

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.PA0012211APS ID34603Authorization ID1330659

Applicant and Facility Information

Applicant Name	Boyertown Foundry Company	Facility Name	Boyertown Foundry Company	
Applicant Address	PO Box 443 9th & Rothermel Drive	Facility Address	9th & Rothermel Drive	
	New Berlinville, PA 19545-0443	_	New Berlinville, PA 19545	
Applicant Contact	Mark Reinsmith	Facility Contact	Mark Reinsmith	
Applicant Phone	(610) 473-1000	Facility Phone	(215) 473-1000	
Client ID	121910	Site ID	238992	
SIC Code	3321	Municipality	Boyertown Borough	
SIC Description	Manufacturing - Gray And Ductile Iron Foundries	County	Berks	
Date Application Red	ceived October 14, 2020	EPA Waived?	Yes	
Date Application Acc	March 23, 2021	If No, Reason		
Purpose of Applicati	on NPDES Renewal.			

Summary of Review

Boyertown Foundry Company (BFC) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on April 20, 2016 and became effective on May 1, 2016. The permit expired on April 30, 2021.

Based on the review, it is recommended that the permit be drafted.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Ppc plan; process wastewater/sanitary wastewater, well water (no city water), plant operations.

Approve	Deny	Signatures	Date
х		Jinsa Kim	
		Jinsu Kim / Environmental Engineering Specialist	November 28, 2021
x		Maria D. Bebenek for Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	November 30, 2021
x		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	November 30, 2021

	Discharge, Receiving Waters and Water Supply Information										
Outfall No. 001 Latitude 40° 2 Quad Name Bo	0' 17" yertowr	<u> </u>	Design Flow (MGD) Longitude Quad Code	0.048 75° 38' 01" 1640							
Wastewater Descrip	otion:	Non-contact cooling wate	r & Stormwater								
Receiving Waters NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status Cause(s) of Impairm Source(s) of Impairm	Unna Swan 2596 0.33 s 0.091 370 3-E - - - -	med Tributary (UNT) to np Creek 4946 sq. miles 2 	Stream Code RMI Yield (cfs/mi ²) Q7-10 Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier Exceptions to Criteria and recreational use n and Pathogens ers Name	01337 (Net Stream 54438) 1.5 0.3 USGS StreamStats TSF, MF							
Background/Ambier pH (SU) Temperature (°F) Hardness (mg/L) Other: Nearest Downstread PWS Waters <u>F</u> PWS RMI <u>/</u>	nt Data m Publ Perkiom Approx.	ic Water Supply Intake nen Creek 1.0	Data Source <u>Aqua PA at Lower Merion, Mo</u> Flow at Intake (cfs) Distance from Outfall (mi)	ontgomery County > 25 miles							

Drainage Area

The discharge is to an unnamed tributary to Swamp Creek at RM 1.5. A drainage area upstream of the discharge point is estimated to be 0.33 sq.mi. according to USGS StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Streamflow

StreamStats produced a Q7-10 flow of 0.0912 cfs at the point of discharge.

Unnamed Tributary to Swamp Creek

Under 25 Pa Code §93.9e, the entire basin of Swamp Creek has a designated protected water use of trout stocking and migratory fishes. No special protection water is impacted by this discharge. According to the latest DEP's integrated water quality report finalized in 2020, the receiving stream is impaired for siltation as a result of urban runoff and storm sewers. No TMDL has been developed to address this impairment.

Public Water Supply Intake

The fact sheet developed for the last permit renewal indicates that the nearest downstream public water supply intake is Aqua PA, located on the Perkiomen Creek more than 25 miles from the discharge. Given the distance, the discharge is not expected to impact the water supply.

Facility Description

BFC located at 9th and Rothermel Drive, New Berlinville, PA 19545 is a gray iron casting manufacturer (SIC code 3321). Scrap iron is melted in a furnace and poured into molds made of sand and resin. The castings are cleaned by shaking and shot blasting, not by rinsing with water. The site includes a foundry, machine shop, material storage, office, warehouse, and parking lots.

No process wastewater is generated during industrial operations and sanitary wastewater is sent to the local municipal treatment plant. The only wastewater discharged is from non-contact cooling water from an air compressor. This noncontact cooling water, according to the fact sheet developed for the last permit renewal, is used to cool the furnace located in the cupola. It is evaporated or re-circulated through heat exchangers and the compressor. The fact sheet also stated the following:

According to site water records, and verified by site staff, source water is separately conveyed to both the compressor and to the water tower. Some of the compressor discharge is sent to the water tower as make-up water and some is discharged to internal monitoring point (IMP) 101. Per both the application and Mr. Reinsmith, Manufacturing Services Director, during the December 16 site visit, the discharge at IMP 101 is from the compressor and not directly from the cooling tower; the noncontact cooling water system is continuous but the discharge is intermittent; and there is no blowdown, flushing of the system to remove scale, or chemical additives used. Wastewater from the Venturi wet scrubber, used to treat the melting furnace exhaust gas, is held in a pit, recycled for re-use in the wet scrubber, then hauled off-site for disposal. Slag piles are surrounded by impermeable barriers to prevent stormwater contact and runoff. The slag piles are reportedly covered by their waste permit.

An on-site well is used to supply water used throughout the plant. According to the letter submitted by BFC, BFC was permitted to use water from the municipal water authority (city water) as an emergency backup. City water has not been used for a while and continue to not require to be used for non-contact cooling water according to BFC. This groundwater withdrawal is approved by Delaware River Basin Commission (DRBC) with the average and maximum demand of 0.043 MGD and 0.057 MGD, respectively.

No chemical additives are currently used by Boyertown according to the application.

The facility also utilizes outfalls receiving stormwater drained throughout the site.

	Compliance History								
Summary of DMRs:	A summary of past 12-month DMR data is presented on the next page.								
Summary of Inspections:	10/6/2020: Tracy Tomtishen, DEP Water Quality Specialist, conducted an administrative inspection to discuss cause of recent effluent violations for copper. BFC conducted a pluming evaluation and did not find any copper piping. BFC is waiting for further sampling results.								
Other Comments:	A notice of violation (NOV) letter was sent on January 7, 2021 for a number of effluent violations for Total Copper and Total Lead occurred from November 2016 through August 2020. DEP's database revealed there is no open violation associated with this permittee of facility.								

