

Application Type
Facility Type
Major / Minor

Renewal
Municipal
Minor

Application No. **PA0020672**
APS ID **1102292**
Authorization ID **1464319**

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Applicant and Facility Information

Applicant Name	Washingtonville Borough Municipal Authority	Facility Name	Washingtonville Municipal Authority Sewer System STP
Applicant Address	PO Box 147	Facility Address	930 Washingtonville Road
	Washingtonville, PA 17884-0147		Washingtonville, PA 17884
Applicant Contact	Randy Gresh	Facility Contact	Randy Gresh
Applicant Phone	(570) 394-3696	Facility Phone	(570) 394-3696
Client ID	44859	Site ID	246622
Ch 94 Load Status	Not Overloaded	Municipality	Derry Township
Connection Status	No Limitations	County	Montour
Date Application Received	<u>December 6, 2023</u>	EPA Waived?	Yes
Date Application Accepted	<u>December 27, 2023</u>	If No, Reason	
Purpose of Application	Application for the renewal of the existing individual NPDES permit.		

Summary of Review

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		 Jonathan P. Peterman / Project Manager	January 28, 2025
X		 Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	January 29, 2025

Discharge, Receiving Waters and Water Supply Information

Outfall No.	001	Design Flow (MGD)	0.09
Latitude	41° 2' 54.09"	Longitude	-76° 40' 35.31"
Quad Name	Washingtonville	Quad Code	1032
Wastewater Description: Sewage Effluent			
Receiving Waters	Chillisquaque Creek (WWF)	Stream Code	18712
NHD Com ID	66918559	RMI	16.97
Drainage Area	53.6 mi ²	Yield (cfs/mi ²)	0.212
Q ₇₋₁₀ Flow (cfs)	11.4	Q ₇₋₁₀ Basis	USGS Gage 01553700, Chillisquaque Creek at Washingtonville (1981 – 2008)
Elevation (ft)	497	Slope (ft/ft)	0.00072
Watershed No.	10-D	Chapter 93 Class.	WWF
Existing Use	N/A	Existing Use Qualifier	N/A
Exceptions to Use	None	Exceptions to Criteria	None
Assessment Status	Impaired		
Cause(s) of Impairment	SILTATION		
Source(s) of Impairment	AGRICULTURE		
TMDL Status		Name	
Nearest Downstream Public Water Supply Intake		Sunbury Municipal Authority	
PWS Waters	Susquehanna River	Flow at Intake (cfs)	1740
PWS RMI	124	Distance from Outfall (mi)	18

Changes Since Last Permit Issuance: Increase in design flow from WQM Amendment. The Q₇₋₁₀ data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania*. The Q₇₋₁₀ information is attached in Appendix A. Other Comments: None.

Treatment Facility Summary**Treatment Facility Name:** Washingtonville Municipal Authority

WQM Permit No.	Issuance Date	Comments:
4771403 A-2	11/6/97	Addition of Draimad sludge bagging system
4771403 A-1	1/8/93	Installation of 55,000-gallon aerobic digester
4771403 T-1	1/23/74	Transfer from Washingtonville Borough to Washingtonville M.A.
4771403	4/1/71	Original WQM Permit for STP, collection system and pump station
WQG02470901	7/7/09	Pump station and force main replacement
4771403	07/31/2019	Increase in design flow to 0.09 MGD. Construction of two new sequencing batch reactor units, new chlorination facilities with dechlorination, and new sludge digesters, influent pump station, a new fine screen, and chemical addition for phosphorus removal.

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Sequencing Batch Reactor	Hypochlorite	0.09
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.09	183	Not Overloaded	Holding Tank	Combination of methods

Treatment System Components for Outfall 001:

- One (1) Influent pump station.
- One (1) Influent screen.
- Two (2) 66,500-gallon SBRs.
- One (1) Alum chemical addition system.
- One (1) Gas chlorination system.
- Two (2) 5,050-gallon chlorine contact tanks.
- One (1) Dechlorination system.
- Two (2) 32,380-gallon sludge digesters.
- One (1) Outfall.

Changes Since Last Permit Issuance: None.

Other Comments: None.

Biosolids Use/Disposal

The facility's sludge is disposed at the Landfill- Lycoming County Landfill- Permit – 100963 and WWTP- Kelly Township Municipal Authority- Permit - PA0028681.

Hauled in Waste

Per the application, the permittee has not received any hauled-in waste in the past three years and does not anticipate receiving any over the next permit term.

