

Application TypeRenewalFacility TypeMunicipalMajor / MinorMinor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0020036

 APS ID
 1042613

 Authorization IE
 1360625

Applicant and Facility Information

Applicant Name	Blossburg Municipal Authority	Facility Name	Blossburg Municipal Authority Wastewater Treatment Plant
Applicant Address	241 Main Street	Facility Address	93 East Creek Road
	Blossburg, PA 16912-1125		Blossburg, PA 16912-1110
Applicant Contact	George Lloyd	Facility Contact	George Lloyd
Applicant Phone	(570) 638-2452	Facility Phone	(570) 638-2452
Client ID	61974	Site ID	248315
Ch 94 Load Status	Existing Hydraulic Overload	Municipality	Blossburg Borough
Connection Status	No Exceptions Allowed	County	Tioga
Date Application Rece	ived July 6, 2021	EPA Waived?	No
Date Application Acce	pted July 13, 2021	If No, Reason	Significant CB Discharge
Purpose of Application	_Renewal of an existing NPDES	permit for the discharge of	treated sewage.

Public Participation

The Department of Environmental Protection ("DEP") will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
x		<i>Derek S. Garner</i> Derek S. Garner / Project Manager	3/30/2022
x		Nicholas W. Hartranft Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	3/31/2022

		•••	
Outfall No. 001		Design Flow (MGD)	0.45
Latitude 41° 4	1' 38.69"	Longitude	-77º 4' 25.35"
Quad Name Blo	ssburg	Quad Code	0529
Wastewater Descrip	otion: <u>Sewage Effluent</u>		
Receiving Waters	Tioga River	Stream Code	30990
NHD Com ID	57353107	RMI	36.68
Drainage Area	91	Yield (cfs/mi²)	0.061
Q7-10 Flow (cfs)	5.59	Q7-10 Basis	Streamgage No. 01516350
Elevation (ft)	1300	Slope (ft/ft)	0.015
Watershed No.	4-A	Chapter 93 Class.	CWF
Existing Use	n/a	Existing Use Qualifier	n/a
Exceptions to Use	n/a	Exceptions to Criteria	n/a
Assessment Status	Impaired		
Cause(s) of Impairm	nent <u>Metals, pH</u>		
Source(s) of Impairr	mentAbandoned Mine Drainac	le	
TMDL Status	Final	Name <u>Tioga River</u>	
		-	
Nearest Downstrear	n Public Water Supply Intake	PA-NY Border	
PWS Waters T	ioga River	Flow at Intake (cfs)	27.88
PWS RMI <u>1</u>	3.14	Distance from Outfall (mi)	23.73

Discharge, Receiving Waters and Water Supply Information

Treatment Facility Summary

The Blossburg Municipal Authority ("BMA") Wastewater Treatment Plant ("WWTP") is operated under WQM Permit No. 5902403. Influent flows are screened by a manual bar screen and comminutor and pumped to a splitter box. The splitter box diverts wastewater to one of two clarigesters (a primary clarifier stacked on an anaerobic digester) for primary clarification. From the clarigesters the wastewater flows via gravity to a trickling filter. A portion of the flow is then recirculated back to the head of the trickling filter, while the majority of the wastewater flows via gravity to the secondary clarifier. After secondary clarification wastewater is disinfected in two chlorine contact tanks operated in series. The disinfected effluent is ultimately discharged to the Tioga River.

Sludge that is anaerobically digested at the bottom of the clarigesters is wasted to four sand drying beds. Sludge that is wasted from the secondary clarifier is wasted to a separate set of two drying beds. The dried sludge is either hauled to the Northern Tier Solid Waste Authority Landfill in Burlington or used as a soil amendment in regional mine reclamation projects. The facility does not have a biosolids program.

WQM Permit No. 5902403 was amended in November 2019 to approve significant upgrades to the existing treatment plant. The upgrades include; a new mechanical fine screen, upgrades to the existing influent pumps station, replacement of the existing force main, new headworks building, new grit removal system, new sludge dewatering system, installation of a new sequencing batch reactor (SBR) process, new aerobic digestion facilities, new equalization system, tertiary filtration, chemical feed systems, UV disinfection, and a new outfall. The upgraded treatment plant will increase the annual average design flow from 0.40 to 0.45 MGD and the design organic capacity from 680 to 1,020 lb/day. Construction of the upgrades has not yet begun.

Compliance History

On November 17, 2016 DEP and BMA entered into a Consent Order and Agreement ("CO&A") that required BMA to construct significant upgrades to the existing wastewater treatment plant to address chronic effluent limit exceedances. As part of the CO&A, BMA was required to develop a Corrective Action Plan ("CAP"). The CAP required construction of the facility upgrades to start by September 30, 2020 and start-up of the upgrades by September 30, 2022. Neither of these deadlines were met, and the CO&A was amended in May 2021 with updated milestone dates; commence construction by October 31, 2022 and start-up by October 31, 2024.

