

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

 Application No.
 PA0011070

 APS ID
 1014934

 Authorization ID
 1311555

Applicant and Facility Information

Knoll, Inc.	Facility Name	Knoll East Greenville Facility				
1235 Water Street	Facility Address	1235 Water Street				
East Greenville, PA 18041		East Greenville, PA 18041				
Emma Murphy	Facility Contact	Scott Cameron				
(416) 779-8010	Facility Phone	(215) 679-1667				
52154	Site ID	455040				
2521	Municipality	Upper Hanover Township				
Manufacturing - Wood Office Furniture	County	Montgomery				
ed February 27, 2020	EPA Waived?	Yes				
ed July 9, 2020	If No, Reason					
Permit Renewal.						
	Knoll, Inc. 1235 Water Street East Greenville, PA 18041 Emma Murphy (416) 779-8010 52154 2521 Manufacturing - Wood Office Furniture ed February 27, 2020 ed July 9, 2020 Permit Renewal.	Knoll, Inc.Facility Name1235 Water StreetFacility AddressEast Greenville, PA 18041Facility ContactEmma MurphyFacility Contact(416) 779-8010Facility Phone52154Site ID2521MunicipalityManufacturing - Wood Office FurnitureCountyedFebruary 27, 2020EPA Waived?edJuly 9, 2020If No, Reason				

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application for Knoll East Greenville Facility (facility) from Knoll, Inc. (permittee/Knoll) on February 27, 2020. The facility is in Upper Hanover Township, Montgomery County. This is a minor industrial facility with a design flow of 0.04 MGD (rerated to 0.005 MGD). The treated effluent is discharged through Outfall 001 into Perkiomen Creek (TSF, MF). There are several other stormwater outfalls discharging stormwater runoff. The existing permit expired on January 31, 2020. The terms and conditions were administratively extended since the renewal application was not received at least 180 days prior to permit expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56

<u>Changes in the permit:</u> Mass loads recalculated for rerated annual flow of 0.005 MGD. IMPs 101, 103, and 301 will be removed after the treatment plant is rerated at lower flow. Mass based WLA for Total Phosphorus is recalculated to reflect the reduction in flow.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	December 30, 2020
х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	12/31/2020

NPDES Permit Fact Sheet Knoll Inc.

Discharge, Receiving Waters and Water Supply Info	ormation	
Outfall No. 001	Design Flow (MGD)	.0715
Latitude 40° 25' 2"	Longitude	-75º 31' 23"
Quad Name East Greenville	Quad Code	1541
Wastewater Description: Combined effluent from	IMPs 101, 201, and stormwater from the store of the store	om main parking area
Receiving WatersPerkiomen Creek (TSF, MF)	Stream Code	01017
NHD Com ID 25971706	RMI	27.97
Drainage Area35.2 mi ²	Yield (cfs/mi ²)	0.197
Q ₇₋₁₀ Flow (cfs)6.93	Q7-10 Basis	Please see below
Elevation (ft) 316.15	Slope (ft/ft)	
Watershed No. 3-E	Chapter 93 Class.	TSF, MF
Existing Use TSF/MF	Existing Use Qualifier	
Exceptions to Use None	Exceptions to Criteria	
Assessment Status Attaining Use(s)		
Cause(s) of Impairment		
Source(s) of Impairment		
TMDI Status Final March 10, 2003	Name Green Lane	Reservoir
Background/Ambient Data	Data Source	
pH (SU) 7.0	Default per 391-2000-013	
Temperature (°E) 20	Default per 391-2000-013 for	
Hardpess (mg/l) 100	Default	131/641
	Deladit	
Nearast Downstream Public Water Supply Inteke	Aqua BA Main Division	
DWS Waters Darkiemen Creek		
	Flow at intake (cis)	27.06
PWS RMI	Distance from Outrali (mi)	
Discharge, Receiving Waters and Water Supply Infe	ormation	
Outfall No. 002	Design Flow (MGD)	0
Latitude 40° 25' 2.19"	Longitude	-75º 31' 23"
Quad Name East Greenville	Quad Code	1541
Wastewater Description: Stormwater from fabrica	ation building parking lots and roof	drains
Discharge Descision Waters and Water Ormaly lat		
Discharge, Receiving waters and Water Supply Infe	ormation	
		0
		-10° 31 12"
Quad Name East Greenville		1541
vvastewater Description: Stormwater from Lubin	building parking lots and roof drain	15

Discharge, Receiving Waters and Water Supply Information										
Outfall No. IMP 101	Design Flow (MGD)	0.0004								
Latitude 40° 25' 3"	Longitude	-75º 31' 22"								
Quad Name East Greenville	Quad Code	1541								
Wastewater Description: Emergency discharge from frac b	uilding heating boiler blo	owdown								
Discharge, Receiving Waters and Water Supply Information										
Outfall No. IMP 201	Design Flow (MGD)	0.005								
Latitude 40° 25' 3"	Longitude	-75º 31' 22"								
Quad Name East Greenville	Quad Code	1541								
Wastewater Description: Treated wastewater from STP										
Discharge, Receiving Waters and Water Supply Information										
Outfall No. IMP 301	Design Flow (MGD)									
Latitude40° 25' 3"	Longitude	-75º 31' 22"								
Quad Name East Greenville	Quad Code	1541								
Wastewater Description: Non contact cooling water from fab	rication building (cappe	d)								
Discharge Receiving Waters and Water Supply Information										
Outfall No. IMP 103	Design Flow (MGD)	0.0215								
Latitude 40° 24' 23"	Lonaitude	-75º 31' 19"								
Quad Name East Greenville	Quad Code	1541								
Wastewater Description: Noncontact Cooling Water (N	CCW) for Lubin building	<u></u>								

Other Comments:

Streamflow:

Streamflow will be correlated with the nearby USGS Streamgage 01472198 located on Perkiomen Creek at East Greenville, PA at RMI 26.05 mile which is approximately 1.92 miles downstream. Q₇₋₁₀, Q₁₋₁₀, and Q₃₀₋₁₀ values at this gage were found to be 7.5 cfs, 7.1 cfs, and 9.6 cfs respectively for the reporting period of 1983-2008. The drainage area at this gage is 38 mi².

 $\begin{array}{l} Q_{7\text{-}10} \text{ runoff rate} = 7.5 \text{ cfs}/ 38 \text{ mi}^2 \text{ or } 0.197 \text{ cfs/mi}^2 \\ Q_{7\text{-}10} \text{ at Outfall } 001 = 0.197 \text{ cfs/mi}^2 * 35.2 \text{ mi}^2 \text{ or } 6.93 \text{ cfs} \\ Q_{30\text{-}10}/Q_{7\text{-}10} = 9.6 \text{ cfs}/7.5 \text{ cfs or } 1.28 \\ Q_{1\text{-}10}/Q_{7\text{-}10} = 7.1 \text{ cfs}/7.5 \text{ cfs or } 0.95 \end{array}$

PWS Intake:

The nearest downstream public water supply is Aqua PA Main Division on Perkiomen Creek at RMI 0.91. Its approximately 27 miles downstream of Outfall 001.

NPDES Permit Fact Sheet Knoll Inc.

Wastewater Characteristics:

A median pH of 6.82 from daily DMR during dry months July through September for the year 2020 and a median temperature of 75.38°F (24.1°C) for the same period will be used for modeling, if needed. The application data indicated an average Total Hardness of 146 mg/l out of 3 samples.

Background data:

There is currently no nearby WQN stations from Outfall 001. In absence of site-specific temperature data, a default temperature of 20°C and default pH of 7.0 (per 391-2000-013, CWF) will be used in modeling, if needed. Default stream hardness of 100 mg/l will be used, if needed.

303d Listed Streams:

The receiving stream, Perkiomen Creek, is supporting its designated uses.

Green Lane Reservoir:

On March 10, 2003, a Final Total Maximum Daily Load (TMDL) report on nutrients for Green Lane Reservoir, prepared by TetraTech, Inc. was approved by the Environmental Protection Agency (EPA). The TMDL requires a Total Phosphorus effluent limit of 0.5 mg/l for this discharger. On May 20, 2020, The Department rerated the treatment plant from 40,000 GPD to 5,000 GPD. The mass based WLA for TP will be revised to show this change in the flow. The TMDL will be updated in the future.

