Total	< 0.002	Jan-21	Nitrate- Nitrite as N	< 2.8
	Nitrale- Nitrile as N	< 0.75	Jan-21	Cyanide, Total	0.0072	Jul-21	Nitrate- Nitrite as N	<235
Jun-18	Of and Greene	<20	Jul-18	Iron, Total	0.55	Jul-18	Of and Greene	< 2.0
	Of and Greece Of and	<38	Jan-19		0.52	Jan-19	Off and Greece Off and	< 38
	Greene Of and	*38	Jul-19	Iron, Total	0.32	Jul-19	Greene Greene	< 3.9
	Greene Of and	<39	Jan-20	Iron, Total	0.45	Jan-20	Greece	< 3.9
Jul-20	Greene	540	Jul-20	Iron, Total	0.28	Jul-20	Grease Of and	< 3.9
Jan-21	Greene Of and	<4.0	Jan-21	Iron, Total	0.98	Jan-21	Grease Of and	< 4.0
	Greece Of and	<4.6	Jul-21	Iron, Total	0.81	Jul-21	Greene Of and	< 38
Jan-18	Greene Zinc	0.11	Jan-18	Silver,	< 0.0035	Jan-18	Greene Zinc,	0.0233
Jul-18	Total Zinc	0.064	Jian-19	Total Silver,	< 0.0005	Jul-18	Total Zinc,	< 0.0087
Jan-19	Total Zinc	0.051	Jan-20	Total Silver,	< 0.0013	Jan-19	Total Zinc,	< 0.0025
Jul-19	Zinc Zinc	0.12	Jan-21	Total Silver,	< 0.0020	Jul-19	Zinc,	< 0.1
Jan-20	Zinc Zinc	≤0.17	Jan-18	Total	<1	Jan-20	Total Zinc,	0.056
Jul-20	Total Zinc Total	0.085	Jul-18	Kleidahi Nitrogen Total Kleidahi	1.1	Jul-20	Zinc, Total	0.016
Jan-21	Zinc Total	0.2	Jan-19	Nilrocen Total Kjektehi	×1	Jan-21	Zinc, Total	< 0.01
Jul-21	Zinc Total	0.21	Jul-19	Nirogen Total Kjektehi	2.4	Jul-21	Zirc, Total	< 0.010
			Jan-20	Nitrogen Total Kjeidahi	1.2			
			Jul-20	Niroden Total Kleidahi Nirogen	< 1.0			
			Jan-21	Total Klaidahi Nilrogan	1.2			
			34-21	Total	1.15			