The following violations occurred during the existing permit's term:

Violation	Violation	Violation		Resolved
ID	Date	Туре	Violation Type Description	Date
			NPDES - Illegal discharge to waters of the	
803305	10/30/2017	92A.47(C)	Commonwealth from a sanitary sewer overflow (SSO)	12/6/2017
816035	4/24/2018	92A.44	NPDES - Violation of effluent limits in Part A of permit	5/8/2018
820304 (1)	5/31/2018	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	6/21/2018
820449 (2)	3/2/2018	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	6/25/2018
820450 ⁽³⁾	4/16/2018	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	6/25/2018
842078	1/28/2019	92A.44	NPDES - Violation of effluent limits in Part A of permit	2/19/2019
842079	11/26/2018	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	2/19/2019
854629 ⁽⁴⁾	6/18/2019	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	7/3/2019
868277	10/31/2019	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	11/26/2019
876979	2/13/2020	92A.44	NPDES - Violation of effluent limits in Part A of permit	2/20/2020
884141	4/30/2020	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	5/7/2020
904904 (5)	12/24/2020	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	12/27/2020
919419 ⁽⁶⁾	5/10/2021	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	6/4/2021
924971	7/12/2021	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	8/2/2021
931659	9/23/2021	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	3/17/2022
936294	10/29/2021	CSL201	CSL - Unauthorized, unpermitted discharge of sewage to waters of the Commonwealth	11/22/2021

⁽¹⁾ SSO at the sewer plant lift station from approximately 5:30 pm on May 11 until 11:00 pm on May 11. It was estimated that 0.02145 MG of sewage was discharged onto the ground adjacent to the Tioga River during the event.

⁽²⁾ SSO at sewer plant lift station on March 02, 2018. It was estimated by BMA that 0.28 MG was discharged during the event.

⁽³⁾ BMA estimated that 0.0765 MG of sewage was discharged onto the ground adjacent to the Tioga River during the event.

⁽⁴⁾ SSO event which began on 6/18/2019. 5 day follow up letter estimated that approximately 1.57 MG of sewage was discharge onto the ground adjacent to the Tioga River.

⁽⁵⁾ Area wide flood event.

⁽⁶⁾ Unauthorized discharge due to high flows, approximately 130,000 gallons discharged.

There are no open violations associated with the permittee.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.45
Latitude	41º 41' 39.1	0"	Longitude	-77º 4' 25.20"
Wastewater De	escription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations ("WQBELs")

DEP models in-stream conditions to determine if WQBELs are appropriate. Models were created using WQM 7.0 v1.0b for CBOD5, ammonia-N, and dissolved oxygen and the Toxics Management Spreadsheet v1.3 ("TMS") for toxics. Both models were run at the proposed increased design flow of 0.45 MGD to ensure water quality is not impacted at the higher rate of discharge.

The water quality model WQM 7.0 v1.0b is used to determine the WQBELs for dissolved oxygen, CBOD5 and ammonia-n (NH3-N) based on a multiple-discharge analysis, if applicable. The model assumes complete and instantaneous mixing with the receiving surface water. The reach chosen to model the in-stream characteristics is appropriate as a recovery in dissolved oxygen levels is demonstrated. The modeling output is as follows:

	Discharge	charge Effluent Limitations						
Parameter	Conc. (mg/l)	30 Day Average (mg/l)	Maximum (mg/l)	Minimum (mg/l)				
CBOD5	25	25						
NH3-N	25	25	50					
Dissolved Oxygen	3			3				

The input concentration for CBOD5 is the current average monthly technology-based concentration limitation in the existing permit. The ammonia-N and dissolved oxygen input concentrations of 25 and 3 mg/l, respectively, are typical concentrations contained within treated effluent. Based on the model output (attached), no WQBELs are recommended for CBOD5, ammonia-n and dissolved oxygen.

Unlike WQM 7.0 v1.0b, the TMS is a single discharge model that does not assume instantaneous mixing with the receiving surface water upon discharge, but instead, assigns a partial mixing factor based upon surface water and discharge characteristic.

Maximum concentrations for pollutants reported in the effluent testing section of the application as well as historic sample results for metals currently in the existing NPDES permit were entered into the TMS to determine if the pollutant requires limits are monitoring requirements. The TMS output results (attached) indicate no limits or monitoring requirements are necessary.

NPDES Permit Fact Sheet Blossburg Municipal Authority Wastewater Treatment Plant

Total residual chlorine ("TRC") limitations were evaluated using the TRC_CALC spreadsheet (attached). The existing design flow of 0.40 MGD was used since upon expansion to 0.45 MGD the facility will switch to UV disinfection. The spreadsheet indicates the existing BAT effluent limitations are protective of the receiving water.

The existing permit requires total phosphorus limits of 2.0 mg/l average monthly, 3.0 mg/l weekly average, and 4.0 mg/l instantaneous maximum since the discharge is upstream of Tioga Lake. A Lake Trophic Survey was conducted in 2006 to determine if phosphorus limits were necessary to protect water quality of the lake. The survey data was input into DEP's lake model. The model output (attached) indicates that no additional point source controls are required at this time.

Best Professional Judgment (BPJ) Limitations

DEP proposes to retain effluent monitoring requirements for ammonia-n and dissolved oxygen, as well as influent monitoring for BOD5 and TSS to continue to characterize the wastewater.

The existing permit established annual monitoring requirements for bromide based on sample results reported in the previous application. A review of the annual sample results since permit renewal indicates bromide has not been detected during this permit cycle. Accordingly, DEP recommends that bromide monitoring requirements are removed from the permit.