Changes Since Last Permit Issuance:

PADEP issued a Part II Water Quality Management permit on May 20, 2020 to authorize rerate of the WWTP's design flow from 40,000 GPD to 5,000 GPD under permit number 4620201. The rerate was necessary to address the non-compliance due to low flow contributing to the treatment plant. The permittee indicated, and the Operations confirmed that IMP 101 and IMP 301 are capped and the wastewater contributing to these IMPs are being pumped and hauled offsite. The majority of the wastewater treated in this facility is generated from onsite sanitary wastewater. Minor waste streams include respirator washing machine residue waste (~8 GPD) and water-based glue process machinery wash water (~250 GPD). The IMP 101, IMP 301, and IMP 103 will be removed from the permit.

	Tre	eatment Facility Summa	ary	
Treatment Facility Na	me: Knoll East Greenville I	Facility		
WQM Permit No.	Issuance Date			
4620201	5/20/2020			
	Dograa of			
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
Industrial			Chlorine	0.005
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.005	10	Not Overloaded	None	Hauled offsite

Treatment Plant Summary

Knoll East Greenville facility produces wooden and metal office furniture. The wastewater generated from this facility consists mostly of sanitary sewage, ~8 GPD from respirator washing machine, and ~250 GPD of glue process machinery wash water. The recent inspection report dated December 23, 2020 indicated capping of IMP 101. 350 GPD of boiler blowdown water is also coming from Lubin Building and contributing to Outfall 001. Outfall 003 is discharging the storm water from Lubin Building area. Outfall 002 discharges stormwater runoff from parking area and roof drains from fabrication building area. Effluent limits for each outfall will be discussed later of this fact sheet.

Process Flow Diagram

To summarize, the WWTP treats 5,000 GPD of sanitary wastewater that respirator cleaning water, glue process water, and 350 GPD of boiler blowdown water from Lubin Building. The facility also discharges stormwater through Outfalls 002 and 003.

Compliance History

DMR Data for Outfall 001 (from June 1, 2019 to May 31, 2020)

Parameter	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19
Flow (MGD)												
Average Monthly	0.0026	0.0035	0.004	0.0044	0.0047	0.0035	0.0037	0.004	0.0029	0.0032	0.0035	0.0034
Flow (MGD)												
Daily Maximum	0.0093	0.0096	0.0106	0.0093	0.0047	0.0079	0.0085	0.0099	0.0061	0.0059	0.0122	0.0069
pH (S.U.)												
Instantaneous												
Minimum	4.2	6.8	6.3	3.6	6.7	5.6	4.3	6.1	5.6	6.0	6.1	5.9
pH (S.U.)												
Instantaneous												
Maximum	8.6	8.6	8.6	7.9	8.6	8.4	8.1	8.4	7.8	7.6	7.6	8.4
Temperature (°F)												
Instantaneous	07			= 0	=0	=0						
	67	57	57	53	56	56	55	/5	76	79	81	75
TSS (Ibs/day)	0.1		0.4				0.4					
	< 0.1	0.3	< 0.4	< 0.3	< 0.2	0.2	0.4	< 0.2	0.3	0.3	< 0.3	< 0.2
155 (Ibs/day)		0.0	.0.1		0.0	0.0	0.5		0.4	0.0	0.0	0.0
	< 0.2	0.3	< 0.4	< 0.3	0.2	0.2	0.5	< 0.2	0.4	0.3	0.6	0.2
ISS (mg/L)	. 7	F	. 1	. 1	. 1	. 1		. 5	7	7	. 0	. 5
	< 1	5	< 4	< 4	< 4	< 4	Ö	< 5	1	1	< 8	< 5
Daily Maximum	0	Б	- 1	- 1	1	1	10	6	10	0	12	6
Total Dissolved Solids	9	5	<u> </u>	<u> </u>	4	4	10	0	10	9	15	0
(mg/L)												
Average Monthly	730	799	1160	880	1215	905	1090	831	893	723	629	607
Total Dissolved Solids	730	155	1100	000	1215	505	1030	001	000	120	025	007
(mg/L)												
Daily Maximum	1370	1250	1160	1070	1270	1100	1130	959	926	738	688	703
Total Phosphorus	1010	1200	1100	1010	1210	1100	1100	000	020	100	000	100
(lbs/day)												
Average Monthly	0.007	0.09	0.03	0.02	0.03	0.02	0.1	0.07	0.2	0.2	0.1	0.3
Total Phosphorus												
(mg/L)												
Average Monthly	0.9	1.3	0.4	0.3	0.6	0.6	1.5	1.8	4.9	4.5	2.4	3.4

NPDES Permit Fact Sheet Knoll Inc.

DMR Data for Outfall 002 (from June 1, 2019 to May 31, 2020)

Parameter	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19
pH (S.U.)												
Daily Maximum						6.77						
CBOD5 (mg/L)												
Daily Maximum						< 2.0						
COD (mg/L)												
Daily Maximum						< 5.00						
TSS (mg/L)												
Daily Maximum						6.8						
Oil and Grease (mg/L)												
Daily Maximum						< 5.0						
TKN (mg/L)												
Daily Maximum						< 0.50						
Total Phosphorus												
(mg/L)												
Daily Maximum						< 0.12						
Dissolved Iron (mg/L)												
Daily Maximum						< 0.100						

DMR Data for Outfall 003 (from June 1, 2019 to May 31, 2020)

Parameter	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19
pH (S.U.)												
Daily Maximum						6.71						
CBOD5 (mg/L)												
Daily Maximum						< 2.0						
COD (mg/L)												
Daily Maximum						6.45						
TSS (mg/L)												
Daily Maximum						< 4.0						
Oil and Grease (mg/L)												
Daily Maximum						< 5.2						
TKN (mg/L)												
Daily Maximum						< 0.50						
Total Phosphorus												
(mg/L)												
Daily Maximum						< 0.10						
Dissolved Iron (mg/L)												
Daily Maximum						< 0.100						

NPDES Permit Fact Sheet Knoll Inc.

NPDES Permit No. PA0011070

DMR Data for Outfall 201 (from June 1, 2019 to May 31, 2020)

Parameter	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19
Flow (GPD)												
Average Monthly	0.0026	0.0035	0.004	0.0044	0.0047	0.0035	0.0037	0.004	0.0029	0.0032	0.0035	0.0034
pH (S.U.)												
Instantaneous												
Minimum	3.9	5.9	6.1	3.3	6.5	5.4	4.2	6.1	6.6	6.6	6.1	6.0
pH (S.U.)												
Instantaneous												
Maximum	7.6	7.7	7.1	7.5	7.1	7.4	6.8	7.7	7.6	7.6	6.9	6.9
TRC (mg/L)												
Average Monthly	0.3	< 0.2	0.3	0.5	0.3	0.4	0.5	0.3	0.3	0.1	0.2	0.1
TRC (mg/L)												
Instantaneous												
Maximum	0.6	0.6	0.7	1.0	1.1	2.0	1.3	1.2	1.2	0.5	1.0	0.2
CBOD5 (lbs/day)												
Average Monthly	0.2	< 0.1	< 0.2	1.2	< 0.1	< 0.08	< 0.08	< 0.1	< 0.1	0.6	< 0.07	< 0.1
CBOD5 (lbs/day)												
Daily Maximum	0.3	< 0.1	< 0.2	2.1	< 0.1	< 0.08	< 0.08	< 0.1	0.1	0.6	< 0.07	< 0.1
CBOD5 (mg/L)				10					•	<u> </u>	0	0
Average Monthly	6	< 2	<2	18	2	< 2	< 2	<2	<2	9	<2	<2
CBOD5 (mg/L)	7			22	2				0	10		
	1	< 2	< 2	33	2	< 2	< 2	< 2	Ζ	16	< 2	< 2
155 (IDS/day)	0.7		0.4				0.5			1.0		0.4
	0.7	< 0.3	0.4	< 0.5	< 0.2	< 0.2	0.5	< 0.2	< 0.6	1.8	< 0.3	0.4
155 (IDS/day)	1.2	0.6	0.4	0.0	.0.2	- 0.2	0.0	.0.2	1 1	1 0	0.2	0.4
	1.3	0.0	0.4	0.0	< 0.2	< 0.2	0.0	< 0.2	1.1	1.0	0.3	0.4
Average Monthly	15	- 6	4	- 8	- 1	- 1	12	- 1	- 13	27	- 7	0
TSS (mg/L)	15	< 0	4	<u> </u>	~ +	~ 7	12	<u> </u>	< 15	21		3
Daily Maximum	24	12	4	13	4	- 4	19	- 4	21	48	10	9
Fecal Coliform	27	12		10		~ ~ ~	10	~ ~	21	-10	10	
(CEU/100 ml)												
Geometric Mean	100	10	< 1	< 1	< 1	< 1	< 1	41	78	89	38	23
Fecal Coliform	100	10									00	20
(CEU/100 ml)												
Instantaneous												
Maximum	144	54	< 1	< 1	< 1	< 1	< 1	1700	84	176	9400	276
Ammonia (lbs/day)	1											
Average Monthly	< 0.07	< 0.005	< 0.009	< 0.007	< 0.005	< 0.04	< 0.03	0.1	0.3	0.3	0.4	0.1
Ammonia (mg/L)												
Average Monthly	< 1.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.9	< 0.8	2.3	5.4	9.3	6.6	1.2

