

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0021075

 APS ID
 23201

 Authorization ID
 1257551

Applicant Name	Myers	town Borough	Facility Name	Myerstown STP
Applicant Address	101 S	Railroad Street	Facility Address	331 East Mill Avenue
	Myerst	town, PA 17067-1351		Myerstown, PA 17067-2404
Applicant Contact	Barry I	Ludwig	Facility Contact	Barry Ludwig
Applicant Phone	(717) 8	366-5826	Facility Phone	(717) 866-5826
Client ID	11617	0	Site ID	252200
Ch 94 Load Status	Not O	verloaded	Municipality	Myerstown Borough
Connection Status	No Lin	nitations	County	Lebanon
Date Application Rece	eived	December 21, 2018	EPA Waived?	No
Date Application Acce	pted	January 10, 2019	If No, Reason	Major Facility

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated sewage from a wastewater treatment plant that serves Myerstown Borough (35% flow), Jackson Township (35% flow), and Millcreek-Richland Joint Authority (30% flow). Borough of Myerstown (Borough) owns, maintains and operates the wastewater treatment plant located in Jackson Township, Lebanon County. The treatment plant is a three-channel orbal oxidation ditch treatment system. The collection system has no combined sewers and no bypasses or overflows are authorized in the collection system. The facility is located within the 100-year flood zone and susceptible to flooding and was flooded a couple of times, but treatment was not impacted significantly. A discrepancy was detected in the effluent and influent flow that was traced to a filtrate return line to the headworks downstream of the influent flow meter. The filtrate return line appears to be receiving inflows as well resulting in an effluent flow that is significantly higher than the influent flow being reported by permittee. The Borough is working to address the situation. The facility has a design annual average flow of 2 MGD and hydraulic design capacity of 2.92 MGD. The organic design capacity is 8,062lbs/day. The plant's effluent discharges to an underwater outfall with diffuser, for better in-stream mixing. The receiving stream is an unnamed tributary to Tulpehocken Creek which is classified for Cold Water Fishes (CWF). The existing NPDES permit was issued on June 20, 2014 with an effective date of July 1, 2014 and expiration date of June 30, 2019. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A draft permit was issued to the permittee on 06/26/2020 but was not finalized due to comments and from permittee and a required minor revision to the draft permit. The permit is being re-drafted to address draft comments and to add pretreatment condition to the permit.

Approve	Deny	Signatures	Date
Х		g. Pascal Kwedza, J. Pascal Kwedza, P.E. / Environmental Engineer	October 22, 2020, April 21, 2020
х		MDB for DWM Daniel W. Martin, P.E. / Environmental Engineer Manager	October 22, 2020 June 26, 2020
х		MDB Maria D. Bebenek, P.E. / Program Manager	October 22, 2020 June 26, 2020

Summary of Review

Topographical Map showing the discharge location is presented in attachment A

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to the factsheet

- A closer gage station was used that changed the Q7-10 flow
- Permittee collected 10 instream hardness samples to refine PENTOX SD model.
- WQM Model, PENTOX SD Model were re-run and Toxic Screening Analysis spreadsheet was re-analyzed.

1.3 Existing Permit Limits and Monitoring Requirements

			Effluent l	Limitations			Monitoring R	<u>equireme</u> nts
Discharge	Mass Units	s (lbs/day)			ions (mg/L)		Minimum	
Parameter	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Required Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
			5.0					
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
CBOD5								24-Hr
Nov 1 - Apr 30	417	667	XXX	25	40	50	2/week	Composite
CBOD5								24-Hr
May 1 - Oct 31	283	450	XXX	17	27	34	2/week	Composite
BOD5 Raw								24-Hr
Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
TSS			XXX					24-Hr
TSS	500	750	***	30	45	60	2/week	Composite
Raw Sewage								24-Hr
Influent	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
Fecal Coliform (No./100 ml)				2,000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10,000	2/week	Grab
Fecal Coliform				000				
(No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
						,		
Ammonia Nov 1 - Apr 30	21	XXX	XXX	15.9	XXX	31.8	2/week	24-Hr Composite

			Sui	mmary of Rev	/iew			
Ammonia May 1 - Oct 31	7.1	XXX	XXX	5.3	xxx	10.6	2/week	24-Hr Composite
Total Phosphorus	16.7	XXX	XXX	1.0	XXX	2	2/week	24-Hr Composite
Filospilorus	10.7			Report	^^^		2/Week	Composite
Total Nitrogen	XXX	XXX	XXX	Quarterly Avg	XXX	XXX	1/quarter	24-Hr Composite
Total Dissolved	7000	XXX	, , , , ,	Report Quarterly	7000	7000	irquarter	24-Hr
Solids	XXX	XXX	XXX	Avg	XXX	XXX	1/quarter	Composite
UV Dosage (mWsec/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured

1.4.0 Discharge, Receiving Waters and Water Supply	/ Information	
Outfall No. 001	Design Flow (MGD)	2
	. ,	2 -76º 17' 18.98"
	Longitude	-76° 17 18.98
Quad Name	Quad Code	,
Wastewater Description: Sewage Effluent		·
Tulpehocken Creek (TSF) Receiving Waters (upstream of Blue Marsh Lake)	Stream Code	01846
NHD Com ID 25963004	RMI	32.5
		0.37
	Yield (cfs/mi²)	•———
Q ₇₋₁₀ Flow (cfs) 10.3	Q ₇₋₁₀ Basis	USGS gage
Elevation (ft) 415 Watershed No. 3-C	Slope (ft/ft)	TOF
		TSF
Existing Use		
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment Siltation		
Source(s) of Impairment Agriculture, Urban Runof		
TMDL Status	Name	
Background/Ambient Data pH (SU)	Data Source	
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	Western Berks Water Authorit	у
PWS Waters	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	26.5

Changes Since Last Permit Issuance: None

1.4.1 Water Supply Intake

The nearest water supply intake is 26.5 miles downstream at Lower Heidelberg, Sinking Springs on Tulpehocken Creek by the Western Berks Water Authority. No impact is expected from this discharge

2.0 Treatment Facility	Summary			
Treatment Facility Na	me: Myerstown STP			
WQM Permit No.	Issuance Date			
3806406	6/28/2016			
3806406	03/22/2007			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
	Secondary With Ammonia And			
Sewage	Phosphorus	Oxidation Ditch	Ultraviolet	2
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
2.92	8,062	Not Overloaded	Aerobic Digestion	Combination of methods

Changes Since Last Permit Issuance: WQM permit was amended on 6/28/2016 to replace existing screening unit

Other Comments:

2.1 Treatment Facility Description

The treatment plant consists of:

1 Mechanical Screen, 1 Bar Screen back-up, 1 grit removal unit, an orbal oxidation ditch process (with three channels and 8 rotors to supply oxygen), 3 Clarifiers,1 UV system with 2 banks, 1 post-aeration tank, 1 sludge (gravity) thickener, a primary sludge digester followed by a secondary in series, both aerated with 3 blowers and coarse bubble diffusers, 1 centrifuge generally operated 2x/week (centrate go to reed beds and cake go to Greater Lebanon Refuse Landfill) and 6 Reed beds, not continually used.(Couple of times in a year sludge added to the reed beds)

Influent is measured prior to the screens/headworks building and two wet wells. 3 influent pumps, pump influent to the oxidation ditch. The outer loop of the oxidation ditch is operated at a DO of close to 0, (anoxic conditions). The middle channel is operated at 0-2 mg/l DO. The inner loop is operated as an aerobic reactor at DO of 2 mg/l or more, for nitrification. Oxidation Ditch storm mode kicks in at flow greater than 3.0 MGD where the outer channel of Oxidation Ditch is by-passed and the 3rd clarifier is used. Oxidation Ditch effluent flow to a splitter box and flow is directed to clarifiers. Parshall flumes and ultrasonic flow meters exist for Influent and Effluent measurement. Effluent composite sampler is located prior to flow meter and after post-aeration tank. The UV system is designed to provide a minimum dose of 26.7 mW-s/cm² at a peak hourly flow of 6.0 MGD.

2.2 Chemicals

Sodium aluminate is used for phosphorus precipitation, Polymer for sludge dewatering in centrifuge

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from March 1, 2019 to February 29, 2020)

Parameter	FEB-20	JAN-20	DEC-19	NOV-19	OCT-19	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19
Flow (MGD)												
Average Monthly	1.3156	1.2701	1.2042	1.2857	1.1129	1.1162	1.7530	2.4318	2.6825	2.5405	2.0683	2.7344
Flow (MGD)												
Daily Maximum	1.6056	2.5207	1.5612	2.7513	2.4740	1.6379	2.9949	3.7027	4.6130	4.0615	2.7842	5.1585
pH (S.U.)												
Instant. Minimum	7.9	7.8	7.9	7.8	8.0	8.1	8.0	7.9	7.6	7.7	7.9	7.9
pH (S.U.)												
Instant. Maximum	8.2	8.1	8.3	8.3	8.3	8.3	8.3	8.2	8.2	8.2	8.2	8.2
DO (mg/L)												
Minimum	10.3	10.8	10.9	9.1	9.5	9.5	9.1	9.0	8.7	8.4	10.3	9.1
CBOD5 (lbs/day)												
Average Monthly	< 23	< 21	< 22	< 24	< 19	< 20	< 31	< 55	< 74	< 73	< 41	< 72
CBOD5 (lbs/day)	00	00	0.4	0.5	00	0.5	00	00	0.5	00	40	400
Weekly Average	< 29	< 28	< 24	< 35	< 23	< 25	< 39	< 90	85	99	49	< 106
CBOD5 (mg/L)	< 2.2	< 2	< 2.1	< 2.2	< 2.1	< 2.1	. 0.4	< 2.8	< 3.3	< 3.1	. 0.4	. 2.5
Average Monthly	< 2.2	< 2	< 2.1	< 2.2	< 2.1	< 2.1	< 2.1	< 2.8	< 3.3	< 3.1	< 2.4	< 3.5
CBOD5 (mg/L) Weekly Average	< 2.6	< 2.1	< 2.3	< 3	< 2.3	< 2.3	2.3	< 4.6	4.5	3.9	3.1	5.2
BOD5 (lbs/day)	< 2.0	< 2.1	< 2.3	< 3	< 2.3	< 2.3	2.3	< 4.0	4.5	3.9	3.1	5.2
Raw Sewage Influent												
<pre> Aver. Monthly</pre>	1616	1942	2118	1845	1948	1811	1606	1780	1864	2038	2238	1732
BOD5 (lbs/day)	1010	1012	2110	1010	1010	1011	1000	1700	1001	2000	2200	1702
Raw Sewage Influent												
 br/> Daily Maximum	2112	2766	3895	2577	2869	3265	2672	3104	3471	3163	3106	2773
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Aver. Monthly	148	181	194	181	238	213	137	112	105	111	145	94
TSS (lbs/day)												
Average Monthly	< 61	< 43	< 41	< 55	< 43	< 42	< 87	< 114	< 170	< 154	136	134
TSS (lbs/day)												
Raw Sewage Influent												
 Aver. Monthly	1591	2065	1871	1754	2014	2068	2038	2199	2069	2153	2330	2116
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	2027	3695	2762	2628	2442	3073	2350	3187	3029	3397	3259	2507
TSS (lbs/day)									0.4.0	400	400	
Weekly Average	87	61	< 47	81	< 51	60	134	149	216	192	163	160

