

Southwest Regional Office CLEAN WATER PROGRAM

Application Type Facility Type Major / Minor	Renewal Municipal Minor	NPDES PEF INDIVID	RMIT FACT SHEET UAL SEWAGE	Application No. APS ID Authorization ID	PA0021628 1055465 1382878
		Applicant and	Facility Information		
Applicant Name Applicant Address	Borough of Sal 171 Smith Aven Salisbury, PA 15	sbury Je P.O. Box 343 558-0343	Facility Name Facility Address	Salisbury Borough STP Wagner Alley Salisbury, PA 15558	
Applicant Contact Applicant Phone Client ID	Nancy Green (814) 662-2605 68139		Facility Contact Facility Phone Site ID	Eric Zimmerman (814) 662-2605 245763	
Ch 94 Load Status Connection Status Date Application Rec	Not Overloaded	/ 26, 2022	Municipality County EPA Waived?	Salisbury Borough Somerset Yes	
Date Application Accor	epted April 19	, 2022 s permit renewal.	If No, Reason		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from Borough of Salisbury (permittee) for permittee's Salisbury Borough STP (facility) on January 26, 2022. The facility is a minor municipal WWTP with an average design flow of 0.2 MGD. The treated effluent is discharged into Casselman River in state watershed 19-F, classified as WWF. The current permit will expire on July 31, 2022. The terms and conditions are automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: E. Coli monitoring requirement added.

Sludge use and disposal description and location(s): Liquid sludge is hauled off to Somerset STP

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	April 22, 2022
х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	04/25/2022

Discharge, Receiving Waters a	and Water Supply Informatio	n		
Outfall No. 001		Design Flow (MGD)	0.2	
Latitude 39° 45' 27"		Longitude	-79º 5' 17"	
Quad Name Meyersdale	9	Quad Code2013		
Wastewater Description:	Sewage Effluent			
Receiving Waters Casse	elman River (WWF)	Stream Code	38579	
NHD Com ID 13477	/0246	RMI	44.06	
Drainage Area 97.5 n	ni²	Yield (cfs/mi ²)	0.037	
Q ₇₋₁₀ Flow (cfs) 3.56		Q7-10 Basis	USGS StreamStats	
Elevation (ft) 1998	.32	Slope (ft/ft)		
Watershed No. 19-F		Chapter 93 Class.	WWF	
Existing Use WWF		Existing Use Qualifier	Ch. 93	
Exceptions to Use None		Exceptions to Criteria		
Assessment Status	Impaired			
Cause(s) of Impairment	METALS			
Source(s) of Impairment	ACID MINE DRAINAGE			
TMDL Status	Final May 26, 2009	Name Casselman F	River	
Background/Ambient Data		Data Source		
pH (SU)	7.0	Default per 391-2000-013		
Temperature (°C)	25	Default per 391-2000-007 for W	WF	
Hardness (mg/L)	100	Default		
Other:				
Nearest Downstream Public V	Water Supply Intake	Indian Creek Valley Water Autho	prity	
PWS Waters _Youghiog	gheny River	Flow at Intake (cfs)		
PWS RMI 62.754		Distance from Outfall (mi)	54.61	

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

There is no nearby WQN Station or Streamgage from the discharge point. Therefore, USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on April 19, 2022) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The StreamStats delineation report shows a drainage area at the Outfall 001 to be 97.5 mi², Q₇₋₁₀ of 3.56 cfs, and Q₃₀₋₁₀ of 5.79 cfs.

 $\begin{array}{c} Q_{7\text{-}10} \text{ runoff rate (low flow yield): } 3.56 \text{ cfs}/97.5 \text{ mi}^2 \text{ or } 0.037 \text{ cfs}/\text{mi}^2 \\ Q_{30\text{-}10\text{:}}Q_{7\text{-}10\text{:}} 5.79/3.56 \text{ or } 1.626 \\ \text{Default } Q_{1\text{-}10\text{:}}Q_{7\text{-}10} \text{ of } 0.64 \text{ will be used for modeling, if needed.} \end{array}$

PWS Intake:

The nearby downstream PWS intake is Indian Creek Valley Water Authority in Saltlick Township, Fayette County, which is approximately 54.61 miles downstream of discharge point. Due to the distance, dilution of Youghiogheny River, and effluent limitations, it is expected that the discharge will not adversely impact the PWS intake.

Wastewater Characteristics:

A pH of 6.85 (median July- September 2021), default temperature of 20°C (Default per 391-2000-007), and default Hardness value of 100 mg/l will be used for modeling, if needed.

Background data:

There is no nearby WQN station from the discharge point. In absence of site-specific data, a default pH of 7.0 S.U., default stream temperature of 25°C, and default hardness of 100 mg/l will be used, as appropriate.

Chartiers Creek Watershed TMDL:

Casselman Creek Watershed is impaired for metals from AMDs. No WLA is allocated for this facility.

	Tr	eatment Facility Summary	1	
Treatment Facility Name	e: Salisbury Borough STP			
WQM Permit No.	Issuance Date			
5690401 A-1	3/7/2005			
5690401	5/10/1990			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Extended Aeration	Gas Chlorine	0.2
¥	· · · ·		÷	-
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.2	229	Not Overloaded	Holding tank	Other WWTP

Changes Since Last Permit Issuance: None

Treatment Plant Description

Salisbury Borough STP is a publicly owned minor sewage treatment plant with design flow of 0.2 MGD, hydraulic design capacity of 0.2 MGD, and organic loading capacity of 229 lbs./day. The facility is located in Salisbury Borough, Somerset County. The facility is an extended aeration treatment plant with gas chlorination. The treated effluent is discharged through Outfall 001 into Casselman River in state watershed 19-F. The facility receives flow from the following tributaries:

		Type of Se		
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)	Population
Borough of Salisbury	68	100		915
Elk Lick Towship	32	100		580

Per PADEP's recent inspection on March 25, 2019, the facility consists of the following treatment units:

1. One comminutor

- 2. One EQ tank
- 3. Four Aeration tanks
- 4. Four clarifiers
- 5. Two chlorine contact tanks
- 6. Four sludge holding tanks
- 7. One gas disinfection

8. One dechlorination

Influent flows to a comminutor, EQ tank, one of four aeration units and clarifies. After that, it flows to chlorine contact tanks and dechlorination occurs. Treated effluent is discharged through Outfall 001. Liquid sludge is hauled to Somerset STP.

