

| Application Type | Renewal   |
|------------------|-----------|
| Facility Type    | Municipal |
| Major / Minor    | Minor     |

# NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

| Application No.  | PA0021202 |
|------------------|-----------|
| APS ID           | 276422    |
| Authorization ID | 1326841   |

#### Applicant and Facility Information

| Applicant Name            | East Be<br>Author | erlin Borough Municipal<br>ity Adams County | Facility Name    | East Berlin Borough STP    |  |  |
|---------------------------|-------------------|---------------------------------------------|------------------|----------------------------|--|--|
| Applicant Address         | PO Box            | 37                                          | Facility Address | 128 Water Street           |  |  |
|                           | East Be           | erlin, PA 17316-0037                        |                  | East Berlin, PA 17316-8637 |  |  |
| Applicant Contact         | Charles           | Krall                                       | Facility Contact | Nathan Boyer               |  |  |
| Applicant Phone           | (717) 6           | 76-1472                                     | Facility Phone   | (717) 465-4529             |  |  |
| Client ID                 | 75222             |                                             | Site ID          | 250969                     |  |  |
| Ch 94 Load Status         | Not Ove           | erloaded                                    | Municipality     | East Berlin Borough        |  |  |
| Connection Status         | No Limi           | tations                                     | County           | Adams                      |  |  |
| Date Application Receiv   | ved               | September 9, 2020                           | EPA Waived?      | No                         |  |  |
| Date Application Accepted |                   | September 14, 2020                          | If No, Reason    | DEP Discretion             |  |  |
| Purpose of Application    |                   | NPDES permit renewal.                       |                  |                            |  |  |

#### Summary of Review

East Berlin Area Joint Authority has applied to the Pennsylvania Department of Environmental Protection (DEP) for reissuance of its National Pollutant Discharge Elimination System (NPDES) permit. The permit was issued on March 31, 2016 and became effective on May 1, 2016. The existing permit expiration date is April 30, 2021.

The discharge design flow is 0.243 MGD. This facility is owned and operated by East Berlin Borough WWTP and serves East Berlin Borough (100%).

WQM Part II No. 0107406 original was issued on 03/06/2008.

Sludge use and disposal description and location(s): N/A due to the liquid sludge is hauled to Kline's Services, LLC.

Changes from the previous permit: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

| Approve | Deny | Signatures                                                             | Date              |
|---------|------|------------------------------------------------------------------------|-------------------|
| х       |      | <i>Hilaryle</i><br>Hilary H. Le / Environmental Engineering Specialist | February 26, 2021 |
|         |      | Daniel W. Martin, P.E. / Environmental Engineer Manager                |                   |

| Discharge, Receiving Waters and Water Supply Information                                                                                          |                                                                                                                                                                         |                                                          |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|
| Outfall No.001Latitude39° 56' 34.68"Quad NameAbbottstownWastewater Description:Sewage Effluent                                                    | Design Flow (MGD)<br>Longitude<br>Quad Code                                                                                                                             | 0.243<br>-76º 58' 39.72"                                 |  |  |  |  |  |
| Receiving WatersConewago Creek (WWF)NHD Com ID57470175Drainage Area220 sq. mi.Q7-10 Flow (cfs)14.6Elevation (ft)385.4Watershed No.7-FExisting Use | Stream Code<br>RMI<br>Yield (cfs/mi <sup>2</sup> )<br>Q <sub>7-10</sub> Basis<br>Slope (ft/ft)<br>Chapter 93 Class.<br>Existing Use Qualifier<br>Exceptions to Criteria | 08303<br>38.60 miles<br>0.066<br>USGS StreamStats<br>WWF |  |  |  |  |  |
| Cause(s) of Impairment<br>Source(s) of Impairment<br>TMDL Status                                                                                  | Name                                                                                                                                                                    |                                                          |  |  |  |  |  |
| Nearest Downstream Public Water Supply IntakePWS WatersSusquehanna RiverPWS RMI29 miles                                                           | Wrightsville Water Supply Co.<br>Flow at Intake (cfs)<br>Distance from Outfall (mi)                                                                                     | , York County<br>Approximate 51 miles                    |  |  |  |  |  |

Changes Since Last Permit Issuance: none

#### Drainage Area:

The discharge is to Gardner Run at RMI 38.6 mile. A drainage area upstream of the discharge is estimated to be 220 mi.<sup>2</sup>, according to USGS PA StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

#### Stream Flow:

According to USGS StreamStats, the discharge point has a  $Q_{7-10}$  of 14.6 cfs and a drainage area of 220 mi.<sup>2</sup>, which results in a  $Q_{7-10}$  low flow yield of 0.066 cfs/mi.<sup>2</sup>. This information is used to obtain a chronic or 30-day ( $Q_{30-10}$ ), and an acute or 1-day ( $Q_{1-10}$ ) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} Q_{7\text{-}10} = 14.6 \mbox{ cfs} \\ \mbox{Low Flow Yield} = 14.6 \mbox{ cfs} \slash 220 \mbox{ mi.}^2 = 0.066 \mbox{ cfs/mi.}^2 \\ Q_{30\text{-}10} = 1.36 \ ^* 14.6 \mbox{ cfs} = 19.9 \mbox{ cfs} \\ Q_{1\text{-}10} = 0.64 \ ^* 14.6 \mbox{ cfs} = 9.34 \mbox{ cfs} \end{array}$ 

The resulting Q7-10 dilution ratio is: Qstream / Qdischarge = 14.6 cfs / [0.243 MGD \* (1.547 cfs/MGD)] = 38.5:1

#### Conewago Creek:

25 Pa. Code § 93.90 classifies Conewago Creek as Warm-Water Fishes (WWF) surface water. Based on the 2018 Integrated Report, Conewago Creek, assessment unit ID 18584, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

#### Public Water Supply:

The closest water supply intake is located downstream from the discharge in the Wrightsville Water Supply Co., York County approximately 51.0 miles from the point of discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

#### **Treatment Facility Summary**

Treatment Facility Name: East Berlin Area Joint Authority - STP WQM Permit No. **Issuance Date** 0107406 3/06/2008 Avg Annual Degree of Treatment Waste Type Process Type Disinfection Flow (MGD) Sequencing Batch Secondary Reactor Ultraviolet 0.243 Sewage **Hydraulic Capacity Organic Capacity** Biosolids **Biosolids Treatment** (MGD) (lbs/day) Load Status **Use/Disposal** 0.243 Not Overloaded Land Application 580 Dewatering

Changes Since Last Permit Issuance: none

The existing WWTP train is as follows:

Fine Screen (1)  $\Rightarrow$  Bar Screen (1)  $\Rightarrow$  Sequencing Batch Reactors (2)  $\Rightarrow$  Ultraviolet Disinfection Unit (1)  $\Rightarrow$  Post Aeration Cascade (1)  $\Rightarrow$  Discharge

The system incorporates the addition of ferric chloride (for phosphorus removal). Two sludge digesters are on-site.

|                         | Compliance History                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Summary of DMRs:        | The eDMRs reported from January 1, 2020 to December 31, 2020 is summarized in the Table below (Pages # 4, 5, & 6).                                                                                                                                                                                                                                                                                                                                                        |
| Summary of Inspections: | 1/27/2021: Mr. Bettinger, DEP WQ Environmental Trainee, conducted an administrative review of the facility Chesapeake Bay nutrient monitoring for compliance year 2019-2020. There were no violations noted during inspection. The facility's TN & TP annual net mass load were 647 lbs & 285 lbs which were well below their permit TN & TP cap limits of 7,306 lbs TN & 913 lbs TP.                                                                                     |
|                         | 3/10/2020: Mr. Bettinger, DEP WQ Environmental Trainee, conducted compliance evaluation inspection. The treatment facility was well maintained and organized. There were no violations noted during inspection. The field test results were within permit limits.                                                                                                                                                                                                         |
|                         | 11/6/2017: Mr. Bowen, DEP WQS, conducted compliance evaluation inspection. There was a recommendation to submit annual Chesapeake Bay supplemental for water year 2016-2017, calibrate D.O. meter (probes) daily as recommended by manufacturer and log calibrations, have the UV intensity/dosage sensor/readout checked for accuracy. Field test results were within permitted limits. Plant effluent appeared clear. There were no violations noted during inspection. |
| Other Comments:         | There are currently no open violations associated to the permittee or the facility.                                                                                                                                                                                                                                                                                                                                                                                       |

Other Comments:

## **Compliance History**

## DMR Data for Outfall 001 (from January 1, 2020 to December 31, 2020)

| Parameter           | DEC-20 | NOV-20 | OCT-20 | SEP-20 | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | <b>MAR-20</b> | FEB-20 | JAN-20 |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|
| Flow (MGD)          |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 0.166  | 0.105  | 0.092  | 0.087  | 0.119  | 0.103  | 0.096  | 0.143  | 0.131  | 0.135         | 0.149  | 0.179  |
| Flow (MGD)          |        |        |        |        |        |        |        |        |        |               |        |        |
| Daily Maximum       | 0.601  | 0.235  | 0.196  | 0.133  | 0.377  | 0.172  | 0.172  | 0.380  | 0.354  | 0.279         | 0.277  | 0.409  |
| pH (S.U.)           |        |        |        |        |        |        |        |        |        |               |        |        |
| Minimum             | 7.1    | 7.2    | 7.3    | 7.4    | 7.2    | 7.0    | 7.1    | 7.0    | 7.2    | 7.1           | 7.0    | 7.2    |
| pH (S.U.)           |        |        |        |        |        |        |        |        |        |               |        |        |
| Maximum             | 7.4    | 7.5    | 7.6    | 7.8    | 7.8    | 7.5    | 7.4    | 7.3    | 7.4    | 7.3           | 7.3    | 7.4    |
| DO (mg/L)           |        |        |        |        |        |        |        |        |        |               |        |        |
| Minimum             | 7.9    | 7.4    | 6.9    | 6.6    | 6.7    | 6.7    | 7.0    | 7.4    | 8.3    | 8.3           | 8.4    | 8.2    |
| CBOD5 (lbs/day)     |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 3.6    | 2.5    | 2.8    | 2.5    | 3.5    | 3.5    | 2.9    | 4.4    | 4.5    | 4.9           | 4.1    | 4      |
| CBOD5 (lbs/day)     |        |        |        |        |        |        |        |        |        |               |        |        |
| Weekly Average      | 4.8    | 3.3    | 4.4    | 3.3    | 4.6    | 5.6    | 3.2    | 7      | 5.7    | 5.6           | 5.2    | 4.6    |
| CBOD5 (mg/L)        |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 3      | 3      | 3.6    | 3      | 3.5    | 3.8    | 3.5    | 4.3    | 4      | 4.5           | 3.5    | 3      |
| CBOD5 (mg/L)        |        |        |        |        |        |        |        |        |        |               |        |        |
| Weekly Average      | 3      | 3      | 5      | 3      | 4      | 4      | 4      | 5      | 5      | 6             | 5      | 3      |
| BOD5 (lbs/day)      |        |        |        |        |        |        |        |        |        |               |        |        |
| Raw Sewage Influent |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 196    | 189    | 207    | 206    | 171    | 208    | 185    | 221    | 246    | 322           | 256    | 240    |
| BOD5 (lbs/day)      |        |        |        |        |        |        |        |        |        |               |        |        |
| Raw Sewage Influent |        |        |        |        |        |        |        |        |        |               |        |        |
| Daily Maximum       | 236    | 220    | 264    | 253    | 205    | 322    | 251    | 323    | 372    | 432           | 286    | 290    |
| BOD5 (mg/L)         |        |        |        |        |        |        |        |        |        |               |        |        |
| Raw Sewage Influent |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 171    | 231    | 264    | 254    | 187    | 231    | 215    | 224    | 229    | 286           | 230    | 183    |
| TSS (lbs/day)       |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 4.2    | 2.7    | 2.2    | 3.7    | 4.7    | 4.8    | 1.7    | 2.0    | 3.3    | 2.9           | 2.9    | 2.4    |
| TSS (lbs/day)       |        |        |        |        |        |        |        |        |        |               |        |        |
| Raw Sewage Influent |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 86     | 74     | 92     | 115    | 102    | 102    | 103    | 69     | 103    | 144           | 171    | 145    |
| TSS (lbs/day)       |        |        |        |        |        |        |        |        |        |               |        |        |
| Raw Sewage Influent |        |        |        |        |        |        |        |        |        |               |        |        |
| Daily Maximum       | 132    | 99     | 141    | 167    | 158    | 135    | 219    | 92     | 197    | 201           | 272    | 174    |
| TSS (lbs/day)       |        |        |        |        |        |        |        |        |        |               |        |        |
| Weekly Average      | 5.1    | 3.3    | 4.4    | 9.3    | 6.2    | 9.8    | 2.7    | 2.8    | 5.3    | 4.2           | 6.0    | 4.6    |
| TSS (mg/L)          |        |        |        |        |        |        |        |        |        |               |        |        |
| Average Monthly     | 3.6    | 3.3    | 2.6    | 4.5    | 4.8    | 5      | 2      | 2.0    | 3.2    | 2.5           | 2.3    | 1.8    |

