

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Industrial
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No. PA0014621

APS ID 276486

Authorization ID 1434789

pplicant Name	Veoli	a Water PA Inc.	Facility Name	Veolia Water PA
pplicant Address	4405	N 6th Street	Facility Address	4405 N 6th Street
	Harris	sburg, PA 17110-1654		Harrisburg, PA 17110-1654
pplicant Contact	Heler	n King	Facility Contact	Helen King
pplicant Phone	(223)	259-3207	Facility Phone	(717) 232-6207
lient ID	64718	8	Site ID	452750
IC Code	4941		Municipality	Susquehanna Township
C Description	Trans	s. & Utilities - Water Supply	County	Dauphin
ate Application Rec	eived	March 30, 2023	EPA Waived?	Yes
ate Application Acc	epted	April 12, 2023	If No, Reason	

Summary of Review

1.0 General Discussion

This factsheet supports the renewal of an existing NPDES permit for a discharge of treated industrial wastewater from a potable water treatment plant. Veolia Water PA Inc. owns and operates the treatment plant located in Susquehanna Township, Dauphin County. The name of the facility changed from Suez Water PA to Veolia Water PA during the last permit cycle. The facility discharge filter backwash and clarifier wash supernatant from an existing water treatment plant to Susquehanna River. Raw water is supplied to the facility from Susquehanna River and/or Stony Creek to produce potable water. Alum, Caustic Soda and chorine are added to the raw water prior to clarification and filtration with 8 filters to produce potable water. Wastewater generated from backwashing of the filters and clarifier wash supernatant are directed to treatment lagoons. The existing permit was based on a wastewater flow of 0.544mgd which will be continued for this permit renewal. Treatment of the wastewater is provided in two settling lagoons connected in parallel. Lagoons are periodically cleaned to remove sludge for land application by a certified hauler. Susquehanna River is classified for warm water fishes and migratory fishes. The facility is not covered by ELG but has technology-based treatment limits developed by the Department. See details at technology limits section of the report. The existing permit was issued on September 24, 2018 with effective date of October 1, 2018 and expiration date of September 30, 2023. The permit was amended on October 6, 2022 for a name change. The permittee submitted an administratively completed NPDES permit renewal application to the Department has been operating under the conditions in the existing permit pending permit renewal. A

Approve	Deny	Signatures	Date
Х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	April 5, 2024
Х		Maria D. Bebeuek for Daniel W. Martin, P.E. / Environmental Engineer Manager	April 15, 2024
Х		Maria D. Bebenek Maria D. Bebenek, P.E, / Program Manager	April 15, 2024

Summary of Review

Topographical map showing discharge location is attached as attachment A and process flow schematic diagram is presented in attachment B.

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Discharge, Receiving Waters and Water Supply Information							
Outfall No. 001	Design Flow (MGD)	.544					
Latitude 40° 19' 35.89"	Longitude	-76° 53' 33.52"					
Quad Name Harrisburg - West	Quad Code	1630					
Wastewater Description: Water Treatment Efflue	ent						
Receiving Waters Susquehanna River	Stream Code	06685					
NHD Com ID <u>56400713</u>	RMI	76.00					
Drainage Area 23564	Yield (cfs/mi²)	0.1					
Q ₇₋₁₀ Flow (cfs) 2356.4	Q ₇₋₁₀ Basis	USGS Gage Station					
Elevation (ft)	Slope (ft/ft)						
Watershed No. 6-C	Chapter 93 Class.	WWF, MF					
Existing Use	Existing Use Qualifier						
Exceptions to Use	Exceptions to Criteria						
Assessment Status							
Cause(s) of Impairment							
Source(s) of Impairment		_					
TMDL Status	Name						
		_					
Background/Ambient Data	Data Source						
pH (SU)							
Temperature (°F)							
Hardness (mg/L)							
Other:							
Nearest Downstream Public Water Supply Intake	Steelton Municipal Waterwork	S					
PWS Waters Susquehanna River	Flow at Intake (cfs)						
PWS RMI	Distance from Outfall (mi)	>6.0					

Changes Since Last Permit Issuance: None

1.2.1 Water Supply Intake:

The closest water supply intake located downstream from the discharge is the Steelton Municipal Waterworks on Susquehanna River in Steelton Borough, Dauphin County. The distance downstream from the discharges to the intake is approximately 6 miles. The discharge is not expected to have an impact on the intake.

