

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.PA0021075APS ID23201Authorization ID1257551

Applicant and Facility Information

Applicant Name	Myerst	own Borough	Facility Name	Myerstown STP
Applicant Address	101 S F	Railroad Street	Facility Address	331 East Mill Avenue
	Myerste	own, PA 17067-1351		Myerstown, PA 17067-2404
Applicant Contact	Barry Ludwig		Facility Contact	Barry Ludwig
Applicant Phone	(717) 866-5826		Facility Phone	(717) 866-5826
Client ID	116170		Site ID	252200
Ch 94 Load Status	Not Overloaded		Municipality	Myerstown Borough
Connection Status	No Lim	itations	County	Lebanon
Date Application Receiv	ved	December 21, 2018	EPA Waived?	No
Date Application Accepted		January 10, 2019	If No, Reason	Major Facility
Purpose of Application		NPDES Renewal for discharg	e of treated sewage	

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated sewage from a wastewater treatment plant that serves Myerstown Borough (35% flow), Jackson Township (35% flow), and Millcreek-Richland Joint Authority (30% flow). Borough of Myerstown (Borough) owns, maintains and operates the wastewater treatment plant located in Jackson Township, Lebanon County. The treatment plant is a three-channel orbal oxidation ditch treatment system. The collection system has no combined sewers and no bypasses or overflows are authorized in the collection system. The facility is located within the 100-year flood zone and susceptible to flooding and was flooded a couple of times, but treatment was not impacted significantly. A discrepancy was detected in the effluent and influent flow that was traced to a filtrate return line to the headworks downstream of the influent flow meter. The filtrate return line appears to be receiving inflows as well resulting in an effluent flow that is significantly higher than the influent flow being reported by permittee. The Borough is working to address the situation. The facility has a design annual average flow of 2 MGD and hydraulic design capacity of 2.92 MGD. The organic design capacity is 8,062lbs/day. The plant's effluent discharges to an underwater outfall with diffuser, for better in-stream mixing. The receiving stream is an unnamed tributary to Tulpehocken Creek which is classified for Cold Water Fishes (CWF). The existing NPDES permit was issued on June 20, 2014 with an effective date of July 1, 2014 and expiration date of June 30, 2019. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application.

Topographical Map showing the discharge location is presented in attachment A

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza, P.E. / Environmental Engineer	April 21, 2020
x		<i>MDB for DWM</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	June 26, 2020
x		<i>MDB</i> Maria D. Bebenek, P.E. / Program Manager	June 26, 2020

Summary of Review

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to the existing Permit

- Monitoring frequency for Raw Sewage Influent has been increased to the same frequency monitoring as effluent.
- Total Nitrogen monitoring has been added
- Limitation on Total Arsenic has been added
- Monitoring of Free Available Cyanide has been added

1.3 Existing Permit Limits and Monitoring Requirements

			Effluent I	Limitations			Monitoring R	equirements
Discharge	Mass Units	s (Ibs/day)		Concentra	Minimum			
Parameter	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Required Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
CBOD5								24-Hr
Nov 1 - Apr 30	417	667	XXX	25	40	50	2/week	Composite
CBOD5								24-Hr
May 1 - Oct 31	283	450	XXX	17	27	34	2/week	Composite
BOD5 Raw								24-Hr
Sewage Influent	Report	XXX	ххх	Report	XXX	XXX	2/month	Composite
TSS	500	750	xxx	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	xxx	xxx	Report	xxx	xxx	2/month	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	xxx	2,000 Geo Mean	xxx	10,000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	xxx	200 Geo Mean	XXX	1,000	2/week	Grab
Ammonia Nov 1 - Apr 30	21	XXX	xxx	15.9	xxx	31.8	2/week	24-Hr Composite

NPDES Permit Fact Sheet Myerstown STP

Ammonia May 1 - Oct 31	7.1	xxx	xxx	5.3	XXX	10.6	2/week	24-Hr Composite
Total Phosphorus	16.7	xxx	xxx	1.0	xxx	2	2/week	24-Hr Composite
Total Nitrogen	XXX	xxx	xxx	Report Quarterly Avg	xxx	XXX	1/quarter	24-Hr Composite
Total Dissolved Solids	XXX	xxx	xxx	Report Quarterly Avg	xxx	XXX	1/quarter	24-Hr Composite
UV Dosage (mWsec/cm²)	XXX	xxx	Report	xxx	xxx	XXX	1/day	Measured

Outfall No. <u>001</u> Latitude <u>40° 22' 33.08"</u>	Design Flow (MGD) Longitude Quad Code	2 -76º 17' 18.98"
	—	-76º 17' 18.98"
Qued Name	Quad Code	
Quad Name		
Wastewater Description: Sewage Effluent		
Tulpehocken Creek (TSF) Receiving Waters (upstream of Blue Marsh Lake)	Stream Code	01846
NHD Com ID 25963004	RMI	32.5
Drainage Area 27.8 mi ²	Yield (cfs/mi ²)	0.37
Q ₇₋₁₀ Flow (cfs) <u>6.11</u>	Q7-10 Basis	USGS gage
Elevation (ft)415	Slope (ft/ft)	
Watershed No. <u>3-C</u>	Chapter 93 Class.	TSF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment Siltation		
Source(s) of ImpairmentAgriculture, Urban Runoff/S	trom Sewers	
TMDL Status	Name	
pH (SU)	Data Source	
Other:		
Nearest Downstream Public Water Supply Intake PWS Waters PWS RMI	Western Berks Water Authorit Flow at Intake (cfs) Distance from Outfall (mi)	y

Changes Since Last Permit Issuance: None

1.4.1 Water Supply Intake

The nearest water supply intake is 26.5 miles downstream at Lower Heidelberg, Sinking Springs on Tulpehocken Creek by the Western Berks Water Authority. No impact is expected from this discharge

.0 Treatment Facility				
reatment Facility Na	me: Myerstown STP			
WQM Permit No.	Issuance Date			
3806406	6/28/2016			
3806406	03/22/2007			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With Ammonia And			
Sewage	Phosphorus	Oxidation Ditch	Ultraviolet	2
_				
lydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposa
2.92	8,062	Not Overloaded	Aerobic Digestion	Combination o methods

Changes Since Last Permit Issuance: WQM permit was amended on 6/28/2016 to replace existing screening unit

Other Comments:

2.1 Treatment Facility Description

The treatment plant consists of:

1 Mechanical Screen, 1 Bar Screen back-up, 1 grit removal unit, an orbal oxidation ditch process (with three channels and 8 rotors to supply oxygen), 3 Clarifiers,1 UV system with 2 banks, 1 post-aeration tank, 1 sludge (gravity) thickener, a primary sludge digester followed by a secondary in series, both aerated with 3 blowers and coarse bubble diffusers, 1 centrifuge generally operated 2x/week (centrate go to reed beds and cake go to Greater Lebanon Refuse Landfill) and 6 Reed beds, not continually used.(Couple of times in a year sludge added to the reed beds)

Influent is measured prior to the screens/headworks building and two wet wells. 3 influent pumps, pump influent to the oxidation ditch. The outer loop of the oxidation ditch is operated at a DO of close to 0, (anoxic conditions). The middle channel is operated at 0-2 mg/l DO. The inner loop is operated as an aerobic reactor at DO of 2 mg/l or more, for nitrification. Oxidation Ditch storm mode kicks in at flow greater than 3.0 MGD where the outer channel of Oxidation Ditch is by-passed and the 3rd clarifier is used. Oxidation Ditch effluent flow to a splitter box and flow is directed to clarifiers. Parshall flumes and ultrasonic flow meters exist for Influent and Effluent measurement. Effluent composite sampler is located prior to flow meter and after post-aeration tank. The UV system is designed to provide a minimum dose of 26.7 mW-s/cm² at a peak hourly flow of 6.0 MGD.

