

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0020214
APS ID	4658
Authorization ID	1392604

Applicant and Facility Information

Applicant Name Mount Union Mu		Jnion Municipal Authority Joon County	Facility Name	Mt Union STP		
Applicant Address 9 W		Market Street	Facility Address	400 North Drake Street		
	Mount U	Inion, PA 17066		Mount Union, PA 17066		
Applicant Contact	William	Shives	Facility Contact	Aaron Estep		
Applicant Phone	(814) 54	2-4051	Facility Phone	(814) 644-9198		
Client ID	24194		Site ID	447413		
Ch 94 Load Status	Not Ove	rloaded	Municipality	Mount Union Borough		
Connection Status	No Limit	ations	County	Huntingdon		
Date Application Rece	eived	April 14, 2022	EPA Waived?	No		
Date Application Accepted		April 25, 2022	If No, Reason	Major Facility, Significant CB Discharge		

Summary of Review

Keller Engineers, Inc., on behalf of the Mount Union Municipal Authority (MUMA), has applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The permit was reissued on April 17, 2017 and became effective on May 1, 2017. The permit expired on April 30, 2022.

This facility receives 52% of its flow from Mount Union Borough; 6.0% from Kistler Borough; 4.0% from Newton Hamilton Borough; 17% from Wayne Township, Mifflin County; and 21% from Shirley Township, Huntingdon County. The facility has average annual design flow 1.1 MGD and hydraulic design capacity of 1.5 MGD. The organic design capacity is 2,150 lbs BOD₅/day. There are also 3 non-significant categorical industrial users. The facility discharge is to Juniata River, which classified for warm water and migratory fishes (WWF & MF).

The WQM Part II permit No. 3199402 was issued on September 1, 2009. The WQM Part II permit No. 3199402 13-1 amendment was issued on May 22, 2013 for installed chemical storage tank, alum feed system, and increased maximum monthly organic loading to 2,150 lbs/day.

Sludge use and disposal description and location(s): N/A due to Class B sludge which is disposed of in the Sandy Run Landfill.

<u>Changes from the previous permit</u>: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml. The E. Coli. monitoring and report requirements will add to the proposed permit.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
x		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	May 20, 2022
x		/s/ Daniel W. Martin, P.E. / Environmental Engineer Manager	June 17, 2022

Discharge, Receiv	ving Wate	rs and Water Supply Info	ormation					
Outfall No. 00	24		Decign Flow (MCD)	4.4				
			_ Design Flow (MGD)	1.1				
			_ Longitude	-77º 52' 22.42"				
-	Newton Ha		_ Quad Code	1523				
Wastewater Des	scription:	Sewage Effluent						
Receiving Wate	rs Junia	ta River (WWF, MF)	Stream Code	11414				
NHD Com ID	66209	9983	RMI	80.76 miles				
Drainage Area	2050	mi. ²	Yield (cfs/mi ²)	See comments below				
Q ₇₋₁₀ Flow (cfs)	See c	comments below	Q ₇₋₁₀ Basis	See comments below				
Elevation (ft)	542		Slope (ft/ft)					
Watershed No.	12-C		Chapter 93 Class.	WWF, MF				
Existing Use	none		Existing Use Qualifier					
Exceptions to U	se none		Exceptions to Criteria					
Assessment Sta	itus	Attaining Use(s)						
Cause(s) of Imp	airment	N/A						
Source(s) of Imp	pairment	N/A						
TMDL Status		None	Name					
Background/Am	bient Data		Data Source					
pH (SU)		7.6	WQN0214, median July-Sep	1962-1987				
Temperature (°F	-)		· · · · ·					
Hardness (mg/L	.)	114	WQN0214, median July-Sep	1962-1987				
Other:	,							
Nearest Downst	ream Publi	c Water Supply Intake	Mifflintown Water Systems, Ju	uniata County				
PWS Waters	Juniata		Flow at Intake (cfs)					
PWS RMI	37.37 m	iles	Distance from Outfall (mi) Approximate 44.0 miles					

Changes Since Last Permit Issuance: none

Streamflow:

Nearest USGS Stream gage is 01563500 on Juniata River at Mapleton Depot Creek, PA. Recent stream flow retrievals resulted in a Q_{7-10} of 223 cfs. These values were obtained from the latest USGS streamflow report. The drainage area is reported to be 2,030 mi.² at the gage station. The flow calculations are shown below:

 $\begin{array}{l} Q_{7\text{-}10} \text{ runoff rate} = 223 \text{ cfs} \ /2,030 \text{ mi.}^2 = 0.11 \text{ cfs/mi.}^2 \\ Q_{30\text{-}10} \ / \ Q_{7\text{-}10} = 1.36 \\ Q_{1\text{-}10} \ / \ Q_{7\text{-}10} = 0.64 \end{array}$

The drainage area at discharge point is found to be 2,050 mi.² from USGS StreamStats.

The Q7-10 at discharge = 0.11 cfs/mi.² x 2050 mi.² = 225.5 cfs

For WQM modelling purposes, 25% of the flow will be used.

Q₇₋₁₀ model = 225.5 cfs x 0.25 = 56.38 cfs

PWS Intake:

The nearest downstream PWS is Mifflintown Water Systems in Juniata County at RMI approximately 44.0 miles downstream of the discharge. The discharge will not impact the intake because of the distance, dilution, and effluent limits.

Treatment Facility Summary

Treatment Facility Name: Mt Union Borough - STP

WQM Permit No.	Issuance Date	Description							
3199402 13-1	5/22/2013		Installation of chemical storage tank, alum feed system, and increase Maximum Monthly Organic Loading from 1,835 lbs/day to 2,150 lbs/day.						
3199402	9/1/2009	sewers on Eas	Replacement of Liverpool pump station force main, replacement of gravity sewers on East Milford Street, construction of storm sewers and three inlets on East Milford St., and construction of gravity sewers from manhole # 101A to 101C.						
	Degree o	of			Avg Annual				
Waste Type	Degree o Treatmen		Process Type	Disinfection	Avg Annual Flow (MGD)				
Waste Type Sewage	-	nt	Process Type Sequencing Batch Reactor	Disinfection Ultraviolet	-				
	Treatmen	nt	Sequencing Batch		Flow (MGD)				
Sewage	Secondary	y	Sequencing Batch		Flow (MGD)				
	Treatmen	y acity	Sequencing Batch		Flow (MGD) 1.1				

Changes Since Last Permit Issuance:

According to the permit renewal application, the treatment process follows the below train:

Wastewater:

Raw influent \rightarrow Raw influent pumping \rightarrow Screening \rightarrow Grit removal \rightarrow SBR basins (2) \rightarrow UV disinfection chamber \rightarrow Outfall 001

Sludge:

SBR basins \rightarrow Aerobic Digesters (3) \rightarrow sludge drying bed (1)/belt filter press (1) \rightarrow land disposal

Belt filter press filtrate and digester supernatant is sent back to raw influent before raw influent pumping.

Raw influent sampling location is before raw influent pumping and final effluent sampling is after UV disinfection chamber.

The facility is using Delpac 1525 for phosphorus removal, and Pollutreat CL-835 for sludge dewatering.

The facility can operate in "normal mode" or "storm mode". There are 12 decant cycles/day in normal mode and one (1) in storm mode. The length of decant cycles is 60 minutes in normal mode and 30 minutes in storm mode. Decant rate is 716 GPM. To manage the peak flow, the facility goes to "storm-flow" mode and additional operational staffs become available.

Industrial/commercial users:

The MUMA receives wastewater from three non-significant categorical industrial users throughout its service area. Two of them are non-significant categorical and one is non-significant non-categorical industry. A summary is provided below:

		Disch	arge Rate (0	Significant Industrial	Applicable Pretreatment			
Industrial User	Process	NCCW	Sanitary	Other	Total	User?	Standard	
Containment Solutions, Inc	1,584	0	367	0	1,951	No	40 CFR Part 463	
Bonney Forge Corporation	1,904	0	594	0	2,498	No	40 CFR Part 420	
Parks Transfer & Recycling Station	0	0	10	300	310	No	N/A	
TOTAL	3,488	0	971	300	4,759	-		

The permittee mentioned in their 2015 Chapter 94 report that Containment Solutions, Inc. and Bonney Forge Corporation applies pre-treatment prior to discharge in MUMA's collection system. The pre-treatment for Containment Solutions, Inc. consists of filtration of wastewater from the manufacturing building (tank grinding operation) prior to discharge into municipal sewer system. In addition, all wastewater from the test building drains into a settling tank prior to discharge to the municipal sewer system. In a letter issued on August 4, 2011, EPA identified Bonney Forge as an industrial user and

subject to the Metal Finishing Category, 40 CFR Part 433, Pretreatment Standards for New Sources (PSNS) (*the fact sheet, page 45*). As such, the monitoring and reporting requirements of the General Pretreatment Regulations, 40 CFR Part 403.12, apply to the discharge from the facility. Bonney Forge has a custom pretreatment system that removes metals to trace levels and enables recycling of effluent water back into the manufacturing process.

Biosolids Management:

The solids are stabilized in a 2-stage aerobic digestion process. Waste activated sludge (WAS) is pumped from the SBR to the two first stage aerobic digesters. Digested sludge is manually transferred to the second stage aerobic digester on an "as needed" basis for holding and storage, then pumped periodically to the belt filter press or sludge drying beds. The biosolids are Class B sludge which is disposed of in the Sandy Run Landfill.

— , , , , , , , , , , , , , , , , , , ,				— • •
The total sewage sludge /b	iosolids production wit	thin the facility for the r	previous vear was 38 6	7 dry tons
The total comage clauge /b	nooonao produotion mi		pioviouo your muo oo.c	n ary torio.

	Compliance History								
Summary of DMRs:	DMRs reported last 12 months from April 1, 2021 to March 31, 2022 are summarized in the Table below (Pages 5 thru 7).								
Summary of Inspections:	05/27/21: Mr. Clark, DEP WQS, conducted a compliance evaluation inspection. There were no violations noted. Treatment plant appeared to be operating properly, effluent clear, field tests results were within permit limits. Since last inspection one influent pump was repaired, one digester blower was replaced, and the Liverpool pump station was upgraded. The recommendations were to clean effluent flow meter flume and replace effluent thermometer.								
	01/25/21: Mr. Clark, DEP WQS, conducted an administrative review of the Mount Union STP Annual Chesapeake Bay report. There were no violations noted. No nutrient credits were sold or purchased. The facility has achieved compliance with it's nitrogen and phosphorus annual loading limits for the 2019-2020 compliance year.								
	04/4/19: Mr. Clark, DEP WQS, conducted a compliance evaluation inspection. Treatment plant appeared to be operating properly, effluent clear, field tests results were within permit limits. Since last inspection repairs were made to the #2 SBR blower coupler, #1 air valve, #1 decanter arm, fine screen, and generator.								

Other Comments: There was one violation associated with the permittee due to not submit the NPDES permit renewal application 180 days before the permit expiration day until April 14, 2022. However, the open violation was removed by the Department after the documents were received.

Compliance History

DMR Data for Outfall 001 (from April 1, 2021 to March 31, 2022)

Parameter	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
Flow (MGD)												
Average Monthly	0.625	1.081	0.345	0.345	0.339	0.372	0.712	0.436	0.362	0.397	0.605	0.702
Flow (MGD)												
Daily Maximum	1.074	2.830	1.063	1.063	0.745	1.26	3.987	1.985	1.033	0.579	1.209	1.756
pH (S.U.)												
Minimum	6.9	6.6	6.6	6.6	6.7	6.7	6.8	6.8	6.8	6.8	6.7	6.7
pH (S.U.)												
Maximum	7.1	7.1	7.0	7.0	7.1	7.3	7.2	7.3	7.3	7.2	7.1	6.9
DO (mg/L)												
Minimum	6.0	6.9	6.4	6.4	6.7	5.8	5.6	6.7	5.4	6.1	6.0	6.4
CBOD5 (lbs/day)												
Average Monthly	17.0	23.0	7.0	11.0	9.0	13.0	22.0	14.0	9.0	10.0	17.0	19.0
CBOD5 (lbs/day)												
Weekly Average	22.5	31.0	7.5	22.5	11.0	27.0	100.0	31.5	13.0	12.5	21.0	34.5
CBOD5 (mg/L)												
Average Monthly	3.0	4.0	3.0	4.0	3.0	5.0	3.0	3.0	3.0	3.0	3.0	3.0
CBOD5 (mg/L)												
Weekly Average	3.0	4.0	3.0	3.5	5.0	11.0	3.0	3.0	4.5	3.0	4.0	4.0
BOD5 (lbs/day)												
Raw Sewage Influent				450		100						100
Average Monthly	812	960	317	456	334	438	522	692	358.0	717	576	496
BOD5 (lbs/day)												
Raw Sewage Influent	1000	1010	000	047	454	<u> </u>	4000	4000	474	4540	1 1 0 0	765
Daily Maximum	1682	1616	802	617	451	682	1239	1928	474	1512	1.103	755
BOD5 (mg/L)												
Raw Sewage Influent	165	150	143	183	139	165	110	185	130	225	105	101
Average Monthly TSS (lbs/day)	155	159	143	103	139	165	110	100	130	225	105	101
Average Monthly	9.0	15	4.0	20.0	11	5.0	26.0	12.0	9.0	31.0	10.0	11.0
TSS (lbs/day)	9.0	15	4.0	20.0	11	5.0	20.0	12.0	9.0	31.0	10.0	11.0
Raw Sewage Influent												
Average Monthly	638	690	296	275	290	292	578	1064	237	678	568	551
TSS (lbs/day)	000	000	200	210	200	202	010	1004	207	010	000	001
Raw Sewage Influent												
Daily Maximum	1436	1049	1105	432	882	531	1787	3741	425	1461	1103	805
TSS (lbs/day)	1100	1010	1100	102	002			0/11	120		1100	
Weekly Average	10.5	19.0	5.5	79.5	26.0	7.5	173.0	35.5	17.0	106.0	15.5	24.5
TSS (mg/L)		1010	0.0		20.0			00.0		100.0		20
Average Monthly	2.0	2.0	2.0	5.0	4.0	2.0	2.0	3.0	3.0	8.0	2.0	2.0

TSS (mg/L) Raw Sewage Influent 123 117 128 105 119 110 113 193 87 212 102 Average Monthly 123 117 128 105 119 110 113 193 87 212 102 TSS (mg/L) Veekly Average 2.0 3.5 4.5 15.0 11.5 3.0 5.0 6.0 5.5 25.0 2.5 Fecal Coliform Image: Color	118
Average Monthly 123 117 128 105 119 110 113 193 87 212 102 TSS (mg/L)	118
TSS (mg/L) Usekly Average 2.0 3.5 4.5 15.0 11.5 3.0 5.0 6.0 5.5 25.0 2.5	118
Weekly Average 2.0 3.5 4.5 15.0 11.5 3.0 5.0 6.0 5.5 25.0 2.5	
Weekly Average 2.0 3.5 4.5 15.0 11.5 3.0 5.0 6.0 5.5 25.0 2.5	
	2.0
(No./100 ml)	
Geometric Mean 1 2 2.0 7 5.0 8.0 14.0 5 4 1 1.0	2.0
Fecal Coliform Image: Provide the second s	2.0
(No./100 ml)	
Instantaneous	
Maximum 1 16 6 70 101 397 1046 39 50.0 3 3.0	11.0
Maximum 1 10 0 70 101 397 1040 39 30.0 3 3.0 Nitrate-Nitrite (mg/L) 39 30.0 3 30.0	11.0
	2.0
	3.8
Nitrate-Nitrite (lbs)	
Total Monthly 837 700 248 465 420 589 900 713 465 360 713	660
Total Nitrogen (mg/L)	
Average Monthly 6 5 4 9 6 8 5 6 5.8 4.3 5.3	4
Total Nitrogen (lbs)	
Effluent Net	
Total Monthly 992 896 279 806 480 682 1050 775 496 420 837	750
Total Nitrogen (lbs)	
Total Monthly 992 896 279 806 480 682 1050 775 496 420 837	750
Total Nitrogen (lbs)	
Effluent Net	
Total Annual 11602	
Total Nitrogen (lbs)	
Total Annual 11602	
Ammonia (mg/L)	
Average Monthly 0.4 0.4 0.1 0.1 0.1 0.2 0.3 0.2 0.1 < 0.3	0.2
Ammonia (lbs) Image in the set of th	
Total Monthly 59 84 9 22 9 9 36 81 22 12 46.5	39
Ammonia (lbs) Company Com Company <thcom< th=""> <thco< td=""><td>00</td></thco<></thcom<>	00
Total Annual 489	
TKN (mg/L) 403	
Average Monthly 0.8 0.8 0.6 1.1 0.7 0.5 0.7 0.5 0.6 0.5 < 0.6	< 0.5
	< 0.5
TKN (lbs) 124 124 60 21 150 60 124	00
Total Monthly 124 140 31 124 60 31 150 62 62 60 124	90
Total Phosphorus	
(mg/L)	
Average Monthly 1.3 1.4 1.5 1.2 0.4 1.6 0.5 0.7 0.9 0.6 0.4	0.2
Total Phosphorus (lbs)	
Effluent Net	
Total Monthly 217 252 93 124 12 124 120 93 93 60 62	30
Total Phosphorus (lbs)	
Total Monthly 217 252 93 124 12 124 93 93 60 62	30

NPDES Permit Fact Sheet Mt Union STP						NPDES Permit No. PA0020214						
Total Phosphorus (lbs)												
Effluent Net												
Total Annual							630					
Total Phosphorus (lbs)												
Total Annual							630					
UV Dosage												
(mWsec/cm ²)												
Minimum	23.11	21.89	24.3	24.30	24.11	24.91	16.54	24.04	23.82	24.02	23.11	23.45

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	1.1
Latitude	40° 23' 4.07"		Longitude	-77º 52' 22.42"
Wastewater De	escription:	Sewage Effluent	_	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Total residual chlorine does not apply to this facility.