NPDES Permit Fact Sheet Myerstown STP

NPDES Permit No. PA0021075

TSS (mg/L)	•				_	4			0	7		•
Average Monthly	< 6	< 4	< 4	< 5	< 5	< 4	< 6	< 6	< 8	< 7	8	6
TSS (mg/L) Raw Sewage Influent												
 Aver. Monthly	144	201	176	171	245	240	170	136	116	118	153	113
TSS (mg/L)												
Weekly Average	8	4	< 4	7	6	5	7	7	10	8	9	7
Total Dissolved Solids												
(mg/L) Aver. Quarterly			538			526			458			326
Fecal Coliform												
(CFU/100 ml) Geometric Mean	13	29	53	53	25	15	77	53	105	28	26	25
Fecal Coliform	13	29	33	33	23	13	7.7	33	103	20	20	25
(CFU/100 ml)												
Instant. Maximum	69	192	144	296	80	68	240	4100	3900	96	47	244
Total Nitrogen (mg/L)												
Average Quarterly			3.41			5.02			5.23			5.12
Ammonia (lbs/day)												
Average Monthly	< 1	< 1	< 1	< 2	< 0.9	< 1	< 2	< 2	< 2	< 3	< 2	< 3
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.21	< 0.1	< 0.13	< 0.11	< 0.1	< 0.1	< 0.12	< 0.1	< 0.14
Total Phosphorus												
(lbs/day) Ave. Monthly	3.8	4.8	3.3	4.9	5.8	< 1.7	6.5	12.2	13.3	14.7	11.7	8.8
Total Phosphorus	0.05	0.47	0.00	0.40	0.04	0.40	0.44	0.0	0.50	0.04	0.07	0.44
(mg/L) Ave, Monthly	0.35	0.47	0.32	0.48	0.64	< 0.18	0.41	0.6	0.59	0.64	0.67	0.41
UV Dosage												
(mWsec/cm²) Daily Minimum	24.56	24.26	25.55	23.34	25.68	27.71	24.14	23.86	23.53	24.14	23.88	23.96
Daily Millimian	27.00	27.20	20.00	20.07	20.00	41.11	47.17	20.00	20.00	47.17	20.00	20.00

3.2 Effluent Violations for Outfall 001, from: April 1, 2019 To: February 29, 2020

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	07/31/19	IMAX	4100	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	06/30/19	IMAX	3900	CFU/100 ml	1000	CFU/100 ml

Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met most of the time. Two Fecal Coliform effluent violations were noted on DMRs during the period reviewed. The violations are presented on the table above in section 3.2. The violations occurred in June and July 2019 and had been addressed.

3.3 Summary of Inspections:

The facility has been inspected 7 times during last permit cycle. No effluent violations doted during plant inspections. The facility is operated and maintained well.

4.0 Developr	ment of Efflu	ent Limitations			
Outfall No.	001		Design Flow (MGD)	2	
Latitude	40° 22' 33.08	3"	Longitude	-76º 17' 18.98"	
Wastewater D	escription:	Sewage Effluent	-		

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable to this discharge

4.2 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) \times design flow (mgd) \times 8.34

4.3 Water Quality-Based Limitations

4.3.1 Receiving Stream

The receiving stream is Tulpehocken Creek. According to 25 PA § 93.9f, this stream is protected for Cold Water Fishes (CWF). It is located in Drainage List F and State Watershed 3-C. It has been assigned stream code 01846. According to the Department's *Integrated Water Quality Monitoring and Assessment Report*, this segment of the stream is impaired and not attaining its designated uses due to siltation from agricultural activities and Urban Runoff/Storm Sewers

4.3.2 Stream flows

Streamflows flows were determined by correlating with the yield of USGS gage station No. 01470779 on Tulpehocken Creek near Bernville. The Q₇₋₁₀ and drainage area at the gage is 24.6 ft³/s and 66.5mi² respectively. The resulting yields are as follows:

• $Q_{7-10} = (24.6 \text{ft}^3/\text{s})/66.5 \text{ mi}^2 = 0.37 \text{ ft}^3/\text{s}/\text{mi}^2$

 $Q_{30-10} / Q_{7-10} = 1.20$ = 0.89Q₁₋₁₀ / Q₇₋₁₀

The drainage area at discharge taken from the previous permit= 27.8 mi²

The Q_{7-10} at discharge = 27.8 mi² x 0.37 ft³/s/mi² = 10.3 ft³/s.

4.3.3 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached model result of the stream:

> = 7.70 (DMR median from July-September.) STP pH

STP pH = 7.70 (DMR med STP Temp = 25°C (Default) Stream pH = 7.0 (Default) Stream Temp = 20°C (Default) Background $NH_3N = 0 \text{ mg/I (Assumed)}$

4.3.4 WQM Model

The WQM 7.0 model was run with Jackson Township's STP due to its proximity to the Myerstown Borough's STP. The discharges are on two different stream segments with different stream codes for Tulpehocken Creek and the unnamed tributary. The stream code for Tulpehocken Creek 01846 was used to run the model since the model does not accept 2 stream codes in one run. Myerstown STP is located at 32.5 RMI on Tulpehocken Creek and Jackson Township is assumed at 36.2 RMI on Tulpehocken Creek (35.8 RMI is the confluence of UNT 01974 with Tulpehocken. Creek. + 0.4 RMI on the UNT 01974)

4.3.5 CBOD₅

The attached results of WQM 7.0 stream model (attachments B) indicate that a monthly average limit (AML) of 25 mg/l CBOD5 is required to protect the water quality of the stream. This limit is less stringent than the existing summer months AML of 17mg/l, weekly average limit (AWL) of 27mg/l and instantaneous maximum (IMAX) of 34mg/l. Due to anti-backsliding restrictions, the existing summer limitations will remain in the permit with the winter months AML of 25mg/l, AWL of 40mg/l and IMAX of 50mg/l. Past DMRs and inspection reports show the STP has been consistently complying with the limitations. Therefore, an AML of 17mg/l, a weekly average limit (AWL) of 24mg/l and instantaneous maximum (IMAX) of 34mg/l for summer months and a winter months AML of 25mg/l, AWL of 40mg/l and IMAX of 50mg/l will be applied again for this current permit cycle. Mass limits are calculated for AMLs and AWLs following the formula listed in section 4.2 above.

4.3.6 NH₃-N

The attached results of the WQM 7.0 stream model (attachment B) also indicate that a summer limitation of mg/l 8.41 NH₃-N is necessary to protect the aquatic life from toxicity effects. This limit is less stringent than the existing summer limit of 5.3 mg/l. Due to anti-backsliding restrictions, the existing summer limit 5.3 mg/l and winter limit of 15.9 mg/l will remain in the permit. DMR and inspection reports indicate the facility is meeting the limitations. Associated mass limits are calculated following the formula listed in section 4.2 above.

4.3.7 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O.

NPDES Permit Fact Sheet Myerstown STP

criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.8 Phosphorus

The Phosphorus limits in the existing permit was as a result of a 1987 PA DEP study of the Blue Marsh Reservoir. It was recommended that a phosphorus limit of 1.0 mg/l be included in all permits for facilities which discharged upstream of the Reservoir. The limit will be continued in the current permit renewal.

4.3.9 Total Residual Chlorine:

The discharge does not have any reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee utilizes UV instead of chlorine for wastewater disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV dosage requirement will be continued in the permit to ensure efficiency of the UV unit.

4.3.10 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) with associated mass limit.

4.3.11 Toxics

A reasonable potential (RP) analysis was done for pollutant Groups 1 to 6 submitted with the application. All pollutants were entered into a Toxics Screening Analysis spreadsheet to determine if any pollutants are parameters of concern that require PENTOXSD modeling. All pollutant above the most stringent Chapter 93 criteria are considered pollutants of concern. This also includes samples that resulted in non-detect, but the method detection limit that was used was higher than DEP's target quantitation limit (QL). All pollutants that required PENTOXSD modeling were entered into the PENTOXSD model. The most stringent WQBELs recommended by the PENTOXSD model were then entered into the same Toxics Screening Analysis spreadsheet in order to determine which parameters of concern need limitation or monitoring. Based on the initial results submitted with the application, limitation was required for Total Aluminum, Total Antimony, Total Cadmium, Total Arsenic, Total Lead, Total Mercury, Total Thallium, 4,6-Dinitro-o-Cresol, 2.4-Dinitrophenol, p-Chloro-m-Cresol, Pentachlorophenol, 2,4,6-Trichlorophenol, 3,3-Dichlorobenzidine and Hexachloroethane, and monitoring was required for Total Copper and Free Available Cyanide.

The permittee had an opportunity to re-sample the following pollutants using the most sensitive methods to confirm if these pollutants are indeed present or not: Total Cadmium, Total Mercury, 4,6-Dinitro-o-Cresol,2.4-Dinitrophenol, p-Chloro-m-Cresol, Pentachlorophenol, 2,4,6-Trichlorophenol, 3,3-Dichlorobenzidine and Hexachloroethane. The permittee listed these pollutants as non-detect but used a less sensitive method for analysis. The permittee was also had an opportunity to resample Bis(2-Ethylhexyl)Phthalate using glass bottles instead of plastic bottles which may be impacting the results negatively. Also, the permittee was advised to submit 10 or more sample results each for Total Copper, Free Cyanide and any other pollutants that warranted further analysis. Total Aluminum, Total Thallium and Total Antimony samples were reported incorrectly and were corrected and were no longer pollutants of concern.

The permittee submitted 3 samples collected weekly for Total Cadmium, Total Lead, Total Mercury, Total Thallium, Free available Cyanide, 4,6-Dinitro-o-Cresol, 2.4-Dinitrophenol, p-Chloro-m-Cresol, Pentachlorophenol, 2,4,6-Trichlorophenol, 3,3-Dichlorobenzidine and Hexachloroethane using DEP's QL for analysis. All re-sampled pollutants were no longer considered pollutants of concern. The permittee also submitted 12 samples for Total Copper and Total Arsenic which were analyzed using TOXCON to determine Average Monthly Effluent Concentration (Amec) of 0.0089 mg/l and a daily coefficient of variation(CV) of 0.3 for Total Copper and 0.030 mg/l Amec and a CV of 1.1 for Total Arsenic. The calculated Amec was added to the Toxic screening spreadsheet presented in attachment D. Total Copper is no longer pollutant of concern but Total Arsenic still is and has been added to PENTOXSD model and analyzed with Hexachlorobutadiene and Phenolics which were the other pollutants of concern and the results are presented in attachment C.