TMDL Impairment

No TMDL has been developed for the above-listed impairment to the Chillisquaque Creek watershed which has primarily been attributed to agriculture. Should a TMDL be developed, this facility may receive a TSS waste load allocation based on historical data.

Chesapeake Bay Requirements

Previously, the permittee was required to monitor and report TN and TP throughout the permit term at a frequency no less than annually in accordance with the Phase III WIP Chesapeake Bay Strategy for Phase V facilities (0.002 MGD to 0.2 MGD) since it did not have at least two of years of monitoring completed at that time. Monitoring for these parameters was conducted over the next permit term and the yearly monitoring requirements for nutrients will be removed accordingly. No further monitoring is required at this time. The monitoring results, which will be preserved in the fact sheets, are listed in below:

PF NAME	MONITORING START DATE	MONITORING END DATE	PARAMETER	CONC UNIT S	CONC 2 VALUE	CONC 2 SBC	SAMPLE FREQUENCY	SAMPLE TYPE
WASHINGTONVILLE MUNI AUTH	01/01/2021	12/31/2021	Total Nitrogen	mg/L	12.5	Average Monthly	1/year	Grab
WASHINGTONVILLE MUNI AUTH	01/01/2022	12/31/2022	Total Nitrogen	mg/L	13.1	Average Monthly	1/year	Grab
WASHINGTONVILLE MUNI AUTH	01/01/2023	12/31/2023	Total Nitrogen	mg/L	10.8	Average Monthly	1/year	Grab
WASHINGTONVILLE MUNI AUTH	01/01/2021	12/31/2021	Total Phosphorus	mg/L	1.2	Average Monthly	1/year	Grab
WASHINGTONVILLE MUNI AUTH	01/01/2022	12/31/2022	Total Phosphorus	mg/L	3.4	Average Monthly	1/year	Grab
WASHINGTONVILLE MUNI AUTH	01/01/2023	12/31/2023	Total Phosphorus	mg/L	3.0	Average Monthly	1/year	Grab

Existing Effluent Limitations and Monitoring Requirements

Existing Limits – Outfall 001

Outfall 001 , Continued (from Phase 1 through Permit Expiration Date)

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	19	30	XXX	25	40	50	2/month	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Suspended Solids	23	34	XXX	30	45	60	2/month	8-Hr Composite

Outfall 001, Continued (from Phase 1 through Permit Expiration Date)

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab

*The existing effluent limits for Outfall 001 were based on a design flow of 0.04 MGD.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Average Monthly	Maximum	Instant. Maximum		
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

*The existing effluent limits for Outfall 001 were based on a design flow of 0.04 MGD.

Development of Effluent Limitations

Outfall No. 001
 Latitude 41° 2' 54.30"
 Wastewater Description: Sewage Effluent

Design Flow (MGD) .09
 Longitude -76° 40' 35.20"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	10,000 / 100 ml	IMAX	-	92a.47(a)(5)

(10/1 – 4/30)				
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None.

Water Quality-Based Limitations

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models in-stream conditions. In order to determine limitations for CBOD₅, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes Toxics Management Spreadsheet (TMS). The TMS was not utilized or this review.

WQM 7.0 for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen

The model was run using the Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. The technology-based effluent limits for CBOD₅ (25 mg/l) and NH3-N (25 mg/l) were used as inputs for the modeling. The DO minimum daily average criterion from §93.7 (5.0 mg/L for WWF) was used for the in-stream objective for the model. The summary of the output is as follows:

Parameter	Effluent Limit		
	30 Day Average	Maximum	Minimum
CBOD5	25	N/A	N/A
Ammonia-N	25	50	N/A
Dissolved Oxygen	N/A	N/A	3

The model did not recommend water-quality based effluent limitations with regards to CBOD₅, ammonia, and dissolved oxygen. Refer to the Appendix B for the previous WQM 7.0 inputs and results. The existing effluent limits will remain.

Best Professional Judgment (BPJ) Limitations

See the D.O. section below.

Comments: None.

Anti-Backsliding

In accordance with 40 CFR 122.44(l)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

Proposed Effluent Limitations and Monitoring Requirements							
---	--	--	--	--	--	--	--

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Proposed Limits - Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Metered
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	Report	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	19	30	XXX	25	40	50	2/month	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Suspended Solids	23	34	XXX	30	45	60	2/month	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/year	Grab
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	8-Hr Composite

*The proposed effluent limits for Outfall 001 were based on a design flow of 0.09 MGD.

