

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0020508
APS ID	16695
Authorization ID	1315225

Applicant and Facility Information

Applicant Name	McConnellsburg Sewer Authority Fulton County	Facility Name	McConnellsburg STP		
Applicant Address	PO Box 681	Facility Address	20789 Great Cove Road		
	McConnellsburg, PA 17233-0681		McConnellsburg, PA 17233		
Applicant Contact	Craig Strait	Facility Contact	Craig Strait		
Applicant Phone	(717) 485-4728	Facility Phone	(717) 485-4728		
Client ID	36766	Site ID	251564		
Ch 94 Load Status	Not Overloaded	Municipality	McConnellsburg Borough		
Connection Status	No Limitations	County	Fulton		
Date Application Recei	vedApril 28, 2020	EPA Waived?	No		
Date Application Accept	otedMay 29, 2020	If No, Reason	Significant CB Discharge		
Purpose of Application	NPDES Renewal.				

Summary of Review

McConnellsburg Sewerage Authority has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on November 23, 2015 and became effective on December 1, 2015. The permit will be expired on November 30, 2020.

The facility has an average annual design flow of 0.6 MGD that discharges to Big Cove Creek. The application states the following flow contribution sources: McConnellsburg Borough (41.3%), Ayr Township (30.2%), and Todd Township (28.5%).

WQM Part II No. 2998401 original was issued on June 25, 1999, and amendment issued on October 20, 2010. The WQM Part II extensions & pumping stations No. 2900402 was issued on December 21, 2000.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
х		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	November 4, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	

Outfall No.001Design Flow (MGD)0.6Latitude39° 55' 32.97"Longitude-78° 0' 20.27"Quad NameMeadow GroundsQuad CodeWastewater Description:EffluentReceiving WatersBig Cove Creek (CWF, MF)Stream Code60482NHD Com ID49470424RMI15.13Drainage Area7.4 mi.²Yield (cfs/mi²)See comments belowQr-10 Flow (cfs)See comments belowQr-10 BasisUSGS StreamStatsElevation (ft)848.58Slope (ft/ft)Chapter 93 Class.CWF, MFExisting UseExisting UseExisting Use QualifierExisting Use QualifierExceptions to UseImpairedNUTRIENTS, SILTATIONSource(s) of ImpairmentNUTRIENTS, SILTATIONSource(s) of ImpairmentGRAZING IN RIPARIAN OR SHORELINE ZONESImpaired	Discharge, Receiving Waters and Water Supply Information					
Latitude 39° 55' 32.97" Longitude -78° 0' 20.27" Quad Name Meadow Grounds Quad Code	Outfall No. 001		Desian Flow (MGD)	0.6		
Quad Name Meadow Grounds Quad Code Wastewater Description: Effluent Receiving Waters Big Cove Creek (CWF, MF) Stream Code 60482 NHD Com ID 49470424 RMI 15.13 Drainage Area 7.4 mi. ² Yield (cfs/mi ²) See comments below Q7-10 Flow (cfs) See comments below Q7-10 Basis USGS StreamStats Elevation (ft) 848.58 Slope (ft/ft) USGS StreamStats Watershed No. 13-B Chapter 93 Class. CWF, MF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired NUTRIENTS, SILTATION Source(s) of Impairment NUTRIENTS, SILTATION Source(s) of Impairment GRAZING IN RIPARIAN OR SHORELINE ZONES Singe Sin	Latitude 39° 55' 32.97"		Longitude	-78° 0' 20.27"		
Wastewater Description: Effluent Receiving Waters Big Cove Creek (CWF, MF) Stream Code 60482 NHD Com ID 49470424 RMI 15.13 Drainage Area 7.4 mi.² Yield (cfs/mi²) See comments below Q7-10 Flow (cfs) See comments below Q7-10 Basis USGS StreamStats Elevation (ft) 848.58 Slope (ft/ft) Watershed No. 13-B Chapter 93 Class. CWF, MF Existing Use Existing Use Qualifier Existing Use Qualifier Exceptions to Use Impaired Assessment Status Impaired NUTRIENTS, SILTATION Source(s) of Impairment GRAZING IN RIPARIAN OR SHORELINE ZONES	Quad Name Meadow Grou	unds	Quad Code			
Receiving WatersBig Cove Creek (CWF, MF)Stream Code60482NHD Com ID49470424RMI15.13Drainage Area7.4 mi.²Yield (cfs/mi²)See comments belowQ7-10 Flow (cfs)See comments belowQ7-10 BasisUSGS StreamStatsElevation (ft)848.58Slope (ft/ft)	Wastewater Description: E	ffluent				
Receiving WatersBig Cove Creek (CWF, MF)Stream Code60482NHD Com ID49470424RMI15.13Drainage Area7.4 mi.2Yield (cfs/mi2)See comments belowQ7-10 Flow (cfs)See comments belowQ7-10 BasisUSGS StreamStatsElevation (ft)848.58Slope (ft/ft)USGS StreamStatsWatershed No.13-BChapter 93 Class.CWF, MFExisting Use	·					
NHD Com ID49470424RMI15.13Drainage Area7.4 mi.2Yield (cfs/mi2)See comments belowQ7-10 Flow (cfs)See comments belowQ7-10 BasisUSGS StreamStatsElevation (ft)848.58Slope (ft/ft)Watershed No.13-BChapter 93 Class.CWF, MFExisting UseExisting Use QualifierExceptions to UseExceptions to CriteriaAssessment StatusImpairedImpairedCause(s) of ImpairmentNUTRIENTS, SILTATIONGRAZING IN RIPARIAN OR SHORELINE ZONES	Receiving Waters Big Cove	e Creek (CWF, MF)	Stream Code	60482		
Drainage Area7.4 mi.2Yield (cfs/mi2)See comments belowQ7-10 Flow (cfs)See comments belowQ7-10 BasisUSGS StreamStatsElevation (ft)848.58Slope (ft/ft)Watershed No.13-BChapter 93 Class.CWF, MFExisting UseExisting Use QualifierExceptions to UseExceptions to CriteriaAssessment StatusImpairedNUTRIENTS, SILTATIONNUTRIENTS, SILTATIONSource(s) of ImpairmentGRAZING IN RIPARIAN OR SHORELINE ZONESSee comments below	NHD Com ID4947042	24	RMI	15.13		
Q7-10 Flow (cfs) See comments below Q7-10 Basis USGS StreamStats Elevation (ft) 848.58 Slope (ft/ft)	Drainage Area 7.4 mi. ²		Yield (cfs/mi ²)	See comments below		
Elevation (ft) 848.58 Slope (ft/ft) Watershed No. 13-B Chapter 93 Class. CWF, MF Existing Use Existing Use Qualifier Existing Use Qualifier Exceptions to Use Exceptions to Criteria Exceptions to Criteria Assessment Status Impaired Impaired Cause(s) of Impairment NUTRIENTS, SILTATION GRAZING IN RIPARIAN OR SHORELINE ZONES	Q ₇₋₁₀ Flow (cfs) See com	nments below	Q ₇₋₁₀ Basis	USGS StreamStats		
Watershed No. 13-B Chapter 93 Class. CWF, MF Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Exceptions to Use Impaired Exceptions to Criteria Impaired Cause(s) of Impairment NUTRIENTS, SILTATION GRAZING IN RIPARIAN OR SHORELINE ZONES Impaired	Elevation (ft) 848.58		Slope (ft/ft)			
Existing Use Existing Use Qualifier Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment NUTRIENTS, SILTATION Source(s) of Impairment GRAZING IN RIPARIAN OR SHORELINE ZONES	Watershed No. <u>13-B</u>		Chapter 93 Class.	CWF, MF		
Exceptions to Use Exceptions to Criteria Assessment Status Impaired Cause(s) of Impairment NUTRIENTS, SILTATION Source(s) of Impairment GRAZING IN RIPARIAN OR SHORELINE ZONES	Existing Use		Existing Use Qualifier			
Assessment Status Impaired Cause(s) of Impairment NUTRIENTS, SILTATION Source(s) of Impairment GRAZING IN RIPARIAN OR SHORELINE ZONES	Exceptions to Use		Exceptions to Criteria			
Cause(s) of Impairment NUTRIENTS, SILTATION Source(s) of Impairment GRAZING IN RIPARIAN OR SHORELINE ZONES	Assessment Status	mpaired				
Source(s) of Impairment GRAZING IN RIPARIAN OR SHORELINE ZONES	Cause(s) of Impairment <u>N</u>	NUTRIENTS, SILTATION				
	Source(s) of Impairment <u>G</u>	GRAZING IN RIPARIAN OR S	HORELINE ZONES			
TMDL Status Name						
Nearest Downstream Public Water Supply IntakeR.C Wilson Water Treatment Plant	Nearest Downstream Public V	Vater Supply Intake R.C	C Wilson Water Treatment F	Plant		
PWS Waters Potomac River Flow at Intake (cfs)	PWS Waters Potomac R	liver	Flow at Intake (cfs)			
PWS RMI 26 miles to PA-MA border Distance from Outfall (mi) Approximate 38.84 miles	PWS RMI 26 miles to	PA-MA border	Distance from Outfall (mi)	Approximate 38.84 miles		