1.3 Existing Limitations and Monitoring Requirements

		Effluent Limitations								
Parameter	Mass Units	(lbs/day) (1)		Concentra		Monitoring Re Minimum (2)	Required			
raiametei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured		
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0	XXX	1/day	Grab		
TRC	xxx	XXX	XXX	0.5	XXX	1.6	1/day	Grab		
TSS	Report	Report	XXX	30	60	75	1/week	24-Hr Composite		
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite		
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/year	Calculation		
TKN	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite		
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite		
Total Aluminum	Report	Report	XXX	4.0	8.0	10	1/week	24-Hr Composite		
Total Iron	Report	Report	XXX	2.0	4.0	5	1/week	24-Hr Composite		
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	1/week	24-Hr Composite		

2.0 Compliance History

2.1 DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)												
Average Monthly	0.314	0.325	0.314	0.345	0.296	0.284	0.279	0.312	0.332	0.258	0.258	0.322
Flow (MGD)												
Daily Maximum	0.444	0.445	0.444	0.471	0.419	0.375	0.377	0.401	0.615	0.383	0.319	0.403
pH (S.U.)												
Daily Minimum	6.83	6.79	6.66	7.17	7.21	7.25	7.2	7.29	7.16	7.07	7.01	7.12
pH (S.U.)												
Daily Maximum	7.61	7.65	8.26	8.33	7.97	8.4	8.0	8.55	7.94	8.04	7.82	7.88
TRC (mg/L)												
Average Monthly	0.5	0.4	0.35	0.30	0.12	0.08	0.08	0.05	0.06	0.07	0.09	0.19
TRC (mg/L)												
Instantaneous												
Maximum	0.81	0.91	0.74	0.87	0.40	0.25	0.36	0.1	0.18	0.27	0.21	0.36
TSS (lbs/day)												
Average Monthly	32.2	< 20.1	61.5	19.6	< 22.8	43.8	< 24.2	< 24.1	< 19.4	< 10.33	< 23.7	< 16.1
TSS (lbs/day)												
Daily Maximum	51.8	42.7	107.6	24.6	40.2	62.6	38.3	36.4	25.7	15.97	42.4	16.9
TSS (mg/L)												
Average Monthly	12.3	< 7.4	23.5	6.8	< 9.25	18.5	< 10.4	< 9.25	< 7.0	< 4.80	< 11.0	< 6.0
TSS (mg/L)												
Daily Maximum	21.0	13.0	62.0	8.0	16.0	23.0	17	14.0	10	8.00	18	9.0
Nitrate-Nitrite (mg/L)												
Annual Average			< 1.0									
Total Nitrogen (mg/L)												
Annual Average			< 2.025									
TKN (mg/L)												
Annual Average			< 1.025									
Total Phosphorus												
(mg/L) Annual Ave.			0.105									
Total Aluminum			40.4		4.00	0.00		4.0=	0.40	4.0		
(lbs/day) Ave. Monthly	2.7	1.5	10.4	1.1	1.83	3.22	2.9	1.67	2.46	1.2	3.57	1.1
Total Aluminum	0.7	4.0	00.0	0.0	0.04	5.00	0.0	4.40	0.00	0.5	0.00	0.0
(lbs/day) Daily Max.	3.7	4.9	22.0	2.8	3.01	5.63	3.9	4.42	3.32	3.5	6.82	3.0
Total Aluminum	4.00	0.50	2.00	0.00	0.74	4.00	4.05	0.04	0.00	0.50	4.00	0.44
(mg/L) Ave. Monthly	1.03	0.56	3.98	0.38	0.74	1.36	1.25	0.64	0.89	0.56	1.66	0.41
Total Aluminum	4.5	4.5	10.7	0.00	4.00	1.00	2.2	4.7	4.7	4.4	0.7	1.6
(mg/L) Daily Max.	1.5	1.5	12.7	0.92	1.20	1.80	2.2	1.7	1.7	1.4	2.7	1.6
Total Iron (lbs/day)	0.7	. 0.20	4.4	. 0.17	0.20	0.11	0.40	. 0. 20	. 0.16	. 0.10	0.50	. 0. 20
Average Monthly	0.7	< 0.30	1.4	< 0.17	0.30	0.11	0.42	< 0.29	< 0.16	< 0.10	0.56	< 0.29