	S01			502			508			502	
Jan-18	рH	8.16	Jan-18	Load, Total	0.007	Jan-18	pH	8.16	Jan-18	Total Phosphor	< 0.1
Jul-18	рH	7.18	Jan-19	Load, Total	0.00255	Jul-18	рH	8.0	Jul-18	Total Phosphor	0.12
Jan-19	рН	7.75	Jan-20	Load, Total	0.0025	Jan-19	рH	0.23	Jan-19	Total Phosphor us	< 0.1
Jul-19	pH	7.32	Jan-21	Load, Total	0.0072	Jul-19	pH	7.85	Jul-19	Total Phosphor	0.16
Jan-20	рН	7.92	Jan-18	Nickel, Total	< 0.0072	Jan-20	pH	8.25	Jan-20	Total Phosphor	< 0.10
Jul-20	pH	7.75	Jan-19	Nickel, Total	< 0.00265	Jul-20	рH	8.2	Jul-20	Total Phosphor us	< 0.10
Jan-21	pH	8	Jan-20	Nickel, Total	<0.0047	Jan-21	pH	80	Jan-21	Total Phosphor us	0.14
Jul-21	рH	7.7	Jan-21	Nickel, Total	< 0.010	Jul-21	рH	8.3	Jul-21	Total Phosphor us	0.23
Jan-18	Total Kjeldahi Nitrogen	<1	Jan-18	Nitrato- Nitrito as N	88.0	Jan-18	Total Kjeldahi Nitrogen	<1	Jan-18	Total Suspende d Solds	99
Jul-18	Total Kjeldahi Nitrogen	1	Jul-18	Nitrate- Nitrite as N	< 0.20	Jul-18	Total Kjeldahl Nitrogen	<1.0	Jul-18	Total Suspende d Solds	72
Jan-19	Total Kjeldahi Nitrogen	1.1	Jan-19	Nitrato- Nitrito as N	< 0.56	Jan-19	Total Kjeldahi Nitrogen	<1	Jan-19	Total Suspende d Solds	35
Jul-19	Total Kjeldahi Nitrogen	2.5	Jul-19	Nitrato- Nitrito as N	< 0.72	Jul-19	Total Kjeldahi Nitrogen	1.8	Jul-19	Total Suspende d Solds	19
Jan-20	Total Kjeldahi Nitrogen	12	Jan-20	Nitrato- Nitrito as N	< 0.70	Jan-20	Total Kjeldahl Nitrogen	<1.0	Jan-20	Total Suspende d Solds	19
Jul-20	Total Kjeldahi Nitrogen	2	Jul-20	Nitrato- Nitrito as N	0.42	Jul-20	Total Kjeldahi Nitrogen	<1.0	Jul-20	Total Suspende d Solds	11
Jan21	Total Kjeldahi Nitrogen	23	Jan-21	Nitrate- Nitrite as N	< 0.74	Jan-21	Total Kjeldahi Nitrogen	<1.0	Jan-21	Total Suspende d Solds	77
Jul-21	Total Kjeldahi Nitrogen Total	< 1.15		Nitrate- Nitrite as N	<2	Jul-21	Total Kjeldahi Nitrogen	<1.0	Jul-21	Total Suspende d Solids Total	67
Jan-18	Phosphor us		Jan-18	Oil and Grease		Jan-18	Total Phosphor us	<0.1	Jan-18	Toxic Organics	< 0.010
Jul-18	Total Phosphor us	0.12	Jul-18	Oil and Grease	< 20	Jul-18	Total Phosphor us	<0.1	Jan-19	Total Toxic Organics	< 0.005
Jan-19	Total Phosphor us	0.16	Jan-19	Oil and Grease	< 3.7	Jan-19	Total Phosphor us	<0.1	Jan-20	Total Toxic Organics	< 0.005
Jul-19	Total Phosphor us	0.11	Jul-19 Jan-20	Oil and Grease		Jul-19	Total Phosphor us	<0.1	Jan-21	Total Toxic Organics	< 0.0050
Jan-20 Jul-20	Total Phosphor us Total	0.19	Jul-20	Oil and Grease Oil and	< 4.0	Jan-20	Total Phosphor us Total	< 0.10	Jan-18	Zinc, Total	0.101
	Phosphor us			Grease			Phosphor us				
Jan21	Total Phosphor us Total	0.34	Jan-21	Oil and Grease	< 39	Jan-21	Total Phosphor us Total	< 0.10	Jan-20	Zinc, Total	0.079
Jul-21	Phosphor us			Oil and Grease		Jul-21	Phosphor us		Jan-21	Zinc, Total	0.13
Jan-18 Jul-18	Total Suspende d Solids	165	Jan-18 Jul-18	pH	7.58	Jan-18	Total Suspende d Solids	<7.5			
	Total Suspende d Solids			рH			Total Suspende d Solids				
Jan-19	Total Suspende d Solids	41	Jan-19	рH	7.82	Jan-19	Suspende d Solids	9			
Jul-19	Total Suspende d Solids	15	Jul-19	pH	7.57	Jul-19	Total Suspende d Solids	< 5			
Jan-20	Total Suspende d Solids	58	Jan-20	pH	7.86	Jan-20	Total Suspende d Solids	9.0			
Jul-20	Total Suspende d Solids	11	Jul-20	рH	7.7	Jul-20	Total Suspende d Solids	25.0			
Jan-21	Total Suspende d Solids	99	Jan-21	рH	82	Jan-21	Total Suspende d Solids	20			
Jul-21	Total Suspende d Solids	54	Jul-21	pH	8	Jul-21	Total Suspende d Solids	14.0			

6) Conodoguinet Creek Watershed TMDL

Total Maximum Daily Load For the Conodoguinet Creek Watershed Pennsylvania

Prepared for Pennsylvania
Department of Environmental Protection
and
EPA Region 3

Prepared by Tetra Tech, Inc. Fairfax, Virginia

December 2000

Executive Summary

The Conodoguinet Creek basin in Cumberland and Franklin counties in Pennsylvania is 507 square miles in size. The protected water uses of the watershed are water supply, recreation and aquatic life. The aquatic life uses for the western part of the main stem of Conodoguinet Creek (in Franklin County) are warm water fishes and cold water fishes. Many of the tributaries in the Conodoguinet Creek basin are specially designated for warm water fishes, cold water fishes, trout stocking, high-quality waters, and exceptional value waters.