Water Quality-Based Limitations

WQM 7.0 version 1.1 is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and D.O. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃-N and compares calculated instream D.O. concentrations to D.O. water quality criteria. Since WQM 7.0 assumes immediate and complete mix between the discharge and stream flow, Q_{7-10} was adjusted, as shown in this factsheet page 2, to examine allowable wasteload allocations under appropriate mixing conditions. The model was utilized for this permit renewal by using adjusted Q_{7-10} and current background water quality levels of the river.

Ammonia (NH₃-N):

 NH_3 -N calculations were based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH_3 -N criteria used in the attached computer model of the stream:

*	Discharge pH	7.0	(Default per 391-2000-007)
*	Discharge Temperature	25°C	(Default per 391-2000-007)
*	Stream pH	7.0	(Default per 391-2000-006)
*	Stream Temperature	20°C	(Default for WWF per 391-2000-003)
*	Background NH ₃ -N	0 mg/L	(Assumed since no nearby upstream WWTPs)

Regarding NH₃-N limits, the attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a limit of 25.0 mg/L NH₃-N as a monthly average (AML) and 50.0 mg/L NH₃-N instantaneous maximum (IMAX) are necessary to protect the aquatic life from toxicity effects. Recent DMR data show that the plant is discharging NH₃-N well below 25.0 mg/l year-round. Therefore, no NH₃-N limits are proposed in this renewal permit.

Dissolved Oxygen (D.O.):

The D.O. goal is 6.0 mg/L. However, a minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. It is recommended that this limit be maintained in the proposed permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) No. BPNPSM-PMT-033 and has been applied to other point source dischargers throughout the state.

NPDES Permit No. PA0020214

NPDES Permit Fact Sheet Mt Union STP

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model (ver. 1.1) indicates that a monthly average limit (AML) of 25.0 mg/L, 40.0 mg/L average weekly limit (AWL), & 50.0 mg/L IMAX will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has typically been achieving concentrations below this limit. Mass limits are calculated as follows:

Average monthly mass limit: 25.0 mg/L x 1.1 MGD x 8.34 = 229.35 lbs/day Average weekly mass limit: 40.0 mg/L x 1.1 MGD x 8.34 = 367.0 lbs/day

The average monthly and average weekly mass loadings were calculated as 229.35 lbs/day and 367.0 lbs/day respectively. These values are rounded down to 225.0 lbs/day and 365.0 lbs/day, respectively. The minimum monitoring frequency will remain the same as 2/week.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml.

E. Coli:

As recommended by DEP's SOP no. BPNPSM-PMT-033, a routine monitoring for E. Coli will be included in the permit under 25 Pa. Code §92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 1/month will be included in the permit to be consistent with the recommendation from this SOP.

pH:

The effluent discharge pH should remain above 6.0 and below 9.0 standard units (S.U.) according to 25 Pa. Code § 95.2(1).

Toxics:

The data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. Spreadsheet results are attached to this fact sheet (*page 24*). The Toxics Management Spreadsheet uses the following logic:

- a. Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Pollutant testing results on the current application were reviewed in comparison with DEP's Toxic Management Spreadsheet, version 1.3, March 2021, output recommends no routine monitoring requirements. Therefore, no monitoring requirements are added in the proposed permit.

UV:

The UV system monitor and report the UV light dosage (mWsec/cm²) will remain in the proposed permit.

Chesapeake Bay:

In the Phase 3 WIP Wastewater Supplement revised on September 13, 2021, Table 5 of this document shows that Huntingdon Borough has been allocated 20,091 lbs/year of TN and 2,679 lbs/year of TP (*this fact sheet, page 48*). This approach is consistent with the Chesapeake Bay TMDL was based on the actual performance data previously evaluated by the Department. Since the permittee is easily capable of achieving compliance with these loads, the Department determines that no "compliance schedule" for the requirements associated with the Chesapeake Bay Strategy is necessary. Accordingly, the Chesapeake Bay nutrient existing limitations and monitoring requirements will remain in the proposed permit.

This facility is currently a significant discharger. Therefore, the facility's waste load allocation (WLA) will be tracked under an individual WLA as a significant discharger in the Phase 2 WIP Wastewater Supplement. Monitoring frequency for TN constituents will be remained in the proposed permit.

NPDES Permit No. PA0020214

NPDES Permit Fact Sheet Mt Union STP Total Phosphorus:

The discharge is into a stream segment of Juniata River. DEP's phosphorus guidance (BPNPSM-PMT-033, version 1.5. revised August 23, 2013) mentions that "(a) Phosphorus controls for waste discharges to streams shall be established, under subsection (b) whenever the Department determines that instream phosphorus, alone or in combination with other pollutants or instream conditions, contribute to impairment of designated uses as defined in Chapter 93 (relating to water quality standard). No determination made under this subsection shall constitute a final Department action with respect to any person until a specific treatment or control requirement is imposed under subsection (b)." Since Juniata River doesn't have instream phosphorus related impairment, local phosphorus limit is not necessary at this time. This determination may be re-evaluated in next permit term if regulation demands.

Additional Considerations

Flow Monitoring

Flow monitoring is recommended by the permit guidance and is also required by 25 Pa. Code §§ 92a.27 and 92a.61.

Influent Monitoring

As a result of negotiation with EPA, influent monitoring of TSS and BOD₅ are required for any POTWs; therefore, influent sampling of BOD₅ and TSS will be included in the draft permit. A 24-hr composite sample type will be required to be consistent with the proposed sampling frequency for TSS and CBOD₅ in the effluent.

Total Dissolved Solids (TDS)

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants is necessary under the following DEP Central Office directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1.0 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

The facility has no record of monitoring these pollutants. However, the application shows a maximum influent concentration of 388.0 mg/L for TDS. The effluent concentration is not expected to exceed 1,000 mg/L. No monitoring is necessary.

Pretreatment:

Pre-treatment is discussed under Industrial/Commercial users section (pages 3 & 4) of this fact sheet.

Stormwater Outfalls:

There are no stormwater outfalls associated with this WWTP.

Whole Effluent Toxicity Testing (WETT):

The permittee submitted four (4) WET Test results during/after the submission of the renewal application. The details are under WETT section (*page 18*) of this fact sheet. In summary, all four WETT results are "Passing" which doesn't necessitate the inclusion of WET parameters; however, WETT requirement will remain in the permit to submit four (4) WETT results during next permit renewal. The dilution series is updated by using new Q₇₋₁₀.

303d Listed Streams:

The discharge from this facility is to Juniata River which is assessed as attaining its designated uses.

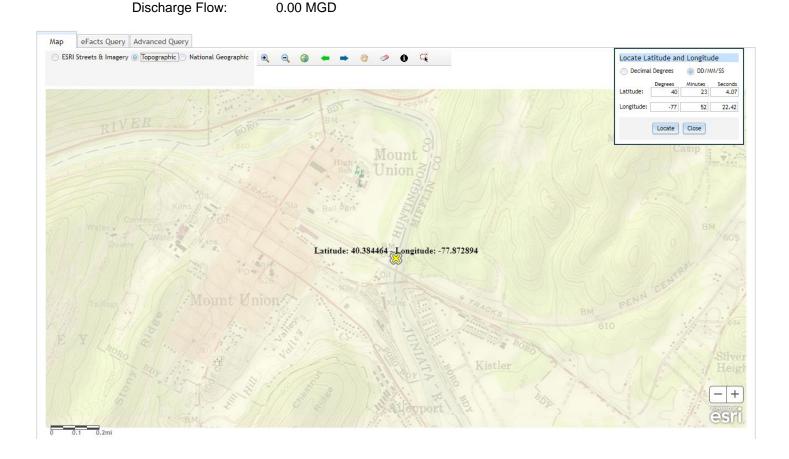
Antidegradation (93.4):

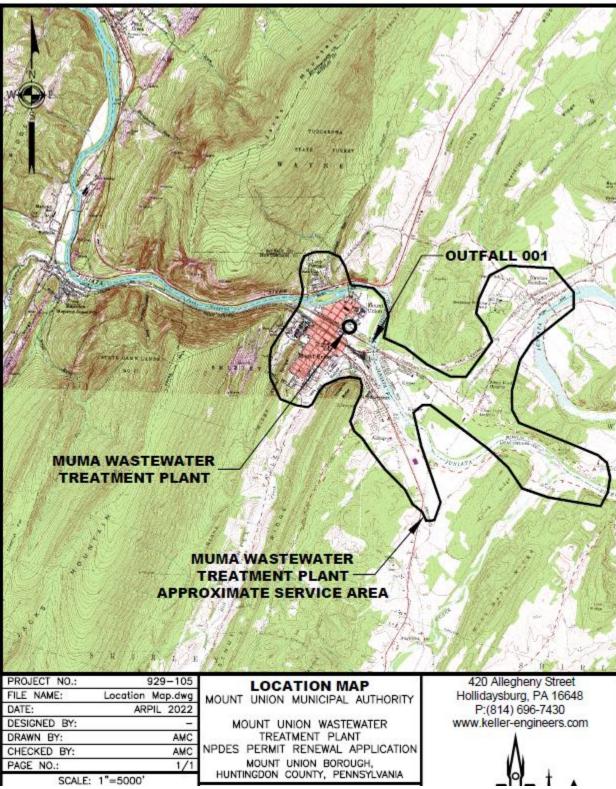
The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

NPDES Permit Fact Sheet Mt Union STP WQM 7.0:


The following data were used in the attached computer model (WQM 7.0) of the stream:


Discharge pH 7.0 (Default) • Discharge Temperature 25°C (Default) • **Discharge Hardness** (Application data) 217 mg/l (Default) Stream pH 7.0 Stream Temperature 20°C (Default)

0.00 MGD

The following two nodes were used in modeling:

Node 1:	Outfall 001 at Juniata R	liver (11414)
	Elevation:	542 ft (USGS)
	Drainage Area:	2,050 mi ² (USGS StreamStats)
	River Mile Index:	80.76 (PA DEP eMapPA)
	Low Flow Yield:	0.11 cfs/mi ²
	Discharge Flow:	1.1 MGD
Node 2:	At the confluence with A	Aughwick Creek (12753)
	Elevation:	526 ft (USGS)
	Drainage Area:	2,060 mi ² (USGS StreamStats)
	River Mile Index:	77.43 (PA DEP eMapPA)
	Low Flow Yield:	0.11 cfs/mi ²

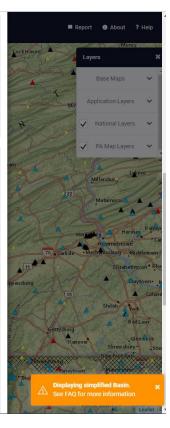
USGS StreamStats	Basin Characteri	stics
	Parameter Code	Parameter Description
SELECT A STATE / REGION SIMULATION Pennsylvania	CARBON	Percentage of area of carbonate rock
	DRNAREA	Area that drains to a point on a stream
IDENTIFY A STUDY AREA	PRECIP	Mean Annual Precipitation
Basin Delineated V	ROCKDEP	Depth to rock
	STRDEN	Stream Density total length of strea
SELECT SCENARIOS V		
EPORT Report Built >	Low-Flow Statist	tics Parameters [100.0 Percent (2040
Step 1: You can modify computed basin	Parameter Code	Parameter Name
stics here, then select the	DRNAREA	Drainage Area
oorts you wish to generate. the "Build Report" button	PRECIP	Mean Annual Precipitation
	STRDEN	Stream Density
asin Characteristics	ROCKDEP	Depth to Rock
>Eli:	CARBON	Percent Carbonate
reports to display:	Low-Flow Statist	tics Disclaimers [100.0 Percent (204
aracteristics Report	One or more of th	e parameters is outside the suggested range.
Flow Reports	Low-Flow Statist	tics Flow Report [100.0 Percent (204
Open Report	Statistic	
Maso	7 Day 2 Year Low	Flow
	30 Day 2 Year Lo	w Flow
WERED BY WIM	7 Day 10 Year Lo	w Flow
Contact USGS Search USGS	30 Day 10 Year L	ow Flow
ty FOIA Privacy Policy & A	90 Day 10 Year L	ow Flow

Basin Characteristics

F

Basin Characteri	stics		
Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	20.81	percent
DRNAREA	Area that drains to a point on a stream	2050	square miles
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.5	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.04	miles per square mile

40 square miles) Low Flow Region 2]


Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2050	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.04	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	20.81	percent	0	99

40 square miles) Low Flow Region 2]

140 square miles) Low Flow Region 2]

Statistic	Value	Unit	
7 Day 2 Year Low Flow	312	ft^3/s	
30 Day 2 Year Low Flow	381	ft^3/s	
7 Day 10 Year Low Flow	204	ft^3/s	
30 Day 10 Year Low Flow	249	ft^3/s	
90 Day 10 Year Low Flow	324	ft^3/s	

Pennsylvania 🚯 NTIFY A STUDY AREA Basin Delineated 😔 cs here, then select the orts you wish to generate Show Basin Characteristics Select available reports to display: ✔ Basin Characteristics Report Scenario Flow Reports

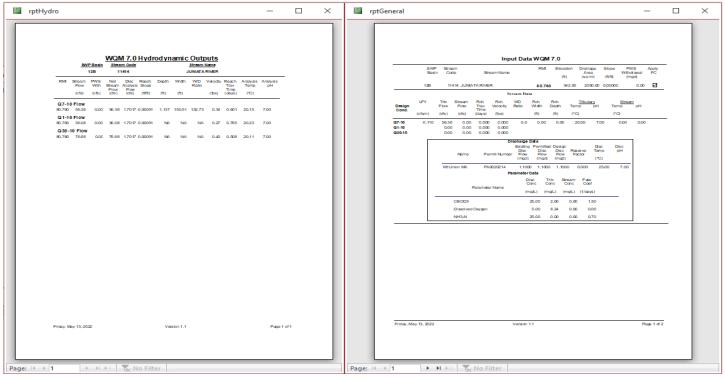
Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	20.69	percent
DRNAREA	Area that drains to a point on a stream	2060	square miles
PRECIP	Mean Annual Precipitation	38	inches
ROCKDEP	Depth to rock	4.5	feet
STRDEN	Stream Density total length of streams divided by drainage area	2.03	miles per square mile

