

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0021849

 APS ID
 43544

 Authorization ID
 1335719

	Applicant and Facility Information								
Applicant Name	Millerstown Municipal Authority Perry County	Facility Name	Millerstown STP						
Applicant Address	44 North High Street	Facility Address	110 West Juniata Parkway						
	Millerstown, PA 17062-0739		Millerstown, PA 17062-0739						
Applicant Contact	Timothy Reilly	Facility Contact	Timothy Reilly						
Applicant Phone	(717) 589-3834	Facility Phone	(717) 589-3834						
Client ID	51410	Site ID	248314						
Ch 94 Load Status	Not Overloaded	Municipality	Greenwood Township						
Connection Status	No Limitations	County	Perry						
Date Application Rece	ived December 8, 2020	EPA Waived?	Yes						
Date Application Acce	oted December 15, 2020	If No, Reason							
Purpose of Application	This is an application for NPDES re	enewal.							

Summary of Review

Approve	Deny	Signatures	Date
Х		Nicholas Hong, P.E. / Environmental Engineering Specialist Nick Hong (via electronic signature)	December 31, 2020
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria Bebenek, P.E. / Environmental Program Manager	

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Millerstown Municipal Authority located at 110 West Juniata Parkway, Millerstown, PA 17062 in Perry County, municipality of Greenwood Township. The existing permit became effective on June 1, 2016 and expires on May 31, 2021. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on December 8, 2020.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality-based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.12 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Perry County, the Millerstown Borough Council, and the Greenwood Township Supervisors and the notice was received by the parties on November 4, 2020, November 9, 2020, and November 5, 2020, respectively. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be the Juniata River. The sequence of receiving streams that the Juniata River discharges into is the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for warm water fishes (WWF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Juniata River is a Category 5 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an impaired stream for aquatic uses. The receiving waters is not subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- The loading for CBOD was corrected from 20 lbs/day to 25 lbs/day.
- The loading for TSS was corrected from 25 lbs/day to 30 lbs/day.

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Millerstown Municipal Authority

NPDES Permit # PA0021849

Physical Address: 110 West Juniata Parkway

Millerstown, PA 17062

Mailing Address: 44 North High Street

Millerstown, PA 17602

Contact: Timothy Reilly

Authority Chairman tvrslr@pa.net

Consultant: Yves Pollart

Water and Wastewater Senior Quality Engineer

Herbert, Rowland, and Grubic, Inc.

ypollart@hrg-inc.com

1.2 Permit History

Permit submittal included the following information.

- NPDES Application
- Influent Testing Information
- Flow Diagrams

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 110 West Juniata Parkway, Millerstown, PA 17062.

A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

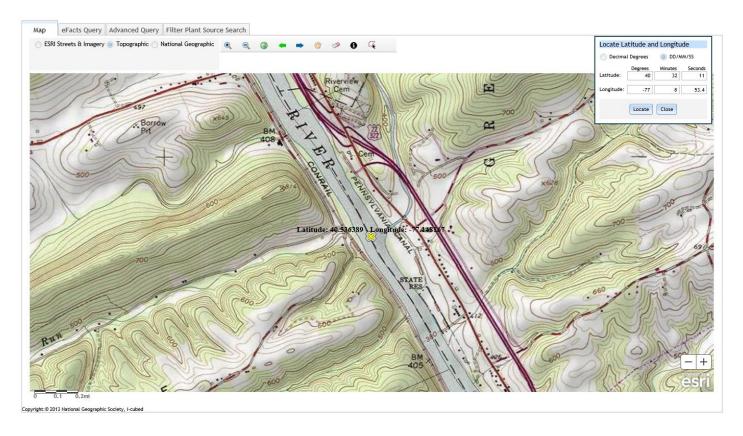
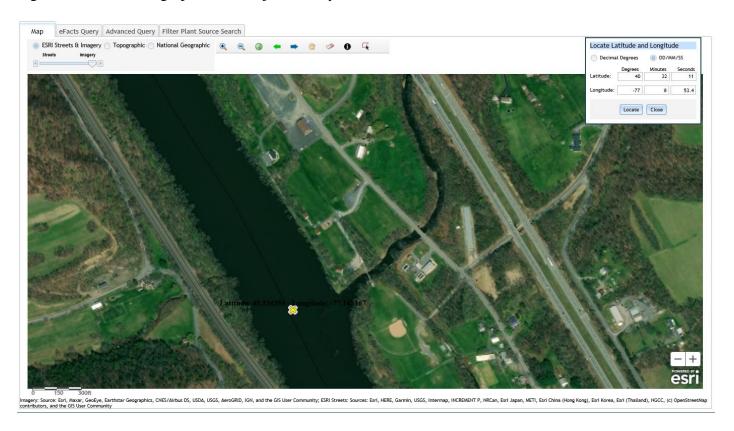