Compliance History

Effluent Violations for Outfall 001, from: July 1, 2019 To: May 31, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
рН	09/30/19	Inst Min	5.6	S.U.	6.0	S.U.
рН	05/31/20	Inst Min	4.2	S.U.	6.0	S.U.
рН	02/29/20	Inst Min	3.6	S.U.	6.0	S.U.
рН	11/30/19	Inst Min	4.3	S.U.	6.0	S.U.
рН	12/31/19	Inst Min	5.6	S.U.	6.0	S.U.
Total Dissolved Solids	01/31/20	Avg Mo	1215	mg/L	1000	mg/L
Total Dissolved Solids	11/30/19	Avg Mo	1090	mg/L	1000	mg/L
Total Dissolved Solids	03/31/20	Avg Mo	1160	mg/L	1000	mg/L
Total Dissolved Solids	03/31/20	Avg Mo	1160	mg/L	1000	mg/L
Total Phosphorus	04/30/20	Avg Mo	1.3	mg/L	0.5	mg/L
Total Phosphorus	11/30/19	Avg Mo	1.5	mg/L	0.5	mg/L
Total Phosphorus	08/31/19	Avg Mo	4.5	mg/L	0.5	mg/L
Total Phosphorus	05/31/20	Avg Mo	0.9	mg/L	0.5	mg/L
Total Phosphorus	12/31/19	Avg Mo	0.6	mg/L	0.5	mg/L
Total Phosphorus	07/31/19	Avg Mo	2.4	mg/L	0.5	mg/L
Total Phosphorus	10/31/19	Avg Mo	1.8	mg/L	0.5	mg/L
Total Phosphorus	09/30/19	Avg Mo	4.9	mg/L	0.5	mg/L
Total Phosphorus	01/31/20	Avg Mo	0.6	mg/L	0.5	mg/L

Effluent Violations for Outfall 201, from: July 1, 2019 To: May 31, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
рН	05/31/20	Inst Min	3.9	S.U.	6.0	S.U.
pН	12/31/19	Inst Min	5.4	S.U.	6.0	S.U.
рН	04/30/20	Inst Min	5.9	S.U.	6.0	S.U.
рН	11/30/19	Inst Min	4.2	S.U.	6.0	S.U.
рН	02/29/20	Inst Min	3.3	S.U.	6.0	S.U.
TRC	12/31/19	IMAX	2.0	mg/L	1.3	mg/L
TSS	08/31/19	Daily Max	48	mg/L	45	mg/L
Fecal Coliform	07/31/19	IMAX	9400	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	10/31/19	IMAX	1700	CFU/100 ml	1000	CFU/100 ml

Other Comments: Due to several effluent violations, a CO&A was entered into on January 30, 2020 (amended on October 5, 2020) which required permittee to take appropriate action to meet the effluent limits. It is expected that after the modifications are made, the facility will be able to meet the effluent limitations.

NPDES Permit Fact Sheet Knoll Inc.

Summary of Inspections:

12/23/2020: CEI conducted. No effluent violation noted. Condition of all outfall locations seemed to be normal.

05/11/2020: FUI conducted. No violation noted. The collection system and the WWTP were operating normally. This FUI will serve to correct the 12/18/2019 unpermitted discharge violation.

12/18/2019: INCDT conducted due to release from a wastewater force main to a grassy area. The release occurred when one of the facility wastewater pump stations at the Lubin building activated and pressurized the pipe. Wastewater was discharged to the ground, ran onto the adjacent asphalt lot, and into a drain that discharges to an adjacent grassy area. The leak was repaired, and a vac truck had been brought on site to clean up standing water in the catch basin and on the grass.

11/07/2019: CEI conducted. Late NPDES permit renewal application was not submitted on time and this was marked as a violation.

08/13/2019: RTPT conducted. No violation was noted during the inspection.

01/23/2019: RTPT conducted. No effluent violation noted.

11/27/2018: CEI conducted. No effluent violation noted. It was recommended that the facility should confirm that the outfall 001 sampler aliquot volume is at least 100 ml.

5/15/2018: RTPT conducted. No violation noted.

03/16/2018: FUI conducted, secondary containment provided for the chemical storage area, correcting the violation cited during 1/11/2018 inspection. No violation noted during the inspection.

1/11/2018: CEI conducted. Violation noted due to lack of chemical secondary containment. An NOV was issued on 1/18/2018 that cited the non-compliance.

12/13/2016: CEI conducted. No violation observed.

Existing Limits effective between February 1, 2015 to January 31, 2020

For Outfall 001

			Effluent Li	mitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	Minimum ⁽²⁾	Required		
	Average Monthly	Daily Maximum	Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	xxx	xxx	Continuous	Calculation
pH (S.U.)	xxx	xxx	6.0	xxx	xxx	9.0	1/day	Grab
Temperature (°F)	xxx	xxx	xxx	xxx	xxx	110	1/week	I-S
Total Suspended Solids	18	36	xxx	30	60	75	2/month	24-Hr Composite
Total Dissolved Solids	xxx	xxx	xxx	1,000	2,000	2500	2/month	24-Hr Composite
Total Phosphorus	0.3	xxx	XXX	0.5	XXX	1.2	2/month	24-Hr Composite

For IMP 101:

			Effluent L	imitations	Monitoring Requirements			
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly		Instant. Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (GPD)	Report	XXX	XXX	xxx	xxx	xxx	1/discharge	Metered
рН (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/discharge	Grab
Total Copper	XXX	XXX	XXX	Report	Report	XXX	1/discharge	24-Hr Composite
								24-Hr
Total Zinc	XXX	XXX	XXX	Report	Report	XXX	1/discharge	Composite

For IMP 201:

			Monitoring Requirements					
Baramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Farailleter	Average	Daily	Instant.	Average	Daily	Instant.	Measurement	Sample
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Flow (GPD)	Report	xxx	xxx	xxx	xxx	xxx	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0	xxx	xxx	9.0	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	xxx	1.3	1/day	Grab
CBOD5	8.0	13.0	xxx	25	40	50	2/month	24-Hr Composite
Total Suspended Solids	10.0	15.0	xxx	30	45	60	2/month	24-Hr Composite
Fecal Coliform (CFU/100 ml)	XXX	xxx	XXX	200 Geo Mean	XXX	1,000	2/month	Grab
Ammonia-Nitrogen May 1 - Oct 31	3.3	xxx	XXX	10.0	xxx	20.0	2/month	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	6.7	xxx	XXX	20.0	XXX	40.0	2/month	24-Hr Composite

For IMP 301:

		Monitoring Requirements						
Paramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrati	Minimum ⁽²⁾	Required		
Falameter	Average Monthly		Instant. Minimum	Average Monthly		Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	6.0	ХХХ	XXX	9.0	1/week	Grab
Total Residual Chlorine	ххх	XXX	xxx	0.5	XXX	1.3	1/week	Grab
Temperature (°F)	XXX	XXX	XXX	XXX	XXX	110	1/week	I-S

For Outfall 002:

	Effluent Limitations						Monitoring Requirements	
Paramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
r arameter	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
рН (S.U.)	xxx	XXX	XXX	XXX	Report	xxx	1/year	Grab
CBOD5	ххх	XXX	XXX	XXX	Report	ххх	1/year	Grab
Chemical Oxygen Demand	xxx	XXX	XXX	XXX	Report	xxx	1/year	Grab
Total Suspended Solids	xxx	XXX	XXX	XXX	Report	xxx	1/year	Grab
Oil and Grease	XXX	XXX	XXX	XXX	Report	xxx	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	XXX	Report	ххх	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report	xxx	1/year	Grab
Dissolved Iron	XXX	XXX	XXX	XXX	Report	xxx	1/year	Grab