Low-Flow Statistics Parameters [100.0 Percent (2060 square miles) Low Flow Region 2]

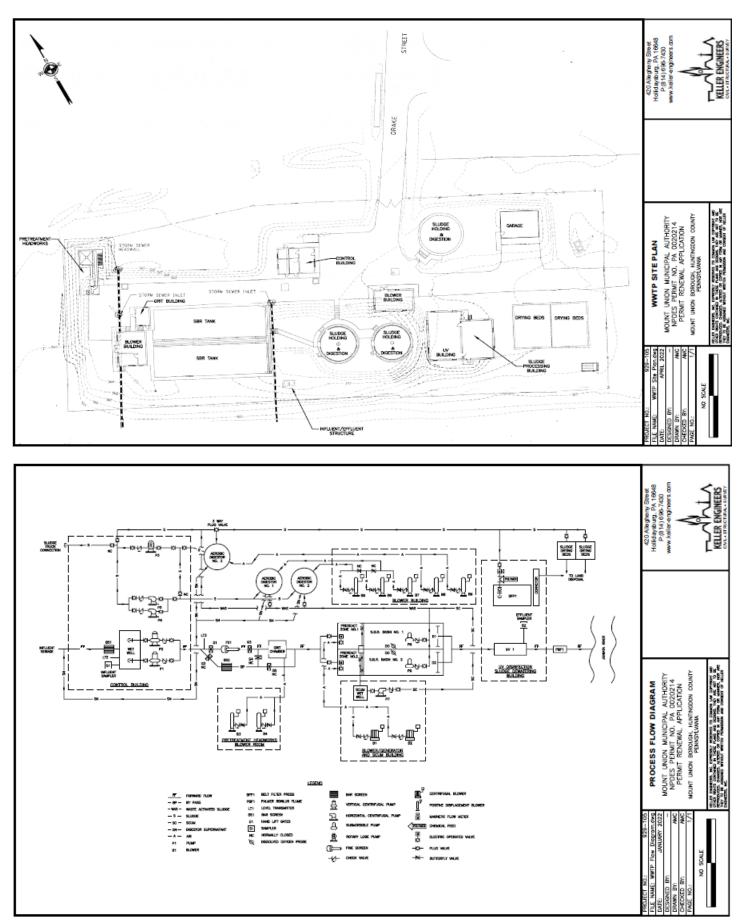
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2060	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.03	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	20.69	percent	0	99

Low-Flow Statistics Disclaimers [100.0 Percent (2060 square miles) Low Flow Region 2]

Low-Flow Statistics Flow Report [100.0 Percent (2060 square miles) Low Flow Region 2]


Statistic	Value	Unit	
7 Day 2 Year Low Flow	315	ft^3/s	
30 Day 2 Year Low Flow	384	ft^3/s	
7 Day 10 Year Low Flow	206	ft^3/s	
30 Day 10 Year Low Flow	252	ft^3/s	
90 Day 10 Year Low Flow	327	ft*3/s	

USGS StreamStats	Basin Character	stics							🛤 Report	About
	Parameter Code	Parameter Description			Value	Unit			Server a	Mura
SELECT A STATE / REGION Pennsylvania 🚯 🗸	CARBON	Percentage of area of carbonate	rock		20.88	percent		LockHaven	Layer	s
	DRNAREA	Area that drains to a point on a s	tream		2030	square n	niles	C C F	37	
	PRECIP	Mean Annual Precipitation			39	inches				Base Maps
Basin Delineated 🗸	ROCKDEP	Depth to rock			4.5	feet			ADD	lication Layers
	STRDEN	Stream Density total length of s	streams divi	ded by drainage area	2.04	miles pe	r square mile	A	Min	
SELECT SCENARIOS 🗸								A		National Layers
A REPORT Report Built >	Low-Flow Statis	ics Parameters [100.0 Percent (2030 squar	re miles) Low Flow Regi	on 2]			26	~	PA Map Layers
	rankli Parameter Code	Parameter Name	Value	Units	М	n Limit	Max Limit	am	-3-	4
Step 1: You can modify computed basin characteristics here, then select the	DRNAREA	Drainage Area	2030	square miles	4.	93	1280		THE	llersbur,
types of reports you wish to generate. Then click the "Build Report" button	gh PRECIP	Mean Annual Precipitation	39	inches	35		50.4	3 Mars	122	Matamoras
	STRDEN	Stream Density	2.04	miles per square mile	0.	51	3.1	and -		-
 Show Basin Characteristics 	ROCKDEP	Depth to Rock	4.5	feet	3.	32	5.65	120		Hers
	CARBON	Percent Carbonate	20.88	percent	0		99	13/02	Harris	H mmelstown
available reports to display:	lonor I El Outri			1				76	Carlisle • Mec	nanicsburg N
ere more reports to display.	Low-Flow Statis	ics Disclaimers [100.0 Percent (2030 squar	re miles) Low Flow Regi	on 2]			In		filizabet
asin Characteristics Report	One or more of th	e parameters is outside the suggested ra	nge. Estimate	s were extrapo <u>lated with unkr</u>	nown err	ors.		ppensburg		
cenario Flow Reports								Alt 7	15	2 CL
ì	Low-Flow Statis	ics Flow Report [100.0 Percent ((2030 squa	re miles) Low Flow Regi	ion 2]			3 day	a a	Shiloh
Open Report	Statistic			Value		Unit		3 Ge	ttysburg	R
	Maso 7 Day 2 Year Low	Flow		341		ft^3/s			Hanover	1
	30 Day 2 Year Lo	w Flow		414		ft^3/s				Shrewsbur Dew Freedon
POWERED BY WIM	No. 1					ft^3/s		CALL CONTRACTOR	water and	
	7 Day 10 Year Lo	w Flow		223		10.3/5			Alanevtown	
	Zo Mi 30 Day 10 Year Lo			223		ft^3/s		* Thu	X Janeytown	lified Basin
Home Contact USGS Search USGS	Zo	ow Flow							Solaneytown Displaying simp See FAQ for mo	
Home Contact USGS Search USGS essibility FOIA Privacy Policy & Notices	20 Mi 30 Day 10 Year L 90 Day 10 Year L	ow Flow		272		ft^3/s	2 <u></u> 2			re information
Home Contact USGS Search USGS cessibility FOIA Privacy Policy & Notices	20 Mi 30 Day 10 Year L 90 Day 10 Year L	ow Flow	tions	272	atio	ft*3/s ft*3/s	Effluent		See FAQ for mo	re information
Home Contact USGS Search USGS ressibility FOIA Privacy Policy & Notices Analysis Results \	30 Day 10 Year L 90 Day 10 Year L WQM 7.0 NH3-N Allocat	ow Flow		272 348		ft*3/s ft*3/s	Effluent		See FAQ for mo	
Home Contact USGS Search USGS essibility FOIA Privacy Policy & Notices	30 Day 10 Year L 90 Day 10 Year L WQM 7.0 NH3-N Allocat	ions D.O. Alloca ischarge Name	Permit	272 348 D.O. Simul	N	ft*3/s ft*3/s	Effluent		See FAQ for mo	re information
Home Contact USGS Search USGS essibility FOIA Privacy Policy & Notices	30 Day 10 Year L 90 Day 10 Year L 90 Day 10 Year L WQM 7.0 NH3-N Allocat RMI 80.76 Mt Union	ions D.O. Alloca ischarge Name MA Efflu meter 30 D.a	Permit PA00 ient Limi	272 348 D.O. Simul Number Disc Flow (mgd) 20214 1.100 t Effluent Limit ge Maximum	~ O Efflu M	n n ient Li			See FAQ for mo	re information
Home Contact USGS Search USGS essibility FOIA Privacy Policy & Notices	30 Day 10 Year L 90 Day 10 Year L 90 Day 10 Year L WQM 7.0 NH3-N Allocat RMI 80.76 Mt Union Para	ions D.O. Alloca ischarge Name MA Efflu meter 30 D.a	Permit PA00 rent Limi ay Avera mg/L)	272 348 D.O. Simul Number Disc Flow (mgd) 20214 1.100 t Effluent Limit	~ O Efflu M	n n Ient Li			See FAQ for mo	re information
Home Contact USGS Search USGS essibility FOIA Privacy Policy & Notices	30 Day 10 Year L 90 Day 10 Year L 90 Day 10 Year L WQM 7.0 NH3-N Allocat RMI 80.76 Mt Union	ions D.O. Alloca ischarge Name MA Efflu meter 30 D.a	Permit PA00 ient Limi	272 348 D.O. Simul Number Disc Flow (mgd) 20214 1.100 t Effluent Limit ge Maximum	~ O Efflu M	n n ient Li			See FAQ for mo	re information
Home Contact USGS Search USGS essibility FOIA Privacy Policy & Notices	30 Day 10 Year L 90 Day 10 Year L 90 Day 10 Year L WQM 7.0 NH3-N Allocat RMI 80.76 Mt Union Para	ions D.O. Alloca ischarge Name MA Efflu meter 30 D.a	Permit PA00 rent Limi ay Avera mg/L)	272 348 D.O. Simul Number Disc Flow (mgd) 20214 1.100 t Effluent Limit ge Maximum	~ O Efflu M	n n ient Li			See FAQ for mo	re information
Home Contact USGS Search USGS essibility FOIA Privacy Policy & Notices	30 Day 10 Year L 90 Day 10 Year L 90 Day 10 Year L WQM 7.0 NH3-N Allocat 80.76 Mt Union 80.76 Mt Union Para CB0D5 NH3-N	ions D.O. Alloca ischarge Name MA Efflu meter 30 D.a (1	Permit PA00 PA00 rent Limi yy Avera mg/L) 25	272 348 D.O. Simul Number Disc Flov (mgd) 20214 1.100 it Effluent Limit ge Maximum (mg/L)	~ O Efflu M	n n inimun mg/L)			See FAQ for mo	re information
Home Contact USGS Search USGS ressibility FOIA Privacy Policy & Notices Analysis Results \	30 Day 10 Year L 90 Day 10 Year L 90 Day 10 Year L NQM 7.0 NH3-N Allocat RMI 80.76 Mt Union Para [CB0D5	ions D.O. Alloca ischarge Name MA Efflu meter 30 D.a (1	Permit PA00 PA00 rent Limi yy Avera mg/L) 25	272 348 D.O. Simul Number Disc Flov (mgd) 20214 1.100 it Effluent Limit ge Maximum (mg/L)	~ O Efflu M	n n ient Li			See FAQ for mo	re information


Print	< <u>B</u> ack	Next >	Archive	<u>C</u> ancel	

TrptEffLimits X	🖌 🗆 – 🗆 🗡
Image: Decision of the second seco	
Prices, May 13, 2022 Version 1.1 Page 1 of 1 Page: I≤ < 1 > > > > > > > > > > > > > > > > > > >	Prices, May 13, 2022 Version 1.1 Page 1 of 1 Page: I
ptDOSim - - ×	Image: state stat
Friday, May 13,2022 Version 1.1 Page 10f 1 Page: I4 ≤ 1 >> >> >> >>> >>> >>>> >>>> >>>>>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>	Friday, May 13, 2022 Version 1.1 Page 1 of 1 Page: I4 < 1 >>>> >>> >>>>>>>>>>>>>>>>>>>>>>>>>>>>

					Inp	ut Data	WQM	7.0						
		SW/ Bas	P Stream in Code	Str	oam Namo		RM	Elevatio	n Drains Are (sg.r	100	With	WS / hdrawal hgd)	Apply FC	
		128	11414	JUNIATA RIVE	R		77.430	526	.00 20	60.00 01	0000	0.00	Ø	
	Design	LFY	Trib Stro Flow Fl	ov Trav	Rdh Velocity	WD Ratio	Rdh I	Rah lepth	<u>Tribut</u> Temp	ary pH	<u>Strei</u> Temp	am pH		
	Cond.	(cfsm) 0.110		Time fs) (days) 0.00 0.000	(fps) 0.000	0.0	(ft) 0.00	(ft) 0.00	(°C) 20.00	7.00	(°C) 000	0.00		
	Q1-10 Q30-10		0.00	0.00 0.000	0.000									
			N	ame Pe	D mit Numbe	Disc	ata Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH			
			MtUnion	MA PA	0020214 P	0.000 Diretemate	0.0000 ata	0.0000	0.000	0.0	0 7.00			
Ŀ				Paramete	r Namo		c Trii no Cor µL) (mga	c Ca	am Fabr te Coo (L) (1/da)	1				
			CB			3	5.00 2	.00 0	0.00 1	150				
			Diss	solved Oxygen 3-N						100				
														-
	Friday, M	lay 13, 2022				Version 1	1					Pag	p2df2	

Whole Effluent Toxicity (WET)

For Outfall, **Acute Chronic** WET Testing was completed:

- For the permit renewal application (4 tests).
 - Quarterly throughout the permit term.
 - Quarterly throughout the permit term and a TIE/TRE was conducted.

Other:

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 1%.

Summary of Four Most Recent Test Results

(NOTE – Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

	Ceriodaph	nia Results (% E	ffluent)	Pimephale	Effluent)		
Test Date	NOEC Survival	NOEC Reproduction	LC50	NOEC Survival	NOEC Growth	LC50	Pass? *
01/30/2018	100	60	100	50	100	100	Yes
07/16/2019	60	60	100	100	100	100	Yes
09/22/2020	100	30	100	100	100	100	Yes
10/05/2021	100	100	100	100	100	100	Yes

* A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

🗌 YES 🖾 NO

Comments: none

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.077 Chronic Partial Mix Factor (PMFc): 0.535

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(1.1 MGD x 1.547) / ((225.5 cfs x 0.077) + (1.1 MGD x 1.547))] x 100 = 8.95%

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal:

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = %

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(1.1 MGD x 1.547) / ((225.5 cfs x 0.535) + (1.1 MGD x 1.547))] x 100 = 1.4%

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 60%, 30%, 2%, and 1%.

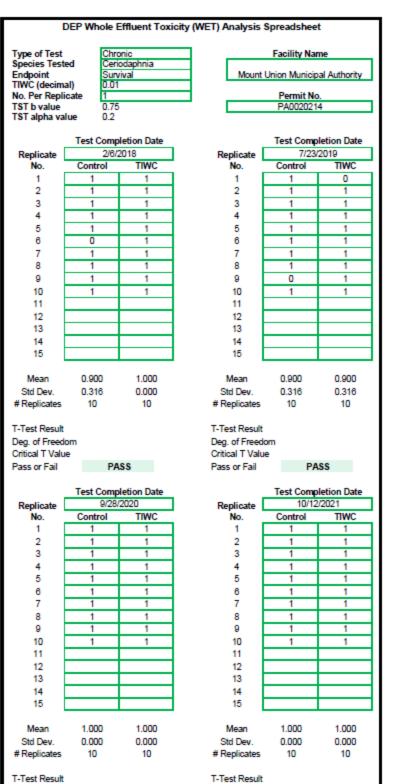
WET Limits

Has reasonable potential been determined? \Box YES \boxtimes NO

Will WET limits be established in the permit? $\hfill YES \hfill NO$

If WET limits will be established, identify the species and the limit values for the permit (TU).