Figure 2: Aerial Photograph of the subject facility

2.1.2 Sources of Wastewater/Stormwater

The wastewater treatment plant received 100% of their wastewater from the Millerstown Borough. The municipality has approximately 339 EDUs.

The facility reported no industrial/commercial users and no hauled-in wastes.

2.2 Description of Wastewater Treatment Process

The subject facility is a 0.12 MGD design flow facility. The subject facility treats wastewater using a bar screen, a SBR(s), and an ultraviolet disinfection unit prior to discharge through the outfall to the Juniata River. The facility is being evaluated for flow, pH, DO, CBOD5, TSS, UV, fecal coliform, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary									
Treatment Facility Nar	ne: Millerstown STP									
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)						
Sewage	Secondary	Activated Sludge	Gas Chlorine	0.12						
Hydraulic Capacity	Organic Capacity			Biosolids						
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal						
0.12	205	Not Overloaded	Aerobic Digestion	Other WWTP						

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD)	.12
Latitude	40° 32' 11.00"	Longitude	-77º 8' 53.00"
Wastewater D	escription: Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

The facility reported on their NPDES renewal application no usage of wastewater treatment chemicals.

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PAR	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS								
I. A.	For Outfall 001	, Latitude 40° 32' 11.00" , Longitude 77° 8' 53.00" , River Mile Index 16.59 , Stream Code 11414							
	Receiving Waters:	Juniata River							
	Type of Effluent:	Sewage Effluent							

The permittee is authorized to discharge during the period from June 1, 2016 through May 31, 2021.
 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Requirements	
December	Mass Units	(lbs/day) (1)		Concentrati	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report Avg Mo	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	20.0	33.0 Wkly Avg	XXX	25.0	40.0	50	2/month	8-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Suspended Solids	25.0	37.0 Wkly Avg	XXX	30.0	45.0	60	2/month	8-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ultraviolet light intensity (mW/cm²)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite

Receiving Waters:

001 , Latitude 40° 32' 11.00" , Longitude 77° 8' 53.00" , River Mile Index 16.59 , Stream Code 11414 I. B. For Outfall

Type of Effluent: Sewage Effluent

Juniata River

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

 The permittee is authorized to discharge during the period from June 1, 2016 through May 31, 2021.
 Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Requirements	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
					1004	1004		8-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/month	8-Hr Composite
Net Total Nitrogen®	Report	6697	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus ⁸	Report	974	XXX	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): Outfall 001.

(1) See Part C for Chesapeake Bay Requirements.

(2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

(3) See Part C.1.A for definition

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

07/13/2016:

- Subsequent to the home heating oil spills in January 2016 that necessitated expensive cleaning and reseeding of the WWTP, Millerstown conducted a system-wide inspection of all users of the sewer system. This was completed to identify and remove all illegally connected floor drains and sump pumps.
- The SBR ORP probes were not functioning properly during the inspection. The facility has received approval to purchase replacement ORP probe caps.

4/4/2017:

- Since the previous inspection, the ORP probes had been replaced.
- The new sludge digester was in use. The other digester (converted former aeration tank) was not in use.
- For SBR 1, a thick tan foam was noted on the water surface. The operator suggested that the foam is indicative of filamentous bacteria and that the operator started treating the basins with granular chlorine.