Effluent Limit Determination for Outfall 001

General Information

All of the limits proposed above are consistent with other permits issued for wastewater treatment plants in the region. The associated mass-based limits (lbs/day) for all parameters were based on the formula: design flow (average annual) (MGD) x concentration limit (mg/L) at design flow x conversion factor (8.34). All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001), Chapter 5 - Specifying Effluent Limitations in NPDES Permits.

Flow

Reporting of the average monthly and daily maximum flow is consistent with monitoring requirements for other treatment plants of this size.

Carbonaceous Biochemical Oxygen Demand (CBOD₅)

The results of the WQM 7.0 model show that the previously applied secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for CBOD₅ are protective of water quality.

Total Suspended Solids (TSS)

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain as well.

pH

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH. The existing limits will remain.

TRC

In accordance with 25 Pa. Code 92a.48(b)(2), a best available technology (BAT) value of 0.5 mg/l was used in lieu of the existing effluent limit (1.0 mg/L) in the TRC Spreadsheet. The attached TRC model indicates that the technology-based effluent limits of 0.5 mg/L (Average Monthly) and 1.6 mg/L (Instantaneous Maximum) are protective of water quality and will remain.

Fecal Coliforms

The existing fecal coliform limits with I-max limits were previously updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5).

Ammonia-Nitrogen (NH₃-N)

The results of the WQM 7.0 model show that a discharge of ammonia-nitrogen at the technology-based effluent limit (25 mg/L) would be protective of water quality. It is anticipated that the influent NH₃-N concentration would be 25 mg/L and the effluent concentration would be significantly lower. Therefore, the permittee will only be required to monitor for ammonia-nitrogen.

Dissolved Oxygen (DO)

Based on BPJ, monitoring of the minimum Dissolved Oxygen (DO) standard found in Chapter 93 for warm water fishes will be established. This will ensure that the discharge does not contributes to an in-stream excursion above the allowable ambient concentration of State numeric criteria within a State water quality standard for an individual pollutant. Discharges of concentrations less than this value (5.0 mg/L) could contribute to an impairment of D.O. in this segment.

Influent BOD₅ and TSS

The Department requires the reporting of raw sewage influent monitoring for BOD₅ and TSS in all POTW permits. This provides the Department with the ability to monitor the percent removal of each parameter as stipulated in section 2 of the Part A conditions and maintain records of the BOD₅ loading as required by 25 Pa. Code Chapter 94. The monitoring frequencies and sample types are identical to the effluent sampling.

E. Coli

25 PA Code § 92a.61 provide the basis of monitoring requirements for E. Coli. Yearly monitoring will be required going forward.

Monitoring Frequencies (TRC, pH, and D.O.)

These monitoring frequencies generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3

Compliance History

Summary of Inspections -The last inspection of the facilities was conducted by the Department on 2/22/2024 which reveals the facility was operating normally.

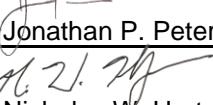
WMS Query Summary - A WMS Query was run at *Reports - Violations & Enforcements – Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed that there were no unresolved violations.

DMRs Summary - Upon review of the last year of DMR's, the facility appears to be generally operating within the given concentration limits.

Compliance History

DMR Data for Outfall 001 (from December 1, 2023 to November 30, 2024)

Parameter	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24	JUN-24	MAY-24	APR-24	MAR-24	FEB-24	JAN-24	DEC-23
Flow (MGD) Average Monthly	0.05	0.046	0.053	0.058	0.054	0.052	0.062	0.063	0.075	0.054	0.063	0.062
Flow (MGD) Daily Maximum	0.073	0.058	0.081	0.178	0.087	0.082	0.132	0.185	0.211	0.112	0.178	0.143
pH (S.U.) Instantaneous Minimum	6.7	6.8	6.7	6.6	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.8
pH (S.U.) Instantaneous Maximum	7.1	7.0	7.1	7.2	7.0	7.1	7.0	7.2	6.9	7.1	7.1	7.1
DO (mg/L) Instantaneous Minimum	5.1	5.4	4.3	3.6	3.8	3.3	4.6	4.2	5.3	5.2	5.2	4.3
TRC (mg/L) Average Monthly	0.5	0.2	0.3	0.3	0.3	0.4	0.3	0.3	0.2	0.2	0.3	0.3
TRC (mg/L) Instantaneous Maximum	0.4	0.4	0.6	0.6	0.7	0.9	0.7	0.8	0.4	1.0	0.7	0.6
CBOD5 (lbs/day) Average Monthly	3	2	2.2	< 3	4	3	4	2	3	2	2	2.6
CBOD5 (lbs/day) Weekly Average	3	3	3.4	4	5	4	4	3	3	3	3	2.6
CBOD5 (mg/L) Average Monthly	5.6	5	4.3	< 5.2	8	6	10	6	8	7	6	5.8
CBOD5 (mg/L) Weekly Average	6.4	7	6.0	8.4	9	7	12	7	8	8	7	6.2
BOD5 (lbs/day) Raw Sewage Influent Average Monthly	47	43	< 58	69	86	90	57	48	67	79	48	60
BOD5 (lbs/day) Raw Sewage Influent Daily Maximum	48	50	95	73	115	107	64	52	80	105	60	67
BOD5 (mg/L) Raw Sewage Influent Average Monthly	94	109	< 109	141	189	204	153	141	174	217	130	138


NPDES Permit Fact Sheet
Washingtonville Municipal Authority Sewer System STP

NPDES Permit No. PA0020672

TSS (lbs/day) Average Monthly	7	3	3.6	< 3	6	8	7	4	5	3	7	6
TSS (lbs/day) Raw Sewage Influent Average Monthly	69	31	58	65	69	68	61	38	46	49	60	77
TSS (lbs/day) Raw Sewage Influent Daily Maximum	78	42	73	79	89	75	66	39	52	64	79	78
TSS (lbs/day) Weekly Average	8	4	5.1	4	10	12	8	6	6	5	9	7
TSS (mg/L) Average Monthly	13	7	7.0	< 6.0	13	18	19	13	14	11	19	13.7
TSS (mg/L) Raw Sewage Influent Average Monthly	138	78	118	136	153	152	166	113	117	136	160	175
TSS (mg/L) Weekly Average	14	9	9.0	8.0	18	23	22	16	16	12	22	16.0
Fecal Coliform (No./100 ml) Geometric Mean	38.5	58	< 39	140	131	164	103	179	189	7.5	142	72
Fecal Coliform (No./100 ml) Instantaneous Maximum	64	794	150	228	284	232	119	243	239	57	322	189
Total Nitrogen (mg/L) Average Monthly												10.8
Ammonia (lbs/day) Average Monthly	0.09	0.2	0.12	< 0.07	0.5	0.2	0.9	1	0.7	1	0.1	0.1
Ammonia (mg/L) Average Monthly	0.21	0.4	0.28	< 0.2	1.0	0.36	1.8	2.0	1.05	2.3	0.2	0.23
Total Phosphorus (mg/L) Average Monthly												3.0

APPENDIX A

Q7-10 ANALYSIS AND STREAM DATA

Approve	Deny	Signatures	Date
X		 Jonathan P. Peterman / Project Manager	January 28, 2025
X		 Nicholas W. Hartranft, P.E. / Environmental Engineer Manager	January 29, 2025

Prepared in cooperation with the Pennsylvania Department of Environmental Protection

Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Open-File Report 2011-1070

U.S. Department of the Interior
U.S. Geological Survey

Table 1 13

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued
[Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi ²)	Regulated ^b
01541303	West Branch Susquehanna River at Hyde, Pa.	41.005	-78.457	474	Y
01541308	Bradley Run near Ashville, Pa.	40.509	-78.584	6.77	N
01541500	Clearfield Creek at Dimeling, Pa.	40.972	-78.406	371	Y
01542000	Moshannon Creek at Osceola Mills, Pa.	40.830	-78.268	68.8	N
01542500	WB Susquehanna River at Karthaus, Pa.	41.118	-78.109	1,462	Y
01542810	Wally Run near Emporium, Pa.	41.579	-78.293	3.24	N
01543000	Driftwood Branch Sinnemahoning Creek at Sterling Run, Pa.	41.413	-78.197	272	N
01543500	Sinnemahoning Creek at Sinnemahoning, Pa.	41.317	-78.103	685	N
01544000	First Fork Sinnemahoning Creek near Sinnemahoning, Pa.	41.402	-78.024	245	Y
01544500	Kettle Creek at Cross Fork, Pa.	41.476	-77.826	136	N
01545000	Kettle Creek near Westport, Pa.	41.320	-77.874	233	Y
01545500	West Branch Susquehanna River at Renovo, Pa.	41.325	-77.751	2,975	Y
01545600	Young Womans Creek near Renovo, Pa.	41.390	-77.691	46.2	N
01546000	North Bald Eagle Creek at Milesburg, Pa.	40.942	-77.794	119	N
01546400	Spring Creek at Houserville, Pa.	40.834	-77.828	58.5	N
01546500	Spring Creek near Axemann, Pa.	40.890	-77.794	872	N
01547100	Spring Creek at Milesburg, Pa.	40.932	-77.786	142	N
01547200	Bald Eagle Creek below Spring Creek at Milesburg, Pa.	40.943	-77.786	263	N
01547300	Bald Eagle Creek at Blanchard, Pa.	41.052	-77.604	339	Y
01547700	Marsh Creek at Blanchard, Pa.	41.060	-77.606	44.1	N
01547800	South Fork Beech Creek near Snow Shoe, Pa.	41.024	-77.904	12.2	N
01547950	Beech Creek at Monument, Pa.	41.112	-77.702	152	N
01548003	Bald Eagle Creek near Beech Creek Station, Pa.	41.081	-77.349	562	Y
01548500	Pine Creek at Cedar Run, Pa.	41.522	-77.447	604	N
01549000	Pine Creek near Waterville, Pa.	41.313	-77.379	750	N
01549500	Blockhouse Creek near English Center, Pa.	41.474	-77.231	37.7	N
01549700	Pine Creek below Little Pine Creek near Waterville, Pa.	41.274	-77.324	944	Y
01550000	Lycoming Creek near Trout Run, Pa.	41.418	-77.033	173	N
01551500	WB Susquehanna River at Williamsport, Pa.	41.236	-76.997	5,682	Y
01552000	Loyalsock Creek at Loyalsockville, Pa.	41.323	-76.912	435	N
01552500	Muncy Creek near Sonestown, Pa.	41.357	-76.535	23.8	N
01553130	Sand Spring Run near White Deer, Pa.	41.059	-77.077	4.93	N
01553300	West Branch Susquehanna River at Lewisburg, Pa.	40.968	-76.876	6,847	Y
01553700	Chillisquaque Creek at Washingtonville, Pa.	41.062	-76.680	51.3	N
01554000	Susquehanna River at Sunbury, Pa.	40.835	-76.827	18,300	Y
01554500	Shamokin Creek near Shamokin, Pa.	40.810	-76.584	54.2	N
01555000	Penns Creek at Penns Creek, Pa.	40.867	-77.048	301	N
01555500	East Mahantango Creek near Dalmatia, Pa.	40.611	-76.912	162	N
01556000	Frankstown Branch Juniata River at Williamsburg, Pa.	40.463	-78.200	291	N
01557500	Bald Eagle Creek at Tyrone, Pa.	40.684	-78.234	44.1	N
01558000	Little Juniata River at Spruce Creek, Pa.	40.613	-78.141	220	N
01559000	Juniata River at Huntingdon, Pa.	40.483	-78.019	816	LF
01559500	Standing Stone Creek near Huntingdon, Pa.	40.524	-77.971	128	N
01559700	Sulphur Springs Creek near Mam's Choice, Pa.	39.973	-78.619	3.28	N
01560000	Dunning Creek at Belden, Pa.	40.072	-78.493	172	N

26 Selected Streamflow Statistics for Streamgage Locations In and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

[ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis ¹	Number of years used in analysis	1-day, 10-year (ft ³ /s)	7-day, 10-year (ft ³ /s)	7-day, 2-year (ft ³ /s)	30-day, 10-year (ft ³ /s)	30-day, 2-year (ft ³ /s)	90-day, 10-year (ft ³ /s)
01546000	1912–1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986–2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942–2008	67	26.8	29.0	41.3	31.2	44.2	33.7
01547100	1969–2008	40	102	105	128	111	133	117
01547200	1957–2008	52	99.4	101	132	106	142	115
01547500	² 1971–2008	38	28.2	109	151	131	172	153
01547500	² 1956–1969	14	90.0	94.9	123	98.1	131	105
01547700	1957–2008	52	.5	.6	2.7	1.1	3.9	2.2
01547800	1971–1981	11	1.6	1.8	2.4	2.1	2.9	3.5
01547950	1970–2008	39	12.1	13.6	28.2	17.3	36.4	23.8
01548005	² 1971–2000	25	142	151	206	178	241	223
01548005	² 1912–1969	58	105	114	147	125	165	140
01548500	1920–2008	89	21.2	24.2	50.1	33.6	68.6	49.3
01549000	1910–1920	11	26.0	32.9	78.0	46.4	106	89.8
01549500	1942–2008	67	.6	.8	2.5	1.4	3.9	2.6
01549700	1959–2008	50	33.3	37.2	83.8	51.2	117	78.4
01550000	1915–2008	94	6.6	7.6	16.8	11.2	24.6	18.6
01551500	² 1963–2008	46	520	578	1,020	678	1,330	919
01551500	² 1901–1961	61	400	439	742	523	943	752
01552000	1927–2008	80	20.5	22.2	49.5	29.2	69.8	49.6
01552500	1942–2008	67	.9	1.2	3.1	1.7	4.4	3.3
01553130	1969–1981	13	1.0	1.1	1.5	1.3	1.8	1.7
01553500	² 1968–2008	41	760	838	1,440	1,000	1,850	1,470
01553500	² 1941–1966	26	562	619	880	690	1,090	881
01553700	1981–2008	28	9.1	10.9	15.0	12.6	17.1	15.2
01554000	² 1981–2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	² 1939–1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941–1993	53	16.2	22.0	31.2	25.9	35.7	31.4
01555000	1931–2008	78	33.5	37.6	58.8	43.4	69.6	54.6
01555500	1931–2008	78	4.9	6.5	18.0	9.4	24.3	16.6
01556000	1918–2008	91	43.3	47.8	66.0	55.1	75.0	63.7
01557500	1946–2008	63	2.8	3.2	6.3	4.2	8.1	5.8
01558000	1940–2008	69	56.3	59.0	79.8	65.7	86.2	73.7
01559000	1943–2008	66	104	177	249	198	279	227
01559500	1931–1958	28	9.3	10.5	15.0	12.4	17.8	15.8
01559700	1963–1978	16	.1	.1	.2	.1	.3	.2
01560000	1941–2008	68	8.5	9.4	15.6	12.0	20.2	16.2
01561000	1932–1958	27	.4	.5	1.6	.8	2.5	1.7
01562000	1913–2008	96	64.1	67.1	106	77.4	122	94.5
01562500	1931–1957	27	1.1	1.6	3.8	2.3	5.4	3.7
01563200	² 1974–2008	35	—	—	—	112	266	129
01563200	² 1948–1972	25	10.3	28.2	86.1	64.5	113	95.5
01563500	² 1974–2008	35	384	415	519	441	580	493
01563500	² 1939–1972	34	153	242	343	278	399	333
01564500	1940–2008	69	3.6	4.2	10.0	6.2	14.4	10.6

APPENDIX B

WQM 7.0 MODEL INPUT/OUTPUT

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
10D	18712	CHILLISQUAQUE CREEK	16.970	497.00	53.60	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	pH	Stream Temp (°C)	pH
Q7-10	0.212	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data

Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Washingtonville	PA0020672	0.0900	0.0900	0.0900	0.000	25.00	7.00

Parameter Data

Parameter Name	Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)
CBOD5	25.00	2.00	0.00	1.50
Dissolved Oxygen	3.00	8.24	0.00	0.00
NH3-N	25.00	0.00	0.00	0.70

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation	Drainage Area	Slope	PWS Withdrawal	Apply FC
				(ft)	(sq mi)	(ft/ft)	(mgd)	
10D	18712 CHILLISQUAQUE CREEK		12.500	480.00	80.90	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp	pH	Stream Temp	pH
	(cfs/m)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.212	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data							
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.0000	0.000	25.00	7.00
Parameter Data							
Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)		
CBOD5		25.00	2.00	0.00	1.50		
Dissolved Oxygen		3.00	8.24	0.00	0.00		
NH3-N		25.00	0.00	0.00	0.70		

WQM 7.0 Hydrodynamic Outputs

<u>SWP Basin</u>			<u>Stream Code</u>			<u>Stream Name</u>						
10D			18712			CHILLISQUAQUE CREEK						
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10 Flow												
16.970	11.36	0.00	11.36	.1392	0.00072	.784	50.17	64.02	0.29	0.934	20.06	7.00
Q1-10 Flow												
16.970	10.68	0.00	10.68	.1392	0.00072	NA	NA	NA	0.28	0.966	20.06	7.00
Q30-10 Flow												
16.970	13.29	0.00	13.29	.1392	0.00072	NA	NA	NA	0.32	0.856	20.05	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input type="checkbox"/>
Q1-10/Q7-10 Ratio	0.94	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.17	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>
10D	18712	CHILLISQUAQUE CREEK

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
16.970	Washingtonville	16.67	50	16.67	50	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
16.970	Washingtonville	1.88	25	1.88	25	0	0

Dissolved Oxygen Allocations

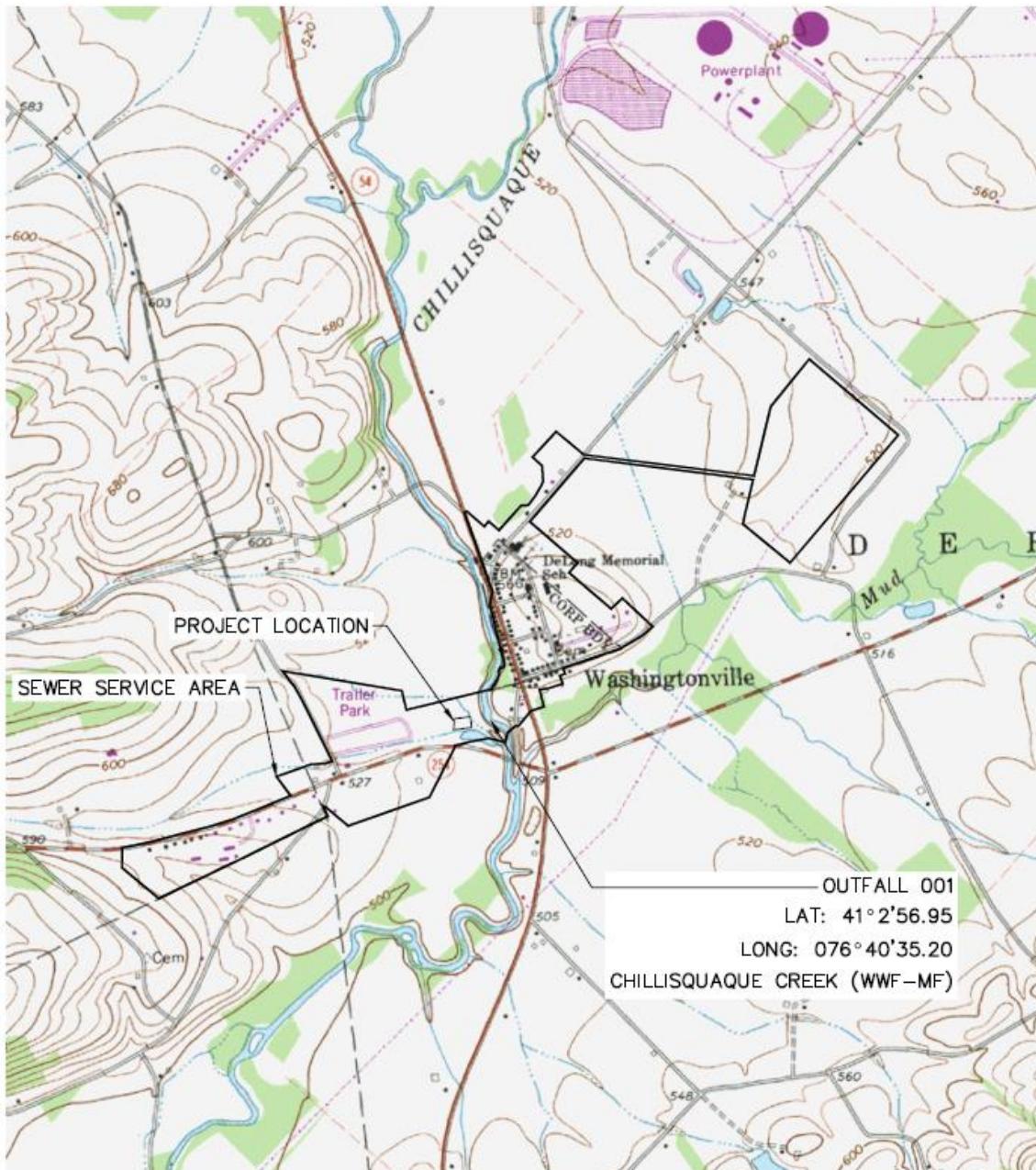
RMI	Discharge Name	CBOD5		NH3-N		Dissolved Oxygen		Critical Reach	Percent Reduction
		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		
16.97	Washingtonville	25	25	25	25	3	3	0	0