Note that the default stream hardness in PENTOXSD model has be replaced by the average of the 10 instream hardness data submitted by the permittee. The results of the PENTOXSD model were then added to the Toxics screening spreadsheet attachment D for recommendation on the need for limitation or monitoring. No limitation or monitoring was recommended for Phenolics and Hexachlorobutadiene. A monthly average limit of 0.043mg/l and IMAX of 0.108mg/l was recommended for Total Arsenic.

The recommended limit follows the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL

4.3.12 Nutrient Monitoring

Quarterly monitoring of Total Nitrogen is included in the current permit to obtain data for discharges to Delaware River watershed. The discharge is located outside of the Chesapeake Bay watershed, therefore no Chesapeake Bay TMDL requirement was considered.

4.3.13 Delaware River Basin Commission (DRBC) Requirements

DRBC regulations and policies are applicable to all NPDES permits for facilities within the Delaware River basin. The requirements of the most recent Docket No. D-1974-176 CP-4 for this facility which was approved on March 15, 2017 with expiration date of June 30, 2024, will be applied to the permit. All parameters required in the Docket were included in the existing permit and will continue during the current permit renewal. The facility is not a direct discharger to the Schuylkill River: PCB monitoring is not required. A copy of the draft permit will be forwarded to DRBC.

4.3.14 TDS, Chloride, Sulfate, Bromide, and 1,4-dioxane

Under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for TDS, sulfate, chloride, bromide, and 1,4-dioxane. The following approach will be implemented for point source discharges upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

The maximum daily TDS discharge results submitted with the application is 566 mg/L which is equivalent to 9447 lbs/day based on the permitted flow of 2.0 MGD. The discharge level for TDS is below the minimum 1000 mg/l and 20,000lbs/day, to require monitoring based on this guidance, therefore no monitoring of TDS, Chloride, Sulfate, and Bromide should have been required in the permit. However, the existing quarterly TDS monitoring requirement in the permit required by DRBC will remain in the permit. 1,4-dioxane results are below 0.1mg/l, therefore no monitoring is required for 1,4-dioxane at this time

4.3.15 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements, per DEP policy.

4.3.16 Industrial Users

There are 5 significant industrial users (SIUs) who send wastewater to this plant: 4 Categorical Industrial Users (CIUs) and 1 Significant Noncategorical Industrial User(SNIU)

- Bayer Healthcare Plants 1 (CIUs) flows: sanitary & process wastewater -14,877GPD in 2017 (subject to ELGs 40 CFR Part 439 for Pharmaceuticals, Subpart D)/sanitary wastewater/cooling tower blowdown
- 2. Bayer Healthcare Plants 2 (CIUs) flows: sanitary & process wastewater 18,313GPD in 2017(subject to ELGs 40 CFR Part 439 for Pharmaceuticals, Subpart D)/sanitary wastewater/cooling tower blowdown
- 3. GAF/Elk Corp. (CIUs)— flows: sanitary & process wastewater -381GPD in 2017 (subject to ELGs 40 CFR Part 443, Paving and Roofing, Subpart C)
- 4. Test Cast Inc. (CIUs) flows: sanitary & process wastewater 6,110GPD in 2017 (subject to ELGs 40 CFR Part 464, Metal Molding and Casting, Subpart C)
- 5. Trigon Plastics (SNIU)– flows: sanitary & process wastewater 470GPD in 2017to ELG 40 CFR Part 463, Plastics Molding and Forming)

The POTW's effluent sampling results provided in the renewal application include all parameters required for the above SIU's: Pharmaceutical process wastewater-Groups I, III, IV and V; Metal Molding and Casting process wastewater: Groups I-V; Paving and Roofing process wastewater – Groups I-V; Plastics Molding and Forming process wastewater: Groups I & III.

4.3.17 Pretreatment Requirements

The design annual average flow of the treatment plant is 2 MGD but the facility receives flow from 5 SIUs and is required to develop and implement a pre-treatment program. The facility currently maintains and operates an EPA-approved pretreatment program. Consequently, the Department will continue to include permit conditions that dictate the operation and implementation of a pretreatment program in Part C of the permit.

5.0 Other Requirements

5.1 The permit contains the following special conditions:

Stormwater Prohibition, Approval Contingencies, Proper Waste/solids Management, Restriction on receipt of hauled in waste under certain conditions, WET testing requirements and Stormwater conditions

5.2 Stormwater

There is no stormwater outfall identified in the permit. However, stormwater from the treatment plant site is directed to a lower end of the site and discharged to the stream via a pipe. This location will be identified in the permit at outfall 002 (40°22'32.5"/-76°17'17.6") since the facility meet the requirement for stormwater monitoring requirement located in 40CFR 122.26(b)(14)(ix). This new stormwater outfall will be added to the permit with BMP conditions in Part C. BMPs and conditions includes: a Preparedness, Prevention and Contingency (PPC) Plan, annual visual inspection at a minimum, and the completion of DEP's Annual Inspection Form

5.3 Biosolids Management

Wasted sludge flow by gravity to the gravity thickener, and then to the primary aerobic sludge digester followed by a secondary aerobic digester in series for digestion. Digested sludge from the secondary digester is dewatered utilizing centrifuge, generally operated 2x/week. The centrate go to reed beds and the dewatered cake is hauled off-site to the Greater Lebanon Refuse Authority Landfill. Couple of times in a year liquid sludge is added to the reed beds.

5.4 Anti-backsliding

Not applicable to this permit

5.5 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.6 Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

5.7 303d listed stream

The discharge is located on a 303d listed stream segment. The stream is impaired for aquatic life due to Siltation and nutrients form agricultural activities and Urban Runoff/Storm Sewers. TMDL development is pending. A total phosphorus limit of 1mg/l has been established to protect Blue Mash reservoir until TMDL is developed. The facility has been complying with the phosphorus limitation. The Secondary Receiving Water: Schuylkill River, WWF, has a TMDL for PCBs but the TMDL is only applicable to direct discharges only.

5.8 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.9 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Whole Effluent Toxicity (WET)

Whole Effluent Toxicity (WET) is a term used to describe the aggregate toxic effect of an aqueous sample (i.e whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (lethality, impaired growth or reproduction). WET tests replicate, to the greatest extent possible, the total effect and actual environmental exposure of aquatic life to toxic pollutants in an effluent without requiring the identification of the specific pollutants. WET testing is a vital component of the water quality standards implementation through the NPDES permitting process. EPA's promulgated WET test methods include acute and chronic tests.

6.1 For Outfall 001, Acute Chronic WET Testing was completed:
For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other:
The dilution series used for the tests was: 100%, 62%, 23%, 12%, and 6%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 23%.
6.2 Summary of Four Most Recent Test Results
6.2.1 TST Data Analysis
See attachment E for DEP WET Analysis Spreadsheet
6.3 Evaluation of Test Type, IWC and Dilution Series for Renewed Permit
Acute Partial Mix Factor (PMFa): 0.487 Chronic Partial Mix Factor (PMFc): 1
6.3.1. Determine IWC – Acute (IWCa):
$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$
$[(2.0 \text{ MGD} \times 1.547) / ((10.3 \text{cfs} \times 0.487) + (2.0 \text{ MGD} \times 1.547))] \times 100 = 38\%$
Is IWCa < 1%? ☐ YES ☑ NO (YES - Acute Tests Required OR NO - Chronic Tests Required)
If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:
Type of Test for Permit Renewal: Chronic
6.3.2a. Determine Target IWCa (If Acute Tests Required)
TIWCa = IWCa / 0.3 = N/A%
6.3.2b. Determine Target IWCc (If Chronic Tests Required)
$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$

6.3.3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 62%, 23%, 12%, and 6%.

 $[(2.0 \text{ MGD x } 1.547) / ((10.3 \text{cfs x } 1) + (2.0 \text{ MGD x } 1.547))] \times 100 = 23\%$

6.4 WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO
There was one endpoint failure in four consecutive tests, however, a re-test within 45 days passed and 3 subsequent annual WETT test passed. Also, there is no history of endpoint failures in the five years prior to the WET tests under review, and no significant changes have occurred at the facility.
Will WET limits be established in the permit? ☐ YES ☒ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

There was one endpoint failure in four consecutive tests, however, a re-test within 45 days passed and 3 subsequent annual WETT test passed. Also, there is no history of endpoint failures in the five years prior to the WET tests under review, and no significant changes have occurred at the facility. Therefore, no WETT limits will be established in the permit.

7.0 Proposed Effluent Limitations and Monitoring Requirements

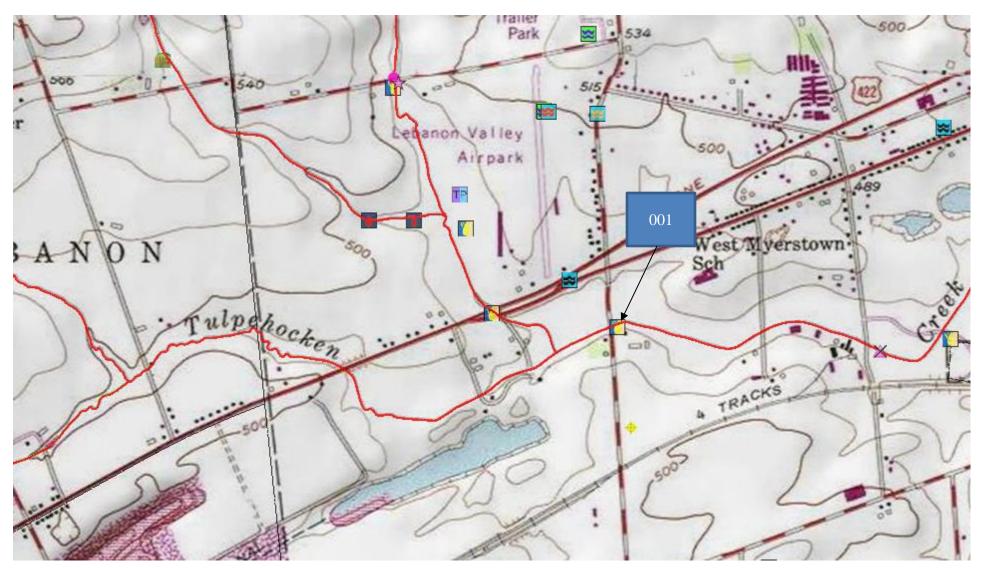
The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Faranielei	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5 Nov 1 - Apr 30	417	667	XXX	25	40	50	2/week	24-Hr Composite
CBOD5 May 1 - Oct 31	283	450	XXX	17	27	34	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
				·				24-Hr
TSS	500	750	XXX	30 Report	45	60	2/week	Composite 24-Hr
Total Dissolved Solids Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Avg Qrtly 2000	XXX	XXX	1/quarter	Composite
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
Total Nitrogen	XXX	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Ammonia Nov 1 - Apr 30	265	XXX	XXX	15.9	XXX	31.8	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	88	XXX	XXX	5.3	XXX	10.6	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
raiametei	Average Monthly	Weekly	Daily Minimum	Average Monthly	Weekly	Instant. Maximum	Measurement	Sample
	Wichiting	Average	William	Wichting	Average	Waxiiiiuiii	Frequency	Type 24-Hr
Total Phosphorus	16.7	XXX	XXX	1.0	XXX	2	2/week	Composite
UV Dosage (mWsec/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Measured
								24-Hr
Total Arsenic	0.718	XXX	XXX	0.043	XXX	0.108	2/week	Composite