6/12/2019:

• There was nothing significant to report.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.095 MGD. The design capacity of the treatment system is 0.12 MGD.

The off-site laboratory used for the analysis of the parameters was ALS Environmental, 34 Dogwood Lane, Middletown, PA 17057.

DMR Data for Outfall 001 (from November 1, 2019 to October 31, 2020)

Parameter	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20	APR-20	MAR-20	FEB-20	JAN-20	DEC-19	NOV-19
Flow (MGD)												
Average Monthly	0.049	0.040	0.039	0.034	0.062	0.095	0.084	0.083	0.072	0.065	0.053	0.042
Flow (MGD)												
Daily Maximum	0.232	0.098	0.106	0.052	0.219	0.319	0.129	0.324	0.210	0.245	0.121	0.159
pH (S.U.)												
Minimum	6.5	6.5	6.5	6.4	6.4	6.4	6.4	6.4	6.3	6.3	6.5	6.5
pH (S.U.)												
Maximum	6.6	6.7	6.7	6.7	6.6	6.6	6.7	6.7	6.6	6.7	6.6	6.6
DO (mg/L)												
Minimum [*]	6.6	7.0	6.7	7.0	7.0	7.1	7.1	7.0	7.4	6.9	7.1	6.9
CBOD5 (lbs/day)												
Average Monthly	0.9	2.0	1.0	2.0	1.0	< 6.0	2.0	2.0	1.0	< 1.0	1.0	0.7
CBOD5 (lbs/day)												
Weekly Average	0.9	4.0	1.0	2.0	1.0	11.0	2.0	2.0	2.0	1.0	2.0	0.7
CBOD5 (mg/L)												
Average Monthly	3.0	4.0	4.0	6.0	3.0	< 6.0	2.0	7.6	3.0	< 2.0	3.0	3.0
CBOD5 (mg/L)												
Weekly Average	3.7	4.5	4.0	7.4	3.1	10.9	3.0	8.0	3.3	3.0	3.2	2.9
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Average												
Monthly	86	118	74	61	93	84	89.0	106.0	86.0	58.0	103.0	60.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	96	147	82	63	124	105	96.0	144.0	97.0	70.0	148.0	64.0
BOD5 (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	327	254	258	228	181	120	138.0	179.0	174.0	138.0	208.0	241.0
TSS (lbs/day)												
Average Monthly	< 1.0	< 3.0	< 2.0	< 1.0	< 3.0	< 4.0	< 3.0	< 3.0	< 2.0	< 2.0	< 2.0	< 1.0
TSS (lbs/day)												
Raw Sewage Influent												
 Average												
Monthly	78	152	96	40	85	78	105.0	116.0	94.0	56.0	84.0	38.0
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	103	207	106	49	113	98	113.0	147.0	106.0	75.0	163.0	38.0
TSS (lbs/day)						_						
Weekly Average	< 1.0	5.0	< 2.0	< 1.0	< 4.0	< 5.0	< 4.0	< 3.0	< 3.0	< 2.0	< 3.0	< 1.0