## NPDES Permit No. PA0021202

| TSS (mg/L)                         |       |       |       |       |       |       |       |       |       |       |       |       |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Raw Sewage Influent                |       |       |       |       |       |       |       |       |       |       |       |       |
| <br>Average                        |       |       |       |       |       |       |       |       |       |       |       |       |
| Monthly                            | 74    | 89    | 115   | 147   | 115   | 116   | 113   | 68    | 96    | 128   | 156   | 112   |
| TSS (mg/L)                         |       |       |       |       |       |       |       |       |       |       |       |       |
| Weekly Average                     | 5     | 4     | 4     | 11    | 6     | 10    | 3     | 3     | 5     | 3     | 4     | 3     |
| Fecal Coliform                     |       |       |       |       |       |       |       |       |       |       |       |       |
| (CFU/100 ml)                       |       |       |       |       |       |       |       |       |       |       |       |       |
| Geometric Mean                     | 10    | 28    | 52    | 53    | 22    | 91    | 68    | 38    | 11    | 17    | 11    | 4     |
| Fecal Coliform                     |       |       |       |       |       |       |       |       |       |       |       |       |
| (CFU/100 ml)                       |       |       |       |       |       |       |       |       |       |       |       |       |
| Instantaneous                      |       |       |       |       |       |       |       |       |       |       |       |       |
| Maximum                            | 23    | 72    | 179   | 67    | 27    | 921   | 93    | 75    | 24    | 32    | 17    | 12    |
| UV Intensity (mW/cm <sup>2</sup> ) |       |       |       |       |       |       |       |       |       |       |       |       |
| Minimum                            | 24.15 | 24.17 | 24.20 | 24.23 | 24.26 | 24.02 | 24.05 | 24.08 | 24.11 | 24.14 | 24.17 | 24.20 |
| UV Intensity (mW/cm <sup>2</sup> ) |       |       |       |       |       |       |       |       |       |       |       |       |
| Average Monthly                    | 24.16 | 24.19 | 24.22 | 24.25 | 23.46 | 24.02 | 24.07 | 24.10 | 24.12 | 24.15 | 24.18 | 24.21 |
| Nitrate-Nitrite (mg/L)             |       |       |       |       |       |       |       |       |       |       |       |       |
| Average Monthly                    | 0.8   | 0.9   | 1.2   | 1.0   | 0.8   | 0.6   | 0.8   | 0.9   | 0.7   | 0.6   | 1.0   | 0.7   |
| Nitrate-Nitrite (lbs)              |       |       |       |       |       |       |       |       |       |       |       |       |
| Total Monthly                      | 24.8  | 24    | 27.9  | 24    | 24.8  | 18.6  | 21    | 31    | 21    | 21.7  | 37.7  | 27.9  |
| Total Nitrogen (mg/L)              |       |       |       |       |       |       |       |       |       |       |       |       |
| Average Monthly                    | 1.6   | 1.8   | 2.2   | 2.0   | 2.0   | 2.5   | 2.2   | 1.7   | 1.7   | 1.6   | 1.7   | 1.2   |
| Total Nitrogen (lbs)               |       |       |       |       |       |       |       |       |       |       |       |       |
| Effluent Net Total                 |       |       |       |       |       |       |       |       |       |       |       |       |
| Monthly                            | 49.6  | 42    | 55.8  | 48    | 65.1  | 68.2  | 60    | 52.7  | 54    | 55.8  | 60.9  | 49.6  |
| Total Nitrogen (lbs)               |       |       |       |       |       |       |       |       |       |       |       |       |
| Total Monthly                      | 49.6  | 42    | 55.8  | 48    | 65.1  | 68.2  | 60    | 52.7  | 54    | 55.8  | 60.9  | 49.6  |
| Total Nitrogen (lbs)               |       |       |       |       |       |       |       |       |       |       |       |       |
| Effluent Net                       |       |       |       |       |       |       |       |       |       |       |       |       |
| Total Annual                       |       |       |       | 647   |       |       |       |       |       |       |       |       |
| Total Nitrogen (lbs)               |       |       |       |       |       |       |       |       |       |       |       |       |
| Total Annual                       |       |       |       | 647   |       |       |       |       |       |       |       |       |
| Ammonia (mg/L)                     |       |       |       |       |       |       |       |       |       |       |       |       |
| Average Monthly                    | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | 0.3   | 0.1   | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| Ammonia (lbs)                      |       |       |       |       |       |       |       |       |       |       |       |       |
| Total Monthly                      | 3.1   | 3     | 3.1   | 3     | 3.1   | 9.3   | 3     | 3.1   | 3     | 3.1   | 2.9   | 3.1   |
| Ammonia (lbs)                      |       |       |       |       |       |       |       |       |       |       |       |       |
| Total Annual                       |       |       |       | 45    |       |       |       |       |       |       |       |       |
| TKN (mg/L)                         |       |       |       |       |       |       |       |       |       |       |       |       |
| Average Monthly                    | 0.8   | 0.9   | 1.1   | 1.1   | 1.2   | 1.8   | 1.5   | 1.0   | 1.0   | 1.0   | 0.7   | 0.5   |
| TKN (lbs)                          |       |       |       |       |       |       |       |       |       |       |       |       |
| Total Monthly                      | 24.8  | 21    | 24.8  | 27    | 40.3  | 49.6  | 39    | 31    | 33    | 37.2  | 23.2  | 21.7  |
| Total Phosphorus                   | -     |       |       |       |       |       |       |       |       |       |       |       |
| (lbs/day)                          |       |       |       |       |       |       |       |       |       |       |       |       |
| Average Monthly                    | 0.2   | 0.2   | 0.5   | 1.0   | 1.1   | 1.3   | 1.3   | 0.9   | 0.6   | 0.2   | 0.2   | 0.7   |

## NPDES Permit No. PA0021202

|                        | -   |     |      |     |      |      |     |      |     |     |     |      |
|------------------------|-----|-----|------|-----|------|------|-----|------|-----|-----|-----|------|
| Total Phosphorus       |     |     |      |     |      |      |     |      |     |     |     |      |
| (mg/L)                 |     |     |      |     |      |      |     |      |     |     |     |      |
| Average Monthly        | 0.1 | 0.3 | 0.6  | 1.2 | 1.0  | 1.2  | 1.5 | 0.8  | 0.6 | 0.2 | 0.2 | 0.6  |
| Total Phosphorus (lbs) |     |     |      |     |      |      |     |      |     |     |     |      |
| Effluent Net           |     |     |      |     |      |      |     |      |     |     |     |      |
| Total Monthly          | 3.1 | 6   | 15.5 | 30  | 34.1 | 40.3 | 39  | 27.9 | 18  | 6.2 | 5.8 | 21.7 |
| Total Phosphorus (lbs) |     |     |      |     |      |      |     |      |     |     |     |      |
| Total Monthly          | 3.1 | 6   | 15.5 | 30  | 34.1 | 40.3 | 39  | 27.9 | 18  | 6.2 | 5.8 | 21.7 |
| Total Phosphorus (lbs) |     |     |      |     |      |      |     |      |     |     |     |      |
| Effluent Net           |     |     |      |     |      |      |     |      |     |     |     |      |
| Total Annual           |     |     |      | 285 |      |      |     |      |     |     |     |      |
| Total Phosphorus (lbs) |     |     |      |     |      |      |     |      |     |     |     |      |
| Total Annual           |     |     |      | 285 |      |      |     |      |     |     |     |      |

#### **Development of Effluent Limitations**

| Outfall No.   | 001           |                 | Design Flow (MGD) | 0.243           |
|---------------|---------------|-----------------|-------------------|-----------------|
| Latitude      | 39º 56' 34.81 | "               | Longitude         | -76º 58' 39.66" |
| Wastewater De | scription:    | Sewage Effluent | -                 |                 |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)    | SBC             | Federal Regulation | State Regulation |
|-------------------------|-----------------|-----------------|--------------------|------------------|
|                         | 25              | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD5                   | 40              | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30              | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45              | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| рН                      | 6.0 – 9.0 S.U.  | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 200 / 100 ml    | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (5/1 – 9/30)            | 1,000 / 100 ml  | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 – 4/30)           | 2,000 / 100 ml  | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          |                 |                 |                    |                  |
| (10/1 - 4/30)           | 10,000 / 100 ml | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5             | Average Monthly | -                  | 92a.48(b)(2)     |

Comments:

#### Water Quality-Based Limitations

#### Carbonaceous Biochemical Oxygen Demand (CBOD<sub>5</sub>):

The attached computer printout of the WQM 7.0 stream model indicates that an average monthly limit of 25 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. Due to anti-backsliding policy, the existing year-round average monthly limit (AML) of 25 mg/L, average weekly limit (AWL) of 40 mg/L and IMAX of 50 mg/L will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has been consistently achieving concentrations below this limit. Mass limits are calculated as follows:

Average monthly mass limit:  $25 \text{ mg/L} \times 0.243 \text{ MGD} \times 8.34 = 51.0 \text{ lbs/day}$ Average weekly mass limit:  $40 \text{ mg/L} \times 0.243 \text{ MGD} \times 8.34 = 81.0 \text{ lbs/day}$ 

#### Ammonia (NH<sub>3</sub>-N):

NH<sub>3</sub>-N calculations were based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (Document No. 391-2000-013). The following data is necessary to determine the in-stream NH<sub>3</sub>-N criteria used in the attached computer model of the stream:

| • | Discharge pH                  | 7.0    | (Default per 391-2000-007)         |
|---|-------------------------------|--------|------------------------------------|
| • | Discharge Temperature         | 25°C   | (Default per 391-2000-007)         |
| • | Stream pH                     | 7.0    | (Default per 391-2000-006)         |
| • | Stream Temperature            | 25°C   | (Default for WWF per 391-2000-003) |
| • | Background NH <sub>3</sub> -N | 0 mg/L | (Assumed since no upstream WWTPs)  |

The detailed model results are attached. The above method indicates that at a discharge of 0.243 MGD, limits (rounded according to the NPDES Technical Guidance 362-0400-001) of 25 mg/L NH<sub>3</sub>-N as a monthly average (AML) and 50 mg/L NH<sub>3</sub>-N instantaneous maximum (IMAX) are necessary to protect the aquatic life from toxicity effects. However, the model results will not be applied as the permit limits since the dilution provided by the stream is large (dilution ratio = 39:1). Per 391-2000-013, since both the toxicity-based and DO-based ammonia effluent limitations are greater than 15 mg/L, no NH<sub>3</sub>-N limitations are needed for this facility. The existing monitoring requirements will remain in the proposed permit.

#### pH:

The effluent discharge pH should remain above 6 and below 9 standard units according to 25 Pa. Code § 95.2(1).

## NPDES Permit Fact Sheet East Berlin Borough STP Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. This is consistent with the previous permit and current Department criteria.

## Total Suspended Solids (TSS):

The existing limits of 30 mg/L average monthly, 45 mg/L average weekly, and 60 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving concentrations below these limits. Mass limits are calculated as follows:

Average monthly mass limit: 30 mg/L x 0.243 MGD x 8.34 = 61.0 lbs/day Average weekly mass limit: 45 mg/L x 0.243 MGD x 8.34 = 91.0 lbs/day

## **Fecal Coliform:**

The recent coliform guidance in 25 Pa. code § 92a.47(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and § 92a.47(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

## **UV Monitoring:**

No TRC limits are needed since the facility utilizes ultraviolet disinfection. Per recently implemented Department guidelines, a monitoring requirement for the effectiveness of the UV intensity (mW/cm<sup>2</sup>) will be remained in the proposed permit.

## Influent BOD<sub>5</sub> and TSS Monitoring:

The permit will include influent BOD<sub>5</sub> and TSS monitoring at the same frequency as is done for effluent in order to implement 25 Pa. Code § 94.12 and assess percent removal requirements, per DEP policy.

## **Total Phosphorus:**

The existing permit has phosphorus limitations of 2.0 mg/L average monthly and 4.0 mg/L instantaneous maximum. The most recent 12 months of DMR data indicate consistent compliance with the existing limits, which will remain in the proposed permit. Mass limit is calculated as follows:

Average monthly mass limit: 2.0 mg/L x 0.243 MGD x 8.34 = 4.1 lbs/day

## Stormwater:

There is no stormwater outfall associated with this facility.

## Chesapeake Bay Strategy:

In the Phase 2 WIP Wastewater Supplement revised on December 17, 2019, Attachment C Non-Significant Discharges with Cap Loads in NPDES Permits of this document shows that East Berlin Joint Authority - STP has been allocated 7,306 lbs/year of TN and 974 lbs/year of TP. This approach is consistent with the Chesapeake Bay TMDL and was based on the actual performance data previously evaluated by the Department. Since the permittee is easily capable of achieving compliance with these loads, the Department determines that no "compliance schedule" for the requirements associated with the Chesapeake Bay Strategy is necessary. Accordingly, the Chesapeake Bay nutrient existing limitations and monitoring requirements will remain in the proposed permit.

## Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality waters are impacted by this discharge. No Exceptional Value waters are impacted by this discharge.

## 303(d) Listed Streams:

The facility does not discharge to a 303(d) listed stream segment.

## **Class A Wild Trout Fisheries:**

No Class A Wild Trout Fisheries are impacted by this discharge.

## NPDES Permit Fact Sheet East Berlin Borough STP WQM 7.0 Data:

| Node 1: | East Berlin Borough V  | WWTP Outfall 001 (Stream Code 08303)      |
|---------|------------------------|-------------------------------------------|
|         | Elevation:             | 385.4 ft (USGS National Map Viewer)       |
|         | Drainage Area:         | 220 mi <sup>2</sup> (USGS PA StreamStats) |
|         | River Mile Index:      | 38.60 (PA DEP eMapPA)                     |
|         | Low Flow Yield:        | 0.066 cfs/mi <sup>2</sup>                 |
|         | Discharge Flow:        | 0.243 MGD (NPDES permit)                  |
| Node 2: | Just before confluence | e of Conewago Creek with Beaver Creek     |
|         | Elevation:             | 384.5 ft (USGS National Map Viewer)       |
|         | Drainage Area:         | 238 mi <sup>2</sup> (USGS PA StreamStats) |
|         | River Mile Index:      | 37.97 (PA DEP eMapPA)                     |
|         | Low Flow Yield:        | 0.066 cfs/mi <sup>2</sup>                 |
|         | Discharge Flow:        | 0.000 MGD                                 |
|         |                        |                                           |

| USGS StreamStats                                                                 | -                                    |                                                       |                  |                     |                |                  | 🗰 Re               | iport 🕕 About                     |
|----------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------|------------------|---------------------|----------------|------------------|--------------------|-----------------------------------|
| IDENTIFY A STUDY ARE<br>Basin Delineated                                         | Basin Characteristics Parameter Code | Parameter Description                                 |                  |                     | Value U        | Init             | 3/0                | Layers                            |
|                                                                                  | DRNAREA                              | Area that drains to a point o                         | n a stream       |                     | 220 s          | quare miles      | 12 D               | Base Maps                         |
|                                                                                  | BSLOPD                               | Mean basin slope measured                             | in degrees       |                     | 3.4 d          | egrees           | Mr. Jon            | Application La                    |
|                                                                                  | ROCKDEP                              | Depth to rock                                         |                  |                     | 4.7 fe         | eet              |                    |                                   |
| LD A REPORT Report Built                                                         | URBAN                                | Percentage of basin with urb                          | oan developm     | ent                 | 3 р            | ercent           | R                  | National La                       |
| Step 1: You can modify computed basin<br>characteristics here, then select the   | I ow-Flow Statistics Par             | ameters:::00 Percent (219 square miles) I ov Flow Rec | ion 11           |                     |                |                  | A st Berlin        | ✔ PA Map La                       |
| types of reports you wish to generate.<br>Then click the "Build Report" button   | Parameter Code                       | Parameter Name                                        | Value            | Units               | Min Limit      | Max Limit        | June 1997          | Yorkt<br>Airport                  |
|                                                                                  | DRNAREA                              | Drainage Area                                         | 220              | square miles        | 4.78           | 1150             | 1. 200             |                                   |
| <ul> <li>Show Basin Characteristics</li> </ul>                                   | BSLOPD                               | Mean Basin Slope degrees                              | 3.4              | degrees             | 1.7            | 6.4              | Rent L             | Spring                            |
|                                                                                  | ROCKDEP                              | Depth to Rock                                         | 4.7              | feet                | 4.13           | 5.21             | IGEON              |                                   |
| ect available reports to display:                                                | URBAN                                | Percent Urban                                         | 3                | percent             | 0              | 89               |                    |                                   |
| Basin Characteristics Report                                                     | Low-Flow Statistics Flo              | w Report [100 Percent (219 square miles) Low Flow Rep | gion 1]          |                     |                |                  | SAR                |                                   |
| Scenario Flow Reports                                                            | PII: Prediction Interval-<br>report) | Lower, Plu: Prediction Interval-Upper                 | r, SEp: Standard | Error of Prediction | , SE: Standard | Error (other see | ier A              |                                   |
| Continue                                                                         | Statistic                            |                                                       | Value            | Unit                | SE             | SEp              | -19/               |                                   |
|                                                                                  | 7 Day 2 Year Low F                   | low                                                   | 30.4             | ft^3/s              | 46             | 46               | or have            |                                   |
|                                                                                  | 30 Day 2 Year Low                    | Flow                                                  | 41.5             | ft^3/s              | 38             | 38               | 3 - mp             |                                   |
| POWERED BY WIM                                                                   | 7 Day 10 Year Low                    | Flow                                                  | 14.6             | ft^3/s              | 51             | 51               |                    |                                   |
|                                                                                  | 30 Day 10 Year Low                   | / Flow                                                | 19.9             | ft^3/s              | 46             | 46               |                    |                                   |
| S Home Contact USGS Search USG<br>Accessibility FOIA Privacy Policy &<br>Notices | S 90 Day 10 Year Low                 | / Flow                                                | 34.2             | ft^3/s              | 41             | 41               | Display<br>See FAC | ng simplified I<br>for more infor |
|                                                                                  | I ow-Flow Statistics Cita            | atione                                                |                  |                     |                |                  | A PAR OF           | Mancheste                         |

Print

## NPDES Permit No. PA0021202

| ast bern           | п Богоид                                       |                          | Desemates Dese                               | -intian                     |                       | Malua       | 11                   |               |                                     |                           |      |
|--------------------|------------------------------------------------|--------------------------|----------------------------------------------|-----------------------------|-----------------------|-------------|----------------------|---------------|-------------------------------------|---------------------------|------|
| <b>≈USGS</b>       | StreamStats                                    | Parameter Code           | Parameter Desc                               |                             |                       | value       |                      |               | 🖩 Report 🛛 🚯                        |                           |      |
|                    | ·                                              | BELODD                   | Meen basin clan                              | a magging din dagrage       |                       | 230         | dograaa              |               | X                                   |                           |      |
|                    |                                                | ROCKDEP                  | Depth to rock                                | e measureu m degrees        |                       | 4.7         | feet                 |               | Layers                              |                           |      |
| ŀ                  | Pennsylvania 🚺 🗸                               | URBAN                    | Percentage of ba                             | asin with urban develop     | ment                  | 3           | percent              | 5 620         | 1                                   |                           |      |
|                    |                                                |                          | U U                                          |                             |                       |             |                      | Lo Bar        | Base N                              | viaps                     | Ň    |
| E                  | Basin Delineated 🗸 🗸                           |                          |                                              |                             |                       |             |                      | Card a        | Applicatio                          | n Layers                  | ~    |
|                    |                                                | Low-Flow Statistics Para | ameters(100 Percent (237 squar               | e miles) Low Flow Region 1] |                       |             |                      | R             |                                     |                           |      |
|                    | ECT SCENARIOS 😽                                | Parameter Code           | Parameter Name                               | Value                       | Units                 | Min Lim     | it Max Limit         | - C           | Nation:                             | al Layers                 | Ň    |
| EPORT              |                                                | DRNAREA                  | Drainage Area                                | 238                         | square miles          | 4.78        | 1150                 | A st Berlin   | PA Ma                               | p Layers                  | ~    |
|                    |                                                | BSLOPD                   | Mean Basin Slope                             | degrees 3.5                 | degrees               | 1.7         | 6.4                  | Mart          |                                     |                           | 2    |
|                    |                                                | ROCKDEP                  | Depth to Rock                                | 4.7                         | feet                  | 4.13        | 5.21                 | 1 million     | York                                |                           |      |
| ou can<br>istics h | modify computed basin<br>here, then select the | URBAN                    | Percent Urban                                | 3                           | percent               | 0           | 89                   | 5             |                                     | A                         |      |
| ports<br>the "B    | you wish to generate.<br>Wild Report" button   | Low-Flow Statistics Flow |                                              | n mine) I au Elau Bosine 11 |                       |             |                      | S .           | LS Son                              | ring Grove                |      |
|                    |                                                | PII: Prediction Internet | Lower Riv Deedlet's                          | Interval Upper CEn Charte   | rd Error of Deadled's | 0E: 04 1    | ard Error (ether     | IGEON         | A C                                 | 13                        |      |
| v Basin            | Characteristics                                | report)                  | Lower, Flu: Prediction                       | interval-opper, SEp: Standa | ra enor or Prediction | , SE. Stand | aru Error (other see | - 14-30       |                                     |                           |      |
|                    |                                                | Statistic                |                                              | Valu                        | e Unit                | :           | SE SEp               |               |                                     |                           |      |
| le rep             | orts to display:                               | 7 Day 2 Year Low Fl      | ow                                           | 34.1                        | ft^3/s                | 4           | 46 46                | vert to       |                                     |                           |      |
|                    |                                                | 30 Day 2 Year Low F      | Flow                                         | 46.2                        | ft^3/s                | :           | 38 38                | 1 35          |                                     |                           |      |
| racte              | ristics Report                                 | 7 Day 10 Year Low F      | low                                          | 16.6                        | ft^3/s                | ;           | 51 51                | - TR          |                                     |                           |      |
| low F              | Reports                                        | 30 Day 10 Year Low       | Flow                                         | 22.5                        | ft^3/s                | 4           | 46 46                | End and       | mg do                               | ve e                      |      |
| Ce                 | ontinue                                        | 90 Day 10 Year Low       | Flow                                         | 38                          | ft^3/s                | 4           | 41 41                | 7             |                                     | Zak                       |      |
|                    |                                                | Low-Flow Statistics Cita | tions                                        |                             |                       |             |                      | ***********   |                                     | ******                    | 20   |
|                    |                                                | Stuckey M H 2005         | Low flow have flo                            | w and mean flow receiv      | ecion equations fo    | Depres      | luonia etroome:      |               | *********                           |                           | **   |
|                    | D BY WIM                                       | U.S. Geological Surv     | , Low-now, base-flo<br>vey Scientific Invest | igations Report 2006-5      | 130, 84 p.            | Pennsy      | ivania streams:      | Dis See       | playing simplifi<br>FAQ for more in | ied Basin.<br>nformation. |      |
|                    |                                                |                          |                                              |                             |                       |             |                      | 1 2 2 2 S     | Mapche                              | exter Les                 | flet |
|                    |                                                |                          |                                              |                             |                       |             |                      |               | - AAAAA                             | A 4000                    |      |
|                    |                                                |                          |                                              |                             |                       |             |                      |               |                                     |                           |      |
| Analy              | sis Results W                                  | QM 7.0                   |                                              |                             |                       |             |                      | —             |                                     | $\times$                  |      |
|                    |                                                |                          |                                              |                             | D.O. Cimu             |             | Effluen              | tlimitatione  |                                     | ſ                         |      |
| droc               | dynamics                                       | NH3-N Allocation         | ns D.O. /                                    | Allocations                 | D.O. Simu             | lation      | Effluent             | t Limitations |                                     |                           | *    |
|                    |                                                |                          |                                              |                             |                       |             |                      |               |                                     | 1                         |      |
|                    |                                                |                          |                                              |                             |                       |             |                      |               |                                     |                           |      |
|                    |                                                |                          |                                              |                             |                       |             |                      |               |                                     |                           |      |
|                    |                                                |                          |                                              |                             |                       |             |                      |               |                                     |                           |      |
|                    | _                                              |                          |                                              |                             |                       |             |                      |               |                                     |                           |      |
|                    |                                                |                          |                                              | Permit Nu                   | imber Disc Flo        | W           |                      |               |                                     |                           |      |
|                    |                                                | RMI Disc                 | charge Name                                  |                             | (mgd)                 |             |                      |               |                                     |                           |      |
|                    |                                                |                          |                                              |                             |                       |             |                      |               |                                     |                           |      |
|                    |                                                | 38.60 Fast Barlin        |                                              | PA0021                      | 202 0.24              | 30          |                      |               |                                     |                           |      |
|                    |                                                | 50.00 East Berlin        |                                              | V PAUUZI                    | 202   0.24.           | 50          |                      |               |                                     |                           |      |
|                    |                                                |                          |                                              | Effluent Limit              | Effluent Limit        | t Efflue    | ent Limit            |               |                                     |                           |      |
|                    |                                                | Parame                   | eter                                         | 30 Day Average              | Maximum               | Mir         | nimum                |               |                                     |                           |      |
|                    |                                                |                          |                                              | (mg/L)                      | (ma/L)                | (п          | ng/L)                |               |                                     |                           |      |
|                    |                                                |                          |                                              |                             |                       |             |                      |               |                                     |                           |      |
|                    |                                                |                          |                                              | 25                          |                       |             |                      | -             |                                     |                           |      |
|                    |                                                | CBOD5                    |                                              | 25                          | EO                    | -           |                      |               |                                     |                           |      |
|                    |                                                | CBOD5<br>NH3-N           |                                              | 25<br>25                    | 50                    |             |                      |               |                                     |                           |      |