The following wastewater chemicals are used:

Wastewater Treatment Chemical	Purpose	Maximum Usage Rate	Units
Soda Ash	Increase pH	50	lbs/Day
Sodium Bisulfite	Dechlorination	Drip	
Superfloc	Flocculant		
	Existing Limits		

			Monitoring Requirements					
Parameter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	xxx	xxx	Continuous	Recorded
рН (S.U.)	xxx	xxx	6.0	xxx	9.0 Max	xxx	1/day	Grab
Dissolved Oxygen	xxx	xxx	4.0	xxx	xxx	xxx	1/day	Grab
Total Residual Chlorine (TRC)	xxx	xxx	xxx	0.5	xxx	1.6	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	41.7	62.6	xxx	25.0	40.0	50	1/week	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	xxx	xxx	xxx	xxx	1/week	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	xxx	xxx	xxx	xxx	1/week	8-Hr Composite
Total Suspended Solids	50.1	75.1	xxx	30.0	45.0	60	1/week	8-Hr Composite
Fecal Coliform (No./100 ml) Nov 1 - Apr 30	xxx	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Oct 31	xxx	xxx	xxx	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	xxx	xxx	xxx	Report Daily Max	xxx	xxx	1/year	8-Hr Composite
Ammonia-Nitrogen	xxx	xxx	xxx	25.0	xxx	50	1/week	8-Hr Composite
Total Phosphorus	xxx	xxx	xxx	Report Daily Max	xxx	xxx	1/year	8-Hr Composite
Total Aluminum	xxx	xxx	xxx	Report Daily Max	xxx	xxx	1/year	Grab
Total Iron	xxx	xxx	xxx	Report Daily Max	XXX	xxx	1/year	Grab
Total Manganese	xxx	xxx	xxx	Report Daily Max	xxx	xxx	1/year	Grab

Compliance History

DMR Data for Outfall 001 (from March 1, 2021 to February 28, 2022)

Parameter	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21
Flow (MGD)												
Average Monthly	0.147	0.150	0.084	0.073	0.074	0.111	0.065	0.070	0.079	0.108	0.090	0.137
Flow (MGD)												
Daily Maximum	0.406	0.842	0.187	0.103	0.126	0.631	0.139	0.118	0.119	0.251	0.118	0.600
pH (S.U.)												
Minimum	6.6	6.4	6.3	6.1	6.5	6.2	6.3	6.0	6.4	6.7	6.4	6.9
pH (S.U.)												
Maximum	7.0	7.6	7.7	8.2	7.5	7.5	7.7	7.7	7.5	7.8	7.6	7.6
DO (mg/L)												
Minimum	5.6	5.6	5.6	5.8	5.0	5.1	4.9	4.8	5.2	5.4	5.0	5.7
TRC (mg/L)												
Average Monthly	0.1	0.3	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.1
TRC (mg/L) IMAX	0.3	1.5	1.3	1.5	0.3	0.3	0.4	0.7	0.4	0.05	0.3	0.3
CBOD5 (lbs/day)												
Average Monthly	11.8	8.0	5.0	3.3	8.1	7.8	5.6	4.1	5.3	7.3	11.1	8.8
CBOD5 (lbs/day)												
Weekly Average	13.2	8.1	7.1	4.8	14.4	11.7	11.0	8.8	8.9	9.5	16.7	9.9
CBOD5 (mg/L)												
Average Monthly	9.6	6.4	7.1	5.5	13.2	8.4	10.4	7.0	8.3	8.1	14.8	7.7
CBOD5 (mg/L)												
Weekly Average	10.8	6.5	10.2	7.9	23.4	12.6	20.2	15.0	14.1	10.6	22.2	8.7
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	227.2	231.5	207.3	205.8	203.1	219.8	195.7	165.0	182.4	205.0	196.8	183.1
BOD5 (lbs/day)												
Raw Sewage Influent												
Weekly Average	174.3	249.3	189.3	240.5	209.8	300.0	200.3	105.6	178.8	223.8	310.0	155.6
TSS (lbs/day)												
Average Monthly	7.0	6.8	6.4	3.4	4.9	9.5	6.3	4.6	5.6	11.9	7.7	8.8
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	167.8	190.0	207	189.7	198.4	187.0	171.7	165.6	157.4	160.5	167.0	187.8
TSS (lbs/day)												
Raw Sewage Influent												
Weekly Average	94.0	96.5	264.6	143.5	202.5	205.5	226.8	196.3	164.0	195.0	134.3	113.6
TSS (lbs/day)												
Weekly Average	8.9	7.5	7.8	4.9	8.4	10.9	121.0	8.8	9.9	14.5	11.0	9.3
TSS (mg/L)												
Average Monthly	5.7	5.4	9.1	5.6	7.9	10.3	11.6	7.8	8.9	13.2	10.2	7.7
TSS (mg/L)												
Weekly Average	7.3	6.0	11.1	8.1	13.6	11.8	22.3	15.1	15.0	16.1	14.7	8.1

