

Application Type Renewal Facility Type Municipal Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0021491

 APS ID
 276419

 Authorization ID
 1343185

Applicant and Facility Information

Applicant Name	Willian	nstown Borough Authority	Facility Name	Williamstown Borough Authority STP
Applicant Address	200 S West Street		Facility Address	148 S Orange Street
	William	stown, PA 17098-1553		Williamstown, PA 17098-9750
Applicant Contact	Stephe	n Denkovich	Facility Contact	Scott Maurer
Applicant Phone	(717) 647-4848		Facility Phone	(717) 647-4402
Client ID	80931		Site ID	451880
Ch 94 Load Status	Not Overloaded		Municipality	Williamstown Borough
Connection Status	No Lim	itations	County	Dauphin
Date Application Receive	ved	February 17, 2021	EPA Waived?	No
Date Application Accept	oted	March 3, 2021	If No, Reason	Significant CB Discharge
Purpose of Application		NPDES Renewal with Discharge	to Wiconisco Creek - CW	/F

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated sewage from Williamstown Borough Authority's wastewater treatment plant. Williamstown Borough Authority owns, maintains, and operates the wastewater treatment plant located in Williams Township, Dauphin County. The sequential batch reactor (SBR) treatment process discharges treated wastewater to Wiconisco Creek which is classified for warm water fishes. The collection system has no combined sewers. The facility has a design average annual flow of 0.45 MGD, hydraulic design capacity is also 0.45 MGD and the organic design capacity is 1000lbs/day. The facility receives flows from Williamstown Borough and Williams Township. The existing NPDES permit was issued on May 23, 2016 with an effective date of June 1, 2016 and expiration date of May 31, 2021. The applicant submitted NPDES renewal application to the Department for processing. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Liquid digested sludge is hauled out periodically by a license hauler to Greater Hazleton Sewer Authority for further treatment and disposal.

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-

Approve	Deny	Signatures	Date
х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	February 10, 2022
х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	February 17, 2022
х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	February 17, 2022

Summary of Review

day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

- Seasonal limit was added for CBOD5
- Quarterly monitoring of E. Coli has been added
- Monthly monitoring of Total Copper, Total Lead and Total Zinc have been added.

1.4 Existing Limit and Monitoring Requirements

			Monitoring Requirements					
Discharge Parameter	Mass Ur	nits (Ibs/day)		Concen	trations (mg	/L)	Minimum	Required
	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Sample Type
Flow (mgd)	Report	Report Daily	XXX	XXX	XXX	XXX	Continuous	Measured
		Max						
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/Day	Grab
TSS	113	169	XXX	30	45	60	1/week	24-hr comp
CBOD ₅	75	113	XXX	20	30	40	1/week	24-hr comp
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	1000	1/week	Grab
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	10000	1/week	Grab
Ammonia Nov 1 - Apr 30	51	XXX	xxx	13.5	XXX	27	1/week	24-Hr Composite
Ammonia May 1 - Oct 31	17	xxx	xxx	4.5	xxx	9	1/week	24-Hr Composite
Total Aluminum	Report	XXX	xxx	Report	XXX	XXX	2/month	24-Hr Composite
Total Iron	Report	XXX	xxx	Report	XXX	XXX	2/month	24-Hr Composite
Total Manganese	Report	XXX	XXX	Report	XXX	XXX	2/month	24-Hr Composite

Summary of Review

1.4.1 Chesapeake Bay Permit Requirements

		Effluent L	Monitoring Requirements				
	Mass Lo	oad(lbs)	Cor	ncentrations (mg/l)		
Discharge Parameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Minimum Measurement Frequency	Required Sample Type
AmmoniaN	Report	Report	xxx	Report	xxx	1/week	24-hr Comp
KjeldahlN	Report	xxx	xxx	Report	xxx	2/Week	24-hr Comp
Nitrate-Nitrite as N	Report	xxx	xxx	Report	xxx	2/Week	24-hr Comp
Total Nitrogen	Report	Report	xxx	Report	xxx	1/Month	Calculate
Total Phosphorus	Report	Report	xxx	Report	xxx	2/week	24-hr Comp
Net Total Nitrogen	Report	7,306	xxx	xxx	xxx	1/Month	Calculate
Net Total Phos.	Report	974	xxx	xxx	xxx	1/Month	Calculate

1.5 Discharge, Receiving Waters and Water Supply Information									
Outfall No. 001	Design Flow (MGD) .45								
Latitude 40° 34' 40.39"	Longitude -76° 37' 37.14"								
Quad Name	Quad Code								
Wastewater Description: Sewage Effluent									
Receiving Waters <u>Wiconisco Creek (WWF)</u>	Stream Code 16895								
NHD Com ID 54972235	RMI <u>62.4</u>								
Drainage Area 21.8	Yield (cfs/mi ²) 0.0401								
Q ₇₋₁₀ Flow (cfs) 0.87	Q7-10 Basis USGS Gage station								
Elevation (ft) 695.0	Slope (ft/ft)								
Watershed No. 6-C	Chapter 93 Class. WWF								
Existing Use	Existing Use Qualifier								
Exceptions to Use	Exceptions to Criteria								
Assessment Status Impaired									
Cause(s) of Impairment <u>Metals, Siltation, pH,</u>									
Source(s) of Impairment Abandoned Mine Drainag	ge,								
TMDL Status Final,	Name Wiconisco Creek AMD								
Background/Ambient Data pH (SU) Temperature (°F)	Data Source								
Hardness (mg/L) Other:									
Nearest Downstream Public Water Supply Intake	Suez Water PA								
PWS Waters Susquehanna River	Flow at Intake (cfs)								
PWS RMI	Distance from Outfall (mi) >53								

Changes Since Last Permit Issuance: None

1.5.1 Water Supply:

The nearest downstream water supply intake is approximately 53 miles downstream for Suez Water PA on the Susquehanna River in Susquehanna Township Dauphin County. The discharge has no impact on the intake.