For Outfall 003:

			Effluent L	imitations			Monitoring Requirements	
Paramotor	Mass Units	Mass Units (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	xxx	XXX	ххх	xxx	Report	ххх	1/year	Grab
CBOD5	ххх	XXX	XXX	XXX	Report	ххх	1/year	Grab
Chemical Oxygen Demand	XXX	XXX	XXX	ххх	Report	ххх	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	ХХХ	1/year	Grab
Oil and Grease	XXX	XXX	XXX	XXX	Report	ХХХ	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	XXX	Report	ХХХ	1/year	Grab
Dissolved Iron	XXX	XXX	XXX	XXX	Report	ххх	1/year	Grab

For IMP 103:

			Monitoring Requirements					
Baramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrati	Minimum ⁽²⁾	Required		
Faiametei	Average Monthly		Instant. Minimum	Average Monthly		Instant. Maximum	Measurement Frequency	Sample Type
	, i i i i i i i i i i i i i i i i i i i						Daily when	
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	Discharging	Grab
							Daily when	
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.3	Discharging	Grab
							Daily when	
Temperature (°F)	XXX	XXX	XXX	XXX	XXX	110	Discharging	I-S

Development of effluent limitations

Outfall 001:

Historically, Outfall 001 received comingled industrial wastewater, sanitary wastewater, noncontact cooling water, and stormwater. The industrial wastewater (metal cleaning) is disconnected and 31,100 GPD of NCCW is now being pumped and hauled. The Sanitary wastewater contribution was reduced from 40,000 GPD to 5,000 GPD which is the only discharge through Outfall 001 excluding stormwater. Outfall 001 may be considered as stormwater only outfall, since the sanitary wastewater is sampled and monitored at IMP 201. Therefore, the effluent quality is somewhat similar to Outfall 002 (stormwater from parking lots and roof drains) and below parameters will be placed in this renewal for Outfall 001:

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	(lbs/day)		Concentra	Minimum	Required		
Farameter	Average			Average	Daily	Instant.	Measuremen	Sample
	Monthly		Minimum	Monthly	Maximum	Maximum	t Frequency	Туре
pH (S.U.)	XXX	xxx	XXX	xxx	Report	ххх	1/year	Grab
CBOD5	XXX	xxx	XXX	xxx	Report	XXX	1/year	Grab
Chemical Oxygen Demand	xxx	XXX	xxx	xxx	Report	xxx	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	xxx	Report	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	xxx	Report	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	ххх	Report	xxx	1/year	Grab
Total Phosphorus	0.02	XXX	XXX	0.5	xxx	1.2	2/month	24-Hr Composite
Dissolved Iron	xxx	xxx	xxx	xxx	Report	xxx	1/year	Grab

Outfall 002:

Outfall 002 is a stormwater only outfall that collects stormwater from parking lots and roof drains of Fabrication Building. The existing permit has the following parameters which will be carried over in this renewal:

			Effluent L	imitations			Monitoring Rec	quirements
Paramotor	Mass Units	(lbs/day)		Concentra	Minimum	Required		
Farameter	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
рН (S.U.)	xxx	xxx	XXX	xxx	Report	XXX	1/year	Grab
CBOD5	XXX	xxx	XXX	xxx	Report	ххх	1/year	Grab
Chemical Oxygen Demand	ххх	XXX	xxx	XXX	Report	xxx	1/year	Grab
Total Suspended Solids	ххх	XXX	xxx	XXX	Report	xxx	1/year	Grab
Oil and Grease	XXX	xxx	XXX	xxx	Report	XXX	1/year	Grab
Total Kjeldahl Nitrogen	ххх	XXX	xxx	xxx	Report	xxx	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	xxx	Report	XXX	1/year	Grab
Dissolved Iron	XXX	xxx	XXX	xxx	Report	ххх	1/year	Grab

Outfall 003:

Historically Outfall 003 received approximately 21,500 GPD of NCCW from Lubin Building and stormwater runoff from Lubin Building that were collected in detention basin and discharged through Outfall 003. There was an internal monitoring point for NCCW, IMP 003, prior to the detention basin. Since the NCCW is now being pumped and hauled, the detention basin receives stormwater only. The effluent quality is now similar to Outfall 001 and 002. The following effluent monitoring requirements will be placed in this renewal:

			Effluent L	imitations			Monitoring Rec	quirements
Parameter	Mass Units	(lbs/day)		Concentrat	Minimum	Required		
Falameter	Average Monthly		Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	xxx	XXX	XXX	xxx	Report	XXX	1/year	Grab
CBOD5	xxx	xxx	XXX	xxx	Report	xxx	1/year	Grab
Chemical Oxygen Demand	XXX	XXX	XXX	xxx	Report	XXX	1/year	Grab
Total Suspended Solids	ххх	XXX	XXX	xxx	Report	XXX	1/year	Grab
Oil and Grease	xxx	XXX	XXX	xxx	Report	XXX	1/year	Grab
Total Kjeldahl Nitrogen	ххх	XXX	XXX	xxx	Report	XXX	1/year	Grab
Total Phosphorus	xxx	XXX	XXX	xxx	Report	XXX	1/year	Grab
Dissolved Iron	xxx	xxx	XXX	xxx	Report	XXX	1/year	Grab

IMP 101:

IMP 101 received wastewater from former Industrial Wastewater Treatment facility. Since the IWTP is removed and IMP 101 is capped, the effluent monitoring requirements related to this monitoring point will be removed.

IMP 103:

IMP 103 received NCCW from Lubin Building in emergency only during closed-loop system breakdown. This NCCW is now being pumped and hauled off site. Therefore, IMP 103 will be removed from monitoring requirement.

IMP 301:

Historically IMP 301 received NCCW of about 31,100 GPD that discharged into a common pit prior to discharging through Outfall 001. This monitoring point is capped and the NCCW is now being pumped and hauled. Therefore, the monitoring requirements for this IMP will be removed.

IMP 201:

Treated sewage is monitored at IMP 201 prior to being comingled with stormwater and discharged through Outfall 001. The sewage treatment plant is designed to treat an average flow of 40,000 GPD and rerated to 5,000 GPD. Since the flow is decreased significantly, the WQM modeling will be required.

A. Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	200 / 100 ml	Geo Mean	DRBC	92a.47(a)(5)
Fecal Coliform	1,000 / 100 ml	IMAX	DRBC	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
Total Dissolved Solids*	1000	Average Monthly	DRBC	-

* TDS is monitored at Outfall 001

Comments: These standards apply, subject to Water Quality Analysis and BPJ where applicable.

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using adjusted Q₇₋₁₀ and historic background water quality levels of the receiving stream. The following data were used in the attached computer model of the stream:

•	Discharge pH	6.42	(median Jul-Sep, 2020, DMR data)
•	Discharge Temperature	24.1°C	(median Jul-Sep, 2020, DMR data)
•	Discharge Hardness	146 mg/l	(Application data)
•	Stream pH	7.0	(Default per 391-2000-013)
•	Stream Temperature	20°C	(Default per 391-2000-013, CWF)
٠	Stream Hardness	100 mg/l	(Default data)

The following nodes were considered in modeling:

Node 1:	Outfall 001 at Perkio	men Creek (01017)
	Elevation:	316.15 ft (USGS National Map viewer, 12/30/2020)
	Drainage Area:	35.2 mi ² (StreamStat Version 3.0, 11/17/2020)
	River Mile Index:	27.97 (PA DEP eMapPA)
	Low Flow Yield:	0.197 cfs/mi ²
	Discharge Flow:	0.005 MGD
Node 2:	Confluence with Mol	asses Creek (01466)
	Elevation:	285.1 ft (USGS National Map viewer, 12/30/2020)
	Drainage Area:	40.4 mi ² (StreamStat Version 3.0, 11/17/2020)
	River Mile Index:	25.14 (PA DEP eMapPA)
	Low Flow Yield:	0.197 cfs/mi ²
	Discharge Flow:	0 MGD

Ammonia (NH₃-N), Carbonaceous Biochemical Oxygen Demand (CBOD5), & Dissolved Oxygen (DO):

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and current background water quality levels of the stream.