NPDES Permit No. PA0021628

Fecal Coliform (No./100 ml)												
Geometric Mean	32.5	31.4	8.1	3.3	8.5	2.7	9.4	3.8	15.8	1.0	5.3	2.1
Fecal Coliform (No./100 ml)												
IMAX	1203.0	135.4	44.1	6.1	50.4	13.5	127.4	6.3	1011.2	1.0	62.4	3.1
Total Nitrogen (mg/L)												
Daily Maximum			5.95									
Ammonia (mg/L)												
Average Monthly	4.7	3.1	6.4	7.5	13.9	7.7	11.5	11.3	10.4	7.1	8.5	6.3
Total Phosphorus (mg/L)												
Daily Maximum			1.75									
Total Aluminum (mg/L)												
Daily Maximum			< 0.100									
Total Iron (mg/L)												
Daily Maximum			< 0.200									
Total Manganese (mg/L)												
Daily Maximum			0.0447									

Summary of inspection:

3/25/2019: CEI conducted. No violation noted. Recommendations included investigation for other sewage treatment plants for sludge disposal and to consider installing refrigerated composite samplers for the weekly 8-hr composite samples.

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.2
Latitude	39º 45' 27.00)"	Longitude	-79º 5' 17.00"
Wastewater Des	scription:	Sewage Effluent	-	

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CROD-	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 is a water quality model designed to assist DEP to determine appropriate permit requirements for CBOD5, NH3-N and DO. DEP's guidance no. 391-2000-007 provides the technical methods contained in WQM 7.0 for conducting wasteload allocation and for determining recommended NPDES effluent limits for point source discharges. DEP recently updated this model (ver. 1.1) to include new ammonia criteria that has been approved by US EPA as part of the 2017 Triennial Review. The model was utilized for this permit renewal by using updated Q₇₋₁₀ and historic background water quality levels of the river. The following data were used in the attached computer model of the stream:

٠	Discharge pH	6.85	(median Jul-Sep, 2022, eDMR data)
٠	Discharge Temperature	20°C	(Default per 391-2000-007)
٠	Discharge Hardness	100 mg/l	(Default data)
٠	Stream pH	7.0	(Default per 391-2000-013)
٠	Stream Temperature	25°C	(Default per 391-2000-013, WWF)
٠	Stream Hardness	100 mg/l	(Application data)

The following nodes were considered in modeling:

Node 1:	Salisbury Borough STP	(PA0021628) Outfall 001 at Casselman River (38579)
	Elevation:	1998.32 ft (USGS National Map viewer, 04/21/2022)
	Drainage Area:	97.5 mi ² (StreamStat Version 3.0, 04/19/2022)
	River Mile Index:	44.06 (PA DEP eMapPA)
	Low Flow Yield:	0.037 cfs/mi ²
	Discharge Flow:	0.2 MGD
Node 2:	At confluence with Pine	y Creek (39283) at Casselman River (38579)
Node 2:	At confluence with Pine Elevation:	y Creek (39283) at Casselman River (38579) 1981.68 ft (USGS National Map viewer, 04/21/2022)
Node 2:	At confluence with Pine Elevation: Drainage Area:	y Creek (39283) at Casselman River (38579) 1981.68 ft (USGS National Map viewer, 04/21/2022) 132 mi ² (StreamStat Version 3.0, 04/19/2022)
Node 2:	At confluence with Pine Elevation: Drainage Area: River Mile Index:	y Creek (39283) at Casselman River (38579) 1981.68 ft (USGS National Map viewer, 04/21/2022) 132 mi ² (StreamStat Version 3.0, 04/19/2022) 42.285 (PA DEP eMapPA)
Node 2:	At confluence with Pine Elevation: Drainage Area: River Mile Index: Low Flow Yield:	y Creek (39283) at Casselman River (38579) 1981.68 ft (USGS National Map viewer, 04/21/2022) 132 mi ² (StreamStat Version 3.0, 04/19/2022) 42.285 (PA DEP eMapPA) 0.037 cfs/mi ²

<u>NH₃-N:</u>

WQM 7.0 suggested NH₃-N limit of 25 mg/l as monthly average and 50 mg/l as IMAX limit to protect water quality standards. These are also the existing limits that will be carried over.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 25 mg/l. The average monthly and average weekly mass loadings were calculated as 41.7 lbs./day and 62.6 lbs./day respectively. These are the same as existing permit and will be carried over.

Dissolved Oxygen (DO):

The existing permit has a minimum DO of 4.0 mg/l. Per Pa Code 25 Ch.93.7, a minimum DO of 5.0 is required for WWF. This is also supported by WQM 7.0 output. However, the model also shows no adverse effects on the receiving stream at 4.0 mg/l. The SOP BCW-PMT-033 recommends a minimum DO limit of 4.0 mg/l based on BPJ to ensure adequate operation and maintenance where there is no water quality concerns. It is recommended that the existing limit will be carried over.

Toxics:

The facility reported three sample results for Total Copper, Total Lead, and Total Zinc. The maximum of the sample results for each pollutant was analyzed by Toxics Management Spreadsheet (TMS) model. The TMS model didn't result in monitoring or reporting for any of the parameters. TMS spreadsheet is attached with this fact sheet.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are the existing limits that will be carried over.

E. Coli:

DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends quarterly E. Coli monitoring for all dischargers with flow between ≥0.05 MGD to <1.0 MGD. This requirement will be applied from this permit term.

<u>pH:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 25 mg/L average monthly and 50 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average load is calculated to be 50.04 lbs./day and 75.06 lbs./day based on a flow of 0.2 MGD, which are rounded down to 50 lbs./day and 75 lbs./day, respectively.