2.0 Treatment Facility Summary								
Treatment Facility Name: Williamstown Borough STP								
WQM Permit No.	Issuance Date							
2208401	4/7/2008							
2208401 A-1	6/12/2010							
	Degree of			Avg Annual				
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)				
Sewage	Tertiary	Sequencing Batch Reactor W/Sol Removal	Ultraviolet	0.45				
			·					
Hydraulic Capacity	Organic Capacity			Biosolids				
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal				
0.45	1000	Not Overloaded	Aerobic Digestion	Other WWTP				

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Description

The treatment plant receives flow via gravity with the aid of 4 pump stations. Flow enters the headworks with an adjustable valve and passes through a mechanical screen and grit removal system. Sodium Aluminate is added after grit removal for phosphorus removal. Flow is then pumped to either of the two SBR trains by 5 pumps depending on the cycle of SBR. Effluent from SBR flows to the post EQ tank where air is added on a timed cycle. The flow then goes through a cloth media filter for filtration prior to a UV system for disinfection and eventually to outfall 001. There are two aerobic digesters that operates on time air cycles. Soda ash is added to the digester as needed

2.2 Treatment Chemicals

• Sodium Aluminate for phosphorus removal

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from December 1, 2020 to November 30, 2021)

Parameter	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20
Flow (MGD)												
Average Monthly	0.21774	0.20286	0.31427	0.19791	0.159	0.151	0.175	0.196	0.262	0.238	0.213	0.282
Flow (MGD)												
Daily Maximum	0.51011	0.44328	1.31186	0.38798	0.231	0.270	0.330	0.317	0.625	0.660	0.329	1.585
pH (S.U.)												
Minimum	5.64	6.04	6.28	6.52	6.50	6.49	6.27	6.34	6.02	6.08	6.06	6.13
pH (S.U.)												
Maximum	7.01	6.94	7.02	7.11	7.07	6.90	6.79	6.95	6.84	6.49	6.71	6.96
DO (mg/L)												
Minimum	5.74	7.27	5.36	6.12	6.22	5.72	5.69	7.11	8.34	7.68	6.51	6.63
CBOD5 (lbs/day)												
Average Monthly	< 4	< 5	< 7	< 5	< 3.0	< 3.0	6.0	5.0	8.0	< 5.0	< 5.0	5
CBOD5 (lbs/day)												
Weekly Average	< 6	< 6.0	19	< 8	< 4.0	6.0	8.0	6.0	14.0	8.0	< 6	9
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 3.0	< 4.0	< 3.0	< 3.0	< 3.0	4.0	4.0	3.0	< 3.0	< 3.0	3.0
CBOD5 (mg/L)												
Weekly Average	< 3.0	< 3.0	10.0	4.0	< 3.0	4.0	5.0	5.0	4.0	4.0	3.0	4.0
BOD5 (lbs/day)												
Raw Sewage Influent												
<pre> Ave. Monthly</pre>	67	51	127	249	227	217	153	95	229	229	137	218
BOD5 (lbs/day)												
Raw Sewage Influent			100	107			100		107	100		
 br/> Daily Maximum	88	73	408	467	317	294	186	140	425	428	203	306
BOD5 (mg/L)												
Raw Sewage Influent	00.0	00.0	77.0	4 4 7	000	400	100	05.0	100.1	450		444.0
 	39.8	32.0	11.2	147	202	192	108	65.2	102.4	150	96	144.9
155 (IDS/day)	. 5	. 5.0	. 00	. 10	. 2.0	c	. 7.0	. 5.0		. 11.0		1.0
	< 5	< 5.0	< 28	< 19	< 3.0	6	< 7.0	< 5.0	< 8.0	< 11.0	< 6.0	4.0
155 (IDS/day)												
Raw Sewage Influent	40	05	457	207	200	010	250	100	222	204	. 170	402
	43	25	157	307	200	210	209	129	232	204	< 173	403
100 (IDS/Day)												
Raw Sewage Influent	60	40	710	400	260	205	260	105	E1 4	E1 4	270	4 4 7 4
	62	40	710	480	269	385	360	185	514	514	318	1471
155 (IDS/day)			04	27	. 1 0	10	15	7.0	11.0	10.0	10.0	6.0
vveekly Average	< b	< 6.0	94	37	< 4.0	12	15	7.0	14.0	19.0	10.0	6.0

TSS (mg/L)												
Average Monthly	< 3.0	< 3.0	< 15.0	< 11.0	< 3.0	5.0	< 5.0	< 4.0	< 4.0	< 7.0	4.0	< 3.0
TSS (mg/L)												
Raw Sewage Influent												
 Ave. Monthly	26.0	16.0	87.0	182	182	197	181	90	101	142	< 100	263
TSS (mg/L)												
Weekly Average	4.0	< 3.0	51.0	23.0	< 3.0	11.0	9.0	4.0	8.0	12.0	7.0	3.0
Fecal Coliform												
(CFU/100 ml)		100	100.0	44.0	40	10	10				110	1.0
Geometric Mean	< 3.0	108	< 120.0	41.0	< 10	< 10	< 10	< 2.0	< 23.0	< 230.0	< 119	< 1.0
Fecal Coliform												
(CFU/100 ml)	7.0	4070.0	2000	400.0	. 10	. 10	. 10	20.0	100.0	1000	1000	. 1 0
Instant. Maximum	7.0	1070.0	3000	460.0	< 10	< 10	< 10	20.0	100.0	1000	1000	< 1.0
OV Intensity (mvv/cm²)	82	84.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Nitrata-Nitrita (mg/L)	02	04.0	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Average Monthly	9.28	8 75	63	5 69	4 22	1 91	2.23	3.46	7.63	12.4	8 83	5.03
Nitrate-Nitrite (lbs)	5.20	0.75	0.0	0.00	7.22	7.57	2.20	3.40	7.00	12.4	0.00	0.00
Total Monthly	535	440	332	308	174	181	96	176	575	623	457	262
Total Nitrogen (mg/L)	000	110	002	000	.,,,	101			010	020	101	202
Average Monthly	< 9.35	9 23	7 17	7 41	5 35	6 62	3 65	5 72	10.66	15.02	10.6	7 99
Total Nitrogen (lbs)		0.20			0.00	0.02	0.00	0.12				
Effluent Net 												
Total Monthly	< 539	466	13	410	220	243	155	282	846	751	553	412
Total Nitrogen (lbs)												
Total Monthly	< 539	466	380	410	220	243	155	282	846	751	553	412
Total Nitrogen (lbs)												
Effluent Net 												
Total Annual			< 5099									
Total Nitrogen (lbs)												
Total Annual			< 5099									
Ammonia (lbs/day)												
Average Monthly	0.3	0.2	0.4	0.6	0.40	0.3	0.60	0.8	1.0	2.0	0.8	2.0
Ammonia (mg/L)												
Average Monthly	8.55	0.16	0.23	0.33	0.35	0.27	0.44	0.57	0.66	0.98	0.43	1.33
Ammonia (lbs)												
Total Monthly	10	8	11	19	13	10	17	24	42	46.0	24	66
Ammonia (lbs)												
I otal Annual			339									
IKN (mg/L)		4.07		4 = 0		1 00	4 = 0					
Average Monthly	< 0.9	< 1.05	< 1.2	1.73	< 1.13	1.68	1.73	2.25	3.03	2.61	1.85	2.84
IKN (lbs)			~-	4.00		00		4.67	070	467	100	
I otal Monthly	< 53	< 53	< 65	< 103	< 46	62	74	107	272	127	100	145