The abovementioned CO&A requires the upgraded WWTP to be operational by October 31, 2024, which includes a new UV disinfection system. Accordingly, DEP has proposed to remove TRC requirements and establish UV requirements effective November 1, 2024 through the permit's expiration date.

Total Maximum Daily Load (TMDL)

The Tioga River TMDL establishes abandoned mine drainage ("AMD") related load and waste load allocations for nonpoint and point source discharges, respectively. A waste load allocation was not assigned to the BMA WWTP. However, to verify that the facility is not contributing to the impairment of Tioga River, annual monitoring requirements for the metals traditionally associated with AMD (aluminum, iron, and manganese) were established in the existing permit. The annual monitoring results are as follows:

Parameter	WQ Criteria (mg/l)	Sample Results (mg/l)				
Aluminum	0.75	0.236	0.156			
Iron	1.5	0.523	0.508	0.926	0.803	
Manganese	1.0	0.278	0.194	0.274	0.561	

Annual monitoring results indicate that none of the parameters are discharged in concentrations that exceed water quality criterion. Since a discharge below criteria is generally not anticipated to add to the receiving water body's impairment, DEP has proposed to eliminate monitoring requirements for aluminum, iron, and manganese.

Chesapeake Bay

Pennsylvania's Phase 3 Watershed Implementation Plan ("WIP") Wastewater Supplement (Revised, September 13, 2021) identifies the BMA WWTP as a Phase 3 facility with a total nitrogen cap load of 7,306 lbs/yr and a total phosphorus cap load of 974 lbs/yr. These cap loads are unchanged from previous phases of the WIP and match the existing cap loads currently established in the permit. The WIP states that expansions by any significant sewage discharger, such as BMA, will not result in any increase in cap loads. Accordingly, no adjustment is needed for the proposed expansion from 0.4 to 0.45 MGD.

Anti-Backsliding

Per 40 CFR § 122.44(I)(2)(i)(B)(1), DEP has proposed to eliminate monitoring requirements for bromide, aluminum, iron, and manganese based on sample results that were not available at the time of the existing permit's renewal.

Existing Effluent Limitations and Monitoring Requirements

The existing effluent limitations and monitoring requirements are as follows:

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Deremeter	Mass Unit	s (lbs/day)		Concentrati	ons (mg/L)		Minimum	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Metered
pH (S.U.)	ХХХ	xxx	6.0	xxx	9.0 Max	ххх	1/day	Grab
Dissolved Oxygen	ххх	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	80	130	xxx	25.0	40.0	50	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Suspended Solids	100	150	xxx	30.0	45.0	60	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	ххх	1/week	8-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	ХХХ	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	ХХХ	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Ammonia-Nitrogen	Report	Report	xxx	Report	Report	XXX	2/week	8-Hr Composite
Total Phosphorus	6.5	10	XXX	2.0	3.0	4	2/week	8-Hr Composite
Aluminum, Total	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	ХХХ	1/year	8-Hr Composite
Iron, Total	Report Annl Avg	XXX	XXX	Report Annl Avg	XXX	XXX	1/year	8-Hr Composite

NPDES Permit Fact Sheet Blossburg Municipal Authority WWTP

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Deremeter	Mass Units (lbs/day)			Concentrati	Minimum	Required		
Falameter	Average	Weekly	Minimatura	Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	winimum	wonthiy	Average	Maximum	Frequency	туре
	Report			Report				8-Hr
Manganese, Total	Anni Avg	XXX	XXX	Annl Avg	XXX	XXX	1/year	Composite
		Report			Report			8-Hr
Bromide	XXX	Daily Max	XXX	XXX	Daily Max	XXX	1/year	Composite

Compliance Sampling Location: Outfall 001

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Ef	Monitoring Re	quirements			
Parameter	Mass Unit	s (lbs/day)	Cor	ncentrations (m	Minimum	Required	
Parameter	Monthly	Monthly Annual Minimum Average		Monthly Average	Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	2/week	8-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	2/week	8-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/week	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	8-Hr Composite
Net Total Nitrogen	Report	7306	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	974	XXX	XXX	XXX	1/month	Calculation

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through October 31, 2024.

				Monitoring Requirements				
Parameter	Mass Unit	s (lbs/day)		Concentrations (mg/L)			Minimum	
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	XXX	xxx	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	Report Inst Min	xxx	XXX	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	80	130	xxx	25.0	40.0	50	1/week	8-Hr Composite
Total Suspended Solids	100	150	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	xxx	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	2/week	8-Hr Composite
Nitrate-Nitrite as N (Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	ХХХ	1/month	Calculation
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Nitrogen (Total Load, lbs) (lbs)	Report Total Mo	xxx	xxx	XXX	xxx	xxx	1/month	Calculation
Ammonia-Nitrogen	Report	Report	XXX	Report	Report	XXX	2/week	8-Hr Composite
Ammonia-Nitrogen (Total Load, Ibs) (Ibs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Outfall 001, Continued (from Permit Effective Date through October 31, 2024)

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	s (lbs/day)		Concentrati	ons (mg/L)		Minimum	Required	
Falameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	2/week	8-Hr Composite	
Total Kjeldahl Nitrogen (Total Load, Ibs) (Ibs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation	
Total Phosphorus	6.5	10	XXX	2.0	3.0	4	2/week	8-Hr Composite	
Total Phosphorus (Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation	

NPDES Permit Fact Sheet Blossburg Municipal Authority Wastewater Treatment Plant

Outfall 001, Effective Period: November 1, 2024 through Permit Expiration Date.