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

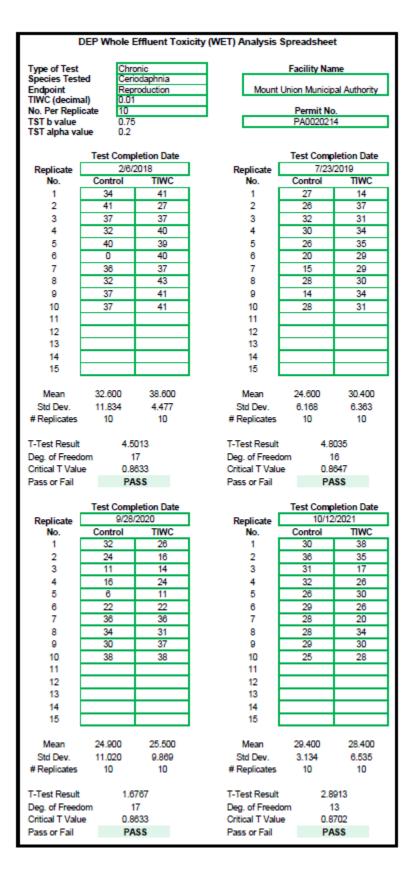

	Manual Lint	NA	the sector of		
acility Name Permit No.	Mount Union	Municipal Au	thority		
	PA0020214 1.1				
Design Flow (MGD)	225.5				
Q ₇₋₁₀ Flow (cfs)					
PMFa	0.077				
PMFc	0.535				
			Test Results	s (Pass/Fail)	
	[Test Date	Test Date	Test Date	Test Date
Species	Endpoint	2/6/18	7/23/19	9/28/20	10/12/21
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS
				(D. 17.11)	
		Test Date	Test Results	s (Pass/Fail)	Test Date
Constant	Enducint	2/6/18	7/23/19	Test Date 9/28/20	10/12/21
Species Ceriodaphnia	Endpoint Reproduction	PASS	PASS	PASS	PASS
Cenodaprinia	Reproduction	PASS	PA55	PASS	PA35
			Test Results	s (Pass/Fail)	
	[Test Date	Test Date	Test Date	Test Date
Species	Endpoint	2/6/18	7/23/19	9/29/20	10/12/21
Pimephales	Survival	PASS	PASS	PASS	PASS
				s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	2/6/18	7/23/19	9/29/20	10/12/21
Pimephales	Growth	PASS	PASS	PASS	PASS
Reasonable Potenti Permit Recommend					
est Type	Chronic				
IWC		% Effluent			
Dilution Series		30, 60, 100	% Effluent		
	None				

Deg. of Freedom

PASS

Critical T Value

Pass or Fail



Deg. of Freedom

Critical T Value

Pass or Fail

PASS

					-						
	DEP Who	ole Effluent Tox	icity (WET) Analysis	Spreadshee	t						
T		Characia	_	Constitution Mar							
Type of Test Species Test	ted	Chronic Pimephales		Facility Na	me						
Endpoint		Survival	Mount	Union Municip	al Authority						
TIWC (decim		0.01									
No. Per Repl TST b value		10 0.75	Permit No.								
TST alpha va		0.25		PA0020214							
	Test C	ompletion Date		Test Comp	oletion Date						
Replicate		2/6/2018	Replicate		/2019						
No.	Contro		No.	Control	TIWC						
1	10	10	1	10	10						
2	10	10	2	10	10						
3	10	10	3	10	9						
4	10	10	4	10	10						
5		_	5								
6		_	6								
7			7								
8 9			° 9		 						
10			10								
11			10								
12			12								
13			13								
14			14								
15			15								
Mean	10.00	0 10.000	Mean	10.000	9.750						
Std Dev.	0.000	0.000	Std Dev.	0.000	0.500						
# Replicates	4	4	# Replicates	4	4						
T-Test Result			T-Test Result	7.6	643						
Deg. of Freed			Deg. of Freed		3						
Critical T Valu			Critical T Valu		649						
Pass or Fail	-	PASS	Pass or Fail		SS						
	Test C	ompletion Date		Test Comp	oletion Date						
Replicate	(9/29/2020	Replicate	10/12	2/2021						
No.	Contro	DI TIWC	No.	Control	TIWC						
1	10	10	1	10	10						
2	10	10	2	10	10						
3	10	10	3	10	10						
4	10	9	4	10	9						
5			5								
6		_									
			6								
7			7								
7 8			7 8								
7 8 9			7 8 9								
7 8 9 10			7 8 9 10								
7 8 9 10 11			7 8 9 10 11								
7 8 9 10			7 8 9 10								
7 8 9 10 11 12			7 8 9 10 11 12								
7 8 9 10 11 12 13			7 8 9 10 11 12 13								
7 8 9 10 11 12 13 14			7 8 9 10 11 12 13 13								
7 8 9 10 11 12 13 14	10.00	0 9.750	7 8 9 10 11 12 13 13	10.000	9.750						
7 8 9 10 11 12 13 14 15	10.000		7 8 9 10 11 12 13 14 15	10.000	9.750						
7 8 9 10 11 12 13 14 15 Mean	0.000		7 8 9 10 11 12 13 14 15 Mean	0.000							
7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000	0.500 4	7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.000 4	0.500 4						
7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000	0.500 4 7.6643	7 8 9 10 11 12 13 14 15 15 Mean Std Dev. # Replicates T-Test Result	0.000 4 7.6	0.500 4						
7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.000 4	0.500 4 7.6843 3	7 8 9 10 11 12 13 14 15 5td Dev. # Replicates T-Test Result Deg. of Freed	0.000 4 7.6	0.500 4 1643 3						
7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	0.000 4	0.500 4 7.6643	7 8 9 10 11 12 13 14 15 15 Mean Std Dev. # Replicates T-Test Result	0.000 4 7.6 om 5 ie 0.7	0.500 4						