Effluent Data

DMR Data for Outfall 001 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
pH (S.U.)												
Daily Maximum	7.65			7.78			7.84			7.72		
TSS (mg/L)												
Daily Maximum	7.8			< 3.30			< 3.00			39		
Oil and Grease (mg/L)												
Daily Maximum	< 5.0			< 5.2			< 5.0			< 5.1		
Total Aluminum												
(mg/L)												
Daily Maximum	1.0			< 0.30			< 0.30			< 0.30		
Total Cadmium (mg/L)												
Daily Maximum	< 0.0050			< 0.0050			< 0.0050			< 0.0050		
Hexavalent Chromium												
(mg/L)												
Daily Maximum	< 0.010			< 0.0050			< 0.010			< 0.010		
Total Copper (mg/L)												
Daily Maximum	< 0.020			< 0.020			< 0.020			< 0.020		
Total Iron (mg/L)												
Daily Maximum	0.88			< 0.20			< 0.20			1.3		
Total Lead (mg/L)												
Daily Maximum	< 0.015			< 0.015			< 0.015			< 0.015		
Total Zinc (mg/L)												
Daily Maximum	0.059			0.027			< 0.020			0.0514		

DMR Data for Outfall 002 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
pH (S.U.)												
Daily Maximum	7.72			7.62			7.62			7.81		
TSS (mg/L)												
Daily Maximum	13.0			< 3.30			14			< 3.5		
Oil and Grease (mg/L)												
Daily Maximum	< 5.1			< 5.2			< 5.1			< 5.2		
Total Aluminum												
(mg/L)												
Daily Maximum	1.6			< 0.30			< 0.30			< 0.30		
Total Cadmium (mg/L)												
Daily Maximum	< 0.0050			< 0.0050			< 0.0050			< 0.0050		

NPDES Permit No. PA0012211

Hexavalent Chromium							
(mg/L)							
Daily Maximum	< 0.010	< 0.0050		< 0.010		< 0.010	
Total Copper (mg/L)							
Daily Maximum	< 0.020	< 0.020		0.039		< 0.020	
Total Iron (mg/L)							
Daily Maximum	1.3	< 0.20		0.72		< 0.20	
Total Lead (mg/L)							
Daily Maximum	< 0.015	< 0.015		< 0.015		< 0.015	
Total Zinc (mg/L)							
Daily Maximum	0.070	0.020		0.13		0.035	

DMR Data for Outfall 101 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)												
Average Monthly	0.022	0.023	0.021	0.024	0.026	0.020	0.018	0.014	0.014	0.020	0.032	0.028
Flow (MGD)												
Daily Maximum	0.030	0.027	0.028	0.030	0.035	0.029	0.027	0.029	0.031	0.037	0.043	0.055
pH (S.U.)												
Minimum	7.55	7.49	7.60	7.49	7.49	7.69	7.59	7.59	7.49	7.46	7.52	7.31
pH (S.U.)												
Maximum	7.74	7.76	7.75	7.75	7.90	8.14	7.91	7.96	7.81	7.79	7.82	7.83
TRC (mg/L)												
Average Monthly	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2	< 0.24	< 0.24
TRC (mg/L)												
Instantaneous												
Maximum	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2	0.5	0.5
TSS (lbs/day)												
Average Monthly	< 0.7156	< 0.6539	< 0.6605	< 0.7473	< 0.7006	< 0.3378	< 0.3336	< 0.5630	< 0.3720	< 0.7088	< 0.7073	< 1.0213
TSS (lbs/day)												
Daily Maximum	< 0.7431	< 0.6672	< 0.6881	< 0.9341	< 0.8757	< 0.3503	< 0.4270	< 0.6505	0.5604	< 0.9907	0.7674	< 1.2016
TSS (mg/L)												
Average Monthly	< 3.30	< 3.20	< 3.30	< 3.20	< 3.00	< 3.00	< 3.20	< 3.00	< 4.35	< 3.3	< 3.55	< 4.5
TSS (mg/L)												
Daily Maximum	< 3.30	< 3.20	< 3.30	< 3.20	< 3.00	< 3.00	< 3.20	< 3.00	5.50	< 3.3	3.80	< 4.5
Total Copper (lbs/day)												
Average Monthly	0.0007	0.0011	0.0011	0.0009	0.0009	< 0.0003	< 0.0002	< 0.0003	< 0.0002	< 0.0004	0.0003	0.0021
Total Copper (lbs/day)												
Daily Maximum	0.0009	0.0013	0.0015	0.0009	0.0014	0.0004	0.0002	0.0003	< 0.0002	0.0005	0.0004	0.0026
Total Copper (mg/L)												
Average Monthly	0.0034	0.0053	0.0053	0.0039	0.0038	< 0.0024	< 0.0018	< 0.0011	< 0.0010	< 0.0025	0.0016	0.0095
Total Copper (mg/L)												
Daily Maximum	0.0038	0.0062	0.0072	0.0052	0.0048	0.0037	0.0026	0.0012	< 0.0010	0.0039	0.0022	0.010

NPDES Permit No. PA0012211

Total Lead (lbs/day)	<					<	<					
Average Monthly	0.00014	0.00018	0.00020	0.00017	0.00030	0.00009	0.00006	0.0002	< 0.0001	< 0.0002	0.0003	< 0.0001
Total Lead (lbs/day)							<					
Daily Maximum	0.00017	0.00020	0.00025	0.00020	0.00026	0.00013	0.00007	0.0002	0.0001	< 0.0002	0.0004	< 0.0001
Total Lead (mg/L)	<					<	<		<	<		<
Average Monthly	0.00062	0.00087	0.00101	0.00075	0.00140	0.00080	0.00050	0.00078	0.00055	0.00050	0.00126	0.00050
Total Lead (mg/L)							<			<		<
Daily Maximum	0.00074	0.00095	0.00120	0.00082	0.00190	0.00110	0.00050	0.00083	0.00059	0.00050	0.0020	0.00050

Existing Permit Requirements

The tables below summarize effluent limits and monitoring requirements specified in the latest permit renewal.