Total Phosphorus												
(mg/L)												
Average Monthly	0.56	0.97	1.99	2.32	2.07	1.72	1.08	< 0.59	0.91	0.80	0.57	0.85
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	30	49	106	123	85	63	47	< 25	101	40	< 33	45
Total Phosphorus (lbs)												
Total Monthly	30	49	< 831	123	85	63	47	< 25	101	40	< 33	43
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual			< 883									
Total Phosphorus (lbs)												
Total Annual			< 883									
Total Aluminum												
(lbs/day)												
Average Monthly	< 0.2	< 5	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	9.0	< 0.20	< 0.2	< 0.1
Total Aluminum												
(mg/L) Ave. Monthly	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.77	< 0.01	< 0.11	< 0.10
Total Iron (lbs/day)												
Average Monthly	< 0.04	0.04	< 0.2	0.02	0.06	0.03	0.03	0.04	2.0	0.05	0.07	0.03
Total Iron (mg/L)												
Average Monthly	< 0.02	< 0.03	< 0.11	0.02	< 0.03	0.02	0.03	0.02	0.41	0.03	0.03	0.03
Total Manganese												
(lbs/day) Ave. Monthly	0.08	0.05	0.03	0.02	0.05	0.05	0.1	0.20	0.40	0.1	0.1	0.04
Total Manganese												
(mg/L) Ave. Monthly	0.04	0.03	0.02	0.02	< 0.04	0.04	0.08	0.08	0.12	0.08	0.06	0.03

3.2 Effluent Violations for Outfall 001, from: January 1, 2021 To: November 30, 2021

6.0	S.U.
45.0	mg/l
40.0	
	45.0

NPDES Permit No. PA0021491

3.3 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met most of the time. pH, Fecal Coliform and TSS effluent violations were noted on DMRs during the period reviewed and presented in section 3.2 above. The violations appear to be operation related

3.4 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations were found during plant inspections. The facility is operated and well maintained.

4.0 Development or Effluent Limitations								
Outfall No.	001	Design Flow (MGD)	.45					
Latitude	40° 34' 40.66"	Longitude	-76º 37' 36.95"					
Wastewater D	escription: Sewage Ef	ent						

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: Total Residual Chlorine is not applicable see report for details.

4.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4.4 Water Quality-Based Limitations

4.4.1 Receiving Stream

The receiving stream is the Wiconisco Creek. According to 25 PA § 93.90, Wiconisco Creek is protected for Warm Water Fishes (WWF). It is located in Drainage List m and State Watershed 6-C. It has been assigned stream code 16895. According to the Department's Pennsylvania Integrated Water Quality Monitoring and Assessment Report, this stream is impaired for pH, siltation and metals due to abandoned mine drainage. A TMDL for the effects of Acid Mine Drainage was completed and approved on November 24, 2008 and is discussed further in this report.

4.4.2 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 0155500 on East Mahantango Creek at Dalmatia. The East Mahantango gage is the closest active gage to Wiconisco Creek and has similar geology. The Q₇₋₁₀ and drainage area at the gage are 6.5ft³/s and 162 mi² respectively. The resulting yields are as follows:

Q7-10	= 6	6.5 cfs /164 sq. mi = 0.0401cfs/sq.mi
Q30-10 /Q7-10	= ´	1.45
Q ₁₋₁₀ /Q ₇₋₁₀	= (0.75

The drainage area at the point of discharge calculated using streamStats = 21.8 sq. mi. The design flow is calculated as: $Q_{7-10} = 0.0401$ cfs x 21.8 sq. mi = 0.874cfs

 $NH_{3}N$ calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream $NH_{3}N$ criteria used in the attached computer model of the stream:

- STP pH = 6.8 (DMR average July Sept.)
- STP Temperature = 22 ° C (Inspection Report)
- Stream pH = 7.0 (Previous protection report)
- Stream Temperature = 20 °C (Previous protection report)
- Background NH₃-N = 0.0 (default)

4.4.3 CBOD5:

Due to the proximity of Lykens Borough, Washington Township and Elizabethville discharges, they were modelled together with Williamstown borough's discharge. The attached WQM 7.0 stream model (Attachment B) indicates that a summer monthly average limit of 15 mg/l is needed to protect the water quality of the stream. This is slightly more stringent than the existing limit of 20mg/l, but DMRs and inspection reports show the STP has can meet the proposed new limitation. For winter months the existing limitation of 20mg/l is adequate to protect water quality of the stream. Therefore, a summer limit of 15mg/l monthly average with 24 mg/l weekly average and 30 mg/l instantaneous maximum and winter limit of 20mg/l monthly average with 30mg/l weekly average and 40 mg/l instantaneous maximum will be applied for this current permit cycle.