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet Species Tested Endpoint TWC (decimal) No. Per Replicate Control Test completion Date Test completion Date Test completion Date Replicate 2/0/2018 Test Completion Date Test Completion Date Test Completion Date Test Completion Date Replicate 7/23/2018 1 0.312 0.337 0.331 0.302 0.3315 0.331 0.331 0.331 0.331 <												
Mount Union Municipal Authority Mount Union Municipal Authority Prespinate Prespinate Test Completion Date Test Completion Date Replicate Test Completion Date Replicate 28/2018 No. Control TIWC 1 O387 O387 Test Completion Date Replicate D2/2018 No. Control TIWC 3 O104 O.383 O.397 O.313 O.22019 No. Control TIWC 3 O.336 O.331 O.331 O.331 O.331 O.331 O.331 O.331 O.331 Mean O.296 O.315 Std Dev. O.131 O.030 O.296 O.315 Mean O.292 O.297		DEP Whole	Effluent Toxic	city (WET) Analysis	Spreadshee	t						
Mount Union Municipal Authority Mount Union Municipal Authority Prespinate Prespinate Test Completion Date Test Completion Date Replicate Test Completion Date Replicate 28/2018 No. Control TIWC 1 O387 O387 Test Completion Date Replicate D2/2018 No. Control TIWC 3 O104 O.383 O.397 O.313 O.22019 No. Control TIWC 3 O.336 O.331 O.331 O.331 O.331 O.331 O.331 O.331 O.331 Mean O.296 O.315 Std Dev. O.131 O.030 O.296 O.315 Mean O.292 O.297	Type of Test	Ch	ronie	_	Eacility Na							
Endpoint TWC (decimal) No. Per Replicate TST balue Growth 10 Mount Union Municipal Authorty TST balue 0.76 PA0020214 TST balue 0.76 PA0020214 No. Per Replicate 20/2018 Test Completion Date Test Completion Date Replicate 20/307 0.372 0.387 0.372 3 0.104 0.382 3 0.313 0.221 4 0.38 0.38 3 0.31 0.221 4 0.38 0.38 3 0.31 0.221 5 0 0.38 0.38 0.38 0.38 6 0 0 0 0 0 10 0 11 0.38 0.38 0.38 Sto Dev. 0.131 0.008 Flepicate 4 4 T-Test Result 2.0026 Date Test Completion Date Test Completion Date Test Completion Date Replicate 0.382 0.442 0.382 0.442 0.7267 <tr< td=""><td></td><td>ed Pin</td><td>nephales</td><td></td><td>Facility Ma</td><td>ilie</td></tr<>		ed Pin	nephales		Facility Ma	ilie						
No. Per Replicate 10 Permit No. No. Perplicate 20/2018 Test Completion Date Test Completion Date Replicate 20/2018 Test Completion Date Test Completion Date No. Control TWW Control TWW 1 0.317 0.307 0.311 0.201 0.311 0.202 3 0.104 0.362 0.38 0.31 0.232 0.31 0.321 0.31		Gro	owth	Mount	Union Municip	al Authority						
TST b value 0.76 TST alpha value 0.25 Test Completion Date No. Test Completion Date 2002018 No. Test Completion Date Replicate No. Control TIWC 1 Test Completion Date Replicate No. Control TIWC 1 Control 0.307 2 Test Completion Date 7/23/2019 No. Test Completion Date 7/23/2019 1 Test Completion Date 7/23/2019 1 Test Completion Date 8 Test Completion Date 9 Test Completion Date 9 Test Completion Date 9 Test Completion Date 7/23/2019 Test Completion Date 7/23/2019 Mean 0.293 0.363 Mean 0.296 0.315 Mean 0.290 Std Dev. 0.030 0.0257 Pass or Fail Pass or Fail PASS Test Completion Date 7 Test Result 0				Permit No.								
TST alpha value 0.25 Test Completion Date Test Completion Date Replicate Control TIWC 1 0.312 0.367 1 0.251 0.301 2 0.307 0.373 0.31 0.229 0.31 0.229 3 0.104 0.362 0.3 0.31 0.229 0.347 5 0 0 0 0.31 0.229 0.347 5 6 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 12 0 0 0.363 Mean 0.206 0.315												
Test Completion Date Test Completion Date Replicate Control TIWC Replicate 7/23/2019 1 0.312 0.367 0.371 0.307 0.301 0.2261 0.301 0.2291 3 0.104 0.362 3 0.31 0.2291 0.31 0.2291 4 0.36 0.38 0.31 0.321 0.31 0.2291 6 0 0 0 0 0 0 0 1 0.36 0.38 0.31 0.321 0 0 0 11 0.36 0.363 Mean 0.206 0.315 0				PAUU2U214								
Replicate 20/2018 Replicate 7/23/2019 No. Control TIWC No. Control TIWC 1 0.397 0.373 2 0.301 0.281 0.301 2 0.397 0.373 3 0.104 0.362 3 0.31 0.281 0.301 3 0.104 0.352 3 0.31 0.321 0.321 4 0.36 0.36 4 0.309 0.347 5 6												
No. Control TIWC No. Control TIWC 1 0.312 0.307 0.373 2 0.311 0.321 0.301 2 0.377 0.373 2 0.311 0.321 0.321 4 0.38 0.36 5 0.31 0.321 0.321 4 0.38 0.36 5 0.31 0.321 0.321 5 0.36 5 0.31 0.321 0.321 0.321 6 0.36 5 0.31 0.321 0.321 0.321 7 0.01 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 12 12 13 14 14 15 16 10 10.301 0.300 0.025 17 10.32 0.345 10 10.3207 10 10 10		Test Com	pletion Date									
1 0.312 0.367 0.373 0.313 0.281 0.301 2 0.397 0.373 3 0.31 0.221 0.313 0.281 4 0.36 0.36 4 0.309 0.347 0.309 0.247 5 0 0 0 0 0 0 0 0 6 7 0 0 0 0 0 0 0 1 0 <t< td=""><td>Replicate</td><td></td><td></td><td></td><td></td><td></td></t<>	Replicate											
2 0.397 0.373 2 0.313 0.289 3 0.104 0.352 3 0.31 0.321 4 0.36 0.36 3 0.31 0.321 5 0 0.36 0.36 3 0.31 0.321 6 0 0 0 7 0 3 0.309 0.347 6 0 0 0 0 0 0 0 0.31 0.321 7 0 7 0 7 0												
3 0.104 0.382 3 0.31 0.321 4 0.36 0.36 5 6 6 6 7 0 0 6 6 7 6 6 7 0 0 7 0 0 3 0.31 0.321 8 0 0 0 0 0 0 0.34 0.347 8 0												
4 0.36 0.38 4 0.300 0.347 5 0 0 0 0 0 0 8 0 0 0 0 0 0 11 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 14 0	-			-								
S Dot Dot S Dot Dot 6 7 8 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7				-								
6 7 6 7 8 9 0 0 0 10 10 10 10 10 11 12 0 10 10 13 0 131 0.009 Std Dev. 0.303 0.025 # Replicates 4 4 4 15 0 0.030 0.025 Deg. of Freedom 3 0.7649 Critical T Value 0.7267 Critical T Value 0.7267 Pass or Fail PASS Pass or Fail PASS Pass or Fail PASS 1 0.382 0.387 1 0.445 0.7267 1 0.382 0.387 1 0.492 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 6 7 7 7 7 7 1 10 0.242 0.304 0.497		0.36	0.36		0.309	0.347						
7 7 7 8 9 9 9 9 10 11 12 10 11 12 10 11 12 13 13 14 15 11 12 12 13 13 14 15 Mean 0.293 0.383 Mean 0.296 0.315 Std Dev. 0.131 0.009 # Replicates 4 4 T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 5 Deg. of Freedom 3 0.7849 Pass or Fail PASS Pass or Fail PASS Test Completion Date Replicate 9(29/2020) No. Control <tiwc< td=""> No. Control<tiwc< td=""> No. 0.4497 0.472 1 0.382 0.387 3 0.4497 0.473 0.4497 0.473 2 0.383 0.412 3 0.4497 0.473 0.4497 0.473 3 0.348 0.346 3 0.4977</tiwc<></tiwc<>	_			-								
8 9 0				-								
9 0 0 0 0 0 10 11 11 12 13 14 14 15 15 16			+	-								
10 10 10 10 11 12 11 12 13 13 13 13 13 13 13 14 15 13 14 14 14 15 15 15 15 15 15 Mean 0.293 0.363 Mean 0.296 0.315 Std Dev. 0.131 0.009 Std Dev. 0.030 0.025 # Replicates 4 4 # Replicates 4 4 T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 5 Ortical T Value 0.7849 Pass or Fail PASS Pass or Fail PASS Test Completion Date Replicate 10/12/2021 No. Control TIWC 1 0.362 0.348 0.445 3 0.497 0.472 2 0.393 0.412 2 0.492 0.506 5 5 1 0.45 3 0.497 0.473 4 0.384 0.348	_			-		I						
11 11 11 12 13 13 13 13 14 15 13 13 14 15 15 15 Mean 0.293 0.363 Mean 0.296 0.315 Std Dev. 0.131 0.009 Std Dev. 0.030 0.025 # Replicates 4 4 # Replicates 4 4 T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 5 Deg. of Freedom 3 0.7849 Pass or Fail PASS Pass or Fail PASS Test Completion Date Test Completion Date Test Completion Date Test Completion Date 10/12/2021 No. Control TIWC 1 0.362 0.367 1 0.45 0.472 0.492 0.506 3 0.348 0.45 3 0.497 0.473 0.492 0.506 5 10 10 11 11 12 12 14 14 14 14 14 14 14 16	-		+	-								
12 12 12 13 13 14 13 14 15 15 16 16 Mean 0.283 0.363 Mean 0.286 0.315 Std Dev. 0.131 0.009 Std Dev. 0.030 0.025 # Replicates 4 4 # Replicates 4 4 T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 5 Deg. of Freedom 3 0.7649 Pass or Fail Pass 5 Pass or Fail PASS Pass or Fail PASS Pass 10/12/2021 No. Control TIWC 1 0.45 0.472 2 0.482 0.506 3 0.348 0.45 3 0.497 0.473 4 0.511 0.465 5 6 6 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1												
13 13 13 14 15 15 14 15 Mean 0.293 0.363 Mean 0.296 0.315 Std Dev. 0.131 0.009 # Replicates 4 4 T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 5 Deg. of Freedom 3 0.7649 T-Test Result 5.4761 Deg. of Freedom 5 Pass or Fail PASS Pass Test Completion Date 10/12/2021 No. 0.465 0.472 1 0.362 0.3867 3 0.497 0.473 4 0.511 0.465 2 0.393 0.412 2 0.492 0.506 3 0.497 0.473 3 0.348 0.445 3 0.497 0.473 4 0.511 0.465 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td>			+									
14 14 14 15 15 Mean 0.293 0.363 Std Dev. 0.131 0.009 # Replicates 4 4 T-Test Result 2.9028 T-Test Result 5.4761 Deg. of Freedom 3 Deg. of Freedom 5 Critical T Value 0.7649 Pass Freedom 5 Pass or Fail PASS Pass Test Completion Date Test Completion Date Test Completion Date 1 0.465 0.472 No. Control TIWC 1 0.482 0.472 0.492 0.506 3 0.348 0.45 3 0.497 0.473 0.465 0.497 0.473 4 0.384 0.45 3 0.511 0.455 0.497 0.473 5 0 0 0 0 0 0 0 0.465 0.477 0.465 0.477 0.465 0.477 0.465 0.407 0.473 0.410 0.455 0.511 0.455 0.511 0.455 0.477 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
15 15 15 Mean 0.293 0.363 Mean 0.296 0.315 Std Dev. 0.131 0.009 #Replicates 4 4 T-Test Result 2.9028 #Replicates 4 4 T-Test Result 2.9028 T-Test Result 5.4761 Deg. of Freedom 3 0.7649 Pass or Fail Pass Pass or Fail PASS Pass or Fail PASS Test Completion Date Replicate 9/29/2020 No. Control TWC 1 0.383 0.412 2 0.442 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.465 5 10 1 0.465 1 0.465 6 10 1 0.442 0.506 1 10 10 10 1 1 1 11 12 12 1 1 1 12 12 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Mean 0.293 0.363 Mean 0.296 0.315 Std Dev. 0.131 0.009 #Replicates 4 4 #Replicates 4 4 T-Test Result 2.0026 T-Test Result 5.4761 Deg. of Freedom 5 Deg. of Freedom 3 O.7849 Pass 7 0.7267 Pass or Fail PASS Pass Test Completion Date Test Complet												
Std Dev. 0.131 0.009 Std Dev. 0.030 0.025 # Replicates 4 4 # Replicates 4 4 T-Test Result 2.0026 T-Test Result 5.4761 Deg. of Freedom 5 Octical T Value 0.7649 Pass 7 0.7267 Pass Pass or Fail PASS Test Completion Date Test Completion Date Test Completion Date Test Completion Date 10/12/2021 No. Control TIWC 1 0.45 0.472 2 0.48 0.472 2 0.492 0.506 3 0.497 0.473 4 0.511 0.465 <												
# Replicates 4 # Replicates 4 4 T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 3 Deg. of Freedom 5 Critical T Value 0.7649 Pass or Fail Deg. of Freedom 5 Pass or Fail PASS Pass Test Completion Date Test Completion Date Test Completion Date Replicate 9/29/2020 0.367 1 0.45 0.472 0.506 3 0.348 0.412 3 0.4497 0.473 0.460 0.506 3 0.348 0.45 3 0.497 0.473 0.465 0.511 0.455 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0.455 0	Mean	0.293	0.363	Mean	0.296	0.315						
T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 3 Oritical T Value 0.7267 Pass or Fail PASS Pass Test Completion Date Test Completion Date Replicate 9/29/2020 No. Control TIWC No. Control TIWC 1 0.362 0.387 2 0.412 2 0.462 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 5 5 5 5 5 6 7 7 7 7 7 8 8 9 9 10 10 11 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 16 17 16 16 14 15 13 13 13 13 14 14 16 15	Std Dev.	0.131	0.009	Std Dev.	0.030	0.025						
T-Test Result 2.9026 T-Test Result 5.4761 Deg. of Freedom 3 Oritical T Value 0.7267 Pass or Fail PASS Pass Test Completion Date Test Completion Date Replicate 9/29/2020 No. Control TIWC No. Control TIWC 1 0.362 0.387 2 0.412 2 0.462 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 5 5 5 5 5 6 7 7 7 7 7 8 8 9 9 10 10 11 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 16 17 16 16 14 15 13 13 13 13 14 14 16 15												
Deg. of Freedom 3 Deg. of Freedom 5 Critical T Value 0.7649 Critical T Value 0.7267 Pass or Fail PASS Pass or Fail PASS Test Completion Date Test Completion Date Replicate 0/29/2020 Test Completion Date Test Completion Date Test Completion Date No. Control TIWC 1 0.362 0.387 1 0.472 0.492 0.506 3 0.348 0.455 3 0.497 0.473 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 6 6 6 6 6 6 6 6 6 7 1 0.455 5 6 6 6 7 6 6 7 7 5 6 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1												
Critical T Value 0.7649 Critical T Value 0.7267 Pass or Fail PASS Pass or Fail PASS Test Completion Date Test Completion Date Replicate 9/29/2020 Twc 1 0.45 10/12/2021 No. Control TIWC 1 0.462 0.506 3 0.348 0.445 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 5 5 5 5 5 6 6 7 5 6 6 7 5 6 6 7 5 8 6 7 7 5 6 10 10 11 11 11 12 13 13 13 13 13 14 15 10 0.021 0.046 # Replicates 4 4 T-Test Result 4.7748	T-Test Result	2	9026	T-Test Result	5.4	761						
Pass or Fail PASS Pass or Fail PASS Test Completion Date Test Completion Date Test Completion Date Test Completion Date No. Control TIWC No. Control TIWC 1 0.382 0.387 2 0.482 0.673 2 0.383 0.412 2 0.482 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.485 3 0.497 0.473 5 5 5 5 5 5 5 6 6 6 7 7 7 7 8 7 7 7 7 7 7 7 10 10 10 11 12 13 13 14 12 13 13 13 14 14 14 15 15 15 15 15 10 14 10.021<	Deg. of Freed	om	3	Deg. of Freed	iom !	5						
Test Completion Date Test Completion Date Replicate 9/29/2020 Replicate 10/12/2021 No. Control TIWC 1 0.362 0.367 2 0.383 0.412 2 0.492 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 - - 6 - - 7 - - 6 - - 8 - - 6 - - 9 - - 6 - - 10 - - 10 - - 11 - - 12 - - 13 - - 13 - - 14 - - 13 - - 15 - - - - -	Critical T Valu	- 0										
Replicate 9/29/2020 Replicate 10/12/2021 No. Control TIWC No. Control TIWC 1 0.382 0.387 1 0.45 0.472 2 0.383 0.412 2 0.492 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 - - 6 - - 6 - 6 - - - 7 - - 7 - - - 6 -		e u.	7649	Critical T Valu	je 0.7	267						
Replicate 9/29/2020 Replicate 10/12/2021 No. Control TIWC No. Control TIWC 1 0.382 0.387 1 0.45 0.472 2 0.383 0.412 2 0.492 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 - - 6 - - 6 - 6 - - - 7 - - 7 - - - 6 -	Pass or Fail											
No. Control TIWC 1 0.362 0.367 1 0.45 0.472 2 0.393 0.412 2 0.492 0.506 3 0.348 0.45 3 0.497 0.473 4 0.394 0.348 4 0.511 0.455 5	Pass or Fail	P	ASS		PA	ISS						
1 0.362 0.367 1 0.45 0.472 2 0.393 0.412 2 0.492 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5		P. Test Com	ASS pletion Date	Pass or Fail	PA Test Comp	ISS						
2 0.383 0.412 2 0.492 0.506 3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5	Replicate	P. Test Com 9/20	ASS pletion Date 9/2020	Pass or Fail Replicate	PA Test Comp 10/12	ISS Detion Date 2/2021						
3 0.348 0.45 3 0.497 0.473 4 0.384 0.348 4 0.511 0.455 5 5 5 5 5 5 6 6 7 7 5 7 7 7 7 8 9 9 9 10 10 10 10 11 12 12 12 13 14 14 14 14 15 15 15 Mean 0.372 0.394 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 5 0.7267	Replicate No.	P. Test Com 9/20 Control	ASS pletion Date 9/2020 TIWC	Pass or Fail Replicate No.	PA Test Comp 10/12 Control	ISS Detion Date 2/2021 TIWC						
4 0.384 0.348 4 0.511 0.455 5 6 6 6 7 8 7 7 7 7 8 9 9 9 9 10 10 10 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 0.7267	Replicate No. 1	P. Test Com 9/20 Control 0.362	ASS pletion Date 2/2020 TIWC 0.367	Pass or Fail Replicate No. 1	PA Test Comp 10/12 Control 0.45	NSS Detion Date 2/2021 TIWC 0.472						
5 5 5 6 6 7 7 7 8 8 9 9 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Oritical T Value 0.7267	Replicate No. 1 2	P. Test Com 9/25 Control 0.362 0.393	ASS pletion Date 9/2020 TIWC 0.367 0.412	Pass or Fail Replicate No. 1 2	PA Test Comp 10/12 Control 0.45 0.492	NSS Detion Date 22021 TIWC 0.472 0.506						
6 6 6 6 7 7 7 7 8 9 9 9 9 10 10 10 10 11 11 12 12 12 13 14 14 14 14 14 15 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 0.7267	Replicate No. 1 2 3	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
7 7 8 9 9 9 10 10 10 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Oritical T Value 0.7267	Replicate No. 1 2 3 4	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
8 8 9 9 10 10 10 11 11 11 11 12 13 13 13 14 14 14 14 15 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 5 Oritical T Value 0.7407 Oritical T Value 0.7267 1	Replicate No. 1 2 3 4 5	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
9 9 10 10 11 10 11 11 12 11 11 12 13 12 13 14 14 14 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 5 Oritical T Value 0.7407 Oritical T Value 0.7267 0.7267	Replicate No. 1 2 3 4 5 6	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
10 10 10 10 11 11 11 12 12 13 12 12 13 14 15 13 14 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 5 Oritical T Value 0.7407 Oritical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
11 11 11 12 12 13 12 13 13 14 15 13 14 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 0.7267	Replicate No. 1 2 3 4 5 6 7 8	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 5 6 7 8	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
12 12 12 13 13 13 14 15 13 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
13 13 13 14 14 14 15 15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
14 14 15 15 Mean 0.372 0.394 Std Dev. 0.021 0.046 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10 11	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
15 15 Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 #Replicates 4 4 #Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 5 Oritical T Value 0.7407 Oritical T Value 0.7267 15	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
Mean 0.372 0.394 Mean 0.488 0.477 Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 5 Oritical T Value 0.7407 Oritical T Value 0.7267 1	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
Std Dev. 0.021 0.046 Std Dev. 0.026 0.021 # Replicates 4 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
# Replicates 4 # Replicates 4 4 T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	P. Test Com 9/25 Control 0.362 0.393 0.348	ASS pletion Date 0/2020 TIWC 0.367 0.412 0.45	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	PA Test Comp 10/12 Control 0.45 0.492 0.497	ASS pletion Date 2/2021 TIWC 0.472 0.506 0.473						
T-Test Result 4.7748 T-Test Result 7.6378 Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	P. Test Com 9/25 Control 0.362 0.393 0.348 0.384	ASS pletion Date 9/2020 TIWC 0.367 0.412 0.45 0.348	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	PA Test Comp 10/12 Control 0.45 0.492 0.497 0.511	ASS Jetion Date 2/2021 TIWC 0.472 0.506 0.473 0.455 						
Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	P. Test Com 9/25 Control 0.362 0.393 0.348 0.384 0.384 0.384 0.384	ASS pletion Date 9/2020 TIWC 0.367 0.412 0.45 0.348 0.348 0.348 0.348 0.348	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	PA Test Comp 10/12 Control 0.45 0.497 0.511	ASS Jetion Date 2/2021 TIWC 0.472 0.506 0.473 0.455 0.455 0.477						
Deg. of Freedom 4 Deg. of Freedom 5 Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P. Test Com 9/29 Control 0.362 0.393 0.348 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.382 0.322 0.21	ASS pletion Date 9/2020 TIWC 0.387 0.412 0.45 0.348 0.348 0.348 0.046	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	PA Test Comp 10/12 Control 0.45 0.492 0.497 0.511	ASS Jetion Date 2/2021 TIWC 0.472 0.506 0.473 0.455 						
Critical T Value 0.7407 Critical T Value 0.7267	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P. Test Com 9/29 Control 0.362 0.393 0.348 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.384 0.382 0.322 0.21	ASS pletion Date 9/2020 TIWC 0.387 0.412 0.45 0.348 0.348 0.348 0.046	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	PA Test Comp 10/12 Control 0.45 0.492 0.497 0.511	ASS Jetion Date 2/2021 TIWC 0.472 0.506 0.473 0.455 						
	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. #Replicates	P. Test Com 9/25 Control 0.362 0.383 0.348 0.384 0.372 0.021 4	ASS pletion Date 9/2020 TIWC 0.367 0.412 0.45 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.412 0.45 0.348 0.412 0.45 0.348 0.412 0.45 0.348 0.412 0.45 0.348 0.412 0.45 0.348 0.412 0.45 0.348 0.445 0.348 0.445 0.348 0.445 0.348 0.445 0.348 0.445 0.348 0.445 0.348 0.348 0.445 0.348 0.445 0.348 0.445 0.348 0.445 0.348 0.445 0.348 0.445 0.445 0.348 0.445 0.348 0.445 0.445 0.348 0.445 0.348 0.445 0.445 0.445 0.445 0.445 0.445 0.348 0.445 0.446 4 0.046 4	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	PA Test Comp 10/12 Control 0.45 0.492 0.497 0.511	ASS Jetion Date 2/2021 TIWC 0.472 0.506 0.473 0.455 0.455 0.477 0.021 4						
Pass or Fail PASS Pass or Fail PASS	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	P. Test Com 9/28 Control 0.362 0.383 0.348 0.384 0.372 0.021 4 0.021 0.45 0.021	ASS pletion Date 9/2020 TIWC 0.367 0.412 0.45 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.344 0.046 4 7748 4	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	PA Test Comp 10/12 Control 0.45 0.492 0.497 0.511 0.511 0.511 0.488 0.026 4 7.6 com 5	ASS Jetion Date 2/2021 TIWC 0.472 0.506 0.473 0.455 0.455 0.455 0.477 0.021 4 378 5						
	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Value	P. Test Com 9/28 Control 0.362 0.383 0.348 0.384 0.372 0.021 4 0.021	ASS pletion Date 9/2020 TIWC 0.387 0.412 0.45 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.344 0.046 4 7748 4 7407	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed Critical T Valu	PA Test Comp 10/12 Control 0.45 0.492 0.497 0.511 0.511 0.511 0.511 0.488 0.026 4 7.6 iom 4 ie 0.7	ASS Jetion Date 2/2021 TIWC 0.472 0.508 0.473 0.455 0.455 0.455 0.477 0.021 4 378 5 267						