Internal Monitoring Point 101

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required	
Farameter	Average	Daily		Average	Daily	Instant.	Measurement	Sample	
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Гуре	
Flow (MGD)									
Internal Monitoring Point	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured	
pH (S.U.)									
Internal Monitoring Point	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab	
Total Residual Chlorine (TRC)									
Internal Monitoring Point	XXX	XXX	XXX	0.4	XXX	1.3	1/day	Grab	
Total Suspended Solids								24-Hr	
Internal Monitoring Point	Report	Report	XXX	30	60	70	2/month	Composite	
Copper, Total								24-Hr	
Internal Monitoring Point	0.005	0.01	XXX	0.013	0.026	.033	2/month	Composite	
Lead, Total								24-Hr	
Internal Monitoring Point	0.002	0.003	XXX	0.004	0.008	.01	2/month	Composite	

Outfall 001

				Monitoring Requirements				
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	ххх	xxx	xxx	xxx	Report	xxx	1/quarter	Grab
Total Suspended Solids	XXX	XXX	XXX	xxx	Report	ХХХ	1/quarter	Grab
Oil and Grease	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab
Aluminum, Total	XXX	xxx	xxx	xxx	Report	xxx	1/quarter	Grab
Cadmium, Total	XXX	XXX	xxx	XXX	Report	ххх	1/quarter	Grab
Chromium, Hexavalent	XXX	XXX	xxx	xxx	Report	ххх	1/quarter	Grab
Copper, Total	ххх	XXX	xxx	xxx	Report	xxx	1/quarter	Grab
Iron, Total	ХХХ	XXX	xxx	xxx	Report	XXX	1/quarter	Grab

			Monitoring Requirements					
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Lead, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab

Outfall 002

			Effluent L	imitations			Monitoring Requirements			
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
pH (S.U.)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab		
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab		
Oil and Grease	xxx	XXX	xxx	XXX	Report	XXX	1/quarter	Grab		
Aluminum, Total	xxx	XXX	xxx	xxx	Report	XXX	1/quarter	Grab		
Cadmium, Total	xxx	XXX	xxx	xxx	Report	XXX	1/quarter	Grab		
Chromium, Hexavalent	xxx	XXX	xxx	xxx	Report	XXX	1/quarter	Grab		
Copper, Total	xxx	XXX	xxx	xxx	Report	XXX	1/quarter	Grab		
Iron, Total	xxx	XXX	xxx	xxx	Report	XXX	1/quarter	Grab		
Lead, Total	XXX	XXX	xxx	XXX	Report	XXX	1/quarter	Grab		
Zinc, Total	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Grab		

Development of Permit Requirements

Internal Monitoring Point IMP 101

The facility discharges non-contact cooling water into a surface water of the Commonwealth via Outfall 001. This outfall also receives stormwater drained from the site. Given that non-contact cooling water is mixed with stormwater before discharges, DEP has consistently established an internal monitoring point (Internal Monitoring Point 101; IMP 101) so that non-contact cooling water can be regulated separately. This approach is consistent with 40 CFR §122.45(h).

The application stated that the discharge of non-contact cooling water occurs continuously with the design flow of 0.04 MGD. Based on a review of past DMR data, this flow value seems reasonable to be used. The volume of non-contact cooling water at IMP 101 is calculated by reading the flow meter on the compressor discharge line and subtracting the reading of the flow meter on the pipeline to the water tower, the make-up water.

1. TBELs

In general, non-contact cooling water is not considered a process wastewater as water does not come in contact with any industrial materials and thus it typically does not produce toxic pollutants. No federal ELGs apply as there is no process wastewater discharged.

Non-contact cooling water is subject to state effluent standards for industrial waste found in 25 Pa Code §95.2 which requires effluent pH to be greater than 6.0 SU but less than 9.0 SU.

Because city water can be used as an emergency backup, the current permit contains effluent limits for Total Residual Chlorine (TRC). BFC however requested as part of this renewal existing effluent limits for TRC be removed as the facility does not use city water. Past DMR data shows that since 2017 TRC effluent levels were not detected, except for two sampling events and those samples showed TRC of 0.25 mg/L and 0.27 mg/L. As TRC is still detected, BFC is subject to Total Residual Chlorine (TRC) effluent standard of 0.5 mg/L (average monthly) in accordance with 25 Pa Code §92a.48.

The facility is also located within the Delaware River basin which requires Total Suspended Solids of 100 mg/L (average monthly).

These technology-based limitations apply, subject to water quality analysis and BPJ where applicable.

2. WQBELs

No WQM 7.0 model will be utilized for non-contact cooling water for CBOD5 and NH3-N as they are not pollutants of concern.

TRC_CALC spreadsheet was utilized using a half of the design flow as unchlorinated well water is used in addition to chlorinated city water. This approach was used in the water quality analysis performed for the last permit renewal and is still determined to be appropriate. The output showed WQBELs of 0.368 (0.37 mg/L) for monthly average and 1.2 mg/L for instantaneous maximum. These WQBELs are more stringent than the existing limits and therefore will be included in this permit renewal.

Although non-contact cooling water is not considered a process wastewater, heavy metals including Total Copper and Total Lead have been consistently determined to be pollutants of concern. A source of these pollutants has not been defined by BFC but these pollutants are present presumably given that the source of water is an onsite well. DEP's Toxic Management Spreadsheet (TMS) was utilized and the output shows that existing WQBELs are still appropriate and protective of water quality. Past DMR shows that the facility is able to meet existing WQBELs most of the time. No changes are therefore recommended.

Non-contact cooling water is generally considered a heated wastewater and is subject to temperature effluent limits or monitoring requirements. However, DEP previously determined that such requirements are not needed given that, according to the fact sheet developed during the last permit renewal, 1) the non-contact cooling water discharge has the opportunity to cool between IMP 101 and the point of entry into the municipal storm sewer and within the municipal storm sewer before being discharged to the stream, 2) no expansion of wastewater flow is being requested and indeed production has been cut back to one shift per Mr. Reinsmith (site representative), and 3) the facility has been discharging non-contact cooling water for decades while the designated use of the UNT stream and the 12 miles of Swamp Creek downstream from there has continuously been classified as "Trout

Stocked Fishes, TSF" designated use. This is a reasonable approach; the permit will continue to not include temperature requirements unless the facility expansion (or facility production increase) occurs which would result in a discharge volume increase. No change is recommended.