<u>4.4.4 NH₃N</u>

The attached result of the WQM 7.0 stream model (Attachment B) indicates also that a summer average monthly limit of 4.0 mg/l NH₃ is necessary to protect the aquatic life from toxicity effects. The facility's DMR and inspection report indicate the facility is can meet the proposed limits without difficulty. Winter limit is 3 times the summer limit.

4.4.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.4.6 Total Suspended Solids:

There is no water quality criterion for TSS. A limit of 30 mg/I AML in the existing permit which was based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) will remain in the permit in addition to AWL of 45mg/I per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) and IMAX of 60mg/I. Mass-based limits are calculated based on the equation presented in section 4.3.

4.4.7 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4 mgd) and Phase 5(below 0.2 mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

As outlined in the current Phase 3 WIP and the current supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals.

This facility was a non-significant phase 4 but expanded from 0.375MGD to 0.45MGD and was issued a final permit with total maximum annual Total Nitrogen Cap load of 7,306 lbs/ and a TP cap load of 974 lbs/year. These loads are the maximum a non-significant facility can receive after comparing with loads based on existing performance and the design flow prior to August 29, 2005.

4.4.8 Total Residual Chlorine

The discharge does not have the reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee does not add chlorine to the wastewater for disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV Intensity (mW/cm²) monitoring is required in the permit to ensure efficiency of the UV unit.

4.4.9 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The results of the TMS are presented in attachment C. Limitation was recommended for Total Copper, Total Lead and Total Zinc and monitoring was recommended for Total Aluminum and Total Manganese. The permittee responded to a pre-draft permit survey for toxic pollutants and stated they are not certain of the sources of these toxics and is uncertain of meeting the new limits. The permit will be drafted requiring monitoring for Total Aluminum and Total Manganese. For Total Copper, Total Lead and Total Zinc, monitoring will be required in the interim to allow the permittee to collect site-specific data and conduct toxic reduction evaluation if they wish and provide compliance report for the recommended new permit limits.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.10 TDS, Chloride, Sulfate, Bromide, and 1,4-dioxane

The maximum daily TDS data submitted with the application is 324 mg/l which is equivalent to 1216 lbs/day based on the permitted flow of 0.45 MGD. The discharge level for TDS is well below 1000 mg/l and the 20,000lbs/day cut-off to require monitoring in the permit. There is no data on 1,4-dioxane.

4.4.11 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E.coli. As a result, DEP is including monitoring requirements for E. Coli in new and

renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD and 1/year for design flows of 0.002 - 0.05 MGD. Your discharge of 0.45MGD requires 1/quarter monitoring as included in the permit.

4.4.12 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.13 Stormwater

There is no stormwater outfall associated with this facility.

4.4.14 Industrial Users

This Wastewater Treatment Plant does not receive wastewater from any significant industrial users.

4.4.15 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.45 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is located on a 303d listed stream segment for the effects of AMD. A TMDL was completed and approved on November 24, 2008. The TMDL calls for reduction in metals (Aluminum, Iron and Manganese) and to maintain a pH within 6-9 S.U at some areas and no reduction at all in certain areas. Sewage treatment plants such as this facility were not considered a source of AMD and were not included in the TMDL. This facility discharge treated wastewater that limits pH to between 6-9 S.U. Monitoring data indicates the facility contributes some level of Total Aluminum, Total Manganese and Total Iron to the stream therefore monitoring for Total Aluminum, Total Manganese and Total Iron will continue in the permit at a frequency of 1/month to ensure discharge levels remain low.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management and Restriction on receipt of hauled in waste under certain conditions and site-specific data collection requirement.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

				Monitoring Re	quirements			
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Parameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	xxx	xxx	6.0 Inst Min	xxx	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5 Nov 1 - Apr 30	75	113	xxx	20.0	30.0	40	1/week	24-Hr Composite
CBOD5 May 1 – Oct 31	56	90	xxx	15.0	24.0	30	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	113	169	xxx	30.0	45.0	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	xxx	xxx	xxx	xxx	XXX	Report	1/quarter	Grab
UV Intensity (mW/cm ²)	xxx	xxx	Report	xxx	XXX	xxx	1/day	Recorded
Nitrate-Nitrite	xxx	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date	fective Date through Permit Expiration Date)
---	--

		Effluent Limitations										
Peremeter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required				
Parameter	Average	Weekly	Daily	Average	Weekly	Instant.	Measurement	Sample				
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре				
	Report											
Nitrate-Nitrite (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation				
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation				
	Report											
Total Nitrogen (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation				
Ammonia								24-Hr				
Nov 1 - Apr 30	45	XXX	XXX	12	XXX	24	1/week	Composite				
Ammonia								24-Hr				
May 1 - Oct 31	15	XXX	XXX	4.0	XXX	8	1/week	Composite				
	Report											
Ammonia (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation				
								24-Hr				
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite				
	Report											
TKN (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation				
Tatal Direction				Durit		~~~~	0/	24-Hr				
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	2/week	Composite				
Total Phosphorus (lbs)	Report Total Mo	xxx	xxx	xxx	xxx	xxx	1/month	Calculation				
								24-Hr				
Total Aluminum	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite				
	•							24-Hr				
Total Iron	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite				
								24-Hr				
Total Manganese	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite				
								24-Hr				
Total Lead	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite				
								24-Hr				
Total Zinc	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite				
								24-Hr				
Total Copper	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite				

Compliance Sampling Location: At Outfall 001

6.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	s (Ibs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Falameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen (lbs)		7306						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Nitrogen (lbs)	xxx	Report Total Annual	XXX	XXX	XXX	xxx	1/year	Calculation
Ammonia (Ibs)	XXX	Report Total Annual	XXX	XXX	xxx	XXX	1/year	Calculation
Total Phosphorus (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs) Effluent Net	XXX	974 Total Annual	XXX	xxx	xxx	xxx	1/year	Calculation

Compliance Sampling Location: At outfall 001

	7.0 Tools and References Used to Develop Permit
\square	MONA for Minister Markel (or a Attack mark D)
	WQM for Windows Model (see Attachment B)
	TDC Madel Creadsheet (see Attachment C)
	Temperature Medel Spreadsheet (see Attachment)
	We ten Quel'te Tenine Menerane et Otecteren 204 2422 202 4/22
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Lechnical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97. Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
\boxtimes	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\square	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\square	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\square	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
\square	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\square	SOP: Establishing effluent limitations for individual sewage permit
	Other:

8. Attachments

A. Topographical Map

B. WQM Mode Results

	<u>SWP Basin</u> <u>Strea</u>	<u>m Code</u>		Stream Name	2		
	06C 10	6895		WICONISCO CRI	EEK		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
32.400	Williamstwn STP	PA0021491	0.450	CBOD5	15.01		
				NH3-N	4.49	8.98	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
27.600	Lykens Boro STP	PA0043575	0.410	CBOD5	25		
				NH3-N	11.82	23.64	
				Dissolved Oxygen			5
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
23.500	Washingtom Twp	PA0086185	0.050	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			3
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
15.950	Elizabethville	PA0037737	0.400	CBOD5	25		
				NH3-N	15.76	31.52	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Friday, February 4, 2022

Version 1.1

Page 1 of 1

	SWF Basii	P Strea	ım le	Stre	am Name		RMI	Ele	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	06C	168	395 WICO	NISCO C	REEK		32.40	00	695.00	21.80	0.00000	0.0	0
					S	tream Da	ta						
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> np pH	Tem	<u>Stream</u> p pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	O°))	
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7.	00 0	0.00 0.0	00
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Desig Disc Flow (mgc	n : Res / Fa	erve ctor	Disc Гemp (°C)	Disc pH
Williamstwn STP	PA0021491	0.4500	0.4500	0.45	500	0.000	22.00	6.80
	Pa	rameter D	ata					
Dorr	Dis Co	ic Tr nc Co	ib S inc	Stream Conc	Fate Coef			
Faia		(mg	ı/L) (mg	g/L)	(mg/L)	(1/days)		
CBOD5	CBOD5			2.00	0.00	1.50)	
Dissolved Oxy		5.00	8.24	0.00	0.00)		
	2	E 00	0.00	0.00	0.70			

	SWF Basi	P Strea n Coo	am Je	Stre	eam Name		RMI	Elev	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdraw (mgd)	val	Apply FC
	06C 16895 WICONISCO CREEK						27.6	00	645.00 6		0.00000	C	0.00	\checkmark
					S	tream Da	ita							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Tem	<u>Stream</u> p p	н	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.0) 2	0.00 7.	00	00.0	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitt Disc Flow (mgd	ted Des bio / Flo l) (m	sign sc Res ow Fa gd)	serve actor	Disc Гemp (°C)	Disc pH
Lykens Boro STP	PA0043575	0.4100	0.41	00 0.	4100	0.000	25.00	7.00
	Pa	rameter D	ata					
Por	Dis Co	c nc	Trib Conc	Stream Conc	Fate Coef			
Fala		(mg	/L) (mg/L)	(mg/L)	(1/days)		
CBOD5	CBOD5 Dissolved Oxygen			2.00	0.00	1.50)	
Dissolved Oxy				8.24	0.00	0.00)	
	2	5 00	0.00	0.00	0.70)		

	SWF Basi	P Strea	am Je	Stre	eam Name		RMI	Elev	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	wal)	Apply FC
	06C	168	395 WICO	NISCO C	REEK		23.5	00	580.00	66.00	0.00000		0.00	\checkmark
					S	tream Da	ita							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> pppPH	Terr	<u>Stream</u> p	рН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7	00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Des Di: Flo (m	iign sc Res ow Fa gd)	serve actor	Disc Temp (°C)	Disc pH
Washingtom Twp	PA0086185	0.0500	0.050	0 0.	0500	0.000	25.00	7.00
	Pa	rameter D	ata					
Doro	motor Nomo	Dis Co	nc T	rib onc	Stream Conc	Fate Coef		
Faid		(mg	ı/L) (m	ng/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00) 1.50)	
Dissolved Oxy	gen		3.00	8.24	0.00	0.00	D	
		2	5 00	0.00	0.00	0.70	h	

	SWF Basii	P Strea	ım le	Stre	eam Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	S awal I)	Apply FC
	06C	168	395 WICO	NISCO C	REEK		15.9	50	518.00	80.4	9 0.00000		0.00	\checkmark
					S	tream Da	ita							
Design Cond	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> ıp pH	l Ten	<u>Stream</u> 1p	pН	
Contai	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C	;)		
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7	.00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	d Des Dis Flo (mo	ign sc Res ow Fa gd)	serve	Disc Temp (°C)	Disc pH
Elizabethville	PA0037737	0.4000	0.4000	0.4	1000	0.000	25.00	7.00
	Pa	rameter D	ata					
	Parameter Namo	Dis Co	nc T	rib onc	Stream Conc	Fate Coef		
		(mg	ı/L) (m	ig/L)	(mg/L)	(1/days)		
CBOD5		2	5.00	2.00	0.00	1.50	C	
Dissolved	l Oxygen		5.00	8.24	0.00	0.0	C	
		2	F 00	0.00	0.00	0.7	n	

	SWF Basii	P Strea	am Je	Stre	eam Name		RMI	Elev	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrav (mgd)	val	Apply FC
	06C	168	395 WICO	NISCO C	REEK		7.42	20	450.00	89.60	0.00000	(0.00	\checkmark
					S	tream Da	ita							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Terr	<u>Tributary</u> pppPH	Terr	<u>Stream</u> p p	эΗ	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)		
Q7-10	0.040	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	0.00 7	00	0.00	0.00	
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									

	Dis	scharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Desi Dis Flo (mg	gn c Res w Fa d)	erve ctor	Disc Temp (°C)	Disc pH
Dauphin Meadows	PA0080187	0.0500	0.0500	0.0	500	0.000	20.00	7.00
	Pa	rameter D	ata					
Doro	motor Nomo	Dis Co	c Ti nc Co	rib onc	Stream Conc	Fate Coef		
Fala	meter Name	(mg	/L) (mg	g/L)	(mg/L)	(1/days)		
CBOD5		5	0.00	2.00	0.00	1.50)	
Dissolved Oxy	gen		5.00	8.24	0.00	0.00	D	
		Б	0.00	0.00	0.00	0.70	h	