2.2 Chemicals

Sodium aluminate is used for phosphorus precipitation, Polymer for sludge dewatering in centrifuge

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from March 1, 2019 to February 29, 2020)

Parameter	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19
Flow (MGD)												
Average Monthly	1.3156	1.2701	1.2042	1.2857	1.1129	1.1162	1.7530	2.4318	2.6825	2.5405	2.0683	2.7344
Flow (MGD)												
Daily Maximum	1.6056	2.5207	1.5612	2.7513	2.4740	1.6379	2.9949	3.7027	4.6130	4.0615	2.7842	5.1585
pH (S.U.)												
Instant. Minimum	7.9	7.8	7.9	7.8	8.0	8.1	8.0	7.9	7.6	7.7	7.9	7.9
pH (S.U.)												
Instant. Maximum	8.2	8.1	8.3	8.3	8.3	8.3	8.3	8.2	8.2	8.2	8.2	8.2
DO (mg/L)												
Minimum	10.3	10.8	10.9	9.1	9.5	9.5	9.1	9.0	8.7	8.4	10.3	9.1
CBOD5 (lbs/day)					10							
Average Monthly	< 23	< 21	< 22	< 24	< 19	< 20	< 31	< 55	< 74	< 73	< 41	< 72
CBOD5 (lbs/day)				05	00	05		00	05		40	100
Weekly Average	< 29	< 28	< 24	< 35	< 23	< 25	< 39	< 90	85	99	49	< 106
CBOD5 (mg/L)	< 2.2	< 2	< 2.1	< 2.2	< 2.1	< 2.1	< 2.1	< 2.8	< 3.3	< 3.1	< 2.4	< 3.5
Average Monthly	< 2.2	< 2	< 2.1	< 2.2	< 2.1	< 2.1	< 2.1	< 2.8	< 3.3	< 3.1	< 2.4	< 3.5
CBOD5 (mg/L)	< 2.6	< 2.1	< 2.3	< 3	< 2.3	< 2.3	2.3	< 4.6	4.5	3.9	3.1	5.2
Weekly Average BOD5 (lbs/day)	< 2.0	< 2.1	< 2.5	< 3	< 2.5	< 2.5	2.3	< 4.0	4.5	3.9	5.1	5.2
Raw Sewage Influent												
<pre> Aver. Monthly</pre>	1616	1942	2118	1845	1948	1811	1606	1780	1864	2038	2238	1732
BOD5 (lbs/day)	1010	1342	2110	1045	1340	1011	1000	1700	1004	2000	2230	17.02
Raw Sewage Influent												
 br/> Daily Maximum	2112	2766	3895	2577	2869	3265	2672	3104	3471	3163	3106	2773
BOD5 (mg/L)		2.00	0000	2011	2000	0200	2012	0101	0111	0100	0100	2110
Raw Sewage Influent												
 Aver. Monthly	148	181	194	181	238	213	137	112	105	111	145	94
TSS (lbs/day)												
Average Monthly	< 61	< 43	< 41	< 55	< 43	< 42	< 87	< 114	< 170	< 154	136	134
TSS (lbs/day)												
Raw Sewage Influent												
 Aver. Monthly	1591	2065	1871	1754	2014	2068	2038	2199	2069	2153	2330	2116
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	2027	3695	2762	2628	2442	3073	2350	3187	3029	3397	3259	2507
TSS (lbs/day)												
Weekly Average	87	61	< 47	81	< 51	60	134	149	216	192	163	160

TSS (mg/L)												
Average Monthly	< 6	< 4	< 4	< 5	< 5	< 4	< 6	< 6	< 8	< 7	8	6
TSS (mg/L) Raw Sewage Influent Aver. Monthly	144	201	176	171	245	240	170	136	116	118	153	113
TSS (mg/L) Weekly Average	8	4	< 4	7	6	5	7	7	10	8	9	7
Total Dissolved Solids (mg/L) Aver. Quarterly			538			526			458			326
Fecal Coliform (CFU/100 ml) Geometric Mean	13	29	53	53	25	15	77	53	105	28	26	25
Fecal Coliform (CFU/100 ml) Instant. Maximum	69	192	144	296	80	68	240	4100	3900	96	47	244
Total Nitrogen (mg/L) Average Quarterly			3.41			5.02			5.23			5.12
Ammonia (lbs/day) Average Monthly	< 1	< 1	< 1	< 2	< 0.9	< 1	< 2	< 2	< 2	< 3	< 2	< 3
Ammonia (mg/L) Average Monthly	< 0.1	< 0.1	< 0.1	< 0.21	< 0.1	< 0.13	< 0.11	< 0.1	< 0.1	< 0.12	< 0.1	< 0.14
Total Phosphorus (lbs/day) Ave. Monthly	3.8	4.8	3.3	4.9	5.8	< 1.7	6.5	12.2	13.3	14.7	11.7	8.8
Total Phosphorus (mg/L) Ave, Monthly	0.35	0.47	0.32	0.48	0.64	< 0.18	0.41	0.6	0.59	0.64	0.67	0.41
UV Dosage (mWsec/cm²) Daily Minimum	24.56	24.26	25.55	23.34	25.68	27.71	24.14	23.86	23.53	24.14	23.88	23.96

3.2 Effluent Violations for Outfall 001, from: April 1, 2019 To: February 29, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	07/31/19	IMAX	4100	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	06/30/19	IMAX	3900	CFU/100 ml	1000	CFU/100 ml

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met most of the time. Two Fecal Coliform effluent violations were noted on DMRs during the period reviewed. The violations are presented on the table above in section 3.2. The violations occurred in June and July 2019 and had been addressed.

3.3 Summary of Inspections:

The facility has been inspected 7 times during last permit cycle. No effluent violations doted during plant inspections. The facility is operated and maintained well.

4.0 Develop	ment of Effluent Limitations		
Outfall No.	001	Design Flow (MGD)	2
Latitude	40° 22' 33.08"	Longitude	-76º 17' 18.98"
Wastewater D	Description: Sewage Effluent		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable to this discharge

4.2 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.3 Water Quality-Based Limitations

4.3.1 Receiving Stream

The receiving stream is Tulpehocken Creek. According to 25 PA § 93.9f, this stream is protected for Cold Water Fishes (CWF). It is located in Drainage List F and State Watershed 3-C. It has been assigned stream code 01846. According to the Department's *Integrated Water Quality Monitoring and Assessment Report*, this segment of the stream is impaired and not attaining its designated uses due to siltation from agricultural activities and Urban Runoff/Storm Sewers

4.3.2 Stream flows

Streamflows flows were determined by correlating with the yield of USGS gage station No. 01471000 on Tulpehocken Creek near Reading. The Q_{7-10} and drainage area at the gage is 46.8ft³/s and 211mi² respectively. The resulting yields are as follows:

- Q₇₋₁₀ = (46.8ft³/s)/211 mi² = 0.22 ft³/s/ mi²
- $Q_{30-10} / Q_{7-10} = 1.23$
- $Q_{1-10} / Q_{7-10} = 0.84$

The drainage area at discharge taken from the previous permit= 2.3 mi²

The Q_{7-10} at discharge = 27.8 mi² x 0.22 ft³/s/mi² = 6.12 ft³/s.

4.3.3 NH₃N Calculations

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached model result of the stream:

STP pH	=	7.70 (DMR median from July-September.)
STP Temp	=	25°C (Default)
Stream pH	=	7.0 (Default)
Stream Temp	=	20°C (Default)
Background NH ₃ N	=	0 mg/l (Assumed)

4.3.4 WQM Model

The WQM 7.0 model was run with Jackson Township's STP due to its proximity to the Myerstown Borough's STP. The discharges are on two different stream segments with different stream codes for Tulpehocken Creek and the unnamed tributary. The stream code for Tulpehocken Creek 01846 was used to run the model since the model does not accept 2 stream codes in one run. Myerstown STP is located at 32.5 RMI on Tulpehocken Creek and Jackson Township is assumed at 36.2 RMI on Tulpehocken Creek (35.8 RMI is the confluence of UNT 01974 with Tulpehocken. Creek. + 0.4 RMI on the UNT 01974)

4.3.5 CBOD₅

The attached results of WQM 7.0 stream model (attachments B) indicate that a monthly average limit (AML) of 25 mg/l CBOD5 is required to protect the water quality of the stream. This limit is less stringent than the existing summer months AML of 17mg/l, a weekly average limit (AWL) of 27mg/l and instantaneous maximum (IMAX) of 34mg/l. Due to antibacksliding restrictions, the existing summer limitations will remain in the permit with the winter months AML of 25mg/l, AWL of 40mg/l and IMAX of 50mg/l. Past DMRs and inspection reports show the STP has been consistently complying with the limitations. Therefore, an AML of 17mg/l, a weekly average limit (AWL) of 24mg/l and instantaneous maximum (IMAX) of 34mg/l for summer months and a winter months AML of 25mg/l, AWL of 40mg/l and IMAX of 50mg/l will be applied again for this current permit cycle. Mass limits are calculated for AMLs and AWLs following the formula listed in section 4.2 above.