3. BPJ Limits

The existing permit's limits for Total Suspended Solids (TSS) will be continued. The fact sheet developed for the last permit renewal indicates the following: The TSS limits are the same as those required in Chapter 92a.47 of the PA Code for sewage discharges and considered achievable: 30 mg/l as a monthly average. As mentioned already, a Total Maximum Daily Load (TMDL) is planned for this waterway. The TMDL could require future changes to permit limits. In assessments, siltation was noted as a problem in this waterway.

Outfalls 001 and 002

Stormwater drained from the site is discharged via Outfall 001 (40° 20' 17.00", -75° 38' 1.00") and Outfall 002 (40° 20' 17.00", -75° 38' 1.00"). Based on the site map provided by Outfall 001 receives stormwater drained from parking lot, foundry, chemical/limestone/coke storage areas, unloading/loading areas and machine shop and Outfall 002 receives stormwater drained from office, warehouse, and material storage areas. Effluent from Outfall 001 enters a municipal storm sewer which travels under Spring Street. Stormwater from the other end of the facility is collected by an on-site storm sewer which empties to a swale which empties into a municipal storm sewer outside of their fence. All outfall monitoring is performed on-site before the flows enter the municipal storm sewers.

BFC is currently monitored for pH, TSS, Oil/Grease, Total Aluminum, Total Cadmium, Hexavalent Chromium, Total Copper, Total Irion, Total Lead, and Total Zinc on a quarterly basis for both Outfalls 001 and 002. A review of past DMR data since 2016 showed that Total Cadmium, Hexavalent Chromium, and Oil/Grease have been consistently not detected. This longterm data shows that these pollutants are no longer pollutants of concern for stormwater discharged from BFC. DEP's NPDES PAG-03 General Permit for Industrial Stormwater also indicates that facilities under SIC code 3321 would be required to monitor for TSS, Total Aluminum, Total Zinc, Total Copper, Total Iron, and Total Lead. It is recommended that existing quarterly monitoring requirements for Total Cadmium, Oil/Grease and Hexavalent Chromium be removed from the permit. While the PAG-03 General Permit does not specify a monitoring requirement for pH, it is recommended that the existing monitoring requirement for pH be maintained in the permit. The data shows pH levels have not been consistent.

Other Considerations

Flow Monitoring

Flow monitoring remains unchanged and is recommended by the permit guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Delaware River Basin Commission (DRBC) Water Quality Regulations

The discharge is located within the Delaware River basin; and therefore, the discharge is subject to the DRBC's Water Quality Regulations. However, because the discharge volume is below the DRBC docket threshold; therefore, the draft permit will not be sent to DRBC for the review.

Total Residual Chlorine

Since TRC is present only when city water is used. It is not reasonable to monitor for TRC on a daily basis when a source of water is an on-site well. Therefore, the monitoring frequency has changed from 1/day to "see permit" in which the following footnote will be included in the permit to allow the permittee to collect samples for TRC only when city water is used.

"A minimum of one grab sample must be collected per day and analyzed for Total Residual Chlorine only when city water (water from the municipal water authority) is used, either separately or in combination with water from an on-site well, as the source of the water used for non-contact cooling water"

Anti-Backsliding

Unless specified otherwise in this fact sheet with rationales, pursuant to 40 CFR § 122.44(I)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions addressed by DEP in this fact sheet.

Class A Wild Trout Streams

No Class A Wild Trout Fishery is impacted by this discharge.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

			Effluent L	imitations			Monitoring Re	Monitoring Requirements			
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required			
Falanetei	Average	Daily	Instant.	Average	Daily	Instant.	Measurement	Sample			
	Monthly	Maximum	Minimum	Monthly	Maximum	Maximum	Frequency	Туре			
Flow (MGD)											
Internal Monitoring Point	Report	Report	XXX	XXX	XXX	XXX	1/day	Measured			
pH (S.U.)											
Internal Monitoring Point	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab			
Total Residual Chlorine (TRC)											
Internal Monitoring Point	XXX	XXX	XXX	0.37	XXX	1.2	See Permit	Grab			
Total Suspended Solids								24-Hr			
Internal Monitoring Point	Report	Report	XXX	30	60	70	2/month	Composite			
Copper, Total								24-Hr			
Internal Monitoring Point	0.005	0.01	XXX	0.013	0.026	.033	2/month	Composite			
Lead, Total								24-Hr			
Internal Monitoring Point	0.002	0.003	XXX	0.004	0.008	.01	2/month	Composite			

IMP 101, Effective Period: Permit Effective Date through Permit Expiration Date.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	uirements			
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required			
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type			
pH (SU)	xxx	xxx	xxx	XXX	Report	xxx	1/quarter	Grab			
Total Suspended Solids	xxx	xxx	xxx	XXX	Report	XXX	1/quarter	Grab			
Aluminum, Total	XXX	XXX	xxx	XXX	Report	XXX	1/quarter	Grab			
Copper, Total	XXX	xxx	xxx	XXX	Report	xxx	1/quarter	Grab			
Iron, Total	XXX	xxx	xxx	XXX	Report	xxx	1/quarter	Grab			
Lead, Total	XXX	xxx	XXX	XXX	Report	xxx	1/quarter	Grab			
Zinc, Total	XXX	xxx	XXX	XXX	Report	xxx	1/quarter	Grab			

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Red	juirements		
Baramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	quirements Required Sample Type Grab Grab		
Farameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
pH (SU)	ххх	XXX	xxx	XXX	Report	ххх	1/quarter	Grab		
Total Suspended Solids	xxx	XXX	xxx	XXX	Report	ххх	1/quarter	Grab		
Aluminum, Total	ххх	XXX	xxx	XXX	Report	ххх	1/quarter	Grab		
Copper, Total	ххх	XXX	xxx	XXX	Report	ххх	1/quarter	Grab		
Iron, Total	ххх	XXX	xxx	XXX	Report	xxx	1/quarter	Grab		
Lead, Total	ххх	XXX	xxx	XXX	Report	xxx	1/quarter	Grab		
Zinc, Total	ХХХ	XXX	XXX	XXX	Report	XXX	1/quarter	Grab		

