

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0020397

 APS ID
 847057

 Authorization ID
 1033167

Applicant and Facility Information							
Applicant Name	Boroug	h of Bridgeport	Facility Name	Borough of Bridgeport WWTP			
Applicant Address	P.O. Bo	ox 148	Facility Address	375 River Road			
	Bridgep	ort, PA 19405-0148		Bridgeport, PA 19405			
Applicant Contact	Keith Tr	ruman	Facility Contact	Christopher Conway			
Applicant Phone	(610) 27	72-1811	Facility Phone	(610) 275-4236			
Client ID	86433		Site ID	451902			
Ch 94 Load Status	Not Ove	erloaded	Municipality	Upper Merion Township			
Connection Status	No Limi	tations	County	Montgomery			
Date Application Recei	ived	July 9, 2014	EPA Waived?	No			
Date Application Accept	Date Application Accepted		If No, Reason	CSO facility			
Purpose of Application		Permit Renewal.					

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Borough of Bridgeport (permittee) on July 9, 2014 for permittee's Bridgeport WWTP located in Upper Merion TWP, Montgomery County. This is a minor facility with CSOs. The treated effluent discharges through Outfall 001 into Schuylkill River, WWF/MF. The existing permit expired on December 31, 2014. The terms and conditions were administratively extended since the renewal application was not received at least 180 days prior to permit expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001. A draft permit was issued in December 3, 2019 and was withdrawn due to EPA's general objection on CSO language.

This fact sheet is developed in accordance with 40 CFR §124.56

Sludge use and disposal description and location(s): Belt filtered biosolid cakes are landfilled

<u>Changes in this renewal:</u> DO limit is changed to 5 mg/l daily minimum from monitor/report, seasonal fecal coliform applied, SBC code for TDS is changed to Average Quarterly from Average Monthly, year 1 sampling requirement for PCBs, IMAX TDS limit is removed, and influent BOD5, CBOD5, and TSS monitoring is added.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark			March 05, 0000
		Reza H. Chowdhury, E.I.T. / Project Manager 🦉 🧹	March 25, 2022
x		Pravin Patel	
		Pravin C. Patel, P.E. / Environmental Engineer Manager	03/25/2022

Discharge, Receivi	ng Water	rs and Water Supply Infor	mation	
Outfall No. 001			Design Flow (MGD)	0.9
Latitude 40°	6' 8"		Longitude	-75º 19' 33"
Quad Name	lorristowr	1	Quad Code	1843
Wastewater Desc	ription:	Treated Sewage Effluent		
Receiving Waters	Schu	ylkill River (WWF)	Stream Code	00833
NHD Com ID	2598	5560	RMI	22.79
Drainage Area	1,770	mi ²	Yield (cfs/mi²)	0.125
Q ₇₋₁₀ Flow (cfs)	221.2	5	Q7-10 Basis	Please see below
Elevation (ft)	43.73	3	Slope (ft/ft)	
Watershed No.	3-F		Chapter 93 Class.	WWF, MF
Existing Use	WWF	/MF	Existing Use Qualifier	Ch. 93
Exceptions to Use	e None		Exceptions to Criteria	<u>N/A</u>
Assessment State	us	Impaired		
Cause(s) of Impa	irment	POLYCHLORINATED BI	PHENYLS (PCBS)	
Source(s) of Impa	airment	SOURCE UNKNOWN		
TMDL Status		Final	Name Schuylkill Ri	ver PCB TMDL
Background/Amb	ient Data		Data Source	
pH (SU)		7.5	Previous protection report	
Temperature (°C))	25	Previous protection report	
Hardness (mg/L)		200	Previous protection report	
Other:				
Nearest Downstre	eam Publi	c Water Supply Intake	Philadelphia Water Departme	nt Queen Lane
PWS Waters	Schuylk	,	Flow at Intake (cfs)	374 cfs
PWS RMI	12.6		Distance from Outfall (mi)	10.19

Streamflow:

Streamflow data was collected from the nearest upstream USGS stream gage 01473500 located in Schuylkill River at Norristown, PA. Q₇₋₁₀, Q₁₋₁₀, and Q₃₀₋₁₀ values at this gage are 220 cfs, 182 cfs, and 247 cfs respectively for the reporting years of 1929-2008. The drainage area was found to be 1,760 mi². These values were obtained from the latest USGS streamflow report ⁽¹⁾. The drainage area at the discharge point was found to be 1,770 mi² from USGS StreamStats Version 3.0 Flow Statistics Ungaged Site Report on November 14, 2019.

 $\begin{array}{l} Q_{7\text{-}10} \text{ runoff rate} = 220 \text{ cfs}/1760 \text{ mi}^2 = 0.125 \text{ cfs}/\text{mi}^2 \\ Q_{7\text{-}10} = 0.125 \text{ cfs}/\text{mi}^2 * 1770 \text{ mi}^2 = 221.25 \text{ cfs} \\ Q_{1\text{-}10}/Q_{7\text{-}10} = 182 \text{ cfs}/220 \text{ cfs} = 0.827 \\ Q_{30\text{-}10}/Q_{7\text{-}10} = 247 \text{ cfs}/220 \text{ cfs} = 1.123 \\ Q_{1\text{-}10} = 0.827^*221.25 = 182.97 \text{ cfs} \\ Q_{30\text{-}10} = 1.123^*221.25 = 248.46 \text{ cfs} \end{array}$

DEP's SOP (BPMPSM-PMT-033, revised Oct 1, 2020) section II.B.4 states that where a facility is eligible for technology-based limits of CBOD₅ exceeding 25 mg/l, application managers will evaluate a WQBEL for CBOD₅ as follows:

⁽¹⁾ Stuckey, M.H., Roland, M.A., 2011, Selected streamflow statistics for streamgage locations in and near Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2011-1070, 10p, 23p.

- a. Model the discharge using Toxics Management Spreadsheet (TMS)
- b. Multiply the acute partial mix factor by the Q7-10 of the receiving waters
- c. Run the WQM 7.0 model using the adjusted Q_{7-10} and apply the WQBEL in the permit, if less than the technology-based limits
- d. Establish the average monthly concentration limit for TSS at the same concentration as for CBOD₅ using BPJ, if the CBOD₅ limit is a WQBEL

The attached TMS model suggested a PMFa of 5.2%. A partial mixing factor, according to DEP's technical guidance (391-2000-011), is used to describe the factional portion of the stream that mixes with the discharge at the criteria compliance times. The partial mix factor is a value between 0 and 1; 1 presenting complete mixing and less than 1 represents there is incomplete mixing between the discharge and the stream. Therefore, the revised Q₇₋₁₀ will be **221.25** * **0.052 or 11.51 cfs**.

PWS Intake:

The nearest downstream public water supply is Philadelphia Water Department Queen Lane, located in City of Philadelphia on Schuylkill River at RMI 12.6. It is approximately 10 miles downstream of the discharge. Due to the distance, dilution, and effluent limits the discharge is not expected to impact the public water supply.

Wastewater Characteristics:

A median pH of 7.2 during July through September for the reporting years 2020-2021 from eDMR, a default temperature of 20°C, and discharge hardness of 100 mg/l will be used for modeling.

Background data:

A median pH of 7.5, hardness of 200 mg/l, and temperature of 25°C was directly taken from previous protection report for the stream.

303d Listed Streams:

The discharge from this facility is to Schuylkill River which has the following designated use impairments:

- 1. Fish consumption: Impaired due to PCB from unknown source
- 2. Aquatic Life: Impaired due to Agriculture (unknown cause), Urban Runoff/Storm Sewers (unknown cause), and Municipal Point Source Discharges (unknown cause)

Schuylkill River PCB TMDL was finalized in April 7, 2007. The TMDL is briefly described below.

Schuylkill River PCB TMDL:

On April 7, 2007, The U.S. EPA, Region III, established a Total Maximum Daily Load (TMDL) for Polychlorinated Biphenyl (PCB) for the Schuylkill River, which was listed on Pennsylvania's 1996 303(d) list of impaired streams as impaired due to the presence of elevated PCB concentrations found in fish tissue. PCBs are a group of synthetic chemicals that consist of 209 individual compounds (knowns as Congeners). The Schuylkill River's PCB TMDL was established using a waterquality criterion of 0.044 ng/l for PCBs.

Implementation of the TMDL requires that permitted facilities that discharge directly to the Schuylkill River conduct monitoring for PCBs using analytical method 1668A. The results of PCB monitoring will be evaluated to determine a need to develop and implement a PCB's Waste Minimization and Reduction Program, also known as Pollutant Minimization Plan (PMP). Implementation of the TMDL is planned to be completed in two phases. Phase I implementation of the TMDL requires that this facility collect and analyze two samples for PCBs utilizing method 1668A during the first 12 months of the permit that was effective from January 1, 2010. One sample was directed to be collected during a wet weather flow period and the second sample be collected during a dry weather flow from Outfall 001. The permittee indicated they conducted one sample on April 22, 2014. But the sample was analyzed using EPA method 608 which is not acceptable for RP analysis or compliance purpose. The permittee was advised to use EPA method 1668A. In absence of appropriate sample results, the existing requirement of collecting two samples within 12 months of this renewal effective date, one during wet weather flow and another one in dry weather flow, and submitting the results within 15 months of this renewal effective date, will be reinstated.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving stream is a WWF/MF, not a special protection water.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

Combined Sewer Overflows:

There are currently five Combined Sewer Overflows (CSOs) within the system. These CSOs act as relief valves allowing excess untreated sewage and stormwater to overflow the newly constructed Front Street Interceptor (FSI) and discharge directly to the canal or river. CSO outfall 002 is located in the DeKalb sub-basin, adjacent to the DeKalb Street PS. CSOs 003, 004, and 005 were reconstructed as part of the construction of FSI in 2011. Outfalls 003 and 005 have hydrodynamic treatment devices that prevents mostly settleable from discharge directly to the Schuylkill 006 is located adjacent to the River Road PS. CSO Outfalls 002, 005, and 006 discharge directly to the Schuylkill River while CSO outfalls 003 and 004 discharge to the Schuylkill Canal. The below table summarizes the existing CSO outfalls in the Borough of Bridgeport:

CSO #	Former CSO #	Discharge Point		Location			
			Latitude	Longitude	Location	Device?	
002	1	Schuylkill River	40° 6' 3.33"	-75º 19' 21.83"	DeKalb St. Br	No	
003	New	Canal	40º 6' 3.33"	-75º 19' 21.83"	Foot of Hurst St.	Yes	
004	5	Canal	40º 6' 3.33"	-75º 19' 21.83"	Near 003	No	
005	New	Schuylkill River	40º 6' 3.33"	-75º 19' 21.83"	Foot of Coates St.	Yes	
006	6	Schuylkill River	40º 6' 3.33"	-75º 19' 21.83"	River Rd. PS	No	

In 2007, some sewers within the DeKalb Basin was rerouted as a result of the PENNDOT DeKalb Street bridge reconstruction. These changes resulted in the elimination of the Green Basin. The bridge construction also included the addition of some PENNDOT separate storm sewers along DeKalb Street. At this time these separate storm sewers recombine prior to CSO 002.

In 2011, a new FSI and the associated CSO outfalls (003 and 005) between Mill Street and the River Road PS were constructed under WQM permit number 4610401. The original 20-inch interceptor was replaced with a 24-inch dry weather sewer, a combination of 54-inch and 60-inch wet weather interceptor was installed parallel to the 24-inch and one of the CSO outfalls was eliminated. The wet weather interceptor provides approximately 0.5 MG of storage.

The permittee submitted a Long-Term Control Plan (LTCP) in September 2003, which was approved by DEP in May 2004. The permittee submitted a revised LTCP in January 2007, which was approved by DEP in February 2007. The permittee submitted a Long-Term Control Plan Update (LTCPU) in January 2019, which was revised slightly in February 2019. In February 2022 the permittee submitted a Supplement Report to the LTCPU to address the issue of "percent capture." The February 2022 Supplement Report also contained a revised schedule for the Control Measures described in the 2019 LTCPU. The permittee's LTCP Update (2019, 2022) and revised schedule (2022) are approved by the Department and are incorporated by reference into this NPDES Permit.

The 2019 LTCPU includes projects that would represent substantial further progress. They include:

- Interior pipe inspections by video to cover the entire collection system, followed by pipe repair or rehabilitation as necessary.
- Optimization of the Front Street Interceptor based on metering data and modeling.
- Separation of the Hurst Street basin, which represents approximately 10% of the total area served by the system.

The Borough initiated the CSO metering program in April 2018. The CSO meters were installed in the CSO outfall pipes at CSO 2, 3, 4, 5, and 6. The CSO meters are equipped with ultrasonic level and submerged area velocity sensors to measure level and velocity. The measured readings are then used to calculate the flow. Below table summarizes all overflows from February 2019 to May 2021.

Year	Month	Events	CSO Total Volume 006 (MG)	CSO Total Volume 005 (MG)	CSO Total Volume 004 (MG)	CSO Total Volume 003 (MG)	CSO Total Volume 002 (MG)	CSO Volume Total (MG)
		5/3/21 (20:05)-5/5/21 (14:35)	0.36	0.717	0.028	0.389	0.036	1.53
	Мау	5/26/21 (21:50)-5/30/21 (13:25)	0.938	1.313	0.038	0.354	0.042	2.685
		4/11/21 (5:40)-4/12/21 (2:35)	0.244	0.453	0.009	0.031	0.021	0.758
	April	4/25/21 (3:55)-4/25/21 (4:10)	0.003	0	0	0	0	0.003
	1.1	4/29/21 (19:45)-4/29/21 (21:05)	0.088	0.163	0.004	0.005	0.015	0.275
		3/18/21 (10:00)-3/19/21 (2:20)	0.418	0.559	0	0	0.007	0.984
	March	3/24/21 (11:50-3/24/21 (23:15)	0.946	2.046	0.153	0.59	0.122	3.857
2021		3/28/21 (9:05)-3/31/21 (20:35)	0.288	0.301	0.005	0.028	0.013	0.635
		2/5/21 (14:20)-2/7/21 (16:55)	0.034	0	0	0	0	0.034
	Febuary	2/16/21 (1:05)-2/16/21 (19:00)	1.016	0.835	0	0.019	0.016	1.886
		2/23/21 (15:20)-3/1/21 (10:10)	1.357	1.445	0	0.033	0	2.835
		1/1/21 (17:05)-1/3/21 (18:40)	0.484	0.721	0.012	0.074	0	1.291
	January	1/16/21 (0:20)-1/16/21 (1:10)	0.019	0	0	0	0	0.019
		1/26/21 (11:40)-1/26/21 (12:50)	0.041	0	0	0	0	0.041
		12/5/20 (3:05)-12/5/20 (10:00)	0.311	0.378	0	0.007	0.001	0.697
	December	12/14/20 (8:45)-12/14/20 (15:45)	0.26	0.5	0	0	0.002	0.762
	becember	12/24/20 (18:30)-12/25/20 (13:50)	1.209	3.64	0.393	2.18	0	7.422
		12/31/20 (8:45)-12/31/20 (9:15)	0.014	0	0	0	0	0.014
	November	11/1/20 (12:43)-11/1/20 (15:10)	0.072	0.503	0	0	0	0.575
		11/11/20 (13:15)-11/12/20 (8:45)	0.549	0.356	0.002	0.082	0.005	0.994
		11/15/20 (20:00)-11/15/20 (21:50)	0.101	0.199	0.01	0.026	0.014	0.35
		11/23/20 (4:25)-11/26/20 (5:50)	0.222	0.405	0.003	0.074	0.015	0.719
		11/30/20 (8:35)-11/30/20 (17:10)	0.868	2.72	0.233	0.276	0	4.097
	October	10/12/20 (1:45)-10/12/20 (11:30)	0.206	0.263	0	0.005	0	0.474
		10/16/20 (10:20)-10/16/20 (15:10)	0.153	0.077	0	0	0	0.23
		10/29/20 (6:15)-10/30/20 (9:50)	1.016	1.909	0.028	0.286	0.021	3.26
		9/3/20 (19:20)-9/3/20 (19:50)	0.02	0	0	0	0.34	0.36
	September	9/10/20 (1:25)-9/10/20 (2:05)	0.024	0.439	0	2.339	0.509	0.533
		9/26/20 (13:30)-9/30/20 (3:55)						3.411
		8/4/20 (3:50)-8/7/20 (20:50)	1.193	4.73	2.531	3.352	0	11.806
	August	8/13/20 (16:50)-8/13/20 (19:25)	0.152	0.303	0	0.0114	0.046	0.5124
		8/23/20 (13:05)-8/23/20 (13:50)	0.023	0.522	0.08	0.254	0.007	0.03
2020		8/28/20 (16:35)-8/29/20 (16:00)	0.353	1.23	0.42	0.839	0.253	3.095
		7/6/20 (15:05)-7/6/20 (19:20)	1.059			1.774		
	July	7/10/20 (10:40)-7/12/20 (23:55)	0.216	2.892	0.589	0.31	0.315	6.629
		7/22/20 (18:05)-7/23/20 (11:05) 7/30/20 (23:20)-7/31/20) (13:20)	0.027	0.451	0.055	0.51	0.006	0.033
			0.403	1.003	0.393	0.565	0.178	2.542
	June	6/3/20 (12:30)-6/5/20 (18:50)	0.405	0.425	0.048	0.266	0.053	0.987
	2 dine	6/11/20 (4:30)-6/11/20 (15:40) 6/20/20 (17:30)-6/20/20 (18:23)	0.048	0,425	0.052	0.200	0.007	0.107
		5/6/20 (4:15)-5/9/20 (1:25)	0.332	0.347	0	0.063	0.008	0.75
	May	5/22/20 (14:15)-5/23/20 (15:15)	0.414	0.69	0.079	0.32	0.038	1.541
		5/29/20 (13:50)-5/29/20 (22:05)	0.069	0.095	0.031	0.005	0.008	0.208
		3/3/20 (21:25)-3/6/20 (19:55)	0.104	0.138	0.004	0.028	0.005	0.279
		3/13/20 (5:45)-3/13/20 (8:05)	0.057	0	0	0	0	0.057
	March	3/19/20 (1:35)-3/19/20 (8:45)	0.516	0.866	0.001	0.334	0.008	1.725
		3/23/20 (11:30)-3/23/20 (20:20)	0.382	0.444	0	0.089	0.004	0.919
		3/28/20 (9:25)-3/29/20 (0:10)	0.634	0.904	0.001	0.263	0.01	1.812

		2/6/20 (0:25)-2/7/20 (13:50)	0.549	0.331	0	0.011	0.018	0.909
	Febuary	2/1/20 (16:35)-2/11/20 (9:55)	0.166	0.118	0	0	0.007	0.291
		2/27/20 (1:50)-2/27/20 (2:30)	0.029	0	0	0	0.008	0.037
	January	1/25/20 (7:05)-1/25/20 (17:20)	0.845	1.951	0.229	0.8	0	3.825
		12/1/19 (12:55)-12/1/19 (20:25)	0.256	0.173	0	0.015	0.002	0.446
	December	12/9/19 (6:00)-12/17/19 (17:20)	1.668	1.313	0.001	0.281	0.01	3.273
		12/29/19 (22:50)-12/30/19 (16:10)	0.049	0.064	0	0.000	0.001	0.114
	November	11/24/19 (1:45)-11/24/19 (13:45)	0.368	0.655	0.013	0.251	0.053	1.34
		10/16/19 (15:15)-10/16/19 (21:10)	0.243	1.168	0.04	0.461	0.044	1.956
	October	10/20/19 (14:00)-10/22/19 (23:05)	0.414	0.548	0	0.039	0.016	1.017
	October	10/27/19 (7:10)-10/27/19 (14:40)	0.44	0.901	0.041	0.539	0.05	1.971
		10/31/19 (0:30)-11/1/19 (4:15)	0.4	0.787	0.068	0.296	0.009	1.56
		9/2/19 (9:40)-9/2/19 (16:15)	0.247	0.798	0.176	0.448	0.207	1.876
	September	9/12/19 (16:35)-9/12/19 (16:55)	0	0	0	0	0.001	0.001
		9/28/19 (22:30)-9/28/19 (23:00)	0.017	0	0	0	0.001	0.018
	August	8/7/19 (16:20)-8/7/19 (21:50)	0.335	0.6	0.105	0.33	0.06	1.43
		8/14/19 (20:45)-8/15/19 (0:15)	0.259	0.454	0.43	0.431	0.472	2.046
		8/18/19 (22:40)-8/23/19 (12:10)	0.145	0.284	0.062	0.191	0.075	0.757
		7/5/19 (18:30)-7/12/19 (11:15)	0.723	1.297	0.505	0.574	0.452	3.551
2019	July	7/16/19 (21:30)-7/18/19 (18:10)	0.254	0.252	0.001	0.014	0.025	0.546
2015	July	7/22/19 (23:00)-7/23/19 (7:40)	0.371	0.546	0.006	0.095	0	1.018
		7/31/19 (15:35)-7/31/19 (17:05)	0.078	0.095	0.003	0.008	0.012	0.196
	June	6/1/19 (23:40)-6/20/19 (17:35)	1.905	2.93	0.885	1.725	0.823	8.268
	June	6/29/19 (16:35)-6/29/19 (18:00)	0.055	0.086	0.006	0	0.009	0.156
		5/5/19 (6:10)-5/5/19 (23:20)	0.807	1.386	0.009	0.287	0.039	2.528
	Мау	5/12/19 (9:50)-5/13/19 (17:45)	0.798	1.682	0.008	0.357	0.055	2.9
		5/24/19 (0:55)-5/30/19 (23:20)	0.442	1.038	0.452	0.463	0.342	2.737
		4/8/19 (2:35)-4/15/19 (6:30)	0.322	0.647	0.078	0.233	0.019	1.299
	April	4/20/19 (1:15)-4/20/19 (10:15)	0.168	0.27	0	0.046	0.022	0.506
		4/26/19 (3:35)-4/26/19 (21:00)	0.261	0.485	0.062	0.204	0.04	1.052
		3/2/19 (2:35)-3/4/19 (13:50)	0.033	0	0	0	0.172	0.205
	March	3/10/19 (3:35)-3/11/19 (22:40)	0.401	2.15	0.061	0.077	0.376	3.065
	March	3/15/19 (20:55)-3/15/19 (22:40)	0.105	0.177	0.001	0.054	0.014	0.351
		3/21/19 (10:10)-3/22/19 (14:40)	1.478	2.005	0.004	0.41	0.075	3.972
	Febuary	2/12/19 (15:30)-2/13/19 (12:50)	0.334	0.468	0	0.006	0.082	0.89
	rebusiy	2/21/19 (13:30)-2/24/19 (8:05)	0.077	0	0	0	0.019	0.096

The River Road PS magnetic flow meter was installed in November 2018 and was replaced in early January 2022. The permit will contain updated NMCs and LTCPs applicable to this facility.

Treatment Facility Summary Treatment Facility Name: Borough of Bridgeport STP WQM Permit No. **Issuance Date** 4610401 04/06/2011 4696401 05/29/1996 Avg Annual Waste Type **Degree of Treatment Process Type** Disinfection Flow (MGD) Secondary With Ammonia Trickling Filter With And Phosphorus Sewage Settling Gas Chlorine 0.9

Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.9	3363	Not Overloaded	Belt Filtration	Landfill

Changes Since Last Permit Issuance: Construction of FSI in 2011.

Treatment Plant Summary

Borough of Bridgeport WWTP is a minor STP with a design flow of 0.9 MGD with CSOs which serves mostly the Borough of Bridgeport (99% flow contribution with 95% combined) and Upper Merion Township (1% flow contribution with 100% separate). The WWTP is located in Bridgeport Borough, Montgomery County in state watershed 3-F. The renewal application (received in July 9, 2014) indicated annual average flows of 0.538 MGD, 0.503 MGD, and 0.48 MGD for years 2011, 2012, 2013, respectively with highest monthly flow of 0.7 MGD. There is one non significant industrial facility named Tube Methods contributing to the treatment plant. There is no EPA approved pretreatment program in place.

Per the most recent inspection report (09/15/2021), the facility consists of the following treatment units:

- 1. Two primary clarifiers
- 2. Two secondary clarifiers
- 3. Two trickling filters
- 4. Two chlorine contact tanks
- 5. One filter press

A process flow diagram is attached in the Appendix. Sodium Hypochlorite is used for disinfection and Sodium Bisulfite is used for dechlorination of the effluent. Soda ash/lime is added to the liquid sludge prior to the belt filter press. Zeta Beta 19 and Zeta Lyte are also added to the liquid sludge before it is processed into filter cake.

Summary of inspection

09/15/2021: Incidental inspection conducted to observe the damage by recent hurricane event and flooding. The main PS VFDs damaged, replacement was installed. Some zoogleal mass was lost due to the storm on secondary trickling filter #1. Trickling filter #2 had good mass growth. The effluent quality was exceptional.

01/15/2021: RTPT conducted. No violation noted.

08/28/2020: CEI conducted. No violation noted.

04/15/2020: RTPT conducted. Violations noted including failure to use an NIST thermometer and failure to maintain permitted treatment units in operable condition.

08/28/2020: CSO inspection conducted. No discharge or solids were visible during the inspection from any of the CSO outfalls.

Compliance History

DMR Data for Outfall 001 (from February 1, 2021 to January 31, 2022)

Parameter	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21
Flow (MGD)												
Average Monthly	0.53	0.4	0.35	0.43	0.38	0.48	0.43	0.5	0.42	0.38	0.54	0.77
Flow (MGD)												
Daily Maximum	1.5	0.55	0.88	1.19	1.32	1.00	1.09	0.95	1.24	1.13	1.4	1.71
pH (S.U.)												
Instantaneous Minimum	6.3	6.4	6.3	6.5	7.1	6.9	6.9	7.0	7.0	6.7	6.8	7.2
pH (S.U.) IMAX	6.9	6.9	6.9	7.3	7.4	7.3	7.3	7.6	7.5	7.1	7.5	7.6
DO (mg/L)												
Instantaneous Minimum	8.6	8.4	6.9	6.3	7.2	6.7	6.7	7.2	6.8	8.5	8.9	11.4
TRC (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TRC (mg/L) IMAX	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	< 0.1	0.1	0.2	0.1
CBOD5 (lbs/day)												
Average Monthly	128	59	55	24	17	26	16	21	19	77	33	83
CBOD5 (lbs/day)												
Weekly Average	181	71	60	25	26	69	23	24	26	207	55	128
CBOD5 (mg/L)												
Average Monthly	25	18	21	8	6	5	6	7	8	15	9	11
CBOD5 (mg/L)												
Weekly Average	38	21	21	10	8	11	8	8	10	22	12	15
TSS (lbs/day)												
Average Monthly	96	23	23	13	11	24	13	11	13	43	< 11	41
TSS (lbs/day)												
Weekly Average	245	54	43	20	16	69	32	19	18	113	24	102
TSS (mg/L)												
Average Monthly	17	7	8	4	4	5	5	4	5	9	< 3	5
TSS (mg/L)												
Weekly Average	28	13	15	8	5	11	11	7	7	16	4	12
Total Dissolved Solids (mg/L)												
Average Monthly	922	GG	GG	521	GG	GG	306	GG	GG	503	GG	GG
Fecal Coliform (CFU/100 ml)												
Geometric Mean	< 2	2	< 2	< 2	< 2	< 2	< 2	< 3	2	< 2	< 2	< 5
Fecal Coliform (CFU/100 ml)												
IMAX	< 2	2	< 2	< 2	< 2	< 2	< 2	10	2	2	< 2	26
Ammonia (lbs/day)												
Average Monthly	62	28	5	8	3	5	3	3	3	10	21	42
Ammonia (mg/L)												
Average Monthly	12	9	12	3	1	1	1	1	1	3	6	8

NPDES Permit No. PA0020397

Non-compliance: there is no eDMR violation for the reporting period February 1, 2021 to January 31, 2022.

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes effluent limitations and monitoring requirements specified in the existing NPDES permit for Outfall 001.

	1		Monitoring Requirements					
Discharge Deserveter	Mass Units (Ibs/day) (1)		Concentrations (mg/L)				Minimum ⁽³⁾	
Discharge Parameter	Monthly Average	Weekiy Average	Instantaeous Minimum	Monthly Average	Weekly Average	Instantaneous Maximum ⁽²⁾	Measurement Frequency	Required Sample Type
Flow (MGD)	Monitor/Report	Monitor/Report Max. Daily					Continuous	Recorded
CBOD5	187	300		25	40	50	1/Week	24 Hour Comp
Total Suspended Solids	225	338		30	45	60	1/Week	24 Hour Comp
Ammonia as N	150		-	20		40	1/Week	24 Hour Comp
Fecal Coliform (Col/100 ml)				Geo. Mean 200		1,000*	1/Week	Grab
Dissolved Oxygen			Monitor/Report				Daily	Grab
pH (Std. Units)			6.0			9.0	Daily	Grab
Total Residual Chlorine				0.5		1.2	Daily	Grab
Total Dissolved Solids	· · · · ·			1,000		2,500	1/Quarter	24 Hour Comp
							· · · ·	
							· .	

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.9
Latitude	40° 6' 8.00"		Longitude	-75º 19' 33.00"
Wastewater De	escription:	Treated Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	_	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	1,000 / 100 ml	10% rule	-	DRBC
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
Total Dissolved Solids	1000 mg/l	Average Monthly	-	DRBC

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. Since WQM 7.0 assumes immediate and complete mix between the discharge and stream flow, Q₇₋₁₀ was adjusted, as shown on page 3, to examine allowable wasteload allocations under appropriate mixing conditions. The model was utilized for this permit renewal by using adjusted Q₇₋₁₀ and historic background water quality levels of the river. In addition, due to proximity, several other upstream and downstream dischargers are included in the multiple discharge scenario. The following data were used in the attached computer model of the stream:

•	Discharge pH	7.2	(median Jul-Sep, 2020-2021, eDMR data)
	Discharge Temperature	20°C	(Default)
	Discharge Hardness	100 mg/l	(Default)
•	Stream pH	7.5	(Previous protection report)
	Stream Temperature	25°C	(Default for WWF)
	Stream Hardness	200 mg/l	(Previous protection report)

The following nodes were considered in modeling:

Node 1:Norristown STP (PA0027421) Outfall 001 at Schuylkill River (00833)
Elevation:Elevation:49 ft (USGS National Map viewer, 11/13/2019)
Drainage Area:Drainage Area:1766 mi² (StreamStat Version 3.0, 11/13/2019)
River Mile Index:River Mile Index:23.4 (PA DEP eMapPA)
0.125 cfs/mi²
Discharge Flow:9.75 MGD

Node 2:	ENPWJSA STP (PA00 Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	26816) Outfall 001 at Schuylkill River (00833) 48 ft (USGS National Map viewer, 11/13/2019) 1766.1 mi ² (StreamStat Version 3.0, 11/13/2019) 22.94 (PA DEP eMapPA) 0.125 cfs/mi ² 8.1 MGD
Node 3:	Bridgeport WWTP Outf Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	fall 001 at Schuylkill River (00833) 43.73 ft (USGS National Map viewer, 11/13/2019) 1770 mi ² (StreamStat Version 3.0, 11/13/2019) 22.79 (PA DEP eMapPA) 0.125 cfs/mi ² 0.9 MGD
Node 4:	Matsunk STP Outfall 0 Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	01 at Schuylkill River (00833) 42.88 ft (USGS National Map viewer, 11/13/2019) 1770.1 mi ² (StreamStat Version 3.0, 11/13/2019) 22.0 (PA DEP eMapPA) 0.125 cfs/mi ² 5.5 MGD
Node 5:	At the Plymouth Dam of Elevation: Drainage Area: River Mile Index: Low Flow Yield: Discharge Flow:	on Schuylkill River (00833) 39.59 ft (USGS National Map viewer, 11/13/2019) 1770.2 mi ² (StreamStat Version 3.0, 11/13/2019) 21.22 (PA DEP eMapPA) 0.125 cfs/mi ² 0.0 MGD

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 20.0 mg/l as monthly average and 40.0 mg/l as instantaneous maximum limit to protect water quality standards. The current permit has year-round average monthly limit of 20 mg/l and IMAX of 40 mg/l. The Recent DMR data show that the plant is discharging NH₃-N below 2.7 mg/l year-round. The model recommended limits are the same as are in the existing permit and will be carried over. The mass-based limits of 150 lbs./day will also be carried over. The monitoring frequency will remain the same as 1/week.

CBOD₅:

The attached WQM 7.0 modeling results show that secondary treatment is adequate to protect the water quality of the stream. Recent DMRs and inspection reports show that the facility has been consistently achieving concentrations below this existing limit. The WQM 7.0 model suggests a monthly average $CBOD_5$ limit may be 25 mg/l. The average monthly and average weekly mass loadings were calculated as 187 lbs./day and 300 lbs./day respectively. The minimum monitoring frequency will remain the same as 1/week.

Dissolved Oxygen (DO):

A minimum of 5.0 mg/L for D.O. is an existing effluent limit and will remain unchanged in the draft permit. 5.0 mg/L is taken directly from 25 Pa. Code § 93.7(a) (i.e., water quality criteria for WWF waters) and it is also determined to be appropriate according to water quality modeling.

Toxics:

Based on the monitoring data (maximum concentrations) reported on the application, DEP utilizes Toxics Management Spreadsheet 9TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). The maximum reported values for Total Copper and Total Zinc were entered into TMS which then suggests no Reasonable Potential was demonstrated for either toxics. Therefore, no limit or monitoring requirements will be applied.

Additional Considerations

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by

secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b.) The existing limit for average monthly and average weekly mass loading of 225 lbs./day and 338 lbs./day, respectively will be carried over in this renewal.

<u>pH:</u>

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa. Code § 95.2(1) which is consistent with previous permit renewal.

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation.

E. Coli:

DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends quarterly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

Total Dissolved Solids:

The maximum reported TDS concentration in the application is 560 mg/l which is less than 1,000 mg/l (for discharge flow > 0.1 MGD) doesn't trigger monitoring for TDS. However, DRBC issued a docket for Bridgeport on September 11, 2019 that included/continued a numeric limitation of 1,000 mg/l. This limitation will be carried over in this renewal with a minimum monitoring frequency of 1/quarter.

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns at the Outfall 001. The Instantaneous Maximum (IMAX) limit is 1.6 mg/l. The existing permit has IMAX limits of 1.2 mg/l which is a more stringent and will be carried over due to anti-backsliding policy. DMR data from February 2021 to January 2022 indicates that the permittee is meeting the limit with an average discharge concentration of <0.1 mg/l and IMAX of 0.1 mg/l year-round. The minimum monitoring frequency is 1/day.

Flow and Influent Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅, CBOD₅, and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94 and secondary treatment requirement.

Best Professional Judgment (BPJ) Limitations

Monitoring Frequency and Sample Types:

Unless otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

<u>Total Phosphorus:</u> PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is a new requirement and will be implemented from this renewal. The minimum monitoring frequency will be 1/month.

Total Nitrogen:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is a new requirement and will be implemented from this renewal. The minimum monitoring frequency will be 1/month.

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit; therefore, anti-backsliding is not applicable.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1.

		Monitoring Requirements						
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrations (mg/L)				Required
Falameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
				Report	Report			24-Hr
PCBs (Dry Weather) (ug/L)	XXX	XXX	XXX	Annl Avg	Daily Max	XXX	1/year	Composite
				Report	Report			24-Hr
PCBs (Wet Weather) (ug/L)	XXX	XXX	XXX	Annl Avg	Daily Max	XXX	1/year	Composite

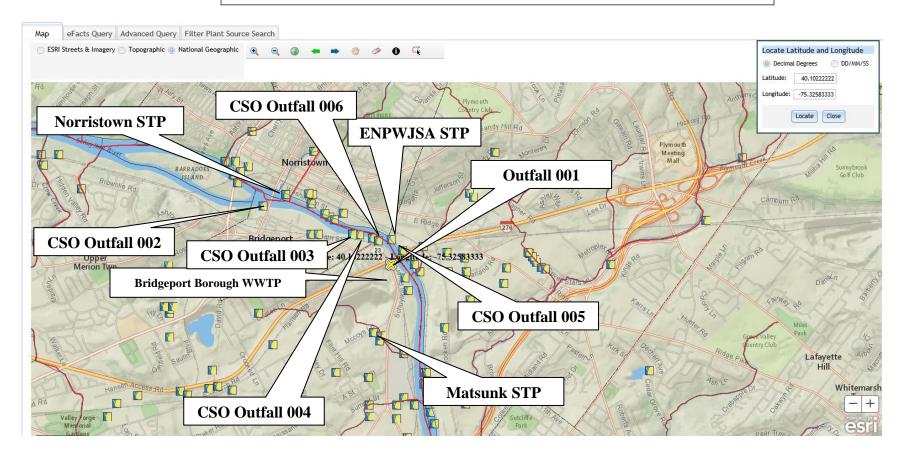
Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

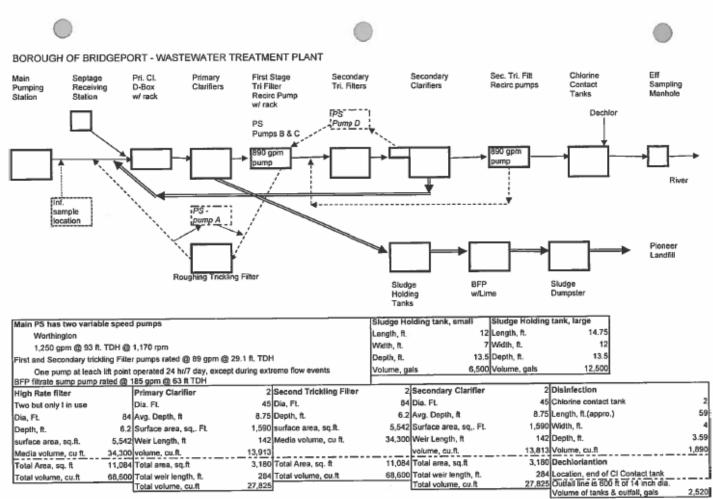
Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent	Monitoring Requiremen					
Deremeter	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrations (mg/L)			Minimum ⁽²⁾	Required	
Parameter	Average Monthly	Weekly Average	Average Monthly	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	xxx	ххх	xxx	Continuous	Recorded	
_pH (S.U.)	ххх	xxx	6.0 Inst Min	xxx	ХХХ	9.0	1/day	Grab	
DO	ххх	xxx	5.0 Inst Min	XXX	ХХХ	ххх	1/day	Grab	
TRC	ХХХ	XXX	ххх	0.5	XXX	1.2	1/day	Grab	
CBOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite	
CBOD5	187	300	25.0	40.0 Wkly Avg	XXX	50	1/week	24-Hr Composite	
BOD5 Raw Sewage Influent	Report	XXX	ххх	Report	XXX	ххх	1/week	24-Hr Composite	
TSS Raw Sewage Influent	Report	xxx	xxx	Report	XXX	ххх	1/week	24-Hr Composite	
TSS	225	338	30.0	45.0 Wkly Avg	XXX	60	1/week	24-Hr Composite	
Total Dissolved Solids	ххх	xxx	xxx	1000.0 Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite	
Total Nitrogen	Report	xxx	ххх	Report	ххх	XXX	1/month	24-Hr Composite	
Total Phosphorus	Report	xxx	ххх	Report	XXX	XXX	1/month	24-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	200 Geo Mean	1000	ххх	1/week	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	ХХХ	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab	
E. Coli (No./100 ml)	ххх	xxx	ххх	Report	Report	XXX	1/quarter	Grab	

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units (Ibs/day) ⁽¹⁾ Concentrations				tions (mg/L)		Minimum ⁽²⁾	Required
Faiameter	Average	Weekly	Average	Average		Instant.	Measurement	Sample
	Monthly	Average	Monthly	Monthly	Maximum	Maximum	Frequency	Туре
								24-Hr
Ammonia-N	150.0	XXX	XXX	20.0	XXX	40	1/week	Composite

Compliance Sampling Location: At Outfall 001

Tools and References Used to Develop Permit					
WQM for Windows Model (see Attachment)					
Toxics Management Spreadsheet (see Attachment)					
TRC Model Spreadsheet (see Attachment)					
Temperature Model Spreadsheet (see Attachment)					
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.					
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.					
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.					
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.					
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.					
Pennsylvania CSO Policy, 385-2000-011, 9/08.					
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.					
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.					
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.					
Implementation Guidance Design Conditions, 391-2000-006, 9/97.					
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.					
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.					
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.					
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.					
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.					
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.					
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.					
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.					
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.					
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.					
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.					
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.					
Design Stream Flows, 391-2000-023, 9/98.					
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.					
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.					
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.					
SOP: BPNPSM-PMT-033					
Other:					


Borough of Bridgeport WWTP, Bridgeport Borough, Montgomery County

Borough of Bridgeport NPDES Permit #: PA0020397; Borough of Bridgeport WWTP Bridgeport Borough, Montgomery County

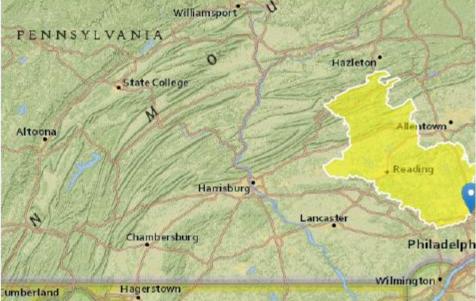
Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION Reza H Chowdhury Project Manager March 25, 2022

Abandoned suction lift pumps shown in broken lines but out of service. Initially rated for 800 gpm

R/35493 - Bridgeport/052-Operational Assistance WWTP/Process diagram.xlsDiagram

StreamStats

Page 2 of 5


PA0020397 at 001

 Region ID:
 PA

 Workspace ID:
 PA20191113162934047000

 Clicked Point (Latitude, Longitude):
 40.10278, -75.32469

 Time:
 2019-11-13 11:29:55 -0500

Parameter Code	Parameter Description	Value -	Unit
DRNAREA	Area that drains to a point on a stream	1770	square miles
BSLOPD	Mean basin slope measured in degrees	5.6	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	10	percent
PRECIP	Mean Annual Precipitation	46	inches

https://streamstats.usgs.gov/ss/

11/13/2019

StreamStats

Page 3 of 5

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	1.51	miles per square mile
CARBON	Percentage of area of carbonate rock	14	percent

Low-Flow Statistics Parameters [49 Percent (863 square miles) Low Flow Region 1]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	1770	square miles	4.78	1150		
BSLOPD	Mean Basin Slope degrees	5.6	degrees	1.7	6.4		
ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21		
URBAN	Percent Urban	10	percent	0	89		

Low-Flow Statistics Parameters(51 Percent (904 square miles) Low Flow Region 2)

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1770	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	46	inches	35	50.4
STRDEN	Stream Density	1.51	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	14	percent	0	99

Low-Flow Statistics Disclaimers[49 Percent (863 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

https://streamstats.usgs.gov/ss/

11/13/2019

StreamStats

```
Page 4 of 5
```

Low-Flow Statistics Flow Report(49 Percent (863 square miles) Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	442	ft^3/s
30 Day 2 Year Low Flow	544	ft^3/s
7 Day 10 Year Low Flow	277	ft^3/s
30 Day 10 Year Low Flow	332	ft^3/s
90 Day 10 Year Low Flow	442	ft^3/s

Low-Flow Statistics Disclaimers(51 Percent (904 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[51 Percent (904 square miles) Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	663	ft^3/s
30 Day 2 Year Low Flow	779	ft^3/s
7 Day 10 Year Low Flow	445	ft^3/s
30 Day 10 Year Low Flow	522	ft^3/s
90 Day 10 Year Low Flow	633	ft^3/s

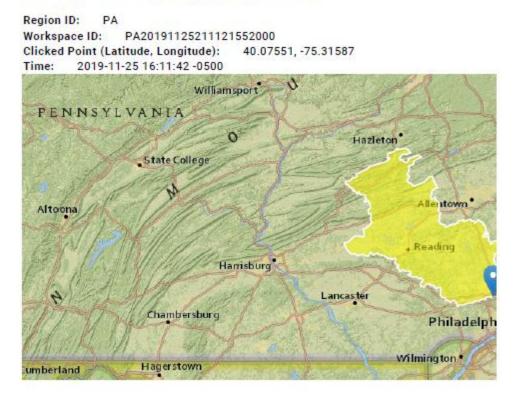
Low-Flow Statistics Flow Report[Area-Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	555	ft*3/s
30 Day 2 Year Low Flow	664	ft^3/s
7 Day 10 Year Low Flow	363	ft^3/s
30 Day 10 Year Low Flow	429	ft*3/s
90 Day 10 Year Low Flow	540	ft^3/s

Low-Flow Statistics Citations

https://streamstats.usgs.gov/ss/

11/13/2019


3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0020397

StreamStats

Page 2 of 5

PA0020397 at Plymouth Dam

Basin Character			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1770	square miles
BSLOPD	Mean basin slope measured in degrees	5.6	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	10	percent
PRECIP	Mean Annual Precipitation	46	inches

https://streamstats.usgs.gov/ss/

11/25/2019

StreamStats

Page 3 of 5

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	1.5	miles per square mile
CARBON	Percentage of area of carbonate rock	14	percent

Low-Flow Statistics	Parameters(49 Percent (869 square mile	s) Low Flow	Region 1]		
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1770	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.6	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21
URBAN	Percent Urban	10	percent	0	89

Low-Flow Statistics Parameters [51 Percent (904 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1770	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	46	inches	35	50.4
STRDEN	Stream Density	1.5	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	14	percent	0	99

Low-Flow Statistics Disclaimers(49 Percent (869 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

https://streamstats.usgs.gov/ss/

11/25/2019

StreamStats

```
Page 4 of 5
```

Low-Flow Statistics Flow Report(49 Percent (869 square miles) Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	442	ft^3/s
30 Day 2 Year Low Flow	544	ft^3/s
7 Day 10 Year Low Flow	277	ft^3/s
30 Day 10 Year Low Flow	332	ft^3/s
90 Day 10 Year Low Flow	442	ft^3/s

Low-Flow Statistics Disclaimers(51 Percent (904 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[51 Percent (904 square miles) Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	667	ft^3/s
30 Day 2 Year Low Flow	783	ft^3/s
7 Day 10 Year Low Flow	448	ft^3/s
30 Day 10 Year Low Flow	525	ft^3/s
90 Day 10 Year Low Flow	637	ft^3/s

Low-Flow Statistics Flow Report[Area-Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	557	ft^3/s
30 Day 2 Year Low Flow	666	ft^3/s
7 Day 10 Year Low Flow	364	ft^3/s
30 Day 10 Year Low Flow	431	ft^3/s
90 Day 10 Year Low Flow	542	ft^3/s

Low-Flow Statistics Citations

https://streamstats.usgs.gov/ss/

11/25/2019

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0020397

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011–1070

U.S. Department of the Interior U.S. Geological Survey

10 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.-Continued

[Latitude and Longitude in decimal degrees; mi2, square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01465780	Poquessing Creek above Byberry Creek at Phila., Pa.	40.070	-74.975	13.2	N
01465798	Poquessing Creek at Grant Ave. at Philadelphia, Pa.	40.057	-74.985	21.4	N
01465850	South Branch Rancocas Creek at Vincentown, N.J.	39.94	-74.763	64.5	N
01466500	McDonalds Branch in Byrne State Forest, N.J.	39.885	-74.505	2.35	N
01467000	North Branch Rancocas Creek at Pemberton, N.J.	39.97	-74.684	118	N
01467042	Pennypack Creek at Pine Road, at Philadelphia, Pa.	40.090	-75.069	37.9	N
01467048	Pennypack Creek at Lower Rhawn St Bdg, Phila., Pa.	40.050	-75.033	49.8	N
01467050	Wooden Bridge Run at Philadelphia, Pa.	40.055	-75.022	3.35	N
01467081	South Branch Pennsauken Creek at Cherry Hill, N.J.	39.942	-75.001	8.98	N
01467086	Tacony Creek ab Adams Avenue, Philadelphia, Pa.	40.047	-75.111	16.7	N
01467087	Frankford Creek at Castor Ave, Philadelphia, Pa.	40.016	-75.097	30.4	N
01467089	Frankford Creek at Torresdale Ave., Phila., Pa.	40.007	-75.092	33.8	N
01467150	Cooper River at Haddonfield, N.J.	39.903	-75.021	17.0	N
01467500	Schuylkill River at Pottsville, Pa.	40.684	-76.186	53.4	N
01468500	Schuylkill River at Landingville, Pa.	40.629	-76.125	133	N
01469500	Little Schuylkill River at Tamaqua, Pa.	40.807	-75.972	42.9	N
01470500	Schuylkill River at Berne, Pa.	40.523	-75.998	355	N
01470756	Maiden Creek at Virginville, Pa.	40.514	-75.883	159	N
01470779	Tulpehocken Creek near Bernville, Pa.	40.413	-76.172	66.5	N
01470853	Furnace Creek at Robesonia, Pa.	40.340	-76.143	4.18	N
01470960	Tulpehocken Creek at Blue Marsh Damsite near Reading, Pa.	40.371	-76.025	175	Y
01471000	Tulpehocken Creek near Reading, Pa.	40.369	-75.979	211	Y
01471510	Schuylkill River at Reading, Pa.	40.335	-75.936	880	Y
01471875	Manatawny Creek near Spangsville, Pa.	40.340	-75.742	56.9	N
01471980	Manatawny Creek near Pottstown, Pa.	40.273	-75.680	85.5	N
01472000	Schuylkill River at Pottstown, Pa.	40.242	-75.652	1,147	Y
01472157	French Creek near Phoenixville, Pa.	40.151	-75.601	59.1	N
01472174	Pickering Creek near Chester Springs, Pa.	40.090	-75.630	5.98	N
01472198	Perkiomen Creek at East Greenville, Pa.	40.394	-75.515	38.0	N
01472199	West Branch Perkiomen Creek at Hillegass, Pa.	40.374	-75.522	23.0	N
01472500	Perkiomen Creek near Frederick, Pa.	40.275	-75.455	152	N
01472620	East Branch Perkiomen Creek near Dublin, Pa.	40.404	-75.234	4.05	LF
01472810	East Branch Perkiomen Creek near Schwenksville, Pa.	40.259	-75.429	58.7	LF
01473000	Perkiomen Creek at Graterford, Pa.	40.230	-75.452	279	LF
01473120	Skippack Creek near Collegeville, Pa.	40.165	-75.433	53.7	N
01473169	Valley Creek at Pa. Turnpike Br near Valley Forge, Pa.	40.079	-75.461	20.8	N
01473500	Schuylkill River at Norristown, Pa.	40.111	-75.347	1,760	N
01473900	Wissahickon Creek at Fort Washington, Pa.	40.124	-75.220	40.8	N
01473950	Wissahickon Creek at Bells Mill Rd, Phila., Pa.	40.080	-75.226	53.6	N
01473980	Wissahickon Creek at Livezey Lane, Phila., Pa.	40.050	-75.214	59.2	N
01474000	Wissahickon Creek at Mouth, Philadelphia, Pa.	40.015	-75.207	64.0	N
01474500	Schuylkill River at Philadelphia, Pa.	39.968	-75.189	1,893	Ν
01475000	Mantua Creek at Pitman, N.J.	39.737	-75.113	6.05	N
01475300	Darby Creek at Waterloo Mills near Devon, Pa.	40.023	-75.422	5.15	N
01475510	Darby Creek near Darby, Pa.	39.929	-75.272	37.4	N

Table 2 23

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.-Continued

[ft³/s; cubic feet per second;----, statistic not computed; <, less than]

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5 2.4 1.8 3.1 7.5 12.9 9.6 15.4 4.3 6.8 5.1 8.3 14.5 24.0 20.6 34.9 0 7.2 .1 7.3	2.7 13.9 7.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.3 6.8 5.1 8.3 14.5 24.0 20.6 34.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14.5 24.0 20.6 34.9	7.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1 vite
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 72 1 73	33.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V 1.6 .1 1.3	.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.8 36.0 33.7 49.2	49.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14.8 32.1 24.1 44.7	41.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33.9 61.6 42.5 77.4	53.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9 4.4 3.2 6.8	5.6
01473900 1963–2008 14 5.2 0 01473950 1967–1981 15 9.1 1 01473950 1967–2008 42 13.7 16 01474000 1967–2008 42 13.7 16 0147500 1933–2008 76 58.7 100 0147500 1943–2006 37 3.5 4 01475510 1965–1990 26 9.3 1 01475550 1965–1990 25 .1 0 01475550 1965–1990 25 .1 0 01475550 1965–1990 25 .1 0 01475550 1965–1990 25 .1 0 01475850 1983–2008 26 1.5 2 01476480 1988–2008 19 2.3 3 01476500 1933–1954 22 3.9 4	9.2 13.2 10.5 15.5	13.2
01473950 1967–1981 15 9.1 11 01473950 1967–2008 42 13.7 10 01474000 1967–2008 42 13.7 10 01474500 1933–2008 76 58.7 100 01475000 1942–2006 37 3.5 4 01475500 1974–1997 24 1.0 4 01475510 1965–1990 26 9.3 1 01475550 1965–1990 25 .1 4 01475550 1965–1990 25 .1 4 01475550 1983–2008 26 1.5 2 01475630 1988–2008 19 2.3 3 01476480 1988–2008 19 2.3 3 01476500 1933–1954 22 3.9 4	20 422 247 518	328
01474000 1967–2008 42 13.7 10 01474500 1933–2008 76 58.7 100 01475000 1942–2006 37 3.5 4 01475000 1942–2006 37 3.5 4 01475000 1942–2006 37 3.5 4 01475300 1974–1997 24 1.0 4 01475510 1965–1990 26 9.3 1 01475550 1965–1990 25 .1 4 01475550 1965–1990 25 .1 5 01475550 1983–2008 26 1.5 5 01476480 1988–2008 19 2.3 3 01476500 1933–1954 22 3.9 4	6.1 11.3 7.6 14.2	9.9
01474500 1933–2008 76 58.7 100 01475000 1942–2006 37 3.5 4 01475000 1942–2006 37 3.5 4 01475300 1974–1997 24 1.0 4 01475510 1965–1990 26 9.3 1 01475530 1966–1981 19 1.2 4 01475550 1965–1990 25 .1 5 01475550 1965–1990 25 .1 5 01475850 1983–2008 26 1.5 2 01476480 1988–2008 19 2.3 3 01476500 1933–1954 22 3.9 4	11.1 19.1 14.5 24.0	19.7
01475000 1942-2006 37 3.5 4 01475300 1974-1997 24 1.0 0 01475510 1965-1990 26 9.3 1 01475530 1966-1981 19 1.2 01475550 1965-1990 25 .1 01475550 1983-2008 26 1.5 .2 01475850 1988-2008 19 2.3 .3 01476480 1988-2008 19 2.3 .3 01476500 1933-1954 22 3.9 .4	16.6 25.6 21.4 32.9	30.4
01475300 1974–1997 24 1.0 01475510 1965–1990 26 9.3 1 01475530 1966–1981 19 1.2 01475550 1965–1990 25 .1 01475550 1965–1990 25 .1 01475850 1983–2008 26 1.5 .2 01476480 1988–2008 19 2.3 .3 01476500 1933–1954 22 3.9 .4	08 376 180 515	320
01475510 1965–1990 26 9.3 1 01475530 1966–1981 19 1.2 01475550 1965–1990 25 .1 01475550 1965–1990 25 .1 01475850 1983–2008 26 1.5 .2 01476480 1988–2008 19 2.3 .3 01476500 1933–1954 22 3.9 .4	4.1 6.1 4.8 7.0	5.7
01475530 1966–1981 19 1.2 01475550 1965–1990 25 .1 01475550 1983–2008 26 1.5 01475480 1988–2008 19 2.3 01476500 1933–1954 22 3.9	1.2 2.1 1.6 2.9	2.4
01475550 1965–1990 25 .1 01475850 1983–2008 26 1.5 2 01476480 1988–2008 19 2.3 3 01476500 1933–1954 22 3.9 4	11.5 18.8 15.5 24.2	22.6
01475550 1965–1990 25 .1 01475850 1983–2008 26 1.5 2 01476480 1988–2008 19 2.3 3 01476500 1933–1954 22 3.9 4	1.3 2.0 1.8 2.8	2.7
01475850 1983–2008 26 1.5 2 01476480 1988–2008 19 2.3 3 01476500 1933–1954 22 3.9	.6 4.4 2.9 8.5	8.9
01476480 1988–2008 19 2.3 01476500 1933–1954 22 3.9	2.2 4.6 3.4 6.5	5.4
01476500 1933-1954 22 3.9	3.5 8.5 5.8 11.5	9.0
	4.9 11.4 6.4 14.4	9.7
01477000 1933-2007 73 10.4 12	12.4 24.9 15.7 31.0	22.8
	7.1 12.9 8.5 15.0	11.2
01477800 1947-2008 62 .2	.2 .6 .5 1.2	1.4
	1.5 3.6 2.3 5.0	4.2
	10.7 24.1 13.5 29.1	19.7
	13.7 30.3 18.0 36.8	27.8
	4.1 12.5 5.6 14.6	10.8
	9.8 17.7 12.6 21.1	17.6
	11.0 20.1 14.7 24.5	18.4
01480100 1965-1980 16 .3	.4 1.2 1.2 2.0	2.3
	3.0 6.2 3.9 7.4	5.3
	8.3 14.5 10.4 18.4	14.5
	5.2 12.3 6.6 14.8	9.6
	14.0 23.3 16.6 27.8	22.0
01480675 1968-2008 41 .6	.6 1.7 .9 2.3	1.6
01480685 1975-2008 34 .5	.9 3.7 2.4 7.4	5.7
	14.0 22.3 17.8 28.4	21.9
	12.1 19.8 14.6 23.8	19.5
	26.5 36.8 31.0 44.5	38.0
	58.5 117 79.0 136	102
	75.0 111 12.0 120	1.04
01481000 21975-2008 34 64.2 6	53.8 117 76.9 138	106

TRC_CALC

Input appropria	te values in (A3:A9 and D3:D9			
	= Q stream (o		0.5	= CV Daily	
	= Q discharg	,		= CV Hourly	
	= no, sample			= AFC_Partial M	lix Factor
		emand of Stream		= CFC Partial M	
		emand of Discharge			Compliance Time (min)
0.5 = BAT/BPJ Value 0 = % Factor of Safety (FOS)					Compliance Time (min)
				=Decay Coeffici	
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	50.711	1.3.2.iii	WLA cfc = 49.432
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRG	SD TRG 5.1b LTA_afc=			5.1d	LTA_cfc = 28.737
Source		Efflue	nt Limit Calcu	lations	
PENTOXSD TRG	5.1f		AML MULT =	1.231	
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX	LIMIT (mg/l) =	1.635	
WLA afo		C_tc)) + [(AFC_Yc*Qs*.019/		_tc))	
		C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)		
	EVD//O_EM M/		100 51		
		cvh^2+1))-2.326*LN(cvh^2+	1)^0.5)		
	EXP((0.5*LN(wla_afc*LTA		1)^0.5)		
LTA_afo	wla_afc*LTA			tc))	
LTA_afo	wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC	MULT_afc C_tc) + [(CFC_Yc*Qs*.011/(C_Yc*Qs*Xs/Qd)]*(1-FOS/10/	Qd*e(-k*CFC_		
LTA_afc WLA_cfc	wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC	MULT_afc C_tc) + [(CFC_Yc*Qs*.011/0	Qd*e(-k*CFC_		.5)
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	wla_afc*LTAI (.011/e(-k*CF + Xd + (CFC	MULT_afc C_tc) + [(CFC_Yc*Qs*.011/(C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32	Qd*e(-k*CFC_		5)
LTA_afc WLA_cfc LTAMULT_cfc	wla_afc*LTAI (.011/e(-k*CF +Xd + (CFC EXP((0.5*LN(wla_cfc*LTA)	MULT_afc C_tc) + [(CFC_Yc*Qs*.011/(C_Yc*Qs*Xs/Qd)]*(1-FOS/10 cvd^2/no_samples+1))-2.32	Qd*e(-k*CFC_ 0) 6*LN(cvd^2/no	o_samples+1)^0.	
LTA_afo WLA_cfc LTAMULT_cfo LTA_cfc	wia_afc*LTAI (.011/e(-k*CF +Xd + (CFC EXP((0.5*LN(wia_cfc*LTAI EXP(2.326*L)	MULT_afc C_tc) + [(CFC_Yc*Qs*.011/(C_Yc*Qs*Xs/Qd)]*(1-FOS/10/ cvd^2/no_samples+1))-2.32/ MULT_cfc	Qd*e(-k*CFC_ 0) 6*LN(cvd^2/n 5)-0.5*LN(cvd	o_samples+1)^0.	

Page 1

	SWP Basin	Strea Coo		Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03F	1	833 SCHU	YLKILL R	IVER		23.40	00	49.00	1766.00	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> np pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.125	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.	00	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	icharge D	ata					
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	l Design Disc Flow (mgd)	Res Fac	erve T ctor	Disc emp (°C)	Disc pH
Norristown STP	PA0027421	9.7500	9.7500	9.750	0 0	0.000	20.00	7.00
	Par	rameter D	ata					
_		Dis Co	-	-	ream Conc	Fate Coef		
Par	Parameter Name	(mg	/L) (mg	µ/L) (n	ng/L)	(1/days)		
CBOD5		2	0.00	2.00	0.00	1.50		
Dissolved Ox	ygen		4.00	8.24	0.00	0.00		
NH3-N		1	0.00	0.00	0.00	0.70		

Input Data WQM 7.0

					Inp	ut Dat	a WQN	/ 7.0					
	SWP Basir						RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03F	1	833 SCHU	YLKILL R	IVER		22.94	10	48.00	1766.10	0.00000	0.00	\checkmark
					s	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> p pH	Tem	<u>Stream</u> p pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-10	0.125	0.00	0.00	0.000	0.000	0.0	0.00	0.00	2	0.00 7.0	00 (0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
						ischarge	Data						

	Dis	scharge Da	ata					
Name	Permit Number	Disc	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)		ve T or	Disc emp (°C)	Disc pH
ENPWJSA	PA0026816	8.1000	8.1000	8.100	0 0.0	000	20.00	7.00
	Pa	rameter Da	ata					
		Dis Cor			eam Conc	Fate Coef		
P	arameter Name	(mg	/L) (mg	/L) (m	ng/L) (1/days)		
CBOD5		20	0.00 2	2.00	0.00	1.50		
Dissolved (Oxygen		5.00 8	3.24	0.00	0.00		
NH3-N		12	2.00 0	0.00	0.00	0.70		

Friday, March 25, 2022

Page 2 of 5

	SWP Basin			Stre	eam Name		RMI	Eleva (ft)		Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03F	8	333 SCHU	YLKILL R	IVER		22.79	0	43.79	1770.00	0.00000	0.00	¥
					St	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	<u>Fributary</u> p pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.125	11.72	0.00	0.000	0.000	0.0	0.00	0.00	20	.00 7.5	0 20	0.0 0.0)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					D	ischarge l	Data						
			Name	Per	rmit Numbe	Disc	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Rese Fac		p p	sc H	
		Bridg	eport STP	PA	0020397	0.900	0.900	0 0.900	0 0	.000 20	0.00	7.20	
					P	arameter l	Data						
									ream Conc	Fate Coef			
				Paramete	r Name		-0.) ((1)			

25.00

5.00

20.00

(mg/L) (mg/L) (mg/L) (1/days)

0.00

0.00

0.00

2.00

8.24

0.00

1.50

0.00

0.70

Input Data WQM 7.0

CBOD5

NH3-N

Dissolved Oxygen

	SWP Basir			Stre	am Name		RMI		ation t)	Drainage Area (sq mi)	Slope (ft/ft)	Withd	/S irawal gd)	Apply FC
	03F	8	833 SCHU	YLKILL R	IVER		22.26	0	42.85	1770.10	0.0000	0	0.00	\checkmark
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Те	<u>Strear</u> emp	n pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	C	°C)		
Q7-10 Q1-10 Q30-10	0.153	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20	0.00 7.	.00	0.00	0.00	
	Discharge Data]		
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc	Res Fa	erve Te ctor	sc mp C)	Disc pH		
						0.000	0.000	0 0.00	00 0	0.000	25.00	7.00		
					Pa	arameter l	Data							
				Paramete	Namo				tream Conc	Fate Coef				
				aramete	maine	(m	g/L) (m	ng/L) (mg/L)	(1/days)				
	-		CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Input Data WQM 7.0

	SWP Basir			Stre	am Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03F		833 SCHU	YLKILL R	IVER		21.22	20	39.59	1770.20	0.00000	0.00	\checkmark
					s	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> 1p pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.125	0.00	0.00	0.000	0.000	0.0	0.00	0.00	0 2	0.00 7.0	00	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	charge Da	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desig Disc Flow (mgd	Res Fac	erve	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.00	00 0	0.000	0.00	7.00
	Par	rameter Da	ata					
		Disc			tream Conc	Fate Coef		
Pa	arameter Name	(mg)	
CBOD5		25	5.00 2	2.00	0.00	1.5	0	
Dissolved C)xygen	3	. 00 8	3.24	0.00	0.0	D C	
NH3-N		25	5.00 0	0.00	0.00	0.7	0	

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0020397

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.827	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.123	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Friday, March 25, 2022

Version 1.0b

	WQM 7.0 Hydrodynamic Outputs											
	SW	P Basin	Strea	m Code				Stream	Name			
		03F	1	833			SC	HUYLKI	LL RIVER			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
23.400	220.75	0.00	220.75	15.0833	0.00041	1.177	275.77	234.21	0.73	0.039	20.00	7.00
22.940	220.76	0.00	220.76	27.614	0.00532	1.217	237.23	195	0.86	0.011	20.00	7.00
22.790	232.48	0.00	232.48	29.0063	0.00034	1.181	291.17	246.65	0.76	0.043	20.00	7.01
22.260	232.50	0.00	232.50	29.0063	0.00059	1.168	285.15	244.07	0.78	0.081	20.00	7.01
Q1-1() Flow											
23.400	182.56	0.00	182.56	15.0833	0.00041	NA	NA	NA	0.66	0.043	20.00	7.00
22.940	182.57	0.00	182.57	27.614	0.00532	NA	NA	NA	0.78	0.012	20.00	7.00
22.790	192.26	0.00	192.26	29.0063	0.00034	NA	NA	NA	0.69	0.047	20.00	7.01
22.260	192.28	0.00	192.28	29.0063	0.00059	NA	NA	NA	0.71	0.089	20.00	7.01
Q30-1	10 Flow	1										
23.400	247.90	0.00	247.90	15.0833	0.00041	NA	NA	NA	0.77	0.036	20.00	7.00
22.940	247.92	0.00	247.92	27.614	0.00532	NA	NA	NA	0.91	0.010	20.00	7.00
22.790	261.08	0.00	261.08	29.0063	0.00034	NA	NA	NA	0.81	0.040	20.00	7.01
22.260	261.10	0.00	261.10	29.0063	0.00059	NA	NA	NA	0.83	0.076	20.00	7.01

Friday, March 25, 2022

Version 1.0b

	WQM 7.0 Wasteload Allocations													
	SWP Basin	Strea	m Code		Str	eam Name								
	03F	1	833		SCHUYLKILL RIVER									
NH3-N	Acute Alloca	ntion	s											
RMI	Discharge N	lame	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction						
23.4	00 Norristown S1	ΓP	9.67	20	9.67	20	0	0						
22.9	40 ENPWJSA		9.67	24	9.67	24	0	0						
22.7	90 Bridgeport ST	P	9.57	40	9.58	40	0	0						
22.2	260		NA	NA	9.58	NA	NA	NA						

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
23.40	0 Norristown STP	1.92	10	1.92	10	0	0
22.94	0 ENPWJSA	1.92	12	1.92	12	0	0
22.79	0 Bridgeport STP	1.9	20	1.9	20	0	0
22.26	0	NA	NA	1.9	NA	NA	NA

Dissolved Oxygen Allocations

		CBC	CBOD5		3-N	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
23.40	Norristown STP	20	20	10	10	4	4	0	0
22.94	ENPWJSA	20	20	12	12	5	5	0	0
22.79	Bridgeport STP	25	25	20	20	5	5	0	0
22.26		NA	NA	NA	NA	NA	NA	NA	NA

Version 1.0b

Z75.771 I.177 Z34.215 0.726 Reach CBODS (mq)L) Reach KC (1/days) Reach NH3-N (mq)L) Reach KC (1/days) 3.15 Reach DO (mq)L) 1.395 Kr Equation Reach NG (1/days) 7.972 1.395 Reach KC (1/days) Kr Equation Reach DO Goal (mq)L 7.972 1.395 Subreach Results Reach CA (7,1/days) Reach DO Goal (mg)L 0.039 TravTime CBODS (MA3-N) D.O. Reach NG (1/days) Reach NG (1/days) 0.039 1.14 0.64 7.95 Reach NG (1/days) Reach NG (1/days) 0.039 1.14 0.64 7.95 Reach NG (1/days) Reach NG (1/days) Reach NG (1/days) 0.012 3.13 0.63 7.92 Reach NG (1/days) Reach NG (1/days) 0.031 3.09 0.62 7.86 Reach Velocity (rbs) Reach NG (1/days) 1.217 195.004 Reach NG (1/days) Reach NG (1/days) Reach NG (1/days) Reach NG (1/days) 1.217 195.004 Reach KC (1/days) Reach NH3-N (mg)L) <		VVQ	WI 7.0	0.0.5	inulation	
RMI Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 23.400 9.750 20.000 Reach Widh.(ft) Reach Depth.(ft) Reach Widh.(ft) Reach NI-SN (mgL) 0.286 0.64 0.726 3.15 0.596 0.64 0.64 0.726 Reach NI-SN (mgL)	SWP Basin S	tream Code			Stream Name	
23.400 9.750 20.000 7.000 Reach Widh (ft) Reach Depth (ft) Reach UPCallo Reach Velocity (toe) 275.771 Reach CBOD5 (mqL) Reach KC (1/days) Reach NLS.N (mgL) Reach NL (1/days) 3.15 Reach DO (mgL) Reach KC (1/days) Reach NLS.N (mgL) Reach DO Goal (mgL) 7.972 1.395 Reach KC (1/days) Kr Equation Reach DO Goal (mgL) 7.972 1.395 TravTime CBOD5 NH3-N D.0 0.039 TravTime CBOD5 NH3-N D.0 Reach DO Goal (mgL) 7.972 1.395 N13-N D.0 Reach DO Goal (mgL) 0.039 TravTime CBOD5 NH3-N D.0 Reach DO Goal (mgL) 0.015 3.12 0.63 7.95 Reach DO Goal (mgL) 0.023 3.11 0.63 7.86 Reach Velocity (mgL) Reach Poil (mgL) 22.400 17.850 Reach Regittrig Reach Null (mgL) Reach Null (mgL) </td <td>03F</td> <td>833</td> <td></td> <td>S</td> <td>HUYLKILL RIVER</td> <td></td>	03F	833		S	HUYLKILL RIVER	
Reach Wildhufft, Reach CEODS (mqL) 3.15 Reach CEOSS (mqL) 0.596 Reach Kc (Lidays) 0.596 Reach Kc (Lidays) 0.64 Reach Kc (Lidays) 0.64 Reach Kc (Lidays) 0.770 0.039 Tav Time (Gays) Subrach Results (mgL) Tsivogiou 5 0.039 Trav Time (Cays) Subrach Results (mgL) D.O. (mgL) Reach Kc (Lidays) 0.004 D.O. (mgL) 0.039 Trav Time (Cays) Subrach Results (mgL) D.O. (mgL) Reach Kc (Lidays) 0.012 D.O. (mgL) 0.004 3.14 0.64 7.96 0.003 Trav Time CBODS NH3-N D.O. (mgL) Reach Kc (Lidays) 0.012 D.O. (mgL) 0.004 3.14 0.64 7.96 D.O. (0273 Reach Kc (Lidays) 0.013 D.O. (0273 0.011 Total Discharge Flow (mgL) 0.023 Analysis Temperature (*C) 0.033 Analysis PH 7.000 Reach Velocity (mgL) 0.000 Reach Velocity (mgL) 0.000 Reach Velocity (mgL) 0.000 Reach Velocity (mgL) 0.000 Reach Kc (Lidays) 0.011 Reach Kc (Lidays) 0.023 Reach Network) 7.000 Reach Kc (Lidays) 0.000 Reach Kc (Lidays) 0.000 Reach Kc (Lidays) 0.000 Reach Kc (Lidays) 0.000 Reach Kc (Lidays) 0.001) <u>Ana</u>		
275.771 1.177 234.215 0.725 Reach CBODS (mgl.) Reach Kc (1/days) Reach NH3-N (mgl.) Reach Kn (1/days) 3.15 Reach MC (1/days) 0.598 0.64 0.700 7.972 1.395 Reach Kr (1/days) Reach Kn (1/days) 0.750 0.039 TravTme CBODS NH3-N D.0 Reach MC (1/days) 0.039 TravTme CBODS NH3-N D.0 Reach MC (1/days) 0.039 TravTme CBODS NH3-N D.0 Reach MC (1/days) 0.039 TravTme CBODS NH3-N D.0 Reach MC (1/days) State St	Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
3.15 0.598 0.64 0.700 Reach DO (mgL) Reach Kr (1)(days) Kr Equation Reach DO Goal (mgL) 0.039 TravTime CBODS NH3-N D.0. 0.039 TravTime CBODS NH3-N D.0. 0.039 TravTime CBODS NH3-N D.0. 0.011 0.014 3.14 0.64 7.95 0.022 3.13 0.63 7.93 0.015 0.023 3.11 0.63 7.86 0.031 0.031 3.09 0.62 7.86 0.081 0.031 3.09 0.62 7.86 0.861 0.031 3.09 0.62 7.86 0.861 0.031 3.09 0.62 7.86 0.861 0.032 1.217 195.004 0.861 Reach Kr (1/days) Reach CBODS (mgL) 0.619 Reach Kr (1/days) Reach Kr (1/days) Reach Kr (1/days) Reach Travel Time (days) 0.619 Reach Kr (1/days) Kr Equation Reach Kr (1/days) <						
Reach DO (mgL) 7.972 Reach Kr (1/days) 1.395 Kr Equation Tstvogiou Reach DO Goal (mg1) 5 0.039 5 Subreach Results (days) D.O. Subreach Results (mgL) D.O. 1.395 TravTime CBODS NH3-N 0.004 0.04 7.95 0.015 D.O. 0.039 1.395 Subreach Results (mgL) D.O. 0.004 3.14 0.64 7.96 0.015 3.12 0.63 7.93 0.015 3.12 0.63 7.92 0.027 3.10 0.63 7.90 0.027 0.039 0.039 0.62 7.86 0.039 0.039 0.62 7.86 0.056 0.039 0.62 7.86 0.861 Reach Viol (1/days) Reach Viol (1/days) Reach NUR Ratio 0.861 Reach Kr (1/days) Reach Kr (1/days) 0.019 1.20 0.700 Reach Kr (1/days) 0.019 0.700 Reach Kr (1/days) 0.011 Reach Kr (1/days) 1.19 TravTime CBODS 0.011 Kr Equation 1.19 Reach Kr (1/days) 1.19 Reach Kr (1/days) 1.19 Reach Cr (1/days) 1.19	Reach CBOD5 (mg/L)	Reach Ko	(1/days)	E	each NH3-N (mg/L)	Reach Kn (1/days)
Routing Total 1.395 Telvogiou 5 1.393 TravTime CBODS NH3-N D.O. 5 0.039 TravTime CBODS NH3-N D.O. 5 0.039 TravTime CBODS NH3-N D.O. 5 0.039 0.012 3.13 0.63 7.932 0.015 3.14 0.64 7.95 0.012 3.13 0.63 7.92 0.015 3.11 0.63 7.92 0.017 3.11 0.63 7.88 0.027 3.10 0.63 7.88 0.039 0.052 7.86 0.039 3.08 0.52 7.85 0.031 1.20 0.801 7.000 Reach Decide (Id) Reach Net (Idays) Reach Net (Idays) Reach Net (Idays) Reach NH3-N (mgL) Reach Net (Idays) Reach NH3-N (mgL) Reach Idays) Reach NH3-N (mgL) 0.861 0.861 7.709 Reach KC (Idays) Reach NH3-N (mgL) Reach NH3-N (mgL) Reach NH3-N (mgL) 0.861 0.861	3.15	0.59	8		0.64	0.700
Each Travel Travel Time (days) Subreach Results 0.039 Travel Time (CBODS NH3-N) D.O. (days) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 0.004 3.14 0.64 7.95 0.012 3.13 0.63 7.93 0.015 3.12 0.63 7.93 0.019 3.11 0.63 7.90 0.027 3.10 0.63 7.86 0.033 0.09 0.62 7.86 0.039 3.08 0.62 7.85 Reach Width (ft) Reach Depth (ft) Reach WIDRatio Reach VicingL) 3.93 Reach Clifdays) Reach NURAtio Reach VicingL) 0.819 1.20 0.700 Reach Clifdays) 0.011 Reach Kr (Lifdays) Kr Equation Reach DO Gail (mg/L) 0.011 1.140 TravTime CBODS (mg/L) 0.773 0.001 3.93 1.20 7.73 0.001 3.93 1.90 7.70 0.001 3.93	Reach DO (mg/L)					Reach DO Goal (mg/L)
0.039 TravTime CBODS NH3-N (mg/L) 0.0. (mg/L) 0.0. (mg/L) 0.004 3.14 0.64 7.95 0.012 3.13 0.63 7.93 0.013 3.14 0.64 7.95 0.012 3.13 0.63 7.93 0.027 3.10 0.63 7.89 0.031 3.09 0.62 7.85 0.033 3.08 0.62 7.85 Reach Width (ff) Reach Depth (ff) Reach NH3-N (mg/L) Reach Kn (1/days) 3.33 0.819 1.20 0.700 0.861 7.709 Reach Kn (1/days) Kr=avaiten Reach Co	7.972	1.39	5		Tsivogiou	5
EMI Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 17.850 20.039 3.65 7.93 0.027 3.10 0.63 7.96 0.028 3.11 0.63 7.93 0.015 3.12 0.63 7.93 0.027 3.10 0.63 7.90 0.027 3.00 0.63 7.86 0.035 3.09 0.62 7.86 0.039 3.08 0.62 7.85 Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 17.850 20.000 Reach Velocity (fps) 237.227 1.217 195.004 0.861 Reach CBODS (mgl.) Reach Kc (1/days) Reach NH3N (mgl.) Reach Kn (i/days) 3.93 0.611 Reach NC (1/days) Kr Equation Reach Ch (fidays) 0.011 Reach Kn (i/days) Kr Equation Reach DO Goal (mgl.) 5 0.011 3.93 1.19 7.78 0.002			CBOD5	NH3-N		
Bit Nill Dot Reach Depth (ft) Analysis Temperature (*C) Analysis pH 22.940 Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 Total Discharge Flow (mgd) Reach Depth (ft) Reach NUDRatio Reach VIC) 3.33 0.819 1.217 195.004 0.861 Reach DO (mg/L) Reach Kc (1/days) Kr Equation Reach Kn (1/days) Reach Kn (1/days) 0.819 21.340 Tsivoglou 5 5 0.011 Travel Time CBOD5 NH3-N D.0 0.700 0.02 3.93 1.20 7.73 0.002 3.93 1.9 7.75 0.011 3.93 1.20 7.73		(days)	(mg/L)	(mg/L)	(mg/L)	
Reach Iotal Iotal <th< td=""><td></td><td>0.004</td><td>3.14</td><td>0.64</td><td>7.96</td><td></td></th<>		0.004	3.14	0.64	7.96	
Reach CBODS (morL) Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 17.850 20.001 Analysis Temperature (*C) Analysis pH 22.940 17.850 20.000 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach VDRatio Reach Kr (1/days) 0.651 7.85 Reach CBODS (morL) 3.93 0.619 1.20 0.700 Reach Kr (1/days) Reach VDRatio Reach Kr (1/days) 0.861 7.709 21.340 Tslvogiou 5 5 5 0.011 TravTime CBODS NH3-N D.O. Reach DC Gaal (mgL) 5 0.011 3.93 1.20 7.73 0.002 3.93 1.19 7.80 0.011 3.93 1.20 7.73 0.002 3.93 1.19 7.80 0.001 3.93 1.20 7.73 0.002 3.92 1.19 7.80 0.001 3.93 1.20 7.73 0.002 3.92 1.9 7.80 0.002 </td <td></td> <td>0.008</td> <td>3.14</td> <td>0.64</td> <td>7.95</td> <td></td>		0.008	3.14	0.64	7.95	
0.019 3.11 0.63 7.91 0.023 3.11 0.63 7.90 0.027 3.10 0.63 7.89 0.035 3.09 0.62 7.86 0.039 3.08 0.62 7.86 0.039 3.08 0.62 7.85 Reach Width (ft) Reach Width (ft) Reach Width (ft) Reach Nicht (ftdays) 237.227 Reach Deph (ft) Reach Ci (ftdays) Reach Nicht (ftdays) Reach Nicht (ftdays) Reach Nicht (ftdays) Reach Nicht (ftdays) 0.861 3.93 0.819 1.20 0.700 0.861 0.700 Reach DO (mgL) 7.709 21.340 Tstorgiou 5 0.011 Subreach Results D.0 0.001 3.93 1.20 7.73 0.023 3.92 1.19 7.76 0.003 3.92 1.9 7.80 0.011 3.93 1.20 7.73 0.005 3.92 1.9 7.80 0.00		0.012	3.13	0.63	7.93	
0.023 3.11 0.63 7.90 0.027 3.10 0.63 7.89 0.031 3.09 0.62 7.86 0.039 3.08 0.62 7.85 RMI Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 17.850 20.000 7.000 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 237.227 1.217 195.004 0.861 3.93 0.619 1.20 0.700 Reach CBODS (mg/L) Reach Kc (1/days) Reach Ministration Reach Kc (1/days) 0.819 0.819 1.20 0.700 Reach Travel Time (days) 0.819 Kr Equation Reach DO Goal (mg/L) 0.011 3.93 1.20 7.73 0.002 0.011 3.93 1.20 7.73 0.002 0.011 3.93 1.20 7.73 0.002 0.011 3.93 1.20 7.73 0.002		0.015	3.12	0.63	7.92	
0.027 3.10 0.63 7.89 0.031 3.09 0.63 7.88 0.035 3.09 0.62 7.86 0.039 3.08 0.62 7.86 0.299 3.08 0.62 7.85 Reach Discharge Flow (mgd) Analysis Temperature (°C) Analysis pH 22.940 17.850 20.000 Reach Velocity (fps) 237.227 1.217 195.004 0.861 1.217 195.004 0.861 Reach Velocity (fps) 3.93 0.819 1.20 0.700 Reach DO (mgL) 7.709 21.340 Reach NH3-N (mgL) Reach DO Goal (mgU 7.709 21.340 Travel Time (days) 0.001 3.93 1.20 7.73 0.011 0.001 3.93 1.20 7.73 0.002 3.93 1.19 7.68 0.001 3.92 1.19 7.84 0.005 3.91 1.19 7.88 0.010 3.90 1.19 7.90 </td <td></td> <td>0.019</td> <td>3.11</td> <td>0.63</td> <td>7.91</td> <td></td>		0.019	3.11	0.63	7.91	
0.031 3.09 0.63 7.88 0.035 3.09 0.62 7.86 0.039 3.08 0.62 7.86 0.039 3.08 0.62 7.85 Reach Width (ft) 237.227 Total Discharge Flow (mgd) 1.217 Analysis Temperature (*C) 20.000 Analysis pH 7.000 Reach Width (ft) 3.93 Reach Depth (ft) 1.217 Reach ND Ratio 1.217 Reach Velocity (fps) 0.819 3.93 Reach Kc (1/days) Reach NH3-N (mgL) 0.700 Reach CO Goal (mg/L) 0.700 ach Travel Time (days) Subreach Results (mg/L) N13-N (mg/L) D.0. (mg/L) 0.011 3.93 1.20 7.73 0.011 3.93 1.20 7.73 0.011 3.93 1.20 7.73 0.011 3.93 1.20 7.73 0.011 3.93 1.20 7.73 0.011 3.93 1.20 7.73 0.011 3.93 1.20 7.73 0.013 3.92 1.19 7.84 0.005 3.91 <td></td> <td>0.023</td> <td>3.11</td> <td>0.63</td> <td>7.90</td> <td></td>		0.023	3.11	0.63	7.90	
0.035 3.09 0.62 7.86 0.039 3.08 0.62 7.85 RMI Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 17.850 20.000 Reach WDRatio Reach Velocity (fps) 237.227 1.217 195.004 Reach Velocity (fps) 0.861 3.93 Reach C60D5 (mgL) 1.217 195.004 Reach Kr (1/days) 0.861 Reach DO (mgL) 7.709 1.217 195.004 Reach Kr (1/days) 0.819 0.819 1.20 0.700 Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 7.709 21.340 TravTime CBOD5 NH3-N D.0. (days) 0.011 3.93 1.20 7.73 0.011 3.93 1.20 7.73 0.002 3.93 1.19 7.80 0.004 3.92 1.19 7.80 0.005 3.91 1.19 7.80 0.010 3.90 1.19		0.027	3.10	0.63	7.89	
0.039 3.08 0.62 7.85 RMI 22.940 Total Discharge Flow (mgd) 17.850 Analysis Temperature (*C) 20.000 Analysis pH 7.000 Reach Width (ff) 237.227 Reach Depth (ft) 1.217 Reach WDRatio 1.95.004 Reach Velocity (fps) 0.861 Reach DCB (mgL) 3.93 Reach KC (1/days) 0.819 Reach NH3-N (mg/L) 1.200 Reach NH (1/days) 0.861 Reach DC (mg/L) 7.709 Reach KC (1/days) 21.340 Subreach Results (mg/L) Kr Equation (mg/L) Reach DO Goal (mg/L) 5 each Travel Time (days) 0.011 TravTime (days) CBODS (mg/L) NH3-N (mg/L) D.0. 0.011 0.001 3.93 1.20 7.73 0.004 3.92 1.19 7.80 0.005 3.92 1.19 7.80 0.005 3.91 1.19 7.86 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.90 0.011 3.90 1.19 7.90 0.011 3.90 1.19 7.90 0.011 3.90 1.19 7.90		0.031	3.09	0.63	7.88	
RMI Total Discharge Flow (mgd) Analysis Temperature (*C) Analysis pH 22.940 17.850 20.000 7.000 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 237.227 1.217 195.004 0.861 Reach CBODS (mgl.) Reach Kc (1/days) Reach NH3-N (mgl.) Reach Kn (1/days) 3.93 0.819 1.20 0.700 Reach DO (mgl.) Reach Kr (1/days) Kr Equation Reach DO Goal (mgl.) 7.709 21.340 TravTime CBODS NH3-N D.0. ach Travel Time (days) Subreach Results D.0. COOI 3.93 1.20 7.73 0.011 3.93 1.20 7.73 D.0. 5 5 0.011 3.93 1.20 7.73 D.0. 6 5 0.001 3.93 1.20 7.73 D.0. 6 5 0.001 3.92 1.19 7.80 D.0.0 0.005 3.92 1.19 7.88		0.035	3.09	0.62	7.86	
22.940 17.850 20.000 7.000 Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 237.227 1.217 195.004 0.861 Reach CBOD5 (mg/L) Reach KC (1/days) Reach NH3-N (mg/L) Reach KC (1/days) 3.93 0.819 1.20 0.700 Reach DO (mg/L) Reach KC (1/days) Kr Equation Reach DO Goal (mg/L) 7.709 21.340 Tsivogiou 5 each Travel Time (days) Subreach Results D.0. 0.011 TravTime CBODS NH3-N D.0. (days) (mg/L) (mg/L) (mg/L) 5 0.001 3.93 1.20 7.73 0.002 3.93 0.001 3.92 1.19 7.80 0.005 3.92 1.19 7.82 0.005 3.92 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92 0.011 3.90 1.19 7.92		0.039	3.08	0.62	7.85	
Reach Width (ft) Reach Depth (ft) Reach WDRatio Reach Velocity (fps) 237.227 1.217 195.004 0.861 Reach CBOD5 (mq/L) Reach Kc (1/days) Reach NH3-N (mq/L) Reach Kc (1/days) 3.33 0.819 1.20 0.700 Reach DO (mg/L) Reach Kr (1/days) Kr Equation Reach DO Goal (mg/L) 7.709 21.340 Tsivogiou 5 each Travel Time (days) 0.011 Subreach Results 0.001 0.011 TravTime CBOD5 NH3-N D.0. 5 0.001 3.93 1.20 7.73 0.001 3.93 1.20 7.73 0.001 3.93 1.20 7.73 0.001 3.93 1.20 7.73 0.002 3.93 1.19 7.80 0.004 3.92 1.19 7.80 0.005 3.91 1.19 7.84 0.007 3.91 1.19 7.90 0.011 3.90 1.19 7.92 <td></td> <td></td> <td></td> <td>) Ana</td> <td></td> <td></td>) Ana		
237.227 1.217 195.004 0.861 Reach CBODS (mg/L) Reach Kc (1/days) Reach NH3-N (mg/L) Reach Kc (1/days) 0.070 3.93 0.819 1.20 0.700 Reach CBODS (mg/L) Reach Kc (1/days) Kr Equation Reach CD Goal (mg/L) 7.709 21.340 Tslvogiou 5 each Travel Time (days) Subreach Results D.0. 0.011 TravTime CBODS NH3-N D.0. (days) (mg/L) (mg/L) (mg/L) 7.73 0.001 3.93 1.20 7.73 0.002 3.93 1.19 7.76 0.001 3.92 1.19 7.80 0.005 3.92 1.19 7.84 0.005 3.91 1.19 7.84 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
3.93 0.819 1.20 0.700 Reach DO (mg/L) 7.709 21.340 Kr Equation Tsivogiou Reach DO Goal (mg/L) 5 0.011 21.340 Tsivogiou 5 0.011 TravTime (days) CBOD5 (mg/L) NH3-N (mg/L) D.0. 0.001 3.93 1.20 7.73 0.002 3.93 1.19 7.76 0.003 3.92 1.19 7.78 0.005 3.92 1.19 7.80 0.005 3.92 1.19 7.80 0.005 3.91 1.19 7.82 0.006 3.91 1.19 7.86 0.007 3.91 1.19 7.92	237.227					
Reach DO (mgL) 7.709 Reach Kr (1/days) 21.340 Kr Equation Tsivogiou Reach DO Goal (mgL) 5 each Travel Time (days) 0.011 Subreach Results TravTime (days) D.0. (mg/L) D.0. (mg/L) 5 0.011 TravTime (days) CBOD5 (mg/L) NH3-N (mg/L) D.0. (mg/L) 5 0.001 3.93 1.20 7.73 7.73 7.73 0.002 3.93 1.19 7.76 7.78 7.73 0.002 3.92 1.19 7.78 7.82 7.99 0.005 3.92 1.19 7.82 7.86 7.99 7.90 0.007 3.91 1.19 7.88 7.90 7.90 7.92	Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
Travel Time (days) 21.340 Tsivogiou 5 each Travel Time (days) 0.011 Subreach Results (rays) D.O. (mg/L) D.O. (mg/L) D.O. (mg/L) D.O. (mg/L) 0.001 3.93 1.20 7.73 0.002 3.93 1.19 7.76 0.003 3.92 1.19 7.78 0.004 3.92 1.19 7.80 0.005 3.92 1.19 7.84 0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.82 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92	3.93		-			
Subreach Travel Time (days) Subreach Results 0.011 TravTime (days) 0.001 3.93 0.001 3.93 0.002 3.93 0.003 3.92 1.19 7.78 0.004 3.92 0.005 3.92 1.19 7.80 0.005 3.92 1.19 7.80 0.005 3.92 1.19 7.82 0.006 3.91 0.007 3.91 0.009 3.90 1.19 7.86 0.007 3.91 0.007 3.91 1.19 7.86 0.001 3.90 0.010 3.90 0.011 3.90 1.19 7.90 0.011 3.90	Reach DO (mg/L)					Reach DO Goal (mg/L)
D.011 TravTime (days) CBODS (mg/L) NH3-N (mg/L) D.O. (mg/L) 0.001 3.93 1.20 7.73 0.002 3.93 1.19 7.76 0.003 3.92 1.19 7.78 0.004 3.92 1.19 7.80 0.005 3.92 1.19 7.84 0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92	7.709	21.34	40		Tsivoglou	5
0.001 3.93 1.20 7.73 0.002 3.93 1.19 7.76 0.003 3.92 1.19 7.78 0.004 3.92 1.19 7.80 0.005 3.92 1.19 7.82 0.006 3.91 1.19 7.84 0.007 3.91 1.19 7.88 0.009 3.90 1.19 7.90 0.010 3.90 1.19 7.92					D.O.	
0.002 3.93 1.19 7.76 0.003 3.92 1.19 7.78 0.004 3.92 1.19 7.80 0.005 3.92 1.19 7.82 0.006 3.91 1.19 7.84 0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92		(days)	(mg/L)	(mg/L)	(mg/L)	
0.003 3.92 1.19 7.78 0.004 3.92 1.19 7.80 0.005 3.92 1.19 7.82 0.006 3.91 1.19 7.84 0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
0.004 3.92 1.19 7.80 0.005 3.92 1.19 7.82 0.006 3.91 1.19 7.84 0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
0.005 3.92 1.19 7.82 0.006 3.91 1.19 7.84 0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
0.005 3.91 1.19 7.84 0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
0.007 3.91 1.19 7.86 0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
0.009 3.91 1.19 7.88 0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
0.010 3.90 1.19 7.90 0.011 3.90 1.19 7.92						
0.011 3.90 1.19 7.92						
Marcian 1 Ob Dates						
iday, March 25, 2022 Version 1.00 Page	1day, March 25, 2022			Version 1.	Ob	Page 1 of