NPDES Permit Fact Sheet Veolia Water PA

NPDES Permit No. PA0014621

Total Iron (lbs/day)												
Daily Maximum	0.9	0.82	2.1	0.37	0.58	2.69	0.92	0.83	0.21	0.15	0.95	0.64
Total Iron (mg/L)												
Average Monthly	0.27	< 0.11	0.53	< 0.06	0.12	0.45	0.18	< 0.11	< 0.058	< 0.048	0.26	< 0.108
Total Iron (mg/L)												
Daily Maximum	0.38	0.25	1.20	0.12	0.23	1.0	0.41	0.32	0.11	0.07	0.36	0.34
Total Manganese												
(lbs/day) Ave. Monthly	0.4	0.24	1.0	0.35	0.84	0.99	0.72	0.44	0.61	0.39	0.67	< 0.16
Total Manganese												
(lbs/day) Daily Max.	0.6	0.46	1.1	0.52	1.23	1.66	0.92	0.94	0.72	1.08	1.36	0.41
Total Manganese												
(mg/L) Ave. Monthly	0.17	0.09	0.4	0.12	0.34	0.42	0.31	0.17	0.22	0.18	0.31	< 0.058
Total Manganese												
(mg/L Daily Max.	0.24	0.14	0.64	0.17	0.49	0.53	0.52	0.36	0.37	0.43	0.54	0.22

2.2 Effluent Violations for Outfall 001, from: April 1, 2023 To: February 29, 2024

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TSS	12/31/23	Daily Max	62.0	mg/L	60	mg/L
Total Aluminum	12/31/23	Daily Max	12.7	mg/L	8.0	mg/L
Total Iron	09/30/23	Daily Max	4.5	mg/L	4.0	mg/L

2.3 Summary of DMRs:

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented in section 2.1 above indicate permit limits have been met most of the time. Three permit violations were noted on DMRs during the period reviewed. Total Iron violation occurred in September 2023, and TSS and Total Aluminum violations occurred in December 2023 and presented in section 2.2. The violations appear to have been addressed. No violations occurred in 2024 monitoring reports.

2.4 Summary of Inspections:

The facility was inspected a couple of times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met satisfactorily. The reports indicate good operation and maintenance of the facility.

3.0 Development of Effluent Limitations							
Outfall No.	001	Design Flow (MGD)	.544				
Latitude	40° 19' 38.32"	Longitude	-76° 53' 52.59"				
Wastewater Description:	Water Treatment Effluent	_					

3.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit (WQBEL) is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

3.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Technology-based (BAT) effluent limits for water treatment plant wastewater discharges are presented in the Department's June 1989 Guidance document entitled, "Technology Based Controls for Discharges from Water Treatment Plants" as follows:

Parameter	Monthly Average (mg/l)	Daily Max (mg/l)
Suspended Solids	30	60
Iron (total)	2	4
Aluminum (total)	4	8
Manganese (total)	1	2
Flow	Monitor	
рН	6-9 at all time	
Total Residual Chlorine*	0.5	1.0

Comments: *See TRC section of the report for details

3.3 Water Quality-Based Limitations

3.3.1 Receiving Stream

The receiving stream is the Susquehanna River. According to 25 PA § 93.90, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List o and State Watershed 6-C. It has been assigned stream code 06685. According to the Department's Integrated Water Quality Monitoring and Assessment Report, the Susquehanna River, is impaired for fish consumption due to PCB.

3.3.2 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 01570500 on Susquehanna River in Harrisburg. The Q_{7-10} and drainage area at the gage is 2610 ft3/s and 24100mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (2610 \text{ ft}^3/\text{s})/ 24100 \text{ mi}^2 = 0.10 \text{ ft}^3/\text{s}/\text{mi}^2$
- \bullet Q₃₀₋₁₀ / Q₇₋₁₀ = 1.17
- $Q_{1-10} / Q_{7-10} = 0.95$

The drainage area at discharge calculated from streamStats = 23564 mi^2 The Q₇₋₁₀ at discharge = $23564 \text{ mi}^2 \times 0.10 \text{ ft}^3/\text{s/mi}^2 = 2356.4 \text{ ft}^3/\text{s}$.