TSS (mg/L)												
Average Monthly	< 5.0	< 6.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
TSS (mg/L)												
Raw Sewage Influent												
 br/> Average												
Monthly	293	306	325	149	164	111	163.0	195.0	192.0	132.0	167.0	150.0
TSS (mg/L)												
Weekly Average	5.0	6.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	5.0	< 5.0	< 5.0
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 2.0	19	< 1.0	14	3.0	< 2.0	6.0	6.0	< 3.0	< 1.0	7.0	< 1.0
Fecal Coliform												
(CFU/100 ml)												
Instantaneous		4.0		4.0				40.0	40.0		44.0	4.0
Maximum	4.0	40	2.0	19	4.0	3.0	8.0	19.0	12.0	2.0	11.0	1.0
UV Intensity (mW/cm²)	4 7	4.5	5 0		0.0	- 4	- 0	4.0		0.7		4.0
Minimum	4.7	4.5	5.0	5.7	6.8	5.1	5.2	4.2	4.4	3.7	4.1	4.6
Nitrate-Nitrite (mg/L)	40.0	40.4	7.5	0.0	0.0	0.0	0.0	0.7	4.0	4.0	0.4	45.5
Average Monthly	< 12.3	< 16.1	< 7.5	< 6.9	< 3.3	< 3.2	< 3.8	< 3.7	< 4.6	4.2	< 8.1	< 15.5
Nitrate-Nitrite (lbs)	.400	. 205	. 05	. 50	. 40	70.0	70.0	.00.0		55.0	. 400.0	1100
Total Monthly	< 100	< 205	< 65	< 58	< 43	< 76.0	< 76.0	< 69.0	< 66.0	55.0	< 106.0	< 116.0
Total Nitrogen (mg/L)	.40.4	. 47.7	. 0. 0	. 0. 0	. 4.0	. 4.0			0.0	0.5	. 0. 0	. 47.0
Average Monthly Total Nitrogen (lbs)	< 13.4	< 17.7	< 8.9	< 8.6	< 4.8	< 4.3	< 5.1	< 5.7	6.8	6.5	< 9.8	< 17.0
Effluent Net 												
Total Monthly	< 110	< 236	< 78	< 72	< 63.0	< 102.0	< 102.0	< 105.0	< 97.2	85.0	< 130.0	< 128.0
Total Nitrogen (lbs)	< 110	< 230	< 70	< 12	< 63.0	< 102.0	< 102.0	< 105.0	< 91.2	65.0	< 130.0	< 120.0
Total Monthly	< 110	< 236	< 78	< 72	< 63	< 102	< 102.0	< 105.0	97.2	85.0	< 130.0	< 128.0
Total Nitrogen (lbs)	< 110	< 230	< 10	< 12	< 03	< 102	< 102.0	< 105.0	31.2	65.0	< 130.0	< 120.0
Effluent Net 												
Total Annual		< 1479										
Total Nitrogen (lbs)		× 1473										
Total Annual		< 1479										
Ammonia (lbs/day)		× 1473										
Average Monthly	< 0.03	< 0.05	< 0.09	< 0.03	< 0.05	< 0.07	< 0.07	0.1	0.2	0.08	0.09	< 0.03
Ammonia (mg/L)	V 0.00	V 0.00	V 0.00	V 0.00	V 0.00	V 0.07	V 0.07	0.1	0.2	0.00	0.00	₹ 0.00
Average Monthly	< 0.1	< 0.1	< 0.284	< 0.1	< 0.1	< 0.1	< 0.100	0.178	0.343	0.179	< 0.188	< 0.1
Ammonia (lbs)	3 3.1	, 5.1	, 0.201	7 7.1	- 5.1	3 3.1	3 3.100	3.770	0.010	0.170	1 0.100	- 5.1
Total Monthly	< 0.8	< 2.0	< 3.0	< 0.8	< 2.0	< 2.0	< 2.0	3.0	5.0	2.0	< 3.0	< 0.8
Ammonia (lbs)	1 5.5	1 = 10	1 3.0	. 5.0	1 2.0	1 2.0	1 2.0	2.0	0.0		3.0	- 3.0
Total Annual		< 47										
TKN (mg/L)												
Average Monthly	< 1.2	1.7	1.4	1.7	1.5	1.2	1.3	2.0	2.2	2.3	1.7	1.6
TKN (lbs)							1.0		- _			
Total Monthly	< 1.2	31.0	12	14	20	25	26.0	36.0	31.0	30.0	24.0	12.0

NPDES Permit No. PA0021849

Total Phosphorus (lbs/day)												
Average Monthly	2.0	3.0	2.0	2.0	2	1.0	0.9	1.0	2.0	1.0	1.0	1.0
Total Phosphorus												
(mg/L)												
Average Monthly	6.3	7.5	5.4	6.6	3.6	1.8	1.4	2.5	3.3	2.7	2.7	4.7
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	51	90	47	54	54	38.0	27.0	45.0	46.0	34.0	36.0	35.0
Total Phosphorus (lbs)												
Total Monthly	51	90.0	47	54	54	38.0	27.0	45.0	46.0	34.0	36.0	35.0
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual		655										
Total Phosphorus (lbs)												
Total Annual		655										

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in June 1, 2016 to December 29, 2020, there were no observed effluent non-compliances.