_

5	<u>SWP Basin</u> 06C		<u>SWP Basin</u> <u>Stream Code</u> 06C 16895			<u>Stream Name</u> WICONISCO CREEK							
H3-N A	Acute Alloo	ation	S										
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction					
32.400) Williamstwn	STP	16.87	32.56	16.87	32.56	0	0					
27.600) Lykens Boro	STP	15.03	50	15.52	50	0	0					
23.500) Washingtom	Twp	16.5	50	15.47	50	0	0					
15,950) Elizabethville	•	15.39	50	14.89	50	0	0					

WQM 7.0 Wasteload Allocations

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
32.40	0 Williamstwn STP	1.86	5.28	1.86	5.28	0	0
27.60	0 Lykens Boro STP	1.8	11.82	1.8	11.82	0	0
23.50	0 Washingtom Twp	1.88	25	1.8	25	0	0
15.95	0 Elizabethville	1.82	15.76	1.76	15.76	0	0

Dissolved Oxygen Allocations

		CBC	<u>DD5</u>	NH	<u>3-N</u>	Dissolved	d Oxygen	Critical	Dereent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
32.40 Wi	illiamstwn STP	15.01	15.01	4.49	4.49	5	5	0	0
27.60 Lyl	kens Boro STP	25	25	11.82	11.82	5	5	0	0
23.50 Wa	ashingtom Twp	25	25	25	25	3	3	0	0
15.95 Eli:	zabethville	25	25	15.76	15.76	5	5	0	0

Friday, February 4, 2022

Version 1.1

Page 1 of 1

WQM 7.0 D.O.Simulation

SWF Basili	Stream Code			Stream Name			
06C	16895		W	ICONISCO CREEK			
RMI	Total Discharge	Flow (mgd)	Anal	lysis Temperature (°C)	<u>Analysis pH</u>		
32.400	0.45	0		20.887	6.900		
Reach Width (ft)	Reach De	<u>pth (ft)</u>		Reach WDRatio	Reach Velocity (fps)		
21.429	0.57	7		37.171	0.127		
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	<u>R</u>	<u>leach NH3-N (mg/L)</u>	<u>Reach Kn (1/days)</u>		
7.77	0.56	5 (1/1		1.99	0.749		
<u>Reach DO (mg/L)</u>	Reach Kr	<u>1/days)</u>		<u>Kr Equation</u>	Reach DO Goai (mg/L)		
6.805	2.43	03		Isivogiou	5		
<u>Reach Travel Time (days</u> 2.308) TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)			
	0 231	6 78	1 67	5 53			
	0.462	5.92	1.07	5.12			
	0 692	5.02	1 18	5.16			
	0 923	4.51	1.10	5.41			
	1 154	3.94	0.84	5.76			
	1 385	3 44	0.71	6 12			
	1 615	3.00	0.59	6.48			
	1.846	2.62	0.50	6.80			
	2 077	2 29	0.42	7 10			
	2.308	2.00	0.35	7.36			
	Total Discharge	Elow (mad)	Ana	lvsis Temperature (°C)	Analysis nH		
27.600	0.86	50	7 11 101	21.221	6.955		
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)		
32.565	0.67	0		48.580	0.171		
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	B	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>		
		15		2.15	0.769		
5.90	0.67	5					
5.90 <u>Reach DO (mg/L)</u>	0.67 <u>Reach Kr</u>	(1/days)		Kr Equation	Reach DO Goal (mg/L		
5.90 <u>Reach DO (mg/L)</u> 7.320	0.67 <u>Reach Kr</u> 5.02	(<u>1/days)</u> 27		<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days	0.67 <u>Reach Kr (</u> 5.02	(<u>1/days)</u> ?7 Subreach	Results	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days 1.464	0.67 <u>Reach Kr (</u> 5.02 <u>)</u> TravTime	(<u>1/days)</u> ?7 Subreach CBOD5	Results NH3-N	<u>Kr Equation</u> Tsivoglou D.O.	<u>Reach DO Goal (mg/L)</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 <u>each Travel Time (days</u> 1.464	0.67 <u>Reach Kr (</u> 5.02) TravTime (days)	(<u>1/days)</u> ?7 Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	<u>Kr Equation</u> Tsivoglou D.O. (mg/L)	<u>Reach DO Goal (mg/L)</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days 1.464	0.67 <u>Reach Kr r</u> 5.02 <u>)</u> TravTime (days) 	(<u>1/days)</u> ?7 Subreach CBOD5 (mg/L) 5.32	Results NH3-N (mg/L) 1.92	<u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.82	<u>Reach DO Goal (mg/L)</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days 1.464	0.67 <u>Reach Kr 1</u> 5.02 <u>1)</u> TravTime (days) 0.146 0.293	5 (1/days) 27 Subreach CBOD5 (mg/L) 5.32 4.79	Results NH3-N (mg/L) 1.92 1.72	Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71	<u>Reach DO Goal (mg/L</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days</u> 1.464	0.67 <u>Reach Kr 1</u> 5.02 <u>0</u> TravTime (days) 0.146 0.293 0.439	3 (1/days) 27 Subreach CBOD5 (mg/L) 5.32 4.79 4.32	Results NH3-N (mg/L) 1.92 1.72 1.54	<u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.82 6.71 6.79	<u>Reach DO Goal (mg/L</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days 1.464	0.67 <u>Reach Kr (</u> 5.02 <u>)</u> TravTime (days) 0.146 0.293 0.439 0.586	Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89	Results NH3-N (mg/L) 1.92 1.72 1.54 1.37	<u>Kr Equation</u> Tsivoglou D.O. (mg/L) 6.82 6.71 6.79 6.94	<u>Reach DO Goal (mg/L</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days 1.464	0.67 <u>Reach Kr (</u> 5.02) TravTime (days) 0.146 0.293 0.439 0.586 0.732	5 (1/(days)) 77 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50	Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23	Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.79 6.94 7.11	<u>Reach DO Goal (mg/L</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days 1.464	0.67 <u>Reach Kr (</u> 5.02) TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878	5 (1/days) 27 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15	Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10	Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.79 6.94 7.11 7.29	<u>Reach DO Goal (mg/L</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 Reach Travel Time (days 1.464	0.67 <u>Reach Kr (</u> 5.02) TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878 1.025	3 (1/days) 27 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15 2.84	Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10 0.98	Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.79 6.94 7.11 7.29 7.45	<u>Reach DO Goal (mg/L</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days</u> 1.464	0.67 <u>Reach Kr r</u> 5.02 TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878 1.025 1.171	3 (1/days) 27 Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15 2.84 2.56	Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10 0.98 0.88	Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.79 6.94 7.11 7.29 7.45 7.60	<u>Reach DO Goal (mg/L)</u> 5		
5.90 <u>Reach DO (mg/L)</u> 7.320 <u>Reach Travel Time (days</u> 1.464	0.67 <u>Reach Kr r</u> 5.02 TravTime (days) 0.146 0.293 0.439 0.586 0.732 0.878 1.025 1.171 1.317	Subreach CBOD5 (mg/L) 5.32 4.79 4.32 3.89 3.50 3.15 2.84 2.56 2.31	Results NH3-N (mg/L) 1.92 1.72 1.54 1.37 1.23 1.10 0.98 0.88 0.78	Kr Equation Tsivoglou D.O. (mg/L) 6.82 6.71 6.79 6.94 7.11 7.29 7.45 7.60 7.74	<u>Reach DO Goal (mg/L</u> 5		