Compliance Sampling Location: Outfall 001

Other Comments: Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO₂+NO₃-N), where TKN and NO₂+NO₃-N are measured in the same sample

8.0 Tools	s and References Used to Develop Permit
	T
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment C)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
\boxtimes	Toxics Screening Analysis Spreadsheet (see Attachment D)
\boxtimes	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
\boxtimes	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: Establishing effluent limitation for individual sewage permit
	Other:

Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits

		<u>stream Name</u> TULPEHOCKEN CREEK								
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (m g/L)				
Jackson Twp	PA0248185	0.500	CBOD5	21.44						
			NH3-N	3.78	7.56					
			Dissolved Oxygen			5				
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (m.g/L)				
Myerstown Boro	PA0021075	2.000	CBOD5	25						
			NH3-N	8.41	16.82					
			Dissolved Oxygen			5				
	Name Jackson Twp	Name Permit Number Jackson Twp PA0248185 Name Permit Number	Name Disc Flow (mgd) Name Permit Number Flow (mgd) Jackson Twp PA0248185 0.500 Name Permit Flow Number Flow (mgd)	Name Permit Number Disc Flow (mgd) Parameter Jackson Twp PA0248185 0.500 CBOD5 NH3-N Dissolved Oxygen Name Permit Number Flow (mgd) Parameter Myerstown Boro PA0021075 2.000 CBOD5 NH3-N	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Jackson Twp PA0248185 0.500 CBOD5 21.44 NH3-N 3.78 Diss olved Oxygen Diss olved Oxygen Name Permit Number Flow (mgd) Parameter 30-day Ave. (mg/L) Myerstown Boro PA0021075 2.000 CBOD5 25 NH3-N 8.41	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Jackson Twp PA0248185 0.500 CBOD5 21.44 NH3-N 3.78 7.58 Name Permit Number Piox Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Myerstown Boro PA0021075 2.000 CBOD5 25 NH3-N 8.41 16.82				

Friday, October 16, 2020 Version 1.0b Page 1 of 1

					Inp	ut Dat	a WQN	1 7.0						
	SWP Basin			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	Withd	VS Irawal gd)	Apply FC
	03C	18	846 TULPI	EHOCKE	NCREEK		36.2	00 4	65.00	2.31	0.0000	0	0.00	∀
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Te	<u>Strear</u> emp	n pH	
Colla.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10 Q1-10	0.370	0.00	0.00	0.000	0.000	0.0	0.00	0.00		0.00 0.	00	20.00	7.00	
Q30-10		0.00	0.00	0.000	0.000									
			Name	Per	mit Numbe	Disc	Permitt Disc Flow	Flow	Res Fa	Dis serve Ter ctor (%	пр	Disc pH		
		Jacks	son Twp	PA	0248185	0.500	0.500	0.500	00	0.000	25.00	7.00		
					Pa	a ra me ter	Data							
				Paramete	r Name	C	anc C		ream Conc	Fate Coef				
	_					(n	ng/L) (n	ng/L) (n	ng/L)	(1/days)		_		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Friday, October 16, 2020 Version 1.0b Page 1 of 3

					Inp	ut Data	WQN	17.0						
	SWP Basii			Stre	am Name		RMI	Elevati (ft)	-	ainage Area aq mi)	Slope (ft/ft)	PWS Withdraw (mgd)		Apply FC
	03C	18	846 TULPE	EHOCKE	NCREEK		32.50	00 41	5.00	27.80	0.00000	0	.00	V
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Trib</u> Temp	outary pH	Temp	Stream ph	1	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)			
Q7-10 Q1-10 Q30-10	0.370	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0.00	0.00	20.	.00 7	.00	
					DI	acharge [Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow (mgd)	Reserve Factor			- 1		
		Myer	stown Boro	PAG	0021075	2.0000			0.00		.00 7	7.70		
					Pa	rameter (Data							

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Disc Trib Stream Fate Conc Conc Conc Coef

(mg/L) (mg/L) (mg/L) (1/days)

0.00

0.00

0.00

1.50

0.00

0.70

2.00

8.24

0.00

25.00

5.00

25.00

Friday, October 16, 2020 Version 1.0b Page 2 of 3

					Inp	ut Dat	a WQN	1 7.0						
	SWP Basii			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)	Slope (ft/ft)	PW Withdr (mg	awal	Apply FC
	03C	1	846 TULP	HOCKE	NCREEK		25.20	00 3	54.00	62.00	0.00000		0.00	₹
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Temp	Tributary pH	Tem	<u>Stream</u> p	pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.370	0.00 0.00 0.00	0.00	0.000 0.000 0.000		0.0	0.00	0.00	0	0.0 00.	0 20	0.00	7.00	
			Name	Per	mit Numbe	Disc	Permitte Disc Flow	ed Design Disc Flow (mgd)	Rese Fac		p pl			
						0.000	0.000	0.000	0 0	.000	0.00	7.00		
					Pa	a ra me ter	Data							
				Paramete	r Name	_			ream Conc	Fate Coef				
						(n	ng/L) (n	ng/L) (n	ng/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Friday, October 16, 2020 Version 1.0b Page 3 of 3

WQM 7.0 Hydrodynamic Outputs

		P Basin 03C		<u>IM Code</u> 1846				Stream EHOCK	<u>Name</u> EN CREE	EK		
RMI	Stream Flow	PWS With	Flow	Disc Analysis Flow		Depth	Width	W/D Ratio	Velocity	Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
36.200	0.85	0.00	0.85	.7735	0.00256	.55	13.63	24.78	0.22	1.041	22.38	7.00
32.500	10.29	0.00	10.29	3.8675	0.00158	.76	45.98	60.54	0.41	1.101	21.37	7.08
Q1-1	0 Flow											
36.200	0.76	0.00	0.76	.7735	0.00256	NA	NA	NA.	0.21	1.076	22.52	7.00
32.500	9.15	0.00	9.15	3.8675	0.00158	NA	NA	NA	0.39	1.153	21.48	7.09
Q30-	10 Flow	,										
36.200	1.03	0.00	1.03	.7735	0.00256	NA	NA	NA.	0.23	0.984	22.15	7.00
32.500	12.34	0.00	12.34	3.8675	0.00158	NA	NA	NA.	0.44	1.020	21.19	7.07

Friday, October 16, 2020 Version 1.0b Page 1 of 1

WQM 7.0 Modeling Specifications Parameters Both Use Inputted Q1-10 and Q30-10 Flows ☑ WLA Method EMPR Use Inputted W.ID Ratio ☐ Q1-10/Q7-10 Ratio 0.89 Use Inputted Reach Travel Times ☐ Q30-10/Q7-10 Ratio 1.2 Temperature Adjust Kr ☑ D.O. Saturation 90.00% Use Balanced Technology ☑ D.O. Goal 5				
W LA Method EMPR Use Inputted W /D Ratio □ Q1-10/Q7-10 Ratio 0.89 Use Inputted Reach Travel Times □ Q30-10/Q7-10 Ratio 1.2 Temperature Adjust Kr ☑ D.O. Saturation 90.00% Use Balanced Technology ☑		WQM 7.0 Modelin	ng Specifications	
Q1-10/Q7-10 Ratio 0.89 Use Inputted Reach Travel Times □ Q30-10/Q7-10 Ratio 1.2 Temperature Adjust Kr ☑ D.O. Saturation 90.00% Use Balanced Technology ☑	Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	☑
Q30-10/Q7-10 Ratio 1.2 Temperature Adjust Kr ✓ D.O. Saturation 90.00% Use Balanced Technology ✓	WLA Method	EMPR	Use Inputted W/D Ratio	
D.O. Saturation 90.00% Use Balanced Technology ☑	Q1-10/Q7-10 Ratio	0.89	Use Inputted Reach Travel Times	
Use balanced recliningly	Q30-10/Q7-10 Ratio	1.2	Temperature Adjust Kr	☑
D.O. Goal 5	D.O. Saturation	90.00%	Use Balanced Technology	☑
	D.O. Goal	5		
day, October 16, 2020 Version 1.0b Page 1 of 1	day, October 16, 2020	Version 1	1.0b	Page 1 of 1

WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
03 C	1846	TULPEHOCKEN CREEK

RMI Discharge Nam	Baseline e Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
36.200 Jackson Twp 32.500 Myerstown Boro	8.06 8.21	15.99 32.5	8.06 8.12	15.99 32.5	0	0

32.500 Myerstown Boro NH3-N Chronic Allocations

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
36.20	0 Jackson Twp	1.64	3.82	1.64	3.78	2	1
32.50	0 Myerstown Boro	1.71	8.51	1.69	8.41	2	1

Dissolved Oxygen Allocations

		CBC	DD5	NH	3-N	Dissolved	i Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)			Reach	Reduction
36.20 Jac	kson Twp	21.44	21.44	3.78	3.78	5	5	0	0
32.50 My	erstown Boro	25	25	8.41	8.41	5	5	0	0

Friday, October 16, 2020 Version 1.0b Page 1 of 1

WQM 7.0 D.O. Simulation

SWP Basin St	ream Code			Stream Name	
03C	1846		TUL	PEHOCKEN CREEK	
RMI 38.200	Total Discharg) Ana	lysis Temperature (°C) 22.375	Analysis pH 7.000
Reach Width (ft) 13.630	Reach De 0.58			Reach WDRatio 24,780	Reach Velocity (fps) 0.217
Reach CBOD5 (mg/L)	Reach Ko		R	each NH3-N (mg/L)	Reach Kn (1/days)
11.24	1.04		_	1.79	0.840
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)
6.702	5.58	95		Tsivoglou	5
ach Travel Time (days) 1.041	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.104	9.95	1.64	5.64	
	0.208	8.81	1.51	5.26	
	0.312		1.38	5.23	
	0.416		1.26	5.39	
	0.521		1.16	5.62	
	0.625		1.06 0.97	5.88 6.15	
	0.729		0.89	6.40	
	0.937		0.82	6.64	
	1.041	3.34	0.75	6.86	
RMI	Total Discharge) Ana	ysis Temperature (°C)	Analysis pH
32.500 Reach Width (ft)	2.50 Reach De			21.366 Reach WDRatio	7.084 Reach Velocity (fps)
45.981	0.70			60.538	0.405
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
7.18	0.89 Reach Kr			1.93 Kr Equation	0.778 Reach DO Goal (mg/L)
Reach DO (mg/L) 7.374	4.52			Tsivoglou	5
each Travel Time (days) 1.101	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)	
	(days)	(iig/c)	(mg/c)	(mg/c)	
	0.110		1.77	6.57	
	0.220	5.82	1.62	6.22	
	0.220	5.82 5.24	1.62 1.49	6.22 6.12	
	0.220 0.330 0.440	5.82 5.24 4.71	1.62 1.49 1.37	6.22 6.12 6.17	
	0.220	5.82 5.24 4.71 4.24	1.62 1.49 1.37 1.25	6.22 6.12 6.17 6.29	
	0.220 0.330 0.440 0.550	5.82 5.24 4.71 4.24 3.82	1.62 1.49 1.37	6.22 6.12 6.17	
	0.220 0.330 0.440 0.550	5.82 5.24 4.71 4.24 3.82 3.44	1.62 1.49 1.37 1.25 1.15	6.22 6.12 6.17 6.29 6.46	
	0.220 0.330 0.440 0.550 0.660	5.82 5.24 4.71 4.24 3.82 3.44 3.09	1.62 1.49 1.37 1.25 1.15	6.22 6.12 6.17 6.29 6.46 6.64	
	0.220 0.330 0.440 0.550 0.860 0.771	5.82 5.24 4.71 4.24 3.82 3.44 3.09 2.78	1.62 1.49 1.37 1.25 1.15 1.06	6.22 6.12 6.17 6.29 6.46 6.64 6.82	
	0.220 0.330 0.440 0.550 0.660 0.771 0.881	5.82 5.24 4.71 4.24 3.82 3.44 3.09 2.78	1.62 1.49 1.37 1.25 1.15 1.06 0.97 0.89	6.22 6.12 6.17 6.29 6.46 6.64 6.82 7.00	