<u>4.3.6 NH₃-N</u>

The attached results of the WQM 7.0 stream model (attachment B) also indicate that a summer limitation of mg/l 5.53 NH₃-N is necessary to protect the aquatic life from toxicity effects. This limit is slightly less stringent than the existing summer limit of 5.3 mg/l. Due to anti-backsliding restrictions, the existing summer limit 5.3 mg/l and winter limit of 15.9 mg/l will remain in the permit. DMR and inspection reports indicate the facility is meeting the limitations. Associated mass limits are calculated following the formula listed in section 4.2 above.

4.3.7 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O.

NPDES Permit Fact Sheet Myerstown STP

criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.8 Phosphorus

The Phosphorus limits in the existing permit was as a result of a 1987 PA DEP study of the Blue Marsh Reservoir. It was recommended that a phosphorus limit of 1.0 mg/l be included in all permits for facilities which discharged upstream of the Reservoir. The limit will be continued in the current permit renewal.

4.3.9 Total Residual Chlorine:

The discharge does not have any reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee utilizes UV instead of chlorine for wastewater disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV dosage requirement will be continued in the permit to ensure efficiency of the UV unit.

4.3.10 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) with associated mass limit.

4.3.11 Toxics

A reasonable potential (RP) analysis was done for pollutant Groups 1 to 6 submitted with the application. All pollutants were entered into a Toxics Screening Analysis spreadsheet to determine if any pollutants are parameters of concern that require PENTOXSD modeling. All pollutant above the most stringent Chapter 93 criteria are considered parameters of concern. This also includes samples that resulted in non-detect, but the method detection limit that was used was higher than DEP's target quantitation limit (QL). All pollutants that were determined to be candidates for PENTOXSD modeling were entered into the PENTOXSD model. The most stringent WQBELs recommended by the PENTOXSD model were then entered into the same Toxics Screening Analysis spreadsheet in order to determine which parameters of concern need limitation or monitoring. Based on the initial results submitted with the application, limitation was required for Total Aluminum, Total Antimony, Total Cadmium, Total Arsenic, Total Lead, Total Mercury, Total Thallium, 4,6-Dinitro-o-Cresol, 2.4-Dinitrophenol, p-Chloro-m-Cresol, Pentachlorophenol, 2,4,6-Trichlorophenol, 3,3-Dichlorobenzidine and Hexachloroethane, and monitoring was required for Total Copper and Free Available Cyanide.

The permittee was offered an opportunity to re-sample the following pollutants using the most sensitive methods to confirm if these pollutants are indeed present or not: Total Cadmium, Total Mercury, 4,6-Dinitro-o-Cresol,2.4-Dinitrophenol, p-Chloro-m-Cresol, Pentachlorophenol, 2,4,6-Trichlorophenol, 3,3-Dichlorobenzidine and Hexachloroethane. The permittee listed these pollutants as non-detect but used a less sensitive method for analysis. The permittee was also offered an opportunity to re-sample Bis(2-Ethylhexyl)Phthalate using glass bottles instead of plastic bottles which may be impacting the results negatively. Also, the permittee was advised to submit 10 or more sample results each for Total Copper, Free Cyanide and any other pollutants that warranted further analysis. Total Aluminum, Total Thallium and Total Antimony samples were reported incorrectly and were corrected and were no longer pollutants of concern.

The permittee submitted 3 samples collected weekly for Total Cadmium, Total Lead, Total Mercury, Total Thallium, Free available Cyanide, 4,6-Dinitro-o-Cresol, 2.4-Dinitrophenol, p-Chloro-m-Cresol, Pentachlorophenol, 2,4,6-Trichlorophenol, 3,3-Dichlorobenzidine and Hexachloroethane using DEP's QL for analysis. The pollutants except Free available Cyanide were no longer considered pollutants of concern. The permittee also submitted 12 samples for Total Copper and Total Arsenic which were analyzed using TOXCON to determine Average Monthly Effluent Concentration (Amec) of 0.0089 mg/l and a daily coefficient of variation(CV) of 0.3 for Total Copper and 0.030 mg/l Amec and a CV of 1.1 for Total Arsenic. The calculated Amec was added to the Toxic screening spreadsheet presented in attachment D. Total Copper was no longer pollutant of concern but Total Arsenic and was added to PENTOXSD model and analyzed with other pollutants of concern and the results are presented in attachment C. The results of the PENTOXSD model were added to the Toxics screening

spreadsheet for recommendation on the need for limitation or monitoring. A monthly average limit of 0.03mg/l was recommended for Total Arsenic and monitoring was required for Free Available Cyanide.

The recommended limit follows the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL

4.3.12 Nutrient Monitoring

Quarterly monitoring of Total Nitrogen is included in the current permit to obtain data for discharges to Delaware River watershed. The discharge is located outside of the Chesapeake Bay watershed, therefore no Chesapeake Bay TMDL requirement was considered.

4.3.13 Delaware River Basin Commission (DRBC) Requirements

DRBC regulations and policies are applicable to all NPDES permits for facilities within the Delaware River basin. The requirements of the most recent Docket No. D-1974-176 CP-4 for this facility which was approved on March 15, 2017 with expiration date of June 30, 2024, will be applied to the permit. All parameters required in the Docket were included in the existing permit and will continue during the current permit renewal. The facility is not a direct discharger to the Schuylkill River: PCB monitoring is not required. A copy of the draft permit will be forwarded to DRBC.

4.3.14 TDS, Chloride, Sulfate, Bromide, and 1,4-dioxane

Under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for TDS, sulfate, chloride, bromide, and 1,4-dioxane. The following approach will be implemented for point source discharges upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

The maximum daily TDS discharge results submitted with the application is 566 mg/L which is equivalent to 9447 lbs/day based on the permitted flow of 2.0 MGD. The discharge level for TDS is below the minimum 1000 mg/l and 20,000lbs/day, to require monitoring based on this guidance, therefore no monitoring of TDS, Chloride, Sulfate, and Bromide should have been required in the permit. However, the existing quarterly TDS monitoring requirement in the permit required by DRBC will remain in the permit. 1,4-dioxane results are below 0.1mg/l, therefore no monitoring is required for 1,4-dioxane at this time.

4.3.15 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements, per DEP policy.

4.3.16 Industrial Users

There are 5 significant industrial users (SIUs) who send wastewater to this plant: 4 Categorical Industrial Users (CIUs) and 1 Significant Noncategorical Industrial User(SNIU)

- 1. Bayer Healthcare Plants 1 (CIUs) flows: sanitary & process wastewater -14,877GPD in 2017 (subject to ELGs 40 CFR Part 439 for Pharmaceuticals, Subpart D)/sanitary wastewater/cooling tower blowdown
- 2. Bayer Healthcare Plants 2 (CIUs) flows: sanitary & process wastewater 18,313GPD in 2017(subject to ELGs 40 CFR Part 439 for Pharmaceuticals, Subpart D)/sanitary wastewater/cooling tower blowdown
- 3. GAF/Elk Corp. (CIUs)– flows: sanitary & process wastewater -381GPD in 2017 (subject to ELGs 40 CFR Part 443, Paving and Roofing, Subpart C)
- 4. Test Cast Inc. (CIUs) flows: sanitary & process wastewater 6,110GPD in 2017 (subject to ELGs 40 CFR Part 464, Metal Molding and Casting, Subpart C)
- 5. Trigon Plastics (SNIU)- flows: sanitary & process wastewater 470GPD in 2017to ELG 40 CFR Part 463, Plastics Molding and Forming)

The POTW's effluent sampling results provided in the renewal application include all parameters required for the above SIU's: Pharmaceutical process wastewater-Groups I, III, IV and V; Metal Molding and Casting process wastewater: Groups I-V; Paving and Roofing process wastewater – Groups I-V; Plastics Molding and Forming process wastewater: Groups I & III.

4.3.17 Pretreatment Requirements

The design annual average flow of the treatment plant is 2 MGD but the facility receives flow from 5 SIUs and is required to develop and implement a pre-treatment program. The facility currently maintains and operates an EPA-approved pretreatment program. Consequently, the Department will continue to include permit conditions that dictate the operation and implementation of a pretreatment program in the permit.