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Inst	tructions D	ischarge Stream													
	_														
Fac	ility: Mt	Union Municipal Aut	hority				NP	DES Per	mit No.:	PA0020	214		Outfall	No.: 001	
Eva	luation Type:	Major Sewage /	Industr	ial V	laste		Wa	stewater	Descrip	tion: Maj	or Sewa	age			
_															
					Disch	arge	Cha	racterist	tics						
De	sign Flow					F	arti	al Mix Fa	actors (I	PMFs)		Com	plete Mi	x Times	(min)
	(MGD)*	Hardness (mg/l)*	pH (SU)'	AF			CFC	ТН		CRL		7-10		h i
	1.1	217	7	.3		-							1-19		
	1.1	207													
) it le	t blank	0.5 17 16	eft blank	(0 if left blan	ĸ	7 IT let	t blank
	Disch	arge Pollutant	Units	Ma	x Discharge Conc		rib onc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
—	Tetel Discolu	d Califata (DMIC)			200										
-	Chloride (PW	ed Solids (PWS)	mg/L		388 83		++	-							
Group .	Bromide	5)	mg/L	<	0.4		Ħ								
ē	Sulfate (PWS	\ \	mg/L mg/L	-	52.8					<u> </u>					
0	Fluoride (PW)	1	mg/L		32.0		╞┼┥								
	Total Aluminu	1	µg/L	<	43.5		++			<u> </u>					
	Total Antimor		μg/L	<	0.348		Ħ	-		<u> </u>					
	Total Arsenic	7	µg/L	<	0.540			1							
	Total Barium		µg/L	-	26.1		╞	-		<u> </u>					
	Total Berylliur	n	µg/L	<	0.676	++-	╞┼╴	-		<u> </u>		<u> </u>		<u> </u>	
	Total Boron		µg/L	-	169		÷÷			<u> </u>		<u> </u>		<u> </u>	
	Total Cadmiu	m	µg/L	<	0.123										
	Total Chromiu		µg/L	<	1.99		Ħ	-							
	Hexavalent C	5 C	µg/L	<	0.25	╞╧	Ħ	-		<u> </u>					
	Total Cobalt		µg/L		0.331		Ħ								
	Total Copper		µg/L		8.77										
5	Free Cyanide		µg/L		5		\vdash	-							
Group	Total Cyanide		µg/L	<	6										
5	Dissolved Iror	1	µg/L	<	10										
	Total Iron		µg/L	<	20			-							
	Total Lead		µg/L		0.188			-							
	Total Mangan		µg/L		8.41										
	Total Mercury		µg/L	<	0.104										
	Total Nickel		µg/L		3.86										
		(Phenolics) (PWS)	µg/L	<	0.2			-							
	Total Seleniur	n	µg/L	<	1.67										
	Total Silver		µg/L	<	1.37										
	Total Thallium	1	µg/L	<	0.068		H								
	Total Zinc		µg/L		42.7										
	Total Molybde	num	µg/L		0.592		++	-							
	Acrolein		µg/L	<	1.95			1							
	Acrylamide		µg/L	<	0.54										
	Acrylonitrile		µg/L	<	0.51		\square								
	Benzene		µg/L	<	0.43		++								
	Bromoform		µg/L	<	0.34		\leftarrow								

Discharge Information

5/17/2022

	-				_	_	_	_		 	 	 	
1	Carbon Tetrachloride	µg/L	<	0.51		t	1	t					
1	Chlorobenzene	µg/L	<	0.21		Ĺ	Ĺ	Ĺ					
	Chlorodibromomethane	µg/L	<	0.39									
	Chloroethane	µg/L	<	0.42		Ļ		Ļ					
	2-Chloroethyl Vinyl Ether	µg/L	<	4		-	-	ŀ					
	Chloroform	µg/L	<	0.51	F	F	F	F					
	Dichlorobromomethane	µg/L	<	0.32	F	t	t	t					
	1,1-Dichloroethane	µg/L	<	0.42	t	t	t	Ť					
-	1.2-Dichloroethane	µg/L	<	0.39	t	Ť	Ť	Ť					
p.3	1,1-Dichloroethylene	µg/L	<		E	E		E	<u> </u>				
Group	1,2-Dichloropropane	µg/L	<	0.42	t	t	t	t					
5	1,3-Dichloropropylene		<	0.42	ŧ	╞	÷	÷					
	1,3-Dichioropropylene 1,4-Dioxane	µg/L	<	1.4	+	┝	+	+					
	-	µg/L	<u> </u>		╞	┢	┾	┾					
	Ethylbenzene	µg/L	<	0.27	÷	÷	÷	÷					
	Methyl Bromide	µg/L	<			È	Ì	Ť.	1				
	Methyl Chloride	µg/L	<						<u> </u>				
	Methylene Chloride	µg/L	<	0.45									
	1,1,2,2-Tetrachloroethane	µg/L	<	0.36		L		1					
	Tetrachloroethylene	µg/L	<			Ł	+	ł					
1	Toluene	µg/L	<	0.33	F	1	1	f					
1	1,2-trans-Dichloroethylene	µg/L	<	0.39	F	F	T	F					
1	1,1,1-Trichloroethane	µg/L	<	0.38	Т	ĺ.	T	Ī					
1	1,1,2-Trichloroethane	µg/L	<	0.24				Γ					
	Trichloroethylene	µg/L	<		F	t	t	t					
1	Vinyl Chloride	µg/L	<	0.46	+	t	+	t					
\vdash	2-Chlorophenol	µg/L	<	0.13	t	ŧ	ŧ	ŧ					
	2,4-Dichlorophenol	µg/L	<	0.25	+	┝	+	+	<u> </u>				
	2,4-Dimethylphenol	µg/L	<	0.26	╞	÷	÷	÷					
	4,6-Dinitro-o-Cresol		<	0.20	÷	F	÷	÷					
4	_	µg/L		0.00					<u> </u>				
9	2,4-Dinitrophenol	µg/L	<	0.86	╞	Ļ	Ļ	÷	<u> </u>				
Group	2-Nitrophenol	µg/L	<	0.25	+	+	+	+					
Ø	4-Nitrophenol	µg/L	<	0.19		╞	╞	╞					
	p-Chloro-m-Cresol	µg/L	<			╞	╞	+					
	Pentachlorophenol	µg/L	<	0.97		Þ	t	t					
	Phenol	µg/L	<	0.25		Ĺ	Ĺ	Ĺ	1				
	2,4,6-Trichlorophenol	µg/L	<	0.24									
	Acenaphthene	µg/L	<	0.26		Ļ	Ļ	Ļ					
	Acenaphthylene	µg/L	<	0.22	H	F	╞	ŀ					
	Anthracene	µg/L	<	0.13	F	F	F	F					
	Benzidine	µg/L	<	0.35	F	t	t	t					
	Benzo(a)Anthracene	µg/L	<	0.21	t	Ť	Ť	Ť					
	Benzo(a)Pyrene	µg/L	<	0.29	t	t	t	t					
	3.4-Benzofluoranthene	µg/L	<	0.31	E	E	E	T					
	Benzo(ghi)Perylene	µg/L	<	0.32	╞	t	t	t					
1	Benzo(k)Fluoranthene	µg/L	<	0.32	+	+	+	+					
1	Bis(2-Chloroethoxy)Methane	µg/L µg/L	<	0.4	+	-	-	+					
1			—		+	+	+	+					
1	Bis(2-Chloroethyl)Ether	µg/L	<	0.25	+	F	F	t					
1	Bis(2-Chloroisopropyl)Ether	µg/L	<	0.34	-	Ĺ	Ē	Ì					
1	Bis(2-Ethylhexyl)Phthalate	µg/L		0.64		L	L	ļ					
1	4-Bromophenyl Phenyl Ether	µg/L	<	0.19				Ļ					
1	Butyl Benzyl Phthalate	µg/L	<	0.38		-	-	+					
1	2-Chloronaphthalene	µg/L	<	0.28			-	+					
1	4-Chlorophenyl Phenyl Ether	µg/L	<	0.29			1	t					
1	Chrysene	µg/L	<	0.45		Ē	Í.	Ē					
1	Dibenzo(a,h)Anthrancene	µg/L	<	0.28	Γ		1						
1	1,2-Dichlorobenzene	µg/L	<	0.32				Γ					
1	1,3-Dichlorobenzene	µg/L	<	0.17	F	t	F	t					
1	1,4-Dichlorobenzene	µg/L	<	0.15	+	t	+	t					
	The second se		<	0.13	t	+	t	ŧ					
	3.3-Dichlorobenzidine	100/1					1.1	11					
	3,3-Dichlorobenzidine	µg/L	<u> </u>		+		+						
	Diethyl Phthalate	µg/L	<	0.27	ŧ								
đ	Diethyl Phthalate Dimethyl Phthalate	μg/L μg/L	< <	0.27 0.38									
	Diethyl Phthalate	µg/L	<	0.27									

Discharge Information

5/17/2022

1					_		_					
	2,6-Dinitrotoluene	µg/L	<	0.32								
	Di-n-Octyl Phthalate	µg/L	<	0.28								
	1,2-Diphenylhydrazine	µg/L	<	0.2	Ц							
	Fluoranthene	µg/L	<	0.35								
	Fluorene	µg/L	<	0.25	H			-				
	Hexachlorobenzene	µg/L	<	0.25	H							
	Hexachlorobutadiene	µg/L	<	0.27	Fi							
	Hexachlorocyclopentadiene	µg/L	<	0.22								
	Hexachloroethane	µg/L	<	0.26								
	Indeno(1,2,3-cd)Pyrene	µg/L	<	0.25	Ħ							
	Isophorone	µg/L	<	0.23	Ħ		-					
	Naphthalene	µg/L	<	0.25	Ħ	Ħ	=	-				
	Nitrobenzene	µg/L	<	0.26	H	H	+					
			<	0.20	Ħ	H	+					
	n-Nitrosodimethylamine	µg/L			Ħ	Ħ	=	-				
	n-Nitrosodi-n-Propylamine	µg/L	<	0.31				1				
	n-Nitrosodiphenylamine	µg/L	<	0.27								
	Phenanthrene	µg/L	<	0.21								
	Pyrene	µg/L	<	0.16								
	1,2,4-Trichlorobenzene	µg/L	<	0.17	\square			-				
	Aldrin	µg/L	<		H			-				
	alpha-BHC	µg/L	<		Ħ	F						
	beta-BHC	µg/L	<		Ħ							
	gamma-BHC	µg/L	<		Ħ							
	delta BHC	µg/L	<		Ħ		Ŧ	1			<u> </u>	
	Chlordane		<									
		µg/L	<u> </u>		⊢		_	-				
	4,4-DDT	µg/L	<		\square		_					
	4,4-DDE	µg/L	<		Ц		_					
	4,4-DDD	µg/L	<		Н							
	Dieldrin	µg/L	<		H			-				
	alpha-Endosulfan	µg/L	<		F							
	beta-Endosulfan	µg/L	<		Fi	T		1				
9	Endosulfan Sulfate	µg/L	<									
Group (Endrin	µg/L	<									
2	Endrin Aldehyde	µg/L	<		Ħ							
9	Heptachlor	µg/L	<		Ħ	H	-	-				
	Heptachlor Epoxide	μg/L	<		Н	H	-					
	PCB-1016		<		H	H		-				
		µg/L			H	H	=					
	PCB-1221	µg/L	<		Ħ		-	<u> </u>				
	PCB-1232	µg/L	<				Ì					
	PCB-1242	µg/L	<									
	PCB-1248	µg/L	<									
	PCB-1254	µg/L	<					-				
	PCB-1260	µg/L	<					-				
	PCBs, Total	µg/L	<		Ħ		-	-				
	Toxaphene	µg/L	<		Ħ		-					
	2,3,7,8-TCDD	ng/L	<		Ħ							
	Gross Alpha	pCi/L			Ħ	Ħ						
	Total Beta	pCi/L	<									
			<u> </u>					-				
	Radium 226/228	pCi/L	<		H		_					
5	Total Strontium	µg/L	<		H		_					
	Total Uranium	µg/L	<		H		-					
	Osmotic Pressure	mOs/kg			H							
					E			1				
								-				
								-				
					Ħ			-				
					Ħ		-					
					H							
					H		_	-				
					Ħ		-					
					E							
								1				
		-	-	-	-							

Toxics Management Spreadsheet Version 1.3, March 2021

Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

Stream / Surface Water Information

Mt Union Municipal Authority, NPDES Permit No. PA0020214, Outfall 001

Instructions	Discharge	Stream
--------------	-----------	--------

Receiving Surface Water Name: Juniata River

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	011414	80.76	542	2050			Yes
End of Reach 1	011414	77.43	526	2060			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow (cfs)		W/D	Width	Depth	Velocit	Time	Tributary		Stream	m	Analysis	
Location	TSIWIT	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	80.76	0.11										114	7.6		
End of Reach 1	77.43	0.11													

No. Reaches to Model: 1

Qh

Location	RMI	LFY	Flow (cfs)		W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	TXIVI1	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pH
Point of Discharge	80.76														
End of Reach 1	77.43														

Stream / Surface Water Information

5/17/2022

PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

NPDES Permit No. PA0020214

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Mt Union Municipal Authority, NPDES Permit No. PA0020214, Outfall 001

Instructions Results	RETURN	TO INPU	TS (SAVE AS	PDF	PRINT	• • •	ll 🔿 Inputs 🔿 Results 🔿 Limits					
Hydrodynamics ✓ Wasteload Allocations ✓ AFC CCT (min): 15 PMF: 0.077 Analysis Hardness (mg/l): 123.16 Analysis pH: 7.56													
Pollutants	Conc (up/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments					
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Total Aluminum	0	0		0	750	750	8,430						
Total Antimony	0	0		0	1,100	1,100	12,364						
Total Arsenic	0	0		0	340	340	3,822	Chem Translator of 1 applied					
Total Barium	0	0		0	21,000	21,000	236,034						
Total Boron	0	0		0	8,100	8,100	91,042						
Total Cadmium	0	0		0	2.466	2.64	29.6	Chem Translator of 0.935 applied					
Total Chromium (III)	0	0		0	675.773	2,139	24,036	Chem Translator of 0.316 applied					
Hexavalent Chromium	0	0		0	16	16.3	183	Chem Translator of 0.982 applied					
Total Cobalt	0	0		0	95	95.0	1,068						
Total Copper	0	0		0	16.354	17.0	191	Chem Translator of 0.96 applied					
Free Cyanide	0	0		0	22	22.0	247						
Dissolved Iron	0	0		0	N/A	N/A	N/A						
Total Iron	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	80.965	106	1,196	Chem Translator of 0.761 applied					
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Mercury	0	0		0	1.400	1.65	18.5	Chem Translator of 0.85 applied					
Total Nickel	0	0		0	558.488	560	6,290	Chem Translator of 0.998 applied					
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A						
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied					
Total Silver	0	0		0	4.603	5.42	60.9	Chem Translator of 0.85 applied					
Total Thallium	0	0		0	65	65.0	731						
Total Zinc	0	0		0	139.805	143	1,607	Chem Translator of 0.978 applied					
Acrolein	0	0		0	3	3.0	33.7						

Model Results

5/17/2022

A X X-X-	_			050	050	7.000	
Acrylonitrile	0	0	0	650	650	7,306	
Benzene	0	0	0	640	640	7,193	
Bromoform	0	0	0	1,800	1,800	20,231	
Carbon Tetrachloride	0	0	0	2,800	2,800	31,471	
Chlorobenzene	0	0	0	1,200	1,200	13,488	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	202,315	
Chloroform	0	0	0	1,900	1,900	21,355	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	168,596	
1,2-Dichloropropane	0	0	0	11,000	11,000	123,637	
Ethylbenzene	0	0	0	2,900	2,900	32,595	
Methylene Chloride	0	0	0	12,000	12,000	134,877	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	11,240	
Toluene	0	0	0	1,700	1,700	19,108	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	76,430	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	33,719	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	38,215	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	6,294	
2,4-Dichlorophenol	0	0	0	1,700	1,700	19,108	
2,4-Dimethylphenol	0	0	0	660	660	7,418	
2,4-Dinitrophenol	0	0	0	660	660	7,418	
2-Nitrophenol	0	0	0	8,000	8,000	89,918	
4-Nitrophenol	0	0	0	2,300	2,300	25,851	
Pentachlorophenol	0	0	0	15.363	15.4	173	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	5,170	
Acenaphthene	0	0	0	83	83.0	933	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	3.372	
Benzo(a)Anthracene	0	0	0	0.5	0.5	5.62	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	337,191	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	50,579	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	3.035	
Butyl Benzyl Phthalate	0	ő	ō	140	140	1.574	
2-Chloronaphthalene	0	0	ō	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1.2-Dichlorobenzene	0	0	0	820	820	9,217	
1.3-Dichlorobenzene	0	0	ŏ	350	350	3,934	
1.4-Dichlorobenzene	0	0	0	730	730	8,205	
3.3-Dichlorobenzidine	0	0	0	730 N/A	N/A	0,200 N/A	
Diethyl Phthalate	0	0	0	4.000	4.000	44,959	
cheargn i fhuitailaite	~	~	-	1,000	1,000	11,000	ļ