C. PENTOXSD Model Results

PENTOXSD Analysis Results

Recommended Effluent Limitations

S VVF Daeill	atieani Code.		a a balli iva	ille.	
03C	1846	TI	JLPEHOCKEN	NCREEK	
RMI	Name	Permit Number	Disc Flow (mgd)		
32.50	Myerstown Boro	PA0021075	2.0000		

	Effluent Limit		Max. Daily	Most S	tringent	
Parameter	(µg/L)	Governing Criterion	Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion	
ARSENIC	43.245	THH	67.469	43.245	THH	-
HEXACHLOROBUTA-DIENE	8.543	CRL	13.328	8.543	CRL	
PHENOLICS (PWS)	1000000	INPUT	1560000	NA	NA	

Tuesday, October 20, 2020 Version 2.0d Page 1 of 1

PENTOXSD

Modeling Input Data

Stream Code	RMI	Elevati (ff)	A	nage rea mi)	Slope	PW\$ (m	With gd)			Apply FC				
1846	32.50	41	5.00		0.00000		0.00			Ø				
							Stream I	Data						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tribu</u> Hard	tary pH	Stre Hard	am pH	Anal Hard	<u>ysis</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.37	0	0	0	0	0	0	0	0	0	280	7	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
							Nac ha rna	Data						

				DI	acharge Da	ta					
Name	Permit Number	Existing Disc Flow	Permitte Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH
		(mgd)	(mgd)	(mgd)						(mg/L)	
Myerstown Boro	PA0021075	2	2	2	0	0	0	0	0	291.3	7.7
				Pa	rameter Da	ta					
Parameter N	Name	Disc	nc Co	nc Daily CV		Steam	Stream CV	Fate Coef	FOS	Crit Mod	Max Disc Conc
		(µg/l	L) (բ <u>զ</u>	/L)		(µg/L)					(µg/L)
ARSENIC		1000	000	0.5	0.5	0	0	0	0	1	0
HEXACHLOROBUT/	A-DIENE	1000	000	0.5	0.5	0	0	0	0	1	0
PHENOLICS (PWS)		1000	000	0.5	0.5	0	0	0	0	1	0

Tuesday, October 20, 2020 Version 2.0d Page 1 of 2

Strean Code		Elevatio (ft)	A) (sq	nage rea mi) 62.00	0.00000	PW\$ (mg				pply FC	-			
							Stream D	ata						
	LFY	Flow	Stream Flow	WD Ratio		Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	pH	<u>Strear</u> Hard	pH	Analys Hard	pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)	((mg/L)	
Q7-10	0.37	0	0	0	0	0	0	0	0	0	280	7	0	
Qh		0	0	0	0	0	0	0	100	7	0	0	0	
						D	(scharge (Data						
	Name	Permi Numb	er Di	aing P sc ow	ermitted Disc Flow	Design Disc Flow	Reserve Factor		CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
_			(m	gd)	(mgd)	(mgd)						(mg/L)		
			(0	0	0	0	0	0	0	0	100	7	
						P	ara me ter [Data						
	Parameter N	Name		Disc Conc	Trib Conc	Disc Daily CV	y Hour	ly Con		Fate Coe		Crit Mod	Max Disc Conc	
				(µg/L)	(µg/L			(µg/					(µg/L)	
ARSEN				0	0	0.5				0	0	1	0	
	HLOROBUTA	V-DIENE		0	0	0.			0	0	0	1	0	
PHENO	LICS (PWS)			0	0	0.5	5 0.8	5 0	0	0	0	1		0

Tuesday, October 20, 2020 Version 2.0d Page 2 of 2

PENTOXSD Analysis Results

Hydrodynamics

	8	WP Basis	1	Stre ar	m Code:			Stream	n Name			
		03C		1	846		T	JLPEHO	CKEN C	REEK		
	RMI	Stream Flow	PWS With	Flow	Disc Analysis Flow	Reach Slope	Depth	Width	WD Ratio	Velocity	Reach Trav Time	CMT
-		(cfs)	(cfs)	(cfs)	(cfs)		(ft)	(ft)		(fps)	(days)	(min)
						Q7-	10 Hy	lrod yn a	mics			
	32.500	10.286	0	10.286	3.094	0.0016	0.7549	45.132	59.784	0.3927	1.136	63.233
	25.200	22.94	0	22.94	NA.	0	0	0	0	0	0	NA
						Q	h Hydr	odynan	nics			
	32.500	56.976	0	56.976	3.094	0.0016	1.4617	45.132	30.876	0.9106	0.4899	35.725
	25,200	114.85	0	114.85	5 NA	0	0	0	0	0	0	NA

Tuesday, October 20, 2020 Version 2.0d Page 1 of 1

			PE	NTOXS	D Analy:	sis Resul	ts			
				Wastel	oad Allo	cations				
RMI	Name	Permit Nu	ımber							
32.50	Myerstown Boro	PA0021	075							
					FC					
Q7-	10: CCT (min	1) 15		0.487 Stream	Anaiyaia Trib	PH 7.158	WQC	Hardness 2	884.314 WLA	
	Parameter		Conc (µg/L)	CV	Conc (µg/L)	Coef	(µg/L)	Obj (µg/L)	(µg/L)	
	ARSENIC		0 Dissolved	0 WOC C	0 nemical tra	0 inslator of 1	340	340	890.525	-
	PHENOLICS (PWS)		0	0	0	0	NA	NA	NA	
HEX	ACHLOROBUTA-DI	ENE	0	0	0	0	10	10	26.192	
					FC					
7-10:	CCT (min)	63.233	PMF	1		pH 7.088	Analy s	is Hardness	282.613	
	Parameter		Stream Conc.	Stream	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA	
			(µg/L)		(µg/L)		(µg/L)	(µg/Ĺ)	(µg/L)	_
	ARSENIC		0 Dissolved	0 WQC. CI	0 nemical tra	0 nslator of 1:	150 applied.	150	648.675	
F	PHENOLICS (PWS)		0	0	0	0	NA NA	NA	NA	
HEX	ACHLOROBUTA-DIE	ENE	0	0	0	0	2	2	8.649	
				Т	нн					
27-10:	CCT (min)		PMF	1	-	pH NA	_	is Hardness		
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	
	ARSENIC		0	0	0	0	10	10	43.245	-
	PHENOLICS (PWS)		0	0	0	0	5	5	NA	
HEX	ACHLOROBUTA-DII	ENE	0	0	0	0	NA	NA	NA	
					CRL					
2h:	CCT (min)	35.72	5 PMF							
	Parameter		Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	
	ARSENIC		0	0	0	0	NA	NA	NA	_
	PHENOLICS (PWS))	0	0	0	0	NA	NA	NA	

			PENT	OXSD	Analysis	Results	;		
			w	asteloa	d Alloca	tions			
RMI		Permit Num							
	Myerstown Boro XACHLOROBUTA-D			0	0	0	0.44	0.44	8.543
			-						

D. Toxics Screening Analysis

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN **VERSION 2.7**

CLEAR FORM

001

Facility: Myerstown Borough STP Analysis Hardness (mg/L): 291 Stream Flow, Q₇₋₁₀ (cfs): 10.3

NPDES Permit No.: Discharge Flow (MGD): PA0021075 Outfall: Analysis pH (SU): 7.12 2

	Parameter		aximum Concentration in oplication or DMRs (µg/L)	Most Stringent Criterion (µg/L)	Candidate for PENTOXSD Modeling?	Most Stringent WQBEL (μg/L)	Screening Recommendation
_	Total Dissolved Solids		566000	500000	Yes		
9	Chloride		10600	250000	No		
Group	Bromide	<	1	N/A	No		
9	Sulfate		29200	250000	No		
	Total Aluminum		114	750	No		
	Total Antimony	<	0.4	5.6	No (Value < QL)		
	Total Arsenic		30	10	Yes	43	Establish Limits
	Total Barium		26	2400	No		
	Total Beryllium	<	0.4	N/A	No		
	Total Boron		113	1600	No		
	Total Cadmium	<	0.08	0.597	No (Value < QL)		
	Total Chromium		5	N/A	No		
	Hexavalent Chromium		0.1	10.4	No		
	Total Cobalt		1	19	No		
8	Total Copper		8.9	23.2	No		
	Free Available Cyanide	<	5	5.2	No		
Group	Total Cyanide		7	N/A	No		
Ō	Dissolved Iron		13	300	No		
	Total Iron		100	1500	No		
	Total Lead	<	4.8	12.4	No		
	Total Manganese		19	1000	No		
	Total Mercury	<	0.05	0.05	No (Value < QL)		
	Total Nickel		5	128.8	No		
	Total Phenols (Phenolics)		50	5	Yes	1000000	No Limits/Monitoring
	Total Selenium		2.1	5.0	No		
	Total Silver	<	5	23.8	No		
	Total Thallium	<	0.4	0.24	No (Value < QL)		
	Total Zinc		71	296.2	No		
	Total Molybdenum		10	N/A	No		