5.0 Other Requirements

5.1 The permit contains the following special conditions:

Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, Restriction on receipt of hauled in waste under certain conditions, WET testing requirements and Stormwater conditions

5.2 Stormwater

There is no stormwater outfall identified in the permit. However, stormwater from the treatment plant site is directed to a lower end of the site and discharged to the stream via a pipe. This location will be identified in the permit at outfall 002 (40°22'32.5"/-76°17'17.6") since the facility meet the requirement for stormwater monitoring requirement located in 40CFR 122.26(b)(14)(ix). This new stormwater outfall will be added to the permit with BMP conditions in Part C. BMPs and conditions includes: a Preparedness, Prevention and Contingency (PPC) Plan, annual visual inspection at a minimum, and the completion of DEP's Annual Inspection Form

5.3 Biosolids Management

Wasted sludge flow by gravity to the gravity thickener, and then to the primary aerobic sludge digester followed by a secondary aerobic digester in series for digestion. Digested sludge from the secondary digester is dewatered utilizing centrifuge, generally operated 2x/week. The centrate go to reed beds and the dewatered cake is hauled off-site to the Greater Lebanon Refuse Authority Landfill. Couple of times in a year liquid sludge is added to the reed beds.

5.4 Anti-backsliding

Not applicable to this permit

5.5 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.6 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

5.7 303d listed stream

The discharge is located on a 303d listed stream segment. The stream is impaired for aquatic life due to Siltation and nutrients form agricultural activities and Urban Runoff/Storm Sewers. TMDL development is pending. A total phosphorus limit of 1mg/l has been established to protect Blue Mash reservoir until TMDL is developed. The facility has been complying with the phosphorus limitation. The Secondary Receiving Water: Schuylkill River, WWF, has a TMDL for PCBs but the TMDL is only applicable to direct discharges only.

5.8 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.9 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Whole Effluent Toxicity (WET)

Whole Effluent Toxicity (WET) is a term used to describe the aggregate toxic effect of an aqueous sample (i.e whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (lethality, impaired growth or reproduction). WET tests replicate, to the greatest extent possible, the total effect and actual environmental exposure of aquatic life to toxic pollutants in an effluent without requiring the identification of the specific pollutants. WET testing is a vital component of the water quality standards implementation through the NPDES permitting process. EPA's promulgated WET test methods include acute and chronic tests.

6.1 For Outfall 001, Acute Chronic WET Testing was completed:

- \boxtimes
- For the permit renewal application (4 tests). Quarterly throughout the permit term.
- Quarterly throughout the permit term and a TIE/TRE was conducted.

The dilution series used for the tests was: 100%, 62%, 23%, 12%, and 6%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 23%.

6.2 Summary of Four Most Recent Test Results

6.2.1 TST Data Analysis

Other:

See attachment E for DEP WET Analysis Spreadsheet

6.3 Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.618 Chronic Partial Mix Factor (PMFc): 1

6.3.1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(2.0 MGD x 1.547) / ((6.11cfs x 1) + (2.0 MGD x 1.547))] x 100 = **34%**

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: Chronic

6.3.2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = N/A%

6.3.2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(2.0 MGD x 1.547) / ((6.11cfs x 1) + (2.0 MGD x 1.547))] x 100 = **34%**

6.3.3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 67%, 34%, 17%, and 9%.

6.4 WET Limits

Has reasonable potential been determined? YES
NO

There was one endpoint failure in four consecutive tests, however, a re-test within 45 days passed and 3 subsequent annual WETT test passed. Also, there is no history of endpoint failures in the five years prior to the WET tests under review, and no significant changes have occurred at the facility.

Will WET limits be established in the permit?
YES
NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

There was one endpoint failure in four consecutive tests, however, a re-test within 45 days passed and 3 subsequent annual WETT test passed. Also, there is no history of endpoint failures in the five years prior to the WET tests under review, and no significant changes have occurred at the facility. Therefore, no WETT limits will be established in the permit.

7.0 Proposed Effluent Limitations and Monitoring Requirements

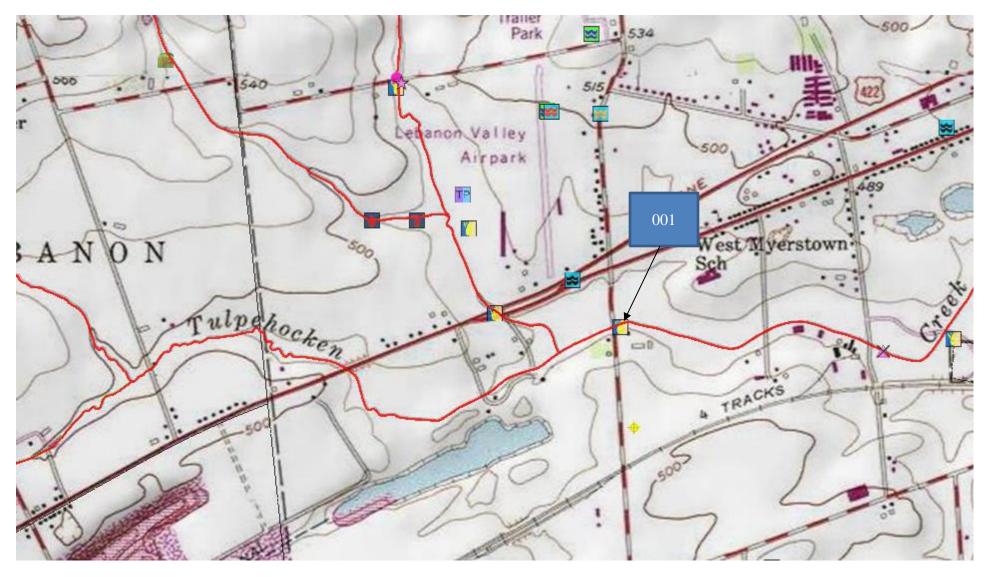
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
рН (S.U.)	ХХХ	xxx	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	ххх	xxx	5.0	xxx	XXX	xxx	1/day	Grab
CBOD5 Nov 1 - Apr 30	417	667	XXX	25	40	50	2/week	24-Hr Composite
CBOD5 May 1 - Oct 31	283	450	XXX	17	27	34	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	2/week	24-Hr Composite
TSS	500	750	XXX	30	45	60	2/week	24-Hr Composite
Total Dissolved Solids	XXX	xxx	XXX	Report Avg Qrtly	XXX	xxx	1/quarter	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	ХХХ	xxx	xxx	200 Geo Mean	XXX	1000	2/week	Grab
Total Nitrogen	ХХХ	xxx	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Ammonia Nov 1 - Apr 30	265	xxx	xxx	15.9	XXX	31.8	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	88	xxx	XXX	5.3	XXX	10.6	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Total Phosphorus	16.7	XXX	XXX	1.0	XXX	2	2/week	Composite
UV Dosage (mWsec/cm²)	xxx	XXX	Report	XXX	XXX	XXX	1/day	Measured
								24-Hr
Total Arsenic	0.5	XXX	XXX	0.03	XXX	0.06	2/week	Composite
								24-Hr
Free Available Cyanide	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite


Compliance Sampling Location: Outfall 001

Other Comments: Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample

) Too	Is and References Used to Develop Permit
$\underline{\boxtimes}$	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment C)
<u> </u>	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment D)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\square	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxyger and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\overline{\mathbf{X}}$	SOP: Establishing effluent limitation for individual sewage permit
\square	Other:

Attachments

A. Topographical Map

B. WQM Model Results

		<u>m Code</u> 846		<u>Stream Name</u> TULPEHOCKEN C			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
36.200	Jackson Twp	PA0248185	0.500	CBOD5	16.09		
				NH3-N	2.84	5.68	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
32.500	Myerstown Boro	PA0021075	2.000	CBOD5	25		
				NH3-N	5.53	11.06	
				Dissolved Oxygen			5