Changes Since Last Permit Issuance: none

Drainage Area

The discharge is to Big Cove Creek at RMI 15.13 miles. A drainage area upstream of the discharge is estimated to be 7.4 mi.², according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Streamflow

There are no nearby stream gages with low flow data that have extensive or recent periods of record. Since USGS PA StreamStats estimated the drainage area that is below the minimum value allowed by USGS's regression equations, the USGS StreamStats on Licking Creek at the PA/MD border will be used to calculate the Q_{7-10} at the point of discharge using a low flow yield method. The Q_{7-10} here is 6.03 cfs and the drainage area is 159 mi.² which results in a Q_{7-10} low flow yield of 0.038 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} \mbox{Low Flow Yield} = Q_{7\text{-}10} / \mbox{Drainage Area} = 6.03 \mbox{ cfs} / 159 \mbox{ mi.}^2 = 0.038 \mbox{ cfs/mi.}^2 \\ Q_{7\text{-}10\text{discharge}} = 0.038 \mbox{ cfs/mi.}^2 * \mbox{Drainage Area}_{\text{discharge}} = 0.038 \mbox{ cfs/mi.}^2 * 7.4 \mbox{ mi.}^2 = 0.3 \mbox{ cfs} \\ Q_{30\text{-}10} = 1.36 * \mbox{ } Q_{7\text{-}10\text{discharge}} = 1.36 * 0.28 \mbox{ cfs} = 0.38 \mbox{ cfs} \\ Q_{1\text{-}10} = 0.64 * \mbox{ } Q_{7\text{-}10\text{discharge}} = 0.64 * 0.28 \mbox{ cfs} = 0.18 \mbox{ cfs} \\ \mbox{The resulting } Q_{7\text{-}10} \mbox{ dilution ratio is: } Q_{\text{stream}} / \mbox{ } Q_{\text{discharge}} = 0.3 \mbox{ cfs} / \mbox{ [0.6 MGD * (1.55 \mbox{ cfs/MGD)]} = 0.32:1 \\ \end{array}$

Big Cove Creek

25 Pa Code § 93.9z classifies Big Cove Creek as Cold Water and Migratory Fishes (CWF, MF) surface water. Based on the 2018 Integrated Report, Big Cove Creek, assessment unit IDs 6138 & 19105, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply

The closest downstream water supply intake from the discharge point is for the Hagerstown City water supply. The R.C. Wilson Water Treatment Plant near Williamsport, Maryland is the main production plant for the City of Hagerstown. The source for this facility is the Potomac River. The distance downstream from the discharge to the intake is approximately 38.84 miles. The discharge will not impact the intake because of the distance, dilution, and effluent limits.