3.3.3 Toxics

A reasonable potential (RP) analysis was done for pollutant Groups 1 and 2 submitted with the application. All pollutants that were presented in the application sampling data were entered into the Toxics Management Spreadsheet (TMS) to calculate WQBELs. WQBELs recommended by the TMS are presented in attachment C. The results of the TMS indicate discharge levels for all pollutants are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation was recommended. Mass load will be established for water-quality base limits and reported for technology-based limits following DEP permit writer's manual No. 362-0400-001 Table 5-2, 10/1/97 Edition.

Mass-based limits are expressed in pounds per day and are calculated as follows: Mass based limit (lb/day) = concentration limit (mg/L) \times design flow (mgd) \times 8.34.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL

3.3.4 Per- and Polyfluoroalkyl Substances (PFAS) Monitoring Strategy

DEP is implementing PFAS monitoring program to investigate PFAS discharges. Applicants are required to test for 4 of the PFAS parameters, PFOA, PFOS, HFPO-DA and PFBS during permit application. If the results of the tests are non-detect using screening level at or below the Target QLs, an annual monitoring is required and if there are detections or non-detects above the TQLs a quarterly monitoring required in the permit. Applications received without the tests and applications already received will be drafted with annual or quarterly monitoring depending on if the industrial facility falls under or If a major sewage facility received flow from an industry EPA believes to be sources (organic chemicals, plastics & synthetic fibers; metal finishing; electroplating; electric and electronic components; landfills; pulp, paper & paperboard; leather tanning & finishing; plastics molding & forming; textile mills; paint formulating, and airport). This facility does not fall under any of the sources, annual monitoring of PFOA, PFOS, HFPO-DA, and PFBS is required in the permit. The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees shall enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

3.3.5 Total Residual Chlorine

The attached TRC result utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached results presented in attachment D indicates a technology limit of 0.5 mg/l and 1.6mg/l IMAX would be needed to prevent toxicity concerns. In addition, the BPT TBEL referenced in section 3.2 requires a Daily Maximum TRC of 1.0 mg/l. Therefore, it is recommended that a TRC limit of 0.5 mg/l monthly average and 1.0 mg/l as daily maximum limit and 1.6mg/l IMAX be applied for this permit cycle with minimum monitoring frequency of 1/day.

3.3.6 Total Suspended Solids (TSS):

There is no water quality criteria for TSS. The existing BPT TBEL referenced in section 3.2 will remain in the permit with a monitoring frequency of 1/week.

3.3.7 Instantaneous Maximum:

The existing IMAX limitations in the permit determined using multiplier of 2.5 will be carried forward.

3.3.8 Chesapeake Bay Strategy:

In 2003, EPA established state-wide cap loads for Total Nitrogen and Total Phosphorus for Pennsylvania that are needed to ensure compliance with new water quality standards enacted to restore the water quality of the Chesapeake Bay. DEP released Pennsylvania's Chesapeake Bay Tributary Strategy (CBTS) in January of 2005 to guide Pennsylvania's efforts to meet those cap loads and made revisions to the Strategy in 2006-2007 following a stakeholder process. Industrial discharges have been prioritized by Central Office based on their delivered TN and TP loadings to the Bay. Significant industrial wastewater dischargers are facilities that discharge more than 75 lbs/day of TN or 25 lbs/day of TP on an average annual basis and the rest are classified as non-significant dischargers. DEP developed Chesapeake Bay IW monitoring plan for all industrial facilities that discharge to the Chesapeake Bay. This facility is classified as a non-significant discharger with little or no potential to introduce nutrients to the receiving stream but has been monitoring TP and the TN series (nitrate-nitrite, TKN) and will continue monitoring them annually to collect data for Chesapeake Bay modelling in future.

3.3.9 Cleaning of Sedimentation Tanks/Lagoons

A permit condition will be added in PART C. II of the permit to address cleaning of lagoons and notification requirement during lagoon cleaning.

