

Southeast Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0020460
APS ID	963486
Authorization ID	1220542

	Applicant and Facility Information										
Applicant Name	Pennridge Wastewater Treatment Authority	Facility Name	Pennridge WWTP								
Applicant Address	180 Maple Avenue P. O. Box 31	Facility Address	180 Maple Avenue P. O. Box 31								
	Sellersville, PA 18960-0031		Sellersville, PA 18960-0031								
Applicant Contact	Kevin Franks	Facility Contact	Kevin Franks								
Applicant Phone	(215) 257-6355	Facility Phone	(215) 257-6355								
Client ID	74734	Site ID	449655								
Ch 94 Load Status	Projected Hydraulic Overload	Municipality	West Rockhill Township								
Connection Status	Dept. Imposed Connection Prohibitions	County	Bucks								
Date Application Rece	eived February 28, 2018	EPA Waived?	No								
Date Application Accepted		If No, Reason	Major Facility								
Purpose of Application	n Permit Renewal.										

Summary of Review

The applicant requests renewal of NPDES permit to discharge 4.25 MGD (Annual Average) of treated sewage into East Branch Perkiomen Creek from Pennridge Wastewater Treatment Plant.

The treatment plant consists of a aerated grit removal chamber, 3 influent pumps, a Chemical addition unit, 2 flocculation tanks, 2 primary sedimentation tanks, 2 trickling filters, 3 aeration tanks, 3 secondary clarifiers and a Ultra-Violet disinfection unit. Sludge is gravity thickened, aerobically digested, dewatered by belt filter press, lime stabilized, and disposed off by private contractor by either land application or landfilling at Conestoga Landfill.

The treatment plant serves East Rockhill Township, Hilton Township, Perkasie Borough, Sellersville Borough, Silverdale Borough, and Telford Borough.

Effluent limits for conventional parameters will remain the same in this permit renewal. Monthly monitoring for Total Nitrogen has been added in in this permit renewal and is consistent with our SOP. Effluent limits for Free Cyanide, Zinc and Copper are included in this permit renewal Discharge is generally in compliance with existing permit limits.

This water quality protection report (WQPR) summarizes the evaluation of Pennridge Wastewater Treatment Authority's renewal of the Pennridge WWTP NPDES permit to discharge an annual average flow of 4.325-MGD and a maximum monthly flow of 5.41-MGD of treated sewage to the East Branch Perkiomen Creek.

The effluent limits developed and included in an NPDES permit may either be technology based, water quality based, applicable effluent standards from PA Code Title 25 regulations, applicable DRBC Water Quality Regulations, relevant planning aspects for this discharge, or a combination of any or all of the above.

Approve	Deny	Signatures	Date
		Ketan Thaker / Project Manager	
		Pravin C. Patel, P.E. / Environmental Engineer Manager	

Summary of Review

Following are the Effluent Limits:

PARAMETER	EFFLUENT LIMITS (AV. MO in Mg/l)	BASIS
CBOD5 (5/1 to 10/31)	15	WQM 7.0 Model
CBOD5 (11/1 to 4/30)	25	WQM 7.0 Model
Ammonia-Nitrogen (5/1 to 10/31)	3.0	WQM 7.0 Model
Ammonia-Nitrogen (11/1 to 4/30)	9.0	WQM 7.0 Model
Total Suspended Solids	20	25 Pa Code 92a.47
Dissolved Oxygen	5.0	WQM 7.0 Model
pH (S.U.)	6.0 to 9.0 SU	25 Pa Code 92a.47, 95.2
Fecal Coliform (#/100 ml)	200 (Geo Mean)	25 Pa Code 92a.47
Total Dissolved Solids	Report	25 Pa Code 95.10, and DRBC
UV Light Transmittance (%)	Report	25 Pa Code 92a.47-48
Total Phosphorus (5/1 to 10/31)	1.5	25 Pa Code 92a.61
Total Phosphorus (11/1 to 4/30)	2.0	25 Pa Code 92a.61
Total Hardness (as CaCO3)	Report	BPJ
Copper	0.024	PENTOXSD
Cyanide Free	0.012	PENTOXSD
Zinc	0.203	PENTOXSD
Chronic Toxicity (TUc)	2.56	1/TIWC
Total Nitrogen	Report	25 Pa Code 92a.61

Conventional Pollutants

The existing effluent limits derived for this permit were verified using DEP's WQM 7.0 for Windows computer model. The existing limits and design flows were input into the model and confirm that the limits are protective of dissolved oxygen and ammonia-nitrogen criteria.