Model Results

5/17/2022

	_							
Dimethyl Phthalate	0	0		0	2,500	2,500	28,099	
Di-n-Butyl Phthalate	0	0		0	110	110	1,236	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	17,984	
2,6-Dinitrotoluene	0	0		0	990	990	11,127	
1,2-Diphenylhydrazine	0	0		0	15	15.0	169	
Fluoranthene	0	0		0	200	200	2,248	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	112	
Hexachlorocyclopentadiene	0	0		0	5	5.0	56.2	
Hexachloroethane	0	0		0	60	60.0	674	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	112,397	
Naphthalene	0	0		0	140	140	1,574	
Nitrobenzene	0	0		0	4,000	4,000	44,959	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	191,075	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	3,372	
Phenanthrene	0	0		0	5	5.0	56.2	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	1,461	
						-	ss (mg/l):	
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	Conc (up/L)	CV	Trib Conc (μg/L)	Coef	WQC (µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	Conc (up/l)	CV 0		Coef 0	WQC (µg/L) N/A	(µg/L) N/A	WLA (µg/L) N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS)	Conc (val) 0	CV 0 0		Coef 0 0	WQC (µg/L) N/A N/A	(µg/L) N/A N/A	WLA (µg/L) N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)	Conc (unit) 0 0	CV 0 0		Coef 0 0	WQC (µg/L) N/A N/A N/A	(µg/L) N/A N/A N/A	WLA (µg/L) N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum	Conc (unit) 0 0 0 0	CV 0 0 0		Coef 0 0 0 0	WQC (µg/L) N/A N/A N/A	(µg/L) N/A N/A N/A N/A	WLA (µg/L) N/A N/A N/A N/A	Comments
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony	Conc (unil) 0 0 0 0	CV 0 0 0 0		Coef 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 220	(µg/L) N/A N/A N/A N/A 220	WLA (µg/L) N/A N/A N/A N/A 15,827	
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic	Conc (unit) 0 0 0 0 0 0	CV 0 0 0 0 0		Coef 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 220 150	(µg/L) N/A N/A N/A N/A 220 150	WLA (µg/L) N/A N/A N/A 15,827 10,791	Comments Comments Chem Translator of 1 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium	Conc (upd) 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 220 150 4,100	(µg/L) N/A N/A N/A N/A 220 150 4,100	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965	
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic	Conc (unit) 0 0 0 0 0 0	CV 0 0 0 0 0		Coef 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 220 150	(µg/L) N/A N/A N/A N/A 220 150	WLA (µg/L) N/A N/A N/A 15,827 10,791	
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium	Conc (upd) 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 220 150 4,100	(µg/L) N/A N/A N/A N/A 220 150 4,100	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965	
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron	Conc (unit) 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A N/A 220 150 4,100 1,600	(µg/L) N/A N/A N/A N/A 220 150 4,100 1,600	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108	Chem Translator of 1 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium	Conc (unit) 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272	(µg/L) N/A N/A N/A 220 150 4,100 1,600 0.3	WLA (µg/L) N/A N/A N/A N/A 15,827 10,791 294,985 115,108 21.7	Chem Translator of 1 applied Chem Translator of 0.903 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III)	Conc (unit) 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272 83.358	(µg/L) N/A N/A N/A 220 150 4,100 1,800 0.3 98.9	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108 21.7 6,973	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium	Conc (well) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272 83.358 10	(µg/L) N/A N/A N/A 220 150 4,100 1,600 0.3 98.9 10.4	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108 21,7 6,973 748	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt	Conc (met) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,800 0.272 83.358 10 19	(µg/L) N/A N/A N/A 220 150 4,100 1,600 0.3 96.9 10.4 19.0	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108 21.7 6,973 748 1,367	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied Chem Translator of 0.962 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper	Conc (out) 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,800 0.272 83.358 10 19 10.124	(µg/L) N/A N/A N/A 220 150 4,100 1,600 0.3 96.9 10.4 19.0 10.5	WLA (µg/L) N/A N/A 15,827 10,791 294,965 115,108 21.7 6,973 748 1,367 759	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied Chem Translator of 0.962 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Free Cyanide	Conc (mail) 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272 83.358 10 19 10.124 5.2	(µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.3 96.9 10.4 19.0 10.5 5.2	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108 21.7 6,973 748 1,367 759 374	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Boron Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron	Conc (met) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272 83.358 10 19 10.124 5.2 N/A 1,500	(µg/L) N/A N/A N/A 220 150 4,100 1,600 0.3 96.9 10.4 19.0 10.5 5.2 N/A 1,500	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,985 115,108 21.7 6,973 748 1,387 759 374 N/A 200,272	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.88 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Arsenic Total Barium Total Boron Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Iron	Conc (met) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272 83.358 10 19 10.124 5.2 N/A 1,500 2.941	(µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.3 98.9 10.4 19.0 10.5 5.2 N/A 1,500 3.82	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108 21,7 6,973 748 1,367 759 374 N/A 200,272 275	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Iron Total Iron Total Iron	Conc (meth) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272 83,358 10 19 10.124 5.2 N/A 1,500 2,941 N/A	(µg/L) N/A N/A N/A N/A 220 150 4,100 1,800 0.3 96.9 10.4 19.0 10.5 5.2 N/A 1,500 3.82 N/A	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108 21.7 6,973 748 1,367 759 374 1,387 759 374 N/A 200,272 275 N/A	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.77 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Antimony Total Barium Total Barium Total Cadmium Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Lead Total Marganese Total Marganese	Conc (out) 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0,272 83,358 10 19 10,124 5,2 N/A 1,500 2,941 N/A 0,770	(µg/L) N/A N/A N/A N/A 220 150 4,100 1,600 0.3 96.9 10.4 19.0 10.5 5.2 N/A 1,500 3.82 N/A 0.91	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,985 115,108 21,7 6,973 748 1,367 759 374 1,367 759 374 N/A 200,272 275 N/A 65,2	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.963 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.77 applied Chem Translator of 0.85 applied
Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Total Aluminum Total Antimony Total Ansenic Total Barium Total Barium Total Boron Total Cadmium Total Cadmium Total Chromium (III) Hexavalent Chromium Total Cobalt Total Copper Free Cyanide Dissolved Iron Total Iron Total Iron Total Iron Total Iron	Conc (meth) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Coef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WQC (µg/L) N/A N/A N/A 220 150 4,100 1,600 0.272 83,358 10 19 10.124 5.2 N/A 1,500 2,941 N/A	(µg/L) N/A N/A N/A N/A 220 150 4,100 1,800 0.3 96.9 10.4 19.0 10.5 5.2 N/A 1,500 3.82 N/A	WLA (µg/L) N/A N/A N/A 15,827 10,791 294,965 115,108 21.7 6,973 748 1,367 759 374 1,387 759 374 N/A 200,272 275 N/A	Chem Translator of 1 applied Chem Translator of 0.903 applied Chem Translator of 0.86 applied Chem Translator of 0.962 applied Chem Translator of 0.96 applied WQC = 30 day average; PMF = 1 Chem Translator of 0.77 applied

Model Results

5/17/2022

NPDES Permit No. PA0020214

Total Selenium	0	0		0	4.600	4.99	359	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	935	
Total Zinc	0	0		0	133.414	135	9,734	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	216	
Acrylonitrile	0	0		0	130	130	9.353	
Benzene	0	0		0	130	130	9.353	
Bromoform	0	0		0	370	370	26,619	
Carbon Tetrachloride	0	0		0	560	560	40.288	
Chlorobenzene	0	0	╟┼┼┼┼┦	0	240	240	17,266	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	251,800	
Chloroform	0	0		0	390	390	28.058	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1.2-Dichloroethane	0	0		0	3,100	3,100	223.023	
1,2-Dichloropropane	0	0		0	2,200	2,200	158,274	
Ethylbenzene	0	0		0	580	580	41,727	
Methylene Chloride	0	0		0	2,400	2,400	172,663	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	15,108	
Toluene	0	0		0	330	330	23,741	
1,2-trans-Dichloroethylene	0	0		0	1,400	1,400	100,720	
1,1,1-Trichloroethane	0	0		0	610	610	43,885	
1,1,2-Trichloroethane	0	0		0	680	680	48,921	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	7,914	
2,4-Dichlorophenol	0	0		0	340	340	24,461	
2,4-Dimethylphenol	0	0		0	130	130	9,353	
2,4-Dinitrophenol	0	0		0	130	130	9,353	
2-Nitrophenol	0	0		0	1,600	1,600	115,108	
4-Nitrophenol	0	0		0	470	470	33,813	
Pentachlorophenol	0	0		0	11.787	11.8	848	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	6,547	
Acenaphthene	0	0		0	17	17.0	1,223	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	4,245	
Benzo(a)Anthracene	0	0		0	0.1	0.1	7.19	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	431,657	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	65,468	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	3,885	
Butyl Benzyl Phthalate	0	0		0	35	35.0	2,518	

Model Results

5/17/2022

2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
	0	0		0	N/A N/A	N/A	N/A N/A	
Chrysene	-	-		-				
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	11,511	
1,3-Dichlorobenzene	0	0		0	69	69.0	4,964	
1,4-Dichlorobenzene	0	0		0	150	150	10,791	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	57,554	
Dimethyl Phthalate	0	0		0	500	500	35,971	
Di-n-Butyl Phthalate	0	0		0	21	21.0	1,511	
2,4-Dinitrotoluene	0	0		0	320	320	23,022	
2,6-Dinitrotoluene	0	0		0	200	200	14,389	
1,2-Diphenylhydrazine	0	0		0	3	3.0	216	
Fluoranthene	0	0		0	40	40.0	2,878	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	144	
Hexachlorocyclopentadiene	0	0		0	1	1.0	71.9	
Hexachloroethane	0	0		0	12	12.0	863	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	151,080	
Naphthalene	0	0		0	43	43.0	3,094	
Nitrobenzene	0	0		0	810	810	58,274	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	244,605	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	4,245	
Phenanthrene	0	0		0	1	1.0	71.9	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	1.871	
<i>⊡ тнн</i> сс	T (min): 7	20	PMF:	0.535	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
	Stream	Stream	Trib Conc	Fate	WQC	WQ Obj		
Pollutants	Conc (ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	403	
Total Arsenic	0	0		0	10	10.0	719	
Total Barium	0	0		0	2,400	2,400	172,663	
Total Boron	0	0		0	3,100	3,100	223.023	
Total Cadmium	0	ō		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Treate are not on ormall	· ·	•		~	1907	1977	1903	

Model Results

5/17/2022

				_						
Total Cobalt	0	0				0	N/A	N/A	N/A	
Total Copper	0	0				0	N/A	N/A	N/A	
Free Cyanide	0	0				0	4	4.0	288	
Dissolved Iron	0	0	++			0	300	300	21,583	
Total Iron	0	0				0	N/A	N/A	N/A	
Total Lead	0	0	ΪÌ			0	N/A	N/A	N/A	
Total Manganese	0	0				0	1,000	1,000	71,943	
Total Mercury	0	0	+	_		0	0.050	0.05	3.6	
Total Nickel	0	0				0	610	610	43,885	
Total Phenols (Phenolics) (PWS)	0	0				0	5	5.0	N/A	
Total Selenium	0	0				0	N/A	N/A	N/A	
Total Silver	0	0		_		0	N/A	N/A	N/A	
Total Thallium	0	0				0	0.24	0.24	17.3	
Total Zinc	0	0				0	N/A	N/A	N/A	
Acrolein	0	0				0	3	3.0	216	
Acrylonitrile	0	0				0	N/A	N/A	N/A	
Benzene	0	0		+		0	N/A	N/A	N/A	
Bromoform	0	0	i i			0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0				0	N/A	N/A	N/A	
Chlorobenzene	0	0		+		0	100	100.0	7,194	
Chlorodibromomethane	0	0	╞┼┼	+		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	İΤ			0	N/A	N/A	N/A	
Chloroform	0	0				0	5.7	5.7	410	
Dichlorobromomethane	0	0		+		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	H	+		0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0				0	N/A	N/A	N/A	
Ethylbenzene	0	0				0	68	68.0	4,892	
Methylene Chloride	0	0	╠┼┼	+		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	╞┼┼	+	+++	0	N/A	N/A	N/A	
Toluene	0	0	İÌÌ	Ť		0	57	57.0	4,101	
1,2-trans-Dichloroethylene	0	0	ЦĨ			0	100	100.0	7,194	
1,1,1-Trichloroethane	0	0		-		0	10,000	10,000	719,428	
1,1,2-Trichloroethane	0	0	H	-		0	N/A	N/A	N/A	
Vinyl Chloride	0	0				0	N/A	N/A	N/A	
2-Chlorophenol	0	0				0	30	30.0	2,158	
2,4-Dichlorophenol	0	0		-		0	10	10.0	719	
2,4-Dimethylphenol	0	0	H+			0	100	100.0	7,194	
2,4-Dinitrophenol	0	0				0	10	10.0	719	
2-Nitrophenol	0	0		-		0	N/A	N/A	N/A	
4-Nitrophenol	0	0	H	-		0	N/A	N/A	N/A	
Pentachlorophenol	0	0	t d			0	N/A	N/A	N/A	
Phenol	0	0				0	4,000	4,000	287,771	
2,4,6-Trichlorophenol	0	0		-		0	N/A	N/A	N/A	
Acenaphthene	0	0	H	-		0	70	70.0	5,036	
Anthracene	0	0		-		0	300	300	21,583	

Model Results

5/17/2022

Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A	
	-	0		-				
Benzo(a)Pyrene	0	-		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	14,389	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	7.19	
2-Chloronaphthalene	0	0		0	800	800	57,554	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	1,000	1,000	71,943	
1,3-Dichlorobenzene	0	0		0	7	7.0	504	
1,4-Dichlorobenzene	0	0		0	300	300	21,583	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	43,166	
Dimethyl Phthalate	0	0		0	2,000	2,000	143,886	
Di-n-Butyl Phthalate	0	0		0	20	20.0	1,439	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	1,439	
Fluorene	0	0		0	50	50.0	3,597	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	288	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	34	34.0	2,446	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	10	10.0	719	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	1,439	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	5.04	
_	· · ·	20	PMF:	0.822	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	(ug/L) 0	0	(Pare/	0	N/A	N/A	N/A	
	-	-		-				

Model Results

5/17/2022

	_						
Chloride (PWS)	0	0	0	N/A	N/A	N/A	
Sulfate (PWS)	0	0	0	N/A	N/A	N/A	
Total Aluminum	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	N/A	N/A	N/A	
Total Arsenic	0	0	0	N/A	N/A	N/A	
Total Barium	0	0	0	N/A	N/A	N/A	
Total Boron	0	0	0	N/A	N/A	N/A	
Total Cadmium	0	0	0	N/A	N/A	N/A	
Total Chromium (III)	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	N/A	N/A	N/A	
Total Copper	0	0	0	N/A	N/A	N/A	
Free Cyanide	0	0	0	N/A	N/A	N/A	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	N/A	N/A	N/A	
Total Nickel	0	0	0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	0.06	0.06	24.6	
Benzene	0	0	0	0.58	0.58	238	
Bromoform	0	0	0	7	7.0	2,871	
Carbon Tetrachloride	0	0	0	0.4	0.4	164	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	328	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	N/A	N/A	N/A	
Dichlorobromomethane	0	0	0	0.95	0.95	390	
1.2-Dichloroethane	0	0	0	9.9	9.9	4,060	
1,2-Dichloropropane	0	0	0	0.9	0.9	369	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	8.201	
1.1.2.2-Tetrachloroethane	0	0	0	0.2	0.2	82.0	
Toluene	0	0	0	0.2 N/A	0.2 N/A	02.0 N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1.1.1-Trichloroethane	0	0	0	N/A N/A	N/A N/A	N/A	
1,1,1-1 ncnioroethane	0	0	0	0.55	0.55	226	
Vinyl Chloride	0	0	0	0.02	0.02	8.2	
2-Chlorophenol	0	0	0	0.02 N/A	0.02 N/A	8.2 N/A	
2-Oniorophenoi	U	U	U	N/A	IN/A	N/A	