4.0 Other Considerations

4.1 Anti-backsliding

Not applicable to this permit

4.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

4.3 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

4.4 303d Listed stream:

The discharge is located on a 303d listed stream segment. It is impaired for fish consumption by PCB. The source of the impairment is unknown. This discharge does not contribute to the impairment; therefore, no action is warranted at this time.

4.5 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

4.6 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

.

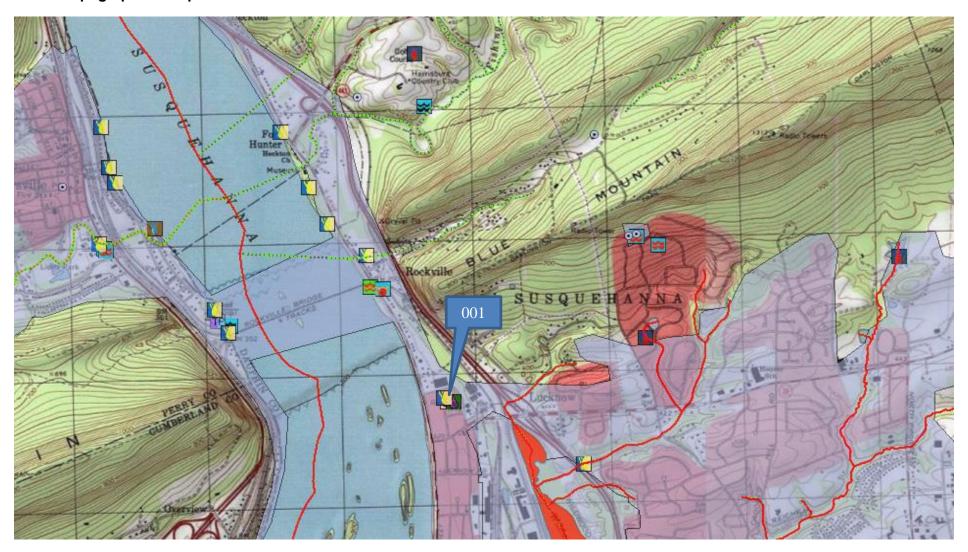
Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

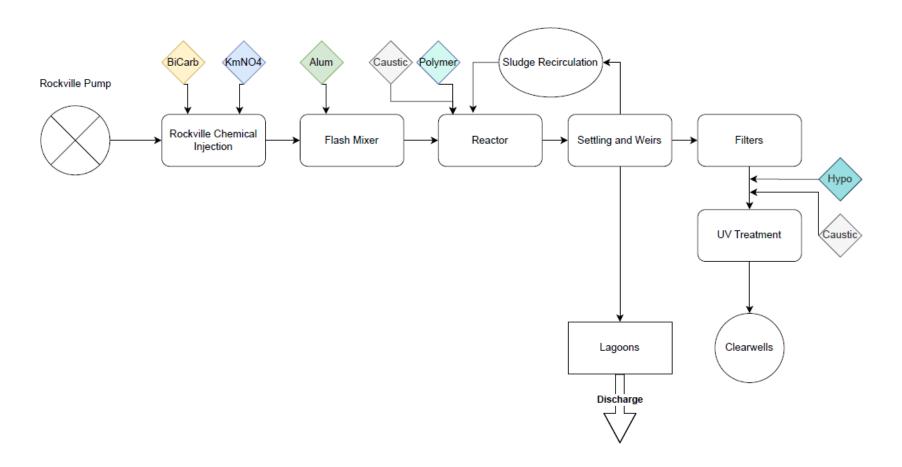
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required	
raiailletei	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab	
TSS	Report	Report	XXX	30	60	75	1/week	24-Hr Composite	
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite	
Total Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/year	Calculation	
TKN	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite	
Total Phosphorus	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite	
Total Aluminum	Report	Report	XXX	4.0	8.0	10	1/week	24-Hr Composite	
Total Iron	Report	Report	XXX	2.0	4.0	5	1/week	24-Hr Composite	
Total Manganese	Report	Report	XXX	1.0	2.0	2.5	1/week	24-Hr Composite	
PFOA (ng/L)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
PFOS (ng/L)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	
PFBS (ng/L)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab	