Thursday, December 19, 2019

Version 1.0b

Page 1 of 1

	SWP Basin	Strea Coo		Stre	eam Name		RMI		/ation ft)	Drainag Area (sq mi			VS Irawal gd)	Apply FC
	03C	· 1	846 TULPI	EHOCKEI	N CREEK		36.2	00	465.00	2	.31 0.0	0000	0.00	
					St	ream Dat	a							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributar</u> ıp	⊻ pH	<u>Strear</u> Temp	m pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(ºC)		(°C)		
27-10 21-10 230-10	0.220	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	0 2	0.00	7.00	0.00	0.00	
					Di	scharge	Data							
			Name	Pe	rmit Number	Disc	Permitt Disc Flow (mgd	Diso Flov	c Res w Fa	erve	Disc Temp (ºC)	Disc pH		
		Jack	son Twp	PA	0248185	0.500	0 0.50	00 0.5	000	0.000	25.00	D 7.00		
					Pa	rameter	Data							
				Paramete	er Name			Trib S Conc	Stream Conc	Fate Coef				
				raiamote	., Humo	(m	ng/L) (I	mg/L)	(mg/L.)	(1/days	5)			
	_		CBOD5				25.00	2.00	0.00	1.8	50			
			Dissolved	Oxygen			5.00	8.24	0.00	0.0)0			
			NH3-N				25.00	0.00	0.00	0.7	70			

Input Data WQM 7.0

	SWP Basir	Strea Coo		Str	eam Name		RMI		evation (ft)	Drainage Area (sq mi)	Sloj (ft/l	Witho	VS drawal gd)	Apply FC
	03C	1	846 TULPI	EHOCKE	N CREEK		32.50	00	415.00	27.80	0.00	0000	0.00	\checkmark
		-075	1,000		St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> ıp pH		<u>Strear</u> Temp	m pH	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	<u>(</u> °C)		(°C)		
Q7-10 Q1-10 Q30-10	0.220	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00 7.	00	0.00	0.00	
· · · ·	[Di	scharge I	Data]	
	-	• •	Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	Di erve Tei ctor (%	np	Disc pH		
		Myers	stown Boro	PA	0021075	2.000	2.000	0 2.0	0000	000.0	25.00	7.70		
					Pa	arameter l	Data							
			F	Paramete	r Name	Di Co		Frib Conc	Stream Conc	Fate Coef				
				aramoto	, riano	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50		•		
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N	÷		:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

Page 2 of 3

	SWP Basin	Strea Coc		Stre	am Name		RMI		vation (ft)	A	nage rea mi)	Slop (ft/ft	With	WS Idrawal ngd)	Apply FC
	03C	18	346 TULPE	HOCKEN	I CREEK		25.2	00	354.00		62.00	0.000	000	0.00	V
					St	ream Da	ta								
Design	LFY	Trib Flow	Stream Flow	Rch Trav	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tei		<u>utary</u> pH	-	<u>Strea</u> Temp	am pH	
Cond.	(cfsm)	(cfs)	(cfs)	Time (days)	(fps)		(ft)	(ft)	(%	C)			(°C)		
Q7-10	0.220	0.00	0.00	0.000	0.000	0.0	0.00	0.0	00	20.00	7.0	00	0.00	0.00)
Q1-10		0.00		0.000	0.000										
Q30-10		0.00	0.00	0.000	0.000										
					Di	scharge	Data								
	-		Name	Pe	rmit Numbe	Disc	Permitt Disc Flow (mgd	Dis Flo	sc Re bw F	eserve actor	Dis Ten (°C	np	Disc pH		
			<i></i>			0.000	0.00	00 0.0	0000	0.00	0	0.00	7.00		
					Pa	arameter	Data								
				- (Trib Conc	Stream Conc		ate oef				
				Paramete	r Name	(r	ng/L) (mg/L)	(mg/L)	(1/	days)				
			CBOD5				25.00	2.00	0.0	00	1.50				
			Dissolved	l Oxygen			3.00	8.24	0.0	0	0.00				
			NH3-N				25.00	0.00	0.0	00	0.70				

Input Data WQM 7.0

			WQN	17.0	Hydr	odyna	<u>amic</u>	Outp	<u>outs</u>			
	SWI	P Basin	Stream	m Code				Stream I	Vame			
		03Ċ	1	846			TULP	EHOCK	EN CREE	ĸ		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow								•			
36.200	0.51	0.00	0.51	.7735	0.00256	.531	12.71	23.96	0.19	1.190	23.02	7.00
32.500	6.12	0.00	6.12	3.8675	0.00158	.731	40.98	56.06	0.33	1.338	21.94	7.12
Q1-1	0 Flow											
36.200	0.43	0.00	0.43	.7735	0.00256	NA	NA	NA	0.18	1.235	23.22	7.00
32.500	5.14	0.00	5.14	3.8675	0.00158	NA	NA	NA	0.31	1.418	22.15	7.14
Q30-	10 Flow											
36.200	0.63	0.00	0.63	.7735	0.00256	NA	NA	NA	0.20	1.134	22.77	7.00
32.500	7.52	0.00	7.52	3.8675	0.00158	NA	ŅĄ	NA	0.36	1.243	21.70	7.11

Thursday, December 19, 2019

Version 1.0b

.

Page 1 of 1

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021075

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.84	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.23	Temperature Adjust Kr	\checkmark
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Thursday, December 19, 2019

Version 1.0b

Page 1 of 1

SWP Basin	Stream	m Code		<u>St</u>	ream Name		
03C	1	846		TULPE	IOCKEN CRE	EK	
H3-N Acute Alloc	ations	3					
RMI Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reductior
36.200 Jackson Twp)	7.67	11.9	7.67	11.9	0	0
32.500 Myerstown B	loro	·7.49	19.92	7.45	19.92	0	0
H3-N Chronic All	ocatio	ons					
RMI Discharge N		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
36.200 Jackson Twp		1.57	2,84	1.57	2.84	0	0
32.500 Myerstown B	Boro	1.61	5.53	1.59	5.53	0	0

			000	1.41.15		010001101		Critical	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction	
 36.20	Jackson Twp	16.09	16.09	2.84	2.84	5	5	0	0	
32.50	Myerstown Boro	25	25	5.53	5.53	5	5	0	0	

Version 1.0b

SWP Basin Strea	am Code			Stream Name	
03C	1846		TUL	PEHOCKEN CREE	к
RMI	Total Discharge	Flow (mgd) <u>Anal</u>	ysis Temperature (C) Analysis pH
36.200	0.500			23.017	7.000
Reach Width (ft)	Reach Dep	oth (ft)		Reach WDRatio	Reach Velocity (fps)
12.714	0.531	l		23.958	0.190
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	
10.50	0.827			1.71	0.883
Reach DO (mg/L)	<u>Reach Kr (</u>			Kr Equation	Reach DO Goal (mg/L)
6.286	4.962	2		Tsivoglou	5
each Travel Time (days)		Subreach			
1.190	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
·	0.119	9.38	1.54	5.50	
	0.238	8.37	1.39	5.25	
	0.357	7.48	1.25	5.29	
	0.476	6.68	1.13	5.47	
	0.595	5.96	1.01	5.71	
	0.714	5.33	0.91	5.96	
· · · · · ·	0,833	4.76	0.82	6.22	
	0.952	4,25	0.74	6.46	
	1.071	3.79	0.67	6.68	
	1.190	3.39	0.60	6.88	
				111 111	
RMI	Total Discharge		l) <u>Ana</u>	lysis Temperature (
32.500	2.50			21.937	7.124
Reach Width (ft)	<u>Reach De</u>			Reach WDRatio	Reach Velocity (fps)
40.975	0.73		-	56.055	0.333) Reach Kn (1/days)
Reach CBOD5 (mg/L)	Reach Kc (Ē	each NH3-N (mg/L 1.79	0.813
9.31	0.97 Reach Kr (Kr Equation	Reach DO Goal (mg/L)
Reach DO (mg/L)	5.24			Tsivoglou	5
7.063	0.21	•		· · · · · · · · · · · · · · · · · · ·	
Reach Travel Time (days)			n Results	D O	·
	TravTime (days)	CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
1.338					
		9.07	1 6 1	6.04	
	0.134	8.07	1.61	6.04 5.77	
	0.134	7.00	1.44	5.77	
	0.134 0.268 0.402	7.00 6.07	1.44 1.29	5.77 5.84	
	0.134 0.268 0.402 0.535	7.00 6.07 5.27	1.44 1.29 1.16	5.77 5.84 6.06	
	0.134 0.268 0.402 0.535 0.669	7.00 6.07 5.27 4.57	1.44 1.29 1.16 1.04	5.77 5.84 6.06 6.32	
	0.134 0.268 0.402 0.535 0.669 0.803	7.00 6.07 5.27 4.57 3.96	1.44 1.29 1.16 1.04 0.93	5.77 5.84 6.06 6.32 6.60	
	0.134 0.268 0.402 0.535 0.669 0.803 0.937	7.00 6.07 5.27 4.57 3.96 3.44	1.44 1.29 1.16 1.04 0.93 0.84	5.77 5.84 6.06 6.32 6.60 6.85	
	0.134 0.268 0.402 0.535 0.669 0.803 0.937 1.071	7.00 6.07 5.27 4.57 3.96 3.44 2.98	1.44 1.29 1.16 1.04 0.93 0.84 0.75	5.77 5.84 6.06 6.32 6.60 6.85 7.09	
	0.134 0.268 0.402 0.535 0.669 0.803 0.937	7.00 6.07 5.27 4.57 3.96 3.44 2.98 2.59	1.44 1.29 1.16 1.04 0.93 0.84	5.77 5.84 6.06 6.32 6.60 6.85 7.09 7.30	