The Q7-10 flow used in the WQM model was 10.0-cfs and the dischede flow was 4.325-MGD. The Q7-10 flow represents the minimum flow required to be augmented from the Bradshaw Reservoir / Point Pleasant Pump Station diversion under the docket issued to EXELON by the Delaware River Basin Commission (DRBC). Should the augmented stream flow cease, the Q7-10 at Pennridge WWTP reverts to 0.5-cfs and the modeled effluent limits are no longer valid. In such a situation, the permit would need to be amended to reflect limits based on 0.5-cfs.

Toxic Pollutants: Effluent limits for Copper, Zinc and Free Cyanide were calculated using PENTOXSD Model with same stream data used in the WQM 7.0 Model.

WOM

PENTOXSD

WQM 7.0 Model

PENTOXSD Model

Copper/Water Effects Ratio

The applicant currently has the benefit of a group Water Effects Ratio (WER) for copper. The EPA approved a dissolved Cu WER of 3.9 for the Pennridge WWTP. The Department's statewide criteria for copper can be multiplied by the site specific WER to obtain a site-specific copper criteria for this facility. The value [H] in the equation represents the hardness, which by default is 100 mg/l. Based on a WER of 3.9, and a hardness of 100 mg/l, the site-specific chronic copper criteria is 35.1 ug/l, and the acute copper criteria is 50.7 ug/l. The site-specific criteria for copper is depicted by the following equations:

 $CCC = 3.9 \times 0.960 \times exp (0.8545 \times ln[H]-1.702)$

 $CMC = 3.9 \times 0.960 \times exp (0.9422 \times ln[H]-1.700)$

Summary of Review

Because the study was performed and EPA had approved a dissolved Cu WER of 3.9 for the Pennridge WWTP over 10 years ago and because current stream and discharge conditions may yield different results, the permittee should revisit the study to confirm its continuing validity. The permittee shall conduct a study supporting a site-specific water quality criterion for copper in accordance with 25 Pa. Code § 93.8d, using a WER and/or a Biotic Ligand Model (BLM), within 36 months of the effective date of this permit. The study results will be used to recalculate the copper limit during next permit renewal. The BLM, as described in EPA's Aquatic Life Ambient Freshwater Quality Criteria (EPA-822-R-07-001), is recommended for site—specific criteria development. If the permittee chooses not to proceed with the procedures required to develop a site-specific water quality criterion for copper, the permittee may be required to meet calculated Water Quality Based Effluent Limitations for cooper without the benefit of a site-specific water quality criterion for cooper upon issuance of the next permit renewal. We have included this language as other requirements in this permit renewal.

Stormwater Monitoring

In accordance with EPA Phase II regulations, stormwater requirements are included in the permit. Since the permittee has not designated any stormwater outfalls in their permit application, the lowest paved surface elevation of the property has been designated as Outfall 002. This point is located near the southwest corner of the property, and is located in the vicinity of Outfall 001.

Phosphorus, total

The permit renewal will continue with total phosphorus limit of 1.5 mg/l (May – October) and 2.0 mg/l (November – April). Note that prior to the Point Pleasant Pump Station water diversion, the total phosphorus limit was 0.5 mg/l. Therefore, the total phosphorus limit is contingent on the continued augmentation to East Branch Perkiomen Creek of a minimum stream flow of 10-cfs. Otherwise, the Q7-10 design flow is 0.5-cfs, and the total phosphorus limit reverts to 0.5 mg/l

Whole Effluent Toxicity (WET) Testing

For Outi	all 001, Acute Chronic WET Testing was completed:
	For the permit renewal application (4 tests). Annual throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other: DRBC recommended separate testing for Acute and Chronic Testing

The dilution series used for the tests was: 100%, 70%, 39%, 20%, and 10%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 39.

Summary of Four Most Recent Test Results

(NOTE - Enter results into one table, depending on which data analysis method was used).