WQM Permit No. Issuance Date Reason 2998401 6/26/1999 New 2998401 10-1 10/20/2010 Amendment 2900402 12/21/2000 New (extension & pumping Station) Waste Type Degree of Treatment Process Type Disinfection Avg Annual Flow (MGD) Sewage Image: Colspan="3">Image: Colspan="3">Image: Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3">Colspan="3"Colspan="3">Colspan="3"C	Treatment Facility N	ame: McConnellsburg S	TP						
WQM Permit No. Issuance Date Reason 2998401 6/26/1999 New 2998401 10-1 10/20/2010 Amendment 2900402 12/21/2000 New (extension & pumping Station) Waste Type Degree of Treatment Process Type Disinfection Avg Annual Flow (MGD) Sewage Hypochlorite 0.6	WOM Permit No								
2998401 6/26/1999 New 2998401 10-1 10/20/2010 Amendment 2900402 12/21/2000 New (extension & pumping Station) Waste Type Degree of Treatment Process Type Disinfection Avg Annual Flow (MGD) Sewage Hypochlorite 0.6		Issuance Date	Reason						
2998401 10-1 10/20/2010 Amendment 2900402 12/21/2000 New (extension & pumping Station) Maste Type Degree of Treatment Process Type Disinfection Flow (MGD) Sewage Hypochlorite 0.6	2998401	6/26/1999	New						
2900402 12/21/2000 New (extension & pumping Station) Degree of Waste Type Degree of Treatment Avg Annual Process Type Sewage Hypochlorite 0.6	2998401 10-1	10/20/2010	Amendment						
Degree of TreatmentProcess TypeDisinfectionAvg Annual Flow (MGD)SewageHypochlorite0.6	2900402	12/21/2000	New (extension & pumping Statio	n)					
Degree of Treatment Process Type Disinfection Avg Annual Flow (MGD) Sewage Hypochlorite 0.6									
Waste Type Treatment Process Type Disinfection Flow (MGD) Sewage Hypochlorite 0.6		Degree of			Avg Annual				
Sewage Hypochlorite 0.6	Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
	Sewage			Hypochlorite	0.6				
	eenage				0.0				
	<u> </u>	1			0.0				
Hydraulic Capacity (MGD)Organic Capacity (Ibs/day)Biosolids Load StatusBiosolids Biosolids TreatmentBiosolids Use/Disposa									
0.6 1,380 Not Overloaded	Hydraulic Capacity (MGD)	Organic Capacity (Ibs/day)	/ Load Status B	iosolids Treatment	Biosolids Use/Disposal				

Changes Since Last Permit Issuance: none

The treatment process, according to the revised application, is as follows:

Lift Station \rightarrow Fine Screen/Grit Removal \rightarrow EQ Tank (1) \rightarrow Sludge Storage Tanks (2) \rightarrow Clarifiers (2) \rightarrow Chlorine Contact Tank (1) \rightarrow Dechlorination (1) \rightarrow Aeration Tank (1) \rightarrow Outfall 001

The chemical is sued at treatment Sodium Hypochlorite (liquid) for disinfection, Sodium Bisulfite (liquid) for dechlorination, and DelPAC 2000 for Phosphorus removal.

Compliance History						
Summary of DMRs:	DMRs reported last 12 months from October 1, 2019 to September 30, 2020 are summarized in the Table below (Pages 5, & 6).					
Summary of Inspections:	9/26/2019: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. The recommendations were created and post for daily check of the treatment plant, and updated DMR supplemental forms. The effluent was clear. The field test results were within permit limits. The sample tests results were within the permit limits.					
	11/1/2018: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. The recommendations were created and post for daily check of the treatment plant. The field test results were within permit limits. There were no violations noted during inspection.					
	10/26/2017: Mr. Clark, DEP WQS, conducted compliance evaluation inspection. The field test results were within permit limits. There were no violations noted during inspection.					
Other Comments:	There is one open violation on safety drinking water plant associated with the permittee or the facility.					

Other Comments:

The table below summarizes the influent/effluent testing results submitted along with the application. Influent Testing Results Effluent Testing Results

	0			0	
Parameter	Min/Max Value	Average Value	Parameter	Min/Max Value	Average Value
BOD ₅ (mg/L)	366 mg/L	177 mg/L	pH (minimum)	6.8 S.U.	
BOD ₅ (lbs/day)	954 lbs/day	522 lbs/day	pH (maximum)	7.9 S.U.	
TSS (mg/L)	618 mg/L	205 mg/L	D.O (minimum)	6.7 mg/L	mg/L
TSS (lbs/day)	1557 lbs/day	592 lbs/day	TRC	0.27 mg/L	0.03 mg/L
TN (mg/L)	37.73 mg/L	37.73 mg/L	Fecal Coliform	387 No./100mL	4.0 No./100 mL
TN (lbs/day)	87.47 lbs/day	87.47 lbs/day	CBOD₅	15.3 mg/L	3.82 mg/L
TP (mg/L)	5.68 mg/L	4.42 mg/L	TSS	24.0 mg/L	6.67 mg/L
TP (lbs/day)	11.56 lbs/day	9.47 lbs/day	NH3-N	3.03 mg/L	0.16 mg/L
NH ₃ -N (mg/L)	32.87 mg/L	32.87 mg/L	TN	12.39 mg/L	4.55 mg/L
NH ₃ -N (lbs/day)	76.21 lbs/day	76.21 lbs/day	ТР	0.47 mg/L	0.14 mg/L
TDS (mg/L)	824 mg/L	824 mg/L	Temp	51.1 F	62.6 F
TDS (lbs/day)	1821 lbs/day	1821 lbs/day	TKN	4.27 mg/L	1.03 mg/L
TKN	41.75 mg/L	29.85 mg/L	NO ₂ -N + NO ₃ -N	9.86 mg/L	3.52 mg/L
NO ₂ -N + NO ₃ -N	<0.046 mg/L	<0.046 mg/L	TDS	772 mg/L	745 mg/L
			Chloride	171 mg/L	149 mg/L
			Bromide	< 0.116 mg/L	< 0.069 mg/L

Sulfate

Oil and Grease

Total Copper

Total Lead

Total Zinc

152 mg/L

< 5.25 mg/L

0.0083 mg/L

< 0.0005 mg/L

0.0952 mg/L

146 mg/L

<4.44 mg/L

0.0083 mg/L

< 0.0005 mg/L

0.0952 mg/L

NPDES Permit No. PA0020508

Compliance History

DMR Data for Outfall 001 (from October 1, 2019 to September 30, 2020)