	Acrolein	<	1	3	No (Value < QL)	1
	Acrylonitrile	· <	0.5	0.051	No (Value < QL)	
	Benzene	` '	0.5	1.2	No (Value < QL)	
	Bromoform	` '	0.5	4.3	No (Value < QL)	
	Carbon Tetrachloride	,	0.5	0.23	No (Value < QL)	
	Chlorobenzene	· <	0.5	130	No (Value < QL)	
	Chlorodibromomethane	· <	0.5	0.4	No (Value < QL)	
	Chloroethane	· <	0.5	N/A	No	
	2-Chloroethyl Vinyl Ether	· <	0.5	3500	No (Value < QL)	
	Chloroform	,	0.5	5.7	No (Value < QL)	
	Dichlorobromomethane	· ·	0.5	0.55	No (Value < QL)	
	1,1-Dichloroethane	<	0.5	N/A	No	
	1,2-Dichloroethane	· ·	0.5	0.38	No (Value < QL)	
က	1,1-Dichloroethylene	<	0.5	33	No (Value < QL)	
dn	1,2-Dichloropropane	· ·	0.5	2200	No (Value < QL)	
Group	1,3-Dichloropropylene	<	0.5	0.34	No (Value < QL)	
	1,4-Dioxane	· ·	0.5	N/A	No	
	Ethylbenzene	<	0.5	530	No (Value < QL)	
	Methyl Bromide	<	0.5	47	No (Value < QL)	
	Methyl Chloride	<	0.5	5500	No (Value < QL)	
	Methylene Chloride	<	0.5	4.6	No (Value < QL)	
	1,1,2,2-Tetrachloroethane	<	0.5	0.17	No (Value < QL)	
	Tetrachloroethylene	<	0.5	0.69	No (Value < QL)	
	Toluene	<	0.5	330	No (Value < QL)	
	1,2-trans-Dichloroethylene	<	0.5	140	No (Value < QL)	
	1,1,1-Trichloroethane	<	0.5	610	No (Value < QL)	
	1,1,2-Trichloroethane	<	0.5	0.59	No (Value < QL)	
	Trichloroethylene	<	0.5	2.5	No (Value < QL)	
	Vinyl Chloride	<	0.5	0.025	No (Value < QL)	
	2-Chlorophenol	<	1	81	No (Value < QL)	
	2,4-Dichlorophenol	<	50	77	No	
	2,4-Dimethylphenol	'	50	130	No	
	4,6-Dinitro-o-Cresol	<	0.117	13	No (Value < QL)	
p 4	2,4-Dinitrophenol	'	2.99	69	No (Value < QL)	
	2-Nitrophenol	<	50	1600	No	
Grou	4-Nitrophenol	'	250	470	No	
	p-Chloro-m-Cresol	<	0.0985	30	No (Value < QL)	
	Pentachlorophenol	'	0.103	0.27	No (Value < QL)	
	Phenol	<	50	10400	No	
	2,4,6-Trichlorophenol	<	0.0985	1.4	No (Value < QL)	

Acenaphthene	<	1	17	No (Value < QL)		
Acenaphthylene	<	1	N/A	No		
Anthracene	<	1	8300	No (Value < QL)		
Benzidine	<	5	0.000086	No (Value < QL)		
Benzo(a)Anthracene	<	1	0.0038	No (Value < QL)		
Benzo(a)Pyrene	<	1	0.0038	No (Value < QL)		
3,4-Benzofluoranthene	<	1	0.0038	No (Value < QL)		
Benzo(ghi)Perylene	<	1	N/A	No		
Benzo(k)Fluoranthene	<	1	0.0038	No (Value < QL)		
Bis (2-Chloroethoxy)Methane	<	1	N/A	No		
Bis (2-Chloroethyl)Ether	<	1	0.03	No (Value < QL)		
Bis(2-Chloroisopropyl)Ether	<	1	1400	No (Value < QL)		
Bis (2-Ethylhexyl)Phthalate	<	1.09	1.2	No (Value < QL)		
4-Bromophenyl Phenyl Ether	<	1	54	No (Value < QL)		
Butyl Benzyl Phthalate	<	1	35	No (Value < QL)		
2-Chloronaphthalene	<	1	1000	No (Value < QL)		
4-Chlorophenyl Phenyl Ether	<	1	N/A	No No (Value + OL)		
Chrysene	<	1	0.0038	No (Value < QL) No (Value < QL)		
Dibenzo(a,h)Anthrancene	<	0.5	0.0038			
1,2-Dichlorobenzene 1.3-Dichlorobenzene	<	0.5	160 69	No (Value < QL) No (Value < QL)		
1,4-Dichlorobenzene	<	0.5	150	No (Value < QL)		
3,3-Dichlorobenzidine	<	0.139	0.021	No (Value < QL)		
Diethyl Phthalate	\ <	1	800	No (Value < QL)		
Dimethyl Phthalate	<	1	500	No (Value < QL)		
Di-n-Butyl Phthalate	<	3	21	No (Value < QL)		
2,4-Dinitrotoluene	<	3	0.05	No (Value < QL)		
2,6-Dinitrotoluene	<	1	0.05	No (Value < QL)		
Di-n-Octyl Phthalate	<	1	N/A	No		
1,2-Diphenylhydrazine	<	3	0.036	No (Value < QL)		
Fluoranthene	<	1	40	No (Value < QL)		
Fluorene	<	1	1100	No (Value < QL)		
Hexachlorobenzene	<	1	0.00028	No (Value < QL)		
Hexachlorobutadiene	<	1	0.44	Yes	8.5	No Limits/Monitoring
Hexachlorocyclopentadiene	<	1	1	No (Value < QL)		
Hexachloroethane	<	0.0687	1.4	No (Value < QL)		
Indeno(1,2,3-cd)Pyrene	'	1	0.0038	No (Value < QL)		
Isophorone	<	1	35	No (Value < QL)		
Naphthalene	<	0.0687	43	No (Value < QL)		
Nitrobenzene	<	1	17	No (Value < QL)		
n-Nitrosodimethylamine	<	1	0.00069	No (Value < QL)		
n-Nitrosodi-n-Propylamine	<	1	0.005	No (Value < QL)		
n-Nitrosodiphenylamine	<	1	3.3	No (Value < QL)		
Phenanthrene	<	1	1	No (Value < QL)		
Pyrene	<	1	830	No (Value < QL)		
1,2,4-Trichlorobenzene	<	1	26	No		
Aldrin	<	0.02	0.000049	No (Value < QL)		
alpha-BHC	<	0.02	0.0026	No (Value < QL)		
beta-BHC	<	0.02	0.0091	No (Value < QL)		
gamma-BHC	<	0.02	0.098	No (Value < QL)		
delta BHC	<	0.02	N/A	No		
Chlordane	<	0.02	0.0008	No (Value < QL)		
1 4 DDT		2 22	0.0000			
4,4-DDT	<	0.02	0.00022	No (Value < QL)		
4,4-DDE	< <	0.02	0.00022	No (Value < QL)		
4,4-DDE 4,4-DDD	< <	0.02 0.02	0.00022 0.00031	No (Value < QL) No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin	< < < < < < < < < < < < < < < < < < <	0.02 0.02 0.02	0.00022 0.00031 0.000052	No (Value < QL) No (Value < QL) No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan	<td>0.02 0.02 0.02 0.02</td> <td>0.00022 0.00031 0.000052 0.056</td> <td>No (Value < QL) No (Value < QL) No (Value < QL) No (Value < QL) No (Value < QL)</td> <td></td> <td></td>	0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056	No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.02 0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056 0.056	No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate	<td>0.02 0.02 0.02 0.02 0.02 0.02</td> <td>0.00022 0.00031 0.000052 0.056 0.056 N/A</td> <td>No (Value < QL) No (Value < QL)</td> <td></td> <td></td>	0.02 0.02 0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056 0.056 N/A	No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin	<td>0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02</td> <td>0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036</td> <td>No (Value < QL) No (Value < QL)</td> <td></td> <td></td>	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036	No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036 0.29	No (Value < QL) No No (Value < QL) No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036 0.29 0.000079	No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036 0.29 0.000079 0.000039	No (Value < QL)		
4,4-DDE 4,4-DDD Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.00022 0.00031 0.000052 0.056 0.056 N/A 0.036 0.29 0.000079	No (Value < QL)		

E. WETT Tests Results

ETT Tests Results							
	WET S	ummary and	Evaluation				
FWA Name	Manager Ba						
Facility Name Permit No.	Myerstown Bo	rougn STP					
	2	PA0021075					
Design Flow (MGD) Q ₇₋₁₀ Flow (cfs)	10.3						
	0.487						
PMF _a							
PMF _o	1						
			Test Results	s (Pass/Fail)			
		Test Date	Test Date	Test Date	Test Date		
Species	E ndpoint	8/28/18	9/17/19	5/12/20			
Pim ephales	Survival	PASS	PASS	PASS			
		Test Results (Pass/Fail)					
		Test Date	Test Date	Test Date	Test Date		
Species	E ndpoint	8/28/18	9/17/19	5/12/20			
Pim ephales	Growth	PASS	PASS	PASS			
			Test Results				
		Test Date	Test Date	Test Date	Test Date		
Species	E ndpoint	8/28/18	9/17/19	5/12/20			
Ceriodaphnia	Survival	PASS	PASS	PASS			
		T4D-4-		s (Pass/Fail)	T4D-4-		
0	Forder sind	7 Test Date 8/28/18	Test Date 9/17/19	Test Date 5/12/20	Test Date		
Species	E ndpoint						
Ceriodaphnia	Reproduction	PASS	PASS	PASS			
Reasonable Potentia	I? NO						
Permit Recommenda	itions						
Test Type	Chronic						
TIWC	23	% Effluent					
Dilution Series	6, 12,	23, 62, 100	% E ffluent				
Daniel 2 1 (m. 2)		-					

None

Permit Limit

Permit Limit Species

	DEP Whole E	ffluent Toxicity	y (WET) Analysis	Spreadshee	t
Type of Test Species Test	Chro	onic ephales	A	Facility Na	me
Endpoint TIWC (decim	al) Surv 0.23		My	erstown Borou	
No. Per Repli TST bvalue	0.75			PA002107	
T ST alpha va	lue 0.25				
D. F. t.	Test Comp		BE	_	oletion Date
Replicate No.	8/28/ Control	TIWC	Replicate No.	Control	2019 TIWC
1	10	10	1	10	10
2	10 10	10 10	2	9	10 9
4	10	10	4	10 10	10
5			5		
6			6		
7			7		
8			8		
10			10		
11			11		
12			12		
13 14			13 14		
15			15		
Mean Std Dev.	10.000	10.000	Mean Std Dev.	9.750 0.500	9.750 0.500
# Replicates	4	4	# Reolicates	4	4
Deg. of Freed			T-Test Result		
Critical T Valu Pass or Fail		SS	Deg. of Freedo Critical T Valu Pass or Fail	om :	5 267 8
Pass or Fail	e PA Test Comp	letion Date	Deg. of Freedo Critical T Valu Pass or Fail	om e 0.7	267
	e PA	letion Date	Deg. of Freedo Critical T Valu	om e 0.7	267 \$\$
Pass or Fail Replicate No.	Test Comp 5/12/ Control	letion Date 2020 TIV/C 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No.	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1	Test Comp 5/12/ Control 10 10	letion Date 2020 TTWC 9 10	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1	Test Comp 5/12/ Control 10 10	letion Date 2020 TTWC 9 10	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 6 7 8	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 8 7 8 9 10 11 12 13	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 5/12/ Control 10 10 9	10 9	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 5/12/ Control 10 10 9 10	10 9 10	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 5/12/ Control 10 10 9 10	9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 5/12/ Control 10 10 9 10	10 9 10	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	9,750 0,500 4	9.500 0.577 4	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om 9 e 0.7 PA Test Comp	267 \$§ eletion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	9.750 0.500 4	9.500 0.577 4	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	om e 0.7 Test Comp Control	267 \$§ eletion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	9.750 0.500 4 5.33	9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	om e 0.7 Test Comp Control	267 \$§ eletion Date