			Effluent Li	mitations			Monitoring Requirements	
Devementer	Mass Unit	s (lbs/day)		Concentratio	ons (mg/L)		Minimum	Required
Parameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	xxx	6.0	xxx	xxx	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	Report	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	90	150	XXX	25.0	40.0	50	1/week	8-Hr Composite
Total Suspended Solids	110	165	XXX	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ХХХ	xxx	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	xxx	1000	1/week	Grab
Ultraviolet light transmittance (%)	XXX	xxx	Report	XXX	ххх	XXX	1/day	Measured
Nitrate-Nitrite as N	XXX	xxx	XXX	Report	xxx	XXX	2/week	8-Hr Composite
Nitrate-Nitrite as N (Total Load, lbs) (lbs)	Report Total Mo	xxx	XXX	XXX	ХХХ	XXX	1/month	Calculation
Total Nitrogen	ХХХ	XXX	XXX	Report	ХХХ	XXX	1/month	Calculation
Total Nitrogen (Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia-Nitrogen	Report	Report	XXX	Report	Report	XXX	2/week	8-Hr Composite
Ammonia-Nitrogen (Total Load, lbs) (lbs)	Report Total Mo	xxx	XXX	XXX	XXX	XXX	1/month	Calculation
Total Kjeldahl Nitrogen	ХХХ	xxx	XXX	Report	xxx	XXX	2/week	8-Hr Composite
Total Kjeldahl Nitrogen (Total Load, lbs) (lbs)	Report Total Mo	xxx	XXX	XXX	xxx	XXX	1/month	Calculation
Total Phosphorus	7.5	11	xxx	2.0	3.0	4	2/week	8-Hr Composite

NPDES Permit Fact Sheet Blossburg Municipal Authority Wastewater Treatment Plant

Outfall 001, Continued (from November 1, 2024 through Permit Expiration Date)

			Effluent Li	mitations			Monitoring Red	quirements
Baramatar	Mass Unit	s (lbs/day)		Concentratio	ons (mg/L)		Minimum	Required
Faranieler	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Phosphorus (Total Load, lbs) (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	ххх	1/month	Calculation

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements		
Baramatar	Mass Unit	Mass Units (lbs/day) Concentrations (mg/L)					Minimum	Required	
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Biochemical Oxygen Demand (BOD5)	Bonort	Poport	~~~~	Bonort	~~~~	~~~~	1/wook	8-Hr	
Raw Sewage Iniluent	кероп	кероп	^^^	кероп	~~~	^^^	I/week	Composite	
Total Suspended Solids								8-Hr	
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	Composite	
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab	

NPDES Permit Fact Sheet Blossburg Municipal Authority Wastewater Treatment Plant

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Requirements	
Deremeter	Mass Uni	ts (Ibs/day)		Concentrati	ons (mg/L)		Minimum	Required
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen (lbs)		7306						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Nitrogen (lbs)	ХХХ	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Ammonia (lbs)	ххх	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)	ххх	Report Total Annual	XXX	xxx	xxx	xxx	1/year	Calculation
Total Phosphorus (lbs) Effluent Net	ХХХ	974 Total Annual	XXX	xxx	XXX	ХХХ	1/year	Calculation

		Strea Cod	ım le	Stre	eam Name		RMI	Elevat (ft)	ion l	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
		309	990 TIOGA	RIVER			38.68	129	94.00	91.00	0.00000	0.00	
					St	tream Dat	а						
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u> </u> Temp	<u>Fributary</u> pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	Time (days)	(fps)		(ft)	(ft)	(ºC)		(°C)		
Q7-10	0.061	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20	.00 6.5	0 0	0.00 0.00	0
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					Di	ischarge [Data						
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac	Disc rve Tem tor (°C)	c Dis p pł	SC H	

0.4500

Disc

Conc

(mg/L)

25.00

3.00

25.00

Parameter Data

0.4500

Trib

Conc

(mg/L)

2.00

8.24

0.00

0.4000

Stream

Conc

0.000

(mg/L) (1/days)

0.00

0.00

0.00

Fate

Coef

1.50

0.00

0.70

25.00

7.00

Input Data WQM 7.0

Blossburg WWTP

CBOD5

NH3-N

Dissolved Oxygen

PA0020036

Parameter Name

		Strea Coo	am le	Stre	am Name		RMI		Elevatio (ft)	on	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)	al	Apply FC
		309	990 TIOGA	A RIVER			35.82	20	120	9.00	102.00	0.00000	0	0.00	\checkmark
					S	tream Da	ta								
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rc Dep	h pth	Temp	<u>Tributary</u> o pH	Terr	<u>Stream</u> p p	н	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(fi	t)	(°C)		(°C)		
Q7-10	0.061	0.00	0.00	0.000	0.000	0.0	0.00		0.00	20	0.00 6.5	50	0.00 (0.00	
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000 0.000										