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
	Monthly	Maximani	William	Monthly	Maximani	Maximani	Trequency	Type
HFPO-DA (ng/L)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab

Compliance Sampling Location: At Outfall 001


	6.0 Tools and References Used to Develop Permit
	MOM for Mindows Model (see Attachment
	WQM for Windows Model (see Attachment) Toxics Management Spreadsheet (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002,
	12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
\boxtimes	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: Establishing effluent limitation for individual industrial waste
	Other:

7. Attachments

A. Topographical Map

B. Process Flow Diagram

C. Toxic Management Spreadsheet

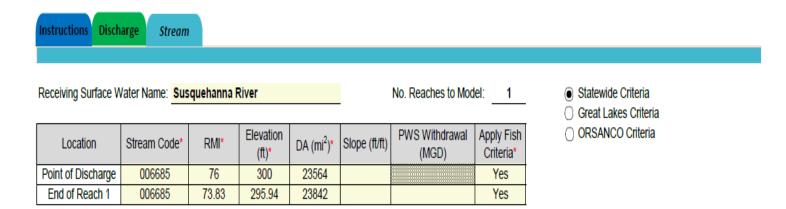
Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Facility: Veolia Harrisburg Plant

NPDES Permit No.: PA0014621 Outfall No.: 001

Evaluation Type: Major Sewage / Industrial Waste


Wastewater Description: Industrial watewater

Discharge Characteristics												
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	5)	Complete Mix Times (min)						
(MGD)*	naruness (mg/l)	рн (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
0.544	74	7										

					0 If lef	t blank	0.5 lf le	eft blank	0	if left blan	k	1 If left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		222									
1	Chloride (PWS)	mg/L		73.7									
Group	Bromide	mg/L		1.1									
ق	Sulfate (PWS)	mg/L		40									
	Fluoride (PWS)	mg/L	<	0.2									
	Total Aluminum	μg/L		1200									
1	Total Antimony	μg/L	٧	1									
	Total Arsenic	μg/L		1.5									
	Total Barium	μg/L		26									
	Total Beryllium	μg/L	<	0.5									
	Total Boron	μg/L	<	50									
	Total Cadmium	μg/L	<	0.2									
	Total Chromium (III)	μg/L	<	1									
	Hexavalent Chromium	μg/L	<	0.42									
	Total Cobalt	μg/L	<	2.5									
	Total Copper	μg/L	<	2.5									
2	Free Cyanide	μg/L											
Group	Total Cyanide	μg/L	<	4									
ق	Dissolved Iron	μg/L	<	60									
	Total Iron	μg/L		900									
1	Total Lead	μg/L	<	1									
1	Total Manganese	μg/L		180									
1	Total Mercury	μg/L	<	0.2									
	Total Nickel	μg/L		2.7									
	Total Phenols (Phenolics) (PWS)	μg/L	<	4									
	Total Selenium	μg/L	<	2									
	Total Silver	μg/L	<	0.5									
	Total Thallium	μg/L	<	0.5									
	Total Zinc	μg/L	<	97									
	Total Molybdenum	μg/L	<	1									

Stream / Surface Water Information

Veolia Harrisburg Plant, NPDES Permit No. PA0014621, Outfall 001

Q 7-10

Location	RMI LFY		Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	nry	Strear	m	Analys	sis
Location	IXIVII	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рН	Hardness*	pH*	Hardness	pН
Point of Discharge	76	0.1										100	7		
End of Reach 1	73.83	0.1													

 Q_h

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time		Tributary		Stream		Analysis	
Location	PAIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН	
Point of Discharge	76															
End of Reach 1	73.83															

Chem Translator of 0.316 applied

Chem Translator of 0.982 applied

Chem Translator of 0.96 applied

Chem Translator of 0.793 applied

Chem Translator of 0.85 applied

Chem Translator of 0.998 applied

Chem Translator of 0.922 applied

Chem Translator of 0.85 applied

Chem Translator of 0.978 applied

Model Results

Total Chromium (III)

Hexavalent Chromium

Total Cobalt

Total Copper

Dissolved Iron

Total Iron

Total Lead

Total Manganese

Total Mercury

Total Nickel

Total Phenols (Phenolics) (PWS)