Tools and References Used to Develop Permit
WOM for Windows Model (see Attachment
Toxics Management Spreadsheet (see Attachment
TBC Model Spreadsheet (see Attachment
Tomporature Model Spreadsheet (see Attachment
Water Quality Toxics Management Strategy, 361,0100-003, 4/06
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97
Policy for Permitting Surface Water Diversions, 262,2000,003, 2/08
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/06
Technology Based Control Requirements for Water Treatment Plant Waster, 262 2182 002, 10/07
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved
Solids, INITITE-INITIATE, INON-PRIORITY POLIUTANT PRENORICS and Fluorides, 391-2000-019, 10/97. Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design
Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

1. StreamStats

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.33	square miles
BSLOPD	Mean basin slope measured in degrees	4.8686	degrees
ROCKDEP	Depth to rock	5.1	feet
URBAN	Percentage of basin with urban development	39.4715	percent

Low-Flow Statistics Parameters [Low Flow Region 1]

https://streenstats.usgs.gov/ss/

1/3

11/24/21,	3:42 PM		StreamS	tats		
V24/21, 3:42 PM Para DRM BSL RO(UR)	Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
	DRNAREA	Drainage Area	0.33	square miles	4.78	1150
	BSLOPD	Mean Basin Slope degrees	4.8686	degrees	1.7	6.4
	ROCKDEP	Depth to Rock	5.1	feet	4.13	5.21
	URBAN	Percent Urban	39.4715	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.178	ft*3/s
30 Day 2 Year Low Flow	0.224	ft*3/s
7 Day 10 Year Low Flow	0.0912	ft*3/s
30 Day 10 Year Low Flow	0.118	ft*3/s
90 Day 10 Year Low Flow	0.173	ft*3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use. 11/27/21, 10:06 AM

StreamStats

StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20211127145333664000

 Clicked Point (Latitude, Longitude):
 40.32895, -75.60991

 Time:
 2021-11-27 09:53:51 -0500

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.98	square miles
BSLOPD	Mean basin slope measured in degrees	2.9388	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	41.9468	percent

Low-Flow Statistics Parameters [Low Flow Region 1]

https://streamstats.usgs.gov/sa/

1/3

11/27/21,	10:08 AM		Streamé	Stats		
	Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
	DRNAREA	Drainage Area	0.98	square miles	4.78	1150
	BSLOPD	Mean Basin Slope degrees	2.9388	degrees	1.7	6.4
	ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21
	URBAN	Percent Urban	41.9468	percent	0	89

Low Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.171	ft*3/s
30 Day 2 Year Low Flow	0.256	ft*3/s
7 Day 10 Year Low Flow	0.0688	ft*3/s
30 Day 10 Year Low Flow	0.108	ft*3/s
90 Day 10 Year Low Flow	0.216	ft*3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

2. Toxics Management Spreadsheet

Discharge Information

Toxics Management Spreadsheet Version 3.3, March 2023

ins	ructions U	ischarge Stream														_
Fac	ity: Boy	ertown Foundry Co	mpany				N	NPDES Permit No.: PA0012211 Outfail No.: 101								I
Eva	luation Type:	Major Sewage /	Industri	lai W	/acte		W	las	tewater	Descript	tion: NC	CW				
										-	_					
					D	lcoha	roe Cl	pe Charaoterístics								
	cion Flow						Partial Mix Factors (PMEs) Complete Mix Times (min)									(min)
۳ ا	(MGD)* Hardness (mg/l)* pH (SU)*			AEC	- T	(CEC.	THE		CBI						
	0.049	122		,		~				0112	~	10				
	0.040	132		r												
							0.4	-	blood.	0.5 21-	a block					a following the
								-		0.58%			a week basis	~	10.00	- Aller A
	Disoba	aroe Pollutant	Units	Max	C Disch	arge	Trib		Stream	Dally	Hourty	Strea	Fate	FOR	Criteri	Chem
	Cheven a				Conc		Con	•	Conc	CV	CV	m CV	Coeff		a Mod	Transl
	Total Dissolve	d Solida (PWS)	mafL													
Ξ	Chloride (PW)	8)	mot													
1	Bromide		mg/L													
5	Sulfate (PWS)	mg/L													
	Fluoride (PWS	8)	mg/L													
	Total Aluminu	m	µg/L													
1	Total Antimon	Y	µgL													
1	Total Arsenic		µg/L													
1	Total Barium		µg/L					_								
1	Total Berylliur	n	hâr	\vdash				_								
1	Total Boron		hör	\vdash				-			<u> </u>					
1	Total Cadmiu	m (III)	ug/L	\vdash				+			<u> </u>			<u> </u>		
1	Hexavalent Cl	homium	unt	\vdash				+			<u> </u>					
1	Total Cobalt		ugt	\vdash												
1	Total Copper		µg/L	\square	1	3										
2	Free Cyanide		µg/L													
8	Total Cyanide		µg/L													
ð	Dissolved Iron	1	µg/L													
	Total Iron		Hg/L													
	Total Lead		Hgt		4			_								
	Total Mangan	050	hör					_								
	Total Mercury		ugit.					-								
1	Total Phenois	(Phenolics) (PW8)	upt.	\vdash				+			<u> </u>					
	Total Seleniur	n	upt													
	Total Silver		Hot.													
	Total Thallium	1	µg/L													
	Total Zinc		µg/L													
	Total Molybde	num	µg/L													
	Acrolein		Hg/L	<												
	Acrylamide		µg/L	<												
	Acrylonitrile		H0/L	<												
	Berzene		µg/L.	<				_								
1	Bromoform		Hg/L	<												

Discharge Information

11/27/2021

Page 1

Version 1.3, March 2021

Stream / Surface Water Information

Boyertown Foundry Company, NPDES Permit No. PA0012211, Outfall 101

ctions Discharge Stream

Receiving Surface V	Water Name: Unr	named Tribu	fary to Swa	mp Creek		No. Reaches to Mod	 Statewide Oriteria Great Lakes Oriteria 	
Location	Stream Code*	RMP	Elevation (1)*	DA (m ²)*	Slope (MR)	PWS Withdrawal (MGD)	Apply Fish Orberts*	ORSANCO Criteria
Point of Discharge	001337	1.5	370	0.33			Yes	
End of Reach 1	001337	0	363	0.95			Yes	
	•							

Q 740															
Location	RMI	UY	Flow	(cfs)	WD	0 Width Depth	Velocit Te	Time	Tributery		Stream		Analysia		
		(chaim ²)*	Stream	Tributary	Ratio		(*)	y ((pa)	(depen)	Hardness	pH	Hardness"	pH*	Hardness	pH
Point of Discharge	1.5	0.1	0.0912									100	7		
End of Reach 1	0	0.1	0.258												