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in June 1, 2016 to December 29, 2020, there were no observed enforcement actions.

3.3.3 Chesapeake Bay Truing Cap Loads

The table below summarizes the facility's compliance with Chesapeake Bay cap loads.

Chesapeake Bay Annual Nutrient Summary									
Millersville MA									
PA0021849									
	Net Efflu	ent Limits	Compliant with Per	mit Limits (Yes/No)					
Year for Truing Period (Oct 1 - Nov 28)	Nitrogen (lbs)	Phosphorus (lbs)	Nitrogon	Phosphorus					
	6,697	974	Nitrogen	Filospilorus					
2016	2,051	467	Yes	Yes					
2017	956	393	Yes	Yes					
2018	2018 1,761 367		Yes	Yes					
2019 2350 602 Yes Yes									
2020	1479	655	Yes	Yes					

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

2019									
Sewage Sludge / Biosolids Production Information									
Hauled Off-Site									
Date (YEAR)	(a) Gallons % Solids Dry To								
January	12,000	1.45	0.725						
February	11,500	1.45	0.698						
March	6,000	1.60	0.4						
April	18,000	1.17	0.875						
May	12,000	1.00	0.5						
June	6,000	1.30	0.325						
July	12,000	1.40	0.7						
August	6,000	1.40	0.35						
September	6,000	1.40	0.35						
October	6,000	1.40	0.35						
November	12,000	1.45	0.725						
Notes:									
The biosolids v	were removed	by Kline's Serv	vice, LLC for						
disposal at the	treatment pla	int							

3.5 Open Violations

No open violations existed as of December 2020.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be the Juniata River. The sequence of receiving streams that the Juniata River discharges into is the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is Newport Borough Water Authority (PWS ID #7500022) located approximately 4 miles downstream of the subject facility on the Juniata River. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams):

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 5 waterbody. The surface waters is an impaired stream for aquatic life due to pH from an unknown source. The designated use has been classified as protected waters for warm water fishes (WWF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Juniata River station at Newport, PA (WQN214). This WQN station is located approximately 4 miles downstream of the subject facility.

The closest gauge station to the subject facility is the Juniata River station at Newport, PA (USGS station number 1567000). This gauge station is located approximately 4 miles downstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.4 and the stream water temperature was estimated to be 23.97 C.

The hardness of the stream was estimated from the water quality network to be 97 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

	Gauge Station Data		
USGS Station Number			
Station Name	Juniata River at Nev	vport, PA	
Q710	534	ft ³ /sec	
Drainage Area (DA)	3354	mi ²	
Calculations			
The low flow yield of th	ne gauge station is:		
Low Flow Yield (LFY) = 0			
LFY =	(534 ft ³ /sec / 3,354 mi ²)		
LFY =	0.1592	ft ³ /sec/mi ²	
LFT -	0.1592	it /sec/iiii	
The low flow at the sub	ject site is based upon the DA of	3200	mi ²
Q710 = (LFY@gauge stat	• • •		
$Q710 = (0.1592 \text{ ft}^3/\text{sec/r})$	mi ²)(3,200 mi ²)		
Q710 =	509.481	ft ³ /sec	

Outfall No. 001	Design Flow (MGD)	.12	
Latitude 40º 32' 10.41"	Longitude	-77º 8' 51.14"	
Quad Name	Quad Code		
Wastewater Description: Sewage Effluent			
Receiving WatersJuniata River (WWF, MF)	Stream Code	11414	
NHD Com ID 66205141	RMI	16.4	
Drainage Area 3200	Yield (cfs/mi²)	0.1592	
Q ₇₋₁₀ Flow (cfs) 509.481	Q ₇₋₁₀ Basis	StreamStats/Streamgauge	
Elevation (ft) 380	Slope (ft/ft)		
Watershed No. 12-B	Chapter 93 Class.	WWF, MF	
Existing Use WWF/ MF	Existing Use Qualifier		
Exceptions to Use	Exceptions to Criteria		
Assessment Status Impaired for aquatic life			
Cause(s) of Impairment pH			
Source(s) of Impairment			
TMDL Status Not applicable	Name		
Background/Ambient Data	Data Source		
pH (SU) 8.4	WQN214; median July to Oct		
Temperature (°C) 23.97	WQN214; median July to Oct		
Hardness (mg/L) 97	WQN214; historical median		
Other:			
Nearest Downstream Public Water Supply Intake	Newport Borough Water Auth	ority	
PWS Waters Juniata River	Flow at Intake (cfs)		
PWS RMI 13	Distance from Outfall (mi)	4	