Total Selenium

Total Silver

Total Thallium

Total Zinc

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Veolia Harrisburg Plant, NPDES Permit No. PA0014621, Outfall 001

Instructions Results	RETURN	TO INPU	rs) (SAVE AS	PDF	PRINT	r) () A	All () Inputs	O Results	O Limits	
☐ Hydrodynamics											
✓ Wasteload Allocations											
☑ AFC	CCT (min):	5	PMF:	0.009	Ana	llysis Hardne	ss (mg/l):	98.96	Analysis pH:	7.00	
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Со	mments	
Total Dissolved Solids (PWS)		0		0	N/A	N/A	N/A				
Chloride (PWS)	0	0		0	N/A	N/A	N/A				_
Sulfate (PWS)	0	0		0	N/A	N/A	N/A				_
Fluoride (PWS)	0	0		0	N/A	N/A	N/A				
Total Aluminum	0	0		0	750	750	18,756				_
Total Antimony	0	0		0	1,100	1,100	27,509				
Total Arsenic	0	0		0	340	340	8,503		Chem Trans	slator of 1 applied	_
Total Barium	0	0		0	21,000	21,000	525,180				
Total Boron	0	0		0	8,100	8,100	202,570				_
Total Cadmium	0	0		0	1.993	2.11	52.8		Chem Transla	tor of 0.944 applied	

564.908

16

95

13.307

N/A

N/A

63.851

N/A

1.400

464.114

N/A

N/A

3.159

65

116.147

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1,788

16.3

95.0

13.9

N/A

N/A

80.6

N/A

1.65

465

N/A

N/A

3.72

65.0

119

44,707

407

2,376

347

N/A

N/A

2,015

N/A

41.2

11,630

N/A

N/A

93.0

1,626

2,970

☑ CFC CCT (min): 720 PMF: 0.059 Analysis Hardness (mg/l): 99.845 Analysis pH: 7.00

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	36,814	
Total Arsenic	0	0		0	150	150	25,100	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	686,079	
Total Boron	0	0		0	1,600	1,600	267,738	
Total Cadmium	0	0		0	0.246	0.27	45.2	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.020	86.1	14,403	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	1,739	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	3,179	

Model Results 4/4/2024 Pag

Total Copper	0	0	0	8.944	9.32	1,559	Chem Translator of 0.96 applied
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	4,201,517	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.512	3.18	531	Chem Translator of 0.791 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	152	Chem Translator of 0.85 applied
Total Nickel	0	0	0	51.938	52.1	8,717	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	835	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	2,175	
Total Zinc	0	0	0	117.983	120	20,023	Chem Translator of 0.986 applied