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns at the POFU. The Instantaneous Maximum (IMAX) limit is calculated to be 1.6 mg/l. These are the existing limits that will be carried over.

Flow and Influent BOD₅ and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD_5 and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94. Monitoring frequency was negotiated between the Department and the permittee in the past.

Best Professional Judgement (BPJ):

Total Phosphorus:

Existing monthly monitoring requirement will be carried over in this renewal.

Total Nitrogen:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

TMDL Parameters:

The receiving stream has an approved TMDL for AMD facilities. There is no wasteload allocation for this point source discharger. The current permit, however, included annual reporting requirements for the AMD TMDL parameters, e.g. Total Aluminum, Total Iron, and Total Manganese. These requirements will be carried over in this renewal. Sample type is changed from grab to 8-hr composite since all other parameters, as applicable, have 8-hr composite sampling requirements.

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units	; (lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Falameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
			6.0					
_pH (S.U.)	XXX	XXX	Daily Min	XXX	XXX	9.0	1/day	Grab
20			4.0	2007		2007		
DO	XXX	XXX	Daily Min	XXX	XXX	XXX	1/day	Grab
TRO	VVV	VVV	VVV	0.5	VVV	1.0	1 (de) (Oreh
IRC		~~~~	~~~	0.5	~~~	1.0	1/day	Grab
CRODS	41 7	62.6	VVV	25.0	40.0	50	1/wook	8-⊓r Composito
BODE	41.7	02.0	~~~	25.0	40.0	50	1/WEEK	
BODS Baw Sewage Influent	Report	Report	XXX	XXX	XXX	XXX	1/wook	o-⊓i Composite
TSS	Кероп	Кероп			ЛЛЛ		1/WEEK	8-Hr
Raw Sewage Influent	Report	Report	XXX	XXX	XXX	XXX	1/week	Composite
g								8-Hr
TSS	50.0	75.0	XXX	30.0	45.0	60	1/week	Composite
Fecal Coliform (No./100 ml)				2000				
Nov 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml)				200				
May 1 - Oct 31	XXX	XXX	XXX	Geo Mean	XXX	1000	1/week	Grab
				Report				
E. Coli (No/100 ml)	XXX	XXX	XXX	Avg. Qrtly	XXX	Report	1/quarter	Grab
				Report				8-Hr
Total Nitrogen	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Composite
								8-Hr
Ammonia	XXX	XXX	XXX	25.0	XXX	50	1/week	Composite
				Report				8-Hr
I otal Phosphorus	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Composite
Takal Alumainum	XXXX	N/V/V	VVV	Report			4 6	8-Hr
i otal Aluminum	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

	Effluent Limitations						Monitoring Requirements	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrations (mg/L)				Required
raiametei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
				Report				8-Hr
Total Iron	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Composite
				Report				8-Hr
Total Manganese	XXX	XXX	XXX	Daily Max	XXX	XXX	1/year	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

	I ools and References Used to Develop Permit
\square	WQM for Windows Model (see Attachment)
\square	Toxics Management Spreadsheet (see Attachment)
\square	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsvlvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act. 391-2000-002.
	4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and
	Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-
	2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and
	Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for
	Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels
	and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids,
	Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-
	2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of
	Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and
	Other Discharge Characteristics, 391-2000-024, 10/98.
└──└॑──	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
└──└॒──	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP:
	Other:

-

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021628

StreamStats PA0021628 at Outfall 001 Region ID: PA PA20220419233049510000 Workspace ID: Clicked Point (Latitude, Longitude): 39.75737, -79.08792 2022-04-19 19:31:16 -0400 Time: 6 OHIOPYLE Ś Bud River Lake Masontown Fairchance YOUGHIOGHENY RIVER LAKE 806 m-4 NUN k 68 ntown 26 M Deep Creek Lake Westernpor Kingwood

Basin Characteristics								
Parameter Code	Parameter Description	Value	Unit					
DRNAREA	Area that drains to a point on a stream	97.5	square miles					
ELEV	Mean Basin Elevation	2545	feet					

Low-Flow Statistics Parameters [100.0 Percent (97.4 square miles) Low Flow Region 4]

Page 2 of 4

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	97.5	square miles	2.26	1400
ELEV	Mean Basin Elevation	2545	feet	1050	2580

Low-Flow Statistics Flow Report [100.0 Percent (97.4 square miles) Low Flow Region 4]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	9.7	ft^3/s	43	43
30 Day 2 Year Low Flow	15.8	ft^3/s	38	38
7 Day 10 Year Low Flow	3.56	ft^3/s	66	66
30 Day 10 Year Low Flow	5.79	ft^3/s	54	54
90 Day 10 Year Low Flow	11.2	ft^3/s	41	41

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use. 3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021628

at node 2

Basin Characteristics								
Parameter Code	Parameter Description	Value	Unit					
DRNAREA	Area that drains to a point on a stream	132	square miles					
ELEV	Mean Basin Elevation	2538	feet					

Low-Flow Statistics Parameters [99.8 Percent (132 square miles) Low Flow Region 4]