	DEP Whole E	ffluent Toxicit	y (WET) Analysis	Spreadshee	t
Type of Test	Chro			Facility Nar	me
Species Teste Endpoint	Grov		Mys	erstown Borou	igh STP
TIWC (decima No. Per Repli TST b value			┨ ┌──	Permit No PA002107	
T ST alpha val				TABOLION	
_	Test Comp	letion Date		Test Comp	oletion Date
Replicate	8/28/		Replicate		2019
No.	Control	TIWC	Nb.	Control	TIMC
1	0.37	0.483	1	0.316	0.382
2	0.409	0.414	2	0.291	0.401
3	0.452	0.441	3	0.341	0.397
4	0.452	0.468	4	0.379	0.391
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
	0.404	0.450		0.332	0.000
Mean Std Dev.	0.421 0.039	0.452 0.030	Mean Std Dev.	0.332	0.393
	4	4		4	4
# Replicates	4	4	# Replicates	4	4
T-Test Result Deg. of Freedo		046	T-Test Result	9.8	121
Deg. Of Freedo.	non F	5			5
Cétical T Value			Deg. of Freedo	om :	5
Critical T Value Pass or Fail		267		om :	267
Pass or Fail	e 0.77 PA Test Comp	267 \$6 letion Date	Deg. of Freedo Critical T Valu Pass or Fail	om (e 0.7	267
Pass or Fail	e 0.7 PA Test Comp 5/12/	267 \$6 letion Date 2020	Deg. of Freedo Critical T Valu Pass or Fail Replicate	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Pass or Fail Replicate No.	e 0.7 PA Test Comp 5/12/ Control	ss letion Date 2020	Deg. of Freedo Critical T Valu Pass or Fail Replicate No.	om (e 0.7	267 \$\$
Replicate No.	Test Comp 5/12/ Control 0.374	267 \$8 letion Date 2020 TIWC 0.373	Deg. of Freedo Critical T Value Pass or Fail Replicate No.	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No.	Test Comp 5/12/ Control 0.374 0.352	267 \$\$ letion Date 2020 TIV/C 0.373 0.386	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No.	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4	Test Comp 5/12/ Control 0.374 0.352	267 \$\$ letion Date 2020 TIV/C 0.373 0.386	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4	om 9 e 0.7 PA Test Comp	267 \$§ Netion Date
Replicate No. 1 2 3 4 5	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 5/12/ Control 0.374 0.352 0.334	267 \$\$ letion Date 2020 TIV/C 0.373 0.366 0.371	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 5/12/ Control 0.374 0.352 0.334 0.382	267 \$8 letion Date 2020 TRVC 0.373 0.386 0.371 0.409	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 5/12/ Control 0.374 0.352 0.334 0.362	267 \$8 letion Date 2020 TRVC 0.373 0.366 0.371 0.409	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 5/12/ Control 0.374 0.352 0.334 0.362	267 \$8 letion Date 2020 TRVC 0.373 0.386 0.371 0.409 0.380 0.020	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	E 0.7/ Test Comp 5/12/ Control 0.374 0.352 0.334 0.362 0.356 0.017 4	267 \$8 2020 TRWC 0.373 0.368 0.371 0.409 0.380 0.020 4	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om 9 e 0.7 PA Test Comp	267 \$§ Setion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 5/12/ Control 0.374 0.352 0.334 0.362 0.356 0.017 4	267 \$88 letion Date 2020 TRWC 0.373 0.368 0.371 0.409 0.409	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp	267 \$§ eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 5/12/ Control 0.374 0.352 0.334 0.362 0.356 0.017 4 9.66	0.380 0.020 4	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	om () e 0.7 Test Comp Control	267 \$§ eletion Date

-	DEP Who	ole Effluent Tox	icity (WET) Analysis	Spreadshee	et .		
Type of Test Species Test		Chronic Ceriodaphnia		Facility Na	me		
Endpoint		Survival	My	erstown Boro	ugh STP		
TIWC (decim No. Per Repli		0.23		Permit N			
T ST b value		0.75		PA0021075			
T ST alpha va	lue	0.2					
	Test C	ompletion Date		Test Com	pletion Date		
Replicate		3/28/2018	Replicate		/2019		
No.	Contro		No.	Control	TIMC		
1	1	1	1	1	1		
2	1	1	2	1	1 1		
3 4	1	1 1	3 4	1	1		
5	1	1	5	1	1		
6	1	1	6	1	1		
7	1	1	7	1	1		
8	1	1	8	1	1		
9	1	1	9	1	1		
10	1	1	10	1	1		
11 12			11 12				
13			13		 		
14			14				
15			15				
Mean	1.000		Mean	1.000	1.000		
Std Dev. # Replicates	10	10	Std Dev. #Replicates	10	0.000 10		
# Replicales	10	10	# Replicates	10	10		
T-Test Result			T T D II				
			T-Test Result	Ī			
Deg. of Freed	om		Deg. of Freed	lom			
Critical T Valu	om e		Deg. of Freed Critical T Valu	iom Je			
_	om e	PA SS	Deg. of Freed	lom Je	SS		
Critical T Valu Pass or Fail	om e Test C	ompletion Date	Deg. of Freed Critical T Valu Pass or Fail	lom Je	\$\$ pletion Date		
Critical T Valu Pass or Fail Replicate	om e Test C	ompletion Date 5/12/2020	Deg. of Freed Critical T Valu Pass or Fail Replicate	om je Test Comp	pletion Date		
Critical T Valu Pass or Fail	om e Test C	ompletion Date 5/12/2020	Deg. of Freed Critical T Valu Pass or Fail	lom Je			
Critical T Valu Pass or Fail Replicate No. 1	om e Test C Contro	ompletion Date 5/12/2020 ol TIWC	Deg. of Freed Critical T Valu Pass or Fail Replicate No.	om je Test Comp	pletion Date		
Critical T Valu Pass or Fail Replicate No. 1 2 3	Test C	ompletion Date 5/12/2020 ol TIWC 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	om je Test Comp	pletion Date		
Critical T Valu Pass or Fail Replicate No. 1 2 3	Test C Contro	ompletion Date 5/12/2020 ol TIWC 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5	Test C Control 1 1 1 1	ompletion Date 5/12/2020 oil TIWC 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om je Test Comp	pletion Date		
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	Test C Contro	ompletion Date 5/12/2020 ol TIWC 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5	Test C Control 1 1 1 1	ompletion Date 5/12/2020 oil TIWC 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	om je Test Comp	pletion Date		
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test C Contro 1 1 1 1 1	ompletion Date 5/12/2020 oil TIWC 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9	Test C Contro 1 1 1 1 1 1	ompletion Date 5/12/2020 bl TRWC 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test C Contro 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bl TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test C Contro 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bl TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test C Contro 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bl TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test C Contro 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bl TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test C Contro 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bl TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test C Contro 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bl TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test C Contro 1 1 1 1 1 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bil TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test C Contro 1 1 1 1 1 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bi TRVC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	om je Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test C Contro 1 1 1 1 1 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bil TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test C Test C Contro 1 1 1 1 1 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bil TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp	pletion Date		
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test C Test C Contro 1 1 1 1 1 1 1 1 1 1 1 1 1	ompletion Date 5/12/2020 bil TRWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp	pletion Date		

	DEP Whole E	Effluent Toxicit	ty (WET) Analysis	Spreadshee	t
Type of Test Species Test		nic odaphnia	7	Facility Nar	me
Endpoint TMC (decima	Repr	roduction	My	erstown Borou	igh STP
No. Per Repli	cate 1		Ⅎ	Permit No	
T ST b value T ST alpha val	0.75 lue 0.2			PA002107	5
1 or agrica va	0.2				
	Test Comp				oletion Date
Replicate No.	8/28/ Control	TTWC	Replicate No.	9/17/ Control	2019 TIWC
1 1	38	28	1	34	28
2	29	32	2	33	35
3	35	31	3	29	30
4	33	34	4	34	30
5 6	29 19	36 36	5 6	36 33	25 14
7	26	35	7	28	34
8	30	29	8	26	29
9	23	29	9	32	35
10	27	34	10	38	40
11			11		
12			12		
13			13 14		
14 15			14 15		
10 [10		
Mean	28.700	32.200	Mean	32.100	30.000
Std Dev.	5.272	3.393	Std Dev.	3.381	7.087
# Replicates	10	10	# Replicates	10	10
T-Test Result Deg. of Freedo Critical T Value Pass or Fail		7	T-Test Result Deg. of Freed Critical T Valu	om 1	893 3
Fass or Fall	PA		Pass or Fail	e 0.8 PA	702 \$\$
Pass of Pall		SS		PA	
Replicate	Test Comp 5/12/	SS letion Date 2020	Pass or Fail Replicate	Test Comp	SS eletion Date
Replicate No.	Test Comp 5/12/ Control	letion Date 2020 TIWC	Pass or Fail Replicate No.	PA	
Replicate No. 1	Test Comp 5/12/ Control 25	letion Date 2020 TIIVC 38	Pass or Fail Replicate No. 1	Test Comp	SS eletion Date
Replicate No.	Test Comp 5/12/ Control	letion Date 2020 TIWC	Pass or Fail Replicate No.	Test Comp	SS eletion Date
Replicate No. 1 2	Test Comp 5/12/ Control 25 31	letion Date 2020 TII/VC 38 31	Pass or Fail Replicate No. 1 2	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5	Test Comp 5/12// Control 25 31 35 38 32	SS letion Date 2020 TRVC 38 31 36 28 38	Pass or Fail Replicate No. 1 2 3 4 5	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5	Test Comp 5/12// Control 25 31 35 38 32 30	### Section Date	Pass or Fail Replicate No. 1 2 3 4 5	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 25 31 35 38 32 30 32	SS letion Date	Replicate No. 1 2 3 4 5 6 7	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42	### Interest	Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16	### Section Date 2020	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42	### Interest	Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16	### Section Date 2020	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16	### Section Date 2020	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16	### Section Date 2020	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16	### Section Date 2020	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16 18	SS letion Date 2020 THWC 38 31 38 28 35 34 14 36 24	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 18 18	SS letion Date 2020 TRVC 38 31 36 28 35 34 14 38 24 31.400 31.400	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16 18	SS letion Date 2020 THWC 38 31 38 28 35 34 14 36 24	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16 18	38 31 36 28 38 34 14 36 24 31.400 7.589 10	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp Control	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 16 18 29,900 8,212 10 2,90	38 31 36 28 38 34 14 36 24 31.400 7.589 10	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	SS eletion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 5/12/ Control 25 31 35 38 32 30 32 42 18 18 29,900 8,212 10 2,90 om 1	38 31 38 35 34 14 38 24 31.400 7.589 10 038 8 8 647	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	SS eletion Date

WET Summary and Evaluation

Facility Name Permit No.