Parameter	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19
Flow (MGD)												
Average Monthly	0.189	0.191	0.178	0.207	0.253	0.286	0.265	0.254	0.278	0.234	0.233	0.235
Flow (MGD)												
Daily Maximum	0.385	0.293	0.274	0.384	0.507	0.699	0.504	0.333	0.532	0.444	0.346	0.432
pH (S.U.)												
Minimum	7.5	7.5	7.3	7.4	7.1	6.9	7.3	7.4	7.2	7.3	7.3	7.2
pH (S.U.)												
Maximum	7.8	7.8	7.7	7.6	7.6	7.5	7.5	7.6	7.6	7.7	7.6	7.8
DO (mg/L)												
Minimum	7.4	7.2	6.7	7.7	7.0	7.1	7.5	7.9	6.5	8.5	7.9	7.7
TRC (mg/L)												
Average Monthly	0.02	0.02	0.02	0.02	0.02	0.01	0.03	0.03	0.02	0.02	0.02	0.03
TRC (mg/L)												
Instantaneous Max.	0.04	0.03	0.03	0.04	0.08	0.04	0.11	0.15	0.08	0.06	0.12	0.14
CBOD5 (lbs/day)												
Average Monthly	6.59	6.18	7.26	6.67	8.67	8.26	12.67	10.58	9.73	8.77	6.95	7.33
CBOD5 (lbs/day)												
Weekly Average	7.85	7.94	11.97	10.73	11.50	9.87	21.62	15.98	19.59	14.41	8.66	9.94
CBOD5 (mg/L)												
Average Monthly	4.01	3.89	4.37	3.67	4.30	3.67	5.50	4.91	4.12	3.97	3.0	3.41
CBOD5 (mg/L)												
Weekly Average	4.97	5.67	5.60	5.34	5.63	5.26	8.50	7.40	8.48	5.45	3.0	5.07
BOD5 (lbs/day)												
Raw Sewage Influent	400	450	450	070	500	005	0.07	500	470		400	
Average Monthly	438	453	450	372	502	695	807	522	479	448	482	414
BOD5 (lbs/day)												
Raw Sewage Influent	500	600	745	540	707	4005	0.40	707	604	504	0.40	050
	528	602	715	510	/3/	1285	948	/3/	624	534	643	653
BOD5 (mg/L)												
Raw Sewage Influent	071	200	270	214	250	202	262	244	202	244	200	190
	271	200	279	214	250	293	303	244	203	244	209	109
Average Monthly	0.05	9.76	5 55	3 45	9.47	6.46	10.02	10.58	0.78	14 42	7 22	17 30
	9.95	0.70	5.55	3.45	0.47	0.40	19.95	10.56	9.70	14.42	1.22	17.59
Raw Sewage Influent												
Average Monthly	424	312	492	413	545	659	464	404	386	452	607	672
TSS (lbs/day)	747	012		- 10	0.40	000			000		007	012
Raw Sewage Influent												
Daily Maximum	673	499	713	788	753	1515	960	518	546	893	717	796
TSS (lbs/dav)	0.0							0.0	0.0			
Weekly Average	17.34	12.01	10.05	5.20	13.03	11.23	27.15	13.26	20.33	35.74	10.39	33.71

NPDES Permit No. PA0020508

TSS (mg/L)												
Average Monthly	5.64	5.7	3.48	1.95	4.05	6.46	8.95	4.90	4.16	5.30	3.10	8.28
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	259	207	309	227	283	271	214	191	168	207	264	306
TSS (mg/L)												
Weekly Average	9.0	8.0	4.40	3.00	4.40	4.40	12.0	6.00	8.80	10.40	4.40	17.20
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	12	2	4	1	15	2.0	2	1	3	1	2	1
Fecal Coliform												
(CFU/100 ml)												
Instantaneous Max.	22	4	210	1	299	7.0	4	4	12	2	4	1
Nitrate-Nitrite (mg/L)												
Average Monthly	3.42	3.76	4.48	4.28	3.24	4.70	3.93	3.09	3.42	3.43	3.04	3.79
Nitrate-Nitrite (lbs)												
Total Monthly	178.46	194.23	221.50	228.32	198.48	318.04	277.83	195.44	252.51	221.28	204.61	248.62
Total Nitrogen (mg/L)												
Average Monthly	4.04	5.08	4.98	5.19	3.74	5.22	4.58	3.59	3.93	4.11	4.04	4.79
Total Nitrogen (lbs)												
Net Total Monthly	211.16	255.56	246.55	275.19	230.23	354.10	323.78	227.07	290.28	265.38	272.26	314.01
Total Nitrogen (lbs)												
Total Monthly	211.16	255.56	246.55	275.19	230.23	354.10	323.78	227.07	290.28	265.38	272.26	314.01
Ammonia (lbs/day)												
Average Monthly	0.18	0.17	0.16	0.18	0.20	0.23	0.26	0.22	0.24	0.32	0.37	0.30
Ammonia (mg/L)												
Average Monthly	0.1	0.10	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.14	0.15	0.15
Ammonia (lbs)												
Total Monthly	5.43	5.22	5.01	5.28	6.35	6.86	6.95	6.33	7.39	9.78	11.09	9.45
TKN (mg/L)												
Average Monthly	0.62	1.32	0.5	0.91	0.50	0.52	0.66	0.5	0.51	0.68	1.0	1.0
TKN (lbs) Total												
Monthly	32.70	61.33	25.05	46.87	31.75	36.06	45.95	31.64	37.77	44.10	67.65	65.38
Total Phosphorus												
(lbs/day) Average												
Monthly	1.55	1.28	2.28	0.80	0.30	0.84	0.30	0.15	0.30	0.27	0.35	0.58
Total Phosphorus												
(mg/L) Average												
Monthly	0.9	0.75	1.39	0.45	0.16	0.36	0.11	0.07	0.12	0.12	0.15	0.27
I otal Phosphorus (lbs)	10	<u> </u>		aa a i					a : -		10.15	
Net Lotal Monthly	46.59	39.67	70.69	23.91	9.30	25.15	7.33	4.49	9.15	8.26	10.42	17.95
Iotal Phosphorus (lbs)												
Total Monthly	46.59	39.67	70.69	23.91	9.30	25.15	7.33	4.49	9.15	8.26	10.42	17.95

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.6
Latitude	39º 55' 32.97"	Longitude	-78º 0' 20.27"
Wastewater De	scription: Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
	2.0	Average Monthly	-	BPJ, 96.5 (c)
Total Phosphorus	4.0	IMAX	-	-
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments:

Water Quality-Based Limitations

Ammonia (NH₃-N):

NH₃N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached WQM 7.0 computer model of the stream:

*	Discharge pH	=	7.0	(Default)
*	Discharge Temperature	=	20°C	(Default)
*	Stream pH	=	7.0	(Default)
*	Stream Temperature	=	20°C	(Default)
*	Background NH ₃ -N	=	0 mg/L	(Default)

The model input data and results are attached. The printout of the WQM 7.0 output indicates that at a discharge of 0.6 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 2.71 mg/l as monthly average and 5.42 mg/l as instantaneous maximum limit during summer to protect water quality standards. However, the existing permit limits of 2.0 mg/l as monthly average and 4 mg/l as instantaneous maximum NH₃-N are more stringent and will remain in effect due to federal anti-backsliding policy. The winter effluent limit will be set at three-times the summer limits. Recent DMRs and inspection reports indicate that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Summer average monthly mass limit: 2.0 mg/L x 0.6 MGD x 8.34 = 10.0 lbs/day Winter average monthly mass limit: 10.0 lbs/day x 3 = 30.0 lbs/day

Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit renewal and current Department criteria.

NPDES Permit Fact Sheet McConnellsburg STP Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached WQM 7.0 modeling results show that secondary treatment is adequate to protect the water quality of the stream. Recent DMRs and inspection reports show that the facility has been consistently achieving concentrations below this existing limit. The WQM 7.0 model suggests a monthly average CBOD₅ limit may be 17.48 mg/l, however, the existing summer limit is 15.0 mg/l which is more stringent and will remain in effect. Mass limits are calculated as follows:

Average monthly mass limit: $15 \text{ mg/L} \times 0.6 \text{ MGD} \times 8.34 = 75.06 (75.0) \text{ lbs/day}$ Average weekly mass limit: $22.5 \text{ mg/L} \times 0.6 \text{ MGD} \times 8.34 = 112.59 (113.0) \text{ lbs/day}$

The winter season average monthly limit of 25.0 mg/l, average weekly limit of 40.0 mg/l, and instantaneous maximum limit of 50.0 mg/l will also remain in place. Mass limits are calculated as follows:

Average monthly mass limit: $25 \text{ mg/L} \times 0.6 \text{ MGD} \times 8.34 = 125.1 (125.0) \text{ lbs/day}$ Average weekly mass limit: $40 \text{ mg/L} \times 0.6 \text{ MGD} \times 8.34 = 200.16 (200.0) \text{ lbs/day}$

Recent DMRs and inspection reports show that the facility has been consistently achieving these limits.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Therefore, instantaneous maximum limits for summer and winter seasons will be introduced in this renewal to be consistent with regulations. Inspection reports are showing that the permittee is capable of meeting this requirement.

pH:

25 Pa. Code § 95.2(1) requires industrial wastes to control a pH effluent level of not less than 6.0 and not greater than 9.0 standard units (S.U.). These pH limits are currently specified in the existing permit. Sample results reported on past Discharge Monitoring Reports (DMRs) indicate that the effluent pH has ranged from 6.9 to 7.5 S.U. Accordingly, existing pH limits will remain unchanged.

Total Suspended Solids (TSS):

The existing technology-based limits of 30 mg/L average monthly, 45 mg/L average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47 47 and 40CFR 133.102(b). Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $30 \text{ mg/L} \times 0.6 \text{ MGD} \times 8.34 = 150.12 (150.0) \text{ lbs/day}$ Average weekly mass limit: $45 \text{ mg/L} \times 0.6 \text{ MGD} \times 8.34 = 225.18 (225.0) \text{ lbs/day}$

Total Residual Chlorine (TRC):

The attached TRC_CALC printout utilizes the equations and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (Document ID#391-2000-015) for developing chlorine limitations. The attached printout indicates average monthly limit of 0.056 mg/L and instantaneous maximum limit of 0.18 mg/L that would be needed to prevent toxicity concerns. The existing permit limits were 0.08 mg/L average monthly and 0.28 mg/L IMAX. However, recent DMRs and inspection reports were 0.03 mg/L average monthly & 0.15 mg/L IMAX that the facility has been consistently achieving these limits. Therefore, a limit of 0.08 mg/I AML, and 0.28 mg/I IMAX are recommended again for this permit cycle.

Total Phosphorus:

The discharge from this facility is located on Big Cove Creek which is impaired due to nutrients and siltation approximately 0.4 miles downstream from the discharge point. In order to prevent, the effluent phosphorus level must be controlled in accordance with 25 Pa Code § 96.5(c). The Department has determined that limits specified in the existing permit are appropriate (i.e., 2.0 mg/L (average monthly), 4.0 mg/L (instantaneous maximum)) as these limits have been assigned to other facilities with similar technology. Accordingly, existing TP limits will remain in the proposed permit. See the EPA guidance, Nutrient Criteria Technical Guidance Manual – Rivers and Streams, 07/2000 EPA-822-B-00-002, for more information about nutrient impacts on streams. Mass limits are calculated as follows:

Average monthly mass limit: 2 mg/L x 0.6 MGD x 8.34 = 10.0 lbs/day

Temperature:

The facility temperature is not of concern at this time and no monitoring or limitation is necessary.

The Department needs to evaluate toxic pollutants of concern for water quality modeling and to facilitate determinations of reasonable potential to cause an excursion above water quality standards by using the "Toxic Screening Analysis" spreadsheet. First, the maximum effluent concentrations of pollutants reported in the application (i.e., Pages # 6) were entered in the spreadsheet to determine if the parameter (or pollutant) is a candidate for PENTOXSD modeling. The result is as follows:

	TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7 CLEAR FORM								
	Facility: McConnellsburg Sewage A	uthority		NPDES Permit N	o.: P	A0020508		Outfall: 001	
	Analysis Hardness (mg/L): 100		-	Discharge Flow (MGD): 0.	6	- Anal	vsis pH (SU): 7	
	Stream Flow, Q ₇₋₁₀ (cfs): 0.28								
	Parameter	Maximum Application	Concentration in n or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate fo PENTOXSD Mod	or Most S eling? WQBE	tringent L (µg/L)	Screening Recommendation	
-	Total Dissolved Solids		772000	500000	Yes				
9	Chloride		171000	250000	Yes				
ē	Bromide		116	N/A	No				
0	Sulfate		152000	250000	Yes				
	Total Aluminum			750					
	Total Antimony			5.6					
	Total Arsenic			10					
	Total Barium			2400					
	Total Beryllium			N/A					
	Total Boron			1600					
	Total Cadmium			0.271					
	Total Chromium		0.5	N/A	No				
	Hexavalent Chromium			10.4					
	Total Cobalt			19					
~	Total Copper		0.83	9.3	No				
9	Free Available Cyanide			5.2					
ē	Total Cyanide			N/A					
0	Dissolved Iron			300					
	Total Iron			1500					
	Total Lead		0.5	3.2	No				
	Total Manganese			1000					
	Total Mercury			0.05					
	Total Nickel		5.1	52.2	No				
	Total Phenolis (Phenolics)			5					
	Total Selenium			5.0					
	Total Silver			3.8					
	Total Tital UTI		0.52	0.24	No				
	Total Molybdenum		9.02	119.0	100				

The attached PENTOX results indicate that WQBEL limits are not necessary for these parameters.