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Total Suspended Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.0 (WQM Model) and (3) PENTOXSD using DEP Toxics Management Spreadsheet for Toxics pollutants.

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The input values utilized for the modeling are summarized in the table which can be found in Attachment B.

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 PENTOXSD Modeling

The facility is not subject to PENTOXSD.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was December 17, 2019.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers;
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Based upon the supplement the subject facility has been categorized as a Sector C discharger. The supplement defines Sector C non-significant discharger that includes sewage facilities (Phase 4 facilities: ≥ 0.2 MGD and < 0.4 MGD and Phase 5 facilities: > 0.002 MGD and < 0.2 MGD), small flow/single residence sewage treatment facilities (≤ 0.002 MGD), and non-significant IW facilities, all of which may be covered by statewide General Permits or may have individual NPDES permits.

At this time, there are approximately 850 Phase 4 and 5 sewage facilities, approximately 715 small flow sewage treatment facilities covered by a statewide General Permit, and approximately 300 non-significant IW facilities.

For Phase 5 sewage facilities with individual permits (average annual design flow on August 29, 2005 > 0.002 MGD and < 0.2 MGD), DEP will issue individual permits with monitoring and reporting for TN and TP throughout the permit term at a frequency no less than annually, unless 1) the facility has already conducted at least two years of nutrient monitoring and 2) a summary of the monitoring results are included in the next permit's fact sheet. If, however, Phase 5 facilities choose to expand, the renewed or amended permits will contain Cap Loads based on the lesser of a) existing TN/TP concentrations at current design average annual flow or b) 7,306 lbs/yr TN and 974 lbs/yr TP.

If no data are available to determine existing concentrations for expanding Phase 4 or 5 facilities, default concentrations of 25 mg/l TN and 4 mg/l TP may be used (these are the average estimated concentrations of all non-significant sewage facilities).

DEP will not issue permits to existing Phase 4 and 5 facilities containing Cap Loads unless it is done on a broad scale or unless the facilities are expanding.

For new Phase 4 and 5 sewage discharges, in general DEP will issue new permits containing Cap Loads of "0" and new facilities will be expected to purchase credits and/or apply offsets to achieve compliance, with the exception of small flow and single residence facilities.

This facility is subject to Sector C monitoring requirements. Monitoring will be required 2x/month for nitrogen species and phosphorus.

Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses* and the level of water quality necessary to protect the existing uses shall be maintained and protected. Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility

is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection and (b) Nitrogen Species and Phosphorus.

6.1.1 Conventional Pollutants and Disinfection

	Summary of	Proposed NI	PDES Parameter Details for Conventional Pollutants and Disinfection Millerstown Borough; PA0021849
Parameter	Permit Limitation Required by ¹ :		Recommendation
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3). Effluent limits may range from pH = 6.0 to 9.0
pH (S.U.)	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).
Dissolved		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3). Effluent limits shall be greater than 5.0 mg/l.
Oxygen	BPJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.
		Monitoring: Effluent Limit:	The monitoring frequency shall be 2x/month as an 8-hr composite sample (Table 6-3). Effluent limits shall not exceed 25 lbs/month and 25 mg/l as an average monthly.
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.
	TBEL	Monitoring: Effluent Limit:	The monitoring frequency shall be 2x/mo as an 8-hr composite sample (Table 6-3). Effluent limits shall not exceed 30 lbs/month and 30 mg/l as an average monthly.
TSS		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply.
		Monitoring:	The monitoring frequency is 1x/day. The facility will be required to recording the UV intensity.
UV disinfection	SOP	Effluent Limit: Rationale:	No effluent requirements. Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised January 10, 2019), the facility will be required to have routine monitoring for UV transmittance, UV dosage, or UV intensity.
		Monitoring:	The monitoring frequency shall be 2x/month as a grab sample (Table 6-3).
Fecal Coliform	TBEL	Effluent Limit:	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.
Comoni		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).
Notes:			
1 The NPDES	permit was limited l	ov (a) anti-Bac	ksliding. (b) Anti-Degradation. (c) SOP. (d) TBEL. (e) TMDL. (f) WQBEL. (g) WET. or (h) Other