StreamStats

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit									
DRNAREA	Drainage Area	132	square miles	2.26	1400									
ELEV	Mean Basin Elevation	2538	feet	1050	2580									
Low-Flow Stati Region 4]	stics Flow Report [99	.8 Perce	nt (132 squa	are miles)	Low-Flow Statistics Flow Report [99.8 Percent (132 square miles) Low Flow Region 4]									
PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other see report)														
PII: Prediction Ir Standard Error o	nterval-Lower, Plu: Pred f Prediction, SE: Standa	iction Int rd Error	terval-Upper, (other see	ASEp: Aver report)	age									
PII: Prediction Ir Standard Error o Statistic	nterval-Lower, Plu: Pred f Prediction, SE: Standa	iction Int rd Error Valu	terval-Upper, (other see e Unit	ASEp: Aver report) SE	age ASEp									
PII: Prediction In Standard Error o Statistic 7 Day 2 Year Lo	nterval-Lower, Plu: Pred f Prediction, SE: Standa w Flow	iction Int rd Error Valu 13.7	terval-Upper, (other see e Unit ft^3/s	ASEp: Aver report) SE 43	ASEp 43									
PII: Prediction In Standard Error o Statistic 7 Day 2 Year Lo 30 Day 2 Year L	nterval-Lower, Plu: Pred f Prediction, SE: Standa w Flow ow Flow	iction Int Ird Error Valu 13.7 21.9	terval-Upper, (other see e Unit ft^3/s ft^3/s	ASEp: Aver report) SE 43 38	ASEp 43 38									
PII: Prediction In Standard Error o Statistic 7 Day 2 Year Lo 30 Day 2 Year L 7 Day 10 Year L	nterval-Lower, Plu: Pred f Prediction, SE: Standa w Flow ow Flow ow Flow	iction Int ard Error Valu 13.7 21.9 5.16	terval-Upper, (other see e Unit ft^3/s ft^3/s ft^3/s	ASEp: Aver report) SE 43 38 66	ASEp 43 38 66									
PII: Prediction In Standard Error o Statistic 7 Day 2 Year Lo 30 Day 2 Year L 7 Day 10 Year L 30 Day 10 Year	nterval-Lower, Plu: Pred f Prediction, SE: Standa w Flow ow Flow ow Flow Low Flow	iction Int ord Error (Valu 13.7 21.9 5.16 8.21	terval-Upper, (other see e Unit ft^3/s ft^3/s ft^3/s ft^3/s	ASEp: Aver report) SE 43 38 66 54	ASEp 43 38 66 54									

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

TRC_CALC

TRC EVALUATION							
Input appropria	ite values in <i>i</i>	A3:A9 and D3:D9					
3.56	= Q stream (cfs)	0.5	= CV Daily			
0.2	= Q discharg	je (MGD)	0.5	= CV Hourly			
30	= no. sample	s	1	= AFC_Partial N	lix Factor		
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor		
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)		
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)		
0	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	3.689	1.3.2.iii	WLA cfc = 3.589		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	1.375	5.1d	LTA_cfc = 2.087		
Source		Effluer	nt Limit Calcul	ations			
PENTOXSD TRG	5.1f		AML MULT =	1.231			
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ		
		INST MAX	LIMIT (mg/l) =	1.635			
WILA of a	1.010/0/./**			to))			
WLA alc	+ Xd + (AF	C Vo*Oe*Xe/Od)1*(1-EOS/10)					
I TAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*1 N(cvh^2+	-) 1)^0.5)				
LTA afc	wla afc*LTA	MULT afc	1, 0.0,				
WLA_cfc	(.011/e(-k*Cl	FC_tc) + [(CFC_Yc*Qs*.011/0	d*e(-k*CFC_t	tc))			
-	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)	,,			
LTAMULT_cfc	EXP((0.5*LN	(cvd^2/no_samples+1))-2.32	6*LN(cvd^2/nd	o_samples+1)^0	.5)		
LTA_cfc	wla_cfc*LTA	MULT_cfc					
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd4	^2/no_samples+	1))		
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)				
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	T_afc)				

Input Data WQM 7.0	
--------------------	--

	SWF Basi	o Strea n Coo	am Je	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19F	38	579 CASS	ELMAN R	IVER		44.06	60	1998.32	97.50	0.00000	0.00	\checkmark
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	<u>Tributary</u> 1p pH	Tem	<u>Stream</u> p pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
Q7-10	0.037	0.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	5.00 7.	00	0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								

	Dis	icharge Da	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Salisbury STP	PA0021628	0.2000	0.2000	0.2000	0.000	20.00	6.85
	Par	rameter Da	ata				
P-	rameter Name	Disc	c Tril no Cor	b Stre no Co	am Fat inc Co	e ef	
10	rameter warne	(mg	/L) (mg	/L) (m	g/L) (1/da	iys)	
CBOD5		25	5.00 2	2.00	0.00	1.50	
Dissolved O	xygen	4	4.00 8	3.24	0.00 (0.00	
NH3-N		25	5.00 0	0.00	0.00 (0.70	

	SWF Basir	9 Strea n Coo	ie ie	Stre	am Name		RMI	E	levation (ft)	Draina Are (sq n	ige a ni)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19F	385	579 CASS	ELMAN R	IVER		42.28	85	1981.68	13	2.00	0.00000	0.00	\checkmark
					S	tream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Dep	th Te	<u>Tributa</u> mp	pH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°	C)		(°C)	
Q7-10	0.037	0.00	0.00	0.000	0.000	0.0	0.00	0	.00	25.00	7.0	0 (0.00 0.00)
Q1-10		0.00	0.00	0.000	0.000									
Q30-10		0.00	0.00	0.000	0.000									

Input Data WQM 7.0

	Dis	icharge D	ata					
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	l Design Disc Flow (mgd)	Res Fa	erve ctor	Disc Temp (°C)	Disc pH
		0.0000	0.0000	0.000	0 0	0.000	0.00	7.00
	Pa	rameter D	ata					
		Dis Co	c Tri nc Co	ib Str nc C	eam onc	Fate Coef		
F	rameter Name	(mg	/L) (mg	µ/L) (n	ng/L)	(1/days)	
CBOD5		2	5.00	2.00	0.00	1.5	D	
Dissolved C	xygen		3.00	8.24	0.00	0.0	D	
NH3-N		2	5.00	0.00	0.00	0.7	D	

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021628

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	\checkmark
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.626	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Thursday, April 21, 2022