In addition, Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/l and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/l.

McConnellsburg Sewage Authority reported the maximum effluent TDS concentration of 772 mg/L, chloride concentration of 171 mg/L, sulfate concentration of 152 mg/L, and non-detect for Bromide. Based upon the data provided in the application, monitor requirements for TDS, Sulfate, Chloride, and Bromide are not needed in the permit.

Stormwater:

There is no stormwater outfall associated with this facility.

Oil and Grease:

The facility historically had no issues in regard to the presence of Oil and Grease in the effluent (also no visible film on the surface of the receiving water). Therefore, no monitoring of Oil and Grease is necessary.

Hauled-in wastes:

According to the permit renewal application, the hauled-in wastes are as follows:

Years	Type of waste(s) received	Location where received	Annual average volumes received (gallons)
Past three (3) years	Sludge from Todd Township package treatment plant	Wasting at pit at Sludge Pumping Facility	24,175
Next five (5) years	Sludge from Todd Township package treatment plant	Wasting at pit at Sludge Pumping Facility	25,000

PAG073522 general permit was issued on March 6, 2018 to the permittee to handle Exceptional Quality Biosolids.

Anti-Degradation Requirement

Chapter 93.4a(b) of the Department's rules and regulations require that "Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected." The discharge is into Big Cove Creek which is classified as Cold Water Fishes (CWF) and Migratory Fishes (MF.) No High Quality (HQ) Waters are impacted by this discharge. No Exceptional Value (EV) Waters are impacted by this discharge.

Class A Wild Trout Streams:

No Class A Wild Trout Fishery will be impacted by this discharge.

303d Listed Streams:

The discharge from this facility is to Big Cove Creek. This creek is impaired due to nutrients and siltation approximately 0.4 miles downstream from the discharge point, after the confluence with tributary 60577 to Big Cove Creek. The previous permit engineer mentioned that the permittee is aware about the future TMDL and was planning a design for phosphorous removal that can be expanded to meet more stringent limits in future based on the outcome of the TMDL.

WQM 7.0 / PENTOXSD Data:

The following two nodes were used in modeling:

Node 1:	Outfall 001 on Big Cove	Creek (60482)
	Elevation:	848.58 ft (USGS National Map Viewer)
	Drainage Area:	7.4 mi. ² (USGS PA StreamStats)
	River Mile Index:	15.13 (PA DEP eMapPA)
	Low Flow Yield:	0.038 cfs/mi. ²
	Discharge Flow:	0.6 MGD
Node 2:	At the confluence with T	ributary 60674 to Big Cove Creek
	Elevation:	815.2 ft (USGS National Map Viewer)
	Drainage Area:	11.1 mi. ² (USGS PA StreamStats)
	River Mile Index:	13.645 (PA DEP eMapPA)
	Low Flow Yield:	0.038 cfs/mi. ²
	Discharge Flow:	0.0 MGD

StreamStats		ROCKDEP	Depth to rock			5	.3 feet		
20000		CARBON	Percentage of area of carbonat	e rock		5	55.82 percent		
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the "Build Report" button	<	Low-Flow Statistics F	Parameters]Low Flow Region 2]	Value	Unite		Min Limit	Maylimit	
			Drainage Area	11.1	onna	0.5	4.02	1290	
✓ Show Basin Characteristics		PRECIP	Mean Annual Precipitation	41	inches	65	35	50.4	
		STRDEN	Stream Density	2.81	miles per s	quare mile	0.51	3.1	
Select available reports to display:		ROCKDEP	Depth to Rock	5.3	feet	•	3.32	5.65	
Basin Characteristics Report		CARBON	Percent Carbonate	55.82	percent		0	99	
Scenario Flow Reports		Low-Flow Statistics F	Flow Report [Low Flow Region 2]						
Continue		PII: Prediction Interv	val-Lower, Plu: Prediction Interval-Up	per, SEp: S	tandard Error	of Prediction, S	SE: Standard Err	or (other se	
		Statistic			Value	Unit	SE	SEp	
	-	7 Day 2 Year Low	Flow		1.92	ft^3/s	38	38	
POWERED BY WIM		30 Day 2 Year Lo	w Flow		2.27	ft^3/s	33	33	
	1000	7 Day 10 Vear Le	w Flow		1 2	ft^3/s	E 1	E 1	
		7 Day 10 feat LO	W FIOW		1.2	11 0/0	51	51	
Home Contact USGS Search USGS		30 Day 10 Year L	ow Flow		1.37	ft^3/s	46	46	

Base Maps ~ Application Layers ~

NPDES Permit No. PA0020508

	ROCKDEP	Depth to rock
	CARBON	Percentage of area
Step 1: You can modify computed basin characteristics here, then select the types of reports you wish to generate	Low-Flow Statistics	S Parameters [Low Flow Region 2]
Then click the "Build Report" button	Parameter Cod	e Parameter Name
	DRNAREA	Drainage Area
✓ Show Basin Characteristics	PRECIP	Mean Annual Pree
	STRDEN	Stream Density
Select available reports to display:	ROCKDEP	Depth to Rock
	CARBON	Percent Carbonat
Basin Characteristics Report	Low-Flow Statistic:	s Flow Report/Low Flow Region 2
✓ Scenario Flow Reports	BU: Bradiation Inte	ruel Lewer Blue Bredictio
	report)	aval-cower, Fid. Fiedictio
Continue	Statistic	
	7 Day 2 Year Lo	w Flow
	30 Day 2 Year L	ow Flow
POWERED BY WIM	7 Day 10 Year L	ow Flow
USGS Home Contact USGS Search USGS	30 Day 10 Year	Low Flow
Accessibility FOIA Privacy Policy &	90 Day 10 Year	Low Flow