No. Reaches to Model: 1

Q.															
Location	RMI	UY	Flow (cfs)		WD	WD Width	Depth	Velocit	Terr	Tributary		Stream		Analysia	
		(chaimi")	Stream	Tributary	Ratio	(70)	(*)	y ((pa))	Colores .	Hardness	pH	Hardness	pH	Hardness	pH
Point of Discharge	1.5														
End of Reach 1	0														

Stream / Surface Water Information					11/2	11/27/2021						
Department of Davidonment	L									alis Management Tyreaddo Yerdon 1.3, Marsh 20	21	
Model Results		Boyertown Foundry Company, NPDES Permit No. PA0012211, Outfall 101										
Instructions Results	RETURN	TO INPU	пз	SAVE AS	PDF	PRINT		Al 🔿 Inputs	O Results	O Limba		
Vydrodynamica												
Visiteland Allocations												
AFC OC	T (min): 0.0	76	PMP:	1	Ana	ilysis Hardnei	es (ngil):	114.36	Analysis pH:	7.00		
Pollutanta	Conc	Stream CV	Trib Conc (Jol.)	Fate Coef	(Hert)	(H0/L)	WLA (up/L)		Co	mmenta		
Total Copper	0	0		0	15,250	15.9	35.4		Chem Transle	tor of 0.96 applied		
Total Lead	0	0		0	74,718	98,9	216		Chem Translat	tor of 0.771 applied		
2 <i>CFC</i> 00	T (min): 0.6	76	PMP:	1	An	slysis Hardne	ee (mpf):	114.36	Analysis pit:	7.00		
Pollutanta	Conc (vol.)	Streem CV	Trib Conc (upl.)	Fate Coef	(HgC)	WQ C6 (µg/L)	WLA (kg/L)		Co	mmenta		
Total Copper	0	0		0	10.044	10.5	23.3		Chem Transis	tor of 0.96 applied		
Total Laad	0	0		0	2.912	3.77	0.41		Chem Translat	tor of 0.771 applied		
<i>!</i> тнн со:	T (min): 0.6	76	PMP:	1	An	slysis Hardne	ee (mpf):	NA	Analysis pit:	NA		
Pollutanta	Conc	Stream CV	Trib Conc (upl.)	Fate Coef	(Jgl)	WQ Cb) (µg/L)	WLA (kp/L)		Co	mmenta		
Total Copper	0	0		0	NA	NA	NA					
Total Laad	0	0		0	NA	NIA	NIA					
CRL CC	T (min): 0.3	85	PMP:	1	An	alysia Hardne	ee (mp/):	NA	Analysis pH:	NA		
Pollutanta	Conc	Stream CV	Trib Conc (Jost.)	Fate Coef	WOC (Hell)	(µg/L)	WLA (JQ/L)		Co	mmenta		
Total Copper	0	0		0	NA	NIA	NIA					
Total Land	0	0		0	NA	N/A	NA					

Recommended WQBELs & Monitoring Requirements

Model Results

11/27/2021

Page 5

No.SamplesMonth: 4

							-		
	Maga	Links	Concentration Limits						
Pollutante	AML (Ibsiday)	MDL (balday)	AML	MDL	IMAX	Units	Governing WOBEL	WOBEL Dasis	Comments
Total Copper	0.009	0.014	22.7	35.4	56.7	μολ.	22.7	APO	Discharge Conc & 50% WOBEL (RP)
Total Laad	Report	Report	Report	Report	Report	Per-	6,41	CPC	Discharge Conc > 10% WOBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effuent limits or monitoring based on water quality because reasonable potential to exceed water quality oriters was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutanta	Governing WOBEL	Units	Commente

11/27/2021

3. TRC_CALC

TRC_CALC

1A	в	С	D	E	F	G						
2	TRC EVALU	ATION										
- 3	Input appropria	ate values in	B4:B8 and E4:E7									
- 4	0.0912	= Q stream (cfs)	0.6	= CV Dally							
-5	0.024	= Q discharg	e (MGD)	0.6	= CV Hourly							
6	30	= no. sample	6	1	= AFC_Partial Mix Factor							
7	0.3	= Chiorine D	emand of Stream	1	= CFC_Partial Mix Factor							
8	0	= Chiorine D	emand of Discharge	16	= AFC_Criteria Compliance Time (min)							
9	0.4	= BAT/BPJ V	alue	720	= CFC_Criteria (Compliance Time (min)						
	0	= % Factor o	of Safety (FOS)		Decay Coefficie	ant (K)						
10	Source	Reference	AFC Calculations		Reference	CFC Calculations						
11	TRC	1.3.2.11	WLA afc =	0.803	1.3.2.11	WLA ofc = 0.776						
12	PENTOXSD TRG	6.1a	LTAMULT are =	0.373	6.10	LTAMULT ofc = 0.681						
13	PENTOXSD TRG	6.1b	LTA_afc=	0.299	6.1d	LTA_cfc = 0.451						
14	-											
10	Source	5.46	Emuent	Limit Cald	d and							
17	PENTOXOD TRO	5.10	AVG MON LINE	T (moll) =	0.251	450						
18	PENIOASDING	0.19	INST MAX LINE	T (mg/l) =	1.204	AFC						
·~			INOT MON CIMI	i (ingen) -	1.204							
	WLA afe	(.019/e(-k*Al	FC_to)) + [(AFC_Yo*Q	s*.019/Qd	"e(-k"AFC_to))							
		+ Xd + (AF	C_Ye*Qs*Xs/Qd)]*(1-F	OS/100)								
	LTAMULT afe	EXP((0.5*LN	(cvh*2+1))-2.326*LN(cvh^2+1)	NO.5)							
	LTA_afo	wia_afc*LTA	MULT_afo									
	WLA_ofe	(.011/e(-k-Cl	FC_to) + [(CFC_Ye*Qs	.011/Qd*	e(-K*CFC_tc))							
		+ X0 + (CFI	C_Y0*Q5*X5/Q0)]*(1-F	08/100)	NeudAtion and	anion+1160 E)						
		EAF ((0.6 LIN	(CVU-2/IIO_samples+1))-2.520 L	N(CVC-200_San	(pres+1)=0.6)						
	CTA_OID	wia_ele LTA	MOCI_CIC									
	AMENULT	EXP(2.326*L	N((cvd^2/no samples	+1)^0.6)-	5°LN(cvd^2/no	samples+1))						
	AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afo,LTA_o	fc)*AML	MULT)							
	INST MAX LIMIT	1.6"((av_mor	Imit/AML_MULT)/L1	TAMULT	afo)							