O Simulation WORE TO D

Version 1.0b

C. PENTOXSD Model Results

	PENTOXSD Analysis Results										
	Re	commen	ded Effluent	Limitation	5						
SWP Basin	Stream Code:		Strea	m Name:							
03C	1846		TULPEHO	CKEN CREEK							
RMI	Name		rmit Disc Flo nber (mgd								
32.50	Myerstown Boro	PAO	21075 2.000	0							
		Effluent		Max.	Most S	tringent					
P	arameter	Limit (µg/L)	Governing Criterion	Daily Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion					
2,4-DICHLOR	OPHENOL	229.208	THH	415.374	229.208	тнн					
4-NITROPHEN	IOL	1204.474	CFC	2182.763	1204.474	CFC					
ARSENIC		29.767	THH	53.945	29.767	THH					
CYANIDE, FR	EE	13.326	CFC	24.15	13.326	CFC					
PHENOLICS (PWS)	100000	INPUT	181221.2	NA	NA					

Wednesday, April 15, 2020

Version 2.0d

Page 1 of 1

							PENTO	X SD						
						Mod	eling In	put Data	1					
Stream Co de	RMI	Elevation (ff)	A	nage rea	slope	PWSV (mg			A	pply FC				
1846	32.50	415.		<u>mi)</u> 27.80	0.00000		0.00			V	-			
							Stream D	nta						
	LFY	Trib S Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	Tributa Hard	ry pH	<u>Strean</u> Hard	n pH	Analy Hard	<u>sis</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)		(mg/L)		(mg/L)		(mg/L)	
07-10	0.22	0	0	0	0	0	0	0	100	7	100	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
N	ame	Permit Numbe	rr Di	sc	ermitted Disc Flow	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
					mgd)	(mgd)						(mg/L)		
Myerst	own Boro	PA00210)75	2	2	2	0	0	0	0	0	291.3	7.7	_
	Parameter N	lomo		Disc	Trib	Pa Disc	rameter D Disc		n Stream	Fate	FOS	Crit	Мах	
	-arameter r	vame		Canc (µg/L)	Canc (µg/L)	Daily CV	Hourl		c CV	Coe		Mod		
	OROPHEN	NOL		100000	0 0	0.6		0	0	0	0	1	0	<u>, </u>
4-NITROP ARSENIC				100000		0.6 0.6			0	0	0	1	0	
CYANIDE.				100000		0.5			0	0	ő	1	ő	
PHENOLI	CS (PWS)			100000	0 0	0.6	5 0.5	0	0	0	0	1	0	

Stream Co de	RMI	Elevation (ff)	A	rea	Slope	PWSV (mg			Ap F	ply FC				
1846	25.20	354.0		<u>mi)</u> 62.00	0.00000		0.00		6	✓				
						:	Stream Dat	ta						
	LFY	Trib S Flow	tream Flow	WD Ratio	Rch Width	Rch Depth	Velocity	Rch Trav Time	Tributar Hard		<u>Stream</u> Hard	pH	<u>Analysis</u> Hard pl	н
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)			mg/L)		(mg/L)		(mg/L)	
7-10	0.22	0	0	0	0	0	0	0	100	7	100	0	0	0
)h		0	0	0	0	0	0	0	100	7	0	0	0	0
							scharge De							
Na	ame	Permit Numbe	r Die		ermitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	PMF	PMF	Disc Hard	Disc pH	
			(m)	gd)	(mgd)	(mgd)						(mg/L)		
			()	0	0	0	0	0	0	0	100	7	
							rameter Da							
P	arameter N	lame		Disc Canc		cý	Hourly	Conc	CV	Fate Coef		Crit Mod	Conc	
ADICHI	OROPHEN	101		(µg/L) 0	(µg/L) 0	0.5	i 0.5	(µg/L) 0) 0	0	0	1	(µg/L) 0	
4-NITROP				0	0	0.5		0	0	0	0	1	0	
ARSENIC				0	0	0.5		0	0	0	0	1	0	
CYANIDE,	, FREE CS (PWS)			0	0	0.5		0	0	0	0	1	0	
	April 15, 20						ersion 2.0d							2 of 2

							X SD A			ts		
							llydrod					
	<u>12</u>	NP Basin	1		n Code:		-		m Name:			
		0SC			846		Т	ULPEHO	CKENCE	REEK		
		Stream Flow	With		Disc Analysis		Depth	With		Velocity		СМТ
		(ob)	(ob)	Flow (ptb)	Fow (ofpi	Slope	(4)	(fi	Ratio	(\$=)	Time (doyo)	(min)
						07	-10 Hyd		mics			
	32.600	6.116	0	8,116	3.094					0.3186	1.4002	39,237
	25 200	13.64	0	1364	NA	0	0	٥	a	0	5	NA
						G	h i lyd r	odynar	nics			
	32.600	28.171	0	28,171	3.094					0.7178	0.6213	28.997
	25.200	72.915	0	72.915	NA	0	0	0	0	0	D	NA
	Wednesda	v Jack 1	5, 2020					ienios 2 (8			
	- eatesda	N Septembrie					``	41400 21	~			
-												

					DEDISTOR DECK	is Result	55		
RMI	Name P	ermit Nu		Wastel	oad Alloc	ations			
	E STATES	PA0021							
52.50	ingerstown boro	AUVEI	010		AFC				
Q7-1	0: CCT (min)	15	PMF	0.618		OH 7.193	Analysis	Hardness	186.085
	Parameter			Stream	Trib	Fate	WQC	WQ	WLA
	Parameter		Conc (µg/L)	CV	Conc (µg/L)	Coer	(µg/L)	Obj (µg/L)	(µg/L)
2,4	DICHLOROPHENOL		0	0	0	0	1700	1700	3777.74
	4-NITROPHENOL		0	0	0	0	2300	2300	5111.06
	CYANIDE, FREE		0	0	0	0	22	22	48.888
	ARSENIC		0	0	0	0	340	340	755.54
		0		WQC. CI	hemical tran	slator of 1 a	applied.		
P	HENOLICS (PWS)		0	0	0	0	NA	NA	NA
				C	FC				
Q7-10:	CCT (m in)	39,237	PMP	- 1	A nalysis p	H 7.136	Analysi	s Hardness	164 265
	Parameter		Stream Conc. (µg/L)	Stream CV	Trib Conc. (µg/L)	Fate Coef	WQC	Obj (µg/L)	WLA (pg/L)
2.4-	DICHLOROPHENOL	_	0	0	0	0	340	340	1012.08
			5. 	0000	23.00	12	0.00	1270722	
8	4-NITROPHENOL		0	0	0	0	470	470	1399.06
	CYANIDE, FREE		0	0	0	0	52	5.2	15.475
	ARSENIC		0	0	0	0	150	150	448.50
-	LENGINE MAR	Ę.			hemical tran 0			NA	
P	HENOLICS (PWS)		0	0	0	0	NA	NA	NA
			10000		нн				
Q7-10:	CCT (min)		PMF Stream	1 Stream	A nalysis Trib	PH NA Fate	Analysi	s Hardness WQ	NA WLA
	Parameter		Cono (µg/L)	CV	Conc (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)
2,4	DICHLOROPHENOL		0	0	0	0	77	77	229.20
	4-NITROPHENOL		0	0	0	0	NA	NA	NA
	CYANIDE, FREE		0	0	0	0	140	140	418.74
	ARSENIC		0	0	0	0	10	10	29.767