NPDES Permit Fact Sheet Veolia Water PA

Total Silver

0

0

CCT (min): 720 PMF: 0.059 N/A ✓ THH Analysis Hardness (mg/l): N/A Analysis pH: Stream Trib Conc WQC Stream Fate WQ Obj WLA (µg/L) Pollutants Comments Conc CV (µg/L) Coef (µg/L) (µg/L) ua/L Total Dissolved Solids (PWS) 0 500,000 500,000 0 N/A 0 Chloride (PWS) 0 0 0 250,000 250,000 N/A Sulfate (PWS) 0 0 0 250,000 250,000 N/A Fluoride (PWS) 0 0 0 2,000 2,000 N/A Total Aluminum 0 0 0 N/A N/A N/A Total Antimony 0 0 937 0 5.6 56 Total Arsenic 0 0 0 10 10.0 1,673 Total Barium 0 0 0 2,400 2.400 401,607 Total Boron 0 0 0 3,100 3,100 518,743 Total Cadmium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A Dissolved Iron 0 0 0 300 300 50,201 0 0 Total Iron 0 N/A N/A N/A 0 0 N/A Total Lead 0 N/A N/A 0 0 0 1,000 1,000 167,336 Total Manganese Total Mercury 0 0 0 0.050 0.05 8.37 Total Nickel 0 0 0 610 610 102,075 Total Phenols (Phenolics) (PWS) 0 0 0 5 5.0 N/A Total Selenium 0 0 0 N/A N/A N/A Total Silver 0 0 0 N/A N/A N/A Total Thallium 0 0 0 0.24 0.24 40.2 Total Zinc 0 0 0 N/A N/A N/A CCT (min): 720 PMF: 0.083 Analysis Hardness (mg/l): N/A ☑ CRL Analysis pH: N/A WQ Obj Stream Trib Conc Fate WQC Pollutants Conc WLA (µg/L) Comments CV (µg/L) Coef (µg/L) (µg/L) ua/L) Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 N/A N/A N/A Fluoride (PWS) 0 0 0 N/A N/A N/A Total Aluminum 0 0 0 N/A N/A N/A Total Antimony 0 0 0 N/A N/A N/A Total Arsenic 0 0 0 N/A N/A N/A 0 N/A N/A N/A Total Barium 0 0 0 N/A N/A Total Boron 0 0 N/A Total Cadmium 0 0 0 N/A N/A N/A Total Chromium (III) 0 0 0 N/A N/A N/A Hexavalent Chromium 0 0 0 N/A N/A N/A Total Cobalt 0 0 0 N/A N/A N/A Total Copper 0 0 0 N/A N/A N/A 0 0 Dissolved Iron 0 N/A N/A N/A Total Iron 0 0 0 N/A N/A N/A N/A N/A N/A Total Lead 0 0 0 Total Manganese 0 0 0 N/A N/A N/A Total Mercury 0 0 0 N/A N/A N/A Total Nickel 0 0 0 N/A N/A N/A Total Phenols (Phenolics) (PWS) 0 0 0 N/A N/A N/A Total Selenium 0 0 N/A N/A N/A 0 Model Results 4/4/2024 Page

Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
		1			I		

N/A

N/A

N/A

0

NPDES Permit Fact Sheet Veolia Water PA

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	ation Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Model Results 4/4	4/2024	Page 1
-------------------	--------	--------

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	Discharge Conc < TQL
Total Aluminum	12,022	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	1,673	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	336,619	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	129,839	μg/L	Discharge Conc < TQL
Total Cadmium	33.8	μg/L	Discharge Conc < TQL
Total Chromium (III)	14,403	μg/L	Discharge Conc < TQL
Hexavalent Chromium	261	μg/L	Discharge Conc < TQL
Total Cobalt	1,523	μg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	222	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	50,201	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	4,201,517	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	531	μg/L	Discharge Conc < TQL
Total Manganese	167,336	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	8.37	μg/L	Discharge Conc < TQL
Total Nickel	7,454	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	Discharge Conc < TQL
Total Selenium	835	μg/L	Discharge Conc < TQL
Total Silver	59.6	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	40.2	μg/L	Discharge Conc < TQL
Total Zinc	1,904	μg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

D. TRC Calculations

TRC EVALUATION					
Input appropriate values in A3:A9 and D3:D9					
2356.4 = Q stream (cfs)			0.5	= CV Daily	
0.544 = Q discharge (MGD)			0.5	= CV Hourly	
30 = no. samples			0.009	= AFC_Partia	al Mix Factor
0.3 = Chlorine Demand of Stream			0.059	= CFC_Parti:	al Mix Factor
0	0 = Chlorine Demand of Discharge			= AFC_Crite	ria Compliance Time (min)
0.5	= BAT/BPJ	Value	720	= CFC_Crite	ria Compliance Time (min)
0 = % Factor of Safety (FOS)		0	0 =Decay Coefficient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc = 8.058		1.3.2.iii	WLA cfc = 51.388
PENTOXSD TRG	5.1a	LTAMULT afc = 0.373		5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	5.1b	LTA_afc= 3.003		5.1d	LTA_cfc = 29.875
Source	Effluent Limit Calculations				
PENTOXSD TRG	5.1f AML MULT = 1.231				
PENTOXSD TRG	5.1g	5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ			
INST MAX LIMIT (mg/l) = 1.635					
WLA afc	(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))				
LTAMULT afc	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)				
LTAMOLT aic	wla_afc*LTAMULT_afc				
LTA_GIO	Wa_alo ETAMOET_alo				
WLA_cfc	(.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)				
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)				
LTA_cfc	wla_cfc*LTAMULT_cfc				
AML MULT	EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))				
AVG MON LIMIT	MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)				
INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)					