Total Maximum Daily Loads (TMDLs) were developed for 16 named subwatersheds and 2 unnamed subwatersheds in the Conodoguinet Creek basin to address the impairments noted on Pennsylvania's 1996 and 1998 Clean Water Act section 303(d) lists. The segments were listed based on biological surveys of the aquatic life in the streams. The impairments are caused by excess nutrient and sediment loads from agriculture, construction, and urban runoff and storm sewers. The nutrient portion of the TMDLs focuses on control of phosphorus. Phosphorus is generally held to be the limiting nutrient in a waterbody when the nitrogen/phosphorus ratio exceeds 10 to 1. All the subwatersheds studied in the Conodoguinet Creek basin have nitrogen/phosphorus ratios far greater than 10 to 1.

Pennsylvania does not currently have numeric water quality criteria for sediment or phosphorus. For this reason, a reference watershed approach was developed to identify the TMDL endpoints or water quality objectives for phosphorus and sediment in the impaired segments of the Conodoguinet Creek basin. Through comparison of the impaired watersheds to similar nonimpaired watersheds, Pennsylvania estimated the amount of phosphorus and/or sediment loading that will meet the water quality objectives for subwatersheds in the Conodoguinet Creek basin, as shown in the table below.

The TMDLs are allocated to the agricultural and urban nonpoint sources, load allocations, or LAs, and 10 percent of the allowable loading is reserved as a margin of safety (MOS). There is only one wasteload allocation (WLA) for a point source in the Rowe Run watershed. The TMDLs cover a total of 119.21 miles of stream segments in the Conodoguinet Creek basin. The TMDLs establish a total reduction for phosphorus loading of 36 percent from the average yearly loading of 55,391 pounds and a total reduction in sediment loading of 32 percent from the average yearly loading of 64,178,593 pounds in the 18 subwatersheds.

TMDLs for Big Spring Creek and the main stem of Conodoguinet Creek were not included in this study. The Big Spring Creek watershed contains a fish hatchery (PA Fish Commission—Big Spring Hatchery [NPDES PA0009865]) that is a contributor of nutrients and oxygen demanding substances to the stream. The impairments in Big Spring Creek will first be addressed through changes to the fish hatchery's NPDES permit.

The TMDLs for Bulls Head Branch and Green Spring Creek pesticide listing and Trindle Spring Run priority organics listing were deferred until quantitative evidence of the presence of specific chemicals in the streams is available.

The TMDL for the main stem of Conodoguinet Creek will be developed at a later date, after further analysis of the point source contributions to the stream. Implementation of the proposed tributary watershed TMDLs will reduce phosphorus and sediment loads to the main stem by 9.8 percent and 11.3 percent, respectively.

TMDLs for Subwatersheds in the Conodoguinet Creek Basin

Listed Streams	Pollutant	TMDL (lb/yr)	LA (lb/yr)	WLA (lb/yr)	MOS (lb/yr)	Existing Load (lb/yr)	Load Reduction (lb/yr)	% Reduc- tion
Alexanders Spring Creek	Sediment	5,904,194	5,313,774	0	590,419	8,482,433	3,168,659	37%
Bulls Head Branch & Green Spring	Phosphorus	10,853	9,768	0	1,085	13,754	3,986	29%
Creek*	Sediment	8,279,005	7,451,105	0	827,901	9,314,545	1,863,440	20%
Center Creek & Back Creek*	Phosphorus	1,456	1,310	0	146	1,815	505	28%
	Sediment	1,059,531	953,578	0	105,953	1,370,464	416,886	30%
Clippingers Run	Phosphorus	1,026	923	0	103	1,395	472	34%
Hogestown Run	Phosphorus	7,133	6,419	0	713	9,855	3,436	35%
Kun	Sediment	5,440,933	4,896,839	0	544,093	6,857,481	1,960,642	29%
Mains Run & Gum Run*	Sediment	1,705,742	1,535,168	0	170,574	2,124,970	589,802	28%
Middle Spring Creek	Sediment	2,532,681	2,279,413	0	253268	2,785,986	506,573	18%
Mount Rock Spring Creek	Phosphorus	9,953	8,958	0	995	14,673	5,715	39%
Spring Creek	Sediment	7,592,471	6,833,224	0	759,247	11,068,148	4,234,924	38%
Newburg Run	Phosphorus	1,315	1,183	0	131	1,523	340	22%
	Sediment	873,236	785,913	0	87,324	1,105,941	320,028	29%
Paxton Run	Sediment	1,179,690	1,061,721	0	117,969	1,554,607	492,886	32%
Rowe Run	Phosphorus	7,604	5,078	1,765	760	12,376	5,533	45%
	Sediment	5,800,318	5,220,286	0	580,032	8,283,209	3,062,923	37%
Trindle Spring Run	Sediment	5,377,457	4,839,711	0	537,746	5,890,754	1,051,043	18%
Wertz Run	Sediment	914,964	823,468	0	91,496	1,437,577	614,109	43%
Unnamed 970729-1605- JLR	Sediment	1,157,160	1,041,444	0	115,716	2,750,374	1,708,929	62%
Unnamed 7403	Sediment	655,966	590,369	0	65,597	1,152,104	561,735	49%
Total Phosphorus						55,391	19,987	36%
Total Sediment						64,178,593	20,552,580	32%