Version 1.0b

			WQM 7.0 Hydrodynamic Outputs									
	SW	P Basin	<u>Strea</u>	m Code				Stream	Name			
		IJF	3	5019			UA.	SSELMA				
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)	
Q7-1	0 Flow											
44.060	3.61	0.00	3.61	.3094	0.00178	.705	36.75	52.14	0.15	0.717	24.61	6.99
Q1-1	0 Flow											
44.060	2.31	0.00	2.31	.3094	0.00178	NA	NA	NA	0.12	0.899	24.41	6.98
Q30-	10 Flow	,										
44.060	5.87	0.00	5.87	.3094	0.00178	NA	NA	NA	0.20	0.556	24.75	6.99

Thursday, April 21, 2022

Version 1.0b

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0021628

	<u>SWP Basin</u> 19F	<u>Stream</u> 385	<u>i Code</u> 579		St CASS	<u>ream Name</u> ELMAN RIVE	R		
NH3-N	Acute Alloc	ations							
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
44.00	80 Salisbury ST	P	7.15	50	7.15	50	0	0	
NI-J-IN	Chronic All	ocatio	1S						
RMI	Chronic All Discharge N	ocatioi Bi ame C	1S aseline riterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction	
RMI 44.00	Discharge N 0 Salisbury ST	ocatioi Bi ame C (P	ns aseline riterion (mg/L) 1.37	Baseline WLA (mg/L) 25	Multiple Criterion (mg/L) 1.37	Multiple WLA (mg/L) 25	Critical Reach 0	Percent Reduction 0	
RMI 44.00	Chronic All Discharge N 30 Salisbury ST ed Oxygen	ocation Biame C (P Allocat	ns aseline riterion (mg/L) 1.37 tions	Baseline WLA (mg/L) 25	Multiple Criterion (mg/L) 1.37	Multiple WLA (mg/L) 25	Critical Reach 0	Percent Reduction	

25

25

25

25 4

4

0

0

Thursday, April 21, 2022

44.06 Salisbury STP

Version 1.0b

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code			Stream Name	
19F	38579		C/	ASSELMAN RIVER	۱ ۱
RMI	Total Discharge	e Flow (mgd) Anal	ysis Temperature	(°C) Analysis pH
44.060	0.20	0		24.605	6.986
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
36.752	0.70	5		52.140	0.151
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L	.) Reach Kn (1/days)
3.82	0.54	0		1.97	0.998
Reach DO (mg/L)	Reach Kr	(1/days)		Kr Equation	Reach DO Goal (mg/L)
7.908	2.84	5		Tsivoglou	5
Reach Travel Time (day:	5)	Subreach	Results		
0.717	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.072	3.64	1.84	7.20	
	0.143	3.47	1.71	6.67	
	0.215	3.31	1.59	6.29	
	0.287	3.15	1.48	6.02	
	0.359	3.00	1.38	5.84	
	0.430	2.86	1.29	5.74	
	0.502	2.73	1.20	5.69	
	0.574	2.60	1.11	5.68	
	0.646	2.48	1 04	5.71	
	0.717	2.36	0.97	5.76	

Version 1.0b

			1.V EI	nuent Limits	5		
	SWP Basin	Stream Code		Stream Name	2		
	19F	38579		CASSELMAN RI	VER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
44.060	Salisbury ST	P PA0021628	0.200	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 Effluent Limits

Thursday, April 21, 2022

Version 1.0b

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	arge	Stream				
Facility:	Salisbu	iry Bor	ough STp		NPDES Permit No.:	PA0021628	Outfall No.: 001
Evaluation T	ype:	Major	Sewage / Inc	lustrial Waste	Wastewater Descrip	otion: Treated Sewage	

			Discharge	Characterist	tics			
Design Flow			P	artial Mix Fa	actors (PMF	s)	Complete Mi	x Times (min)
(MGD)*	naroness (mg/i)*	pn (30)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh
0.2	100	6.85						

					0 If lef	t blank	0.5 lf le	eft blank	0	lf left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
5	Chloride (PWS)	mg/L		143									
l a	Bromide	mg/L											
5	Sulfate (PWS)	mg/L		422									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L											
	Total Antimony	µg/L											
	Total Arsenic	µg/L											
	Total Barium	µg/L											
	Total Beryllium	µg/L											
	Total Boron	µg/L											
	Total Cadmium	µg/L											
	Total Chromium (III)	µg/L											
	Hexavalent Chromium	µg/L											
	Total Cobalt	µg/L											
	Total Copper	µa/L		0.0297									
2	Free Cyanide	µg/L											
1 dd	Total Cyanide	µg/L											
15	Dissolved Iron	µa/L											
–	Total Iron	µg/L											
	Total Lead	µa/L		0.000827									
	Total Manganese	µg/L											
	Total Mercury	µa/L											
	Total Nickel	µa/L											
	Total Phenols (Phenolics) (PWS)	µg/L											
	Total Selenium	µa/L											
	Total Silver	µg/L											
	Total Thallium	ug/L											
	Total Zinc	µa/L		0.122									
	Total Molvbdenum	ua/L											
	Acrolein	ug/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	ug/L	<										
	Benzene	µg/L	<										
	Bromoform	µa/L	<										