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021075

		PE	TOXSE)Analys	sis Resu	ilts		
			Wastelo	ad Allo	cation s			
RMI	Name Pe	ermit Number						
32.50		PA0021075						
	PHENOLICS (PWS)	0	0	0	0	5	5	NA
			с	RL				
Qh:	CCT (min)	28.997 PMF	1					
	Parameter	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	W Q Obj	WL/
		(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/l
2	4-DICHLOROPHENOL	0	0	0	0	NA	NA	N
	4-NITROPHENOL	0	0	0	0	NA	NA	N
	CYANIDE, FREE	0	0	0	0	NA	NA	N
	GTANIDE, FREE	U	0	0	U	DIA.	0/5	N.
	ARSENIC	0	0	0	0	NA	NA	N
	PHENOLICS (PWS)	0	0	0	0	NA	NA	N

Wednesday, April 15, 2020

Version 2.0d

Page 2 of 2

D. Toxics Screening Analysis

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

	Facility: Myerstown Borough STP			NPDES Permit N	0.:	PA0021	075	Outfall: 001
	Analysis Hardness (mg/L): 291.3			Discharge Flow (MGD):	2	Anal	ysis pH (SU): 7.12
	Stream Flow, Q ₇₋₁₀ (cfs): 6.12							· · · · <u> </u>
				1				1
	Parameter		aximum Concentration in pplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)		didate for SD Modeling?	Most Stringent WQBEL (µg/L)	Screening Recommendation
۲	Total Dissolved Solids		566000	500000		Yes		
dn	Chloride		106000	250000		No		
Group	Bromide	<	1	N/A		No		
Ö	Sulfate		29200	250000		No		
	Total Aluminum		114	750		No		
	Total Antimony	<	0.4	5.6	No (V	/alue < QL)		
	Total Arsenic		30	10		Yes	30	Establish Limits
	Total Barium		26	2400		No		
	Total Beryllium	<	0.4	N/A		No		
	Total Boron		113	1600		No		
	Total Cadmium	<	0.08	0.598	No (V	/alue < QL)		
	Total Chromium		5	N/A		No		
	Hexavalent Chromium		0.1	10.4		No		
	Total Cobalt		1	19		No		
2	Total Copper		8.9	23.3		No		
	Free Available Cyanide	<	5	5.2		Yes	15	Monitor
Group	Total Cyanide		7	N/A		No		
G	Dissolved Iron		13	300		No		
	Total Iron		100	1500		No		
	Total Lead	<	4.8	12.4		No		
	Total Manganese		19	1000		No		
	Total Mercury	<	0.05	0.05	No (V	/alue < QL)		
	Total Nickel	<	5	128.9		No		
	Total Phenols (Phenolics)	<	50	5		Yes	100000	No Limits/Monitoring
	Total Selenium		2.1	5.0		No		
	Total Silver	<	5	23.8		No		
	Total Thallium	<	0.4	0.24	No (V	/alue < QL)		
	Total Zinc		71	296.5		No		
	Total Molybdenum	<	10	N/A		No		

	Acrolein	<	1	3	No (Value < QL)		
	Acrylonitrile	<	0.5	0.051	No (Value < QL)		
	Benzene	<	0.5	1.2	No (Value < QL)		
	Bromoform	<	0.5	4.3	No (Value < QL)		
	Carbon Tetrachloride	<	0.5	0.23	No (Value < QL)		
	Chlorobenzene	<	0.5	130	No (Value < QL)		
	Chlorodibromomethane	<	0.5	0.4	No (Value < QL)		
	Chloroethane	<	0.5	N/A	No		
	2-Chloroethyl Vinyl Ether	<	0.5	3500	No (Value < QL)		
	Chloroform	<	0.5	5.7	No (Value < QL)		
	Dichlorobromomethane	<	0.5	0.55	No (Value < QL)		
	1,1-Dichloroethane	<	0.5	N/A	No		
	1,2-Dichloroethane	<	0.5	0.38	No (Value < QL)		
0 3	1,1-Dichloroethylene	<	0.5	33	No (Value < QL)		
Group	1,2-Dichloropropane	<	0.5	2200	No (Value < QL)		
ē	1,3-Dichloropropylene	<	0.5	0.34	No (Value < QL)		
	1,4-Dioxane	<	0.5	N/A	No		
	Ethylbenzene	<	0.5	530	No (Value < QL)		
	Methyl Bromide	<	0.5	47	No (Value < QL)		
	Methyl Chloride	<	0.5	5500	No (Value < QL)		
	Methylene Chloride	<	0.5	4.6	No (Value < QL)		
	1,1,2,2-Tetrachloroethane	<	0.5	0.17	No (Value < QL)		
	Tetrachloroethylene	<	0.5	0.69	No (Value < QL)		
	Toluene	<	0.9	330	No		
	1,2-trans-Dichloroethylene	<	0.5	140	No (Value < QL)		
	1,1,1-Trichloroethane	<	0.5	610	No (Value < QL)		
	1,1,2-Trichloroethane	<	0.5	0.59	No (Value < QL)		
	Trichloroethylene	<	0.5	2.5	No (Value < QL)		
	Vinyl Chloride	<	0.5	0.025	No (Value < QL)		
	2-Chlorophenol	<	1	81	No (Value < QL)		
	2,4-Dichlorophenol	<	50	77	Yes	229	No Limits/Monitoring
	2,4-Dimethylphenol	<	50	130	No		
	4,6-Dinitro-o-Cresol	<	0.117	13	No (Value < QL)		
4	2,4-Dinitrophenol	<	2.99	69	No (Value < QL)		
Group	2-Nitrophenol	<	50	1600	No		
ō	4-Nitrophenol	<	250	470	Yes	1204	No Limits/Monitoring
	p-Chloro-m-Cresol	<	0.0985	30	No (Value < QL)		
	Pentachlorophenol	<	0.103	0.27	No (Value < QL)		
	Phenol	<	50	10400	No		
	2,4,6-Trichlorophenol	<	0.0985	1.4	No (Value < QL)		