Input Data WQM 7.0

Discharge Data												
Ex L Name Permit Number F (r	tisting Po Disc Flow mgd)	ermittec Disc Flow (mgd)	d Design Disc Flow (mgd)	n Resen Facto	Di ve Te or (%	sc mp C)	Disc pH					
(0.0000	0.0000	0.000	00 0.0	000	25.00	7.00					
Param	neter Data	а										
Decomptor Name	Disc Conc	Tri Co	ib St onc (tream Conc	Fate Coef							
	(mg/L	.) (mę	g/L) (r	mg/L) ('	1/days)							
CBOD5	25.	00	2.00	0.00	1.50							
Dissolved Oxygen	3.	00	8.24	0.00	0.00							
NH3-N	25.	00	0.00	0.00	0.70							

	<u>SW</u>	P Basin	<u>Strea</u>	<u>m Code</u>				Stream	<u>Name</u>			
		04A	30990					TIOGA F	RIVER			
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
38.680	5.55	0.00	5.55	.6188	0.00563	.725	39.05	53.84	0.22	0.802	20.50	6.53
Q1-1	0 Flow											
38.680	4.61	0.00	4.61	.6188	0.00563	NA	NA	NA	0.20	0.880	20.59	6.54
Q30-	10 Flow											
38.680	7.49	0.00	7.49	.6188	0.00563	NA	NA	NA	0.25	0.688	20.38	6.52

WQM 7.0 Hydrodynamic Outputs

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.83	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.35	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	6		

	<u>SWP Basin</u> <u>Str</u>	eam Code		St	ream Name			
	04A	30990		тіс	DGA RIVER			
NH3-N /	Acute Allocatio	ns						
RMI	Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
38.68	0 Blossburg WWT	21.28	50	21.28	50	0	0	
NH3-N (Chronic Allocat	ions	Decelia	N de al Cas La	Markin I.	Oritical	Demon	
NH3-N (RMI	Chronic Allocat	ions Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
NH3-N (RMI 	Discharge Name	Baseline Criterion (mg/L) 2.07	Baseline WLA (mg/L) 25	Multiple Criterion (mg/L) 2.07	Multiple WLA (mg/L) 25	Critical Reach	Percent Reduction	
NH3-N (RMI 38.68 Dissolve	Chronic Allocat Discharge Name 0 Blossburg WWT ed Oxygen Allo	ions Baseline Criterion (mg/L) 2.07 Cations	Baseline WLA (mg/L) 25	Multiple Criterion (mg/L) 2.07	Multiple WLA (mg/L) 25	Critical Reach	Percent Reduction	
NH3-N (RMI 38.68)issolve	Chronic Allocat Discharge Name 0 Blossburg WWT ed Oxygen Allo	ions Baseline Criterion (mg/L) 2.07 cations	Baseline WLA (mg/L) 25	Multiple Criterion (mg/L) 2.07 <u>NH3-N</u>	Multiple WLA (mg/L) 25	Critical Reach 0 ved Oxygen	Percent Reduction 0 Critical	Percent

38.68 Blossburg WWTP

SWP Basin	Stream Code			Stream Name	
04A	30990			TIOGA RIVER	
RMI	Total Discharg	e Flow (mgd	<u>) Ana</u>	lysis Temperature (°C)	Analysis pH
38.680	0.40	00		20.501	6.531
Reach Width (ft)	Reach D	epth (ft)		Reach WDRatio	Reach Velocity (fps)
39.045	0.72	25		53.840	0.218
Reach CBOD5 (mg/L)	<u>Reach Kc</u>	(1/days)	<u>F</u>	Reach NH3-N (mg/L)	<u>Reach Kn (1/days)</u>
4.31	0.64	47		2.51	0.728
Reach DO (mg/L)	<u>Reach Kr</u>	<u>(1/days)</u>		Kr Equation	<u>Reach DO Goal (mg/L)</u>
7.717	11.7	93		Tsivoglou	6
Reach Travel Time (days	5)	Subreach	Results		
0.802	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.080	4.08	2.37	7.91	
	0.160) 3.87	2.23	8.02	
	0.241	3.67	2.10	8.10	
	0.321	3.48	1.99	8.16	
	0.401	3.30	1.87	8.17	
	0.481	3.13	1.77	8.17	
	0.561	2.97	1.67	8.17	
	0.642	2 2.82	1.57	8.17	
	0.722	2 2.67	1.48	8.17	
	0.802	2 2.53	1.40	8.17	

WQM 7.0 D.O.Simulation

	<u>SWP Basin</u> <u>Stre</u> 04A	eam Code 30990		<u>Stream Name</u> TIOGA RIVER			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
38.680	Blossburg WWTP	PA0020036	0.450	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3

WQM 7.0 Effluent Limits

Discharge Information

Instructions	Disch	arge Stre	eam					
Facility:	BMA W	WTP			NPDES Permit No.:	PA0020036	Outfall No.: 001	
Evaluation T	ype:	Major Sewag	ge / Indu	strial Waste	Wastewater Descrip	tion: Sewage		

			Discharge	Characterist	ics								
Design Flow	Hardnaaa (mg/l)*		pH (SU)* Partial Mix Factors (PMFs) Complete Mix Times (min)										
(MGD)*	Hardness (mg/l)	рн (30)	AFC	CFC	тнн	CRL	Q ₇₋₁₀	Q _h					
0.45	100	7											