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 10.0 mg/l as monthly average and 20.0 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. Recent DMR data show that the plant is meeting the permit limits. The average monthly mass loading is recalculated to be 0.417 lbs./day. The existing winter season limits of 20.0 mg/l as average monthly and 40.0 mg/l as IMAX limit will be carried over in this renewal. Winter average monthly mass limit was recalculated as 0.834 lbs./day. It should be noted the mass limits were recalculated using rerated design flow of 0.005 MGD.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 25 mg/l, daily maximum limit of 40 mg/l, and IMAX of 50 mg/l, which are the same as existing limits. The mass based limit is recalculated to be 1.04 lbs./day as average monthly and 1.668 lbs./day.

Other Requirements:

Total Residual Chlorine:

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 001. The Instantaneous Maximum (IMAX) limit is 1.6 mg/l. The existing permit has AML limit of 0.5 mg/l and IMAX limit of 1.3 mg/l. The existing IMAX limit will be carried over.

Fecal Coliform: The recent coliform guidance in 25 Pa. code § 92a.47.(a) requires a technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml. These limits are the same as existing limits and will be carried over.

<u>рН:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are recalculated to be 1.251 lbs./day and 1.88 lbs./day respectively.

Total Phosphorus:

The WLA in Green Lane Reservoir TMDL for TP is 0.5 mg/l as average monthly. The mass load allocated to this facility was 0.3 lbs./day for a flow of 71,940 GPD. Since the facility is rerated to 5,000 GPD, the mass based WLA needs to be recalculated. Using a flow of 0.005 MGD, the calculated mass loading is 0.02 lbs./day. This new load will be applied to this facility.

Flow Monitoring

Flow monitoring will remain in the permit and is required by 40 CFR § 122.44(i)(1)(ii).

Toxics:

Based on the monitoring data (maximum concentrations) reported on the application, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

TMS Output sheet indicates there is no toxicity concern from this facility at Outfall 001.

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1.

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	xxx	ххх	Continuous	Calculation
pH (S.U.)	ХХХ	xxx	6.0 Inst Min	xxx	xxx	9.0	1/day	Grab
Temperature (deg F) (°F)	ХХХ	XXX	XXX	XXX	XXX	110	1/week	I-S
Total Suspended Solids	18	36	xxx	30	60	75	2/month	24-Hr Composite
Total Dissolved Solids	ххх	xxx	XXX	1000	2000	2500	2/month	24-Hr Composite
Total Phosphorus	0.3	xxx	xxx	0.5	XXX	1.2	2/month	24-Hr Composite

Compliance Sampling Location: At Outfall 001

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: End of Interim Period 1 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falainetei	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	ххх	XXX	XXX	XXX	Report	xxx	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Suspended Solids	xxx	XXX	xxx	XXX	Report	xxx	1/year	Grab
Oil and Grease	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Phosphorus	0.02	XXX	xxx	0.5	xxx	1.2	2/month	24-Hr Composite
Iron, Dissolved	ххх	XXX	XXX	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 001

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through End of Interim Period 1.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	ХХХ	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Suspended Solids	xxx	XXX	xxx	XXX	Report	XXX	1/year	Grab
Oil and Grease	ХХХ	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Phosphorus	ххх	XXX	xxx	XXX	Report	XXX	1/year	Grab
Iron, Dissolved	ххх	XXX	XXX	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 002

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: End of Interim Period 1 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Suspended Solids	xxx	XXX	xxx	XXX	Report	xxx	1/year	Grab
Oil and Grease	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
Total Phosphorus	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 002

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: Permit Effective Date through End of Interim Period 1.

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	ХХХ	XXX	XXX	XXX	Report	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Suspended Solids	xxx	XXX	xxx	XXX	Report	XXX	1/year	Grab
Oil and Grease	ХХХ	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	xxx	XXX	Report	xxx	1/year	Grab
Total Phosphorus	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Iron, Dissolved	ХХХ	XXX	xxx	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 003

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: End of Interim Period 1 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	quirements
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	ххх	XXX	xxx	XXX	Report	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Grab
Total Suspended Solids	xxx	XXX	xxx	XXX	Report	xxx	1/year	Grab
Oil and Grease	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	xxx	XXX	Report	XXX	1/year	Grab
Iron, Dissolved	ххх	XXX	XXX	XXX	Report	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 003

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 101, Effective Period: Permit Effective Date through End of Interim Period 1.

	Effluent Limitations							Monitoring Requirements	
Baramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required			
Falanetei	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (GPD)	Report	XXX	xxx	xxx	XXX	XXX	1/discharge	Metered	
			6.0						
_pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/discharge	Grab	
					Report			24-Hr	
Copper, Total	XXX	XXX	XXX	Report	Daily Max	XXX	1/discharge	Composite	
					Report			24-Hr	
Zinc, Total	XXX	XXX	XXX	Report	Daily Max	XXX	1/discharge	Composite	

Compliance Sampling Location: At IMP 101

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 103, Effective Period: Permit Effective Date through End of Interim Period 1.

			Effluent L	imitations			Monitoring Requirements	
Baramotor	Mass Units (lbs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falanleter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
			6.0				Daily when	
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	Discharging	Grab
							Daily when	
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.3	Discharging	Grab
							Daily when	
Temperature (deg F) (°F)	XXX	XXX	XXX	XXX	XXX	110	Discharging	I-S

Compliance Sampling Location: At IMP 103

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 201, Effective Period: Permit Effective Date through End of Interim Period 1.

			Effluent L	imitations.			Monitoring Re	quirements
Paramotor	Mass Units (lbs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (GPD)	Report	xxx	xxx	xxx	XXX	ххх	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.3	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	8.0	13.0	XXX	25	40	50	2/month	24-Hr Composite
Total Suspended Solids	10.0	15.0	XXX	30	45	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	6.7	XXX	XXX	20.0	XXX	40	2/month	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	3.3	xxx	XXX	10.0	XXX	20	2/month	24-Hr Composite

Compliance Sampling Location: At IMP 201

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 201, Effective Period: End of Interim Period 1 through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Baramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Falameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (GPD)	Report	XXX	XXX	xxx	XXX	xxx	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.3	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	1.04	1.668	XXX	25.0	40.0	50	2/month	24-Hr Composite
Total Suspended Solids	1.251	1.88	XXX	30.0	45.0	60	2/month	24-Hr Composite
Fecal Coliform (No./100 ml)	XXX	xxx	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ammonia-Nitrogen Nov 1 - Apr 30	0.834	XXX	XXX	20.0	XXX	40	2/month	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	0.417	XXX	xxx	10.0	XXX	20	2/month	24-Hr Composite

Compliance Sampling Location: At IMP 201

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 301, Effective Period: Permit Effective Date through End of Interim Period 1.

			Effluent L	imitations			Monitoring Red	quirements
Baramotor	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average	Average		Average		Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/week	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.3	1/week	Grab
Temperature (deg F) (°F)	XXX	XXX	XXX	XXX	XXX	110	1/week	I-S

Compliance Sampling Location: At IMP 301

	Tools and References Used to Develop Permit
\square	WOM for Windows Model (see Attachment
	TBC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment
	Water Quality Toxics Management Strategy 361-0100-003 4/06
	Technical Guidance for the Development and Specification of Effluent Limitations 362-0400-001 10/97
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000- 002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids Nitrite-Nitrate Non-Priority Pollutant Phenolics and Eluorides 391-2000-019, 10/97
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

Palm

StreamStats

Page 2 of 4

PA0011070 at Outfall 001

Region ID: PA Workspace ID: PA20201117211942786000 Clicked Point (Latitude, Longitude): 40.41722, -75.52403 Time: 2020-11-17 16:19:59 -0500

Basin Characteri	stics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	35.2	square mil <mark>e</mark> s
BSLOPD	Mean basin slope measured in degrees	5.3524	degrees
ROCKDEP	Depth to rock	4.9	feet
URBAN	Percentage of basin with urban development	2.028	percent

Baliy

https://streamstats.usgs.gov/ss/

11/17/2020

StreamStats

Page 3 of 4

Low-Flow Statistics Parameters(100 Percent (35.1 square miles) Low Flow Region 1]											
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit						
DRNAREA	Drainage Area	35.2	square miles	4.78	1150						
BSLOPD	Mean Basin Slope degrees	5.3524	degrees	1.7	6.4						
ROCKDEP	Depth to Rock	4.9	feet	4.13	5.21						
URBAN	Percent Urban	2.028	percent	0	89						