	Acenaphthene	<	1	17	No (Value < QL)	
	Acenaphthylene	<	1	N/A	No	
	Anthracene	<	1	8300	No (Value < QL)	
	Benzidine	<	5	0.000086	No (Value < QL)	
	Benzo(a)Anthracene	<	1	0.0038	No (Value < QL)	
	Benzo(a)Pyrene	<	1	0.0038	No (Value < QL)	
	3,4-Benzofluoranthene	<	1	0.0038	No (Value < QL)	
	Benzo(ghi)Perylene	<	1	N/A	No	
	Benzo(k)Fluoranthene	<	1	0.0038	No (Value < QL)	
	Bis (2-Chloroethoxy)Methane	<	1	N/A	No	
	Bis (2-Chloroethyl)Ether	<	1	0.03	No (Value < QL)	
	Bis(2-Chloroisopropyl)Ether	<	1	1400	No (Value < QL)	
	Bis(2-Ethylhexyl)Phthalate	<	1.09	1.2	No (Value < QL)	
	4-Bromophenyl Phenyl Ether	<	1	54	No (Value < QL)	
	Butyl Benzyl Phthalate	<	1	35	No (Value < QL)	
	2-Chloronaphthalene	<	1	1000	No (Value < QL)	
	4-Chlorophenyl Phenyl Ether	< <	1	N/A 0.0038	No No (Value < QL)	
1	Chrysene Dibenzo(a,h)Anthrancene	< <	1	0.0038	No (Value < QL)	
1	1.2-Dichlorobenzene		0.5	160	No (Value < QL)	
	1,3-Dichlorobenzene	~ ~	0.5	69	No (Value < QL)	
5	1,4-Dichlorobenzene	<	0.5	150	No (Value < QL)	
	3,3-Dichlorobenzidine	<	0.139	0.021	No (Value < QL)	
Group	Diethyl Phthalate	<	1	800	No (Value < QL)	
G	Dimethyl Phthalate	<	1	500	No (Value < QL)	
	Di-n-Butyl Phthalate	<	3	21	No (Value < QL)	
	2,4-Dinitrotoluene	<	3	0.05	No (Value < QL)	
	2,6-Dinitrotoluene	<	1	0.05	No (Value < QL)	
	Di-n-Octyl Phthalate	<	1	N/A	No	
	1,2-Diphenylhydrazine	<	3	0.036	No (Value < QL)	
	Fluoranthene	<	1	40	No (Value < QL)	
	Fluorene	<	1	1100	No (Value < QL)	
	Hexachlorobenzene	<	1	0.00028	No (Value < QL)	
	Hexachlorobutadiene	<	1	0.44	Yes	
	Hexachlorocyclopentadiene	<	1	1	No (Value < QL)	
		<	0.0687	1.4	No (Value < QL)	
	Indeno(1,2,3-cd)Pyrene	< <	1	0.0038 35	No (Value < QL) No (Value < QL)	
	Isophorone	<	1	43	No (Value < QL)	
	Naphthalene Nitrobenzene	< <	1	43	No (Value < QL)	
	n-Nitrosodimethylamine	~ ~	1	0.00069	No (Value < QL)	
	n-Nitrosodi-n-Propylamine	<	1	0.005	No (Value < QL)	
	n-Nitrosodiphenylamine	<	1	3.3	No (Value < QL)	
1	Phenanthrene	<	1	1	No (Value < QL)	
	Pyrene	<	1	830	No (Value < QL)	
	1,2,4-Trichlorobenzene	<	1	26	No	
	Aldrin	<	0.02	0.000049	No (Value < QL)	
1	alpha-BHC	<	0.02	0.0026	No (Value < QL)	
1	beta-BHC	<	0.02	0.0091	No (Value < QL)	
	gamma-BHC	۷	0.02	0.098	No (Value < QL)	
1	delta BHC	<	0.02	N/A	No	
1	Chlordane	<	0.02	0.0008	No (Value < QL)	
	4,4-DDT	<	0.02	0.00022	No (Value < QL)	
9	4,4-DDE	<	0.02	0.00022	No (Value < QL)	
	4,4-DDD	<	0.02	0.00031	No (Value < QL)	
Group	Dieldrin	<	0.02	0.000052	No (Value < QL)	
G	alpha-Endosulfan	<	0.02	0.056	No (Value < QL)	
	beta-Endosulfan	<	0.02	0.056	No (Value < QL)	
1	Endosulfan Sulfate Endrin	<	0.02	N/A	No No (Value < QL)	<u> </u>
1		< <	0.02	0.036	No (Value < QL) No (Value < QL)	
	Endrin Aldehyde Heptachlor	<	0.02	0.29	No (Value < QL)	
	Heptachlor Epoxide	~ ~	0.02	0.000079	No (Value < QL)	
1	Toxaphene	/ /	0.02	0.0002	No (Value < QL)	1
	2,3,7,8-TCDD	<	0.02	0.000000005		
L	_,_,, ,			5.00000000	L	1

E. WETT Tests Results

	WET SI	ummary and	Evaluation		
			1 14 14		······································
Facility Name	Myerstown Bo	orough STP			
Permit No.	PA0021075				
Design Flow (MGD)	2				
Q ₇₋₁₀ Flow (cfs)	6.11				
PMFa	0.618				
PMF	1				
-		_			
				s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	10/6/15	7/5/16	6/27/17	8/28/18
Pimephales	Survival	PASS	PASS	PASS	PASS
			-		
			Test Results		
-		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	10/6/15	7/5/16	6/27/17	8/28/18
Pimephales	Growth	PASS	PASS	PASS	PASS
· · · ·			Test Result		
				Toot Doto 3	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	10/6/15	7/5/16	8/1/16	6/26/17
Species Ceriodaphnia	Endpoint Survival				
		10/6/15	7/5/16 PASS	8/1/16 PASS	6/26/17
		10/6/15 PASS	7/5/16 PASS Test Result	8/1/16 PASS s (Pass/Fail)	6/26/17 PASS
Ceriodaphnia	Survival	10/6/15 PASS Test Date	7/5/16 PASS Test Results Test Date	8/1/16 PASS s (Pass/Fail) Test Date	6/26/17 PASS Test Date
Ceriodaphnia Species	Survival Endpoint	10/6/15 PASS Test Date 10/6/15	7/5/16 PASS Test Results Test Date 7/5/16	8/1/16 PASS 5 (Pass/Fail) Test Date 8/1/16	6/26/17 PASS Test Date 6/26/17
Ceriodaphnia	Survival	10/6/15 PASS Test Date	7/5/16 PASS Test Results Test Date	8/1/16 PASS s (Pass/Fail) Test Date	6/26/17 PASS Test Date
Ceriodaphnia Species Ceriodaphnia Reasonable Potential	Survival Endpoint Reproduction ? NO	10/6/15 PASS Test Date 10/6/15	7/5/16 PASS Test Results Test Date 7/5/16	8/1/16 PASS 5 (Pass/Fail) Test Date 8/1/16	6/26/17 PASS Test Date 6/26/17
Ceriodaphnia Species Ceriodaphnia Reasonable Potential Permit Recommenda	Survival Endpoint Reproduction ? NO tions	10/6/15 PASS Test Date 10/6/15	7/5/16 PASS Test Results Test Date 7/5/16	8/1/16 PASS 5 (Pass/Fail) Test Date 8/1/16	6/26/17 PASS Test Date 6/26/17
Ceriodaphnia Species Ceriodaphnia Reasonable Potential <u>Permit Recommenda</u> Test Type	Survival Endpoint Reproduction ? NO tions Chronic	10/6/15 PASS Test Date 10/6/15 PASS	7/5/16 PASS Test Results Test Date 7/5/16	8/1/16 PASS 5 (Pass/Fail) Test Date 8/1/16	6/26/17 PASS Test Date 6/26/17
Ceriodaphnia Species Ceriodaphnia Reasonable Potential <u>Permit Recommenda</u> Test Type TIWC	Survival Endpoint Reproduction ? NO tions Chronic 34	10/6/15 PASS Test Date 10/6/15 PASS % Effluent	7/5/16 PASS Test Results Test Date 7/5/16 FAIL	8/1/16 PASS 5 (Pass/Fail) Test Date 8/1/16	6/26/17 PASS Test Date 6/26/17
Ceriodaphnia Species Ceriodaphnia Reasonable Potential Permit Recommenda Test Type TIWC Dilution Series	Survival Endpoint Reproduction ? NO tions Chronic 34 9, 17,	10/6/15 PASS Test Date 10/6/15 PASS	7/5/16 PASS Test Results Test Date 7/5/16 FAIL	8/1/16 PASS 5 (Pass/Fail) Test Date 8/1/16	6/26/17 PASS Test Date 6/26/17
Ceriodaphnia Species Ceriodaphnia Reasonable Potential <u>Permit Recommenda</u> Test Type TIWC	Survival Endpoint Reproduction ? NO tions Chronic 34	10/6/15 PASS Test Date 10/6/15 PASS % Effluent	7/5/16 PASS Test Results Test Date 7/5/16 FAIL	8/1/16 PASS 5 (Pass/Fail) Test Date 8/1/16	6/26/17 PASS Test Date 6/26/17

	WETS	WET Summary and Evaluation										
	WEI O	unimaly and	Lyaluation									
Facility Name	Myerstown Bo	rough STP										
Permit No.	PA0021075				.							
Design Flow (MGD)	2											
Q ₇₋₁₀ Flow (cfs)	6.11											
PMF _a	0.618											
PMFe	1											
FIWIFC	1											
			Test Result	s (Pass/Fail)								
		Test Date	Test Date	Test Date	Test Date							
Species	Endpoint	10/6/15	7/5/16	6/27/17	8/28/18							
Pimephales	Survival	PASS	PASS	PASS	PASS							
			Test Result									
		Test Date	Test Date	Test Date	Test Date 8/28/18							
Species	Endpoint	10/6/15	7/5/16	6/27/17	***							
Pimephales	Growth	PASS	PASS	PASS	PASS							
·····	T		Test Result	s (Pass/Fail)	1							
		Test Date	Test Date	Test Date	Test Date							
Species	Endpoint	10/6/15	7/5/16	8/1/16	6/26/17							
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS							
			Test Result	s (Pass/Fail)								
		Test Date	Test Date	Test Date	Test Date							
Species	Endpoint	10/6/15	8/1/16	6/26/17	8/28/18							
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS							
Reasonable Potentia	NO											
Neasonable Folentia	NO											
Permit Recommenda	tions											
Test Type	Chronic											
TIWC	34	% Effluent										
11000			0/ ====================================									
Dilution Series	9, 17,	34, 67, 100	% Eπiuent									
	9, 17, None	34, 67, 100	% Enluent									
Dilution Series		34, 67, 100	% Emuent									