NOEC/LC50 Data Analysis

	Ceriodapl	hnia Results (% E	ffluent)	Pimephale			
	NOEC	NOEC		NOEC	NOEC		
Test Date	Survival	Reproduction	LC50	Survival	Growth	LC50	Pass? *
11/10/2015	100 %	100 %		100 %	100 %		Pass
8/30/2016	100 %	39 %		100 %	100 %		Pass
6/26/2017	39 %	<10 %					Fail
7/26/2017	100 %	<0 %					Fail

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

Summary of Review

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 1 Chronic Partial Mix Factor (PMFc): 1

1. Determine IWC - Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

 $[(4.325 \text{ MGD} \times 1.547) / ((10.5 \text{ cfs} \times 1) + (4.325 \text{ MGD} \times 1.547))] \times 100 = 39\%$

Is IWCa < 1%? ☐ YES ☒ NO

2. Determine Target IWCc (If Chronic Tests Required)

 $(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$

 $[(4.325 \text{ MGD} \times 1.547) / ((10.5 \text{ cfs} \times 1) + (4.325 \text{ MGD} \times 1.547))] \times 100 = 39\%$

3. Determine Dilution Series

(NOTE - check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 70%, 39%, 20%, and 10%.

WET Limits

Has reasonable potential been determined? ☐ YES ☐ NO

Will WET limits be established in the permit? ☐ YES ☐ NO

TUc = 1/TWIC = 1/0.39 = 2.546 Quarterly WET Testing for Permit Renewal

Pretreatment Program

Pennridge WWTP receives wastewater from several significant industrial users including metal finishing, pharmaceuticals, and medical facilities. The facility has an EPA approved pretreatment program and a Part C condition is included in the permit related to the implementation of a pretreatment program.

Act -14 Notifications to West Rockhill township and Bucks County Board of Commissioners on January 24, 2018 by certified mail.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Infor	rmation	
Outfall No. 001	Design Flow (MGD)	4.325
Latitude <u>40º 21' 14.52"</u>	Longitude	-75º 18' 47.85"
Quad Name Telford	Quad Code	
Wastewater Description: Sewage Effluent		
East Branch Perkiomen Creek Receiving Waters (TSF, MF)	Stream Code	01168
NHD Com ID 25999662	RMI	15.6
Drainage Area 29.5	Yield (cfs/mi²)	0.017
Q ₇₋₁₀ Flow (cfs) 10.5	Q ₇₋₁₀ Basis	0.017
Elevation (ft)	Slope (ft/ft)	
Watershed No. 3-E	Chapter 93 Class.	TSF, MF
Existing Use	Existing Use Qualifier	101,101
Exceptions to Use	Exceptions to Criteria	
Assessment Status Attaining Use(s)	Exceptions to official	
Cause(s) of Impairment		_
Source(s) of Impairment		
TMDL Status	Name	
Background/Ambient Data pH (SU) Temperature (°F)	Data Source	
Hardness (mg/L)		-
Other:		
Nearest Downstream Public Water Supply Intake		
PWS Waters	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	

ischarge, Receiving Waters and Water Supply Inform	nation	
Outfall No. 002 Latitude 40° 21' 14.56" Quad Name Wastewater Description: Stormwater	Design Flow (MGD) 0 Longitude -75° 18' 47.67' Quad Code	1
East Branch Perkiomen Creek (TSF, MF) NHD Com ID Drainage Area Q ₇₋₁₀ Flow (cfs) Elevation (ft) Watershed No. Existing Use Exceptions to Use Assessment Status East Branch Perkiomen Creek (TSF, MF) 25999662 3-E Existing Use Exceptions to Use Attaining Use(s)	Q ₇₋₁₀ Basis Slope (ft/ft) Chapter 93 Class. Existing Use Qualifier	
Source(s) of Impairment TMDL Status	Name	
Background/Ambient Data pH (SU) Temperature (°F) Hardness (mg/L) Other:	Data Source	
Nearest Downstream Public Water Supply Intake PWS Waters PWS RMI	Flow at Intake (cfs) Distance from Outfall (mi)	

Treatment Facility Summary									
Treatment Facility Nar	ne: Pennridge WWTP								
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)					
	Secondary With Ammonia And	Trickling Filter With		•					
Sewage	Phosphorus	Settling	Ultraviolet	4.325					
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal					
5.41	6670	Projected Hydraulic Overload		•					

Compliance History

DMR Data for Outfall 001 (from June 1, 2018 to May 31, 2019)