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.12 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.1.2 Nitrogen Species and Phosphorus

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus Millerstown Borough; PA0021849 **Permit Limitation Parameter** Recommendation Required by¹: The monitoring frequency shall be 2x/mo as an 8-hr composite sample Monitoring: Ammonia-Chesapeake Bay Effluent Limit: No effluent requirements. Nitrogen **TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/mo. Monitoring: The monitoring frequency shall be 2x/mo as an 8-hr composite sample Effluent Limit: No effluent requirements. Nitrate-Chesapeake Bay Nitrite as N **TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/mo. Monitoring: The monitoring frequency shall be 2x/mo as an 8-hr composite sample Effluent Limit: No effluent requirements. Total Chesapeake Bay Nitrogen **TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/mo. Monitoring: The monitoring frequency shall be 2x/mo as an 8-hr composite sample Effluent Limit: No effluent requirements. Chesapeake Bay **TKN TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/mo. Monitoring: The monitoring frequency shall be 2x/mo as an 8-hr composite sample Effluent Limit: No effluent requirements. Total Chesapeake Bay **Phosphorus TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 2x/mo. The monitoring frequency shall be 1x/mo as an 8-hr composite sample Monitoring: Effluent Limit: Net total nitrogen shall not exceed 6697 lbs/yr. **Net Total** Chesapeake Bay Nitrogen **TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a Rationale: frequency at least 1x/mo. The monitoring frequency shall be 1x/mo as an 8-hr composite sample Monitoring: Effluent Limit: Net total phosphorus shall not exceed 974 lbs/yr. **Net Total** Chesapeake Bay **Phosphorus TMDL** Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a

Notes:

- 1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.12 MGD.
- 3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

frequency at least 1x/mo.

4 Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

Rationale:

5 Phase 2 Watershed Implementation Plan Wastewater Supplement, Revised September 6, 2017

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

Using the equation described in Section 5.2.2, the loading yields 25 lbs/day CBOD. The loading for CBOD was corrected from 20 lbs/day to 25 lbs/day.

Using the equation described in Section 5.2.2, the loading yields 30 lbs/day CBOD. The loading for TSS was corrected from 25 lbs/day to 30 lbs/day.

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS								
I. A.	For Outfall 001	_, Latitude _40° 32' 11.00" _, Longitude _77° 8' 53.00" _, River Mile Index _16.4 _, Stream Code _11414							
	Receiving Waters:	Juniata River (WWF, MF)							
	Type of Effluent:	Sewage Effluent							

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Re	quirements					
Parameter	Mass Units (lbs/day) (1)			Concentrations (mg/L)				Required
Parameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	xxx	6.0	xxx	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0	xxx	xxx	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	25	40	xxx	25.0	40.0	50	2/month	8-Hr Composite
Biochemical Oxygen Demand (BOD5)	5	Report	100	D	200	2007	0//	8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	2/month	Composite 8-Hr
Total Suspended Solids	30	45	XXX	30.0	45.0	60	2/month	Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	2/month	8-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/month	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	xxx	XXX	200 Geo Mean	XXX	1000	2/month	Grab
Ultraviolet light intensity (mW/cm²)	XXX	XXX	Report	xxx	XXX	XXX	1/day	Recorded

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
	Monday	Avelage	Millingin	Monthly	Avelage	Waxiiiidiii	rrequency	8-Hr
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART A - EFFLUENT LIMITA	ATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. B. For Outfall 001	, Latitude40° 32' 11.00", Longitude77° 8' 53.00", River Mile Index14.36, Stream Code11414
Receiving Waters:	Juniata River (WWF, MF)
Type of Effluent:	Sewage Effluent

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								8-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
KieldahlN	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
								8-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/month	Composite
Net Total Nitrogen	Report	6697	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	974	XXX	xxx	xxx	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

(1) See Part C for Chesapeake Bay Requirements.

