

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0020885

 APS ID
 320084

 Authorization ID
 1374719

Applicant and Facility Information										
Applicant Name	Mechanicsburg Borough	Facility Name	Mechanicsburg STP							
Applicant Address	36 W Allen Street	Facility Address	842 W Church Road							
	Mechanicsburg, PA 17055-6257	<u></u>	Mechanicsburg, PA 17055-3103							
Applicant Contact	Curtis Huey	Facility Contact	Curtis Huey							
Applicant Phone	(717) 691-3320	Facility Phone	(717) 691-3320							
Client ID	117422	Site ID	451764							
Ch 94 Load Status	Not Overloaded	Municipality	Mechanicsburg Borough							
Connection Status	No Limitations	County	Cumberland							
Date Application Rece	eived October 29, 2021	EPA Waived?	No							
Date Application Acce	epted November 2, 2021	If No, Reason	Major Facility, Significant CB Discharge							
Purpose of Application	n NPDES Permit Renewal									

Summary of Review

Mechanicsburg Borough (Mechanicsburg) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its NPDES permit. The permit was last reissued on April 27, 2017 and became effective on May 1, 2017. The permit expired on April 30, 2022 but the terms and conditions of the permit have been extended since that time.

Based on the review, it is recommended that the permit be issued.

Sludge use and disposal description and location(s): Sludge is processed onsite prior to being land applied under PAG083523 and PAG073523.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Jinsu Kim Jinsu Kim / Environmental Engineering Specialist	October 6 2022
Х		Daniel W. Martin Daniel W. Martin, P.E. / Environmental Engineer Manager	November 15, 022

	Discharge, Receiving W	laters and Water Supply Informa	tion	
Outfall No. 001		Design Flow (MGD)	2.08	
Latitude 40° 15	o' 9.00"	Longitude	77° 0' 27.15"	
Quad Name Wer	tzville	Quad Code	1629	
Wastewater Descript	tion: Treated sewage			
Receiving Waters	Conodoguinet Creek	Stream Code	10194	
NHD Com ID	56404001	RMI	15.75	
Drainage Area	485	Yield (cfs/mi²)	0.153	
Q ₇₋₁₀ Flow (cfs)	74.4	Q ₇₋₁₀ Basis	USGS StreamStats	
Elevation (ft)		Slope (ft/ft)		
Watershed No.	7-B	Chapter 93 Class.	WWF, MF	
Existing Use	WWF, MF	Existing Use Qualifier		
Exceptions to Use		Exceptions to Criteria		
Assessment Status	Impaired			
Cause(s) of Impairm	ent Organic Enrichment			
Source(s) of Impairm	nent Unknown			
TMDL Status		Name		
Nearest Downstream	n Public Water Supply Intake	Steelton Borough		
PWS Waters S	usquehanna River	Flow at Intake (cfs)	3,204	
PWS RMI 68	3.36	Distance from Outfall (mi)	19.3	

Drainage Area

The discharge is to Conodoguinet Creek at RM 15.75. A drainage area upstream of the discharge point is estimated to be 485 sq.mi, according to USGS StreamStats available at https://streamstats.usgs.gov/ss/.

Streamflow

USGS Streamflow produced a Q7-10 flow of 74.4 at the discharge point.

Conodoguinet Creek

25 Pa Code §93.90 lists Conodoguinet Creek from PA997 at Roxbury to Mouth as warm water and migratory fishes. No special protection water is impacted by this discharge. DEP's latest integrated water quality report finalized in 2022 indicates that the receiving stream is impaired for organic enrichment as a result of unknown source. A TMDL was developed in December 2000 to address nutrient and sediment impairments identified within the Conodoguinet Creek basin. However, this TMDL mainly identified agriculture, construction and urban runoff/storm sewers as the sources of these impairments. The TMDL covered subwatersheds, not the main stem. The integrated water quality identified organic enrichment impairment under Category 5 which requires a TMDL.

Public Water Supply Intake

The fact sheet developed for the last permit renewal indicates that the nearest downstream intake is Steelton Borough on Susquehanna River, approximately 19.3 miles downstream of the discharge. Given the distance, the discharge is not expected to affect the water supply.

	Treatment Facility Summary											
Treatment Facility Na	me: Mechanicsburg WWTP											
WQM Permit No.	Issuance Date											
2109402	Last amended on 4/22	/2022										
		'										
	Degree of			Avg Annual								
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)								
Sewage	Tertiary	Activated Sludge	Gas Chlorine	2.08								
Hydraulic Capacity	Organic Capacity			Biosolids								
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa								
3.328	4694	Not Overloaded	Anaerobic Digestion	Compost								

Mechanicsburg owns and operates a municipal wastewater treatment plant serving the areas of Mechanicsburg Borough (66.5%), Monroe Township (7.5%), Silver Spring Township (17.7%), Upper Allen Township (0.4%) and Hampden Township (7.99%). All sewer systems are 100% separated. The facility utilizes tricking filter-MLE activated sludge treatment process consisting of primary screening treatment, primary clarification (2), trickling filters (4), MLE anoxic/aerobic tanks (2), final clarification (3), sand denitrification filter, chlorine contact and outfall structure. The facility is rated for 2.05 MGD (annual average design flow), 3.328 MGD (hydraulic design capacity) and 4,694 lbs BOD/day (organic design capacity).

Chlorine gas is used for disinfection, Aluminum Sulfate and polymer are used for coagulant, settling and phosphorus control.

A sludge thickener, digesters (2) and filter press are used for sludge processing. Any solids generated from this facility will be land applied under PAG083523 and PAG073523.

The application reported a number of industrial/commercial users connected to this sewer system. These users are shown below:

Name	Description of Industry	Wastewater Volume (GPD)	Significant Industrial User?
Advanced Coating Technologies	Custom metal finishing	1,650 (process)	No
Nestle Purina	Pet food manufacturing	16,169 (process)	Yes
Fry Communication, Inc.	Magazine and direct mail printers	2,985 (process)	No

The application indicates that Mechanicsburg is not implementing an approved pretreatment program administered by EPA.

	Compliance History									
Summary of DMRs:	A summary of past 12-month DMR is presented on the next page.									
Summary of Inspections:	01/05/22: Brandon Bettinger, DEP Water Quality Specialist, conducted a routine inspection and noted that the facility's grit system has been offline for approximately one year, failed to maintain permitted treatment units in operable condition. No violations were noted at the time of inspection. 03/08/21: Mike Benham, former DEP Water Quality Specialist, conducted a routine inspection. A number of recommendations were made at the time of inspection but no violations were noted. 02/27/20: Mike Benham conducted a routine inspection. No violations were noted at the time of inspection.									
Other Comments:	Since the last reissuance, there have been a number of violations reported by the permittee or identified by DEP. A table below summarizes these violations. DEP's database shows that there is no open violation associated with this permittee or facility.									

Date Violation Description	Category	PARAMETER	Sample Results	▼ Limits ▼	Units	SBC	▼ Comments
Aug-17 Sample collection less frequent than required	Other Violations	Nitrate-Nitrite as N					
Aug-17 Sample type not in accordance with permit	Other Violations	Nitrate-Nitrite as N					
Nov-17 Sample type not in accordance with permit	Other Violations	Nitrate-Nitrite as N					
Jul-19 Violation of permit condition	Effluent	Total Nitrogen (Total Load, lbs)	41140	37990	lbs	Total Annual	
Mar-18 Late DMR Submission	Other Violations						
							Testing was performed during high flow due to sand filter bypass. In the past, when flow has been high, the chlorine flow has been reduced to prevent exceeding the instantaneous maximum for residual chlorine. The combination of reduced chlorine and reduced contact time from high flow resulted in high fecal coliform results. In the future, we will alter our SOP to better treat for fecal coliform during high flow while trying not to exceed the
Jun-18 Violation of permit condition	Effluent	Fecal Coliform	15900	1000	CFU/100 ml	Instantaneous Maximum	instantaneous maximum.
Jul-18 Violation of permit condition	Effluent	Fecal Coliform	1650	1000	CFU/100 ml	Instantaneous Maximum	
Aug-18 Violation of permit condition	Effluent	Fecal Coliform	> 503	200	CFU/100 ml	Geometric Mean	
Aug-18 Violation of permit condition	Effluent	Fecal Coliform	3300	1000	CFU/100 ml	Instantaneous Maximum	
Sep-18 Violation of permit condition	Effluent	Ammonia-Nitrogen	9.4	9.0	mg/L	Average Monthly	
Sep-18 Violation of permit condition	Effluent	Fecal Coliform	2500	1000	CFU/100 ml	Instantaneous Maximum	
Oct-18 Violation of permit condition	Effluent	Fecal Coliform	4150	1000	CFU/100 ml	Instantaneous Maximum	
Dec-18 Late DMR Submission	Other Violations						
Jun-20 Late DMR Submission	Other Violations						
Oct-19 Violation of permit condition	Effluent	Total Suspended Solids	37	30	mg/L	Average Monthly	
Oct-19 Violation of permit condition	Effluent	Total Suspended Solids	51	45	mg/L	Weekly Average	
Nov-19 Violation of permit condition	Effluent	Total Suspended Solids	36	30	mg/L	Average Monthly	
Nov-19 Violation of permit condition	Effluent	Total Suspended Solids	71	45	mg/L	Weekly Average	
Dec-19 Violation of permit condition	Effluent	Total Suspended Solids	160	45	mg/L	Weekly Average	
Dec-19 Violation of permit condition	Effluent	Total Suspended Solids	58	30	mg/L	Average Monthly	
			•				Our lab's accreditation was suspended by the Bureau of Laboratories. The contract lab we were using was getting very high results for influent and effluent suspended solids. The accreditation was reinstated in February, and we got much better numbers and expect to be
Mar-20 Violation of permit condition	Effluent	Total Suspended Solids	47	45	mg/L	Weekly Average	in compliance going forward.
Aug-20 Violation of permit condition	Effluent	Carbonaceous Biochemical Oxyger		40	mg/L	Weekly Average	See Attachment
Mar-21 Violation of permit condition	Effluent	Fecal Coliform	> 1468	2000		Geometric Mean	
Mar-21 Violation of permit condition	Effluent	Fecal Coliform	> 2420	10000	CFU/100 ml		
Apr-21 Violation of permit condition	Effluent	Fecal Coliform	> 1053	2000	CFU/100 ml	Geometric Mean	
Apr-21 Violation of permit condition	Effluent	Fecal Coliform	> 2420	10000	CFU/100 ml	Instantaneous Maximum	
			•	•			At the time of sampling, there was no known issue that would have caused a high fecal. 2
Jul-21 Violation of permit condition	Effluent	Fecal Coliform	1416	1000	CFU/100 ml	Instantaneous Maximum	days later, the fecal was 49 with no process changes.
							The residual chlorine was low on 8/5. After getting a high fecal, the chlorine feed was increased and the chlorine contact tank walls were cleaned to reduce chlorine demand from
Sep-21 Violation of permit condition	Effluent	Fecal Coliform	1553	1000	CFU/100 ml	Instantaneous Maximum	algae.
Mar-22 Late DMR Submission	Other Violations						

Effluent Data

DMR Data for Outfall 001 (from April 1, 2021 to March 31, 2022)

Parameter	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
Flow (MGD)												
Average Monthly	0.551	0.623	0.574	0.58	0.626	0.74	1.234	601	0.633	0.556	0.636	0.618
Flow (MGD)												
Daily Maximum	0.601	1.032	0.733	0.656	0.888	1.017	3.56	0.751	1.062	0.681	0.947	0.983
pH (S.U.)												
Minimum	6.5	6.7	6.8	7.0	7.1	7.3	7.2	7.2	7.1	7.1	6.9	6.9
pH (S.U.)												
Instantaneous												
Maximum	6.9	7.0	7.2	7.4	7.6	7.6	7.6	7.6	7.5	7.4	7.3	7.2
DO (mg/L)												
Minimum	7.9	8.2	8.0	7.8	8.0	7.7	7.6	7.4	7.5	7.8	7.8	7.9
TRC (mg/L)												
Average Monthly	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.20	0.10	0.20	0.10
TRC (mg/L)												
Instantaneous												
Maximum	0.20	0.82	0.21	0.14	0.80	0.31	0.19	0.20	0.53	0.25	0.27	0.40
CBOD5 (lbs/day)											_	
Average Monthly	< 13	13	12	< 12	< 17	< 13	< 20	< 18	< 12	< 12	< 9	11
CBOD5 (lbs/day)	40	40	40	4.5	0.4	00	00		4.5	00	4.5	4.4
Weekly Average	19	19	13	15	< 24	22	< 38	< 23	< 15	20	15	14
CBOD5 (mg/L)												
Average Monthly	< 3	3	3	< 2	< 3	< 2	< 2	< 3	< 2	< 3	< 2	2
CBOD5 (mg/L)	4	4	0			4	_	_	_		0	0
Weekly Average	4	4	3	3	< 4	4	3	5	3	4	3	3
BOD5 (lbs/day)												
Raw Sewage Influent	330	1470	1466	2297	1825	1857	2123	1673	1484	1614	1486	1544
Average Monthly BOD5 (lbs/day)	330	1470	1400	2291	1023	1007	2123	1073	1404	1014	1400	1544
Raw Sewage Influent												
Daily Maximum	536	2386	1631	3593	2708	2664	3157	2750	2313	2988	2097	1884
BOD5 (mg/L)	330	2300	1031	3393	2700	2004	3137	2730	2313	2900	2091	1004
Raw Sewage Influent												
Average Monthly	1758	256	261	386	302	292	242	277	246	295	268	281
TSS (lbs/day)	1700	200	201	000	002	202	272	211	2-10	200	200	201
Average Monthly	65	31	37	46	22	25	93	75	45	30	22	24
TSS (lbs/day)	00	<u> </u>	<u> </u>				- 55	, ,		- 55		
Raw Sewage Influent												
Average Monthly	1851	2707	2815	3516	2728	5692	2012	2237	2852	2763	2530	3091

Parameter	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
TSS (lbs/day)			_		_							
Raw Sewage Influent												
Daily Maximum	2809	6999	5173	5076	4548	10881	4811	2971	4209	3361	3348	4501
TSS (lbs/day)												
Weekly Average	65	36	39	57	20	31	342	150	83	47	46	29
TSS (mg/L)												
Average Monthly	16	6	7	10	4	4	5	13	9	6	4	4
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	353	495	480	603	459	836	207	356	450	501	452	537
TSS (mg/L)												
Weekly Average	42	7	8	11	4	5	13	20	18	10	9	5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	154	231	494	838	468	301	< 61	146	95	129	37	1452
Fecal Coliform												
(CFU/100 ml)												
Instantaneous												
Maximum	1986	2420	2420	2420	1046	770	816	1553	488	1416	75	6130
Nitrate-Nitrite (mg/L)	40.00				40.70	40.04		44.0	40.40			4400
Average Monthly	< 16.02	< 16.47	< 20.36	< 14.87	< 16.79	< 10.91	< 8.27	11.8	< 12.16	< 12.41	< 14.26	< 14.86
Nitrate-Nitrite (lbs)	0400	0004	0500	0400	0500	0000	4004	4050	0050	4750	0057	0000
Total Monthly	< 2163	< 2224	< 2560	< 2160	< 2563	< 2068	< 1884	1956	< 2058	< 1756	< 2357	< 2280
Total Nitrogen (mg/L)	40.07	.00.40	. 00.00	40.05	10.10	. 40.4	. 0. 0	40.0	40.00	. 40.04	. 4 4 70	45.00
Average Monthly	< 19.37	< 20.16	< 22.99	< 18.95	< 19.19	< 13.1	< 8.8	< 12.3	< 12.66	< 12.91	< 14.79	< 15.36
Total Nitrogen (lbs) Effluent Net												
Total Monthly	< 2612	< 2719	< 3386	< 2765	< 2928	< 2488	< 2007	< 2039	< 2144	< 1888	< 2446	< 2356
Total Nitrogen (lbs)	< 2012	< 2119	< 3360	< 2705	< 2920	< 2400	< 2007	< 2039	< 2144	< 1000	< 2440	< 2300
Total Monthly	< 2612	< 2719	< 3386	< 2765	< 2928	< 2488	< 2007	< 2039	< 2144	< 1827	< 2446	< 2356
Total Nitrogen (lbs)	< 201Z	< Z1 13	< 3300	< 2703	< Z9Z0	< 2400	< 2001	< 2009	\ Z144	< 1021	< Z440	< 2330
Effluent Net												
Total Annual							< 30105					
Total Nitrogen (lbs)							V 00100					
Total Annual							< 30755					
Ammonia (lbs/day)							7 00.00					
Average Monthly	< 0.3	0.2	< 0.2	< 0.2	< 0.2	< 0.3	< 0.4	< 0.4	< 0.2	< 0.2	< 0.2	< 0.7
Ammonia (mg/L)			-	-					-	-	-	-
Average Monthly	< 0.07	0.05	< 0.05	< 0.04	< 0.05	< 0.04	< 0.06	< 0.06	< 0.04	< 0.04	< 0.04	< 0.13
Ammonia (lbs)						-			-			
Total Monthly	< 10	7	< 7	< 6	< 7	< 8	< 12	< 13	< 7	< 6	< 7	< 20
Ammonia (lbs)												
Total Annual							< 129					

NPDES Permit No. PA0020885

Parameter	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21
TKN (mg/L)												
Average Monthly	< 3.36	3.69	5.4	4.08	2.4	2.19	< 0.52	< 0.5	< 0.5	< 0.5	< 0.53	< 0.5
TKN (lbs)												
Total Monthly	< 449	495	826	604	365	421	< 124	< 83	< 86	< 71	< 88	< 3
Total Phosphorus (lbs/day) Average Monthly	3	3	3	4	3	4	3	5	4	3	3	3
Total Phosphorus (mg/L) Average Monthly	0.76	0.53	0.7	0.81	0.61	0.67	0.43	0.93	0.65	0.69	0.55	0.58
Total Phosphorus (lbs) Effluent Net												
Total Monthly	102	71	102	120	93	127	96	164	113	101	92	90
Total Phosphorus (lbs) Total Monthly	102	71	102	120	93	127	96	164	113	98	92	90
Total Phosphorus (lbs) Effluent Net Total Annual							1383					
Total Phosphorus (lbs) Total Annual							1383					
Total Copper (lbs/day) Daily Maximum	0.033			0.041			0.057			0.082		
Total Copper (mg/L) Daily Maximum	0.0074			0.0072			0.0103			0.015		

Existing Effluent Limits and Monitoring Requirements

Tables below summarize effluent limits and monitoring requirements specified in the current permit.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.45	XXX	1.48	1/day	Grab
CBOD5	433	693	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Suspended Solids	520	780	XXX	30	45	60	2/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Ammonia-Nitrogen May 1 - Oct 31	156	XXX	XXX	9.0	XXX	18	2/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	277	XXX	XXX	16	XXX	32	2/week	24-Hr Composite
Total Phosphorus	34	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite
Copper, Total	XXX	Report Daily Max	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite

NPDES Permit No. PA0020885

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Mandala	A	Mandala	Monthly	B4	Instant.	Measurement	Sample
	Monthly	Annual	Monthly	Average	Maximum	Maximum	Frequency	Туре
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Net Total Nitrogen	Report	37990*	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	5065*	XXX	XXX	XXX	XXX	1/month	Calculation

^{*}The permittee is authorized to use 650 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Turing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities:

[•] Connection of 26 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection.

Development of Effluent Limitations and Monitoring Requiremens						
Outfall No.	001	Design Flow (MGD)	2.08			
Latitude	40° 15' 9.00"	Longitude	-77º 0' 27.16"			
Wastewater [Description: Sewage Effluent					

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD5, NH3-N and Dissolved Oxygen (DO)

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model output indicates that all existing effluent limits for these pollutants are still appropriate. No changes are therefore recommended.

Toxic Pollutants

DEP utilizes a Toxics Management Spreadsheet (last modified on March 2021 ver. 1.3) to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The worksheet combines the functionality of DEP's Toxics Screening Analysis worksheet and PENTOXSD. The current permit requires a quarterly sampling for Total Copper as Total Copper was detected at levels higher than the water quality criteria yet no reasonable potential was determined. During the last permit renewal review process, DEP determined that a quarterly sampling requirement would produce ample data for further analysis. The results from April 2017 through July 2022 (a total of 22 datasets) were summarized below.

Total Copper (mg/L)					
Maximum	0.082				
Minimum	<0.022				
No. of Non-Detect Results	8				

DEP's TOXCON worksheet was utilized to produce an average monthly effluent concentration and daily coefficient of variation. These values were then entered into Toxics Management Spreadsheet. The TMS no longer requires any further monitoring for Total Copper. As a result, it is recommended that the existing quarterly sampling requirement for Total Copper be removed from the permit.

The TMD indicates that WQBELs are needed for Total Mercury. However, Mechanicsburg may not be able to achieve compliance with these WQBELs. As a result, DEP's pre-draft permit survey was sent on May 19, 2022. This survey form allows DEP to develop appropriate permit requirements and to understand facility's current capabilities or plans to treat or control the pollutant of concern. This approach is consistent with DEP's SOP no. BCW.PMT-037. Mechanicsburg submitted the survey form on June 23, 2022 and indicated that Mechanicsburg will further collect samples for Total Mercury to supplement the application. DEP received results of ten (10) additional samples on both influent and effluent on October 5, 2022. These results are summarized below.

Sample Date	Influent (ug/L)*	Effluent (ug/L)*	Sample Date	Influent (ug/L)*	Effluent (ug/L)*
8/16/2022	<0.2	<0.2	8/30/2022	<0.2	<0.2
8/18/2022	0.4	<0.2	9/5/2022	<0.2	<0.2
8/23/2022	<0.2	<0.2	9/7/2022	<0.2	<0.2
8/24/2022	<0.2	<0.2	9/12/2022	<0.2	<0.2
8/25/2022	<0.2	<0.2	9/14/2022	0.3	<0.2

*DEP's current Target QL for Total Mercury = 0.2 ug/L.

As shown above, while Total Mercury was detected slightly higher than DEP's Target QL in two of ten influent samples, Total Mercury was consistently not detected in effluent at DEP's target QL. Given a number of non-detected results, a statistical analysis using DEP's TOXCON worksheet cannot be performed. At this time, DEP determined based on additional sample results that Total Mercury level in the discharge is not of concern and ultimately no reasonable potential is determined. Therefore, no WQBELs are recommended. In case DEP determines, during the upcoming permit tern, that permit requirements for Total Mercury are needed, DEP may reopen this permit to include any necessary permit requirements per 40 CFR§§122.41(h) and 122.62.

Total Residual Chlorine

DEP's TRC_CALC worksheet was utilized to determine appropriate permit requirements for TRC. The worksheet shows that existing effluent limits are still appropriate. No change is therefore recommended.

Whole Effluent Toxicity Testina

Mechanicsburg is required under 40 CFR §122.21(h)(5)(ii)(A) to conduct WETT and submit the results to DEP. See WETT section of this fact sheet for more details on the results submitted by Mechanicsburg.

Best Professional Judgment (BPJ) Limitations

Dissolved Oxygen

The existing minimum DO effluent limit is the current warm water fishery water quality criterion for DO listed in 25 Pa Code §93.7(a). It is recommended that this limit be maintained in the permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) no. BPNPSM-PMT-033 and has been applied to other point source dischargers throughout the state.

Total Phosphorus

The existing permit contains average monthly and instantaneous maximum (IMAX) effluent limits of 2.0 mg/L and 4.0 mg/L, respectively. Historically a TP effluent limit of 2.0 mg/L was established in the permit when DEP generally determines that the facility is expected to contribute 0.25% or more of the total point source phosphorus loading at the point of impact (page 17 of DEP's technical guidance no. 391-2000-018). DEP previously documented that the discharge contributes more than 0.25% and phosphorus controls were therefore needed. There is no reason to relax or remove these effluent limits; therefore, continuation of existing effluent limits is still appropriate in accordance with 40 CFR §122.44(I)(1).

Additional Considerations

Flow Monitoring Requirement

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii).

Influent BOD & TSS Monitoring Requirement

As a result of negotiation with EPA, the existing influent monitoring reporting requirement for TSS and BOD5 will be maintained in the draft permit. This requirement has been consistently assigned to all municipal wastewater treatment facilities.

Total Dissolved Solids (TDS)

TDS and its associated solids including Bromide, Chloride, and Sulfate have become statewide pollutants of concern. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- -Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- -Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- -Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/L.

Mechanicsburg reported maximum concentrations of 726 mg/L for TDS, 0.2 mg/L for bromide, and $< 10.0 \mu g/L$ for 1,4-dioxane. Accordingly, the requirement to monitor for these pollutants is not necessary.

Mass Loading Limitations

All effluent mass loading limits will be based on the formula: design flow x concentration limit x conversion factor of 8.34.

Stormwater Requirements

Stormwater discharges from any POTWs (SIC Code 4952) described in 40 CFR § 122.26(b)(14)(ix) require coverage under an NPDES permit. DEP's standard Part C stormwater requirements and site-specific best management practices (BMPs) will be included in the permit as this is a standard approach for major sewage facilities over 1.0 MGD.

E. Coli Monitoring Requirement

As recommended by DEP's SOP no. BPNPSM-PMT-033, a routine monitoring for E. Coli will be included in the permit under 25 Pa Code §92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 1/month will be included permit to be consistent with the recommendation from this SOP.

Chesapeake Bay TMDL

On March 30, 2012, DEP finalized Pennsylvania's Chesapeake Watershed Implementation Plan Phase 2 (i.e., Phase 2 WIP) to address U.S EPA's expectations for the Chesapeake Bay TMDL. The Chesapeake Bay TMDL identifies the necessary pollution reductions from major sources of nitrogen, phosphorus and sediment across the Bay jurisdictions and sets pollution limits necessary to meet water quality standards. The Phase 2 WIP is an update to the Pennsylvania's Chesapeake Bay TMDL Strategy (2004) and the Chesapeake WIP Phase I (2011). In August 2019, DEP finalized Phase 3 Chesapeake Bay Watershed Implementation Plan to provide the plans in place by 2025 to further achieve the nutrient and sediment reduction targets. The more details on the TMDL are available at www.dep.pa.gov.

As part of the Phase 3 WIP process, a Supplement to the Phase 3 WIP was developed, providing an update on TMDL implementation for point sources and a discussion of adjustments to the permitting strategy as a result of implementation experience. According to this document, Mechanicsburg Borough WWTP is a Phase 3 significant discharger located within the Chesapeake Bay watershed. The following Cap Loads specified in the current Supplement to the Phase 3 WIP will be included in the draft permit:

NPDES			Latest Permit Issuance	Permit Expiration	Cap Load Compliance	TN Cap Load	TN Offsets Included in Cap Load	TP Cap Load	TN Delivery	TP Delivery
Permit No.	Phase	Facility	Date	Date	Start Date	(lbs/yr)	(lbs/yr)	(lbs/yr)	Ratio	Ratio
		Mechanicsburg								
PA0020885	1	Borough MA	4/27/2017	04/30/2022	10/1/2012	37,990	ı	5,065	0.951	0.436

The permittee is currently authorized to use 650 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads) as a result of the connection of 26 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection. No further offset request was received during the last permit reissuance.

Class A Wild Trout Fishery

A Class A Wild Trout stream is not impacted by this discharge.

Anti-backsliding Requirements

Unless stated otherwise in this fact sheet, all permit requirements proposed in this fact sheet are at least as stringent as those specified in the existing permit.

	Whole Effluent Toxicity (WET)							
For Ou	utfall 001, Acute Chronic WET Testing was completed:							
	For the permit renewal application (4 tests). Quarterly throughout the permit term.							
	Quarterly throughout the permit term and a TIE/TRE was conducted.							

The dilution series used for the tests was: 100%, 60%, 30%, 5%, and 2%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 5%.

Summary of Four Most Recent Test Results

NOEC/LC50 Data Analysis

	Ceriodaph	nia Results (% E	Pimephale				
	NOEC	NOEC		NOEC	NOEC		
Test Date	Survival	Reproduction	LC50	Survival	Growth	LC50	Pass? *
August 2020	100	100		100	100		Yes
July 2019	100	30		100	100		Yes
August 2018	100	100		100	100		Yes
October 2017	100	100		100	60		Yes

^{*} A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

☐ YES ⊠ NO

Comments: DEP's Whole Effluent Toxicity Analysis Spreadsheet is attached to this fact sheet.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.116 Chronic Partial Mix Factor (PMFc): 0.801

1. Determine IWC - Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

 $[(2.08 \text{ MGD} \times 1.547) / ((74.4 \text{ cfs} \times 0.116) + (2.08 \text{ MGD} \times 1.547))] \times 100 = 27\%$

Is IWCa < 1%? Type YES NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

Type of Test for Permit Renewal: Chronic

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(2.8 \text{ MGD} \times 1.547) / ((74.4 \text{ cfs} \times 0.801) + (2.08 \text{ MGD} \times 1.547))] \times 100 = 5\%$

3. Determine Dilution Series

(NOTE - check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 60%, 30%, 5%, and 2%.

WET Limits
Has reasonable potential been determined? ☐ YES ☒ NO
Will WET limits be established in the permit? ☐ YES ☒ NO
If WET limits will be established, identify the species and the limit values for the permit (TU).
N/A
If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:
N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾	Concentrations (mg/L)				Minimum (2)	Required
rarameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.45	XXX	1.48	1/day	Grab
CBOD5	433	693	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	520	780	XXX	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia								24-Hr
Nov 1 - Apr 30	277	XXX	XXX	16	XXX	32	2/week	Composite
Ammonia								24-Hr
May 1 - Oct 31	156	XXX	XXX	9.0	XXX	18	2/week	Composite
Ammonia (lbs)	Report Total Mo	xxx	XXX	XXX	XXX	XXX	1/month	Calculation
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TKN (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus	34	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Total Phosphorus (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
E. Coli (No./100 mL)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen (lbs)		37990						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Total Nitrogen (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Ammonia (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)		5065						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
		Report						
Total Phosphorus (lbs)	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

^{*}The permittee is authorized to use 650 lbs/year as Total Nitrogen (TN) Offsets toward compliance with the Annual Net TN mass load limitations (Cap Loads), in accordance with Part C of this permit. These Offsets may be applied throughout the Compliance Year or during the Turing Period. The application of offsets must be reported to DEP as described in Part C. The Offsets are authorized for the following pollutant load reduction activities:

[•] Connection of 26 on-lot sewage disposal systems to the public sewer system after January 1, 2003, in which 25 lbs/year of TN offsets are granted per connection.

Tools and References Used to Develop Permit
MONA (as Wisslands Markel /as a Augustus and
WQM for Windows Model (see Attachment)
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other:

Attachments

1. USGS Streamflow

10/6/22, 8:35 AM

StreamStats

StreamStats Report

Region ID:

Workspace ID: PA20221006123316108000

Clicked Point (Latitude, Longitude): 40.25336, -77.00699

Time: 2022-10-06 08:33:37 -0400

Collapse All

Parameter			
Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	40.45	percent
DRNAREA	Area that drains to a point on a stream	485	square miles
PRECIP	Mean Annual Precipitation	39	inches
ROCKDEP	Depth to rock	4.6	feet
STRDEN	Stream Density total length of streams divided	1.62	miles per
	by drainage area		square mile

https://streamstats.usgs.gov/ss/

1/3

10/6/22, 8:35 AM StreamStats

Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	485	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	39	inches	35	50.4
STRDEN	Stream Density	1.62	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.6	feet	3.32	5.65
CARBON	Percent Carbonate	40.45	percent	0	99

Low-Flow Statistics Flow Report [Low Flow Region 2]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	112	ft^3/s	38	38	
30 Day 2 Year Low Flow	132	ft^3/s	33	33	
7 Day 10 Year Low Flow	74.4	ft^3/s	51	51	
30 Day 10 Year Low Flow	87.9	ft^3/s	46	46	
90 Day 10 Year Low Flow	108	ft^3/s	36	36	

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

https://streamstats.usgs.gov/ss/ 2/3

2. WQM 7.0 ver. 1.1

Input Data WQM 7.0 SWP RMI Elevation Drainage PWS Apply FC Stream Slope Stream Name Withdrawal (ft) (sq mi) (ft/ft) (mgd) • 07B 10194 CONODOGUINET CREEK 343.00 468.00 0.00000 0.00 15.840 Stream Data LFY WD Rch Rch <u>Tributary</u> Temp pH Trib Stream Rch Rch <u>Stream</u> Temp Flow Trav Depth Design Cond. Time (cfsm) (cfs) (cfs) (ft) (ft) (°C) (°C) (fps) (days) Q7-10 0.00 0.00 0.000 0.000 0.0 0.00 0.00 25.00 7.00 0.00 0.00 Q1-10 0.000 0.000 0.00 0.00 Q30-10 0.00 0.00 0.000 0.000 Discharge Data Existing Permitted Design Disc Disc Disc Disc Disc Reserve Flow Flow Name Permit Number Flow Factor (mgd) (mgd) (mgd) (°C) PA0083593 1.2000 1.2000 1.2000 0.000 25.00 7.00 Silver Spring Parameter Data Disc Trib Stream Fate Conc Parameter Name (mg/L) (mg/L) (mg/L) (1/days) CBOD5 25.00 2.00 0.00 1.50 Dissolved Oxygen 5.00 8.24 0.00 0.00 NH3-N 18.00 0.00 0.00 0.70

Wednesday, May 18, 2022 Version 1.1 Page 1 of 4

Input Data WQM 7.0

	SWP Basin	Stres Cod		Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slo (ft/1	Wit	PWS hdrawal mgd)	Apply FC
	07B	10	194 CONC	DOGUIN	ET CREEK		15.75	50	342.00	485.0	0.00	0000	0.00	•
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pl	н	<u>Stre</u> Temp	<u>am</u> pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	74.40 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
					Di	scharge (Data							
			Name	Per	rmit Number	Existing Disc	Permitte Disc Flow (mgd)	Dis Flo	sc Res	erve To	Disc emp °C)	Disc pH		
		Mech	anicsburg	PA	0020885	2.0800	2.080	0 2.0	0800	0.000	25.00	7.00		
					Pa	rameter (Data							
			ı	Paramete	r Name	C	one C	Trib Conc	Stream Conc	Fate Coef				
	-					(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				9.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basin	Stres Cod		Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slo (ft/	With	WS idrawal ngd)	Apply FC
	07B	10	194 CONC	DOGUIN	ET CREEK		14.1	40	338.00	488.0	0.0	0000	0.00	•
					St	ream Data	ı							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pi		<u>Stres</u> Temp	am pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
27-10 21-10	0.100	0.00		0.000	0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
230-10		0.00	0.00	0.000	0.000									
					Di	scharge D								
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitt Disc Flow (mgd	Dis Flo	sc Res	erve T ctor	Disc emp (°C)	Disc pH		
						0.0000	0.000	00 0.0	0000	0.000	25.00	7.00		
					Pa	rameter [)ata							
				Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
			·	aramete		(m	g/L) (r	mg/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basir	Stres Cod		Stre	eam Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slo (ft/	Withd	rawal	Apply FC
	07B	10	194 CONC	DOGUIN	ET CREEK		10.2	10	325.00	495.0	0.00	0000	0.00	•
					St	ream Data	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributary</u> ip pl	4	<u>Strean</u> Temp	n pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10	0.100	0.00		0.000	0.000	0.0	0.00	0.0	00 2	5.00	7.00	0.00	0.00	
230-10		0.00	0.00	0.000	0.000									
					Di	scharge []	
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	Dis Flo	sc Res	erve To ctor)isc emp °C)	Disc pH		
						0.0000	0.00	00 0.0	0000	0.000	25.00	7.00		
					Pa	rameter [
				Paramete	r Name	Dis Co		Trib Conc	Stream Conc	Fate Coef				
			·			(m	g/L) (ı	ng/L)	(mg/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

Page 1 of 2

WQM 7.0 D.O.Simulation

SWP Basin St 07B	ream Code 10194		CON	Stream Name ODOGUINET CREEK	
RMI	Total Discharge) Ana	lysis Temperature (°C)	Analysis pH
15.840	1.20			25.000	7.000
Reach Width (ft) 126.316	Reach De			Reach WDRatio 125.372	Reach Velocity (fps) 0.540
Reach CBOD5 (mg/L)	Reach Ko			each NH3-N (mg/L)	Reach Kn (1/days)
2.62	0.38		15	0.49	1.029
Reach DO (mg/L)	Reach Kr	_		Kr Equation	Reach DO Goal (mg/L)
8.155	5.97	3		Tsivoglou	5
Reach Travel Time (days)					
0.010	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.001		0.49	7.54	
	0.002		0.48	7.54	
	0.003		0.48	7.54	
	0.004		0.48	7.54	
	0.005		0.48	7.54	
	0.006		0.48	7.54	
	0.007		0.48	7.54	
	0.008		0.48	7.54	
	0.009		0.48	7.54	
	0.010	2.61	0.48	7.54	
RML	Total Discharge	_) Ana	lysis Temperature (°C)	Analysis pH
15.750 Reach Width (ft)	3.28 Reach De			25.000 Reach WDRatio	7.000 Reach Velocity (fps)
146,295	1.05			138.268	0.513
Reach CBOD5 (mg/L)	Reach Ko		R	each NH3-N (mg/L)	Reach Kn (1/davs)
3.46	0.62		_	0.78	1.029
Reach DO (mg/L)	Reach Kr	(1/days)		Kr Equation	Reach DO Goal (mg/L)
7.502	1.26	9		Tsivoglou	5
Reach Travel Time (days) 0.192	TravTime (days)	Subreach CBOD5 (mg/L)		D.O. (mg/L)	
	0.019		0.77	7.38	
	0.038		0.75	7.26	
			0.74	7.15	
	0.057		0.74		
	0.077	3.26	0.72	7.04	
	0.077 0.096	3.26 3.21	0.72 0.71	7.04 6.94	
	0.077 0.096 0.115	3.26 3.21 3.16	0.72 0.71 0.69	7.04 6.94 6.84	
	0.077 0.096 0.115 0.134	3.26 3.21 3.16 3.11	0.72 0.71 0.69 0.68	7.04 6.94 6.84 6.74	
	0.077 0.098 0.115 0.134 0.153	3.26 3.21 3.16 3.11 3.07	0.72 0.71 0.69 0.68 0.67	7.04 6.94 6.84 6.74 6.65	
	0.077 0.096 0.115 0.134 0.153 0.172	3.26 3.21 3.16 3.11 3.07 3.02	0.72 0.71 0.69 0.68 0.67 0.65	7.04 6.94 6.84 6.74 6.65 6.57	
	0.077 0.098 0.115 0.134 0.153	3.26 3.21 3.16 3.11 3.07 3.02	0.72 0.71 0.69 0.68 0.67	7.04 6.94 6.84 6.74 6.65	

Version 1.1

Wednesday, May 18, 2022

WQM 7.0 Hydrodynamic Outputs

		P Basin 07B		<u>m Code</u> 0194	<u>Stream Name</u> CONODOGUINET CREEK							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-10	Flow											
15.840	66.92	0.00	66.92	1.8564	0.00210	1.008	126.32	125.37	0.54	0.010	25.00	7.00
15.750	74.40	0.00	74.40	5.0742	0.00047	1.058	146.29	138.27	0.51	0.192	25.00	7.00
14.140	74.80	0.00	74.80	5.0742	0.00063	1.049	144.67	137.98	0.53	0.456	25.00	7.00
Q1-10	Flow											
15.840	42.83	0.00	42.83	1.8564	0.00210	NA	NA	NA	0.42	0.013	25.00	7.00
15.750	47.62	0.00	47.62	5.0742	0.00047	NA	NA	NA	0.41	0.241	25.00	7.00
14.140	47.87	0.00	47.87	5.0742	0.00063	NA	NA	NA	0.42	0.574	25.00	7.00
Q30-1	10 Flow											
15.840	91.02	0.00	91.02	1.8564	0.00210	NA	NA	NA	0.64	0.009	25.00	7.00
15.750	101.18	0.00	101.18	5.0742	0.00047	NA	NA	NA	0.60	0.163	25.00	7.00
14.140	101.73	0.00	101.73	5.0742	0.00063	NA	NA	NA	0.62	0.388	25.00	7.00

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	✓
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	√
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07B	10194	CONODOGUINET CREEK

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
15.84	0 Silver Spring	11.07	36	11.07	36	0	0
15.75	0 Mechanicsburg	11.07	18	11.07	18	0	0
14.14	0	NA	NA	11.07	NA	NA	NA
			NA.	11.07	165	iws.	144
IH3-N (Chronic Allocati	ons					Percent
IH3-N (Chronic Allocati		Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	
RMI		ONS Baseline Criterion	Baseline WLA	Multiple Criterion	Multiple WLA	Critical	Percent

NA

NA

Dissolved Oxygen Allocations

14.140

		CBC	DD5	NH	3-N	Dissolve	d Oxygen	Critical	B
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		Percent Reduction
15.84	Silver Spring	25	25	18	18	5	5	0	0
15.75	Mechanicsburg	25	25	9	9	5	5	0	0
14.14	14.14		NA	NA	NA	NA	NA	NA	NA

1.37

NA

NA

NA

WQM 7.0 Effluent Limits

		<u>nm Code</u> 0194		Stream Name CONODOGUINET O	_		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
15.840	Silver Spring	PA0083593	1.200	CBOD5	25		
				NH3-N	18	36	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
15.750	Mechanicsburg	PA0020885	2.080	CBOD5	25		
				NH3-N	9	18	
				Dissolved Oxygen			5

3. Toxics Management Spreadsheet

Bromoform

Carbon Tetrachloride

Discharge Information 10/6/2022 Page 1

0.5

0.5

μg/L

μg/L

	Chlorobenzene	μg/L		0.5	WWW							VYYY
	Chlorodibromomethane	μg/L		0.44	10/0/0/00/0							e le le le
	Chloroethane	μg/L	<	0.5	000000							v3v3v3v
	2-Chloroethyl Vinyl Ether	μg/L	<	5	1555555		_			_		1000
	Chloroform	µg/L	<u> </u>	3	199977		_			_		7373737
	Dichlorobromomethane		<	0.5	1000000	_	_	_	_	_	_	#3#3#3# #3#3#3#
	1.1-Dichloroethane	μg/L	_		5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	_	-	_	_	-		7373Y3
	.,	μg/L	<	0.5	******	-	-	-		-		V3Y3Y3
	1,2-Dichloroethane	μg/L	<	0.5	nnnnn	_	_	_		-		1999
5	1,1-Dichloroethylene	μg/L	<	0.5	#3/13/13/13/13/1		_					W3W3F1
ź I	1,2-Dichloropropane	μg/L	<	0.5	#3#3#3#3#3#3							#3#3#3 #3#3#3
1	1,3-Dichloropropylene	μg/L	<	0.5	22222							×2×2×1
	1,4-Dioxane	μg/L	<	10	2555555 200000							efekt
	Ethylbenzene	μg/L	<	0.5	955555							25/51
	Methyl Bromide	μg/L	<		1999999							17/17
	Methyl Chloride	μg/L	<		17777							177
	Methylene Chloride	μg/L	<	0.5	*999999							#3#3r5
	1,1,2,2-Tetrachloroethane	μg/L	<	0.5	*****							63636
	Tetrachloroethylene	µg/L	<	0.5	777777		_			_		636363
	Toluene	µg/L	<	0.5	**********		_		_	_		F3F3F3
			-	0.5	177777		_					177
	1,2-trans-Dichloroethylene	μg/L	<		2000		-					100
	1,1,1-Trichloroethane	μg/L	<	0.5	17777Y							177
	1,1,2-Trichloroethane	μg/L	<	0.5	CONTRACTOR OF THE PARTY OF THE							200
	Trichloroethylene	μg/L	<	0.5	2222							CO
	Vinyl Chloride	μg/L	<	0.5	2222							200
1	2-Chlorophenol	μg/L	<	10	eletetetetet							w'w'w'
	2,4-Dichlorophenol	μg/L	<	10	0000000							0.00
	2,4-Dimethylphenol	μg/L	<	10	555555							22.23
	4,6-Dinitro-o-Cresol	μg/L	<		29999999							(200
٠	2,4-Dinitrophenol	μg/L	<	10	22222							(2/2)
1	2-Nitrophenol	μg/L	<	10	00000							550
	4-Nitrophenol	µg/L	<	10	1233355		_			_		C (C (C)
1	p-Chloro-m-Cresol	µg/L	<	10	5000000	_	_	_	_	_		555
	Pentachlorophenol		<	10	777777	_	_	_	_	_	_	222
		μg/L	-	10	9999999	_	-	_	_	-		F3F3F
	Phenol	μg/L	<		555555	_	-	_		-		122
_	2,4,8-Trichlorophenol	μg/L	<	10	eramanananan eramananan	_	-	_		-		erterart erterart
	Acenaphthene	μg/L	<	2.5	233333					_		43.00
	Acenaphthylene	μg/L	<	2.5	アンフィンフィン							1/2/2
	Anthracene	μg/L	<	2.5								200
	Benzidine	μg/L	<	50	22222							200
	Benzo(a)Anthracene	μg/L	<	2.5	222222							2000
	Benzo(a)Pyrene	μg/L	<	2.5	000000							555
	3.4-Benzofluoranthene	μg/L	<		222222							223
	Benzo(ghi)Perylene	μg/L	<	2.5	200000							200
	Benzo(k)Fluoranthene	µg/L	<	2.5	2222							122
			~	5	22322							199
	Bis(2-Chloroethoxy)Methane Bis(2-Chloroethyl)Ether	µg/L	<	5	33333							1
	. , , , , , , , , , , , , , , , , , , ,	µg/L	-	5	30000							550
	Bis(2-Chloroisopropyl)Ether	μg/L	<		WW.							500
	Bis(2-Ethylhexyl)Phthalate	μg/L	<	5	2222							120
	4-Bromophenyl Phenyl Ether	μg/L	<	5	elelelelele							e le e
	Butyl Benzyl Phthalate	μg/L	<	5	2000000							22
	2-Chloronaphthalene	μg/L	<	5	VVVVVVV							erierieri erierieri
	4-Chlorophenyl Phenyl Ether	μg/L	<	5	099999							1717
	Chrysene	μg/L	<	2.5	00000							227
	Dibenzo(a,h)Anthrancene	μg/L	<	2.5	#3#3#3#3#3# #3#3#3#3#3#							#1#1#1 #1#1#1
	1,2-Dichlorobenzene	μg/L	<	0.5	33333							200
	1,3-Dichlorobenzene	μg/L	<	0.5	2222							222
	1.4-Dichlorobenzene	µg/L	<	0.5	22200							222
	3,3-Dichlorobenzidine	µg/L	<	5	200000							333
			~	5	PARTY TO THE							1000
decin	Diethyl Phthalate	μg/L	-		CONTRACTOR OF THE PARTY OF THE							100
	Dimethyl Phthalate	μg/L	<	5	100000							2
	Di-n-Butyl Phthalate	μg/L	<	5	******							17 (1 × 1
	2,4-Dinitrotoluene	μg/L	<	5	CONTRA		_					ree
	2,6-Dinitrotoluene	μg/L	<	5	22222							200
	Di-n-Octyl Phthalate	μg/L	<	5	200000							rivini.

Γ	1,2-Diphenylhydrazine	μg/L	<	10	WWW							rrrrr
Ī	Fluoranthene	μg/L	<	2.5	65/5/5/5/5/							
Ī	Fluorene	μg/L	<	2.5	00000							er er er er er
ı	Hexachlorobenzene	μg/L	<	5	333333							22333
ı	Hexachlorobutadiene	μg/L	<	0.5	22220							
ı	Hexachlorocyclopentadiene	μg/L	<	5	22222							2000
	Hexachloroethane	μg/L	<	5	7999999 7999779							7 17 17 17 17 7 17 17 17 17
	Indeno(1,2,3-cd)Pyrene	μg/L	<	2.5	inner							corre
	Isophorone	μg/L	<	5	199999							*3*3*3*3*
	Naphthalene	μg/L	<	0.5	499999			-				e je je je je
	Nitrobenzene	µg/L	<	5	999999							199999
- 1	n-Nitrosodimethylamine	µg/L	<	5	200000							77777
	n-Nitrosodi-n-Propylamine	µg/L	<	5	555555							22222
	n-Nitrosodiphenylamine	µg/L	<	5	1999999			_	_	_		*1*1*1*1*
	Phenanthrene	µg/L	<	2.2	199999			_		_		erere e
	Pyrene	µg/L	<	2.5	VVVVVVV			_	_	_		2000000 2000000
	1,2,4-Trichlorobenzene	µg/L	<	0.5	22222		_	_	_	_		
\rightarrow	Aldrin	µg/L	~	0.5	222222		_	_	_	_		****
	alpha-BHC	µg/L	<		********		_	 	_	_		*****
	beta-BHC		<		2277							77777
	gamma-BHC	µg/L	<		20000							
	gamma-BHC delta BHC	µg/L	<		0000000							2777
		µg/L	_		22220			-	_	-		
	Chlordane 4,4-DDT	µg/L	<		200000		_	-	_	-		
	4,4-DDE	μg/L	<		WWW.		_	-	-	-		*****
		µg/L	<		1000000	_		-	-	-	_	*19/9/19/19
	4,4-DDD	µg/L	<		000000			-	-	-		100000
- 1	Dieldrin	μg/L	<		22222			-		_		10000
	alpha-Endosulfan	μg/L	<		20/0/0/0/0/0/			-	-	-		artariations
H	beta-Endosulfan	μg/L	<		200000			-	_	-		e e e e e
اٍ ≘	Endosulfan Sulfate	μg/L	<		000000			-	_	-		elektelete
~ L	Endrin	μg/L	<		000000			-				414444
	Endrin Aldehyde	μg/L	<		1999999							****
	Heptachlor	μg/L	<		1999999							eteletete
	Heptachlor Epoxide	μg/L	<		22222							2222
	PCB-1016	μg/L	<		eranterterterter							
	PCB-1221	μg/L	<		000000							HINNYIYI HINNYIYI
- 1	PCB-1232	μg/L	<		1777777							VIVIVIVIV
- 6	PCB-1242	μg/L	<		200000							****
- 1	PCB-1248	μg/L	<		199999							WYYY
- 1	PCB-1254	μg/L	<		0000000 000000							
Ŀ	PCB-1260	μg/L	<		200000							90000
[PCBs, Total	μg/L	<		2000000 2000000							er ter ter ter ter er ter ter ter ter
[Toxaphene	μg/L	<		2222							17777
[2,3,7,8-TCDD	ng/L	<		1111111							rrrr
	Gross Alpha	pCi/L			2000000							atabibibi atabibi
	Total Beta	pCi/L	<		22222							
	Radium 226/228	pCi/L	<		22222							
ē [Total Strontium	μg/L	<		255555							rrrr
ان	Total Uranium	μg/L	<		(999999							elektete
	Osmotic Pressure	mOs/kg			10000							171717
\dashv		1			1333333							
ı					333335							
l					79/9/9/9/9/9/							
ŀ					1111111							
ŀ					1999999							
ŀ					000000							
ŀ					177777							
ŀ					9555555 9555555							
ŀ					22222							
-					999999							
-		_			000000							
- 1					10000							

pennsylvania
Department of ENJIRONMENTAL
PROTECTION

Toxics Management Spreadsheet Version 1.3, March 2021

Mechanicsburg Borough, NPDES Permit No. PA0020885, Outfall 001

 Statewide Criteria
 Great Lakes Criteria ORSANCO Criteria

Stream / Surface Water Information

Stream

Discharge

structions

Apply Fish Criteria* No. Reaches to Model: PWS Withdrawal (MGD) Slope (ft/ft) DA (mi²)* 485 Elevation 342 € Receiving Surface Water Name: Conodoguinet Creek 15.75 RM Stream Code 010194 Point of Discharge End of Reach 1 Location

Yes 14.14

표 Analysis Hardness Hd Stream Hardness* ᇤ Tributary Hardness Time Velocit y (fps) Depth € Width (ft) W/D Ratio Tributary Flow (cfs) Stream 74.8 74.4 (cfs/mi²)* F 1.0 15.75 14.14 Z Z Point of Discharge End of Reach 1 Location Q 7-10

핂 Analysis Hardness 핍 Stream Hardness 됩 Tributary Hardness Time (susp) BARIL Velocit y (fps) Depth € Width (ft) W/D Ratio Tributary Flow (cfs) Stream (cfs/mi²) 된 15.75 14.14 RM Point of Discharge End of Reach 1 Location

Page 4

Stream / Surface Water Information

10/6/2022

Complete Mix Time Complete Mix Time 465.965 122.456 (min) (min) Toxics Management Spreadsheet Version 1.3, March 2021 Mechanicsburg Borough, NPDES Permit No. PA0020885, Outfall 001 Chem Translator of 0.316 applied Chem Translator of 0.982 applied Chem Translator of 0.908 applied Chem Translator of 0.96 applied Chem Translator of 1 applied Travel Time C Limits **Fravel Time** 7.00 (days) (days) 0.087 0.194 Comments Analysis pH: ○ Results Velocity Velocity 1.129 (fps) 0.507 (fps) W/D Ratio W/D Ratio O Inputs 137.136 73.091 238.11 Width (ft) 144.939 Width (ft) 144.939 ₹ WLA (µg/L) ۹ 1,249 77,131 29,750 2,755 4,040 13,477 18.9 Analysis Hardness (mg/l): 349 116 80.8 X X Š Depth (ft) Depth (ft) 1.057 1.983 PRINT WQ Obj 21,000 1,100 3,669 N/A N/A N/A 5.15 16.3 95.0 31.7 22.0 ΑN 750 340 Slope (ft/ft) Slope (ft/ft) 0.00047 0.00047 1159.530 1,100 340 21,000 8,100 16 95 30.435 WQC N/A N/A 4.677 750 Ϋ́ SAVE AS PDF Discharge Analysis Discharge Analysis Flow (cfs) 0.116 Flow (cfs) Coef Trib Conc PMF. (Jad/ RETURN TO INPUTS Net Stream Flow (cfs) 321.18 322.69 Net Stream Flow (cfs) 74.40 Stream 0 ે CCT (min): 15 Conc (µg/L) Stream PWS Withdrawal PWS Withdrawal pennsylvania
DEPARTMENT OF ENVIRONMENTAL PROTECTION (cts) (cfs) Fotal Dissolved Solids (PWS) Hexavalent Chromiun Total Chromium (III) Wasteload Allocations Model Results Total Aluminum Total Cadmium Chloride (PWS) Sulfate (PWS) Total Antimony Total Copper Free Cyanide Dissolved Iron Total Arsenic Total Boron Total Barium Total Cobalt Results Flow (cfs) Flow (cfs) 321.18 322.685 Pollutants 74.40 Stream Stream 74.80 Hydrodynamics AFC Model Results 15.75 15.75 14.14 4.4 RM M 5 Q 7.10 ? `

Jews 0	Total Mandanese	,		The second secon	,				
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0		0	N/A	N/A	N/A	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Meroury	0	0		0	1.400	1.65	6.05	Chem Translator of 0.85 applied
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Nickel	0	0		0	975.498	977	3.590	Chem Translator of 0.998 applied
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	henols (Phenolics) (PWS)		0		0	N/A	N/A	N/A	is a cold discount of the contract of the cold of the
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Selenium	0	0	1000000	0	A/A	N/A	N/A	Chem Translator of 0.922 applied
0 0 65 650 239 0 0 0 3 3.0 11.0 0 0 0 3 3.0 11.0 0 0 0 640 640 640 640 0 0 0 640 640 640 640 640 0 0 0 0 640 640 640 640 0 0 0 0 640 640 640 640 0 0 0 0 640 640 640 640 0 0 0 0 640 640 640 640 0 0 0 0 0 1,800 6,11 641 0 0 0 0 1,200 1,200 1,200 1,407 0 0 0 0 0 0 0 1,407 0 0	Total Silver	0	0		0	14.305	16.8	81.8	Chem Translator of 0.85 applied
0 0 244,403 25G 918 Chem Translator of 0 978 0 0 0 3 3.0 11.0 NIA	Total Thallium	0	0		0	65	65.0	239	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total Zino	0	0		0	244.403	250	918	Translator of 0.978
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aorolein	0	0		0	es	3.0	11.0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acrylamide	0	0		0	N/A	N/A	N/A	
0 0 0 0 1,800 1,800 1,800 1,800 0 0 0 1,800 1,800 0 0 0 0 0 1,800 1,200 1,200 0 0 0 0 1,800 1,200 1,200 0 0 0 0 0 1,800 1,800 0 0 0 0 0 1,800 1,800 0 0 0 0 0 1,800 1,800 0 0 0 0 0 1,800 1,800 0 0 0 0 0 1,000 1,000 0 0 0 0 0 0 1,000 1,000 0 0 0	Acrylonitrile	0	0	111111111111111111111111111111111111111	0	920	950	2,387	
0 0 0 1.800 1.800 1.800 0 0 0 2.800 2.800 0 0 0 0 0 1.200 1.200 1.200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Benzene	0	0		0	640	640	2,351	
0 0 0 2.800 2.800 0 0 0 1.200 1.200 0 0 0 1.200 1.200 0 0 0 1.200 1.200 0 0 0 1.800 18.000 0 0 0 1.800 18.000 0 0 0 1.800 18.000 0 0 0 1.800 18.000 0 0 0 1.800 15.000 0 0 0 11.000 11.000 0 0 0 11.000 11.000 0 0 0 12.000 12.000 0 0 0 0 12.000 0 0 0 12.000 12.000 0 0 0 0 12.000 12.000 0 0 0 0 0 12.000 12.000	Bromoform	0	0		0	1,800	1,800	6,611	
0 0 0 1.200 1.200 0 0 0 N/A N/A N/A 0 0 0 1.200 1.200 1.200 0 0 0 1.500 18.000 18.000 0 0 0 0 1.500 15.000 15.000 0 0 0 0 15.000 15.000 11.000 0 0 0 0 11.000 11.000 11.000 0 0 0 0 11.000 11.000 11.000 0 0 0 0 11.000 11.000 11.000 0 0 0 0 11.000 11.000 11.000 0 0 0 0 11.000 11.000 11.000 0 0 0 0 11.000 11.000 11.000 0 0 0 0 0 11.000 11.000	Carbon Tetrachloride	0	0		0	2,800	2,800	10,284	
0 0 NIA NIA NIA 0 0 0 18,000 18,000 0 0 0 18,000 18,000 0 0 0 18,000 18,000 0 0 0 18,000 15,000 0 0 0 7,500 7,500 0 0 0 7,500 7,500 0 0 0 11,000 11,000 0 0 0 11,000 11,000 0 0 0 11,000 11,000 0 0 0 11,000 11,000 0 0 0 12,000 12,000 0 0 0 12,000 12,000 0 0 0 1,700 1,700 0 0 0 0 1,700 1,700 0 0 0 0 0 0 0 0 <td>Chlorobenzene</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>1,200</td> <td>1,200</td> <td>4,407</td> <td></td>	Chlorobenzene	0	0		0	1,200	1,200	4,407	
0 0 18,000 18,000 1,800 0 0 1,900 1,900 1,900 0 0 0 1,900 1,900 0 0 0 15,000 15,000 0 0 0 11,000 11,000 0 0 0 11,000 11,000 0 0 0 11,000 11,000 0 0 0 11,000 11,000 0 0 0 12,000 12,000 0 0 0 12,000 12,000 0 0 0 12,000 12,000 0 0 0 12,000 12,000 0 0 0 12,000 17,00 0 0 0 17,00 17,00 0 0 0 17,00 17,00 0 0 0 17,00 17,00 0 0 0 <td>hlorodibromomethane</td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>A/A</td> <td>N/A</td> <td>N/A</td> <td></td>	hlorodibromomethane	0	0		0	A/A	N/A	N/A	
0 0 0 1,900 1,900 0 0 0 N/A N/A N/A 0 0 0 15,000 15,000 15,000 15,000 0 0 0 11,000 11,000 11,000 11,000 0 0 0 0 11,000 11,000 11,000 11,000 0 0 0 0 12,000 <td< td=""><td>Chloroethyl Vinyl Ether</td><td>0</td><td>0</td><td></td><td>0</td><td>18,000</td><td>18,000</td><td>66,112</td><td></td></td<>	Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	66,112	
0 0 0 N/A N/A 0 0 0 15,000 15,000 0 0 0 7,500 7,500 7,500 0 0 0 11,000 11,000 11,000 0 0 0 0 2,900 2,800 0 0 0 12,000 12,000 0 0 0 1,000 1,000 0 0 0 1,000 1,000 0 0 0 1,000 1,000 0 0 0 1,000 1,000 0 0 0 1,000 1,000 0 0 0 1,700 1,700 0 0 0 1,700 1,700 0 0 0 0 1,700 1,700 0 0 0 0 0 0 0 0 0 0 0	Chloroform	0	0		0	1,900	1,900	8,978	
0 0 15,000 15,000 15,000 15,000 15,000 15,000 11,000	chlorobromomethane	0	0		0	N/A	N/A	N/A	
0 0 7,500 7,500 7,500 0 0 0 11,000 11,000 11,000 0 0 0 310 310 310 310 0 0 0 0 2,900 2,900 12,000 12,000 10,	1.2-Dichloroethane	0	0		0	15.000	15,000	55.093	
0 0 0 11,000 11,000 0 0 0 310 310 310 0 0 0 2,900 2,900 2,900 12,000 0 0 0 1,000 1,000 1,000 1,000 0 0 0 0 1,000 1,000 1,000 0 0 0 0 1,700 1,700 1,000 0 0 0 0 1,700 1,700 1,700 0 0 0 0 1,700 1,700 1,700 0 0 0 0 3,400 3,400 3,400 0 0 0 0 3,400 3,400 3,400 0 0 0 0 3,400 3,400 3,400 0 0 0 0 0 3,400 3,400 0 0 0 0 0 0 1	1.1-Dichloroethylene		0	0000000	0	7.500	7.500	27.547	
0 0 310 310 0 0 0 2,900 2,900 0 0 0 12,000 12,000 0 0 0 1,000 1,000 0 0 0 1,000 1,000 0 0 0 1,700 1,700 0 0 0 6,800 6,800 0 0 0 6,800 6,800 0 0 0 0 3,400 3,400 0 0 0 0 3,400 3,400 0 0 0 0 3,400 3,400 0 0 0 0 0 3,400 3,400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,700 1,700 0 0 0 0 0 0 0 0<	1 2-Dichloropropane	0	٥		0	11,000	11,000	40.402	
0 0 0 2,900 2,900 0 0 0 12,000 1,000 0 0 0 1,000 1,000 0 0 0 700 700 0 0 0 700 700 0 0 0 1,700 1,700 0 0 0 0 3,400 3,400 0 0 0 0 3,400 3,400 0 0 0 0 3,400 3,400 0 0 0 0 3,400 3,400 0 0 0 0 0 3,400 3,400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1,700 1,700 0 0 0 0 0 0 0 0 0 0 0	3-Dichloropropylene	0	0	000000	0	310	310	1.130	
0 0 0 1,000 1,000 0 0 0 1,000 1,000 0 0 0 1,000 1,000 0 0 0 1,700 1,700 0 0 0 1,700 1,700 0 0 0 0 3,400 3,400 0 0 0 0 3,400 3,400 0 0 0 0 0 3,400 3,400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	Ethylbanzana	0	0		0	2 800	2 800	10.851	
0 0 0 1,1000 1,1000 0 0 0 700 700 0 0 0 1,700 1,700 0 0 0 1,700 1,700 0 0 0 6,800 6,800 0 0 0 3,000 3,000 0 0 0 3,400 3,400 0 0 0 3,400 3,000 0 0 0 0,3,400 3,400 0 0 0 0,3,400 3,400 0 0 0 0,3,400 3,400 0 0 0 0,3,400 3,400 0 0 0 0 0,400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methylene Chloride		0	1000000	6	12 000	12 000	44.075	
0 0 0 700 700 0 0 0 1,700 1,700 1,700 0 0 0 0 1,700 1,700 1,700 0 0 0 0 0 3,000 3,000 3,000 0 0 0 0 3,400 3,400 3,400 3,400 0 0 0 0 0 1,700 1,700 1,700 0 0 0 0 1,700 1,700 1,700 1,700 0 0 0 0 0 1,700 1,700 1,700 0 0 0 0 0 0 660 660 660 0 0 0 0 0 0 660 660 660 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.2-Tetrachloroethane	0	0	171111111111111111111111111111111111111	0	1,000	1.000	3.873	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Totrochlorocthylono	0	0	100000000000000000000000000000000000000	0	200,1	2001	0,010	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enachioroemyiene				,	320	720	2,071	
0 0 0 6.800 6.800 0 0.800 0 0 0 0 0 0 0 0 0 0 0 0 0 0	loinene	5	9		5	1,/00	00/,1	0,244	
0 0 0 3.000 3.000 3.000 0 0 0 0 0 0 0 0	-trans-Dichloroethylene	0	0		0	6,800	6,800	24,978	
0 0 0 3.400 3.400 0 0 0 0 1.300 2.300 2.300 0 0 0 0 1.700 1.700 1.700 0 0 0 0 1.700 1.700 1.700 0 0 0 0 660 660 660 660 0 0 0 0 660 670 670 <td< td=""><td>,1,1-Trichloroethane</td><td>0</td><td>0</td><td>0.600.600</td><td>0</td><td>3,000</td><td>3,000</td><td>11,019</td><td></td></td<>	,1,1-Trichloroethane	0	0	0.600.600	0	3,000	3,000	11,019	
0 0 0 2,300 2,300 0 0 0 N/A N/A 0 0 0 560 560 0 0 0 1,700 1,700 0 0 0 660 660 0 0 0 660 660 0 0 0 660 660 0 0 0 660 660 660 0 0 0 660 660 660 660 0 0 0 660 660 660 660 660 0 0 0 0 8,000 8,000 8,000 8,000 0 0 0 0 460 460 460 0 0 0 0 0 830 930 0 0 0 0 0 0 90 90 90 0	,1,2-Trichloroethane	0	0	00000	0	3,400	3,400	12,488	
0 0 0 N/A N/A 0 0 0 0 1/A N/A 0 0 0 60 560 560 560 0 0 0 1,700 1,700 1,700 1,700 1,700 0 0 0 0 660 670 670 670 670 670 670 670 670 670 <t< td=""><td>Trichloroethylene</td><td>0</td><td>0</td><td>277777</td><td>0</td><td>2,300</td><td>2,300</td><td>8,448</td><td></td></t<>	Trichloroethylene	0	0	277777	0	2,300	2,300	8,448	
0 0 0 660 560	Vinyl Chloride	0	0	11/11/11/11/11	0	N/A	N/A	N/A	
0 0 0 1.700 1.700 1.700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2-Chlorophenol	0	0	11/11/11/11	0	560	560	2,057	
0 0 0 660 660 660 660 0 0 0 0 0 0 0 0 0	2,4-Dichlorophenol	0	0		0	1,700	1,700	8,244	
0 0 0 660 660 660 670 670 670 670 670 67	2.4-Dimethylphenol	0	0	1000000	0	980	980	2.424	
0 0 0 8,000 8,000 8,000 0 0 0 0 0 0 0 0	2,4-Dinitrophenol	0	0	1911/11/11	0	990	960	2,424	
0 0 0 8.723 8.72 0 0 0 8.723 8.72 0 0 0 0 460 460 0 0 0 0 0 83 83.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2-Nitrophenol	0	0		0	8,000	8,000	29,383	
0 0 0 N/A N/A N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4-Nitrophenol	0	0		0	2,300	2,300	8,448	
0 0 0 460 460 0 0 0 83 83.0 0 0 0 0 N/A N/A 0 0 0 300 300 0 0 0 0.5 0.5	Pentachlorophenol	0	0		0	8.723	8.72	32.0	
0 0 460 460 0 0 83 83.0 0 0 0 N/A N/A 0 0 0 300 0 0 0 0.5 0.5	Phenol	0	0		0	N/A	N/A	N/A	
0 0 83 83.0 0 0 N/A N/A 0 0 300 300 0 0 0 0.5 0.5	2,4,8-Trichlorophenol	0	0	1317999	0	460	460	1,690	
0 0 0 300 300 0 0 0 0 0 0.5 0.5	Acenaphthene	0	0	0000000	0	83	83.0	305	
0 0 300 300 0.5 0.5	Anthracene	0	0		0	N/A	N/A	N/A	
0 0.5 0.5	Benzidine	0	0		0	300	300	1.102	
\$100.00 miles 100.00 miles	Benzo(a)Anthracene	0	0			0.5	0.5	1.84	
Banno/(a)Durana									

																														Analysis pH: 7.00		Comments						Chem Translator of 1 applied		
	110,187	N/A 16.528	992	514	N/A	N/A	3.012	1,286	2,681	N/A	14,692	3,182	5.877	3,636	55.1	735	N/A	N/A	36.7	18.4	220	N/A	50,723	14 692	62.439	NA	1,102	18.4	N/A	4// (mg/l): 249.39		WLA (µg/L)	N/A	N/A	N/A	NA	4,294	2,928	80,025	31,229
Z/A	30,000	N/A 4.500	270	140	N/A	N/A	820	350	730	N/A	4,000	2,500	1,600	066	15.0	200	N/A	N/A	10.0	5.0	0.09	N/A	140	4 000	17.000	N/A	300	2.0	N/A	Analysis Hardness (mg/l):	110 011	WG (J)(B)(A)	N/A	N/A	N/A	N/A	220	150	4,100	1,600
CIRC	30,000	4 500	270	140	N/A	N/A	820	350	730	N/A	4,000	2,500	1,600	066	15	200	N/A	N/A	10	2	99	N/A	140	4 000	17.000	N/A	300	22	N/A		H	(1/g/L)	N/A	N/A	N/A	N/A	220	150	4,100	1,600
0	0	0 0	0	0	0			0	0	0	0			0	0	0	0	0	0	0	0				, 0	0	0	0	0	0.801		Coef	0	0	0	0	0	0	0	0
THE FIRST																														PMF:		(hg/L)								
0	0	0 0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0			otream CV	0	0	0	0	0	0	0	0
0	0	0 0	0	0	0	0		0	0	0	0			0	0	0	0	0	0	0	0 0						0	0	٥	CCT (min): 720		Stream Conc (µg/L)	0	0	0	0	0	0	0	0
Benzo(k)Fluoranthene	Bis(2-Chloroethyl)Ether	Bis(2-Chloroisopropyi)Emer Ris(2-Ethylhexyl)Phthalate	4-Bromophenyl Phenyl Ether	Butyl Benzyl Phthalate	2-Chloronaphthalene	Chrysene	Ulbenzo(a,n)Antrirancene 1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	3,3-Dichlorobenzidine	Diethyl Phthalate	Dimetnyl Prinalate	2 4-Dinitrotoluene	2,6-Dinitrotoluene	1,2-Diphenylhydrazine	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Nonhthologo	Naphilialene	n-Nitrosodimethylamine	n-Nitrosodi-n-Propylamine	n-Nitrosodiphenylamine	Phenanthrene	Pyrene			Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Boron

								1	70			70		70			ס																													
	Chem Translator of 0.871 applied	Chora Translation of Co.	im Translator of 0.802 applie		Chem Translator of 0.96 applied			WQC = 30 day average; PMF =	Chem Translator of 0.658 applied		Chem Translator of 0.85 applied	Chem Translator of 0.997 applied		Chem Translator of 0.922 applied	Chem Translator of 1 applied		Chem Translator of 0.986 applied																													
-						1	A			A			A			4		9:	A	37	37	22	330	84	A	314	12	A	207	773	340	91	321	344	88	33	41	326	906	272	83	A	47	36	37	37
$\frac{1}{2}$	182 3 555	+	+	+		5.2 101	N/A N/A	1,500 36,183	10.2	N/A N/A	0.91	113 2,206	N/A N/A	4.99 97.4	N/A N/A	13.0 254	260 5,073	3.0 58.6	N/A N/A	130 2,537	130 2,537	370 7,222	560 10,930	240 4,684	N/A N/A	3,500 68,314	390 7,612	N/A N/A	H	1,500 29,277	2,200 42,940	1,191	580 11,321	2,400 46,844	210 4,099	140 2,733	330 6,441	1,400 27,326	810 11,908	680 13,272	450 8,783	N/A N/A	110 2,147	340 6,636		130 2.537
ŀ	158 855	+	+	+	-	5.2	N/A	1,500	6.699	N/A	0.770	112.671	N/A	4.600	N/A	13	256.250	m	N/A	130	130	370	280	240	V/N	3,500	380	N/A	H	1,500	2,200	61	580	2,400	210		330	1.400	610	680	450	N/A	110	340		130
100000000000000000000000000000000000000		Carlow Carlow									0				0 6000000	0					0	0				0										O Carlletter			O CHINESES	0						0 0000000000000000000000000000000000000
ŀ		+	+	+	+	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0 0	0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0
-	+		1										L																							_										
	Total Chromium (III)	Household Chromating	Tetal Calair	Total Cobait	Total Copper	Free Cyanide	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Meroury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zinc	Acrolein	Acrylamide	Acrylonitrile	Benzene	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chlorodibromomethane	2-Chloroethyl Vinyl Ether	Chloroform	Dichlorobromomethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene	Ethylbenzene	Methylene Chloride	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Toluene	1,2-trans-Dichloroethylene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethylene	Vinyl Chloride	2-Chlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2 4-Dinitrophenol

	+	0 0	000		000	6.693	6.69	131 N/A	
0	+		0		0	91	91.0	1.776	
0		0	0		0	17	17.0	332	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0		0	N/A	N/A	N/A	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+	0 0	0 0		0 0	59	59.0	1,152	
0 0 0 NIA	+		0		0	A/N	N/A	N/A	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0		0	N/A	N/A	N/A	
0 0 N/A N/A 0 0 910 910 910 0 0 0 54 54.0 54.0 0 0 0 35 35.0 35.0 0 0 0 0 N/A N/A N/A 0 0 0 0 N/A N/A N/A 0 0 0 0 160 160 160 0 0 0 160 160 160 160 0 0 0 160 160 160 160 160 160 0 0 0 150 150 150 160 1		0	0		0	6,000	6,000	117,110	
10		0	0		0	A/N	N/A	A/N	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n 1		0			212	910	10.702	
0 0 0 NIA NIA 0 0 0 NIA NIA 0 0 0 NIA NIA 0 0 0 160 160 0 0 0 160 160 0 0 0 150 150 150 0 0 0 0 150 150 150 0 0 0 0 170 180 800 800 0 0 0 0 0 170 170 170 0 0 0 0 20 20 200 20 200 20	Į.				0	35	35.0	683	
0 0 0 NIA		0	0		0	N/A	N/A	N/A	
0 0 0 NIA 160 170		0	0		0	N/A	N/A	N/A	
0 0 160	Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	Α/N	
0 0 69 69.0 0 0 150 69.0 0 0 0 150 150 0 0 0 150 150 150 0 0 0 0 800 800 800 0 0 0 0 21 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 22.0 200 200 200 200 200 200 200 200 200 200 200 20 <t< td=""><td></td><td>0</td><td>0</td><td></td><td>0</td><td>160</td><td>160</td><td>3,123</td><td></td></t<>		0	0		0	160	160	3,123	
0 0 150 150 150 0 0 0 N/A N/A N/A 0 0 0 800 800 800 800 0 0 0 500		0	0		0	69	69.0	1,347	
0 0 NIA NIA NIA 0 0 0 NIA NIA 0 0 0 800 800 0 0 0 500 500 0 0 0 21 21.0 0 0 0 320 320 0 0 0 3 3.0 0 0 0 40 40.0 0 0 0 40 40.0 0 0 0 1.0 40.0 0 0 0 1.0 40.0 0 0 0 0 1.0 0 0 0 0 1.0 1.0 0 0 0 0 1.0 1.0 0 0 0 0 1.0 1.0 0 0 0 0 1.0 1.0 0 0 0 0<		0	0		0	150	150	2,928	
0 0 0 800 800 0 0 0 500 500 500 0 0 0 21 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 22.0 200 200 200 200 200 200 200 200 200 200 20 200 20 20 2.0 20		0	0		0	N/A	N/A	N/A	
0 0 500 500 500 0 0 0 21 210 0 0 0 320 320 0 0 0 200 200 0 0 0 40 40.0 0 0 0 40.0 40.0 0 0 0 40.0 40.0 0 0 0 1 40.0 40.0 0 0 0 0 1 1.0 1 0 0 0 0 1 1.0 1 1.0 0 0 0 0 1 1.0 1 1.0 1 0 0 0 0 1 1.0 1 1.0 1 0 0 0 0 0 0 0 1.0 1.0 1.0 0 0 0 0 0 0 0		0	0		0	800	800	15,615	
0 0 0 21 21.0 0 0 0 32.0 32.0 0 0 0 200 200 0 0 0 40.0 40.0 0 0 0 40.0 40.0 0 0 0 40.0 40.0 0 0 0 1 10.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 0 1.2 12.0 0 0 0 0 2.100 2.100 0 0 0 0 0 3.400 0 0 0 0 0<		0	0		0	200	200	9,759	
0 0 320 320 0 0 0 320 320 0 0 0 3 3.0 0 0 0 40.0 40.0 0 0 0 40.0 40.0 0 0 0 1 40.0 0 0 0 2 2.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 1 1.0 0 0 0 0 2.100 2.100 0 0 0 0 3.400 3.400 0 0 0 0 0 0 0 0 0 0 0 3.400 0 0 0 0 0	+	0	0		0	21	21.0	410	
0 0 0 3 3 3.0 0 0 0 40 40.0 0 0 0 40 40.0 0 0 0 0 17 12.0 0 0 0 0 12 12.0 0 0 0 12 12.0 0 0 0 0 12 12.0 0 0 0 0 12 12.0 0 0 0 0 12 12.0 0 0 0 0 14 12 12.0 0 0 0 0 17 14.0 0 0 0 0 43 43.0 0 0 0 0 43 43.0 0 0 0 0 0 14 3.400 0 0 0 0 0 0 0 0 810 810 0 0 0 0 0 0 0 0 1 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+	0	0		0	320	320	6,246	
0 0 0 3 3.0 0 0 0 40 40.0 0 0 0 0 N/A N/A N/A 0 0 0 0 12 2.0 0 0 0 12 12.0 0 0 0 12 12.0 0 0 0 12 12.0 0 0 0 0 12 12.0 0 0 0 0 12 12.0 0 0 0 0 12 12.0 0 0 0 0 14 12 12.0 0 0 0 0 43 43.0 0 0 0 0 43 43.0 0 0 0 0 0 43 43.0 0 0 0 0 0 0 0 0 810 810 0 0 0 0 0 0 0 0 1 1 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+	0	0		0	200	200	3,904	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2-Diphenylhydrazine	0	0		0	8	3.0	58.6	
0 0 0 0 N/A		0	0		0	40	40.0	781	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0		0	Y/Z	N/A	Y/N	
0 0 0 1 1 1.0 0 0 0 1 1 1.0 0 0 0 12 2.0 0 0 1 1 1.0 0 0 0 12 12.0 0 0 0 0 2,100 2,100 0 0 0 43 43.0 0 0 0 810 810 810 0 0 0 810 810 0 0 0 0 810 810 0 0 0 810 810 0 0 0 810 810 0 0 0 0 810 810 0 0 0 0 810 810 0 0 0 0 1 1 1.0 0 0 0 0 0 1 1 1.0 0 0 0 0 0 0 1 1 1.0		0	0		0	N/A	N/A	N/A	
0 0 0 12 12.0 0 0 0 12 12.0 0 0 0 0 12 12.0 0 0 0 2,100 2,100 0 0 0 43 43.0 0 0 0 810 810 0 0 0 840 3,400 0 0 0 0 840 840 0 0 0 0 840 840 0 0 0 0 0 840 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0		0	2	2:0	39.0	
0 0 0 12 12.0 0 0 0 N/A N/A 0 0 0 1.00 2.100 0 0 0 43 43.0 0 0 0 43.0 810 0 0 0 0 810 0 0 0 0 3.400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 59 59.0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iene	0	0		0	-	1.0	19.5	
0 0 0 NA N/A N/A N/A N/A N/A N/A N/A N/A N/A	+	0	0		0	12	12.0	234	
0 0 0 43 43.0 2,100 6,10	e	0	0 0		0 0	N/A	N/A	N/A	
0 0 0 810 810 810 810 0 0 0 0 0 0 0 0 0	\dagger					2,100	2,100	40,800	
0 0 0 3,400 3,400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+		0			810	810	15.810	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90		0			3 400	3 400	68.382	
0 0 0 59 59.0 0 0 0 1 1 1.0 0 0 0 N/A N/A 0 0 0 26 26.0	ine		0		0	A/N	A/N	N/A	
0 0 0 1 1.0 0 0 0 N/A N/A 0 0 0 26 26.0	ne	0	0		0	59	59.0	1.152	
0 0 0 N/A N/A 0.0 0 0 26 26.0		0	0		0	-	1.0	19.5	
0 0 0 0 0 0 0 26 26.0		0	0		0	N/A	N/A	N/A	
	e.	0	0		0	26	26.0	202	
				ı		10/6/2022	2022		

	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	Dage 10
Comments																																													ord
WLA (µg/L)	N/A	N/A	N/A	N/A	109	195	46.844	60,507	A/A	N/A	N/A	N/A	N/A	78.1	5,855	N/A	N/A	19,518	0.98	11,906	N/A	N/A	N/A	4.68	N/A	58.6	N/A	N/A	N/A	N/A	N/A	1,952	N/A	N/A	111	N/A	N/A	644	N/A	N/A	1,327	N/A	N/A	N/A	1,113
Wa Obj (µg/L)	500,000	250,000	250,000	N/A	9.0	10.0	2,400	3,100	A/A	A/N	N/A	A/N	N/A	0.4	300	N/A	N/A	1,000	0.05	610	5.0	N/A	N/A	0.24	N/A	3.0	N/A	N/A	N/A	N/A	N/A	100.0	N/A	N/A	5.7	N/A	N/A	33.0	N/A	N/A	68.0	N/A	A/N	N/A	5710/R/20297.0
Wac (µg/L)	500,000	250,000	250,000	N/A	5.8	10	2,400	3,100	Α/N	N/A	A/N	A/A	N/A	4	300	N/A	N/A	1,000	0.050	910	2	N/A	N/A	0.24	N/A	9	N/A	N/A	N/A	N/A	N/A	100	N/A	N/A	5.7	N/A	N/A	33	N/A	N/A	98	N/A	A/A	N/A	5710/6
Fate	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trib Cano (µg/L)																														HHHH															
Stream	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stream Conc (µg/L)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Sulfate (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium	Total Cobalt	Total Copper	Free Cyanide	Dissolved Iron	Total Iron	Total Lead	Total Manganese	Total Meroury	Total Nickel	Total Phenols (Phenolics) (PWS)	Total Selenium	Total Silver	Total Thallium	Total Zino	Acrolein	Acrylamide	Acrylonitrile	Benzene	Bromoform	Carbon Tetrachloride	Chlorobenzene	Chlorodibromomethane	2-Chloroethyl Vinyl Ether	Chloroform	Dichlorobromomethane	1,2-Dichloroethane	1,1-Dichloroethylene	1,2-Dichloropropane	1,3-Dichloropropylene	Ethylbenzene	Methylene Chloride	1,1,2,2-Tetrachloroethane	Tetrachloroethylene	Model Besuits Toluene

1.1.1-Trichloroethane		,		- -	10.000	10.000	195.183	
1,1,2-Trichloroethane	0	0	60000	0	A/A	N/A	A/N	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0		0	N/A	A/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	586	
2.4-Dichlorophenol		0		٥	0	10.0	195	
2.4-Dimethylphenol	0	0		0	100	100.0	1,952	
2,4-Dinitrophenol	0	0		0	10	10.0	195	
2-Nitrophenol	0	0		0	A/A	A/N	N/A	
4-Nitrophenol	0	0		0	N/A	A/N	N/A	
Pentachlorophenol	0	0		0	A/N	A/N	N/A	
		0		0	4,000	4,000	78,073	
2,4,8-Trichlorophenol	0	0		0	A/N	A/N	N/A	
Acenaphthene	0	0		0	70	70.0	1,366	
Anthracene	0	0		0	300	300	5,855	
Benzidine	0	0		0	N/A	A/N	N/A	
Benzo(a)Anthracene	0	0		0	A/A	A/N	N/A	
Benzo(a)Pyrene	0	0		0	N/A	A/N	N/A	
Benzo(k)Fluoranthene	0	0		0	A/A	A/N	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	A/A	A/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	3,904	
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	W/W	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	1.95	
2-Chloronaphthalene	0	0		0	800	800	15,615	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlarobenzene	0	0		0	1,000	1,000	19,518	
1,3-Dichlorobenzene	0	0		0	7	7.0	137	
1,4-Dichlorobenzene	0	0		0	300	300	5,855	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	W/A	
Diethyl Phthalate	0	0		0	800	800	11,711	
Dimethyl Phthalate	0	0		0	2,000	2,000	39,037	
Di-n-Butyl Phthalate	0	0		0	20	20.0	390	
2,4-Dinitratoluene	0	0		0	N/A	N/A	W/A	
2,8-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	A/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	380	
Fluorene	0	0		0	20	90.09	976	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0		0	4	4.0	1.87	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	W/A	
Isophorone	0	0		0	34 34.0	34.0	664	
			THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER, THE OW					

1.2-Dichloroethane	0	ŀ		c	G G	a a	888	
1.1-Dichloroethylene	0			0	V/N	N/A	A/N	
1,2-Dichloropropane	0	0		0	6.0	6.0	90.7	
1,3-Dichloropropylene	0	0		0	0.27	0.27	27.2	
Ethylbenzene	0	0	(B)(B)(B)	0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	20	20.0	2,016	
1,1,2,2-Tetrachloroethane	0	0	1300000	0	0.2	0.2	20.2	
Tetrachloroethylene	0	0		0	10	10.0	1,008	
	0	0		0	A/N	N/A	N/A	
1,2-trans-Dichloroethylene	0	0		0	N/A	NA	A/N	
1,1,1-Trichloroethane	0	0		0	A/N	N/A	N/A	
1,1,2-Trichloroethane		0		0	0.55	0.55	55.4	
Trichloroethylene	0	0		0	9.0	9.0	60.5	
Vinyl Chloride	0	0		0	0.02	0.02	2.02	
2-Chlorophenal	0	0		0	A/N	N/A	A/N	
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0		0	N/A	N/A	A/N	
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A	
2-Nitrophenol	0	0		0	A/N	N/A	A/N	
4-Nitrophenol	0	0		0	A/N	N/A	N/A	
Pentachlorophenol	0	0		0	0.030	0.03	3.02	
	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	151	
Acenaphthene	0	0		0	N/A	N/A	N/A	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	1.000.0	0.0001	0.01	
Benzo(a)Anthracene	0	0	10000	0	0.001	0.001	0.1	
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.01	
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	1.01	
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	3.02	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	32.3	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	CHOCK STORY	0	N/A	N/A	N/A	
Chrysene	0	0		0	0.12	0.12	12.1	
Dibenzo(a,h)Anthrancene	0	0		0	0.0001	0.0001	0.01	
1.2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0		0	A/A	N/A	A/N	
1,4-Dichlorobenzene	0	0	10000	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	90.0	90'0	5.04	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	A/N	
Di-n-Butyl Phthalate	0	0		0	A/N	N/A	N/A	
2,4-Dinitrotoluene	0	ŀ	12/12/2011	6	0.05	0.05	5 04	
		,	A CANAL AND A	,	200	9	9	_

			8								-					
3.02	N/A	N/A	0.008	1.01	N/A	10.1	0.1	N/A	N/A	N/A	0.071	0.5	333	N/A	N/A	N/A
0.03	N/A	N/A	0.00008	0.01	N/A	0.1	0.001	N/A	N/A	N/A	0.0007	0.005	3.3	N/A	N/A	N/A
0.03	N/A	N/A	0.00008	0.01	N/A	0.1	0.001	N/A	N/A	N/A	0.0007	0.005	3.3	N/A	N/A	N/A
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		999					999									
18	113	10	11	10	000	20	100	111	00	200	113	20		93	50	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ne			9	Je.	diene		ane				ine	nine	ine			ne
/lhydrazi	uthene	Fluorene	obenzen	poutadien	dopentac	roethane	3-cd)Pyre	orone	nalene	Nitrobenzene	nethylam	Propylan	henylam	uthrene	ane	probenze
1,2-Diphenylhydrazine	Fluoranthene	Fluo	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)Pyrene	Isophorone	Naphthalene	Nitrobe	n-Nitrosodimethylamine	n-Nitrosodi-n-Propylamine	n-Nitrosodiphenylamine	Phenanthrene	Pyrene	1,2,4-Trichlorobenzene
-				_	Hex		ú				Ė	Y-L	-L			1,

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

WQBEL Basis Governing WQBEL Units Concentration Limits MAX MDL AML MDL (lbs/day) Mass Limits (lbs/day) AML

Other Pollutants without Limits or Monitoring > The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

	_	_	_	_	_	_	_	_	_	_	_	_	_
Comments	PWS Not Applicable	PWS Not Applicable	No WQS	PWS Not Applicable	Discharge Conc ≤ 10% WQBEL	No WQS	Discharge Conc ≤ 10% WQBEL	Discharge Conc < TQL	Discharge Conc ≤ 10% WQBEL	Discharge Conc ≤ 10% WQBEL			
Units	N/A	N/A	N/A	N/A	hg/L	ng/L	hg/L	hg/L	N/A	hg/L	hg/L	hg/L	⊓/6rl
Governing WQBEL	N/A	N/A	N/A	N/A	1,766	109	195	46,844	N/A	19,069	10.4	3,555	38.4
Pollutants	Total Dissolved Solids (PWS)	Chloride (PWS)	Bromide	Sulfate (PWS)	Total Aluminum	Total Antimony	Total Arsenic	Total Barium	Total Beryllium	Total Boron	Total Cadmium	Total Chromium (III)	Hexavalent Chromium
													-:

44

age 15

	Total Copper Free Cyanide	104	1/011	Discharge Conc s 10% WOBEL
Free Cyanide 51.8 μg/L Total Cyanide N/A N/A Dissolved Iron 5.855 μg/L Total Lead 199 μg/L Total Manganese 0.98 μg/L Total Manganese 0.98 μg/L Total Manganese 0.98 μg/L Phenols (Phenolics) (PWS) 2.206 μg/L Phenols (Phenolics) (PWS) 97.4 μg/L Total Silver 38.6 μg/L Total Silver 38.6 μg/L Acrylamilde 7.06 μg/L Acrylamilde 7.06 μg/L Acrylamilde 6.05 μg/L Acrylamilde 7.06 μg/L Acrylamilde 7.06 μg/L Acrylamilde 7.06 μg/L Acrylamilde 7.06 μg/L Acrylamilde 80.5 μg/L Chlorostrace 6.05 μg/L Chlorostrace 80.7 μg/L Chlorostrace 95.8	Free Cyanide		1,84	
Total Cyanide N/A N/A Dissolved Iron 36.183 μg/L Total Iron 36.183 μg/L Total Mercury 0.98 μg/L Total Mercury 0.98 μg/L Total Mercury 2,206 μg/L Total Selenium 97.4 μg/L Total Selenium 97.4 μg/L Total Silver 97.4 μg/L Total Silver 97.4 μg/L Total Silver 97.4 μg/L Total Silver 97.4 μg/L Acrolamide 0.05 μg/L Acrolamide 7.06 μg/L Acrolamide 7.06 μg/L Acrolamide 6.05 μg/L Acrolamide 7.06 μg/L Acrolamide 7.06 μg/L Caloroform 40.3 μg/L Acrolamide 6.05 μg/L Chlorodenmethane 80.7 μg/L Chlorodenmethane 96.8 μg/L		51.8	hg/L	Discharge Conc ≤ 25% WQBEL
Dissolved Iron 5,855 µg/L Total Iron 36,183 µg/L Total Mercury 0.98 µg/L Total Manganese 19,518 µg/L Total Nickel 2,206 µg/L Phenols (Phenolics) (PWS) 0.98 µg/L Total Selenium 2,206 µg/L Total Silver 39.6 µg/L Total Silver 38.6 µg/L Acrolarios (PWS) 39.6 µg/L Total Silver 38.6 µg/L Acrolariositrile 6.05 µg/L Acrolariositrile 6.05 µg/L Benzene 58.5 µg/L Carbon Tetrachloride 7.06 µg/L Acrylamide 7.06 µg/L Chlorochmomethane 60.5 µg/L Chlorochmomethane 80.7 µg/L Chlorochmomethane 96.7 µg/L Chlorochmomethane 96.8 µg/L Chlorochmomethane 96.7 µg/L 1.1-Di	Total Cyanide	N/A	N/A	No WQS
Total Iron 36,183 μg/L Total Lead 199 μg/L Total Manganese 19,518 μg/L Total Manganese 19,518 μg/L Total Silver 19,74 μg/L Total Silver 19,706 μg/L Acrolein 7,06 μg/L Acrolein 7,06 μg/L Benzene 58,5 μg/L Acrylamide 7,06 μg/L Acrylamide 7,06 μg/L Benzene 58,5 μg/L Chlorobenzene 1,952 μg/L Chlorothane 1,952 μg/L Chlorothane 99,8 μg/L Chlorothane 99,8 μg/L 1,1-Dichloroethane 99,7 μg/L 1,2-Dichloroethane 99,7 μg/L 1,2-Dichloroethane 1,327 μg/L 1,2-Dichloroethane 99,7 μg/L 1,2-Dichloroethane 1,327 μg/L 1,2-Tetrachloroethylene 1,008 μg/L Tetrachloroethylene 1,113 μg/L Tetrans-Dichloroethylene 1,113 μg/L Tetrans-Dichloroethylene 1,113 μg/L	Dissolved Iron	5,855	hg/L	Discharge Conc < TQL
Total Lead 199 μg/L Total Menganese 19,518 μg/L Total Mercury 0.98 μg/L Total Nickel 2,206 μg/L Total Salenium 97.4 μg/L Total Silver 38.6 μg/L Total Silver 38.6 μg/L Total Silver 38.6 μg/L Total Silver 38.6 μg/L Acrolein 7.06 μg/L Acrolamide 7.06 μg/L Acrolamide 7.06 μg/L Acrolamide 7.06 μg/L Acrolamide 7.06 μg/L Chlorobenzene 80.7 μg/L Chlorobenzene 1.952 μg/L Chloroethyl Vinyl Ether 42.375 μg/L Chloroethyl Vinyl Ether 42.375 μg/L Chloroethyl Vinyl Ether 42.375 μg/L 1.1-Dichloroethane 99.8 μg/L 1.2-Dichloroethane 90.7 μg/L 1.2-Dichloroethylene<	Total Iron	36,183	hg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese 19,518 μg/L Total Mercury 0.98 μg/L Total Nickel 2,206 μg/L Phenols (Phenolics) (PWS) 97.4 μg/L Total Silver 38.6 μg/L Acrolarium N/A N/A Acrolarium 7.06 μg/L Chlorocharium 1.352 μg/L Chlorocharium 90.3 μg/L Chlorochyliene 90.7 μg/L	Total Lead	199	hg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury 0.98 μg/L Total Nickel 2,206 μg/L Phenols (Phenolics) (PWS) 97.4 μg/L Total Selenium 97.4 μg/L Total Selenium 38.6 μg/L Total Silver 4.68 μg/L Total Molybdenum N/A N/A Acrolein N/A N/A Acrolein 7.06 μg/L Acrylamide 7.06 μg/L Chlorobenzene 1.952 μg/L Chlorobenzene 1.952 μg/L Chlorobenzene 1.357 μg/L Chlorobenzene 99.8 μg/L 1.1-Dichloroethane 90.7 μg/L 1.2-Dichloroethane 90.7 μ	Total Manganese	19,518	hg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel 2,206 μg/L Phenols (Phenolics) (PWS) 2,206 μg/L Total Selenium 97.4 μg/L Total Salver 38.6 μg/L Total Salver 38.6 μg/L Total Thallium 4.68 μg/L Total Molybdenum N/A N/A Acrolein 7.06 μg/L Acrolein 7.06 μg/L Berzene 6.05 μg/L Bromoform 7.06 μg/L Chlorobenzene 80.7 μg/L Chlorobenzene 80.7 μg/L Chlorobenzene 1.952 μg/L Chlorobenzene 1.352 μg/L Chlorobenzene 1.11 μg/L Chlorobenzene 95.8 μg/L Chlorobenzene 96.8 μg/L Chlorobenzene 97.9 μg/L 1.1-Dichloroethane 96.8 μg/L 1.2-Dichloroptopane 90.7 μg/L 1.3-Dichloroptopane 90.7	Total Mercury	0.98	hg/L	Discharge Conc < TQL
Phenols (Phenolics) (PWS) μg/L Total Selenium 97.4 μg/L Total Silver 39.6 μg/L Total Silver 38.6 μg/L Total Molybdenum N/A N/A Acrylamide 7.06 μg/L Bromodomitie 6.05 μg/L Bromodomitie 6.05 μg/L Chlorobenzene 7.06 μg/L Chlorobenzene 1.95.2 μg/L Chlorobenzene 96.8 μg/L Chlorobenzene N/A N/A N/A Chlorobenzene 96.8 μg/L Oichloroethane 96.8 μg/L 1.1-Dichloroethane 96.8 μg/L 1.2-Dichloroethane 96.7 μg/L 1.4-Dioxane N/A N/A Methylene Chloride 2.016	Total Nickel	2,208	hg/L	Discharge Conc s 10% WQBEL
Total Selenium 97.4 μg/L Total Silver 39.6 μg/L Total Thallium 4.68 μg/L Acrolein 7.06 μg/L Acrylamide 7.06 μg/L Acrylamide 7.06 μg/L Acrylamide 7.06 μg/L Acrylamide 6.05 μg/L Acrylamide 6.05 μg/L Acrylamide 7.06 μg/L Bromoform 706 μg/L Chlorobenzene 80.7 μg/L Chlorobenzene 1.962 μg/L Chlorothane 80.7 μg/L Chlorothorothane 95.8 μg/L 1.1-Dichlorothane 96.8 μg/L 1.2-Dichlorothane 96.7 μg/L 1.2-Dichlorothane 96.7 μg/L 1.2-Dichlorothane 96.7 μg/L 1.2-Dichlorothylene 1.327 μg/L Acthylene Chloride 2.016 μg/L 1.2-2-Tetrachlorothylene 1.	Phenols (Phenolics)		µg/L	PWS Not Applicable
Total Silver 38.6 μg/L Total Thallium 4.68 μg/L Total Molybdenum N/A N/A Acrolein 7.06 μg/L Acrylamide 6.05 μg/L Acrylamide 6.05 μg/L Benzene 6.05 μg/L Bromoform 706 μg/L Chlorobenzene 80.7 μg/L Chloroethane 80.7 μg/L Chloroethane 80.7 μg/L Chloroethane 96.8 μg/L Chloroethane 80.7 μg/L 1.1-Dichloroethane 96.8 μg/L 1.2-Dichloroethane 96.8 μg/L 1.2-Dichloroethane 96.8 μg/L 1.2-Dichloroethane 96.7 μg/L 1.2-Dichloroethane 90.7 μg/L 1.2-Dichloroethylene 1.327 μg/L 1.2-Dichloroethylene 1.327 μg/L 1.2-Z-Tetrachloroethane 20.2 μg/L 1.2.2-Tetrachloroethan	Total Selenium	97.4	hg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium 4.68 μg/L Total Molybdenum N/A N/A Acrolein 7.06 μg/L Acrylamide 7.06 μg/L Acrylamide 7.06 μg/L Benzene 6.05 μg/L Bromoform 7.06 μg/L Carbon Tetrachloride 40.3 μg/L Chlorobazene 1.962 μg/L Chlorothane 80.7 μg/L Chlorothane 80.7 μg/L Chlorothane 95.8 μg/L 1.1-Dichlorothane 95.8 μg/L 1.2-Dichlorothane 99.8 μg/L 1.2-Dichlorothane 90.7 μg/L 1.2-Dichlorothylene 90.7 μg/L 1.2-Dichlorothylene 20.7 μg/L Athylbenzene 1.327 μg/L Athylbenzene 2.016 μg/L 1.2-2-Tetrachlorothane 1.008 μg/L 1.2-2-Tetrachlorothylene 1.008 μg/L 1.2.2-Tetrachlorothyl	Total Silver	39.6	hg/L	Discharge Conc < TQL
Total Zinc 588 μg/L Total Molybdenum N/A N/A Acrolein 7.06 μg/L Acrylamide 7.06 μg/L Acrylamide 7.06 μg/L Benzene 6.05 μg/L Bromoform 706 μg/L Carbon Tetrachloride 40.3 μg/L Chlorothane 80.7 μg/L Chlorothyl Vinyl Ether 42.375 μg/L Chlorothyl Vinyl Ether 42.375 μg/L Chlorothyl Vinyl Ether 42.375 μg/L 1.1-Dichlorothylene 96.8 μg/L 1.2-Dichlorothylene 90.7 μg/L 1.2-Dichlorothylene 90.7 μg/L 1.2-Dichlorothylene 20.7 μg/L 1.2-Dichlorothylene 20.2 μg/L 1.2-Tetrachlorothylene 1.308 μg/L 1.2-Tetrachlorothylene 1.008 μg/L 1.2-Tetrachlorothylene 1.008 μg/L 1.008 μg/L μg/L	Total Thallium	4.68	hg/L	Discharge Conc < TQL
Total Molybdenum N/A N/A Acrolein 7.06 μg/L Acrylamide 7.06 μg/L Benzene 6.05 μg/L Bromoform 7.06 μg/L Bromoform 1.96.2 μg/L Carbon Tetrachloride 40.3 μg/L Chlorobenzene 80.7 μg/L Chlorothane 80.7 μg/L Chlorothyl Vinyl Ether 42.375 μg/L Chlorothyl Vinyl Ether 42.375 μg/L 1.1-Dichlorothane 95.8 μg/L 1.2-Dichlorothane 99.8 μg/L 1.3-Dichlorothylene 80.7 μg/L 1.3-Dichlorothylene 80.7 μg/L 1.3-Dichlorothylene 2.016 μg/L 1.2-Dichlorothylene 2.016 μg/L 1.2-Tetrachlorothylene 1.008 μg/L 1.2-Tetrachlorothylene 1.008 μg/L 1.2-Tetrachlorothylene 1.008 μg/L 1.008 μg/L μg/L <	Total Zinc	588	hg/L	Discharge Conc ≤ 10% WQBEL
Acrolein 7.06 μg/L Acrylamide 7.06 μg/L Benzene 68.05 μg/L Benzene 68.5 μg/L Bromoform 706 μg/L Carbon Tetrachloride 40.3 μg/L Chlorodinomethane 80.7 μg/L Chlorodinomethane 80.7 μg/L Chlorodorm N/A N/A Olichloroethane 95.8 μg/L 1.1-Dichloroethane 96.8 μg/L 1.2-Dichloroethane 90.7 μg/L 1.3-Dichloroethylene 90.7 μg/L 1.3-Dichloropropane 90.7 μg/L 1.3-Dichloroethylene 27.2 μg/L 1.4-Dichloroethylene 20.2 μg/L 1.2-Dichloroethylene 20.0 μg/L 1.2-Tetrachloroethane 20.2 μg/L 1.2-Tetrachloroethane 1.008 μg/L 1.2-Tetrachloroethane 1.008 μg/L 1.2-Tetrachloroethane 1.008 μg/L	Total Molybdenum	N/A	N/A	No WQS
Acrylamide 7.06 μg/L Acrylamide 6.05 μg/L Benzene 58.5 μg/L Bromoform 706 μg/L Carbon Tetrachloride 1.952 μg/L Chlorobenzene 1.952 μg/L Chlorothane 80.7 μg/L Chlorothane 80.7 μg/L Olchlorothane 96.8 μg/L 1.1-Dichlorothane 96.8 μg/L 1.2-Dichlorothane 99.8 μg/L 1.3-Dichlorothylene 90.7 μg/L 1.3-Dichloropropane 90.7 μg/L 1.3-Dichlorothylene 27.2 μg/L 1.4-Dichlorothylene 2.016 μg/L 1.2-Tetrachlorothylene 2.016 μg/L 1.2.2-Tetrachlorothylene 1.008 μg/L Toluene 1.113 μg/L 2-trans-Dichlorothylene 1.113 μg/L 2-trans-Dichlorothylene 1.962 μg/L	Acrolein	7.08	hg/L	Discharge Conc < TQL
Acrylonitrile 6.05 μg/L Benzene 58.5 μg/L Bromoform 706 μg/L Carbon Tetrachloride 1,952 μg/L Chlorobanzene 1,952 μg/L Chloroethane 80.7 μg/L Chloroethyl Vinyl Ether 42,375 μg/L Chloroform 111 μg/L Dichloroethane 96.8 μg/L 1.1-Dichloroethane 98 μg/L 1.2-Dichloroethylene 90.7 μg/L 1.3-Dichloroptopane 90.7 μg/L 1.3-Dichloroethylene 27.2 μg/L 1.4-Dichloroethylene 20.2 μg/L 1.2-Dichloroethylene 20.2 μg/L 1.2-Tetrachloroethylene 1.008 μg/L Tetrachloroethylene 1.008 μg/L Tetrachloroethylene 1.008 μg/L Toluene 1.113 μg/L Toluene 1.113 μg/L 1.14as-Dichloroethylene 1.113 μg/L	Acrylamide	7.06	hg/L	Discharge Conc ≤ 25% WQBEL
Benzene 58.5 μg/L Bromoform 706 μg/L Carbon Tetrachloride 40.3 μg/L Chlorobenzene 1,952 μg/L Chlorocthane 80.7 μg/L Chlorocthy Vinyl Ether 42,375 μg/L Chlorocthy Vinyl Ether 42,375 μg/L Chloroform methane 96.8 μg/L 1.1-Dichlorothane 96.8 μg/L 1.2-Dichlorothylene 90.7 μg/L 1.3-Dichlorothylene 90.7 μg/L 1.4-Dichlorothylene 1,327 μg/L 1.2-Tetrachlorothylene 20.2 μg/L 1.2.2-Tetrachlorothylene 1,008 μg/L Toluene 1,113 μg/L Toluene 1,113 μg/L 2-trans-Dichloroethylene 1,113 μg/L	Acrylonitrile	6.05	hg/L	Discharge Conc < TQL
Bromoform 706 μg/L Carbon Tetrachloride 40.3 μg/L Chlorobenzene 1,852 μg/L Chlorodibromomethane 80.7 μg/L Chlorothane N/A N/A Chloroform 111 μg/L Chlorothane 95.8 μg/L 1.1-Dichlorothane 96.8 μg/L 1.2-Dichlorothane 90.7 μg/L 1.3-Dichlorothylene 90.7 μg/L 1.4-Dichlorothylene 27.2 μg/L 1.4-Dichlorothylene 2.016 μg/L 1.4-Dichlorothylene 2.016 μg/L 1.4-Dichlorothylene 1.008 μg/L Tetrachlorothylene 1.008 μg/L Toluene 1.113 μg/L Toluene 1.113 μg/L 2-trans-Dichloroethylene 1.113 μg/L	Benzene	58.5	hg/L	Discharge Conc < TQL
Carbon Tetrachloride 40.3 μg/L Chlorobenzene 1.852 μg/L Chlorodibromomethane 80.7 μg/L Chloroethane N/A N/A Chloroform 111 μg/L Chloroform 111 μg/L Dichloroethane 96.8 μg/L 1.3-Dichloroethane 96.8 μg/L 1.2-Dichloroethane 90.8 μg/L 1.2-Dichloroethane 90.7 μg/L 1.2-Dichloroethane 80.7 μg/L 1.4-Dichloroethylene 27.2 μg/L Hylbenzene 1.327 μg/L Ethylbenzene 2.016 μg/L Tetrachloroethylene 1.008 μg/L Tetrachloroethylene 1.113 μg/L Toluene 1.113 μg/L 2-trans-Dichloroethylene 1.113 μg/L	Bromoform	706	hg/L	Discharge Conc < TQL
Chlorobenzene 1,952 μg/L Chlorodibromomethane 80.7 μg/L Chloroethane N/A N/A Chloroethane 111 μg/L Chloroethane 111 μg/L Chloroethane 95.8 μg/L 1,1-Dichloroethane 99.8 μg/L 1,2-Dichloroethane 90.7 μg/L 1,3-Dichloroptopane 90.7 μg/L 1,3-Dichloroptopylene 27.2 μg/L Ethylbenzene 1,327 μg/L Methylene Chloride 2,016 μg/L Tetrachloroethane 1,008 μg/L Tetrachloroethylene 1,1113 μg/L Toluene 1,1652 μg/L	Carbon Tetrachloride	40.3	µg/L	Discharge Conc < TQL
Chlorodibromomethane 80.7 μg/L Chloroethane N/A N/A Chloroethane 42,375 μg/L Chloroform 111 μg/L Chlorothane 95.8 μg/L 1.1-Dichloroethane 99.8 μg/L 1.2-Dichloroethane 99.7 μg/L 1.3-Dichloropropane 90.7 μg/L 1.3-Dichloropropylene 27.2 μg/L Ethylbenzene 1,327 μg/L Methylene Chloride 2,016 μg/L Tetrachloroethane 1,008 μg/L Toluene 1,113 μg/L Toluene 1,113 μg/L	Chlorobenzene	1,952	hg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane N/A N/A 2-Chloroethyl Vinyl Ether 42,375 μg/L Chloroform 111 μg/L Chloroformmethane 95.8 μg/L 1.1-Dichloroethane 99.8 μg/L 1.2-Dichloroethane 99.8 μg/L 1.2-Dichloroethylene 90.7 μg/L 1.3-Dichloroethylene 27.2 μg/L 1.4-Dichloroethylene 1.327 μg/L Ethylbenzene 2.016 μg/L Methylene Chloride 2.016 μg/L 1.2.2-Tetrachloroethylene 1.008 μg/L Toluene 1.113 μg/L Toluene 1.113 μg/L 2-trans-Dichloroethylene 1.113 μg/L	Chlorodibromomethane	80.7	hg/L	Discharge Conc ≤ 25% WQBEL
2-Chloroethyl Vinyl Ether 42.375 μg/L Chloroform 111 μg/L Chloroform 95.8 μg/L 1.1-Dichloroethane 99.8 μg/L 1.2-Dichloroethylene 90.7 μg/L 1.2-Dichloropropalene 27.2 μg/L 1.4-Dioxane N/A N/A Ethylbenzene 2.016 μg/L Methylene Chloride 2.016 μg/L 1.2.2-Tetrachloroethylene 1.008 μg/L Toluene 1.113 μg/L Toluene 1.113 μg/L 2-trans-Dichloroethylene 1.113 μg/L	Chloroethane	N/A	N/A	No WQS
Chloroform 111 µg/L Dichlorobromomethane 95.8 µg/L 1.1-Dichloroethane N/A N/A 1.2-Dichloroethane 99.8 µg/L 1.2-Dichloroethylene 90.7 µg/L 1.3-Dichloropropylene 27.2 µg/L 1.4-Dioxane N/A N/A Ethylborozene 2.016 µg/L Methylene Chloride 2.016 µg/L 1.2.2-Tetrachloroethylene 1.008 µg/L Toluene 1.113 µg/L Toluene 1.113 µg/L 2-trans-Dichloroethylene 1.113 µg/L	2-Chloroethyl Vinyl Ether	42,375	μg/L	Discharge Conc < TQL
Dichlorobromomethane 95.8 µg/L 1.1-Dichloroethane N/A N/A 1.2-Dichloroethylene 998 µg/L 1.2-Dichloropropane 90.7 µg/L 1.3-Dichloropropylene 27.2 µg/L 1.4-Dioxane N/A N/A Ethylbenzene 2.0.7 µg/L Methylene Chloride 2.0.16 µg/L 1.2.2-Tetrachloroethane 20.2 µg/L Toluene 1.113 µg/L Toluene 1.113 µg/L 2-trans-Dichloroethylene 1.113 µg/L	Chloroform	111	hg/L	Discharge Conc < 25% WQBEL
1.1-Dichloroethane N/A N/A 1.2-Dichloroethane 998 µg/L 1.1-Dichloroethylene 644 µg/L 1.2-Dichloropropane 90.7 µg/L 1.3-Dichloropropylene 27.2 µg/L 1.4-Dioxane N/A N/A Ethylbenzene 1.327 µg/L Methylene Chloride 2.016 µg/L 1.2.2-Tetrachloroethane 1.008 µg/L Toluene 1.113 µg/L 2-trans-Dichloroethylene 1.113 µg/L 2-trans-Dichloroethylene 1.952 µg/L	Dichlorobromomethane	82.8	µg/L	Discharge Conc < TQL
1,2-Dichloroethane 998 µg/L 1,1-Dichloroethylene 644 µg/L 1,2-Dichloropropane 90.7 µg/L 1,3-Dichloropropylene 27.2 µg/L 1,4-Dioxane N/A N/A Ethylbenzene 1,327 µg/L Methylene Chloride 2,016 µg/L 1,2.2-Tetrachloroethane 2,0.2 µg/L Totlane 1,113 µg/L Toluene 1,113 µg/L 2-trans-Dichloroethylene 1,113 µg/L	1,1-Dichloroethane	N/A	N/A	No WQS
1.1-Dichloroethylene 644 µg/L 1.2-Dichloropropane 90.7 µg/L 1.3-Dichloropropylene 27.2 µg/L 1.4-Dioxane N/A N/A Ethylbenzene 1,327 µg/L Methylene Chloride 2.016 µg/L 1.2.2-Tetrachloroethylene 1.008 µg/L Toluene 1.113 µg/L 2-trans-Dichloroethylene 1.113 µg/L	1,2-Dichloroethane	866	hg/L	Discharge Conc < TQL
1,2-Dichloropropane 90.7 µg/L 1,3-Dichloropropylene 27.2 µg/L 1,4-Dioxane N/A N/A Ethylbenzene 1,327 µg/L Methylene Chloride 2,016 µg/L 1,2.2-Tetrachloroethylene 1,008 µg/L Toluene 1,113 µg/L 2-trans-Dichloroethylene 1,113 µg/L	1,1-Dichloroethylene	644	µg/L	Discharge Conc < TQL
1.3-Dichloropropylene 27.2 µg/L 1.4-Dioxane N/A N/A Ethylbenzene 1.327 µg/L Methylene Chloride 2.016 µg/L 1.2.2-Tetrachloroethane 20.2 µg/L Tetrachloroethylene 1.113 µg/L Tolluene 1.113 µg/L 2-trans-Diohloroethylene 1.952 µg/L	1,2-Dichloropropane	200.2	hg/L	Discharge Conc < TQL
1.4-Dioxane N/A N/A Ethylbenzene 1,327 µg/L Methylene Chloride 2,016 µg/L 1.2.2-Tetrachloroethane 20.2 µg/L Tetrachloroethylene 1,008 µg/L Tolluene 1,113 µg/L 2-trans-Diohloroethylene 1,952 µg/L	1,3-Dichloropropylene	27.2	µg/L	Discharge Conc < TQL
Ethylbenzene 1,327 µg/L Methylene Chloride 2,016 µg/L 1.2.2-Tetrachloroethane 20.2 µg/L Tetrachloroethylene 1,008 µg/L Tolluene 1,113 µg/L 2-trans-Diohloroethylene 1,952 µg/L	1,4-Dioxane	N/A	N/A	No WQS
Methylene Chloride 2.016 µg/L .1.2.2-Tetrachloroethane 20.2 µg/L Tetrachloroethylene 1,008 µg/L Tolluene 1,113 µg/L 22-trans-Diohloroethylene 1,952 µg/L	Ethylbenzene	1,327	µg/L	Discharge Conc < TQL
1.2.2-Tetrachloroethane 20.2 µg/L Tetrachloroethylene 1.008 µg/L Tolluene 1.113 µg/L 2-trans-Diohloroethylene 1.952 µg/L	Methylene Chloride	2,016	hg/L	Discharge Conc < TQL
Tetrachloroethylene 1,008 µg/L Tolluene 1,113 µg/L t-trans-Diohloroethylene 1,952 µg/L	1,1,2,2-Tetrachloroethane	20.2	µg/L	Discharge Conc < TQL
Toluene 1,113 µg/L 2-trans-Dichloroethylene 1,952 µg/L	Tetrachloroethylene	1,008	µg/L	Discharge Conc < TQL
.2-trans-Dichloroethylene 1,952 μg/L	Toluene	1,113	μg/L	Discharge Conc < TQL
		1,952	hg/L	Discharge Conc < TQL
1,1,1-Trichloroethane 7,063 µg/L Disc	1,1,1-Trichloroethane	7,063	η/β/L	Discharge Conc < TQL
1,1,2-Trichloroethane 55.4 µg/L Disc	1,1,2-Trichloroethane	55.4	hg/L	Discharge Conc < TQL
Trichloroethylene 60.5 µg/L Disc	Trichloroethylene	60.5	hg/L	Discharge Conc < TQL
2.02 µg/L	Vinyl Chloride	2.02	µg/L	Discharge Conc < TQL
586 µg/L	2-Chlorophenal	586	hg/L	Discharge Conc < TQL
195 µg/L	2,4-Dichlorophenol	195	hg/L	Discharge Conc < TQL
Mddel Resul은 4-Dimethylphenol 1.554 μg/L Disc	el Resui 84-Dimethylphenol	1,554	hg/L	Discharge Conc 10/8/2022

age 16

	000	7/6/1	180000000000000000000000000000000000000
2-Nitrophenol	18,833	hg/L	Discharge Conc < TQL
4-Nitrophenol	5,415	hg/L	Discharge Conc < TQL
Pentachlorophenol	3.02	na/L	Discharge Conc < TQL
Phenol	78,073	na/L	Discharge Conc < TQL
2,4,8-Trichlorophenol	151	hg/L	Discharge Conc < TQL
Acenaphthene	195	hg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	5,855	hg/L	Discharge Conc < TQL
Benzidine	0.01	T/Brl	Discharge Conc < TQL
Benzo(a)Anthracene	0.1	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	10.0	hg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	1.01	hg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	3.02	hg/L	Discharge Cono < TQL
Bis(2-Chloroisopropyl)Ether	3,804	7/8п	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	32.3	T/Brl	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	636	T/Brl	Discharge Conc < TQL
Butyl Benzyl Phthalate	1.95	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	15,615	hg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	12.1	7/6rl	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.01	hg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,930	7/6rl	Discharge Conc < TQL
1,3-Dichlorobenzene	137	hg/L	Discharge Conc < TQL
1,4-Dichlarobenzene	1,719	hg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	5.04	ηβ/L	Discharge Conc < TQL
Diethyl Phthalate	9,417	hg/L	Discharge Conc < TQL
Dimethyl Phthalate	5,885	7/6rl	Discharge Conc < TQL
Di-n-Butyl Phthalate	259	hg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	5.04	T/Brl	Discharge Conc < TQL
2,6-Dinitratoluene	5.04	T/8rl	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	3.02	hg/L	Discharge Conc < TQL
Fluoranthene	380	7/6rl	Discharge Conc < TQL
Fluorene	976	T/Brl	Discharge Conc < TQL
Hexachlorobenzene	0.008	hg/L	Discharge Conc < TQL
Hexachlorobutadiene	1.01	1/8rl	Discharge Conc < TQL
Hexachlorocyclopentadiene	11.8	hg/L	Discharge Conc < TQL
Hexachloroethane	10.1	hg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.1	hg/L	Discharge Conc < TQL
Isophorone	664	hg/L	Discharge Conc < TQL
Naphthalene	330	hg/L	Discharge Conc < TQL
Nitrobenzene	195	hg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.071	hg/L	Discharge Conc < TQL
a Milesand a Beaudeanian	9.0	T/Dri	Discharge Cong & Tolisasa

		Page 17
nne < TQL nne < TQL nne < TQL nne < TQL		10/6/2022
Discharge Conc < TQL Discharge Conc < TQL Discharge Conc < TQL Discharge Conc < TQL		
1971 1971 1971		
333 11.8 390 1.37		
n-Nitrosodiphenylamine Phenanthrene Pyrene 1,2,4-Trichlorobenzene		Model Results
		Mode

4. Total Mercury

Dear Permittee:

The Department of Environmental Protection (DEP) has reviewed your NPDES permit application and has reached a preliminary finding that new or more stringent water quality-based effluent limitations (WQBELs) for toxic pollutant(s) should be established in the permit. This finding is based on DEP's assessment that reasonable potential exists to exceed water quality criteria under Chapter 93 in the receiving waters during design flow conditions. The following WQBELs are anticipated based on the information available to DEP during its review:

Outfall No.	Pollutant	Average Monthly (μg/L)	Maximum Daily (µg/L)	IMAX (μg/L)
001	Total Mercury	0.98	1.52	2.44

Attached is a survey that DEP requests that you complete and return to DEP in 30 days. Completion of this survey will help DEP develop the draft NPDES permit and allow DEP to understand your current capabilities or plans to treat or control these pollutant(s). If you decide not to complete and return the survey, DEP will proceed with developing the draft NPDES permit based on all available information and certain assumptions. Your response to this notice does not constitute an official comment for DEP response but will be taken under consideration. When the draft NPDES permit is formally noticed in the Pennsylvania Bulletin, you may make official comments for DEP's further consideration and response.

Please contact me if you have any questions about this information or the attached survey.

Sincerely,

Jinsu Kim Environmental Engineering Specialist Clean Water Program

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) PRE-DRAFT PERMIT SURVEY FOR TOXIC POLLUTANTS

Pollutant(s) identified by DEP that may require WQBELs: Total Mercury	Pern	nittee Name:	ttee Name: Mechanicsburg Borough Cumberland County		Permit No.:	PA0020885			
If Yes or Suspected, describe the known or suspected source(s) of pollutant(s) in the effluent. Infiltration of Ground Water and precipitation-induced I/I appears to be increasing concentration in influent; possibly failed seals on trickling filter distributors may increase concentration in effluent. Current influent testing is being performed and indicates that groundwater and I/I increases the concentration in the WWTP influent. Has the permittee completed any studies in the past to control or treat the pollutant(s)?	Pollu	ıtant(s) identif	ied by DEP that may require WQBELs:	Total Mercury					
Infiltration of Ground Water and precipitation-induced I/I appears to be increasing concentration in influent; possibly failed seals on trickling filter distributors may increase concentration in effluent. Current influent testing is being performed and indicates that groundwater and I/I increases the concentration in the WWTP influent. Has the permittee completed any studies in the past to control or treat the pollutant(s)?	ls th	e permittee av	vare of the source(s) of the pollutant(s)?	☐ Yes ☐	No 🛭 Su	spected			
possibly failed seals on trickling filter distributors may increase concentration in effluent. Current influent testing is being performed and indicates that groundwater and I/I increases the concentration in the WWTP influent. Has the permittee completed any studies in the past to control or treat the pollutant(s)?	If Ye	If Yes or Suspected, describe the known or suspected source(s) of pollutant(s) in the effluent.							
Does the permittee believe it can achieve the proposed WQBELs now?	possibly failed seals on trickling filter distributors may increase concentration in effluent. Current influent testing is being performed and indicates that groundwater and I/I increases the concentration in the WWTP								
Does the permittee believe it can achieve the proposed WQBELs now?	Has	Has the permittee completed any studies in the past to control or treat the pollutant(s)? $\ \ \ \ \ \ \ \ \ \ \ \ \ $							
If No, describe the activities, upgrades or process changes that would be necessary to achieve the WQBELs, if known. Continue to analyze influent samples to confirm suspected increase of pollutant from groundwater and/or precipitation-induced I/I; determine ability to limit I/I into WWTP. Although a low likelihood, if pollutant concentration in effluent is a result of trickling filter seal failure, replace the seals on the trickling filter distributors. Estimated date by which the permittee could achieve the proposed WQBELs: Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Yes No Check the appropriate box(es) below to indicate site-specific data that have been collected by the permittee in the past. If any of these data have not been submitted to DEP, please attach to this survey. Discharge pollutant concentration coefficient(s) of variability Year(s) Studied: Discharge and background Total Hardness concentrations (metals) Year(s) Studied: Chemical translator(s) (metals) Year(s) Studied: Year(s) Studied: Velocity of receiving waters at design conditions Year(s) Studied: Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: Year(s) Studied:	If Ye	s, describe pr	ior studies and results:						
If No, describe the activities, upgrades or process changes that would be necessary to achieve the WQBELs, if known. Continue to analyze influent samples to confirm suspected increase of pollutant from groundwater and/or precipitation-induced I/I; determine ability to limit I/I into WWTP. Although a low likelihood, if pollutant concentration in effluent is a result of trickling filter seal failure, replace the seals on the trickling filter distributors. Estimated date by which the permittee could achieve the proposed WQBELs: Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Yes No Check the appropriate box(es) below to indicate site-specific data that have been collected by the permittee in the past. If any of these data have not been submitted to DEP, please attach to this survey. Discharge pollutant concentration coefficient(s) of variability Year(s) Studied: Discharge and background Total Hardness concentrations (metals) Year(s) Studied: Chemical translator(s) (metals) Year(s) Studied: Year(s) Studied: Velocity of receiving waters at design conditions Year(s) Studied: Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: Year(s) Studied:									
If No, describe the activities, upgrades or process changes that would be necessary to achieve the WQBELs, if known. Continue to analyze influent samples to confirm suspected increase of pollutant from groundwater and/or precipitation-induced I/I; determine ability to limit I/I into WWTP. Although a low likelihood, if pollutant concentration in effluent is a result of trickling filter seal failure, replace the seals on the trickling filter distributors. Estimated date by which the permittee could achieve the proposed WQBELs: Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Yes No Check the appropriate box(es) below to indicate site-specific data that have been collected by the permittee in the past. If any of these data have not been submitted to DEP, please attach to this survey. Discharge pollutant concentration coefficient(s) of variability Year(s) Studied: Discharge and background Total Hardness concentrations (metals) Year(s) Studied: Chemical translator(s) (metals) Year(s) Studied: Year(s) Studied: Velocity of receiving waters at design conditions Year(s) Studied: Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: Year(s) Studied:									
Continue to analyze influent samples to confirm suspected increase of pollutant from groundwater and/or precipitation-induced I/I; determine ability to limit I/I into WWTP. Although a low likelihood, if pollutant concentration in effluent is a result of trickling filter seal failure, replace the seals on the trickling filter distributors. Estimated date by which the permittee could achieve the proposed WQBELs:	Doe	s the permittee	e believe it can achieve the proposed WC	BELs now?	Yes 🗌 N	No 🛛 Uncertain			
precipitation-induced I/I; determine ability to limit I/I into WWTP. Although a low likelihood, if pollutant concentration in effluent is a result of trickling filter seal failure, replace the seals on the trickling filter distributors. Estimated date by which the permittee could achieve the proposed WQBELs: Estimated date by which the permittee could achieve the proposed WQBELs: Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Yes No Check the appropriate box(es) below to indicate site-specific data that have been collected by the permittee in the past. If any of these data have not been submitted to DEP, please attach to this survey. Discharge pollutant concentration coefficient(s) of variability Year(s) Studied: Discharge and background Total Hardness concentrations (metals) Year(s) Studied: Chemical translator(s) (metals) Year(s) Studied: Year(s) Studied: Velocity of receiving waters at design conditions Year(s) Studied: Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: Year(s) Studied: Year(s) Studied: Year(s) Studied: Year(s) Studied: Year(s) Studied:	If No	, describe the	activities, upgrades or process changes	that would be ned	cessary to ach	ieve the WQBELs, if known.			
Will the permittee conduct additional sampling for the pollutant(s) to supplement the application? Yes No Check the appropriate box(es) below to indicate site-specific data that have been collected by the permittee in the past. If any of these data have not been submitted to DEP, please attach to this survey. Discharge pollutant concentration coefficient(s) of variability Year(s) Studied: Discharge and background Total Hardness concentrations (metals) Year(s) Studied: Background / ambient pollutant concentrations Year(s) Studied: Chemical translator(s) (metals) Year(s) Studied: Slope and width of receiving waters Year(s) Studied: Velocity of receiving waters at design conditions Year(s) Studied: Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: Volatilization rates (highly volatile organics) Year(s) Studied:	pred	ipitation-indu centration in	uced I/I; determine ability to limit I/I into	o WWTP. Althou	gh a low likel	ihood, if pollutant			
Check the appropriate box(es) below to indicate site-specific data that have been collected by the permittee in the past. If any of these data have <u>not</u> been submitted to DEP, please attach to this survey. Discharge pollutant concentration coefficient(s) of variability Year(s) Studied: Discharge and background Total Hardness concentrations (metals) Year(s) Studied: Chemical translator(s) (metals) Year(s) Studied: Slope and width of receiving waters Year(s) Studied: Velocity of receiving waters at design conditions Year(s) Studied: Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: Volatilization rates (highly volatile organics) Year(s) Studied:	Estir	nated date by	which the permittee could achieve the pr	oposed WQBELs	:				
If any of these data have <u>not</u> been submitted to DEP, please attach to this survey. Discharge pollutant concentration coefficient(s) of variability Year(s) Studied: Discharge and background Total Hardness concentrations (metals) Year(s) Studied: Background / ambient pollutant concentrations Year(s) Studied: Chemical translator(s) (metals) Year(s) Studied: Year(s) Studied: Year(s) Studied: Year(s) Studied: Velocity of receiving waters at design conditions Year(s) Studied: Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: Year(s) Studied: Year(s) Studied: Year(s) Studied:	Will	the permittee	conduct additional sampling for the pollut	ant(s) to supplem	ent the applic	ation? 🛛 Yes 🗌 No			
□ Discharge and background Total Hardness concentrations (metals) Year(s) Studied: □ Background / ambient pollutant concentrations Year(s) Studied: □ Chemical translator(s) (metals) Year(s) Studied: □ Slope and width of receiving waters Year(s) Studied: □ Velocity of receiving waters at design conditions Year(s) Studied: □ Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: □ Volatilization rates (highly volatile organics) Year(s) Studied:						d by the permittee in the past.			
□ Background / ambient pollutant concentrations Year(s) Studied: □ Chemical translator(s) (metals) Year(s) Studied: □ Slope and width of receiving waters Year(s) Studied: □ Velocity of receiving waters at design conditions Year(s) Studied: □ Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: □ Volatilization rates (highly volatile organics) Year(s) Studied:		Discharge po	ollutant concentration coefficient(s) of vari	ability	Year(s) S	tudied:			
□ Chemical translator(s) (metals) Year(s) Studied: □ Slope and width of receiving waters Year(s) Studied: □ Velocity of receiving waters at design conditions Year(s) Studied: □ Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: □ Volatilization rates (highly volatile organics) Year(s) Studied:		Discharge an	nd background Total Hardness concentrat	tions (metals)	Year(s) S	tudied:			
□ Slope and width of receiving waters Year(s) Studied: □ Velocity of receiving waters at design conditions Year(s) Studied: □ Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: □ Volatilization rates (highly volatile organics) Year(s) Studied:		Background /	ambient pollutant concentrations		Year(s) S	tudied:			
□ Velocity of receiving waters at design conditions Year(s) Studied: □ Acute and/or chronic partial mix factors (mixing at design conditions) Year(s) Studied: □ Volatilization rates (highly volatile organics) Year(s) Studied:		Chemical trai	nslator(s) (metals)		Year(s) S	tudied:			
 □ Acute and/or chronic partial mix factors (mixing at design conditions) □ Volatilization rates (highly volatile organics) □ Year(s) Studied: 		Slope and wi	dth of receiving waters		Year(s) S	tudied:			
☐ Volatilization rates (highly volatile organics) Year(s) Studied:		Velocity of re	ceiving waters at design conditions		Year(s) S	tudied:			
		Acute and/or	chronic partial mix factors (mixing at des	ign conditions)	Year(s) S	tudied:			
Site-specific criteria (e.g. Water Effect Ratio or related study) Year(s) Studied:		Volatilization	rates (highly volatile organics)		Year(s) S	tudied:			
Cho opening Griding (e.g., Trains Enter Failed of Femilies Study) Tear(5) Ordanes.		Site-specific	criteria (e.g., Water Effect Ratio or related	d study)	Year(s) S	tudied:			

Please submit this survey to the DEP regional office that is reviewing the permit application within 30 days of receipt.

Kim, Jin Su

From: Mendinsky, Justin <jmendinsky@hrg-inc.com>

Sent: Thursday, June 23, 2022 4:43 PM

To: Kim, Jin Su; Curtis Huey

Cc: Martin, Daniel; Luongo, Erica; Pollart, Yves

Subject: RE: [External] RE: Mechanicsburg Borough NPDES Permit Renewal Application

Attachments: PA0020885 Pre-Draft Permit Survey (Total Mercury) (002).docx

Hi Jinsu. Please see attached survey form. Thank you.

Justin J. Mendinsky, PE Group Manager | Water & Wastewater

HERBERT, ROWLAND & GRUBIC, INC.

369 East Park Drive Harrisburg, PA 17111 717.564.1121 (o) | 717.461.6864 (c) jmendinsky@hrg-inc.com | vCard hrg-inc.com | LinkedIn | Facebook

From: Kim, Jin Su <jikim@pa.gov>

Sent: Wednesday, June 22, 2022 8:08 AM

To: Mendinsky, Justin <imendinsky@hrg-inc.com>; Curtis Huey <chuey@mechanicsburgborough.org>

Cc: Martin, Daniel <daniemarti@pa.gov>; Luongo, Erica <eluongo@hrg-inc.com>; Pollart, Yves <ypollart@hrg-inc.com>

Subject: RE: [External] RE: Mechanicsburg Borough NPDES Permit Renewal Application

Hi Justin,

That is fine. However, could you please complete and submit the survey form I provided previously by the end of this week?

Jinsu

Jinsu Kim | Permits Section
Department of Environmental Protection | Clean Water Program
Southcentral Regional Office
909 Elmerton Avenue | Harrisburg, Pa 17110-8200
Phone: 717.705.4825 | Fax: 717.705.4760
www.dep.state.pa.us

From: Mendinsky, Justin < mendinsky@hrg-inc.com >

Sent: Monday, June 20, 2022 11:46 AM

To: Kim, Jin Su <jikim@pa.gov>; Curtis Huey <chuey@mechanicsburgborough.org>

NPDES Permit Fact Sheet Mechanicsburg STP

Kim, Jin Su

From: Curtis Huey <chuey@mechanicsburgborough.org>

Sent: Wednesday, October 5, 2022 10:11 AM

To: Kim, Jin Su; Mendinsky, Justin

Cc: Martin, Daniel; Luongo, Erica; Pollart, Yves

Subject: RE: [External] RE: Mechanicsburg Borough NPDES Permit Renewal Application

Jin Su,

Below are the results of 10 additional mercury tests for our NPDES permit renewal.

Curtis

	Influent					Effluent				
	Flow					Flow				
Date	(MGD)	Hg	(mg/L)	Hg	(lbs/day)	(MGD)	Hg	(mg/L)	Hg	
8/16/2022	0.658	<	0.0002	<	0.0011	0.554	<	0.0002	<	0.000!
8/18/2022	0.706		0.0004		0.00236	0.594	<	0.0002	<	0.000
8/23/2022	0.666	<	0.0002	<	0.00111	0.559	<	0.0002	<	0.000
8/24/2022	0.675	<	0.0002	<	0.00113	0.573	<	0.0002	<	0.0009
8/25/2022	0.715	<	0.0002	<	0.00119	0.631	<	0.0002	<	0.001
8/30/2022	0.799	<	0.0002	<	0.00133	0.657	<	0.0002	<	0.001
9/5/2022	0.924	<	0.0002	<	0.00154	0.885	<	0.0002	<	0.001
9/7/2022	0.752	<	0.0002	<	0.00125	0.681	<	0.0002	<	0.001
9/12/2022	0.705	<	0.0002	<	0.00118	0.639	<	0.0002	<	0.001
9/14/2022	0.656		0.0003		0.00164	0.538	<	0.0002	<	0.000

5. TRC_CALC Worksheet

TRC_CALC

	С	D	Е	F	G	
TRC EVALU	JATION					
Input appropr	iate values in	B4:B8 and E4:E7				
74.	4 = Qstream (cfs)	0.5	=CV Daily		
2.0	8 = Qdischarg	je (MGD)	0.5	=CV Hourly		
	0 = no. sample		1	= AFC_Partial N		
		emand of Stream	1	=CFC_Partial N		
	_	emand of Discharge		_	Compliance Time (min)	
	5 = BAT/BPJ V		720	_	Compliance Time (min)	
		of Safety (FOS)		=Decay Coeffici		
Source	Reference	AFC Calculations		Reference	CFC Calculations	
TRC	1.3.2.iii	WLA afc =		1.3.2.iii	WLA cfc = 7.202	
PENTOXSD TRO		LTAMULT afc =		5.1c	LTAMULT cfc = 0.581	
PENTOXSD TRO	5 5.1b	LTA_afc=	2.755	5.1d	LTA_cfc = 4.187	
Source		Effluent	Limit Cald	culations		
PENTOXSD TRO		AM	L MULT =	1.231		
PENTOXSD TRO	3 5.1g	AVG MON LIMI			BAT/BPJ	
		INST MAX LIMI	1 (mg/l) =	1.472		
WLA afc		FC_tc))+ [(AFC_Yc*Q; C_Yc*Qs*Xs/Qd)]*(1-F		*e(-k*AFC_tc))		
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(d	vh^2+1)^	0.5)		
LTA_afc wla_afc*LTAMULT_afc						
LIN_alo	WIA_AIC LIA	MULT_afc		,		
WLA_cfc		MULT_afc FC_tc)+[(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F				
_	- (.011/e(-k*Ci + Xd + (CFi	- FC_tc)+[(CFC_Yc*Qs	OS/100)	e(-k*CFC_tc))	ples+1)^0.5)	
WLA_cfc	- (.011/e(-k*Ci + Xd + (CFi	- FC_tc)+[(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fi (cvd^2/no_samples+1)	OS/100)	e(-k*CFC_tc))	pples+1)^0.5)	
WLA_cfc LTAMULT_cfc	- (.011/e(-k*C) + Xd + (CF) EXP((0.5*LN) wla_cfc*LTA	- FC_tc)+[(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-Fi (cvd^2/no_samples+1)	OS/100)))-2.326*L	e(-k*CFC_tc)) N(cvd^2/no_sam		
WLA_cfc LTAMULT_cfc LTA_cfc	(.011/e(-k*C) + Xd + (CF) EXP((0.5*LN) wla_cfc*LTA	- FC_tc)+[(CFC_Yc*Qs C_Yc*Qs*Xs/Qd)]*(1-F (cvd^2/no_samples+1 MULT_cfc	OS/100)))-2.326*L +1)^0.5)-0	e(-k*CFC_tc)) N(cvd^2/no_sam .5*LN(cvd^2/no_		

6. Total Copper (TOXCON)

	Facility: NPDE 8#: Outrall No:		Mechanicsburg Borough PA0020885 001			
	n (Samples/Mon/ Reviewer/Permit		4 Jinsu Kim			
Parameter Name	Total Copper				\neg	
Units Detection Limit	mg/L				$-\!\!\!+$	
DOMOGONI E HILE					-	
Sample Date		alues below the	detection limit, er	iter "ND" or use the < notation (eg. <0.02)		
Apr-17	0.034					
Ju-17	< 0.040				$-\!\!\!\!-$	
Oct-17	< 0.022 < 0.045					
Jan-18 Apr-18	< 0.13				+	
Ju-18	< 0.032				+	
Oct-18	< 0.13					
Jan-19	< 0.09				$\overline{}$	
Apr-19	< 0.063					
Jul-19	0.053					
Oct-19	0.04					
Jan-20	0.068				-	
Apr-20	0.066					
Jul-20	0.033				-	
Oct-20	0.053				$-\!\!\!\!-$	
Jan-21 Apr-21	0.07					
Ju-21	0.057				+	
Oct-21	0.03					
Jan-22	0.033				+	
Apr-22	0.04				-	
Jul-22	0.033					
					\neg	
					$-\!\!\!\!+$	
					+	
					+	
					+	
					$-\!\!\!\!-$	
					$-\!\!\!\!-$	
					$-\!\!\!\!-$	
					+	
					\dashv	
					\top	

Reviewer/Permit Engineer: Jirs u Kim acility: Mechanics burg Borough

Facility: Mechanics b NPDES #: PA0020885 Outfall No: 001 n (Samples/Month): 4

Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Copper (mg/L)	Delta-Lognormal	0.8608287	0.0699704

TOXCON Output 10/6/2022

7. Whole Effluent Toxicity Analysis Spreadsheet

WET Summary and Evaluation

Facility Name Permit No. Design Flow (MGD) Mechanicsburg Borough PA0020885 2.08 74.4 0.116 0.801

Q₇₋₁₀ Flow (cfs) PMF_a PMF_c

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Da				
Species	Endpoint	11/7/17	5/21/18	8/7/19	8/11/20	
Pimephales	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	11/7/17	8/20/18	8/7/19	8/11/20	
Pimephales	Growth	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	Endpoint	11/7/17	8/20/18	8/6/19	8/10/20	
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date	Test Date	Test Date	Test Date	
Species	Endpoint	11/7/17	8/20/18	8/6/19	8/10/20	
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS	

Reasonable Potential? NO

Permit Recommendations

Chronic

Test Type TIWC % Effluent

Dilution Series 2, 5, 30, 60, 100 % Effluent

Permit Limit None

Permit Limit Species