					0 if lef	t blank	0.5 if le	eft blank	() if left blan	k	1 if lef	t blank
	Discharge Pollutant	Units	Ма	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		264							-	-	
0	Chloride (PWS)	mg/L		112									
Ino	Bromide	mg/L	<	0.5									
õ	Sulfate (PWS)	mg/L		40.3									
	Fluoride (PWS)	mg/L											
	Total Aluminum	mg/L		0.156									
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µg/L											
p 2	Free Cyanide	µg/L											
no	Total Cyanide	µg/L											
ō	Dissolved Iron	µg/L											
	Total Iron	mg/L		0.926									
	Total Lead	µg/L											
	Total Manganese	mg/L		0.561									
	Total Mercury	µg/L											
	Total Nickel	µg/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µg/L											
	Total Silver	µg/L											
	Total Thallium	µg/L											
	Total Zinc	µg/L											
	Total Molybdenum	µg/L											
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										

	Carbon Tetrachloride	µg/L	<		0 0 0				
	Chlorobenzene	µg/L			5 0 0				
	Chlorodibromomethane	ua/L	<						
	Chloroethane	ua/L	<						
	2-Chloroethyl Vinyl Ether	ua/L	<						
	Chloroform	ua/L	<						
	Dichlorobromomethane	ua/l	<						
	1 1-Dichloroethane	µg/=	~		0 0 0				
	1.2-Dichloroethane	μg/L	~						
p 3	1 1-Dichloroethylene	µg/⊑ ⊔a/l			c c				
no	1.2-Dichloropropage	µg/⊑ ⊔a/l			0 0 0				
อิ	1.3-Dichloropropylene	μg/L μα/Ι			c 				
		µg/∟ ⊔g/l							
	Fthylbonzone	µg/∟ ug/l							
		µg/∟ ug/l			0 0				
	Mothyl Chlorido	µg/∟							
	Methylene Chloride	µg/L	<						
		µg/∟	<						
		µg/∟	<						
		µg/L	<						
	1.2 trong Diphloroothylar	µg/L	<						
		µg/L	<						
		µg/L	<						
		µg/∟	<						
		µg/L	<		0 0 0				
	Vinyl Chloride	µg/L	<					 	
	2-Chlorophenol	µg/L	<					 	
	2,4-Dichlorophenol	µg/L	<		0 0 0			 	
	2,4-Dimethylphenol	µg/L	<					 	
	4,6-Dinitro-o-Cresol	µg/L	<						
d	2,4-Dinitrophenol	µg/L	<		0 0 0				
lo	2-Nitrophenol	µg/L	<		0 0 0				
G	4-Nitrophenol	µg/L	<		0 0 0				
	p-Chloro-m-Cresol	µg/L	<						
	Pentachlorophenol	µg/L	<					 	
	Phenol	µg/L	<						
	2,4,6-Trichlorophenol	µg/L	<						
	Acenaphthene	µg/L	<						
	Acenaphthylene	µg/L	<						
	Anthracene	µg/L	<						
	Benzidine	µg/L	<						
	Benzo(a)Anthracene	µg/L	<						
	Benzo(a)Pyrene	µg/L	<						
	3,4-Benzofluoranthene	µg/L	<		0 0 0				
	Benzo(ghi)Perylene	µg/L	<						
	Benzo(k)Fluoranthene	µg/L	<						
	Bis(2-Chloroethoxy)Methane	µg/L	<						
	Bis(2-Chloroethyl)Ether	µg/L	<		0 0 0				
	Bis(2-Chloroisopropyl)Ether	µg/L	<						
	Bis(2-Ethylhexyl)Phthalate	µg/L	<		0 0 0				
	4-Bromophenyl Phenyl Ether	µg/L	<		c c c				
	Butyl Benzyl Phthalate	µg/L	<		0 0 0				
	2-Chloronaphthalene	µg/L	<						
	4-Chlorophenyl Phenyl Ether	µg/L	<						
	Chrysene	µg/L	<						
	Dibenzo(a,h)Anthrancene	µg/L	<						
	1,2-Dichlorobenzene	µg/L	<						
	1,3-Dichlorobenzene	µg/L	<						
2	1,4-Dichlorobenzene	µg/L	<						
dn	3,3-Dichlorobenzidine	µg/L	<						
2 C	Diethyl Phthalate	µg/L	<						
0	Dimethyl Phthalate	µg/L	<						
	Di-n-Butyl Phthalate	µg/L	<						
	2,4-Dinitrotoluene	µg/L	<						