Friday, February 4, 2022

Version 1.1

Page 1 of 2

WQM 7.0 D.O.Simulation

SWP Basin St	tream Code			Stream Name				
06C	16895		WICONISCO CREEK					
RMI	Total Discharge	Flow (mgd)	Anal	lysis Temperature (°C)	<u>Analysis pH</u>			
23.500	0.91	D		21.221	6.958			
Reach Width (ft)	<u>Reach De</u>	oth (ft)		Reach WDRatio	Reach Velocity (fps)			
35.272	0.69	2		50.979	0.166			
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	1/days)	<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>			
2.51	0.07	7		1.12	0.769			
Reach DO (mg/L)	Reach Kr (<u>1/days)</u>		Kr Equation	Reach DO Goal (mg/L)			
7.793	2.52	/		i sivogiou	D			
<u>Reach Travel Time (days)</u> 2.777	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)				
	0 278	2 45	0.91	7 62				
	0.555	2.10	0.73	7.67				
	0.833	2.34	0.59	7.80				
	1 111	2 29	0.48	7.96				
	1 389	2.20	0.39	8.06				
	1 666	2 19	0.31	8.06				
	1.944	2.14	0.25	8.06				
	2.222	2.09	0.20	8.06				
	2.499	2.05	0.16	8.06				
	2.777	2.00	0.13	8.06				
RMI	Total Discharge	Flow (mgd)	Anal	lysis Temperature (°C)	Analysis pH			
15.950	1.31	0		21.531	6.968			
Reach Width (ft)	<u>Reach De</u>	<u>oth (ft)</u>		Reach WDRatio	Reach Velocity (fps)			
39.698	0.72	2		55.018	0.183			
Reach CBOD5 (mg/L)	<u>Reach Kc (</u>	1/days)	<u>R</u>	each NH3-N (mg/L)	<u>Reach Kn (1/days)</u>			
4.71	0.28	1		1.96	0.788			
Reach DO (mg/L)	Reach Kr (<u>1/days)</u>		Kr Equation	Reach DO Goal (mg/L)			
7.719	2.72	9		lsivoglou	5			
Reach Travel Time (days)	- -·	Subreach	Results	D 0				
2.842	(days)	(mg/L)	NH3-N (mg/L)	D.O. (mg/L)				
	0.284	4 32	1 57	6.73				
	0.568	3.02	1.07	6.55				
	0.853	3.64	1.20	6.70				
	1 137	3.34	0.80	6.95				
	1 421	3.07	0.64	7.22				
	1 705	2.82	0.51	7.46				
	1 080	2.02	0.01	7.68				
	2 273	2.33	0.33	7.86				
	2.270	2.07	0.26	8.01				
	7.558	210						

Friday, February 4, 2022

Version 1.1

Page 2 of 2

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.74	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.47	Temperature Adjust Kr	✓
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Friday, February 4, 2022

Version 1.1

	<u>swi</u>	<u>P Basin</u> 06C	<u>Strea</u> 1	im Code 6895			wic	Stream CONISCO	<u>Name</u> D CREEK			
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
32.400	0.87	0.00	0.87	.6962	0.00197	.577	21.43	37.17	0.13	2.308	20.89	6.90
27.600	2.41	0.00	2.41	1.3304	0.00300	.67	32.56	48.58	0.17	1.464	21.22	6.96
23.500	2.65	0.00	2.65	1.4078	0.00156	.692	35.27	50.98	0.17	2.777	21.22	6.96
15.950	3.23	0.00	3.23	2.0266	0.00151	.722	39.7	55.02	0.18	2.842	21.53	6.97
Q1-1	0 Flow											
32.400	0.65	0.00	0.65	.6962	0.00197	NA	NA	NA	0.12	2.519	21.04	6.88
27.600	1.78	0.00	1.78	1.3304	0.00300	NA	NA	NA	0.15	1.622	21.47	6.95
23.500	1.96	0.00	1.96	1.4078	0.00156	NA	NA	NA	0.15	3.082	21.47	6.95
15.950	2.39	0.00	2.39	2.0266	0.00151	NA	NA	NA	0.17	3.133	21.82	6.96
Q30-	10 Flow	,										
32.400	1.29	0.00	1.29	.6962	0.00197	NA	NA	NA	0.14	2.026	20.70	6.92
27.600	3.54	0.00	3.54	1.3304	0.00300	NA	NA	NA	0.20	1.262	20.94	6.97
23.500	3.89	0.00	3.89	1.4078	0.00156	NA	NA	NA	0.19	2.391	20.93	6.97
15.950	4.74	0.00	4.74	2.0266	0.00151	NA	NA	NA	0.21	2.466	21.19	6.97