Design Flow (MGD)

Q₇₋₁₀ Flow (cfs) PMF, PMF_o

Myerstown Borough STP

PA0021075 10.3 0.487

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			
Species	E ndpoint	10/6/15	7/5/16	6/27/17	8/28/18
Pim ephales	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	E ndpoint	10/6/15	7/5/16	6/27/17	8/28/18	
Pim ephales	Growth	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	E ndpoint	10/6/15	7/5/16	8/1/16	6/26/17	
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS	

		Test Results (Pass/Fail)				
		Test Date Test Date Test Date Test Date				
Species	E ndpoint	10/6/15	8/1/16	6/26/17	8/28/18	
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS	

Reasonable Potential? NO

Permit Recommendations

Chronic Test Type

TIWC % Effluent 23

6, 12, 23, 62, 100 % E ffluent Dilution Series

Permit Limit None

Permit Limit Species

	DEP Whole E	ffluent Toxic	ity (WET) Analysis	Spreadshee	t
Type of Test	Chro		<u> </u>	Facility Na	me
Species Teste Endpoint	Surv	phales ival	Mys	erstown Borou	ıgh STP
TIWC (decima No. Per Repli TST b value			∃	Permit No PA002107	
T ST alpha val				FA002107	o .
	Test Comp				oletion Date
Replicate No.	10/6/2 Control	2015 TTWC	Replicate No.	7/5/: Control	2016 TIWC
1 1	10	10	1 1	10	10
2	10	10	2	10	10
3	10	10	3	9	10
4	10	10	4	10	9
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	10.000	10.000	Mean	9.750	9.750
Std Dev.	0.000	0.000	Std Dev.	0.500	0.500
# Replicates	4	4	# Replicates	4	4
Deg. of Freedo Critical T Value Pass or Fail		SS	Deg. of Freedo Critical T Value Pass or Fail		5 267 \$ \$
	Test Comp	letion Date		Test Comp	oletion Date
Replicate	6/27/		Replicate		/2018
No.	Control	TIWC	Nb.	Control	TIMC
1 2	9	9	1 2	10	10
3	10	10	3	10	10
4	10	9	4	10	10
5			5		
6			6		
7			7		
8			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15		- 1	15		ı l
Mean	9.750	9.500	Mean	10.000	10.000
Std Dev.	0.500	0.577	Std Dev.	0.000	0.000
# Replicates	4	4	# Replicates	4	4
T-Test Result Deg. of Freedo Critical T Value Pass or Fail	5.36 om 5	348 5 267	T-Test Result Deg. of Freedo Critical T Value Pass or Fail	m	

	DEF WIIOR	Effluent Toxicit	y (WET) Analysis	Spreadshee	t		
Type of Test Chronic			Facility Name				
Species Teste Endpoint	Gro	nephales with	My	erstown Borou	igh STP		
TIWC (decima No. Per Repli							
T ST b value	0.7		Permit No. PA0021075				
T ST alpha va	lue 0.2	5					
	Test Com	pletion Date		Test Comp	letion Date		
Replicate		3/2015	Replicate	7/5/2016			
No.	Control	TIWC	No.	Control	TIMC		
1	0.329	0.375	1	0.366	0.352		
2	0.281	0.377	2	0.394	0.423		
4	0.372 0.319	0.338 0.408	3 4	0.339	0.352		
5	0.010	0.400	5	0.500	0.00		
6			6				
7			7				
8			8				
9			9 10				
10 11			10				
12			12				
13			13				
14			14				
15			15				
	0.005	0.075		0.000	0.077		
Mean Std Dev.	0.325 0.037	0.375 0.029	Mean Std Dev.	0.386	0.377 0.034		
# Replicates	4	4	# Replicates	4	4		
" replaces			» (C. C. C				
T-Test Result	6.	5134	T-Test Result 5.4658				
	Deg. of Freedom 5		Deg. of Freedom 4				
	Critical T Value 0.7267			Critical T Value 0.7407			
Pass of Pall	Pass or Fail PASS Pass or Fail PASS						
	***************************************	***************************************					
,	Test Com	pletion Date			letion Date		
Replicate	Test Com	pletion Date 7/2017	Replicate	8/28/	2018		
No.	Test Com 6/27 Control	pletion Date 7/2017 TIWC	No.	8/28/ Control	2018 TIWC		
	Test Com	pletion Date 7/2017		8/28/	2018		
No. 1 2 3	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	Nb. 1 2 3	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4	Test Com 6/27 Control 0.362 0.452	pletion Date 7/2017 TIWC 0.418 0.482	No. 1 2 3 4	8/28/ Control 0.37 0.409	2018 TIWC 0.483 0.414		
No. 1 2 3 4 5	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6 7	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	Nb. 1 2 3 4 5 6 7	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7 8 9 10	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6 7 8 9 10	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7 8 9 10 11	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6 7 8 9 10 11	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 6/27 Control 0.382 0.452 0.397	7/2017 TIWC 0.416 0.462 0.491	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	8/28/ Control 0.37 0.409 0.452	2018 TIMC 0.483 0.414 0.441		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Com 6/27 Control 0.382 0.452 0.397 0.425	pletion Date 7/2017 TIWC 0.418 0.462 0.491 0.409	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	8/28/ Control 0.37 0.409 0.452 0.452	2018 TIWC 0.483 0.414 0.441 0.488		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Com 6/27 Control 0.362 0.452 0.397 0.425	pletion Date 7/2017 TIWC 0.418 0.482 0.491 0.409	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	8/28/ Control 0.37 0.409 0.452 0.452	2018 TIWC 0.483 0.414 0.441 0.488		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Com 6/27 Control 0.362 0.452 0.397 0.425	0.445 0.039	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	8/28/ Control 0.37 0.409 0.452 0.452 0.452	2018 TIWC 0.483 0.414 0.441 0.488		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Com 6/27 Control 0.362 0.452 0.397 0.425 0.409 0.039 4	0.445 0.039 4	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	8/28 Control 0.37 0.409 0.452 0.452 0.452 0.421 0.039 4	2018 TIMC 0.483 0.414 0.441 0.468		
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com 6/27 Control 0.362 0.452 0.397 0.425 0.425 0.039 4 5.0 om e 0.1	0.445 0.039 4	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	8/28/ Control 0.37 0.409 0.452 0.452 0.452 0.421 0.039 4 6.4	0.452 0.030 4 0.485 0.475 0.468		

ı	DEP Whole	Effluent Toxi	city (WET) Analysis	Spreadshee	t	
	Type of Test Chronic Species Tested Ceriodaphnia		Facility Name			
Endpoint	Sur	vival	My	Myerstown Borough STP		
	TIMC (decimal) 0.23 No. Per Replicate 1			Permit No.		
T ST b value	T ST b value 0.75			PA0021075		
T ST alpha va	lue 0.2					
Test Completion Date				Test Completion Date		
Replicate No.	10/6 Control	/2015 TTWC	Replicate No.	7/5/ Control	2016 TIWC	
1	1	1 1	1 I	1	1 1	
2	1	1	2	1	1	
3	1	1	3	1	1	
4	1	1	4	1	1	
5 6		1	5 6		1	
7	1	1	7	1	1	
8	1	- 1	8	1	1	
9	1	1	9	1	1	
10	1	1	10	1	1	
11			11			
12			12			
13			13			
14 15			14 15			
10			IO [
Mean	1.000	1.000	Mean	1.000	1.000	
Std Dev.	0.000	0.000	Std Dev.	0.000	0.000	
# Replicates	10	10	# Replicates	10	10	
T-Test Result Deg. of Freedom Critical T Value Pass or Fail PASS		T-Test Result Deg. of Freedom Critical T Value Pass or Fail PASS				
	Test Comp	letion Date		Test Completion Date		
Replicate		2016	Replicate		/2017	
No.	Control	TIWC	Nb.	Control	TIMC	
1	1	1	1	1	!!!	
2	1	1	2	1	1	
4	i	i 1	4	i	i 1	
5	1	1	5	1	1	
6	1	1	6	1	1	
7	1	1	7	1	1	
8	1	1	8	1	1	
9 10	1	1	9	1	1	
11			11	-	'	
12			12			
13			13			
14			14			
15			15		I I	
Mean	1.000	1.000	Mean	1.000	1.000	
Std Dev.	0.000	0.000	Std Dev.	0.000	0.000	
# Replicates	10	10	# Replicates	10	10	
T-Test Result Deg. of Freed Critical T Valu Pass or Fail	om e	ss	T-Test Result Deg. of Freedo Critical T Valu Pass or Fail	om	SS	

-	DEP Whole E	ffluent Tox	icity (WET) Analysis	Spreadshee	t	
	Type of Test Chronic Species Tested Ceriodaphnia		Facility Name Myerstown Borough STP			
Endpoint	ndpoint Reproduction					
No. Per Repli	T IWC (decimal) 0.23 No. Per Replicate 1		按	Permit No.		
	T ST b value 0.75 T ST alpha value 0.2			PA0021075		
1 or apra va	v.z					
l ,	Test Comp		Test Completion D Replicate 8/1/2016			
Replicate No.	10/6/2 Control	2015 TIWC	Replicate No.	8/1/2 Control	2016 TIWC	
1	26	27	1 1	25	30	
2	22	12	2	29	28	
3	32	26	3	27	34	
4 5	32 24	18 24	4 5	25 26	22 27	
6	14	26	6	31	30	
7	32	29	7	16	32	
8	30	30	8	20	31	
9	26	26	9	35	28	
10	16	24	10	28	36	
11			11			
12			12			
13			13			
14 15			14 15			
15			10			
Mean	25.400	24.200	Mean	26.200	29.800	
Std Dev.	6.535	5.391	Std Dev.	5.350	3.910	
# Replicates	10	10	# Replicates	10	10	
T-Test Result	2.2	351	T-Test Result	5.7	290	
Deg. of Freed	om 1	Deg. of Freed	Deg. of Freedom 17			
Critical T Valu				Critical T Value 0.8633		
Pass or Fail	PA	\$6	Pass or Fail	PA	\$\$	
l ,	Test Comp			Test Completion Date		
Replicate	6/26/		Replicate		2018	
No.	Control 32	ТWC 28	Nb. 1 1	Control 38	TIWC 28	
2	28	20	2	29	32	
3	35	30	3	35	31	
4	36	28	4	33	34	
5	28	31	5	29	36	
6	29	26	6	19	38	
7	39	27	7	26	35	
8 9	28 38	25 32	8 9	30 23	29 29	
10	33	32 35	10	23 27	34	
11	30		11	21		
12			12			
13			13			
14			14			
15			15		ı l	
Mean	32.600	28.000	Mean	28.700	32.200	
Std Dev.	4.274	4.216	меап Std Dev.	5.272	3.393	
# Replicates		10	# Replicates	10	10	
T-Test Result 2.1195 T-Test Result 6.4795 Deg. of Freedom 16 Deg. of Freedom 17 Critical T Value 0.8647 Critical T Value 0.8633 Pass or Fail PASS Pass or Fail PASS						