^{*} Aggregated watershed

6.12 Proposed TMDLs for the Rowe Run Watershed

Rowe Run was initially listed on the 1998 303(d) list for organic enrichment and siltation. The total length of impaired stream segments was about 19.75 miles. The location of the Rowe Run watershed is shown in Figure 2.1. Table 6.50 details the listed stream segments, miles degraded, sources, causes, and initial year listed.

Table 6.50 Year 1998 303 (d) List: Rowe Run

Strea m Code	Segment ID	Miles Degraded	Data Source	Source Code	Cause Code	Initial Year Listed
10668	970819-1030- JLR	19.75	Unassessed Project	Agriculture	Siltation, Organic Enrichment/ Low DO	1998

The sediment and nutrient TMDLs established for the Rowe Run watershed consist of an LA and an MOS. There is a WLA for this TMDL because there is a known point source discharge in the watershed. The point source discharge is the Letterkenny Army Depot/IW in Chambersburg, Pennsylvania (NPDES ID PA0010502). The reference watershed for Rowe Run was Yellow Breeches Creek-5K (Figure 4.2). The TMDLs for the Rowe Run watershed are presented in Tables 6.51 through 6.53.

Table 6.51 TMDL computation for Rowe Run watershed

Pollutant	 Loading Rate in Yellow es Creek-5K (lb/ac/yr)	Total Watershed Area in Rowe Run (ac)	TMDL Value (lb/yr)
Phosphorus	0.63	12,004	7,604
Sediment	483.73	12,004	5,800,318

Table 6.52 Load allocation for the Rowe Run watershed by land use/source

	Phosphorus				Sediment				
Source	Area	Unit Area Loading Rate	Annual average load	LA (annual average)	% Reduc- tion	Unit Area Loading Rate (lb/ac/vr)	Annual average load	LA (annual average)	% Reduct- ion
Hav/Past	4,220	0.23	981	770	21.5%	147.08		554,347.9	10.7%
Cropland	6,489	1.25	8,135	2,815	65.4%	1,176.93		4,640,459.3	39.2%
Coniferous	47	0.00	0	0	0.0%	3.21	151	150.7	0.0%
Mixed For	77	0.01	0	0	0.0%	3.57	273	273.1	0.0%
Deciduous	455	0.01	4	4	0.0%	5.17	2,351	2,350.7	0.0%
Transition	2	0.89	2	2	21.5%	678.45	1,676	1,497.1	10.7%
Lo Int Dev	321	0.08	26	26	0.0%	26.57	8,536	8,535.9	0.0%
Hi Int Dev	393	1.09	427	427	0.0%	32.25	12,672	12,671.8	0.0%
Groundwater			1,001	1,001					
Point Source			1765	1765	0.0%				
Septic			34	34					
Systems									
Total	12,004	1.03	12,376	6,843	45%	690.04	8,283,209	5,220,286	37%

Table 6.53 TMDLs for the Rowe Run watershed

Pollutant	TMDL (lb/yr)	LA (lb/yr)	WLA (lb/yr)	MOS (lb/yr)
Phosphorus	7,604	5,078	1,765	760
Sediment	5,800,318	5,220,286	0	580,032