Model Results

5/17/2022

2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
	0	0	0			N/A	
2,4-Dinitrophenol		0		N/A	N/A		
2-Nitrophenol	0	-	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	12.3	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	615	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.041	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.41	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.041	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.41	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	4.1	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	12.3	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	131	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	49.2	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.041	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	20.5	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	20.5	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	20.5	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	12.3	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.033	
Hexachlorobutadiene	0	0	0	0.01	0.01	4.1	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	41.0	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.41	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.29	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	2.05	
	-	-	-				1

Model Results

5/17/2022

NPDES Permit Fact Sheet Mt Union STP

	N/A N/A N/A	
Pyrene 0 0 N	N/A N/A N/A	
1,2,4-Trichlorobenzene 0 0 N	N/A N/A N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	5,403	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	151,288	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	58,354	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	19.0	µg/L	Discharge Conc < TQL
Total Chromium (III)	6,973	µg/L	Discharge Conc < TQL
Hexavalent Chromium	117	µg/L	Discharge Conc < TQL
Total Cobalt	684	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	123	µg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	158	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	21,583	µg/L	Discharge Conc < TQL
Total Iron	200,272	µg/L	Discharge Conc < TQL
Total Lead	275	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	71,943	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	3.6	µg/L	Discharge Conc < TQL
Total Nickel	4,032	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	359	µg/L	Discharge Conc < TQL

Model Results

5/17/2022

Page 14

NPDES Permit Fact Sheet Mt Union STP

Total Silver	39.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	17.3	µg/L	Discharge Conc < TQL
Total Zinc	1,030	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	21.6	µg/L	Discharge Conc < TQL
Acrylonitrile	24.6	µg/L	Discharge Conc < TQL
Benzene	238	µg/L	Discharge Conc < TQL
Bromoform	2,871	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	164	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorobenzene	7,194	µg/L	Discharge Conc < TQL
Chlorodibromomethane	328	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	129,676	µg/L	Discharge Conc < TQL
Chloroform	410	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	390	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	4,060	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	369	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	4,892	µg/L	Discharge Conc < TQL
Methylene Chloride	8,201	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	82.0	µg/L	Discharge Conc < TQL
Toluene	4,101	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	7,194	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	21,613	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	226	µg/L	Discharge Conc < TQL
Vinyl Chloride	8.2	µg/L	Discharge Conc < TQL
2-Chlorophenol	2,158	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	719	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	4,755	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	719	µg/L	Discharge Conc < TQL
2-Nitrophenol	57,634	µg/L	Discharge Conc < TQL
4-Nitrophenol	16,570	µg/L	Discharge Conc < TQL
Pentachlorophenol	12.3	µg/L	Discharge Conc < TQL
Phenol	287,771	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	615	µg/L	Discharge Conc < TQL
Acenaphthene	598	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	21,583	µg/L	Discharge Conc < TQL
Benzidine	0.041	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.41	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.041	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.41	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	4.1	µg/L	Discharge Conc < TQL

Model Results

5/17/2022

NPDES Permit Fact Sheet Mt Union STP

Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	12.3	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	14,389	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	131	µg/L	Discharge Conc ≤ 25% WQBEL
4-Bromophenyl Phenyl Ether	1,945	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	7.19	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	57,554	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	49.2	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.041	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	5,907	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	504	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	5,259	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	20.5	µg/L	Discharge Conc < TQL
Diethyl Phthalate	28,817	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	18,010	µg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	792	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	20.5	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	20.5	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	12.3	µg/L	Discharge Conc < TQL
Fluoranthene	1,439	µg/L	Discharge Conc < TQL
Fluorene	3,597	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.033	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	4.1	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	36.0	µg/L	Discharge Conc < TQL
Hexachloroethane	41.0	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.41	µg/L	Discharge Conc < TQL
Isophorone	2,446	µg/L	Discharge Conc < TQL
Naphthalene	1,009	µg/L	Discharge Conc < TQL
Nitrobenzene	719	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.29	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	2.05	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	1,353	µg/L	Discharge Conc < TQL
Phenanthrene	36.0	µg/L	Discharge Conc < TQL
Pyrene	1,439	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	5.04	µg/L	Discharge Conc < TQL

Model Results

5/17/2022

Page 16

Existing Effluent Limitations and Monitoring Requirements

Outfall 001,

		Monitoring Requirements						
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	ххх	Continuous	Measured
pH (S.U.)	ххх	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	225.0	365.0 Wkly Avg	XXX	25.0	40.0	50.0	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	2/week	24-Hr Composite
TSS	275.0	410.0 Wkly Avg	XXX	30.0	45.0	60.0	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	ххх	XXX	xxx	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
UV Dosage (mWsec/cm²)	ХХХ	XXX	Report	XXX	XXX	ХХХ	1/day	Recorded

Existing Effluent Limitations and Monitoring Requirements

Outfall 001, Chesapeake Bay Requirements

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Faranieter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	20,091	xxx	xxx	xxx	xxx	1/month	Calculation
Net Total Phosphorus	Report	2,679	XXX	xxx	xxx	XXX	1/month	Calculation

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	ХХХ	Continuous	Measured
pH (S.U.)	ххх	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD₅	225.0	365.0 Wkly Avg	XXX	25.0	40.0	50.0	2/week	24-Hr Composite
BOD₅ Raw Sewage Influent	Report	Report	XXX	Report	XXX	ххх	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	XXX	xxx	2/week	24-Hr Composite
TSS	275.0	410.0 Wkly Avg	XXX	30.0	45.0	60.0	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	xxx	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
E. Coli (No./100 ml)	xxx	XXX	XXX	xxx	XXX	Report	1/month	Grab
UV Dosage (mWsec/cm ²)	xxx	XXX	Report	xxx	XXX	xxx	1/day	Recorded

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	xxx	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	20,091	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	2,679	xxx	xxx	xxx	XXX	1/month	Calculation

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
\square	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
\bowtie	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: BPNPSM-PMT-033
	Other:

H- 3A KOULT UNOU STY PA 0020214

RECEIVED

DEP SOUTHCENTRAL REGION

WQ/WSHD PROGRAMS

8 2011

AUG

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1650 Arch Street Philadelphia, Pennsylvania 19103-2029

Mr. Glenn L. Gribble V.P. Human Resource & Safety **Bonney Forge Corporation** 14496 Croghan Pike P.O. Box 330 Mount Union, PA 17066-0330

AUG 0 4 2011

Re: Industrial User Requirements PAP 120214

Dear Mr. Gribble:

In accordance with the information submitted by Bonney Forge, your facility in Mount Union is an industrial user of a publicly owned treatment works and subject to the Metal Finishing Category, 40 CFR Part 433, Pretreatment Standards for New Sources (PSNS). As such, the monitoring and reporting requirements of the General Pretreatment Regulations, 40 CFR Part 403.12, apply to the discharge from the facility.

Enclosed is information regarding your requirements as an industrial user. The package sets forth specific requirements for your facility, including monitoring requirements that the Environmental Protection Agency (EPA) has established in accordance with 40 CFR Part 403.12(e). Appendix A includes a summary of the General Pretreatment Regulations. Please note the monitoring and reporting provisions, including the requirements for resampling whenever a violation occurs. Appendix B includes information on hazardous waste requirements under the Resource, Conservation, and Recovery Act.

New sources are required to be in compliance upon commencement of discharge. Thereafter, periodic compliance reports are required to be submitted to the EPA each June and December in accordance with 40 CFR Part 403.12(e). In this package, EPA, as Control Authority, is modifying the due dates for future periodic monitoring reports. Monitoring data obtained from sampling conducted in the January through June monitoring period will be due July 31 of each year, while data obtained in the July through December monitoring period will be due January 31 of the following year.

In the event that a violation occurs, you are required to notify EPA within 24 hours of becoming aware of the violation. In addition, you are required to resample for those pollutants for which the violation occurred and submit the results of the resampling within 30 days of becoming aware of the violation. Although not required by the regulations, the 30 day report should also include the cause of the violation and the steps taken to ensure that it does not recur.

Printed on 100% recycled/recyclable paper with 100% post-consumer fiber and process chlorine free. es Customer Service Hotline: 1-800-438-2474

39 Page

- 2 ---

This package is based on information supplied by Bonney Forge. The company is required to provide EPA with complete and updated information on its manufacturing operations and discharges. Any changes to the manufacturing facilities and/or discharges may result in changes to the specific requirements for your facility. Where there is a conflict between the regulatory requirements and this package, the regulatory requirement applies.

In addition, the company must comply with the requirements of any state or local agencies which may have jurisdiction. Nothing contained in this package, or in any EPA regulation, is meant to restrict state or local agencies from imposing additional requirements in accordance with applicable laws including requirements which are more stringent than those imposed by EPA.

You should carefully review the enclosed information and communicate to each responsible official the actions necessary to comply with pretreatment requirements. A copy of the General Pretreatment Regulations is enclosed for your use.

In order to promote further strides in the reduction of discharges, pollution prevention in the form of source reduction such as raw material, product substitution, and process or equipment modification, recycling and reuse is being encouraged by the EPA. We strongly encourage you to explore pollution prevention alternatives in your operation and implement them as appropriate.

If you have any questions, please contact Robert Hansford at (215) 814-5791 or John Lovell at (215) 814-5790.

Sincerely,

David &. McGuigan, Ph

Associate Director Office of NPDES Permits and Enforcement Water Protection Division

Enclosures

cc: Lee McDonnell, PADEP-Southcentral Regional Office Sean Furjanic, PADEP Central Office

Printed on 100% recycled/recyclable paper with 100% post-consumer fiber and process chlorine free. Customer Service Hofline: 1-800-438-2474

Discharge Limitations and Monitoring Requirements for: Bonney Forge Corporation – 14496 Croghan Pike – Mt. Union, PA 17066-0330 (PAP120214)

Such discharges shall be limited and monitored by the permittee as specified below:

Parameter	Concentration (mg/l)	Concentration (mg/l)	Monitoring I	(equirements (2)
	Monthly Avg	Daily Max	Frequency	Sample Type (3)
Regulated Flow (gal/day)	-		i/month	Measured
pH (1)			1/month	grabs/low chart read
Cadmium (T)	0.07	0.11	1/6 months	Composite
Chromium (T)	1.71	2.77	1/6 months	Composite
Copper (T)	2.07	3,38 .	1/6 montha	Composite
Lead (T)	0.43	0.69	1/6 months	Composite
Nickel (T)	2.38	3.98	1/6 months	Composite
Silver (T)	0.24	0.43	1/6 months	Composite
Zinc (T)	1.48	2.61	1/6 months	Composite
Cyanide (T)	0.65	1.20	1/6 months	grabs
TTO (4)		2.13	1/6 months	Grabs

(1) The pH shall not be less than 5.0 standard units at any time and shall be monitored at least once per month by grab sample or continuously by a pH monitoring device.

(2) Samples taken in compliance with the monitoring requirements specified above shall be representative of the combined effluent streams from the two Rinse Tanks in the 5-stage washline, taken at a point not subject to dilution by other wastestreams. Prior to discharge of any other process wastes, notification must be provided to both EPA and the local POTW.

(3) Compliance sampling shall consist of a series of 4 grab samples taken over the discharge period of one calendar day or 24-hour period. Grab samples (except pH) may be combined in the lab prior to analysis or tested separately and the test results averaged to derive a daily maximum value. Also see attachment outlining VOA collection, preservation and compositing procedures.

(4) TTO shall mean total toxic organics, which is the summation of all quantifiable values greater than 0.01 mg/liter for the toxic organics shown in attachment 1. Analysis shall be conducted for all TTO parameters such that the detection limit (MDL) is less than or equal to 0.01 mg/liter. The industrial user can monitor for TTO semiannually, or develop and implement a toxic organics management plan (TOMP) and submit semi-annual certification of no dumping of solvents as stated in 40 CFR 433.12. TTO monitoring must be continued until the TOMP is approved by EPA. Guidance for the preparation of a TOMP is attached.

C Printed on 100% recycled/recyclable paper with 100% yest-consumer fiber and process chlorine free. Customer Service Hotline: 1-800-438-2474

41 | Page

Phase 3 WIP Wastewater Supplement Revised, September 13, 2021

Table 5: Significant Chesapeake Bay Sewage NPDES Permits Issued

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (Ibs/yr)	TN Offsets Included in Cap Load (Ibs/yr)	TP Cap Load (Ibs/yr)	TN Delivery Ratio	TP Delivery Ratio
PA0020036	3	Blossburg Borough	1/10/2017	1/31/2022	10/1/2012	7,306	-	974	0.474	0.436
PA0020214	3	Mount Union Borough	4/17/2017	4/30/2022	10/1/2013	20,091	-	2,679	0.88	0.436
PA0020249	3	Roaring Spring Borough	1/31/2020	1/31/2025	1/1/2016	12,785	-	1,705	0.88	0.436
PA0020273	2	Milton Regional Sewage Authority	9/25/2017	9/30/2022	10/1/2009	72,217	-	10,049	0.941	0.436
PA0020320	1	Lititz Sewer Authority	7/19/2019	6/30/2023	10/1/2010	70,319	-	9,376	0.891	0.436
PA0020338	3	Kulpmont-Marion Heights Joint Municipal Authority	5/4/2017	5/31/2022	10/1/2011	9,132	-	1,218	0.871	0.436
PA0020486	1	Bellefonte Borough	6/1/2019	5/31/2024	10/1/2010	58,812	-	7,842	0.93	0.436
PA0020508	3	McConnellsburg Borough	1/14/2021	1/30/2026	10/1/2012	10,959	-	1,461	0.749	0.67
PA0020567	3	Northumberland Borough	1/17/2018	9/31/2023	10/1/2012	20,548	-	2,740	0.941	0.436
PA0020583	2	Middleburg Municipal Authority	7/16/2020	7/31/2025	10/1/2012	8,219	-	1,096	0.951	0.436
PA0020621	2	Waynesboro Borough	9/14/2018	9/30/2023	10/1/2013	29,223	-	3,896	0.819	0.67
PA0020664	1	Middletown STP	2/16/2021	2/28/2026	10/1/2011	40,182	-	5,358	0.961	0.436
PA0020800	3	White Deer Township	2/10/2021	2/28/2026	10/1/2011	10,959	-	1,461	0.941	0.436
PA0020818	2	Glen Rock Sewer Authority	10/21/2015	10/31/2020	10/1/2012	10,959	-	1,461	0.961	0.436
PA0020826	1	Dover Township Sewer Authority	6/2/2017	6/30/2022	10/1/2010	146,117	-	19,482	0.961	0.436
PA0020834	2	Franklin County Authority – Greencastle	5/21/2021	5/31/2026	10/1/2012	17,351	-	2,314	0.683	0.67
PA0020885	1	Mechanicsburg Borough Municipal Authority	4/27/2017	4/30/2022	10/1/2012	37,990	-	5,065	0.951	0.436
PA0020893	1	Manheim Borough Authority	1/17/2008	1/31/2013	10/1/2011	21,847	1,025	2,776	0.97	0.436
PA0020915	2	Pine Grove Borough Authority	2/04/2016	2/28/2021	10/1/2012	27,397	-	3,653	0.961	0.436
PA0020923	1	New Oxford Municipal Authority	5/23/2016	5/31/2021	10/1/2011	32,657	-	4,354	0.961	0.436
PA0021067	1	Mount Joy Borough	2/18/2021	2/28/2026	10/1/2010	27,945	-	3,726	0.97	0.436
PA0021229	3	Littlestown Borough	6/1/2012	6/30/2017	10/1/2014	18,265	-	2,435	0.627	0.67

- 6 -