Record: I4 🔸 1 of 1 🔶 H 🜬 🏹 No Filter Search

<u>N</u>ext >

< <u>B</u>ack

Archive

Cancel

Ŧ

| 🕼 rptEffLimits — 🗆 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 🔚 rpt_WLA — 🗆 🗙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WGM 7.0 Effluent Linite<br><u>EFF Len Baneford</u><br><u>BE Consectorson</u><br><u>EFF Len Baneford</u><br><u>BE Consectorson</u><br><u>BE C</u> | Main       Main       Main         Main       Main       Main       Main       Main         Main       Main       Main       Main       Main       Main         Main       Main       Main       Main       Main       Main       Main         Main       Main       Main       Main       Main       Main       Main       Main         Main       Main       Main       Main       Main       Main       Main       Main         Main       Main       Main       Main       Main       Main       Main       Main         Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main       Main |
| Pring Bajamin 8,255 Venier 12. Page 141 Page: H 4 1 Ph Ph & No Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Page: H<1     H     No Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FretDOSim - C X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FrptModelSpecs - X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Martine       Martine       Martine       Martine         Martine       Martine       Martine       Martine       Martine         Martine       Martine       Martine       Martine       Martine       Martine         Martine       Martine       Martine       Martine       Martine       Martine       Martine         Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine         Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine       Martine <th>Weak 7.0 Modeling Speof Italians         Name       Mark Deviation (Constraint)         Constraint       Total (Constraint)         Constraint       Total (Constraint)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weak 7.0 Modeling Speof Italians         Name       Mark Deviation (Constraint)         Constraint       Total (Constraint)         Constraint       Total (Constraint)                                                                                                                                                                                                                                                                                                                       |
| Falep Baylander 96,2000 Vanian 1.0k Proge 1 of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Philog.Replander 16,2000 Venice:12a Philog.Replander 16,2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| International distribution of the product of t | _  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CACCA         3.0.0         3.00         1.00           Database         3.00         3.00         0.00         0.00           MARK         2.0.0         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Pring, Replander 19, 200     Market 10.     Prage: 14     1     >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |

## **Existing Effluent Limitations and Monitoring Requirements**

|                                    |           | Monitoring Requirements |         |             |         |          |             |           |
|------------------------------------|-----------|-------------------------|---------|-------------|---------|----------|-------------|-----------|
| Baramatar                          | Mass Unit | ts (Ibs/day)            |         | Concentrati | Minimum | Required |             |           |
| Falameter                          | Average   | Daily                   |         | Average     | Weekly  | Instant. | Measurement | Sample    |
|                                    | Monthly   | Maximum                 | Minimum | Monthly     | Average | Maximum  | Frequency   | Туре      |
| Flow (MGD)                         | Report    | Report                  | XXX     | XXX         | XXX     | XXX      | Continuous  | Measured  |
| pH (S.U.)                          | XXX       | XXX                     | 6.0     | XXX         | XXX     | 9.0      | 1/day       | Grab      |
| Dissolved Oxygen                   | XXX       | XXX                     | 5.0     | XXX         | XXX     | XXX      | 1/day       | Grab      |
| UV Intensity (mW/cm <sup>2</sup> ) | XXX       | XXX                     | Report  | Report      | XXX     | XXX      | 1/day       | Recorded  |
|                                    |           | 81                      |         |             |         |          |             | 8-Hr      |
| CBOD <sub>5</sub>                  | 51        | Wkly Avg                | XXX     | 25          | 40      | 50       | 1/week      | Composite |
|                                    |           | 91                      |         |             |         |          |             | 8-Hr      |
| Total Suspended Solids             | 61        | Wkly Avg                | XXX     | 30          | 45      | 60       | 1/week      | Composite |
| BOD <sub>5</sub>                   |           |                         |         |             |         |          |             | 8-Hr      |
| Raw Sewage Influent                | Report    | Report                  | XXX     | Report      | XXX     | XXX      | 1/week      | Composite |
| Total Suspended Solids             |           |                         |         |             |         |          |             | 8-Hr      |
| Raw Sewage Influent                | Report    | Report                  | XXX     | Report      | XXX     | XXX      | 1/week      | Composite |
| Fecal Coliform (CFU/100 ml)        |           |                         |         | 200         |         |          |             |           |
| May 1 - Sep 30                     | XXX       | XXX                     | XXX     | Geo Mean    | XXX     | 1,000    | 1/week      | Grab      |
| Fecal Coliform (CFU/100 ml)        |           |                         |         | 2,000       |         |          |             |           |
| Oct 1 - Apr 30                     | XXX       | XXX                     | XXX     | Geo Mean    | XXX     | 10,000   | 1/week      | Grab      |
|                                    |           |                         |         |             |         |          |             | 8-Hr      |
| Ammonia-Nitrogen                   | XXX       | XXX                     | XXX     | Report      | XXX     | XXX      | 1/week      | Composite |
|                                    |           |                         |         |             |         |          |             | 8-Hr      |
| Total Phosphorus                   | 4.1       | XXX                     | XXX     | 2.0         | XXX     | 4.0      | 1/week      | Composite |

## **Existing Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

|                      |            | E           | Monitoring Requirements |                    |         |                          |                   |
|----------------------|------------|-------------|-------------------------|--------------------|---------|--------------------------|-------------------|
| Parameter            | Mass Units | s (Ibs/day) | Co                      | ncentrations (mg   | Minimum | Required                 |                   |
| i arameter           | Monthly    | Annual      | Minimum                 | Monthly<br>Average | Maximum | Measurement<br>Frequency | Sample<br>Type    |
| AmmoniaN             | Report     | Report      | xxx                     | Report             | xxx     | 1/week                   | 8-Hr<br>Composite |
| KjeldahlN            | Report     | XXX         | xxx                     | Report             | ххх     | 1/week                   | 8-Hr<br>Composite |
| Nitrate-Nitrite as N | Report     | XXX         | XXX                     | Report             | ХХХ     | 1/week                   | 8-Hr<br>Composite |
| Total Nitrogen       | Report     | Report      | XXX                     | Report             | ххх     | 1/month                  | Calculation       |
| Total Phosphorus     | Report     | Report      | xxx                     | Report             | XXX     | 1/week                   | 8-Hr<br>Composite |
| Net Total Nitrogen   | Report     | 7,306       | xxx                     | xxx                | ххх     | 1/month                  | Calculation       |
| Net Total Phosphorus | Report     | 913         | xxx                     | XXX                | ххх     | 1/month                  | Calculation       |

#### Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

## Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                                               |                    | Monitoring Requirements    |         |                    |                        |                     |                          |                   |
|-----------------------------------------------|--------------------|----------------------------|---------|--------------------|------------------------|---------------------|--------------------------|-------------------|
| Paramatar                                     | Mass Units         | s (Ibs/day) <sup>(1)</sup> |         | Concentrati        | Minimum <sup>(2)</sup> | Required            |                          |                   |
| Farameter                                     | Average<br>Monthly | Daily<br>Maximum           | Minimum | Average<br>Monthly | Weekly<br>Average      | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
| Flow (MGD)                                    | Report             | Report                     | xxx     | xxx                | XXX                    | XXX                 | Continuous               | Measured          |
| pH (S.U.)                                     | ХХХ                | ХХХ                        | 6.0     | XXX                | XXX                    | 9.0                 | 1/day                    | Grab              |
| DO                                            | ХХХ                | XXX                        | 5.0     | XXX                | XXX                    | ХХХ                 | 1/day                    | Grab              |
| UV Intensity (mW/cm <sup>2</sup> )            | XXX                | XXX                        | Report  | Report             | XXX                    | XXX                 | 1/day                    | Recorded          |
| CBOD₅                                         | 51                 | 81<br>Wkly Avg             | xxx     | 25                 | 40                     | 50                  | 1/week                   | 8-Hr<br>Composite |
| TSS                                           | 61                 | 91<br>Wkly Avg             | xxx     | 30                 | 45                     | 60                  | 1/week                   | 8-Hr<br>Composite |
| BOD₅<br>Raw Sewage Influent                   | Report             | Report                     | xxx     | Report             | XXX                    | XXX                 | 1/week                   | 8-Hr<br>Composite |
| TSS<br>Baw Sewage Influent                    | Report             | Report                     | xxx     | Report             | XXX                    | XXX                 | 1/week                   | 8-Hr<br>Composite |
| Fecal Coliform (No./100 ml)<br>May 1 - Sep 30 | XXX                | xxx                        | xxx     | 200<br>Geo Mean    | xxx                    | 1.000               | 1/week                   | Grab              |
| Fecal Coliform (No./100 ml)<br>Oct 1 - Apr 30 | XXX                | XXX                        | xxx     | 2,000<br>Geo Mean  | XXX                    | 10,000              | 1/week                   | Grab              |
| Ammonia                                       | ххх                | xxx                        | xxx     | Report             | XXX                    | xxx                 | 1/week                   | 8-Hr<br>Composite |
| Total Phosphorus                              | 4.1                | xxx                        | xxx     | 2.0                | XXX                    | 4.0                 | 1/week                   | 8-Hr<br>Composite |

#### Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

## Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

|                      |            | Monitoring Requirements  |         |                    |             |                     |                          |                   |
|----------------------|------------|--------------------------|---------|--------------------|-------------|---------------------|--------------------------|-------------------|
| Baramotor            | Mass Units | (lbs/day) <sup>(1)</sup> |         | Concentrat         | ions (mg/L) |                     | Minimum <sup>(2)</sup>   | Required          |
| Falameter            | Monthly    | Annual                   | Monthly | Monthly<br>Average | Maximum     | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type    |
| AmmoniaN             | Report     | Report                   | xxx     | Report             | xxx         | xxx                 | 1/week                   | 8-hr<br>Composite |
| KjeldahlN            | Report     | xxx                      | xxx     | Report             | xxx         | xxx                 | 1/week                   | 8-hr<br>Composite |
| Nitrate-Nitrite as N | Report     | xxx                      | xxx     | Report             | xxx         | xxx                 | 1/week                   | 8-hr<br>Composite |
| Total Nitrogen       | Report     | Report                   | xxx     | Report             | xxx         | xxx                 | 1/month                  | Calculation       |
| Total Phosphorus     | Report     | Report                   | xxx     | Report             | XXX         | xxx                 | 1/week                   | 8-hr<br>Composite |
| Net Total Nitrogen   | Report     | 7,306                    | xxx     | xxx                | xxx         | xxx                 | 1/month                  | Calculation       |
| Net Total Phosphorus | Report     | 913                      | XXX     | XXX                | XXX         | XXX                 | 1/month                  | Calculation       |

Compliance Sampling Location:

Other Comments:

T

|             | Tools and References Used to Develop Permit                                                                                                                                                                           |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\square$   | WOM for Windows Model (see Attachment                                                                                                                                                                                 |
|             | Toxics Management Spreadsheet (see Attachment                                                                                                                                                                         |
|             | TPC Model Spreadsheet (see Attachment                                                                                                                                                                                 |
|             | Temperature Model Spreadsheet (see Attachment                                                                                                                                                                         |
|             | Water Quality Toxics Management Strategy, 361-0100-003, 4/06                                                                                                                                                          |
|             | Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97                                                                                                                 |
|             | Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98                                                                                                                                                    |
|             | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications 362-2000-008 11/96                                                                                                                        |
|             | Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97                                                                                                                           |
|             | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.                                                                                                         |
|             | Pennsylvania CSO Policy, 385-2000-011, 9/08.                                                                                                                                                                          |
| $\boxtimes$ | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                           |
|             | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.                                                                                              |
|             | Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                                                                                 |
|             | Implementation Guidance Design Conditions, 391-2000-006, 9/97.                                                                                                                                                        |
|             | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.                                                       |
|             | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.                                                                                |
|             | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds,<br>and Impoundments, 391-2000-010, 3/99.                                                                   |
|             | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.                                                                 |
| $\boxtimes$ | Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.                                                                                                                                       |
|             | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.                                                |
|             | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.                                                                                                                              |
|             | Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.                                                                                                                                                 |
| $\square$   | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.                                                                                                          |
|             | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.          |
|             | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.                                                                                  |
|             | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination<br>of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999. |
|             | Design Stream Flows, 391-2000-023, 9/98.                                                                                                                                                                              |
|             | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.                                        |
|             | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.                                                                                                                            |
| $\square$   | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                      |
|             | SOP:                                                                                                                                                                                                                  |
|             | Other:                                                                                                                                                                                                                |