WQM 7.0 Hydrodynamic Outputs

Friday, February 4, 2022

C. Toxics Management Spreadsheet

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Inst	ructions D	ischarge Stream															
Fac	ility: Will	iamstown Borough	Authorit	y			NP	DES Perr	mit No.:	PA0083	8491		Outfall I	No.: 001			
E	hantlen Theory	Westewater Description:															
Eva	luation Type:	wastewater Description: Sewage															
					Discha	rge Characteristics											
De	sign Flow	Hardness (mg/l)*	nH (SUN*		P	artia	al Mix Fa	actors (F	PMFs)		Com	Complete Mix Times (min)				
	(MGD)*	naruness (mgn)	pint	30)	AFC	;		CFC	THH	1	CRL	Q 7	-10	0	2 _n		
	0.45 100			.8													
						0	if left	t blank	0.5 if le	ft blank	0) if left blani	k	1 if lef	t blank		
						-						-					
	Discha	arge Pollutant	Units	Max Di	scharge		1D	Stream	Daily	Hourly	Strea	Fate	FOS	Criteri	Chem		
					one		nc	CONC	CV		mev	Coerr		a mod	Transi		
	Total Dissolve	d Solids (PWS)	mg/L		394												
2	Chloride (PW	S)	mg/L		51												
5	Bromide		mg/L	<	0.1												
ອົ	Sulfate (PWS	mg/L		49.1													
	Fluoride (PWS	mg/L															
	Total Aluminu	m	µg/L		250												
	Total Antimon	µg/L															
	Total Arsenic	µg/L															
	Total Barium	µg/L															
	Total Berylliun	µg/L															
	Total Boron		µg/L	\vdash				<u> </u>									
	Total Cadmiu	m (111)	µg/L	\vdash													
	Total Chromit	im (III)	µg/L					<u> </u>									
	Total Cobalt	Iromium	µg/L	\vdash							<u> </u>						
	Total Copper		µg/L		20						<u> </u>						
8	Free Cvanide		ug/L		20						<u> </u>						
E I	Total Cvanide		ug/L														
2	Dissolved Iron	1	ug/L														
Ŭ	Total Iron		µg/L		300												
	Total Lead		µg/L	<	20												
	Total Mangan	ese	µg/L		300												
	Total Mercury		µg/L														
	Total Nickel		µg/L														
	Total Phenols	(Phenolics) (PWS)	µg/L														
	Total Seleniur	n	µg/L														
	Total Silver		µg/L														
	Total Thallium	1	µg/L														
	Total Zinc		µg/L		200												
	Total Molybde	num	µg/L														
	Acrolein		µg/L	<													
	Acrylamide		µg/L	<													
	Acrylonitrile		µg/L	<													
	Benzene		µg/L	<													
	Bromotorm		pg/L	-													

Stream / Surface Water Information

Williamstown Borough Authority, NPDES Permit No. PA0083491, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Wiconisco Creek

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	016895	32.4	695	21.8			Yes
End of Reach 1	016895	27.6	645	60			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width [Depth	Velocit	Time (days)	Tributary		Stream		Analysis	
Location		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)		Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	32.4	0.0401										100	7		
End of Reach 1	27.6	0.0401													

No. Reaches to Model: 1

Q_h

Location	RMI	LFY Flow (cfs)		W/D	Width Depth		Velocit Time		Tributary		Stream		Analysis		
Location		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	32.4														
End of Reach 1	27.6														

Model Results				Williamstown Borough Authority, NPDES Permit No. PA0083491, Outfall 001									
Instructions Results	RETURN	I TO INPU	TS (SAVE AS	PDF	PRINT	r 🔵 A	II 🔿 Inputs	O Results) Limits			
Hydrodynamics													
Wasteload Allocations													
✓ AFC CC	T (min): 10	.032	PMF:	1	Ana	lysis Hardne	ss (mg/l):	100	Analysis pH:	6.90			
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments			
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Total Aluminum	0	0		0	750	750	1,692						
Total Copper	0	0		0	13.439	14.0	31.6		Chem Transl	ator of 0.96 applied			
Total Iron	0	0		0	N/A	N/A	N/A						
Total Lead	0	0		0	64.581	81.6	184		Chem Transla	ator of 0.791 applied			
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Zinc	0	0		0	117.180	120	270		Chem Transla	ator of 0.978 applied			
✓ CFC CC	T (min): 10	.032	PMF:	1	Ana	alysis Hardne	ess (mg/l):	100	Analysis pH:	6.90			
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments			
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A						
Chloride (PWS)	0	0		0	N/A	N/A	N/A						
Sulfate (PWS)	0	0		0	N/A	N/A	N/A						
Total Aluminum	0	0		0	N/A	N/A	N/A						
Total Copper	0	0		0	8.956	9.33	21.0		Chem Transl	ator of 0.96 applied			
Total Iron	0	0		0	1,500	1,500	3,384		WQC = 30 da	y average; PMF = 1			
Total Lead	0	0		0	2.517	3.18	7.18		Chem Transla	ator of 0.791 applied			
Total Manganese	0	0		0	N/A	N/A	N/A						
Total Zinc	0	0		0	118.139	120	270		Chem Transla	ator of 0.986 applied			
I THH CC	T (min): 10	.032	PMF:	1	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A			

Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	2,256	
Total Zinc	0	0		0	N/A	N/A	N/A	
CRL CC	T (min): 9.0	608	PMF:	1	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc					B1/A			

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML	MDL	AMI	MDI	ΙΜΔΧ	Units	Governing	WQBEL	Comments
i oliutanto	(lbs/day)	(lbs/day)		MILL	IIIIIV		WQBEL	Basis	Gonnen a
Total Aluminum	Report	Report	Report	Report	Report	µg/L	1,084	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Copper	0.076	0.12	20.2	31.6	50.6	µg/L	20.2	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	0.027	0.042	7.18	11.2	17.9	µg/L	7.18	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Manganese	Report	Report	Report	Report	Report	µg/L	2,256	THH	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	0.65	1.01	173	270	433	µg/L	173	AFC	Discharge Conc ≥ 50% WQBEL (RP)