OCKDEP	Depth to rock	4.1	feet
ARBON	Percentage of area of carbonate rock	15.99	percent

PRECIP	Mean Annual Precipitation	39	inches	35	50.4
STRDEN	Stream Density	2.71	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.1	feet	3.32	5.65
CARBON	Percent Carbonate	15.99	percent	0	99

159

Value Units

square miles

4.93

Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	12.6	ft^3/s	38	38
30 Day 2 Year Low Flow	17	ft^3/s	33	33
7 Day 10 Year Low Flow	6.03	ft^3/s	51	51
30 Day 10 Year Low Flow	8.32	ft^3/s	46	46
90 Day 10 Year Low Flow	12.5	ft^3/s	36	36

TRC EVALUATION							
Input appropri	ate values ir	n A3:A9 and D3:D9					
0.3	= Q stream	n (cfs)	0.5	= CV Daily			
0.6	i = Q discha	arge (MGD)	0.5	= CV Hourly			
30	= no. samp	oles	1	= AFC_Partia	I Mix Factor		
0.3	= Chlorine	Demand of Stream	1	= CFC_Partia	I Mix Factor		
0) = Chlorine	Demand of Discharge	15	= AFC_Criter	ia Compliance Time (min)		
0.5	= BAT/BPJ	l Value	720	= CFC_Criter	ia Compliance Time (min)		
0) = % Facto	r of Safety (FOS)		=Decay Coef	ficient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	0.122	1.3.2.iii	WLA cfc = 0.112		
PENTOXSD TRO	∋ 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRO	€ 5.1b	LTA_afc=	0.045	5.1d	LTA_cfc = 0.065		
Source		Effluer	nt Limit Calcu	lations			
PENTOXSD TRO	9 5.1f		AML MULT =	1.231			
PENTOXSD TRO	€ 5.1g	AVG MON L	.IMIT (mg/l) =	0.056	AFC		
		INST MAX L	.IMIT (mg/l) =	0.183			
14/1 A - 5-	(040/-(14	AFC 1-11 - MAFC V-10	-* 040/04*				
WLA atc	(.019/e(-k	AFU_tc)) + [(AFU_tc*Q AFC_Va*Oa*Va/Od\]*/4	5°.019/Q0° E09/400\	e(-K-AFC_tc))			
	EVP/(0.5*1.N	AFU_TC QS AS/QQ)j (1- (oub^2+1))-2 226*[N(oub^4	2+4)^0 5)				
	wla afc*l TA	MIII T afc	211) 0.3)				
LTA_alc	wia_aic ETA						
WLA cfc	(.011/e(-k*	CFC tc) + ((CFC Yc*Qs	*.011/Qd*e	(-k*CFC tc))			
	+ Xd + ((CFC Yc*Qs*Xs/Qd)]*(1-	FOS/100)	,,			
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.3	326*LN(cvd^2	2/no_samples+1)^0.5)		
LTA_cfc	wla_cfc*LTA	AMULT_cfc					
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^	0.5)-0.5*LN(c	vd^2/no_sampl	es+1))		
AVG MON LIMIT	MIN(BAT_B	PJ,MIN(LTA_afc,LTA_cfc)*	AML_MULT)				
INST MAX LIMIT	1.5*((av_m	on_limit/AML_MULT)/L1	FAMULT_af	c)			

NPDES Permit No. PA0020508

Analysis Results	WQM 7.0				_	\times
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulatio	n Effluent	Limitations	-
Г		Permit N	umber Disc Flow		_	
	RMI Discharg	e Name	(mgd)			
	15.13 McConnellsburg	V PA0020	0.6000			
	Parameter	Effluent Limit 30 Day Averag (mg/L)	Effluent Limit Efflu e Maximum M (mg/L) (uent Limit Iinimum (mg/L)		
	CBOD5	17.48	5.42			
	Dissolved Oxygen	2.71	0.42	5		
	Record: I of 1	► ► ► 🖳 No Filte	Search			
Print	< <u>B</u> ack	Next >	Archiv	/e	<u>C</u> ancel	

😑 Analysis Results W	QM 7.0				— C) ×
Hydrodynamics	NH3-N Allocations	D.O. Allocations	D.O. Simulation	Effluent Limita	tions	· · · · · ·
BMI 15.130 <u>Reach Width (ft</u>) 15.525 <u>Reach C-BOD5 (mg/L)</u> 13.88 <u>Reach D0 (mg/L)</u>	<u>Total Discharge Flow (mgd</u> 0.600 <u>Reach Depth (ft</u>) 0.525 <u>Reach Kc (1/days)</u> 1.000 <u>Reach Kr (1/days)</u>) <u>Analysis Temper</u> 20.000 <u>Reach WD 1</u> 29.595 <u>Reach NH3-N</u> 2.08 <u>Kr Equati</u>	ature (ºC) Ana Ratio Reach V 0 (mq/L) Reach M 0 0n Reach D	<u>lysis pH</u> .000 .149 .149 .700 .700 .000al (mg/L)		
5.754 <u>Reach Travel Time (da</u> 0.609	6.028 TravTime (days) 0.061 0.122 0.183 0.244 0.305 0.365 0.426 0.426 0.487 0.548 0.609	Subreach CBOD5 (mg/L) Results NH3-N (mg/L) 13.06 1.99 12.29 1.91 11.56 1.83 10.88 1.75 10.24 1.68 9.63 1.61 9.06 1.54 8.02 1.42 7.55 1.36	u D.O. (mg/L) 5.44 5.30 5.27 5.32 5.41 5.54 5.68 5.83 5.83 5.99 6.14	5		
Record: I I of 1	🕨 🕨 🜬 🛛 🏹 No Fi	lter Search				
Print	< <u>B</u> ack	<u>N</u> ext >	Archive		<u>C</u> ancel	-
rptEffLimits	- 0	× 🖺 rpt	_WLA	- 0	×	
WGM THE Fact Inter-Conf TO MAC Not Inter Next 10.12 McConstrainty (M.20203	1.7.0 Effluent Limite Teaching Roberts Robert		WGM 7.0 Westerios WGM 7.0 Westerios WGM 7.0 Westerios WGM 8.0 More for the form WGM 0.0 More form WGM 0	d Alocations Baselista Recovery Baselista Recovery Basel Baselista Recovery at ballat baselist ba		
Versig, Newskir 2, 2007	Vinian 18 Page 1 at 1	Page: 14	toning, Nerroskar 2, 2000 Vendar 13	No Filter	41	