Page 1

4. Outfall 001 and 002 DMR data

		Outfall 001	Outfall 002			Outfall 001	Outfall 002			Outfall 001	Outfall 002
Jul-16 Alum	inum, Total	0.354	0.243	Jul-16	Iron, Total	0.471	0.339	Jul-16	Total Suspended Solids	< 9.00	< 15.0
Oct-16 Alum	inum, Total	1.57	1.01	Oct-16	Iron, Total	4.95	1.51	Oct-16	Total Suspended Solids	30.8	12.2
Jan-17 Alum	inum, Total	0.484	0.708	Jan-17	Iron, Total	1.44	1.8	Jan-17	Total Suspended Solids	16.9	18
Apr-17 Alum	inum, Total	0.561	9.24	Apr-17	Iron, Total	1.07	37	Apr-17	Total Suspended Solids	6.42	207
Jul-17 Alum	inum, Total	0.252	< 0.200	Jul-17	Iron, Total	0.762	< 0.200	Jul-17	Total Suspended Solids	15.5	16.9
Oct-17 Alum	inum, Total	0.445	2.3	Oct-17	Iron, Total	2.31	9.9	Oct-17	Total Suspended Solids	14.2	63.2
Jan-18 Alum	inum, Total	1.28	0.768	Jan-18	Iron, Total	2.45	2.24	Jan-18	Total Suspended Solds	15.5	19.8
Apt-18 Aum	inum, rotal	0.293	0.461	Apr-18	Iron, Total	0.512	1.44	Apr-18	Total Suspended Solds	10	10.9
Oct 19 Alum	inum, rotal	0.509	6.22	Out 18	Iron, Total	×0.200	0.273	Out 18	Total Suspended Solids	30.0	449
Jap 19 Alum	inum, rotal	0.506	< 0.20	Jan. 10	Iron, Total	1.00	0.518	Jan. 10	Total Suspended Solids	30.0	10
Apr 10 Alum	inum, Total	< 0.300	< 0.300	Apr 10	Iron, Total	0.000	0.010	Apr 10	Total Cuspended Colds	< 3.00	< 3.00
Jul-19 Alum	inum Total	< 0.300	< 0.300	Jul 19	Iron, Total	< 0.200	< 0.200	Jul-19	Total Suspended Solids	< 3.00	< 3.00
Oct-19 Alum	inum. Total	1.88	1.78	Oct-19	Iron, Total	5.51	4.25	Oct-19	Total Suspended Solids	82.9	77
Jan-20 Alum	inum, Total	0.176	0.186	Jan-20	Iron, Total	0.314	0.308	Jan-20	Total Suspended Solids	7.61	5.67
Apr-20 Alum	inum, Total	< 0.200	0.324	Apr-20	Iron, Total	< 0.200	1.53	Apr-20	Total Suspended Solids	5.07	40.5
Jul-20 Alum	inum, Total	< 0.20	< 0.20	Jul-20	Iron, Total	0.023	0.43	Jul-20	Total Suspended Solids	< 4.5	<45
Oct-20 Alum	inum, Total	< 0.30	< 0.30	Oct-20	Iron, Total	1.3	< 0.20	Oct-20	Total Suspended Solids	39	< 3.5
Jan-21 Alum	inum, Total	< 0.30	< 0.30	Jan-21	Iron, Total	< 0.20	0.72	Jan-21	Total Suspended Solids	< 3.00	14
Apr-21 Alum	inum, Total	< 0.30	< 0.30	Apr-21	Iron, Total	< 0.20	< 0.20	Apr-21	Total Suspended Solids	< 3.30	< 3.30
Jul-21 Alum	inum, Total	1	1.6	Jul-21	Iron, Total	0.88	1.3	Jul-21	Total Suspended Solids	7.8	13
Jul-16 Cadn	nium, Total	< 0.00500	< 0.00500	Jul-16	Lead, Total	< 0.0150	< 0.0150	Jul-16	Zinc, Total	0.031	0.0331
Oct-16 Cadn	nium, Total	< 0.0050	< 0.0050	Oct-16	Lead, Total	0.0628	< 0.0150	Oct-16	Zine, Total	0.0652	0.0685
Jan-17 Cadn	nium, Total	< 0.00500	< 0.00500	Jan-17	Lead, Total	< 0.0150	< 0.0150	Jan-17	Zine, Total	0.0663	0.068
Apr-17 Cadn	nium, Total	< 0.0050	< 0.0050	Apr-17	Lead, Total	< 0.0150	0.58	Apr-17	Zine, Total	0.0332	0.471
Jul-17 Cadn	nium, Total	< 0.0050	< 0.0050	Jul-17	Lead, Total	0.139	0.112	Jul-17	Zino, Total	0.651	0.542
Oct-17 Cadn	nium, Total	< 0.0050	< 0.0050	Oct-17	Lead, Total	< 0.0150	0.176	Oct-17	Zine, Total	0.0574	0.177
Jan-18 Cadn	nium, Total	< 0.0050	< 0.0050	Jan-18	Lead, Total	< 0.0150	0.0523	Jan-18	Zine, Total	0.0498	0.0562
Apr-18 Cadn	nium, Total	< 0.0050	< 0.0050	Apr-18	Lead, Total	< 0.0150	0.0259	Apr-18	Zine, Total	0.0626	0.054
Jul-18 Cadn	nium, Total	< 0.0050	< 0.0050	Jul-18	Lead, Total	< 0.0150	< 0.0150	Jul-18	Zine, Total	< 0.0200	< 0.0200
Oct-18 Cadn	nium, Total	< 0.0050	< 0.0050	Oct-18	Lead, Total	< 0.0150	0.0821	001-18	Zinc, Total	< 0.0200	0.208
Jan-19 Cadn	nium, Total	< 0.0050	< 0.0050	Jan-19 Apr. 10	Lead, Total	0.0325	0.0191	Jan-19 Apr 10	Zino, Total	0.221	0.238
Jul-19 Cade	nium, Total	< 0.0050	< 0.0050	Apr-19	Lead, Total	< 0.0150	< 0.0150	Apr-19	Zine, Total	0.0261	0.0346
Oct.19 Cade	nium, rotal	< 0.0050	< 0.0050	Oct 10	Lead, Total	0.010	< 0.0150	Out 19	Zine, Total	0.142	0.0340
Jap 20 Cade	nium, Total	< 0.0050	< 0.0050	Jan-20	Lead Total	< 0.0150	< 0.0150	Jan-20	Zine, Total	0.0812	0.0841
Apr-20 Cade	nium. Total	< 0.0050	< 0.0050	Apr-20	Lead. Total	< 0.0150	< 0.0150	Apr-20	Zine, Total	0.0355	0.0929
Jul-20 Cade	nium Total	< 0.0050	< 0.0050	30620	Lead Total	< 0.015	< 0.015	Jul-20	Zine, Total	0.027	0.029
Oct-20 Cade	nium. Total	< 0.0050	< 0.0050	Oct-20	Lead. Total	< 0.015	< 0.015	Oct-20	Zine, Total	0.0514	0.035
Jan-21 Cadn	nium. Total	< 0.0050	< 0.0050	Jan-21	Lead. Total	< 0.015	< 0.015	Jan-21	Zine, Total	< 0.020	0.13
Apr-21 Cadn	nium, Total	< 0.0050	< 0.0050	Apr-21	Lead, Total	< 0.015	< 0.015	Apr-21	Zine, Total	0.027	0.02
Jul-21 Cadn	nium, Total	< 0.0050	< 0.0050	Jul-21	Lead, Total	< 0.015	< 0.015	Jul-21	Zino, Total	0.059	0.07
Jul-16 Chro	mium, Hexavalent	< 0.00500	< 0.00500	Jul-16	Oil and Grease	< 5.0	< 5.00				
Oct-16 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Oct-16	Oil and Grease	< 5.00	< 5.00				
Jan-17 Chro	mium, Hexavalent	< 0.00500	< 0.00500	Jan-17	Oil and Grease	< 5.00	< 5.00				
Apr-17 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Apr-17	Oil and Grease	< 5.0	< 5.0				
Jul-17 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Jul-17	Oil and Grease	< 5.0	< 5.0				
Oct-17 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Oct-17	Oil and Grease	< 5.0	< 5.0				
Jan-18 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Jan-18	Oil and Grease	< 5.0	< 5.0				
Apr-18 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Apr-18	Oil and Grease	< 5.0	< 5.0				
Jul-18 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Jul-18	Oil and Grease	< 5.0	< 5.0				
Od-18 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Oct-18	Oil and Grease	< 5.0	< 5.0				
Jan-19 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Jan-19	Oil and Grease	< 5.0	< 5.0				
Apr-19 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Apr-19	Oil and Grease	< 5.0	< 5.0				
Out 19 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Out 10	Oil and Grease	< 5.0	<5.0				
Jap-20 Chro	mium, Hevavalent	< 0.0050	< 0.0050	Jan-20	Oil and Grease	< 5.0	< 5.0				
Acr-20 Chro	mium Hevavalent	< 0.0050	< 0.0050	Apr.20	Oil and Grease	< 5.0	<50				
Jul-20 Chro	mium, Hexavalent	< 0.00050	< 0.00050	Jul 20	Oil and Grease	<51	<52				
Oct-20 Chro	mium, Hexavalent	< 0.010	< 0.010	Oct-20	Oil and Grosse	< 5.1	< 5.2				
Jan-21 Chro	mium, Hexavalent	< 0.010	< 0.010	Jan-21	Oil and Grease	< 5.0	< 5.1				
Apr-21 Chro	mium, Hexavalent	< 0.0050	< 0.0050	Apr-21	Oil and Grease	< 5.2	< 5.2				
Jul-21 Chro	mium, Hexavalent	< 0.010	< 0.010	Jul-21	Oil and Grease	< 5.0	< 5.1				
Jul-16 Copp	er, Total	< 0.0100	< 0.0100	Jul-16	pH	6.83	6.9				
Oct-16 Copp	er, Total	0.0205	0.0115	Oct-16	pH	7.05	6.96				
Jan-17 Copp	er, Total	0.014	0.0156	Jan-17	pH	7.2	7.1				
Apr-17 Copp	er, Total	< 0.0100	0.131	Apr-17	pH	7.74	7.32				
Jul-17 Copp	er, Total	1.18	0.993	Jul-17	pH	7.62	7.78				
Oct-17 Copp	er, Total	0.013	0.0401	Oct-17	pH	7.88	7.91	1			
Jan-18 Copp	xer, Total	< 0.0100	0.0141	Jan-18	рн	7.76	7.67				
Apr-18 Copp	xer, Total	0.0148	0.0148	Apr-18	pH	7.69	7.76				
Jul-18 Copp	ver, Total	< 0.0200	< 0.0200	Jul-18	pH	7.48	7.67				
Cel-18 Copp	ver, Total	< 0.0200	0.0354	Oct-18	pH all	6.0	7.14				
Jan-19 Copp	xer, iotal	0.0545	0.0339	Jan-19	pH oH	7.78	7.61				
Jul-19 Copp	ver, Total	0.0200	< 0.0200	Apr-19	oH.	7.59	7.03				
Oct-19 Copp	wer Total	< 0.0200	< 0.0200	Oct.10	oH.	7.05	7.40				
Jap-20 Copp	xer. Total	< 0.0200	< 0.0200	Jan 20	OH	7.71	7.58				
Apr-20 Copp	er. Total	< 0.0200	0.0258	Apr-20	oH	7.76	7.68				
Jul-20 Coop	er, Total	0.021	0.023	Jul-20	DH	7.71	7.63				
Oct-20 Copp	er, Total	< 0.020	< 0.020	Oct-20	pH	7.72	7.81	1			
Jan-21 Copp	er, Total	< 0.020	0.039	Jan-21	pH	7.84	7.62				
Apr-21 Copp	er, Total	< 0.020	< 0.020	Apr-21	pH	7.78	7.62				
Jul-21 Coop	ver. Total	< 0.020	< 0.020	Jul-21	oH	7.65	7.72				