	2,6-Dinitrotoluene	µg/L	<						
	Di-n-Octvl Phthalate	ua/L	<						
	1.2-Diphenylhydrazine	ua/L	<				 		
	Fluoranthene	ug/l							
	Fluorene	ug/l							
	Hexachlorobenzene	ug/l	<						
	Hexachlorobutadiene	µg/L	~						
	Hexachlorocyclopentadiene	<u>µg/L</u> ug/l	~				 		
	Hexachloroethane	µg/L							
	Indeno(1,2,3-cd)Pyrene	µg/L							
		µg/∟							
	Naphthalana	µg/∟							
	Nitrobopzopo	µg/L	<hr/>						
	n Nitrogodimethylaming	µg/L	·				 		
	n Nitrogodi n Bronylomino	µg/L	·				 		
	n Nitrogodinhen domine	µg/L	<						
	n-Nitrosodiphenylamine	µg/∟	<						
	Phenanuniene	µg/∟	<						
	Pyrene	µg/∟	<						
	1,2,4- I richlorobenzene	µg/L	<				 		
	Aldrin	µg/L	<				 		
	alpha-BHC	µg/L	<				 	 	
	beta-BHC	µg/L	<			 	 		
	gamma-BHC	µg/L	<			 	 		
	delta BHC	µg/L	<			 	 		
	Chlordane	µg/L	<			 	 		
	4,4-DD1	µg/L	<						
	4,4-DDE	µg/L	<						
	4,4-DDD	µg/L	<						
	Dieldrin	µg/L	<						
	alpha-Endosulfan	µg/L	<						
	beta-Endosulfan	µg/L	<				 		
þ	Endosulfan Sulfate	µg/L	<				 		
ō	Endrin	µg/L	<		-		 		
ū	Endrin Aldehyde	µg/L	<		-				
	Heptachlor	µg/L	<		-				
	Heptachlor Epoxide	µg/L	<						
	PCB-1016	µg/L	<						
	PCB-1221	µg/L	<						
	PCB-1232	µg/L	<						
	PCB-1242	µg/L	<						
	PCB-1248	µg/L	<						
	PCB-1254	µg/L	<						
	PCB-1260	µg/L	<						
	PCBs, Total	µg/L	<						
	Toxaphene	µg/L	<						
	2,3,7,8-TCDD	ng/L	<		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	Gross Alpha	pCi/L							
~	Total Beta	pCi/L	<						
dn	Radium 226/228	pCi/L	<						
j.o	Total Strontium	µg/L	<						
0	Total Uranium	µg/L	<						
	Osmotic Pressure	mOs/kg							
			-			 	 	 	

Stream / Surface Water Information

35.82

0.061

BMA WWTP, NPDES Permit No. PA0020036, Outfall 001

100

6.5

Instructions Disch	arge Stre	eam													
Receiving Surface W	/ater Name:	<mark>Tioga River</mark>					No. Rea	aches to I	Model:	1	StaGreen	tewide Criteri eat Lakes Crit	a eria		
Location	Stream Cod	e* RMI*	Elevatio (ft)*	DA (mi²)*	Slope	e (ft/ft)	PWS \ (I	Nithdrawa MGD)	al Apply Criter	Fish ria*		SANCO Crite	eria		
Point of Discharge	030990	38.68	3 1300	91					Ye	S					
End of Reach 1	030990	35.82	2 1230	102					Ye	S					
Q ₇₋₁₀				-					-						
Location		LFY	Flow	(cfs)	N/D W	Vidth	Depth	Velocit	Timo	Tributa	ary	Stream	m	Analy	sis
Location	TNIVII	(cfs/mi ²)*	Stream	Tributary F	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	рН	Hardness*	pH*	Hardness	рН
Point of Discharge	38.68	0.061										100	6.5		

Q_h

End of Reach 1

Location	D MI	LFY	Flow	r (cfs)	W/D	Width	Depth	Velocit	Timo	Tributa	ary	Stream	n	Analys	sis
Location	TXIVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	рН
Point of Discharge	38.68														
End of Reach 1	35.82														

Model Results

BMA WWTP, NPDES Permit No. PA0020036, Outfall 001

Instructions Results	RETURN T	o inpu	TS	SAVE AS	PDF	PRINT	•) () A	II 🔿 Inputs	○ Results	⊖ Limits
Hydrodynamics										
Wasteload Allocations										
✓ AFC CC	T (min): 15	5	PMF:	0.606	Anal	ysis Hardnes	ss (mg/l):	100	Analysis pH:	6.55
Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	nments
Chlorida (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
	0	0		0	750	750	4 375			
Total Iron	0	0		0	N/A	N/A	4,373 Ν/Δ			
Total Manganese	0	0		0	N/A	N/A	N/A			
☑ CFC CC ⁻	T (min): 40.8	31	PMF:	1	Ana	lysis Hardne	ss (mg/l):	100	Analysis pH:	6.53
Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	nments
I otal Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
	0	0		0	N/A	IN/A	IN/A			
	0	0		0	N/A	N/A	N/A			
	0	0		0	1.500	1.500	12.461		NOC = 20 dov	average: PME - 1
Total Manganoso	0	0		0	1,500 N/A	1,500 N/A	13,401 N/A		MQC = 30 day	average, FINF = 1
i otai manganese	0	0		0	N/A	N/A	N/A			
✓ THH CC	T (min): 40.8	31	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Cor	nments
Total Dissolved Solids (PVVS)	0	0		0	500,000	500,000	N/A			
	0	0		0	250,000	250,000	N/A			
Sulfate (PWS)	0	0		0	250,000	250,000	N/A			

Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	8,974	
CRL CC	Г (min): 16.	.240	PMF:	1	Ana	Ilysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

4

No. Samples/Month:

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	2.8	mg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	13.5	mg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	8.97	mg/L	Discharge Conc ≤ 10% WQBEL