Parameter	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18	JUL-18	JUN-18
Flow (MGD)												
Average Monthly	4.919	3.376	4.872	4.562	4.426	4.591	6.042	3.092	4.627	3.815	2.947	2.685
Flow (MGD)												
Daily Maximum	10.702	6.759	11.985	8.18	12.434	10.656	10.203	6.421	10.776	9.713	6.951	5.895
pH (S.U.)												
Minimum	6.3	6.3	6.2	6.2	6.3	6.4	6.6	6.6	6.6	6.6	6.5	6.5
pH (S.U.)												
Maximum	6.8	6.7	6.7	6.9	6.92	7.1	7.1	7.0	6.9	7.1	6.9	6.8
DO (mg/L)												
Minimum	6.4	8.7	7.9	8.7	7.9	7.5	8.0	7.5	7.4	7.0	7.2	6.8
CBOD5 (lbs/day)												
Average Monthly	< 118	< 73	89	< 79	< 69	< 67	108	62	91	84	120	96
CBOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	3798	4043	4009	3802	3368	3780	3395	4278	3472	3550	3032	3239
CBOD5 (lbs/day)												
Weekly Average	169	128	107	< 93	1.6	83	133	104	151	161	213	157
CBOD5 (mg/L)												
Average Monthly	< 3	< 3	3.0	< 2.0	< 2	< 2	2.0	3	3	2	6	5
CBOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	106	163	118	112	108	134	72	184	123	133	146	148
CBOD5 (mg/L)										_	4.0	
Weekly Average	4	3	3.0	< 3.0	< 2	3	3.0	4	4	4	13	9
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average	4700	5407	4070	4007	4400	4500	4000	4005	4005	4405	4005	4000
Monthly	4769	5127	4879	4627	4160	4589	4030	4895	4385	4105	4005	4066
BOD5 (mg/L)												
Raw Sewage Influent												
 Average Monthly	129	202	144	136	125	162	85	210	161	157	104	187
	129	202	144	130	135	102	65	210	101	157	194	107
TSS (lbs/day)	- 1/1	02	- 60	- 105	. 57	< 131	124	98	78	240	206	0.4
Average Monthly	< 141	93	< 69	< 105	< 57	< 131	124	98	70	249	206	84

NPDES Permit Fact Sheet Pennridge WWTP

	ı		1	1		r	1	1	ı		·
3915	3616	3324	3567	3727	3906	3111	4787	4556	3731	3961	4485
366	186	98	181	101	292	164	133	119	389	453	94
•		0.0	0.0			0.0			_	4.4	
< 3	3	< 2.0	< 3.0	< 2	< 4	3.0	4	3	/	11	4
440	450	400	404	404	400	00	407	407	400	405	400
116	150	100	104	124	133	66	197	167	138	185	199
•	_	0.0	4.0			4.0		_	4.0	07	_
6	/	< 3.0	4.0	3	8	4.0	6	5	10	27	5
		740			070			000			740
		712			679			609			712
60	67	25	. 20	4.4	40	47	4.4	40	E 4	4.0	13
62	67	25	< 29	14	13	17	11	12	54	18	13
250	200	40	70	66	22	44	22	20	200	F.C.	52
250	200	42	70	00	23	41	33	20	290	36	32
50	50	50	50	50	50	50	50	50	50	50	50
30	30	30	30	30	30	30	30	30	30	30	30
<i>-</i> 15	41	24	- 12	- 1	- 1	5.0	- 2	4	5	3	2
<u> </u>	71	27	\ 1Z	\ 7	\ 7	3.0	\	7	3		
< 0.3	13	0.6	-03	< 0.1	< 0.1	0.1	< 0.1	0.1	0.1	0.1	0.1
V 0.0	1.0	0.0	V 0.0	V 0.1	V 0.1	0.1	V 0.1	0.1	0.1	0.1	0.1
19	16	11.0	13.0	12	g	16	10	17	26	19	17
10	10	11.0	10.0	12	Ŭ	10	10		20	10	
0.4	0.6	0.3	0.4	0.4	0.3	0.3	0.4	0.5	0.8	0.9	0.7
<u> </u>	0.0	0.0	<u> </u>	<u> </u>	0.0	0.0	0	0.0	0.0	0.0	· · · · · ·
		0.007			0.008			0.01			0.011
		197			212			185			200
					: _			1.55			
		1			5.0						
	3915 366 < 3 116 6 62 250 50 < 15 < 0.3 19 0.4	366 186 <3 3 116 150 6 7 62 67 250 280 50 50 <15 41 <0.3 1.3	366 186 98 <3	366 186 98 181 < 3	366 186 98 181 101 <3	366 186 98 181 101 292 <3	366 186 98 181 101 292 164 <3	366 186 98 181 101 292 164 133 <3	366 186 98 181 101 292 164 133 119 <3	366 186 98 181 101 292 164 133 119 389 <3	366 186 98 181 101 292 164 133 119 389 453 <3