1	Carbon Tetrachloride	µg/L	<	H		+				
	Chlorobenzene	uo/l		H	+	÷				
	Chlorodibromomethane	uo/l	<	Ħ	Ť	t				
	Chloroothano	ug/l		₽	+	+				
	2 Chloroothul Vigul Ethor	pg/L		⊨	+	+				╞┼┼┼
	2-Chlordeutyr Vinyr Eurer	pg/L		┝┤	┿	┿				 ┝┼╌┼╌┼
	Chloroform	µg/L	<	 Ħ	╪	╪				
	Dichlorobromomethane	µg/L	<							
	1,1-Dichloroethane	µg/L	<	 H	_	_				
e	1,2-Dichloroethane	µg/L	<	H	+	+				
8	1,1-Dichloroethylene	µg/L	<	H	-	+				
2	1,2-Dichloropropane	µg/L	<	Ľ						
0	1,3-Dichloropropylene	µg/L	<							
	1,4-Dioxane	µg/L	<	\square	_	-				
	Ethylbenzene	µg/L	<	H						
	Methyl Bromide	µg/L	<	Ħ	-	+				
	Methyl Chloride	ua/L	<							
	Methylene Chloride	ug/L	<	Ħ						
	1 1 2 2-Tetrachloroethane	10/	<	Ħ	+	+				
	Tetrachloroethylene	10/	2	H	+	╪				╞┼┼┼
1	Toluono	pg/c		Ħ	+	+				
1	1.2 Among Disklass the laws	pg/L		 F	Ť	Ť				
	1,2-trans-Dichloroethylene	µg/L	<		_	-				
1	1,1,1-Trichloroethane	µg/L	<	H	-	+				
	1,1,2-Trichloroethane	µg/L	<	⊢	+	+				
	Trichloroethylene	µg/L	<	H						
	Vinyl Chloride	µg/L	<	Ľ	Ť	İ				
	2-Chlorophenol	µg/L	<							
	2,4-Dichlorophenol	µg/L	<	\square	-	-				
	2,4-Dimethylphenol	µg/L	<	H						
	4.6-Dinitro-o-Cresol	µg/L	<	Ħ	+	+				
4	2 4-Dinitrophenol	uo/l	<	Ľ	Ť	İ				
8	2-Nitrophenol	uo/l	<	Ħ						
2	4-Nitrophenol	10/	2	Ħ	+	+				
0	a Chlera m Cracel	Pg/C		\vdash	+	+				
	Pentachlerenhenel	pg/L		Ħ	÷	╪				
	Pentachiorophenoi	µg/L			-					
	Phenol	µg/L	<	L.	_	+-				
	2,4,6-Trichlorophenol	µg/L	<	⊨	+	+				
	Acenaphthene	µg/L	<	H	+	+				
	Acenaphthylene	µg/L	<	Ľ		İ				
	Anthracene	µg/L	<	T	Ť	T				
	Benzidine	µg/L	<	Ц	-	-				
	Benzo(a)Anthracene	µg/L	<	H	-	+				
	Benzo(a)Pyrene	µg/L	<	Ħ	Ŧ	Ŧ				
	3.4-Benzofluoranthene	ua/L	<	H	+	+				
	Benzo(ghi)Pervlene	ug/L	<	Ē	t	t				
1	Benzo(k)Eluoranthene	uo/l	<	Ħ	+	+				
1	Bis(2-Chloroethovy)Methane	uo/l	e	H	+	+				
	Bis(2 Chloroothul)Ethor	ug/l		H	÷	÷				
	Bis(2-Chloroisenreud)Ether	pg/L		Ħ	÷	÷				
	Bis(2-Chloroisopropyi)Ether	µg/L			-	+				
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	H	+	+				┝┥┥┥
	4-Bromophenyl Phenyl Ether	µg/L	<	⊨	╪	╞				
	Butyl Benzyl Phthalate	µg/L	<	Ħ	+	+				
	2-Chloronaphthalene	µg/L	<	Ľ	İ	İ				
	4-Chlorophenyl Phenyl Ether	µg/L	<							
	Chrysene	µg/L	<	\square	_	-				
1	Dibenzo(a,h)Anthrancene	µg/L	<	H	-	-				
	1.2-Dichlorobenzene	ua/L	<	Ħ	+	+				
1	1.3-Dichlorobenzene	uo/L	<							
	1.4-Dichlorobenzene	uo/L	<	Ħ		f				
b	3.3-Dichlorobenzidine	uo/l	<	Ħ	+	+				
no	Diethyl Phthalate	ug/L	2	H	+	+				
5	Dimothyl Phthelate	Pg/L		Ħ	+	+				
	Dimethyl Phthalate	µg/L	<	F		Ì				
1	Di-n-Butyi Prithalate	µg/L	<	 ļ		1				
1	2,4-Dinitrotoluene	µg/L	<							