🔄 rptDOSim — 🗆 🗙	🖬 rptModelSpecs — 🗆 🗙
PORT 7.0.0. Smulting Margin Description Margin Description <	WGM 7.0 Modeling Specifications Name Bit is independent of an of 028 FP in independent of an of 028 FP independent of 028 FP indep
No Filter Image: Id Image: Id Image: Id	Mexing, Normaine 2, 2028 Venice 12th Page 1 of 1 Page: Id 1 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Hand Telepide Telepide Telepide Telepide Telepide	
Marsing Neurosker 2,202 Marsin 1.8. Page 1 of 1	Uning Norman 2, 200 Unite 1.50 Page 1 d 2

Input Data WQM7.0 With Gate Basis Gate Many MA Basis During Hype FVB And Basis Gate Basis New MA Basis Diverse Ma And () basis (00) Hoch Schwert New Ma Basis Diverse Schwert 138 (600) HOCOVIC-NEK (2.486 FB22 11.10 Schwert Sch
LPV No. No.
Moning Namedar 2, 2020 Monine 1 Ob Page 3 of 2

			Effluent Li	mits			
lydrodynamics	Wasteload	Allocation	15	Effluent Limit	s		
RMI Na	me	Permit Num	ber Disc Flow (mgd)				
15.13 McConnellsburg	~	PA002050	0.600	0			
		Effluent Limit	Governing	Max. Daily	Most S	tringent	
Paramete	31	(μg/L)	Criterion	Limit (µg/L)	WQBEL (μg/L)	Criterion	
CHLORIDE (PWS)		500000	INPUT	780080.4	NA	NA	
SULFATE (PWS)		500000	INPUT	780080.4	NA	NA	
	► ►I ►** 1	× No Filter	Search				
Record: I4 4 1 of 3			Carach				
Record: I4 4 1 of 3	► ► ► ★ 5	No Filter	Search				

Existing Effluent Limitations and Monitoring Requirements

	Effluent Limitations					Monitoring Requirements		
Parameter	Mass Units	(lbs/day) ⁽¹⁾) ⁽¹⁾ Concentrations (mg/L)					Required
Falameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	xxx	5.0	xxx	XXX	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.08	XXX	0.28	1/day	Grab
CBOD₅ Mav 1 - Oct 31	75.0	113 Wkly Avg	xxx	15.0	22.5	30.0	1/week	8-Hr Composite
CBOD ₅	105	200	~~~	25.0	40.0	50.0	1/2004	8-Hr
	125	225		25.0	40.0	50.0	I/week	8-Hr
TSS	150	Wkly Avg	XXX	30.0	45.0	60.0	1/week	Composite
BOD ₅								8-Hr
Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	1/week	Composite
Raw Sewage Influent	Report	Report	xxx	Report	xxx	xxx	1/week	8-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1.000	1/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2,000 Geo Mean	XXX	10.000	1/week	Grab
Ammonia	7000	7000	7000		7000	10,000	i, iiook	8-Hr
May 1 - Oct 31	10.0	XXX	XXX	2.0	XXX	4.0	2/week	Composite
Ammonia								8-Hr
Nov 1 - Apr 30	30.0	XXX	XXX	6.0	XXX	12.0	2/week	Composite
Total Phosphorus	10.0	XXX	XXX	2.0	XXX	4.0	2/week	8-Hr Composite

Existing Effluent Limitations and Monitoring Requirements

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Monthly	Annual	Minimum	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	xxx	Report	XXX	xxx	2/week	8-Hr Composite
KjeldahlN	Report	XXX	xxx	Report	XXX	xxx	2/week	8-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	8-Hr Composite
Net Total Nitrogen	Report	10,959	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	1,461	XXX	XXX	XXX	XXX	1/month	Calculation

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Devementer	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	ххх	xxx	xxx	xxx	Continuous	Measured
pH (S.U.)	ххх	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	ххх	XXX	5.0	XXX	XXX	xxx	1/day	Grab
TRC	ххх	XXX	ххх	0.08	XXX	0.28	1/day	Grab
CBOD₅ May 1 - Oct 31	75.0	113 Wkly Avg	xxx	15.0	22.5	30.0	1/week	8-Hr Composite
CBOD₅ Nov 1 - Apr 30	125	200 Wkly Avg	xxx	25.0	40.0	50.0	1/week	8-Hr Composite
TSS	150	225 Wkly Avg	XXX	30.0	45.0	60.0	1/week	8-Hr Composite
BOD5 Bow Sowage Influent	Poport	Boport		Bonort	 		1/wook	8-Hr
TSS				Report			1/week	8-Hr
Fecal Coliform (No./100 ml)	Report	Report		200	XXX		1/week	Composite
May 1 - Sep 30 Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Geo Mean 2.000	XXX	1,000	1/week	Grab
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	1/week	Grab
May 1 - Oct 31	10.0	XXX	XXX	2.0	XXX	4.0	2/week	Composite
Ammonia Nov 1 - Apr 30	30.0	xxx	xxx	6.0	xxx	12.0	2/week	8-Hr Composite
Total Phosphorus	10.0	XXX	XXX	2.0	XXX	4.0	2/week	8-Hr Composite

Compliance Sampling Location:

Other Comments:

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Monthly	Annual	Minimum	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	8-Hr Composite
KjeldahlN	Report	XXX	xxx	Report	xxx	ххх	2/week	8-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	xxx	ххх	2/week	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	ххх	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	8-Hr Composite
Net Total Nitrogen	Report	10,959	XXX	XXX	xxx	ххх	1/month	Calculation
Net Total Phosphorus	Report	1,461	XXX	XXX	XXX	ХХХ	1/month	Calculation

Compliance Sampling Location:

Other Comments:

	Tools and References Used to Develop Permit
	VQM for Windows Model (see Attachment
	TEO Martial Organization Attachment (
	IRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391- 2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
\boxtimes	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\square	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other: