

Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0020893
APS ID	18317
Authorization ID	937210

Applicant and Facility Information									
Applicant Name	Manh Autho	eim Area Water and Sewer ority	Facility Name	Manheim STP					
Applicant Address	18 E I	High Street	Facility Address	Rettew Lane					
	Manh	eim, PA 17545-1506	<u> </u>	Manheim, PA 17545					
Applicant Contact	Terry	Shaffer	Facility Contact	Terry Shaffer					
Applicant Phone	(717)	665-2737	Facility Phone	(717) 665-2737					
Client ID	31722	28	Site ID	451759					
Ch 94 Load Status	Not O	verloaded	Municipality	Manheim Borough					
Connection Status	No Li	mitations	County	Lancaster					
Date Application Rece	eived	August 2, 2012	EPA Waived?	No					
Date Application Acce	epted	August 10, 2012	If No, Reason	Major Facility, Significant CB Discharge					
Purpose of Application		NPDES Renewal.							

Summary of Review

Manheim Area Water and Sewer Authority (MAWSA) has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on January 17, 2008 and became effective on February 1, 2008. The permit authorized discharge of treated sewage from the existing wastewater treatment plant (WWTP) located in Manheim Borough, Lancaster County into Chiques Creek. The existing permit expiration date was January 31, 2013, and the permit has been administratively extended since that time. A draft permit was last issued on September 26, 2013. As a considerable time has passed since then, this permit is being re-drafted. Changes in this renewal: More stringent CBOD₅ and NH₃-N limits were added to the permit. Total Copper and Total Iron monitoring were added. Chesapeake Bay offsets have been listed separately from the Cap Load. TDS, Sulfate, Chloride, and Bromide monitoring was added. A more stringent TRC limit with compliance schedule was added to the permit. Fecal Coliform IMAX limits were added. Chronic WET testing limits were added.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
Х		Benjamin Lockwood Benjamin R. Lockwood / Environmental Engineering Specialist	August 6, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D. Bebenek, P.E. / Program Manager	

Summary of Review										
Supplemental information is attached to this fact sheet.										

Discharge, Receiving Waters and Water Supply Information										
Outfall No. 001		Design Flow (MGD)	2.3							
Latitude 40° 9' 9.6"		Longitude	76º 24' 16.3"							
Quad Name Manheim		Quad Code	1734							
Wastewater Description:	Sewage Effluent									
Receiving Waters <u>Chiqu</u>	ies Creek (WWF, MF)	Stream Code	07919							
NHD Com ID 57462	2741	RMI	19.1							
Drainage Area 36.2 i	mi ²	Yield (cfs/mi²)	0.12							
Q ₇₋₁₀ Flow (cfs) 4.34		Q ₇₋₁₀ Basis	USGS Gage #01576500							
Elevation (ft) 379		Slope (ft/ft)								
Watershed No. 7-G		Chapter 93 Class.	WWF, MF							
Existing Use		Existing Use Qualifier								
Exceptions to Use		Exceptions to Criteria								
Assessment Status	Impaired									
Cause(s) of Impairment	Siltation, Siltation, Pathog	gens								
Source(s) of Impairment	Agriculture, Urban Runof	f/Storm Sewers, Source Unknow	n							
TMDL Status	N/A	Name N/A								
Nearest Downstream Publ	c Water Supply Intake	Columbia Borough								
PWS Waters Susque	hanna River	Flow at Intake (cfs)								
PWS RMI <u>42.8</u>		Distance from Outfall (mi) 21								

Changes Since Last Permit Issuance: A drainage area of 36.2 mi² and a Q_{7-10} flow of 4.34 cubic feet per second (cfs) were determined by establishing a correlation to the yield of USGS Gage Station #01576500 on the Conestoga River. The Q_{7-10} and drainage area at the gage are 38.6 cfs and 324 mi², respectively. These values are taken from the USGS document "Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania". The Q_{7-10} runoff rate at the gage station was calculated as follows:

Yield = $(38.6 \text{ cfs})/324 \text{ mi}^2 = 0.12 \text{ cfs/mi}^2$

The drainage area at the discharge point, taken from USGS PA StreamStats = 36.2 mi²

The Q_{7-10} at the discharge point = 36.2 mi² x 0.12 cfs/mi² = 4.34 cfs

Other Comments: None

	Treatment Facility Summary											
Treatment Facility Na	me: Manheim STP											
WQM Permit No.	Issuance Date											
3608408	2/20/2009											
	Degree of			Avg Annual								
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)								
Sewage	Secondary With Total Nitrogen Reduction	Oxidation Ditch	Gas Chlorine	2.3								
Hydraulic Capacity	Organic Capacity			Biosolids								
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal								
				Combination of								
2.3	6253	Not Overloaded	Combination	methods								

Changes Since Last Permit Issuance: A new influent mechanical screen was installed.

Other Comments: A BNR facility upgrade was completed in 2011. The treatment process is as follows: Influent wet well/screening – 2 oxidation ditches – 4 secondary clarifiers – 2 chlorine contact tanks – 3 facultative digesters – 1 belt filter press – 1 sludge storage pad - Outfall 001 to Chiques Creek.

	Compliance History
Summary of DMRs:	A summary of the past 12-month DMR effluent data is presented on the next page of this fact sheet.
Summary of Inspections:	4/3/2013: An inspection was conducted by Heather Dock, DEP Water Quality Specialist to discuss the operation of the sludge digesters. A walkthrough of the treatment plant was conducted. One of the return lines on a clarifier had clogged overnight causing a plant upset. The return line was now operable. Heather returned on 4/4/2013 for a follow up inspection. The clarifiers were producing slightly cloudy effluent. The chlorine contact tank was producing slightly cloudy effluent, but the quality improved during the inspection. The chlorine contact tank effluent had a yellow tint with floating solids, and met field test parameters. Heather recommend that septage/hauled-in wastes not be accepted until the plant recovered from the upset, and during future upset. She also recommended solids be removed from the stream.
	4/8/2013: A follow up inspection was conducted by Heather Dock. The oxidation ditch appeared to be operating as designed. The effluent appeared clear from both operating clarifiers. The chlorine contact tank on the right was producing a clear effluent. The other tank had a layer of scum. The stream discharge appeared clear. The stream had been cleaned, and a light dusting of solids remained. Hauled-in waste/septage was not being received that day. The plant appeared to be running well.
	9/5/2013: A routine inspection was conducted by Heather Dock. It was noted that a new rotomat system was put online in July, consisting of a rotating screen and bar screen. A grab sample was collected from the chlorine contact tank, the effluent appeared clear and met field test parameters.
	2/24/2014: Andrew Hall responded to an incident regarding a discharge of sludge solids to a stormwater inlet. Waste activated sludge (WAS) was discharging from an access lid on top of the sludge pump pit. WAS flowed to the stormwater inlet adjacent to the clarifiers. A stream of solids was present for approximately 100' at Outfall 004. At the time of inspection, no surface waters were impacted. The discharge was caused by failure of the WAS valve for clarifier #3. Lime was added to the affected area.
	4/29/2014: A routine inspection was conducted by Andrew Hall. Since the last inspection, Manheim had switched to liquid polymer and replaced the WAS valve. 2 of the 4 pumps at the influent wet well were running. A spray of utility water was added, as a crust was forming. 3 of the 4 clarifiers were operating. Light pinfloc was present, but the effluent was clear. Samples were taken at the effluent flume of the operating chlorine contact tank. The effluent looked clear. The outfall was inspected, and the stream was clear up and downstream. The effluent pipe is under construction due to a split in the pipe.
	1/21/2015: A routine inspection was conducted by Bob Haines. An effluent grab sample was collected at the chlorine contact tank. The effluent was clear. The field test results were within the permitted range. The outfall area was clear. Most treatment units were online at the time of inspection. The overall treatment appeared to be good based on recent process control information, field test results and visual observation. The mixed liquor in the aeration tanks was medium brown in color with no foam and good floc formation. Settling in the clarifiers appeared to be good overall with some pin floc present. The plant appeared to be well maintained overall. During the inspection, the effluent composite sampler was not able to collect samples due to a blocked drain-back line. The issue was corrected.
	9/23/2015: A routine inspection was conducted by Andrew Hall. A plant walkthrough revealed no concerns. Small pockets of light foam were present on the oxidation ditch. The clarifier effluent was clear, with some duckweed and light scum on the surface in both

clarifiers. The chlorine contact tank had some bulking sludge present at the front end of the tank as well as light surface scum. The effluent was clear at Outfall 001, and no downstream water quality concerns were observed.

1/13/2016: An inspection was conducted by Sheena Ripple. The stormwater outfalls were checked. There was not any evidence of an overflow. The discharge from Outfall 001 was clear, and solids were not seen near the outfall. A walkthrough of the treatment units was conducted, and there was no evidence of a sewer overflow.

7/28/2016: A routine inspection was conducted by Sheena Ripple. The original clarifier, bio filter, and two clarifiers were offline. The forward flow pump for the oxidation ditch is being rebuilt. No other issues were noted.

3/6/2017: An incident inspection was conducted by Kevin Buss. The gate actuator for the oxidation ditch failed, which dropped the gate approximately 10" and caused a mixed liquor overflow at 2 clarifier splitter boxes. The gate was being ratcheted back into position during the inspection. The paths of the overflows were traced, and there was no apparent discharge to Chiques Creek. Lime had been applied to some areas impacted by the overflow; additional lime was recommended.

3/28/2017: A Notice of Violation (NOV) was issued as a follow-up to the March 6, 2017 investigation, and requested a full report of Manheim's investigation into the discharge of partially treated sewage.

5/4/2017: A routine inspection was conducted by Kevin Buss. All treatment units were operating normally. There were light accumulations of foam in the oxidation ditches. The clarifiers had mostly clear supernatant, with some pin floc. No other issues were noted.

7/18/2018: A routine inspection was conducted by Kevin Buss. Field samples were taken, and results were within the permitted limits. A new mixer in the anoxic chamber 2 will be operational in 4-6 weeks. Utility water VFDs had been installed. A new actuators weir, thrust bearing on 210, influent effluent flow meter, sampler, and mixer influent chamber have been installed. No other issues were noted.

12/7/2018: A routine inspection was conducted by Tracy Tomtishen. A walkthrough of the facility was conducted. A layer of grease and floatables was visible in the wet well. The clarifiers had a small amount of pin floc with no surface scum. Very little surface scum was present on the chlorine contact tanks. Field and lab samples were collected. Field results were within permitted limits. The stormwater outfalls were observed, and no concerns were noted. The outfalls were well maintained.

7/3/2019: An incident inspection was conducted by Tracy Tomtishen. A sanitary sewer overflow was reported on 7/2. The SSO was a result of a monitoring well installation. The well installation had been installed 2-3 weeks prior. During the drilling for the well installation, an 8" sewer pipe was clipped. The overflow traveled approximately 15' through a small forested area. Hay bales had been put into place to prevent additional runoff. Hydrated lime had been added to areas impacted. A report was received on 7/8 which confirmed that repairs had been completed.

1/3/2020: An incident inspection was conducted by Tracy Tomtishen in response to a sewage overflow on 1/2. The overflow was the result of a malfunction of the shutoff mechanism with the grit removal system at the septage receiving station. Lime application was visible on the ground surface. Solids and/or debris were not visible. Haybales were still present to contain the spill. The overflow did not appear to have entered any waterways. A temporary fix had been put in place within the grit removal system.

1/23/2020: A routine inspection was conducted by Tracy Tomtishen. Upon arrival, STP personnel were repairing a water main break. A site visit was conducted. Released water

entered stormwater drains and discharged to a nearby field. Sheet flow dispersed and did not enter the stream. The facility inspection began with a site walkthrough. A layer of grease and floatables was visible in the wet well. The clarifiers had light ashing and some solids accumulation in the center well. Clarifier #3 was offline during inspection due to a gear box failure and paint repairs. Field results were collected, and were within permitted limits. The stormwater outfalls were observed, and no concerns were noted. The outfalls were well maintained.

4/30/2020: An administrative inspection was conducted to determine the current status of operations. All treatment units are operable, and no treatment units other than clarifier #3 have been offline since the last inspection. No emergency conditions have been experienced. No other issues were noted.

Other Comments: There are currently no open violations associated with the permittee or the facility.

Compliance History

DMR Data for Outfall 001 (from July 1, 2019 to June 30, 2020)

Parameter	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19
Flow (MGD)										0.58716		
Average Monthly	0.6199	1.601	1.0658	0.794	0.8978	0.9209	0.9	0.9091	0.7139	3	0.663	0.8703
Flow (MGD)												
Daily Maximum	0.875	2.8717	2.8189	1.6252	1.3015	2.2451	1.1031	1.9747	1.8561	0.8423	1.0867	1.8912
pH (S.U.)												
Minimum	7.27	7.34	7.31	7.38	7.38	7.37	7.41	7.46	7.52	7.48	7.39	7.26
pH (S.U.)												
Maximum	7.87	7.77	7.77	7.88	7.74	7.98	7.74	7.8	7.87	7.8	7.76	7.79
DO (mg/L)												
Minimum	7.15	7.9	8.48	8.86	8.99	9.17	9.38	8.27	5.93	7.38	6.4	6.69
TRC (mg/L)												
Average Monthly	0.24	0.28	0.26	0.30	0.30	0.31	0.32	0.29	0.33	0.31	0.27	0.15
TRC (mg/L)												
Instantaneous												
Maximum	0.41	0.4	0.51	0.3	1.02	0.63	0.65	0.46	0.59	0.53	0.53	0.41
CBOD5 (lbs/day)												
Average Monthly	< 21	39	34	< 24	< 19	< 15	< 22	< 16	< 15	< 14	< 18	< 29
CBOD5 (lbs/day)												
Weekly Average	38	63	59	27	24	< 20	< 35	< 20	< 23	< 15	< 22	41
CBOD5 (mg/L)												
Average Monthly	< 4	4	4	< 3	< 2	< 2	< 3	< 2	< 2	< 3	< 3	< 3
CBOD5 (mg/L)												
Weekly Average	6	7	5	4	3	< 2	3	2	< 3	3	< 4	4
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average	0400	0400	0011	4000	4004	400=	4000	0.400		4000		0000
Monthly	2100	2126	2911	4069	4381	1227	1688	2422	2829	1209	1154	2280
BOD5 (lbs/day)												
Raw Sewage Influent	5050	0005	0.470	45400	40000	0005	4000	0000	5404	4000	0400	5050
 	5658	2805	6472	15482	10929	2635	4282	6639	5404	1963	2136	5250
BOD5 (mg/L)												
Raw Sewage Influent												
<pre> Average Monthly</pre>	254	107	222	455	413	120	160	286	396	100	120	212
Monthly TSS (lba/day)	254	187	233	455	413	139	168	∠80	390	180	139	212
TSS (lbs/day)	. 10	22	. 26	22	. 17	. 17	- 11	. 25	10	. 15	. 24	65
Average Monthly	< 12	33	< 26	22	< 17	< 17	< 14	< 25	19	< 15	< 24	65

TSS (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	1664	1194	1556	2209	5181	944	1105	2554	3351	1729	1706	2114
TSS (lbs/day)	1001	1.01	1000	2200	0.01	011	1100	2001	0001	1720	17.00	
Raw Sewage Influent												
 br/> Daily Maximum	2837	2238	2414	3696	21226	3061	2798	7402	6655	3587	3760	3065
TSS (lbs/day)				0000					0000		0.00	0000
Weekly Average	15	68	60	24	< 22	20	< 23	51	42	19	34	111
TSS (mg/L)												
Average Monthly	< 2	3	< 3	3	< 2	< 2	< 2	< 3	2	< 3	< 4	7
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	201	108	129	233	512	108	106	296	465	265	225	205
TSS (mg/L)												
Weekly Average	3	5	6	4	< 3	4	< 4	6	3	4	6	12
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 6	13	13	< 15	< 7	< 10	10	23	< 11	< 12	< 56	270
Nitrate-Nitrite (mg/L)												
Average Monthly	0.54	0.44	< 0.28	0.36	0.24	0.16	0.32	< 0.52	0.37	0.67	< 0.71	0.68
Nitrate-Nitrite (lbs)												
Total Monthly	91	120	< 101	70	56	37	79	< 115	91	106	< 135	170
Total Nitrogen (mg/L)												
Average Monthly	1.25	1.21	< 1.09	1.45	1.04	< 0.79	1.12	< 1.14	1.28	< 1.6	< 2.29	2.21
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	212	306	< 381	284	232	< 177	275	247	284	< 246	< 440	604
Total Nitrogen (lbs)												
Total Monthly	212	306	< 381	284	232	< 177	275	< 247	284	< 246	< 440	604
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual										< 10088		
Total Nitrogen (lbs)												
Total Annual										< 10088		
Ammonia (lbs/day)												
Average Monthly	< 0.8	< 1	< 1	< 2	< 0.8	< 0.9	< 1	< 0.8	< 0.7	< 0.5	< 0.6	< 0.8
Ammonia (mg/L)												
Average Monthly	< 0.15	< 0.14	< 0.1	< 0.28	< 0.1	< 0.12	< 0.12	< 0.1	< 0.1	< 0.1	< 0.11	< 0.1
Ammonia (lbs)												
Total Monthly	< 25	< 42	< 33	< 64	< 23	< 28	< 32	< 23	< 21	< 16	< 20	< 25
Ammonia (lbs)												
Total Annual										< 2222		

NPDES Permit No. PA0020893

TKN (mg/L) Average Monthly	0.72	0.77	< 0.81	1.08	0.79	< 0.63	0.81	< 0.62	0.91	< 0.93	1.58	1.53
TKN (lbs)												
Total Monthly	122	187	< 280	214	176	< 140	196	< 132	192	< 140	304	433
Total Phosphorus												
(lbs/day)												
Average Monthly	4	1	1	1	1	1	1	2	3	6	10	7
Total Phosphorus												
(mg/L)												
Average Monthly	0.82	0.14	0.12	0.16	0.14	0.13	< 0.13	0.3	0.52	1.11	1.63	0.86
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	123	40	37	34	32	30	33	69	89	179	314	220
Total Phosphorus (lbs)												
Total Monthly	123	40	37	34	32	30	< 33	69	89	179	314	220
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual										< 1639		
Total Phosphorus (lbs)												
Total Annual										< 1639		

Existing Effluent Limitations and Monitoring Requirements

The tables below summarize the effluent limits and monitoring requirements implemented in the existing NPDES permit.

		Monitoring Re	quirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
Influent (BOD₅ and TSS)	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.46	XXX	1.5	1/day	Grab
TSS	285	428	XXX	30	45	60	2/week	24-Hr Composite
CBOD₅	238	380	XXX	25	40	50	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	38	XXX	XXX	4.0	XXX	8.0	2/week	24-Hr Composite
Ammonia Nov 1 - Apr 30	114	XXX	XXX	12	XXX	24	2/week	24-Hr Composite
Total Phosphorus	19	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite
Fecal Coliform (5/1 to 9/30)	XXX	XXX	XXX	200	XXX	XXX	2/week	Grab
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	XXX	2/week	Grab

NPDES Permit No. PA0020893

			Effluent Limitation	ons		Monitoring Requirements	
Parameter	Mass Un	its (lbs)		Concentrations (mg/L)		Minimum	Required
i arameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type
							24-Hr
Ammonia-N	Report	Report	XXX	Report	XXX	2/week	Composite
							24-Hr
Kjeldahl-N	Report	XXX	XXX	Report	XXX	1/week	Composite
							24-Hr
Nitrate-Nitrogen as N	Report	XXX	XXX	Report	XXX	1/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	1/month	Calculate
							24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	Composite
Net Total Nitrogen	Report	21,847	XXX	xxx	XXX	1/month	Calculate
Net Total Phosphorus	Report	2,776	XXX	xxx	XXX	1/month	Calculate

Compliance Sampling Location: At discharge from facility

Development of Effluent Limitations					
Outfall No.	001		Design Flow (MGD)	2.3	
Latitude	40° 9' 9.6"		Longitude	76º 24' 16.3"	
Wastewater Description: Sewage Effluent		Sewage Effluent	-		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform	· · · · · · · · · · · · · · · · · · ·			
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

CBOD₅, NH₃-N

Pursuant to 40 CFR § 122.44(d)(1)(i), more stringent requirements should be considered when pollutants are discharged at the levels which have the reasonable potential to cause or contribute to excursions above water quality standards.

WQM 7.0 ver. 1.0b is a water quality model designed to assist DEP in determining appropriate water quality based effluent limits (WQBELs) for carbonaceous biochemical oxygen demand (CBOD₅), ammonia (NH₃-N), and dissolved oxygen (D.O.). DEP's Technical Guidance No. 391-2000-007 provides the technical methods contained in WQM 7.0 for determining wasteload allocations and for determining recommended NPDES effluent limits for point source discharges. The model was utilized for this permit application.

The flow data used to run the model was acquired from USGS PA StreamStats and USGS Gage # 01576500 on the Conestoga River, and is included in the attachment. Stream pH and temperature inputs for this model run were based on data acquired from the National Water Quality Monitoring Council website. Data was analyzed from the Water Quality Network (WQN) Station ID 206 on Chiques Creek from October 1998 to March 2019 for pH, and from October 1998 to October 2017 for temperature. DEP's Standard Operating Procedure (SOP) No. BPNPSM-PMT-033 (Establishing Effluent Limitations for Individual Sewage Permits) recommends using the 90th percentile of long-term data for background and discharge characteristics when using WQM 7.0. A 90th percentile analysis was performed on the data and resulted in a Stream pH of 8.3 and a Stream Temperature of 21°C. The model output indicated a CBOD₅ average monthly limit of 16.28 mg/l, an NH₃-N average monthly limit of 2.59 mg/l, and a D.O. minimum limit of 5.0 mg/l were protective of water quality. These limits were rounded in accordance with DEP's Guidance 362-0400-001 "Technical Guidance for the Development and Specification of Effluent Limitations" to a CBOD₅ average monthly limit of 16 mg/l, and an NH₃-N average monthly limit of 2.5 mg/l. These limits are more stringent than the existing limits, and will be included in the permit. These limits are more stringent as a result of the increase of design flow from 1.14 mgd to 2.3 mgd. A review of the past year DMR data shows the facility will be capable of meeting these limits.

Toxics

Effluent sample results for toxic pollutants reported on the renewal application were entered into DEP's Toxics Screening Analysis worksheet and PENTOXSD to develop appropriate permit requirements for toxic pollutants of concern. Based on effluent sample results reported on the application, Total Copper and Total Iron are candidates for PENTOXSD modeling as these pollutants are discharged at levels that have the reasonable potential to cause excursions above the state water quality criteria. A stream hardness value of 250.9 mg/l was used in modeling. This value was based off a 90th percentile analysis of the stream hardness data from the WQN Station ID 206 from October 1998 to March 2019. A discharge hardness of 295 mg/l was used in modeling. The resulting WQBEL from PENTOXSD for Total Copper was 42.463 μg/l and for Total Iron was 3329.628. When the WQBELs produced from PENTOXSD were entered into the Toxics Screening Analysis, the worksheet recommended monitoring for Total Copper and Total Iron. This data was analyzed based on the guidelines found in DEP's Water Quality Toxics Management Strategy (Document No. 361-0100-003) and DEP's SOP No. BPNPSM-PMT-033. PENTOXSD Model Results are attached to this fact sheet. The Toxics Screening Analysis uses the following logic:

- a. Establish average monthly and instantaneous maximum (IMAX) limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- b. For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- c. For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10%-50% of the WQBEL.

Since the reported maximum concentrations for Total Copper and Total Iron were greater than 10% of its respective WQBEL, per DEP's SOP No. BPNPSM-PMT-033, monitoring will be required for these parameters. Accordingly, Total Copper and Total Iron monitoring requirements will be added to the permit.

Best Professional Judgement (BPJ) Limitations

Dissolved Oxygen

A minimum D.O. limit of 5.0 mg/L is a D.O. water quality criterion found in 25 Pa. Code § 93.7(a). This limit is included in the existing NPDES permit based BPJ. It is still recommended to include this limit in the draft permit to ensure that the facility continues to achieve compliance with DEP water quality standards.

Total Phosphorus

For Total Phosphorus (TP), the current NPDES permit requires the permittee to comply with average monthly and IMAX limits of 2.0 mg/L and 4.0 mg/L, respectively. These existing limits will remain unchanged in the permit to protect the local watershed. The most recent year of DMR data indicate an average phosphorus concentration of 0.51 mg/l, which is below the average monthly limit.

Additional Considerations

Chesapeake Bay Total Maximum Daily Load (TMDL)

DEP developed a strategy to comply with the EPA and Chesapeake Bay Foundation requirements by reducing point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP). This strategy can be located in the Pennsylvania Chesapeake Watershed Implementation Plan (WIP), dated January 11, 2011. Subsequently, an update to the WIP was published as the Phase 2 WIP. As part of the Phase 2 WIP, a *Phase 2 Watershed Implementation Plan Wastewater Supplement* (Phase 2 Supplement) was developed, providing an update on TMDL implementation for point sources and DEP's current implementation strategy for wastewater. A new update to the WIP was published as the Phase 3 WIP in August 2019. As part of the Phase 3 WIP, a *Phase 3 Watershed Implementation Plan Wastewater Supplement* (Phase 3 Supplement) was developed, and was most recently revised on December 17, 2019, and is the basis for the development of any Chesapeake Bay related permit parameters. Sewage discharges have been prioritized based on their design flow to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual Cap Loads based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. These limits may be achieved through a combination of treatment technology, credits, or offsets. For Phase 4 and 5 facilities, Cap Loads are not currently being implemented for renewed or amended permits for facilities that do not increase design flow.

Manheim WWTP is a Phase 1 significant discharger. The facility's waste load allocation (WLA) is tracked under an individual WLA as a significant discharger in the Phase 3 Supplement. The following Cap Loads specified in the current Phase 3 Supplement will be included in the draft permit:

NPDES Permit No.	Phase	Facility	Latest Permit Issuance Date	Permit Expiration Date	Cap Load Compliance Start Date	TN Cap Load (lbs/yr)	TN Offsets Included in Cap Load (lbs/yr)	TP Cap Load (lbs/yr)	TN Delivery Ratio	TP Delivery Ratio
PA0002893	1	Manheim Borough Authority	1/17/2008	1/31/2013	10/1/2011	21,847	1,025	2,776	0.97	0.436

These Cap Loads were based on the previous design flow of 1.14 mgd with a TN concentration of 6.0 mg/l and TP concentration of 0.8 mg/l. The Phase 3 Supplement states that "the minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for significant sewage dischargers will be 2/week." Therefore, the monitoring frequency for TN species and TP is being increased to 2/week. DEP'S SOP New and Reissuance Sewage Individual NPDES Permit Applications states that 24-hour composite sampling is recommended as a minimum for Chesapeake Bay sewage discharger nutrient requirements. This sample type will be included in the permit for all nutrient parameters.

The Phase 3 Supplement states that "the minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for significant sewage dischargers will be 2/week." Therefore, the monitoring frequency for TN species and TP is being increased to 2/week. DEP no longer offers any tools to calculate monthly loads for Net TN and Net TP, and it is no longer needed since offsets and credits are applied annually. Therefore, this reporting requirement is no longer needed and will be removed from the permit.

The previous permit included a list of 41 on-lot disposal systems (OLDS) which were permitted/installed prior to January 1, 2003 and were retired by connection to the collection system after January 1, 2003. Based on the Chesapeake Bay Strategy, the offset load was calculated at 25 lbs TN/year, which increased the CAP Load by 1,025 lbs/year. In the existing permit, the 1,025 lbs/year offset was included as a mass load effluent limitation for net total nitrogen. The Phase 3 Supplement states that from this point forward, permits will be issued with the wasteload allocations (WLAs) as cap loads and will identify offsets separately to facilitate nutrient trading activities and compliance with the TMDL. Therefore, the proposed effluent limits will contain a net total nitrogen limit of 20,822 lbs/year, to reflect the Cap Loads required by the WIP Supplement.

Additionally, MAWSA has requested offsets for the receipt of septage. The Phase 3 Supplement states the facility may have "Receipt of hauled-in septage at the permittee's facility from residential sources within the municipal Act 537 planning area. Three pounds (3 lbs) of TN Offsets per year may be approved per 1,000 gallons of septage accepted and processed at the facility. Offsets may be approved for the acceptance of residential septage only. For the purpose of these Offsets, septage is defined as material removed from a septic tank by pumping. No other hauled-in wastes, including but not limited to holding tank wastes, solids and sludges generated at other facilities, may be approved. Such approved Offsets may only be applied in the Compliance Year in which the septage was accepted, and are not cumulative. This information will be included in the NPDES permit.

Chiques Creek Alternate Restoration Plan

This facility discharges to Chiques Creek. Chiques Creek was included on Pennsylvania's 1996 303(d) List of Impaired Waters due to nutrient impairments. A Total Maximum Daily Load (TMDL) for the Chiques Creek Watershed was approved by the United States Environmental Protection Agency (EPA) on April 9, 2001. Due to several deficiencies within the TMDL, it was withdrawn with approval from EPA on October 28, 2015. DEP, Susquehanna River Basin Commission (SRBC) and watershed stakeholders have been in the process of developing a large scale monitoring and restoration plan. The goal of this Alternate Restoration Plan (ARP) is to address impacts to the Chiques Creek Watershed due to suspended solids/siltation and nutrient pollution. During the ongoing ARP development, this discharge permit will be renewed to conform with existing guidance. This permit will include a Total Phosphorus (TP) limit of 2.0 mg/l. The TP limit of 2.0 mg/l is derived from 25 Pa. Code § 96.5(c). This section states that "when it is determined that the discharge of phosphorus, alone or in combination with the discharge of other pollutants, contributes or threatens to impair existing or designated uses in a free flowing surface water, phosphorus discharges from point source discharges shall be limited to an average monthly concentration of 2 mg/l." This is consistent with existing limits for other dischargers to the Chiques Creek Watershed. This limit is included in the existing permit, and will remain in the renewal. A continued evaluation of dischargers to Chiques Creek will be performed as described in the NPDES Part C Conditions.

Total Dissolved Solids (TDS)

Total Dissolved Solids and its major constituents including Bromide, Chloride, and Sulfate have become statewide pollutants of concern and threats to DEP's mission to prevent violations of water quality standards. The requirement to monitor these pollutants must be considered under the criteria specified in 25 Pa. Code § 95.10 and the following January 23, 2014 DEP Central Office Directive:

For point source discharges and upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part
 A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and
 report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 μg/l and the discharge flow exceeds 0.1 mgd, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 mgd or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 μg/l.

Manheim WWTP reported the maximum effluent TDS concentration of 671 mg/l. Based upon the data provided in the application, monitoring will be necessary for TDS, sulfate, chloride, and bromide. A monitoring frequency of 1/month will be used for these parameters.

Total Residual Chlorine

The attached computer printout utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92, Section 92.2d (3) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. The attached printout indicates that a water quality limit of 0.18 mg/l would be needed to prevent toxicity concerns. It is recommended that a TRC limit of 0.18 mg/l monthly average and 0.61 mg/l instantaneous maximum be applied this permit cycle. These limits are more stringent than the existing permit, and based on the past year of DMR data, the facility is not capable of meeting them. A compliance schedule has been included in the permit for TRC.

Compliance Schedule

A compliance schedule is necessary to meet the TRC limit. The following conditions will be incorporated into Part C of the NPDES permit:

- 1. If the permittee decides to conduct site-specific studies, the permittee shall notify DEP in writing within 60 days of permit issuance and submit the study results within 18 months of permit issuance.
- 2. If DEP agrees that, as a result of the studies, modifications to the WQBELs for TRC are appropriate, DEP will prepare and issue a draft permit amendment to the permittee, publish notice of the draft permit in the Pennsylvania Bulletin, and following the comment period issue a final permit amendment. DEP may also amend the schedule to achieve compliance with final TRC limits in the permit amendment.
- 3. If the permittee decides not to conduct site-specific studies, the permittee shall achieve compliance with the final TRC limits thirty six months (three years) following the permit effective date.

Optional Site-Specific Data Collection

If the permittee elects to evaluate chlorine demand concentrations, the study shall be performed in accordance with DEP's guidance, "Implementation Guidance Total Residual Chlorine (TRC) Regulation" (DEP ID 391-2000-015), Appendix B, or subsequent guidance published by DEP. In developing the final WQBELs for TRC, DEP has assumed in-stream and discharge chlorine demands of 0.3 mg/l and 0 mg/l, respectively.

Fecal Coliform

PA Code § 92a.47.(a)(4) requires a monthly average limit of 200/100 mL as a geometric mean and an instantaneous maximum limit not greater than 1,000/100 mL from May through September for fecal coliform. PA Code § 92a.47.(a)(5) requires a monthly average limit of 2,000/100 mL as a geometric mean and an instantaneous maximum limit not greater than 10,000/100 mL from October through April for fecal coliform. The instantaneous maximum fecal coliform limits have been included in the permit.

Sampling Frequency & Sample Type

The monitoring requirements were established based on the Best Professional Judgment (BPJ), Table 6-3, and/or Table 6-4 of DEP's Technical Guidance No. 362-0400-001.

Flow Monitoring

Flow monitoring is recommended by DEP's technical guidance and is also required by 25 PA Code §§ 92a.27 and 92a.61.

Influent BOD₅ and Total Suspended Solids (TSS) Monitoring

As a result of negotiation with US EPA, influent monitoring of TSS and BOD₅ are required for any publicly owned treatment works (POTWs); therefore, influent sampling of BOD₅ and TSS will remain in the permit. A 24-hr composite sample type will be required to be consistent with the existing sampling frequency for effluent TSS and CBOD₅.

Anti-Degradation

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

303(d) Listed Streams

The discharge is located on a stream segment that is designated on the 303(d) list as impaired. There is a recreational impairment due to pathogens from an unknown source. There is an aquatic life impairment due to siltation from agriculture and urban runoff/storm sewers.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

Pursuant to 40 CFR § 122.44(I)(1), all proposed permit requirements addressed in this fact sheet are at least as stringent as the requirements implemented in the existing NPDES permit unless any exceptions addressed by DEP in this fact sheet.

Manheim STP							
		Whole Ef	fluent Toxi	city (WET)			
For Outfall 001,	Acute 🛛 Chro	onic WET Testing v	vas complet	ed:			
	nit ranawal ann	lication (4 tests).	·				
Quarterly the	roughout the pe		E/TRE was o	conducted.			
The dilution series us	ead for the tests	s was: 100% 63%	30.7% 25%	and 15.8% T	he Target Inst	roam Wasto	Concentration
(TIWC) to be used for			39.7 /0, 23 /0	, and 15.6 %. T	ne rargetinst	ream waste	Concentiation
Summary of Four M	Most Recent Te	est Results					
(NOTE – Enter resul	lts into one tabl	le, depending on wh	nich data an	alysis method w	/as used).		
NOEC/LC50 Data A	nalysis						
	Ceriodani	hnia Results (% Ef	fluent)	Pimenhale	s Results (%	Effluent)	<u> </u>
	NOEC	NOEC		NOEC	NOEC		-
Test Date	Survival	Reproduction	LC50	Survival	Growth	LC50	Pass? *
3/26/12 - 3/30/12 5/30/12 - 6/4/12	100 100	100	>100 >100	100 100	100 100	>100 >100	Yes Yes
8/13-17 2012	63	100	>100	100	100	>100	Yes
11/5/12 – 11/9/12	15.8	15.8	19.9	39.7	39.7	49.8	No
Is there reasonable - In general, reason YES NO Comments: Cerioda	able potential is	s determined anytin					
	•						
Evaluation of Test	Type, IWC and	l Dilution Series fo	r Renewed	<u>Permit</u>			
Acute Partial Mix Fa	ctor (PMFa): 0.	675 Chror	nic Partial M	ix Factor (PMFo	e): 1		
1. Determine IWC	- Acute (IWCa	a):					
(Q _d x 1.547) / ((0	Q ₇₋₁₀ x PMFa) +	(Q _d x 1.547))					
[(2.3 MGD x 1.5	47) / ((4.34 cfs	x 0.675) + (2.3 MG	D x 1.547))]	x 100 = 54.8%			
Is IWCa < 1%? [□ YES ⊠ NO	YES - Acute Te	sts Require	ed OR NO - Chr	onic Tests R	equired)	
If the discharge	is to the tidal po	ortion of the Delawa	are River, ind	dicate how the t	ype of test wa	s determine	d:
N/A							
Type of Test fo	r Permit Renev	wal: Chronic					

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = **%**

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

[(2.3 MGD x 1.547) / ((4.34 cfs x 1) + (2.3 MGD x 1.547))] x 100 = **45.1%**

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 73%, 45%, 23%, and 11%.

WET Limits

Has reasonable potential been determined?	⊠ YES [I	NO
Will WET limits be established in the permit?	⊠ YES		NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

Ceriodaphnia dubia failed all end points in test #4 and a limit of 2.2 (1/0.45) is required. Testing is required for both species starting with quarterly WET testing upon permit renewal.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through 3 years from permit issuance.

				Monitoring Requirements				
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.46	XXX	1.5	1/day	Grab
CBOD5	306	460	XXX	16	24	32	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	575	863	XXX	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Ammonia Nov 1 - Apr 30	143	XXX	XXX	7.5	XXX	15	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	47	XXX	XXX	2.5	XXX	5.0	2/week	24-Hr Composite
Total Phosphorus	38	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite
Total Copper	XXX	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
							.,	24-Hr
Total Iron	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
TDS	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Sulfate	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Chloride	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
				-				24-Hr
Bromide	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Chronic WET - Ceriodaphnia				•	2.2			24-Hr
Survival (TUc)	XXX	XXX	XXX	XXX	Daily Max	XXX	See Permit	Composite
Chronic WET - Ceriodaphnia					2.2			24-Hr
Reproduction (TUc)	XXX	XXX	XXX	XXX	Daily Max	XXX	See Permit	Composite

Compliance Sampling Location: Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: 3 years from permit issuance through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.18	XXX	0.61	1/day	Grab
CBOD5	306	460	XXX	16	24	32	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	575	863	XXX	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2,000 Geo Mean	XXX	10,000	2/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Ammonia Nov 1 - Apr 30	143	XXX	XXX	7.5	XXX	15	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	47	XXX	XXX	2.5	XXX	5.0	2/week	24-Hr Composite
Total Phosphorus	38	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average	_		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
								24-Hr
Total Copper	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Total Iron	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
TDS	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Sulfate	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Chloride	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
								24-Hr
Bromide	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
Chronic WET - Ceriodaphnia					2.2			24-Hr
Survival (TUc)	XXX	XXX	XXX	XXX	Daily Max	XXX	See Permit	Composite
Chronic WET - Ceriodaphnia					2.2			24-Hr
Reproduction (TUc)	XXX	XXX	XXX	XXX	Daily Max	XXX	See Permit	Composite

Compliance Sampling Location: Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Limitations			Monitoring Requirements		
Parameter	Mass Ui	nits (lbs)	Con	centrations (mg	/L)	Minimum	Required	
raiailletei	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Sample Type	
							24-Hr	
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	Composite	
							24-Hr	
KjeldahlN	Report	XXX	XXX	Report	XXX	2/week	Composite	
							24-Hr	
Nitrite-Nitrate as N	Report	XXX	XXX	Report	XXX	2/week	Composite	
Total Nitrogen	Report	Report	xxx	Report	XXX	1/month	Calculation	
							24-Hr	
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	Composite	
Net Total Nitrogen	xxx	20,822	XXX	XXX	XXX	1/month	Calculation	
Net Total Phosphorus	xxx	2,776	XXX	XXX	XXX	1/month	Calculation	

Compliance Sampling Location: Outfall 001

Other Comments: On-lot disposal system offsets are 1,025 lbs/year based on 41 OLDs. Any additional offsets claimed during the permit term must be reported as outlined in PART C of this permit.

	Tools and References Used to Develop Permit
\square	WOM for Windows Model (one Attachment
\square	WQM for Windows Model (see Attachment) PENTOXSD for Windows Model (see Attachment)
\square	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

er report title:	
lanheim Borough Authority Outfall 001	
er comments:	
ome comments here	

Manheim Borough Authority Outfall 001

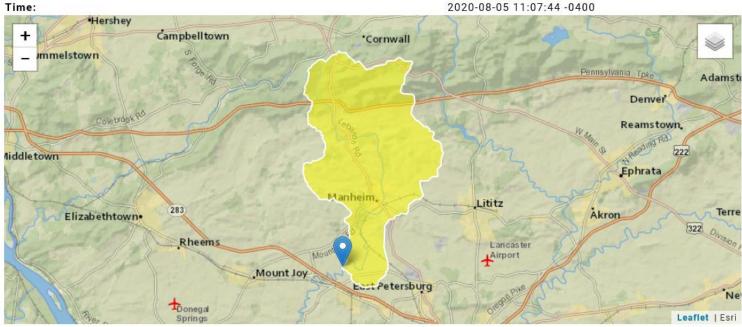
Region ID: Workspace ID: Clicked Point (Latitude, Longitude): PA PA20200602152716138000 40.15260, -76.40466 2020-06-02 11:27:33 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	36.2	square miles
BSLOPD	Mean basin slope measured in degrees	4.5	degrees
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	6	percent

Low-Flow Statistics Parameters [100 Percent (36.1 square miles) Low Flow Region 1]									
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit				
DRNAREA	Drainage Area	36.2	square miles	4.78	1150				
BSLOPD	Mean Basin Slope degrees	4.5	degrees	1.7	6.4				
ROCKDEP	Depth to Rock	4	feet	4.13	5.21				
URBAN	Percent Urban	6	percent	0	89				

Low-Flow Statistics Disclaimers [100 Percent (36.1 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors


Low-Flow Statistics Flow Report[100 Percent (36.1 square miles) Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	3.74	ft^3/s
30 Day 2 Year Low Flow	5.34	ft^3/s
7 Day 10 Year Low Flow	1.59	ft^3/s
30 Day 10 Year Low Flow	2.36	ft^3/s
90 Day 10 Year Low Flow	4.07	ft^3/s

Manheim Boro	ugh Authority Downstream Poi	nt		
Enter comments:				
Some commer	ts here			

Manheim Borough Authority Downstream Point

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): PA PA20200805150723042000 40.11713, -76.42526 2020-08-05 11:07:44 -0400

Basin Characteristics

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	41.9	square miles
BSLOPD	Mean basin slope measured in degrees	4.2	degrees
ROCKDEP	Depth to rock	4.2	feet
URBAN	Percentage of basin with urban development	6	percent

Low-Flow Statistics Parameters[100 Percent (41.8 square miles) Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	41.9	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	4.2	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.2	feet	4.13	5.21
URBAN	Percent Urban	6	percent	0	89

Low-Flow Statistics Flow Report[100 Percent (41.8 square miles) Low Flow Region 1]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	SEp
7 Day 2 Year Low Flow	4.9	ft^3/s	46	46
30 Day 2 Year Low Flow	6.89	ft^3/s	38	38
7 Day 10 Year Low Flow	2.14	ft^3/s	51	51
30 Day 10 Year Low Flow	3.1	ft^3/s	46	46
90 Day 10 Year Low Flow	5.34	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p.

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainag Area (sq mi)		fl/ft)	PW: Withdr (mg	awal	Apply FC
	07G	79	919 CHICK	IES CRE	EK		19.10	00	379.00	36	20 0.	.00000		0.00	~
					St	ream Dat	a								
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary	H	Tem	<u>Stream</u> p	рН	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00	7.00	2	1.00	8.30	
					Di	scharge l	Data								
			Name	Per	mit Number	Disc	Permitto Disc Flow (mgd)	Dis Flo	c Res w Fa		Disc Temp (°C)	Di:	sc H		
		Manh	neim STP	PAG	0020893	2.300	0 2.300	00 2.3	8000	0.000	25.0	10	7.00		
					Pa	arameter	Data								
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef					
				aramete	Ivallie	(m	ıg/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.5	0				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	0				
			NH3-N				25.00	0.00	0.00	0.7	0				

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		(ft)	Drainage Area (sq mi)		With	WS drawal ngd)	Apply FC
	07G	79	919 CHICK	(IES CRE	EK		13.90	60	349.00	41.5	90 0.00	0000	0.00	v
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary p p	н	<u>Strea</u> Temp	pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	0.00	7.00	21.00	8.30	
					Di	scharge	Data						7	
			Name	Per	mit Number	Disc	Permitt Disc Flow (mgd)	Dis Flo	ic Res	erve T	Disc emp (°C)	Disc pH		
						0.000	0.000	0.0	0000	0.000	0.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				aramete	Ivallie	(m	ig/L) (r	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50)			
			Dissolved	Oxygen			3.00	8.24	0.00	0.00)			
			NH3-N				25.00	0.00	0.00	0.70	1			

WQM 7.0 Hydrodynamic Outputs

		P Basin 07G		<u>m Code</u> '919				Stream HICKIES	<u>Name</u> CREEK				
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	
Q7-1	0 Flow												
19.100	4.34	0.00	4.34	3.5581	0.00111	.728	40.51	55.63	0.27	1.173	22.80	7.32	
Q1-1	0 Flow												
19.100	2.78	0.00	2.78	3.5581	0.00111	NA	NA	NA	0.24	1.327	23.25	7.23	
Q30-	10 Flow												
19.100	5.90	0.00	5.90	3.5581	0.00111	NA	NA	NA	0.30	1.060	22.50	7.39	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

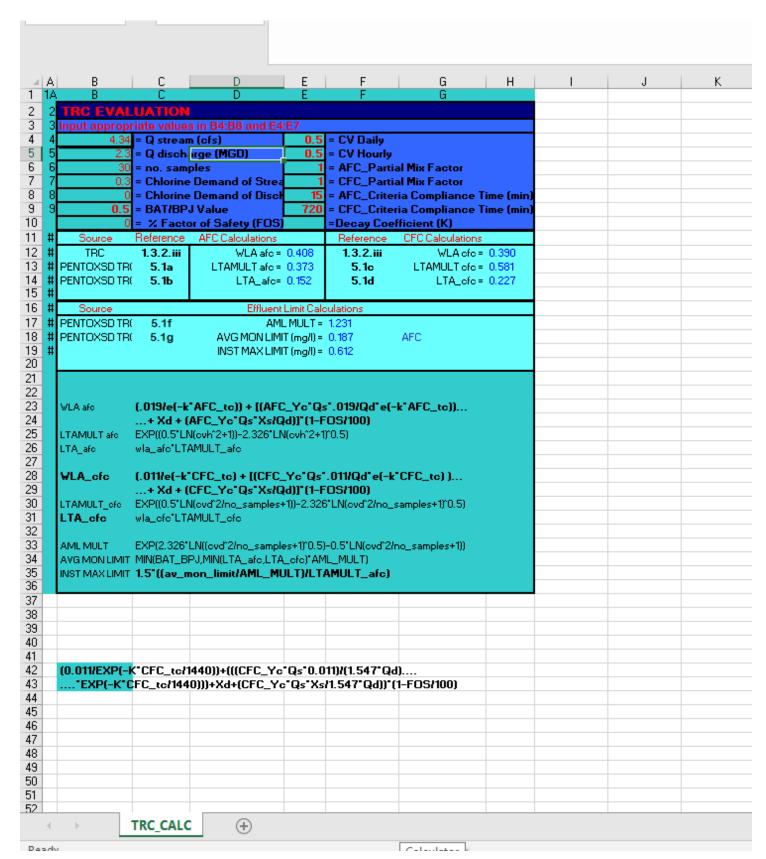
Wednesday, August 5, 2020 Version 1.0b Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
07G	7919	CHICKIES CREEK

NH3-N A	Acute Allocation	ıs					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
19.100	Manheim STP	6.32	11.25	6.32	11.25	0	0
NH3-N C	Chronic Allocati	ons					
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
19.100	Manheim STP	1.28	3.39	1.28	3.39	0	0

Dissolved Oxygen Allocations


		CBC			3-N	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	multiple	baseline	muitiple	Reach	Reduction
19.10 Ma	anheim STP	15.64	15.64	3.39	3.39	5	5	0	0

WQM 7.0 D.O.Simulation

SWP Basin St	ream Code			Stream Name		
07G	7919		C	HICKIES CREE	K	
RMI	Total Discharge	Flow (mgd	<u>) Anal</u>	ysis Temperatur	e (°C)	Analysis pH
19.100	2.30	0		22.802		7.321
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio)	Reach Velocity (fps)
40.509	0.72	В		55.626		0.268
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N (mg	/L)	Reach Kn (1/days)
8.14	0.72			1.53		0.868
Reach DO (mg/L)	Reach Kr (Kr Equation		Reach DO Goal (mg/L)
6.782	3.00	5		Tsivoglou		5
Reach Travel Time (days)		Subreach	Results			
1.173	TravTime		NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.117	7.40	1.38	5.84		
	0.235	6.72	1.25	5.32		
	0.352	6.10	1.13	5.09		
	0.469	5.54	1.02	5.04		
	0.587	5.04	0.92	5.11		
	0.704	4.57	0.83	5.25		
	0.821	4.15	0.75	5.44		
	0.939	3.77	0.68	5.65		
	1.056	3.43	0.61	5.87		
	1.173	3.11	0.55	6.09		

WQM 7.0 Effluent Limits

	SWP Basin St	ream Code		Stream Name	<u>e</u>		
	07G	7919		CHICKIES CRE	EK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
19.100	Manheim STP	PA0020893	2.300	CBOD5	15.64		
				NH3-N	3.39	6.78	
				Dissolved Oxygen			5

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN **VERSION 2.6**

CLEAR FORM

Manheim Borough Authority Facility: 275 Analysis Hardness (mg/L): Stream Flow, Q7-10 (cfs): 4.34

NPDES Permit No.: Discharge Flow (MGD): 2.3

PA0020893

Outfall: 001 Analysis pH (SU): 7.618

	Parameter		ximum Concentration in plication or DMRs (µg/L)	Most Stringent Criterion (µg/L)		Most Stringent WQBEL (µg/L)	Screening Recommendation
	Total Dissolved Solids		671000	500000	Yes		
_	Chloride			250000			
Group	Bromide			N/A			
5	Sulfate			250000			
	Fluoride			2000			
	Total Aluminum		150	750	No		
	Total Antimony			5.6			
	Total Arsenic			10			
	Total Barium		20	2400	No		
	Total Beryllium			N/A			
	Total Boron		240	1600	No		
	Total Cadmium			0.278	1		
	Total Chromium			N/A			
	Hexavalent Chromium			10.4			
	Total Cobalt			19			
4	Total Copper		12	9.6	Yes	42.463	Monitor
ì	Total Cyanide			N/A			
doolo	Total Iron		940	1500	Yes	3329.628	Monitor
1	Dissolved Iron		68	300	No		
	Total Lead			3.3			
	Total Manganese		15	1000	No		
	Total Mercury			0.05			
	Total Molybdenum			N/A			
	Total Nickel			53.7			
	Total Phenols (Phenolics)			5			
	Total Selenium			5.0			
	Total Silver			4.0			
	Total Thallium			0.24	1		
	Total Zinc		51	123.4	No		
	Acrolein	<		3			
	Acrylamide	<		0.07			
	Acrylonitrile	<		0.051			
	Benzene	<		1.2 4.3	1		
	Bromoform Carbon Tetraphlarida	<			+		
	Carbon Tetrachloride Chlorobenzene	<		0.23			
	Instructions Major Sewa		Industrial Other		Reference +		

PENTOXSD

Modeling Input Data

Stream Code	RMI	Elevati (ft)	P	inage krea q mi)	Slope	PWS (mg				pply FC				
7919	19.10	37	9.00	36.20	0.0000	0	0.00			✓	-			
							Stream D	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pH	Strear Hard	n pH	<u>Analysi</u> Hard	<u>is</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	4.34	(0 0	0	0	0	100	7	250.9	8.3	0	0
Qh		0	0	(0 0	0	0	0	100	7	0	0	0	0
						D	ischarge [Data						
١	lame	Pem Numi	ber D	sting F isc low	ermitted Disc Flow	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(m	ngd)	(mgd)	(mgd)						(mg/L)		
Manh	neim STP	PA002	2089 2	2.3	2.3	2.3	0	0	0	0	0	295	7.4	
						P	arameter [Data						
	Parameter N	lame		Disc Conc		CV	/ Hourl	ly Con	c CV	Fate Coe		Crit Mod	Conc	
				(µg/L)				(µg/					(µg/L)	
TOTAL IF				100 4000	0	0. 0.				0	0	1	0	

Thursday, August 6, 2020 Version 2.0d Page 1 of 2

Strea Cod		Elevati (ft)	P	inage Area q mi)	Slop		With ngd)		A	PC FC				
79	13.96	34	9.00	41.9	0.000	00	0.00			~	_			
							Stream I	Data						
		Trib	Stream	WD	Rch	Rch	Rch	Rch	Tributa	ary	Stream	<u>m</u>	Analys	is
	LFY	Flow	Flow	Rati	o Widt	h Depth	Velocity	Trav Time	Hard	pН	Hard	pН	Hard	pН
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.1	0	5.03		0	0 0	0	0	100	7	250.9	8.3	0	0
Qh		0	0		0	0 0	0	0	100	7	0	0	0	0
							Discharge	Data						
	Name	Pem Numi	ber D	sting I isc low	Permitte Disc Flow	d Design Disc Flow	Facto		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
			(m	ngd)	(mgd)	(mgd)					(mg/L)		
				0	0	0	0	0	0	0	0	100	7	
							Parameter	Data						
	Parameter N	Vame		Disc	Co	nc Da	isc Dis ily Hou CV C	rly Co	nc CV	n Fate Coe		Crit Mod	Conc	
				(µg/L		3/L)			/L)				(µg/L)	
COPPI				0				-	0 0	0	0	1	0	
TOTAL	IRON			0		0 (0.5 0	.5 (0 0	0	0	1	0	

Thursday, August 6, 2020 Version 2.0d Page 2 of 2

PENTOXSD Analysis Results Hydrodynamics

S	WP Basir	1	Stream	n Code:			Stream	m Name	<u> </u>		
	07G		79	919			CHICKI	ES CRE	EK		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)
					Q7-	-10 Hyd	Irodyna	mics			
19.100	4.34	0	4.34	3.55809	0.0011	0.7282	40.509	55.626	0.2677	1.1732	32.869
13.960	5.03	0	5.03	NA	0	0	0	0	0	0	NA
					Q	h Hydr	odynan	nics			
19.100	26.801	0	26.801	3.55809	0.0011	1.3169	40.509	30.76	0.5691	0.552	34.884
13.960	30.490	0	30.490	NA	0	0	0	0	0	0	NA

Thursday, August 6, 2020 Version 2.0d Page 1 of 1

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name P	ermit Number						
19.10	Manheim STP	PA002089						
				AFC				
Q7-	10: CCT (min)	15 PMF	0.675	Analysis	pH 7.618	Analysis	Hardness 2	75.077
	Parameter	Stream Conc (µg/L)		Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
		(pg/L)		(Pg/L)		(P9/L)	(pg/L)	(Pg/L)
	COPPER	0	0	0	0	34.868	36.321	66.248
	TOTAL IRON	Dissolve 0	a wqc. ci	nemical trai 0	nslator of 0. 0	96 applied. NA	NA	NA
	TOTALIRON	· ·	U	U	U	NA	NA	NA
			c	FC				
Q7-10:	CCT (min)	32.869 PM	F 1	Analysis	pH 7.684	Analysi	s Hardness	270.767
		Stream	Stream	Trib	Fate	WQC	WQ	WLA
	Parameter	Conc. (µg/L)	CV	Conc. (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)
	COPPER	0	0	0	0	20.978	21.852	48.505
		Dissolve	d WQC. C	hemical tra	nslator of 0.	96 applied.		
	TOTAL IRON	0	0	0	0	1500	1500	3329.628
		WQC = :	30 day aver	age. PMF =	= 1.			
			T	тн				
Q7-10:	CCT (min)	32.869 PMF	NA.	Analysis	pH NA	Analysi	s Hardness	NA
	Parameter	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
		(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER	0	0	0	0	NA	NA	NA
	TOTAL IRON	0	0	0	0	NA	NA	NA
				on.				
				CRL				
Qh:	CCT (min)	34.884 PM						
	Parameter	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	WLA
		(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER	0	0	0	0	NA	NA	NA
	TOTAL IRON	0	0	0	0	NA	NA	NA

PENTOXSD Analysis Results

Recommended Effluent Limitations

07G	Stream Code: 7919			Stream CHICKIES			
RMI	Name		mit nber	Disc Flow (mgd)			
19.10	Manheim STP	PA0	2089	2.3000	-		
		Effluent Limit			Max. Daily	Most S	tringent
ı	Parameter	(µg/L)	Gove: Crite	•	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion
COPPER		42.463	AF	С	66.248	42.463	AFC
TOTAL IRON	l	3329.628	CF	С	5194.755	3329.628	CFC