Low-Flow Statistics Flow Report[100 Percent (35.1 square miles) Low Flow Region 1]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	9.99	ft^3/s	46	46
30 Day 2 Year Low Flow	12.2	ft^3/s	38	38
7 Day 10 Year Low Flow	5.36	ft^3/s	51	51
30 Day 10 Year Low Flow	6.59	ft^3/s	46	46
90 Day 10 Year Low Flow	9.13	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

https://streamstats.usgs.gov/ss/

11/17/2020

TRC_CALC

TRC EVALUA	ATION								
Input appropria	ite values in <i>i</i>	A3:A9 and D3:D9							
6.93	= Q stream (cfs)	0.5	= CV Daily					
0.005	= Q discharg	je (MGD)	0.5	= CV Hourly					
30	= no. sample	18	1	= AFC_Partial M	lix Factor				
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor					
0	= Chlorine D	emand of Discharge	15	5 = AFC_Criteria Compliance Time (min)					
0.5	= BAT/BPJ V	alue	720	0 = CFC_Criteria Compliance Time (min)					
0	= % Factor o	of Safety (FOS)		=Decay Coefficient (K)					
Source	Reference	AFC Calculations		Reference	CFC Calculations				
TRC	1.3.2.iii	WLA afc =	285.820	1.3.2.iii	WLA cfc = 278.644				
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581				
PENTOXSD TRG	5.1b	LTA_afc=	106.503	5.1d	LTA_cfc = 161.991				
DENTOYSD TPG	5 1f	Ende		4 224					
PENTOXSD TRG	5.10	AVG MON	IMIT (mo/l) =	0.500	BAT/BB.I				
FENTOASD TKG	5.1g	INST MAX	LIMIT (mg/l) =	1.635	BATIBLY				
			(g.,)						
WLA afc	(.019/e(-k*A	FC_tc)) + [(AFC_Yc*Qs*.019	/Qd*e(-k*AFC	(_tc))					
	+ Xd + (AF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)						
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)						
LTA_afc	wla_afc*LTA	MULT_afc							
WIA of	(011/e(_k*C)	EC. to) + [(CEC. Vo*Os* 011)	Od*e(-k*CEC	tc))					
	+ Xd + (CF)	C Yc*Qs*Xs/Qd)]*(1-FOS/10	0)						
LTAMULT cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	℃) 6*LN(cvd^2/n	o samples+1)^(0.5)				
LTA cfc	wla cfc*LTA	MULT cfc	,		,				
-	-	-							
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	^2/no_samples+	1))				
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AM	IL_MULT)						
INST MAX LIMIT	1.5*((av_mo	n_limit/AML_MULT)/LTAMUL	.T_afc)						

Input Data WQM 7.0

SWF Basi	n Coo	im le	Stre	am Name		RMI	Ele	vation (ft)	Draina(Area (sq m	ge i i)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
03E	10	017 PERK	IOMEN C	REEK		27.97	70	316.50	38	5.20	0.00000	0.0	0 🗹
				S	tream Da	ta							
LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> p	у pH	Tem	<u>Stream</u> p pH	
(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))	
0.970	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00	7.0	0 (0.00 0.0	0
	SWF Basin 03E LFY (cfsm) 0.970	SWP Basin Streat Cod 03E 10 LFY Trib Flow (cfsm) (cfs) 0.970 0.00 0.00 0.00	SWP Basin Stream Code 03E 1017 PERK LFY Trib Flow Stream Flow (cfsm) (cfs) (cfs) 0.970 0.00 0.00 0.00 0.00 0.00	SWP Basin Stream Code Stream Stream 03E 1017 PERKIOMEN C LFY Trib Flow Flow (cfs) Rch Trav Time (cfsm) (cfsm) (cfs) 0.00 0.000 0.970 0.00 0.00 0.000 0.00 0.00 0.000 0.000	SWP Basin Stream Code Stream Name 03E 1017 PERKIOMEN CREEK 03E 1017 PERKIOMEN CREEK LFY Trib Flow Stream Flow Rch Trav (cfs) Rch (cfs) Rch (days) Rch (dys) 0.970 0.00 0.00 0.000 0.000 0.00 0.00 0.000 0.000 0.00 0.000 0.000 0.000	SWP Basin Stream Code Stream Name 03E 1017 PERKIOMEN CREEK 03E 1017 PERKIOMEN CREEK LFY Trib Flow Stream Flow Rch Trav Time (cfs) Rch Velocity WD Ratio 0.970 0.00 0.00 0.000 0.000 0.00 0.970 0.00 0.000 0.000 0.000 0.000 0.970 0.00 0.000 0.000 0.000 0.000	SWP Basin Stream Code Stream Name RMI 03E 1017 PERKIOMEN CREEK 27.97 03E 1017 PERKIOMEN CREEK 27.97 Stream Data LFY Trib Flow Stream Flow Rch Trav Time (days) WD Velocity Rch Width 0.970 0.00 0.00 0.000 0.000 0.00 0.970 0.00 0.00 0.000 0.000 0.00 0.970 0.00 0.00 0.000 0.000 0.000 0.00	SWP Basin Stream Code Stream Name RMI Ele 03E 1017 PERKIOMEN CREEK 27.970 Stream Data LFY Trib Flow Stream Flow Rch Trav Trav Trav Rch Velocity WD Ratio Rch Width Depth Depth (cfsm) (cfs) (cfs) (days) (fps) (ft) (ft) 0.970 0.00 0.00 0.000 0.000 0.00 0.00 0.00 0.00 0.000 0.000 0.000 0.00 0.00	SWP Basin Stream Code Stream Name RMI Elevation 03E 1017 PERKIOMEN CREEK 27.970 316.50 03E 1017 PERKIOMEN CREEK 27.970 316.50 Stream Data LFY Trib Flow Stream Flow Rch Trav Time (days) Rch Velocity MD Ratio Rch Width Depth Tem Tem (ft) Tem (cfc) 0.970 0.00 0.000 0.000 0.000 0.00 0.00 0.00 2.00 0.970 0.00 0.000 0.000 0.000 0.000 0.00 2.00	SWP Basin Stream Code Stream Name RMI Elevation (ft) Draina Area (sq m) 03E 1017 PERKIOMEN CREEK 27.970 316.50 33 03E 1017 PERKIOMEN CREEK 27.970 316.50 33 Stream Data LFY Trib Flow Stream Flow Rch Trav Time (days) WD (fps) Rch Width Depth Depth Tributath Temp 0.970 0.00 0.00 0.000 0.000 0.00 0.00 20.00 0.970 0.00 0.000 0.000 0.000 0.000 0.00 20.00	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (sq mi) 03E 1017 PERKIOMEN CREEK 27.970 316.50 35.20 Stream Data LFY Trib Flow Stream Flow Rch Trav (cfs) Rch Velocity WD Ratio Rch Width Rch Depth Tributary Temp PH PH 0.970 0.00 0.000 0.000 0.000 0.000 0.00<	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (sq mi) Slope Area (sq mi) 03E 1017 PERKIOMEN CREEK 27.970 316.50 35.20 0.00000 Stream Data LFY Trib Flow Stream Flow Rch Trav Trav (cfs) Rch Velocity WD Ratio Rch Width Rch Depth Tributary Temp Temp Temp (cfs) (cfs) (cfs) (days) (fps) (ft) (ft) (°C) (°C) 0.970 0.00 0.000 0.000 0.00<	SWP Basin Stream Code Stream Name RMI Elevation (ft) Drainage Area (ft) Slope Area (ft) PWS Withdrawal (ft) 03E 1017 PERKIOMEN CREEK 27.970 316.50 35.20 0.0000 0.00 03E 1017 PERKIOMEN CREEK 27.970 316.50 35.20 0.0000 0.00 LFY Trib Flow Stream Flow Rch Trav (days) Rch (fps) WD Ratio Rch Width Depth Depth Tributary Temp Stream PH Stream Temp No 0.970 0.00 0.000 0.000 0.00 <

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Knoll E. Grnvl	PA0011070	0.0050	0.0050	0.0050	0.000	24.00	6.42
	Par	rameter Da	ita				
P.	remoter Name	Disc	: Trib ic Con	o Stre ic Co	sam Fa onc Co	ite oef	
Fe	rameter Name	(mg/	L) (mg/	L) (m	g/L) (1/d	ays)	
CBOD5		25	.00 2	2.00	0.00	1.50	
Dissolved O	xygen	5	i.00 8	3.24	0.00	0.00	
NH3-N		10	.00 0	0.00	0.00	0.70	

Wednesday, December 30, 20

Version 1.0b

Input Data WQM 7.0

	SWF Basi	o Strea n Coo	im le	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03E	10	017 PERK	IOMEN C	REEK		27.8	20	313.30	36.30	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> ıp pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.197	0.00	0.00	0.000	0.000	0.0	0.00	0.0	00 2	0.00 7.	00 2	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
							Dete						

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserv Factor	e Te	isc mp 'C)	Disc pH
E Gmvl WFP	PA0050644	0.1000	0.1000	0.1000	0.00	00	20.00	7.60
	Par	ameter D	ata					
		Dis Co	c Trit nc Cor	o Stre no Co	eam F	Fate Coef		
Pa	rameter Name	(mg	/L) (mg	/L) (m	g/L) (1/	/days)		
CBOD5		2	5.00 2	2.00	0.00	1.50		
Dissolved O	xygen		3.00 8	3.24	0.00	0.00		
NH3-N		2	5.00 0	0.00	0.00	0.70		

Version 1.0b

Input Data WQM 7.0

	SWP Basir	9 Strea n Coo	am de	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03E	10	017 PERK	IOMEN C	REEK		25.14	10	285.10	40.40	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.197	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 20	0.00 7.	00 20	0.00 0.00	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Design Disc Flow (mgd)	Res Fa	erve ctor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.00	00	0.000	0.00	7.00
	Par	rameter D	ata					
_		Dis Co	c Tri nc Co	ib St nc (ream Conc	Fate Coef		
Pa	rameter Name	(mg	/L) (mg	p/L) (r	ng/L)	(1/days))	
CBOD5		2	5.00	2.00	0.00	1.5	D	
Dissolved O	xygen	:	3.00	8.24	0.00	0.0	0	
NH3-N		2	5.00	0.00	0.00	0.7	0	

Version 1.0b

Page 3 of 3

		W	W 7.V	nyu	ouyn	annu	Out	วนเอ			
SW	/P Basin	Strea	m Code				Stream	Name			
	03E	1	017			PEF	RKIOME	N CREEK	C C		
Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
) Flow											
34.14	0.00	34.14	.0077	0.00404	.826	60.72	73.52	0.68	0.013	20.00	7.00
34.36	0.00	34.38	.1624	0.00199	.834	64.46	77.26	0.64	0.255	20.00	7.00
) Flow											
32.44	0.00	32.44	.0077	0.00404	NA	NA	NA	0.66	0.014	20.00	7.00
32.64	0.00	32.64	.1624	0.00199	NA	NA	NA	0.62	0.263	20.00	7.00
10 Flov	v										
43.70	0.00	43.70	.0077	0.00404	NA	NA	NA	0.78	0.012	20.00	7.00
43.98	0.00	43.98	.1624	0.00199	NA	NA	NA	0.74	0.222	20.00	7.00
	<u>Stream</u> Flow (cfs)) Flow 34.14 34.36) Flow 32.44 32.64 10 Flov 43.70 43.98	SWP Basin 03E Stream PWS Flow With (cfs) (cfs) 0 Flow 34.14 0.00 34.36 0.00 0 0 Flow 32.44 0.00 32.64 0.00 10 Flow 43.70 0.00 43.98	SWP Basin Stream 03E 1 Stream PWS Flow With (cfs) (cfs) 0 Flow 34.14 34.36 0.00 32.44 0.00 32.44 0.00 32.64 0.00 32.64 0.00 32.64 0.00 32.64 0.00 32.64 0.00 32.64 0.00 32.64 0.00 32.64 0.00 32.64 0.00	SWP Basin Stream Code 03E 1017 Stream PWS Flow Net With Disc Stream Cfs) (cfs) (cfs) 0 Flow 34.14 0.00 34.36 0.00 34.36 0 Flow 32.44 0.00 32.64 0.00 32.64 10 Flow 32.64 .1624 0 Flow 32.64 .0077 32.84 0.00 32.64 .1624 10 Flow 32.64 .1624 10 Flow 43.70 0.0077 43.98 0.00 43.98 .1624	Weight 7.0 Hydri SWP Basin Stream Code 03E 1017 Stream PWS Flow Net Flow Disc Flow Reach Flow 0 Flow (cfs) (cfs) (cfs) (ft/ft) 0 Flow 34.14 .0077 0.00404 34.36 0.00 34.36 .1624 0.00199 0 Flow 32.64 .000 32.64 .1624 0.00199 10 Flow 32.64 0.00 32.64 .1624 0.00199 10 Flow 43.70 0.000 43.70 .0077 0.00404	SWP Basin Stream Code 03E 1017 Stream PWS Flow Net With Disc Stream Reach Analysis Depth (cfs) (cfs) (cfs) (cfs) (ft) (ft) 0 Flow 34.14 0.00 34.14 .0077 0.00404 .826 34.36 0.00 34.36 .1624 0.00199 .834 0 Flow 32.44 0.00 32.64 .1624 0.00199 NA 10 Flow 32.64 0.00 32.64 .1624 0.00199 NA 10 Flow 43.70 0.00 43.70 .0077 0.00404 NA 43.98 0.00 43.98 .1624 0.00199 NA	SWP Basin Stream Code 03E 1017 PEF Stream PWS Flow Net With Disc Stream Reach Flow Depth Width Stream Analysis Slope Flow fth (ft) (ft)	SWP Basin Stream Code Stream 03E 1017 PERKIOME Stream PWS Flow Net With Disc Stream Reach Analysis Depth Width W/D Ratio Stream PWS Flow Net Stream Analysis Slope Flow Depth Width W/D Ratio 0 Flow (cfs) (cfs) (ft)th) (ft) (ft) 0 Flow 34.14 .0077 0.00404 .826 60.72 73.52 34.36 0.00 34.38 .1624 0.00199 .834 64.46 77.26 0 Flow 32.64 .000 32.64 .1624 0.00199 NA NA 10 Flow 43.70 .0077 0.00404 NA NA NA 43.98 0.00 43.70 .0077 0.00404 NA NA NA	SWP Basin Stream Code Stream Name 03E 1017 PERKIOMEN CREEK Stream PWS Flow Net With Disc Stream Reach Analysis Depth Width W/D Ratio Velocity (cfs) (cfs) (cfs) (cfs) (ft) (ft) (ft) 0 Flow 34.14 .0077 0.00404 .826 60.72 73.52 0.68 34.36 0.00 34.36 .1624 0.00199 .834 64.46 77.26 0.64 0 Flow 32.64 .000 32.64 .1624 0.00199 NA NA NA 0.62 10 Flow 32.64 .000 32.64 .1624 0.00199 NA NA NA 0.62 10 Flow 43.70 0.00 43.70 .0077 0.00404 NA NA NA 0.78 43.98 0.00 43.98 .1624 0.00199 NA NA NA 0.74	SWP Basin Stream Code Stream Name 03E 1017 PERKIOMEN CREEK Stream PWS Flow Net Flow Disc Flow Reach Flow Depth (cfs) Width (cfs) W/D (ffs) Velocity Reach Flow Reach Trav Time 0 Flow 34.14 .0077 0.00404 .826 60.72 73.52 0.68 0.013 34.36 0.00 34.36 .1624 0.00199 .834 64.46 77.26 0.64 0.255 0 Flow 32.44 .0077 0.00404 NA NA NA 0.62 0.263 10 Flow 32.64 .1624 0.00199 NA NA NA 0.62 0.263 10 Flow 43.70 0.00 43.70 .0077 0.00404 NA NA NA 0.74 0.222	WY Carry 1.0 Try Chody Hamme Coddynamic Coddynarc Coddynamic Coddynamic Coddynamic Coddynamic Cod

WQM 7.0 Hydrodynamic Outputs

Wednesday, December 30, 2020

Version 1.0b

NPDES Permit Fact Sheet Knoll Inc.

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.95	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.28	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Wednesday, December 30, 2020

Version 1.0b

		115(117		ciodu /	nocatio					
	SWP Basin	Stream Code		St	ream Name					
	03E	03E 1017		PERKIOMEN CREEK						
NH3-N	Acute Alloca	tions								
RMI	Discharge N	Baseline lame Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction			
27.9	70 Knoll E. Gmvl	9.67	20	9.67	20	0	0			
27.8	20 E Grnvl WFP	9.66	50	9.66	50	0	0			
NH3-N	Chronic Allo	cations								
RMI	Discharge Na	Baseline me Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction			
27.9	70 Knoll E. Gmvl	1.92	10	1.92	10	0	0			
	20 E Growt WEP	1.02	25	1 02	25	0	0			

Dissolved Oxygen Allocations

		CBOD5		NH	<u>3-N</u>	Dissolve	d Oxygen	Californi	Dement	
RMI	RMI Discharge Name		Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
27.97 Kr	noll E. Grnvl	25	25	10	10	5	5	0	0	
27.82 E	Gmvl WFP	25	25	25	25	3	3	0	0	

Version 1.0b

	ream Code			Stream Name	
03E	1017		PE	RKIOMEN CREEK	
RMI	Total Discharge	Flow (mgd) Anal	lysis Temperature (°C)	Analysis pH
27.970	0.00	5		20.001	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
60.717	0.82	6		73.522	0.681
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
2.01	0.00	4		0.00	0.700
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L
8.242	12.8	57		Tsivoglou	5
each Travel Time (days)	TravTime	Subreach	Results	0.0	
0.013	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.001	2.01	0.00	0.04	
	0.001	2.01	0.00	8.24	
	0.003	2.01	0.00	0.24	
	0.004	2.01	0.00	0.24	
	0.005	2.01	0.00	8.24	
	0.007	2.01	0.00	8.24	
	0.008	2.01	0.00	8.24	
	900.0	2.01	0.00	8.24	
	0.011	2.01	0.00	8.24	
	0.012	2.01	0.00	8.24	
	0.013	2.01	0.00	0.24	
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	lysis Temperature (°C)	Analysis pH
27.820	0.10	5		20.001	7.001
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
64.464	0.83	4		77.258	0.642
Reach CBOD5 (mg/L)	Reach Kc	(<u>1/days)</u>	R	each NH3-N (mg/L)	Reach Kn (1/days)
2.11	0.07 Reach Kr.	U (down)		0.11 Kr Equation	0./00 Reach DO Goal (mail)
Reach DO (mg/L)	Reading	7		Trivoriou	Reach DO Goar (mg/L)
8.219	5.96	1		rsivogiou	0
8.219 each Travel Time (days)	5.90	' Subreach	Results	rswogou	5
8.219 each Travel Time (days) 0.255	5.90 TravTime	Subreach CBOD5	Results NH3-N	D.O.	5
8.219 each Travel Time (days) 0.255	5.96 TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	5
8.219 <u>each Travel Time (days)</u> 0.255	5.90 TravTime (days) 0.028	Subreach CBOD5 (mg/L) 2.10	Results NH3-N (mg/L) 0.11	D.O. (mg/L) 8.24	Ð
8.219 each Travel Time (days) 0.255	5.96 TravTime (days) 0.026 0.051	Subreach CBOD5 (mg/L) 2.10 2.10	Results NH3-N (mg/L) 0.11 0.11	D.O. (mg/L) 8.24 8.24	Ð
8.219 each Travel Time (days) 0.255	5.96 TravTime (days) 0.026 0.051 0.077	Subreach CBOD5 (mg/L) 2.10 2.10 2.10 2.10	Results NH3-N (mg/L) 0.11 0.11 0.11	D.O. (mg/L) 8.24 8.24 8.24	Ð
8.219 each Travel Time (days) 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102	Subreach CBOD5 (mg/L) 2.10 2.10 2.10 2.10 2.09	Results NH3-N (mg/L) 0.11 0.11 0.11 0.11	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24	Ð
8.219 <u>each Travel Time (days)</u> 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128	Subreach CBOD5 (mg/L) 2.10 2.10 2.10 2.09 2.09	Results NH3-N (mg/L) 0.11 0.11 0.11 0.11 0.10	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24	Ð
8.219 <u>each Travel Time (days)</u> 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153	Subreach CBOD5 (mg/L) 2.10 2.10 2.10 2.09 2.09 2.09	0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	Ð
8.219 each Travel Time (days) 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179	Subreach CBOD5 (mg/L) 2.10 2.10 2.09 2.09 2.09 2.09 2.09 2.08	0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	Ð
8.219 each Travel Time (days) 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179 0.204	Subreach CBOD5 (mg/L) 2.10 2.10 2.10 2.09 2.09 2.09 2.09 2.09 2.08 2.08	Results NH3-N (mg/L) 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.1	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	Ð
8.219 <u>leach Travel Time (days)</u> 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179 0.204 0.230	Subreach CBOD5 (mg/L) 2.10 2.10 2.10 2.09 2.09 2.09 2.09 2.08 2.08 2.08 2.08	Results NH3-N (mg/L) 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.1	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	Ð
8.219 <u>leach Travel Time (days)</u> 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179 0.204 0.230 0.255	Subreach CBOD5 (mg/L) 2.10 2.10 2.10 2.09 2.09 2.09 2.09 2.08 2.08 2.08 2.07 2.07	Results NH3-N (mg/L) 0.11 0.11 0.11 0.11 0.10 0.10 0.10 0.1	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	Ð
8.219 each Travel Time (days) 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179 0.204 0.230 0.255	Subreach CBOD5 (mg/L) 2.10 2.10 2.09 2.09 2.09 2.09 2.09 2.08 2.08 2.07 2.07	Results NH3-N (mg/L) 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.1	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	5
8.219 each Travel Time (days) 0.255	5.86 TravTime (days) 0.026 0.051 0.077 0.102 0.128 0.153 0.179 0.204 0.230 0.255	Subreach CBOD5 (mg/L) 2.10 2.10 2.09 2.09 2.09 2.09 2.09 2.08 2.08 2.07 2.07	Results NH3-N (mg/L) 0.11 0.11 0.11 0.10 0.10 0.10 0.10 0.1	D.O. (mg/L) 8.24 8.24 8.24 8.24 8.24 8.24 8.24 8.24	Ð

WQM 7.0 D.O.Simulation

	<u>SWP Basin</u> 03E	Stream Code 1017		Stream Name PERKIOMEN CR	EEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
27.970	Knoll E. Gmv	PA0011070	0.005	CBOD5	25		
				NH3-N	10	20	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
27.820	E Gmvl WFP	PA0050644	0.100	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

WOM 7.0 Effluent Limits

Wednesday, December 30, 2020

Version 1.0b

Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Barium	0	0	0	N/A	N/A	N/A	
Total Boron	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	1.2	1.2	6,264	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass Limits		Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	198,685	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	2,153,991	µg/L	Discharge Conc ≤ 10% WQBEL
Total Boron	1,435,994	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	3,712	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	269,249	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	1,346,245	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	897,496	µg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	46,836	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	1,004	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

12/30/2020

Page 7

Total Maximum Daily Load of Nutrients for Green Lane Reservoir

Point Source	nt Source NPDES permit no.		Total Phosphorus concentration (mg/l)	WLA (lbs/day)	WLA (lbs/month)
	Main B	ranch Perki	omen Subwatershed	ł	
Brown Printing	PA0051802	0.0116	0.5	0.048	1.45
East Greenville Filtration	PA0050644	0	0	0	0
Hereford Mobile Home Park	PA0041505	0.125	0.5	0.52	15.63
Knoll, Inc.	PA0011070	0.0279	0.5	0.116	3.49
Mountain Village Mobile Home Park	PA0041491	0.064	0.5	0.27	8
TTT Realty	PA0012891	0.0088	0.5	0.037	1.1
	Main B	ranch Perkiom	en subwatershed total		29.7
	West B	ranch Perki	omen Subwatershed	L	
Bally Borough	PA0055123	0.5	0.5	2.08	62.55
Strawberry Family Restaurant	PA0053376	0.0015	0.5	0.006	0.19
Washington Township.	PA0086142	0.25	0.5	1.04	31.27
Woodland Mobile Home Park	PA0055352	0.014	0.5	0.059	1.75
	West	Branch Perkion	nen subwatershed total		95.8
	Dir	ect Drainag	e Subwatershed		
Green Hills Mobile Home Park	PA0031887	0.03	0.5	0.13	3.75
Upper Perkiomen School District	PA0050911	0.004	0.5	0.017	0.5
	age subwatershed total		4.25		
	Direct	Drainage (Ui	rban) Subwatershed	1	
Edmund Optics	PA0053864	0	0	0	0
Upper Montgomery Joint Authority	PA0020532	2	0.5	8.34	250.2
	L)irect Drainage	(urban) subwatershed		250.2

Table 4-5 Individual Wasteload allo	cations of total phosphory	o for Croon I and Decervoir
1 able 4=3. Inuividual wasteload and	cations of total phosphoru	s for Green Lane Reservoir

March 2003