1A	В	С	D	Е	F	G			
2	TRC EVALU								
3	nput appropriate values in B4:B8 and E4:E7								
4	5.59) = Q stream (cfs)	0.5	= CV Daily				
5	0.4	= Q discharg	je (MGD)	0.5	= CV Hourly				
6	30) = no. sample	S	0.606	= AFC_Partial Mix Factor				
7	0.3	³ = Chlorine D	emand of Stream	1	= CFC_Partial Mix Factor				
8	0) = Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)				
9	0.5	5 = BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)				
	0	= % Factor (of Safety (FOS)	0	=Decay Coefficient (K)				
10	Source	Reference	AFC Calculations		Reference	CFC Calculations			
11	TRC	1.3.2.iii	WLA afc =	1.765	1.3.2.iii	WLA cfc = 2.820			
12	PENTOXSD TRO	6 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
13	PENTOXSD TRO	G 5.1b	LTA_afc=	0.658	5.1d	LTA_cfc = 1.640			
14									
15	Source		Effluent	Limit Calc	ulations				
16	PENTOXSD TRO	5 5.1f	AM		1.231				
1/	PENIOXSDIRG	5.1g		I (mg/I) =	0.500	BAT/BPJ			
١ŏ	INST MAX LIMIT (mg/l) = 1.635								
	WI A afc	(.019/e(-k*A	FC tc)) + [(AFC Yc*	Qs*.019/Q	d*e(-k*AFC_tc)).				
	WER alo	+ Xd + (Af	C Yc*Qs*Xs/Qd)]*(1-F	OS/100)	u o(/ o_to//				
	LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+1)^	0.5)				
	LTA_afc	LTA afc what afc*LTAMULT afc							
	WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Q	s*.011/Qd	*e(-k*CFC_tc)).				
		+ Xd + (Cf	⁻ C_Yc*Qs*Xs/Qd)]*(1-F	OS/100)					
	LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)								
	LTA_cfc	wla_cfc*LTA	MULT_cfc						
		EVD/2 226*I	N/(avdA2/na_samples	+1\00 5\ (5*1 N/avdA2/pa	samplas+1))			
		MIN/RAT RE	MIN/ITA afe ITA of	+1)=0.3)-0 Γα)*ΔΜΙ Ν	.5 LIN(CVU 2/NO <u>-</u> N II T)	_samples+1))			
	$\frac{1}{1} = \frac{1}{5} = \frac{1}$								

MPLEMENTATION SPREADSHEET FOR § 96.5 MANAGEMENT OF POINT SOURCE PHOSPHORUS DISCHARGES TO LAKES, PONDS & IMPOUNDMENT

Water Body Name:	Tic
Chapter 93 Classification:	Non-Spe
No. Point Source Discharges:	

	Tioga Lake
n:	Non-Special Protection
arges:	8

_

		Existing Flow	Design Flow	Avg Monthly Effluent TP	Direct or Tributary	Existing Annual Load	Design Annual Load
Discharger Name	NPDES Permit No.	(MGD)	(MGD)	Conc (mg/L)	Discharge	(lbs/yr)	(lbs/yr)
Mansfield Muni Auth		0.6	1.3	1	Tributary	1,826.5	3,957.3
Blossburg Muni Auth		0.375	0.4	2	Tributary	2,283.1	2,435.3
Sullivan Township		0.01	0.015	8	Tributary	243.5	365.3
Farr Valley		0.0011	0.013	8	Tributary	26.8	316.6
Wanderland Trails		0.005	0.0127	8	Tributary	121.8	309.3
Robinson Mobile Home Park		0.0045	0.0078	8	Tributary	109.6	190.0
Bakercrest		0.0023	0.005	8	Tributary	56.0	121.8
Richmond Township		0.003	0.002	8	Tributary	73.1	48.7

Lake Inputs	Value			
In-Lake TP Concentration (mg/L):	0.033			
Mean Depth of Lake (m):	6.09			
Mean Detention Time of Lake (days):	15.7			
Surface Area of Lake (acres):	470			
Lake Type:	Anoxic			
Mean Depth / Detention Time (m/yr)	141.6			

Water Body Results

Water Body Name: Tioga Lake

Type: Anoxic

Status: Non-Special Protection

		Design Conditions			
Parameter	Existing Conditions	Additional PS Controls	Recommended PS Controls		
In-Lake TP Concentration (mg/L):	0.033	0.037	0.037		
Total TP Loading Rate (lbs/ac/yr):	47.40	53.74	53.74		
Point Source Loading Rate (lbs/ac/yr):	10.24	16.58	16.58		
Trophic State Index (TSI):	54.6	56.4	56.4		
NPS Loading Rate (lbs/ac/yr):	37.16	37.16	37.16		
NPS TSI:	51.1	51.1	51.1		

Lake Status, Existing Conditions:

Water Body is Currently Eutrophic

Discharge Results

Discharger Name	NPDES Permit No.	Existing Flow (MGD)	Design Flow (MGD)	Avg Monthly Effluent TP Conc (mg/L)	Recommended TP AML (mg/L)	Additional Controls?	Design Annual Load (Ibs/yr)
Mansfield Muni Auth		0.6	1.3	1	1.00	No	3,957.3
Blossburg Muni Auth		0.375	0.4	2	2.00	No	2,435.3
Sullivan Township		0.01	0.015	8	8.00	No	365.3
Farr Valley		0.0011	0.013	8	8.00	No	316.6
Wanderland Trails		0.005	0.0127	8	8.00	No	309.3
Robinson Mobile Home Park		0.0045	0.0078	8	8.00	No	190.0
Bakercrest		0.0023	0.005	8	8.00	No	121.8
Richmond Township		0.003	0.002	8	8.00	No	48.7

Based on the TSI at Design Conditions, No Additional Point Source Controls are Required at This Time