					-						
	2,6-Dinitrotoluene	µg/L	<			Ļ					
	Di-n-Octyl Phthalate	µg/L	<			Ļ					
	1,2-Diphenylhydrazine	µg/L	<	_		╞	-				
	Fluoranthene	µg/L	<		-	F	-				
	Fluorene	ua/L	<	÷	+	t					
	Hexachlorobenzene	uo/l	<	Ť	Ť	Ť	-				
	Hexachlorobenzene	ug/L		Ť	÷	t	-				
	Hexachiorobutadiene	Pg/L	-	_	_	Ļ	-				
	Hexachiorocyclopentadiene	µg/L	<	-	+-	Ļ			 		
	Hexachloroethane	µg/L	<		+	╞					
	Indeno(1,2,3-cd)Pyrene	µg/L	<		+	÷					
	Isophorone	µg/L	<			t					
	Naphthalene	µg/L	<	Ť	T	T	1				
	Nitrobenzene	µg/L	<			Γ					
	n-Nitrosodimethylamine	uo/L	<		+	t					
	n-Nitrosodi-n-Propylamine	ug/l	<	 +	+	ŧ					
	- Nitesediahandamina	Pgr-		+	+	+	<u> </u>				
	n-Nitrosodipnenylamine	µg/L	<	+	+	÷			 	 	
	Phenanthrene	µg/L	<	 Ì	÷	÷	1				
	Pyrene	µg/L	<			L					
	1,2,4-Trichlorobenzene	µg/L	<								
	Aldrin	µg/L	<		_	ŀ	-				
	alpha-BHC	µg/L	<			F	-				
	beta-BHC	µg/L	<			t					
	gamma-BHC	uo/I	<	Ť		Ť					
	delta BHC	ug/l	2			E	1			 	
	Chlordano	Pg/L		+	+	ŧ					
		Pg/L	-	 +	+	÷					
	4,4-DD1	µg/L	<	+	+	╞	<u> </u>				
	4,4-DDE	µg/L	<	-	+	ł					
	4,4-DDD	µg/L	<			t					
	Dieldrin	µg/L	۷	T		Ē					
	alpha-Endosulfan	µg/L	<			L					
	beta-Endosulfan	µg/L	<		+	ŀ	-				
9	Endosulfan Sulfate	ua/L	<	+	÷	ŧ	-				
₽.	Endrin	10/	~	+	+	+	<u> </u>				
2	Endrin Aldebude	Pg/L	-	 +	╪	÷					
G	Endrin Aldenyde	Pg/L	-	Ť	Ŧ	Ĥ	1				
	Heptachlor	µg/L	<	1	1	Ļ					
	Heptachlor Epoxide	µg/L	<		_	Ļ					
	PCB-1016	µg/L	<		_	-					
	PCB-1221	µg/L	<		+-	┢					┼╌┼╌┼╴┼
	PCB-1232	µg/L	<	T	1	T					
	PCB-1242	ua/L	<			t					
	PCB-1248	uo/l	<			t					
	PCB 1254	101	-	 -	+	t	-				
	PCB-1234	Pg/L	-	 +	+	┝			 	 	
	PCB-1200	µg/L	~	+	╞	╞	<u> </u>				
	PUDS, TOTAL	µg/L	<		1	È					
	Toxaphene	µg/L	<			L					
	2,3,7,8-TCDD	ng/L	<			Ļ					
	Gross Alpha	pCi/L					-				
5	Total Beta	pCi/L	<		_	F					
₽	Radium 226/228	pCi/L	<		1	F	1				
õ	Total Strontium	µg/L	<			Ì					
C	Total Uranium	uo/L	<	1		E					
	Osmotic Pressure	mOs/ka		+	+	t	-				
						_	<u> </u>		 	 	
	osmole r ressure	moung									
	osinoio riessure					+					
	osmolo rressure						_				
							-				

Stream / Surface Water Information

Salisbury Borough STp, NPDES Permit No. PA0021628, Outfall 001

Toxics Management Spreadsheet Version 1.3, March 2021

Receiving Surface Water Name:

No. Reaches to Model: 1

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)"	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	038579	44.06	1998.32	97.5			Yes
End of Reach 1	038579	42.285	1981.68	132			Yes

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Q 7-10

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributary		Stream		Analysis	
Location		(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	44.06	0.037										100	7		
End of Reach 1	42.285	0.037													

Qh

Location	RMI	LFY	Flow (cfs)		W/D	Width	dth Depth	Velocit	Time	Tributary		Stream		Analysis	
Location		(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	44.06														
End of Reach 1	42.285														

Stream / Surface Water Information

4/22/2022

Page 4

DEPARTMENT OF ENVIRONME PROTECTION	pennsylvania Toxics Management Spreadsheet DEPARTMENT OF ENVIRONMENTAL Version 1.3, March 2021											
Model Results						:	Salisbury Bor	rough STp, NPDES Permit No. PA0021628, Outfall 001				
Instructions Results	RETURN	TO INPU	its]	SAVE AS	PDF	PRINT	A ()	NI 🔿 Inputs 🔿 Results 🔿 Limits				
Hydrodynamics	Hydrodynamics											
Wasteload Allocations												
✓ AFC	CCT (min): 1	5	PMF:	0.488	Ana	lysis Hardne	ss (mg/l):	100 Analysis pH: 6.97				
Pollutants	Conc	Stream CV	Trib Conc (µa/L)	Fate Coef	WQC (µq/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Copper	0	0		0	13.439	14.0	93.7	Chem Translator of 0.96 applied				
Total Lead	0	0		0	64.581	81.6	546	Chem Translator of 0.791 applied				
Total Zinc	0	0		0	117.180	120	802	Chem Translator of 0.978 applied				
CFC	CCT (min): 62.	978	PMF:	1	Ana	alysis Hardne	ss (mg/l):	100 Analysis pH: 6.99				
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Chloride (PWS)	0	0		0	N/A	N/A	N/A					
Sulfate (PWS)	0	0		0	N/A	N/A	N/A					
Total Copper	0	0		0	8.956	9.33	118	Chem Translator of 0.96 applied				
Total Lead	0	0		0	2.517	3.18	40.3	Chem Translator of 0.791 applied				
Total Zinc	0	0		0	118.139	120	1,517	Chem Translator of 0.986 applied				
⊘ тнн	CCT (min): 62.	978	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A				
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments				
Chloride (PWS)	0	0		0	250,000	250,000	N/A					
Sulfate (PWS)	0	0		0	250,000	250,000	N/A					
Total Copper	0	0		0	N/A	N/A	N/A					
Total Lead	0	0		0	N/A	N/A	N/A					
Total Zinc	0	0		0	N/A	N/A	N/A					

Model Results

4/22/2022

Page 5

✓ CRL	CCT (min): 22	395	PMF:	1	[Ana	alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

							<i>i</i>		
	Mass Limits			Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Copper	60.0	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	40.3	µg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	514	µg/L	Discharge Conc ≤ 10% WQBEL

Model Results

4/22/2022

Page 6