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code	Stream Name		
10D	18712	CHILLISQUAQUE CREEK		
<u>RMI</u> 16.970	Total Discharge Flow (mgd) 0.090	Analysis Temperature (°C) 20.061	Analysis pH 7.000	
<u>Reach Width (ft)</u> 50.169	Reach Depth (ft) 0.784	Reach WDRatio 64.015	Reach Velocity (fps) 0.293	
<u>Reach CBOD5 (mg/L)</u> 2.28	Reach Kc (1/days) 0.113	Reach NH3-N (mg/L) 0.30	Reach Kn (1/days) 0.703	
<u>Reach DO (mg/L)</u> 8.180	Reach Kr (1/days) 1.440	Kr Equation Tsivoglou	Reach DO Goal (mg/L) 5	
<u>Reach Travel Time (days)</u> 0.934	Subreach Results			
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)
	0.093	2.25	0.28	8.19
	0.187	2.23	0.27	8.20
	0.280	2.21	0.25	8.21
	0.373	2.18	0.23	8.23
	0.467	2.16	0.22	8.23
	0.560	2.14	0.20	8.23
	0.654	2.12	0.19	8.23
	0.747	2.09	0.18	8.23
	0.840	2.07	0.17	8.23
	0.934	2.05	0.16	8.23

WQM 7.0 Effluent Limits

SWP Basin	Stream Code	Stream Name					
		10D	18712	CHILLISQUAQUE CREEK			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
16.970	Washingtonville	PA0020672	0.090	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3


APPENDIX C

TRC ANALYSIS

1A	B	C	D	E	F	G						
2	TRC EVALUATION Washingtonville PA0020672											
3 Input appropriate values in B4:B8 and E4:E7												
4	11.4	= Q stream (cfs)		0.5	= CV Daily							
5	0.09	= Q discharge (MGD)		0.5	= CV Hourly							
6	30	= no. samples		1	= AFC_Partial Mix Factor							
7	0.3	= Chlorine Demand of Stream		1	= CFC_Partial Mix Factor							
8	0	= Chlorine Demand of Discharge		15	= AFC_Criteria Compliance Time (min)							
9	0.5	= BAT/BPJ Value		720	= CFC_Criteria Compliance Time (min)							
	0	= % Factor of Safety (FOS)		0	= Decay Coefficient (K)							
10	Source	Reference	AFC Calculations	Reference	CFC Calculations							
11	TRC	1.3.2.iii	WLA_afc = 26.138	1.3.2.iii	WLA_cfc = 25.475							
12	PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373	5.1c	LTAMULT_cfc = 0.581							
13	PENTOXSD TRG	5.1b	LTA_afc = 9.740	5.1d	LTA_cfc = 14.810							
14												
15	Source	Effluent Limit Calculations										
16	PENTOXSD TRG	5.1f	AML MULT = 1.231									
17	PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500	BAT/BPJ								
18			INST MAX LIMIT (mg/l) = 1.635									
	WLA_afc	$(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...\\...+ Xd + (AFC_Yc*Qs*Xs/Qd)]^{(1-FOS/100)}$										
	LTAMULT_afc	$\text{EXP}((0.5^4\text{LN}(cvh^2+1))-2.326^4\text{LN}(cvh^2+1)^{0.5})$										
	LTA_afc	wla_afc*LTAMULT_afc										
	WLA_cfc	$(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...\\...+ Xd + (CFC_Yc*Qs*Xs/Qd)]^{(1-FOS/100)}$										
	LTAMULT_cfc	$\text{EXP}((0.5^4\text{LN}(cvd^2/2/no_samples+1))-2.326^4\text{LN}(cvd^2/2/no_samples+1)^{0.5})$										
	LTA_cfc	wla_cfc*LTAMULT_cfc										
	AML MULT	$\text{EXP}(2.326^4\text{LN}((cvd^2/no_samples+1)^{0.5})-0.5^4\text{LN}(cvd^2/no_samples+1))$										
	AVG MON LIMIT	$\text{MIN}(\text{BAT_BPJ},\text{MIN}(\text{LTA_afc},\text{LTA_cfc})*\text{AML_MULT})$										
	INST MAX LIMIT	$1.5^4((\text{av_mon_limit}/\text{AML_MULT})/\text{LTAMULT_afc})$										

APPENDIX D

FACILITY MAP

LOCATION MAP

SCALE: 1" = 2000'

USGS QUADRANGLE:
WASHINGTONVILLE