NPDES Permit No. PA0020460

Chronic WET - Ceriodaphnia Reproduction (TUc) Daily Maximum			5.0			
Chronic WET - Pimephales Survival (TUc) Daily Maximum			1.0			
Chronic WET - Pimephales Growth (TUc) Daily Maximum			1.0			

DMR Data for Outfall 002 (from June 1, 2018 to May 31, 2019)

Parameter	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18	SEP-18	AUG-18	JUL-18	JUN-18
pH (S.U.)												
Daily Maximum						GG						
CBOD5 (mg/L)												
Daily Maximum						GG						
COD (mg/L)												
Daily Maximum						GG						
TSS (mg/L)												
Daily Maximum						GG						
Oil and Grease (mg/L)												
Daily Maximum						GG						
Fecal Coliform												
(CFU/100 ml)												
Daily Maximum						GG						
TKN (mg/L)												
Daily Maximum						GG						
Total Phosphorus												
(mg/L)												
Daily Maximum						GG						
Dissolved Iron (mg/L)												
Daily Maximum						GG						

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Re	quirements			
Parameter	Mass Units	(lbs/day) (1)		Concentrat		Minimum (2)	Required	
Faranietei	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
CBOD5					40			24-Hr
Nov 1 - Apr 30	900	1440	XXX	25	Wkly Avg	50	2/week	Composite
CBOD5					23			24-Hr
May 1 - Oct 31	541	830	XXX	15	Wkly Avg	30	2/week	Composite
BOD5								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
					30			24-Hr
TSS	721	1082	XXX	20	Wkly Avg	40	2/week	Composite
TSS								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
				1000				24-Hr
Total Dissolved Solids	XXX	XXX	XXX	Avg Qrtly	2000	2500	1/quarter	Composite
Fecal Coliform (No./100 ml)				200				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/week	Grab
Fecal Coliform (No./100 ml)				200.0				
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	2/week	Grab
UV Transmittance (%)	xxx	XXX	Report	xxx	XXX	XXX	1/day	Recorded
							Í	24-Hr
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Monitoring Requirements					
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
raiametei	Average	Weekly	Daily	Average	Daily	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
Ammonia								24-Hr
Nov 1 - Apr 30	325	XXX	XXX	9.0	XXX	18	2/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	108	XXX	XXX	3.0	XXX	6	2/week	Composite
Total Phosphorus								24-Hr
Nov 1 - Apr 30	72	XXX	XXX	2.0	XXX	4	2/week	Composite
Total Phosphorus								24-Hr
May 1 - Oct 31	54	XXX	XXX	1.5	XXX	3	2/week	Composite
		0.72						24-Hr
Free Cyanide	0.43	Daily Max	XXX	0.012	0.020	0.03	1/week	Composite
		11.4						24-Hr
Total Zinc	7.3	Daily Max	XXX	0.203	0.316	0.50	1/week	Composite
				Report				24-Hr
Total Hardness	XXX	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Chronic WET - Ceriodaphnia								24-Hr
Survival (TUc)	XXX	XXX	XXX	XXX	2.56	XXX	See Permit	Composite
Chronic WET - Ceriodaphnia								24-Hr
Reproduction (TUc)	XXX	XXX	XXX	XXX	2.56	XXX	See Permit	Composite
Chronic WET - Pimephales								24-Hr
Survival (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite
Chronic WET - Pimephales								24-Hr
Growth (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Start of Final Period through Permit Expiration Date.

			Monitoring Requirements					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Faranteter	Average	Average	Minimo	Average	Marrimorra	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
		1.38			0.038			24-Hr
Total Copper	0.89	Daily Max	XXX	0.024	Daily Max	0.06	1/week	Composite

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1.

			Monitoring Red	quirements				
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
				Report	Report			24-Hr
Total Copper	XXX	XXX	XXX	Avg Qrtly	Daily Max	XXX	1/quarter	Composite

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required		
. a. amotor	Average Monthly	Average Weekly	Minimum	Daily Maximum	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
CBOD5	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
COD	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
TSS	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
TKN	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab
Dissolved Iron	XXX	XXX	XXX	Report	XXX	XXX	Upon Request	Grab