WQM 7.0 D.O.Simulation

ALLIN Dealer AL				at	
	ream Code			Stream Name	
03F	833		SC	HUYLKILL RIVER	
RMI	Total Discharge	Flow (mgd) <u>Ana</u>	lysis Temperature (°C)	Analysis pH
22.790	18.75	50		20.000	7.014
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
291.171	1.18	1		246.645	0.761
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
3.93	0.80	-		1.23	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.920	1.19	2		Tsivogiou	5
Reach Travel Time (days)		Subreach	Requite		
0.043	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)	
	0.004	3.91	1.23	7.89	
	0.009	3.90	1.23	7.86	
	0.013	3.89	1.22	7.83	
	0.013	3.87	1.22	7.80	
	0.021	3.86	1.22	7.77	
	0.021				
		3.85	1.21	7.74	
	0.030	3.83	1.21	7.71	
	0.034	3.82	1.21	7.68	
	0.038	3.81	1.20	7.65	
	0.043	3.79	1.20	7.63	
<u>RMI</u> 22.260	Total Discharge 18.75) Ana	lysis Temperature (°C) 20.000	Analysis pH 7.014
Reach Width (ft)	Reach De			Reach WDRatio	Reach Velocity (fps)
285.154	1,16			244.075	0.785
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
3.79	0.77	4	_	1.20	0.700
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
7.626	2.17	4		Tsivogiou	5
		Subreach			
Reach Travel Time (days) 0.081	TravTime (days)		NH3-N (mg/L)	D.O. (mg/L)	
		CBOD5	NH3-N		
	(days)	CBOD5 (mg/L)	NH3-N (mg/L)	(mg/L)	
	(days)	CBOD5 (mg/L) 3.77	NH3-N (mg/L) 1.19	(mg/L) 7.59	
	(days) 0.008 0.016	CBOD5 (mg/L) 3.77 3.75	NH3-N (mg/L) 1.19 1.18	(mg/L) 7.59 7.55	
	(days) 0.008 0.016 0.024	CBOD5 (mg/L) 3.77 3.75 3.72	NH3-N (mg/L) 1.19 1.18 1.18	(mg/L) 7.59 7.55 7.51	
	(days) 0.008 0.016 0.024 0.032	CBOD5 (mg/L) 3.77 3.75 3.72 3.70	NH3-N (mg/L) 1.19 1.18 1.18 1.17	(mg/L) 7.59 7.55 7.51 7.48	
	(days) 0.008 0.016 0.024 0.032 0.040	CBOD5 (mg/L) 3.77 3.75 3.72 3.70 3.68	NH3-N (mg/L) 1.19 1.18 1.18 1.17 1.16	(mg/L) 7.59 7.55 7.51 7.48 7.44	
	(days) 0.008 0.016 0.024 0.032 0.040 0.049	CBOD5 (mg/L) 3.77 3.75 3.72 3.70 3.68 3.65	NH3-N (mg/L) 1.19 1.18 1.18 1.17 1.16 1.16	(mg/L) 7.59 7.55 7.51 7.48 7.44 7.44 7.41	
	(days) 0.008 0.016 0.024 0.032 0.040 0.049 0.057 0.065	CBOD5 (mg/L) 3.77 3.75 3.72 3.70 3.68 3.65 3.63 3.61	NH3-N (mg/L) 1.19 1.18 1.18 1.17 1.16 1.16 1.15 1.15	(mg/L) 7.59 7.55 7.51 7.48 7.44 7.41 7.37 7.34	
	(days) 0.008 0.016 0.024 0.032 0.040 0.049 0.057	CBOD5 (mg/L) 3.77 3.75 3.72 3.70 3.68 3.65 3.63	NH3-N (mg/L) 1.19 1.18 1.18 1.17 1.16 1.16 1.15	(mg/L) 7.59 7.55 7.51 7.48 7.44 7.41 7.37	
Reach Travel Time (days) 0.081	(days) 0.008 0.016 0.024 0.032 0.040 0.049 0.057 0.065 0.073	CBOD5 (mg/L) 3.77 3.75 3.72 3.70 3.68 3.65 3.63 3.61 3.58	NH3-N (mg/L) 1.19 1.18 1.18 1.17 1.16 1.16 1.15 1.15 1.14	(mg/L) 7.59 7.55 7.51 7.48 7.44 7.41 7.37 7.34 7.31	

WQM 7.0 D.O.Simulation

	SWP Basin S	tream Code		Stream Name	<u>e</u>		
	03F	833		SCHUYLKILL RI	VER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
23.400	Norristown STR	P PA0027421	9.750	CBOD5	20		
				NH3-N	10	20	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	
22.940	ENPWJSA	PA0026816	8.100	CBOD5	20		
				NH3-N	12	24	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
22.790	Bridgeport STF	PA0020397	0.900	CBOD5	25		
				NH3-N	20	40	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Friday, March 25, 2022

Version 1.0b

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instruction	s Disc	harge Stream			
Facility:	Boro o	of Bridgeport STP	NPDES Permit No.:	PA0020397	Outfall No.: 001
Evaluation	Type:	Major Sewage / Industrial Waste	Wastewater Descrip	otion: Treated sewage	effluent

			Discharge	Characterist	tics				
Design Flow	Hardness (mg/l)*	-H (810)	P	artial Mix Fa	actors (PMF	s)	Complete Mix Times (min)		
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh	
0.9	100	7.2							

				0 If lef	t blank	0.5 lf le	eft blank	0) if left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	
	Total Dissolved Solids (PWS)	mg/L										
5	Chloride (PWS)	mg/L										
Group '	Bromide	mg/L										
5	Sulfate (PWS)	mg/L										
	Fluoride (PWS)	mg/L										
	Total Aluminum	µg/L										
	Total Antimony	µg/L										
	Total Arsenic	µg/L										
	Total Barium	µg/L										
	Total Beryllium	µg/L										
	Total Boron	µg/L										
	Total Cadmium	µg/L										
	Total Chromium (III)	µg/L										
	Hexavalent Chromium	µg/L										
	Total Cobalt	µg/L										
	Total Copper	µg/L	50.7									
2	Free Cyanide	µg/L										
Group	Total Cyanide	µg/L										
5	Dissolved Iron	µg/L										
-	Total Iron	µg/L										
	Total Lead	µg/L										
	Total Manganese	µg/L										
	Total Mercury	µg/L										
	Total Nickel	µg/L										
	Total Phenols (Phenolics) (PWS)	µg/L										
	Total Selenium	µg/L										
	Total Silver	µg/L										
	Total Thallium	µg/L										
	Total Zinc	µg/L	140									
	Total Molybdenum	µg/L										
	Acrolein	µg/L	<									
1	Acrylamide	µg/L	<									
	Acrylonitrile	µg/L	<									
	Benzene	µg/L	<									
1	Bromoform	µg/L	<									

	Carbon Tetrachloride	um/l	<		_	-					
1		µg/L	<	⊢	┿	┿					╟┼┼
	Chlorobenzene	µg/L		⊨	╞	╞					╟┼┼┼
	Chlorodibromomethane	µg/L	<	 Þ	+	+				-	▋┼┼┼
	Chloroethane	µg/L	<		Ì	Ì	1				
	2-Chloroethyl Vinyl Ether	µg/L	<			_					
	Chloroform	µg/L	<	\vdash		+					
	Dichlorobromomethane	µg/L	<	\vdash	+-	╈					╟─┼─┼╴
	1,1-Dichloroethane	µg/L	<	Γì	Ť	Ť					
0	1,2-Dichloroethane	µg/L	<			T					
	1,1-Dichloroethylene	µg/L	<	Ħ	+	t					
Group	1,2-Dichloropropane	µg/L	<	Ħ	÷	Ŧ					▋─┼─┼
σ	1,3-Dichloropropylene	µg/L	<	Ħ	+	t					╟┼┼┼
	1.4-Dioxane	µg/L	<	Hì	÷	÷					
	Ethylbenzene	µg/L	<			Ŧ					
	Methyl Bromide		<	⊨	+	÷					
		µg/L	<u> </u>	\vdash	+	+					
	Methyl Chloride	µg/L	<	H	+	+	<u> </u>				╏╌┼╌┼
	Methylene Chloride	µg/L	<	Ħ	+	÷	<u> </u>				
	1,1,2,2-Tetrachloroethane	µg/L	<				<u> </u>				
	Tetrachloroethylene	µg/L	<								
	Toluene	µg/L	<			-					
	1,2-trans-Dichloroethylene	µg/L	<	H							
	1,1,1-Trichloroethane	µg/L	<		T	T					
	1,1,2-Trichloroethane	µg/L	<								
	Trichloroethylene	µg/L	<	Ħ							
	Vinyl Chloride	µg/L	<	Ħ	+	+					
	2-Chlorophenol	µg/L	<	H	+	+					
	2,4-Dichlorophenol	µg/L	<	Ħ	Ŧ	Ť					
	2,4-Dimethylphenol	µg/L	<		+	Ŧ			 		
	4,6-Dinitro-o-Cresol		<	⊨	+	┿					╟┼┼┼
4	-	µg/L	_	┝┼	┿	┿			 		╟┼┼┼
ġ.	2,4-Dinitrophenol	µg/L	<	Ħ	÷	÷				-	
Group	2-Nitrophenol	µg/L	<			1	<u> </u>		 		
G	4-Nitrophenol	µg/L	<	\vdash	+	+			 		
	p-Chloro-m-Cresol	µg/L	<	⊨	╞	╞					
	Pentachlorophenol	µg/L	<	Þ	+	+					
	Phenol	µg/L	<		İ.	İ					
	2,4,6-Trichlorophenol	µg/L	<								
	Acenaphthene	µg/L	<	\vdash	_	+					
	Acenaphthylene	µg/L	<	H	╈	┢					╟─┼─┼╴
	Anthracene	µg/L	<	Fi		T					
	Benzidine	µg/L	<			Ţ					
	Benzo(a)Anthracene	µg/L	<	Ħ	+	t					
	Benzo(a)Pyrene	µg/L	<	Ħ	÷	Ŧ					▋┼┼┼
	3.4-Benzofluoranthene	µg/L	<	H	+	+					
	Benzo(ghi)Perylene	µg/L	<	Ħ	÷	t					
	Benzo(k)Fluoranthene	µg/L	<	Ħ	+	+					
	Bis(2-Chloroethoxy)Methane	µg/L	<	H	+	+					
			<	⊢	╈	╈					╟─┼─┼─
	Bis(2-Chloroethyl)Ether	µg/L	<	Ħ	÷	÷					▋
	Bis(2-Chloroisopropyl)Ether	µg/L	<u> </u>		÷	ļ					
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	H	-	+					
	4-Bromophenyl Phenyl Ether	µg/L	<	⊨	+	╞					
	Butyl Benzyl Phthalate	µg/L	<	Ħ	+	+					
			<	Ľ	1	Ť					
	2-Chloronaphthalene	µg/L	<u> </u>		_						
	4-Chlorophenyl Phenyl Ether	µg/L	<								
	4-Chlorophenyl Phenyl Ether Chrysene	μg/L μg/L	<u> </u>								
	4-Chlorophenyl Phenyl Ether	µg/L	<								
	4-Chlorophenyl Phenyl Ether Chrysene	μg/L μg/L	< <								
	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene	μg/L μg/L μg/L μg/L	< < <								
2	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene	μg/L μg/L μg/L μg/L μg/L	< < < <								
IP 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	μg/L μg/L μg/L μg/L μg/L μg/L	< < < < < <								
oup 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine	µg/L µg/L µg/L µg/L µg/L µg/L	< < < < < < < < < < < < < < < < < <								
Group 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	 <th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th>								
Group 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate	μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L μ9/L	 <td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>								
Group 5	4-Chlorophenyl Phenyl Ether Chrysene Dibenzo(a,h)Anthrancene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	 <td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>								

	2.6-Dinitrotoluene	Luc/I	<		- 1							
	2,6-Dinitrotoluene Di-n-Octyl Phthalate	µg/L µg/L	<	+	+	-	-					
	Di-n-Octyl Phthalate 1,2-Diphenylhydrazine		<	+	+	-						
		µg/L		Ì	Ì	Ì	_	 				
	Fluoranthene	µg/L	<		4	_	_	 				
	Fluorene	µg/L	<		4	_	_	 				
- H	Hexachlorobenzene	µg/L	<	 ╞	╪	╡	_	 				
	Hexachlorobutadiene	µg/L	<	Ì	Ì	Ì						
	Hexachlorocyclopentadiene	µg/L	<		ļ	_	_					
	Hexachloroethane	µg/L	<		4		_					
	Indeno(1,2,3-cd)Pyrene	µg/L	<				_					
	Isophorone	µg/L	<									
	Naphthalene	µg/L	<									
[Nitrobenzene	µg/L	<									
	n-Nitrosodimethylamine	µg/L	<		-	-	-					
	n-Nitrosodi-n-Propylamine	µg/L	<	Ť	Ŧ	7						
	n-Nitrosodiphenylamine	µg/L	<									
	Phenanthrene	µg/L	<		4							
- H	Pyrene	µg/L	<	H	+	-	-					
	1,2,4-Trichlorobenzene	µg/L	<	Ħ								
-	Aldrin	µg/L	<	Ħ								
- H	alpha-BHC	µg/L	<	Ħ	Ţ	-	-					
. L	beta-BHC	μg/L	<	+	+	-						
					-	-	-					
	gamma-BHC	µg/L	<	Ħ								
	delta BHC	µg/L	<	Ì	Ĵ							
- H	Chlordane	µg/L	<	Ļ	Ļ	Ļ						
	4,4-DDT	µg/L	<		╡	╡	_					
	4,4-DDE	µg/L	<		4	4	_					
	4,4-DDD	µg/L	<		Ť	Ť						
	Dieldrin	µg/L	<	Ì	Ì	Ì						
	alpha-Endosulfan	µg/L	<		_	_						
	beta-Endosulfan	µg/L	<		-	-	_					
!	Endosulfan Sulfate	µg/L	<		7							
	Endrin	µg/L	<									
	Endrin Aldehyde	µg/L	<		7							
	Heptachlor	µg/L	<		7	=	-					
	Heptachlor Epoxide	µg/L	<	H	÷	+	+					
	PCB-1016	µg/L	<	 Ħ	Ť	Ť	-					
	PCB-1221	µg/L	<	 ∃	7	-						
	PCB-1232	µg/L	<	+	╡	+	-					╞┼┼┼
	PCB-1242		<	+	+	+	┥					
. L	PCB-1242 PCB-1248	µg/L	<	 Ħ	Ŧ	Ŧ	-					
		µg/L	<	 Ì	1	1	_					
	PCB-1254	µg/L		 \vdash	_	_	4	 				
	PCB-1260	µg/L	<	 ╞╡	4	4	_	 				
	PCBs, Total	µg/L	<	 \Rightarrow	4	=	_				-	
ļ	Toxaphene	µg/L	<	Ì	Ì							
-	2,3,7,8-TCDD	ng/L	<									
	Gross Alpha	pCi/L										
	Total Beta	pCi/L	<									
ŀ	Radium 226/228	pCi/L	<									
	Total Strontium	µg/L	<									
'	Total Uranium	µg/L	<		-	-	_					
	Osmotic Pressure	mOs/kg			-		-					
					Ť	T						
					+		-					
				=	+	-						
				+	+	-						
				Ħ	Ť							
				 Ĥ	1							
				Ļ	ļ	_						
					-	_						
							-					
- 1							-					
l												

Stream / Surface Water Information

Toxics Management Spreadsheet Version 1.3, March 2021

Boro of Bridgeport STP, NPDES Permit No. PA0020397, Outfall 001

Instructions	Discharge	Stream
--------------	-----------	--------

Receiving Surface Water Name: Schuylkill River

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	000833	22.79	43.73	1770			Yes
End of Reach 1	000833	22	42.88	1770.1			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

-	7-10

Location	RMI	LFY					Depth	Velocit	Time	Tributary		Stream		Analysis	
Location	TSIMI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	22.79	0.125										200	7.5		
End of Reach 1	22	0.125										-			

Qn

Location	RMI	LFY	Flow	(cfs)	W/D	Width De	Depth	Depth Velocit	Time	Tributary		Stream		Analysis	
Location	T SIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	22.79														
End of Reach 1	22														

Stream / Surface Water Information

3/24/2022

Page 4

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Boro of Bridgeport STP, NPDES Permit No. PA0020397, Outfall 001

Instructions Results	RETURN TO INPUTS	SAVE AS PDF	PRINT 🔵 🖲 AI	I 🔿 Inputs 🔿 Results 🔿 Limits
Hydrodynamics				
Wasteload Allocations				
AFC	CCT (min): 15 PMF:	0.052 Analy	ysis Hardness (mg/l):	189.26 Analysis pH: 7.46
Pollutants	Conc CV (µg/L)	Coef (μg/L)	WQ Obj (µg/L) WLA (µg/L)	Comments
Total Copper	0 0	0 24.514	25.5 238	Chem Translator of 0.96 applied
Total Zinc	0 0	0 201.191	206 1,916	Chem Translator of 0.978 applied
✓ CFC	CCT (min): 720 PMF:			198.29 Analysis pH: 7.49
Pollutants	Conc Stream Trib Conc (ug/L) CV (µg/L)	Coef (µg/L)	WQ Obj (µg/L) WLA (µg/L)	Comments
Total Copper	0 0	0 16.075	16.7 981	Chem Translator of 0.96 applied
Total Zinc	0 0	0 211.009	214 12,538	Chem Translator of 0.986 applied
✓ THH	CCT (min): 720 PMF:	0.362 Anal	lysis Hardness (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc Stream Trib Conc (ug/L) CV (µg/L)	c Fate WQC Coef (μg/L)	WQ Obj (µg/L) WLA (µg/L)	Comments
Total Copper	0 0	0 N/A	N/A N/A	
Total Zinc	0 0	0 N/A	N/A N/A	
✓ CRL	CCT (min): 720 PMF:	0.558 Anal	lysis Hardness (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc Stream Trib Conc (ug/L) CV (µg/L)	Coef (µg/L)	WQ Obj (µg/L) WLA (µg/L)	Comments
Total Copper	0 0	- 0 N/A	N/A N/A	
Total Zinc	0 0	0 N/A	N/A N/A	

☑ Recommended WQBELs & Monitoring Requirements

Model Results

3/24/2022

Page 5

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0020397

No. Samples/Month: 4

	Mass Limits		Concentration Limits				Ī		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	Report	Report	Report	Report	Report	µg/L	152	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	1,228	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments

3/24/2022