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- SBR Batch Discharge Condition
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

	Tools and References Used to Develop Permit
∇	WQM for Windows Model (see Attachment)
\overline{X}	PENTOXSD for Windows Model (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: New and Reissuance Sewage Individual NPDES Permit Applications, rev January 6, 2020
	Other:

Attachment A Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated ¹
01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	N
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	N
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	N
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	N
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	N
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	N
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	N
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	N
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	N
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	N
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	N
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	N
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	N
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Y
01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	N
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	N
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	N
01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	N
01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	N
01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	N
01582000	Little Falls at Blue Mount, Md.	39.604	-76.620	52.9	N
01582500	Gunpowder Falls at Glencoe, Md.	39.550	-76.636	160	Y
01583000	Slade Run near Glyndon, Md.	39.495	-76.795	2.09	N
01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	N

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft⁹/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01565000	1941-2008	37	17.6	18.6	28.6	20.3	32.4	24.4
01565700	1965-1981	17	.4	.4	.9	.5	1.1	.8
01566000	1913-2008	52	4.3	7.9	18.8	12.4	25.6	19.2
01566500	1932-1958	27	1.7	2.4	4.0	3.2	5.7	4.9
01567000	21974-2008	35	504	534	725	589	857	727
01567000	31901-1972	72	311	367	571	439	704	547
01567500	1955-2008	54	2.0	2.2	3.3	2.6	3.8	3.1
01568000	1931-2008	78	12.7	15.5	25.5	19.2	32.0	26.
01568500	21943-1997	55	1.8	2.3	4.3	2.7	5.0	3.
01569000	1939-1974	14	2.6	4.0	7.4	5.1	9.4	7.
01569800	1978-2008	31	15.9	17.0	24.4	18.4	26.1	20.
01570000	31913-1969	35	_	63.1	110	76.1	124	95.
01570000	² 1971–2008	38	63.1	69.3	109	78.3	125	97.
01570500	31901-1972	72	2,310	2,440	4,000	2,830	4,950	3,850
01570500	21974-2008	35	3,020	3,200	5,180	3,690	6,490	4,960
01571000	1941–1995	16	.1	.2	.6	.3	1.2	1,500
01571500	1911-2008	62	81.6	86.8	115	94.0	124	105
01572000	1921-1984	14	2.1	2.3	4.8	3.0	6.5	4.
01572005	1990-2008	17	15.2	16.4	26.7	18.5	34.6	27.
01572025	1990-2008	17	19.1	20.5	36.2	23.9	45.8	35.
01572190	1920-2008	89	18.0	22.0	52.0	30.8	69.2	50.
01573086	1965-1981	17	.5	.6	2.6	.8	3.3	1.
01573060	1977–1994	18	26.9	29.6	46.4	33.6	51.9	39.
01573100	1939–1958	20	1.3	1.4	2.5	1.8	3.2	2.
01573560	1977–2008	30	50.3	62.0	104	76.9	131	108
01574000	1930–2008	79	8.0	11.1	32.0	17.7	47.0	33.
01574500	21968-2008	41	14.2	24.0	35.9	29.4	42.0	
01574500			2.3					33.
01574500	31930-1966 21973-1995	34 23	2.3 .7	7.1 1.4	11.5 6.7	9.3 3.2	14.8 12.0	12. 9.
		43					15.0	
01575000	31929-1971		.1	.6	10.3	2.3		6.
01575500 01576000	21948-1996 31933-1972	49 40	12.1	18.7	41.3	23.9	50.0	4 100
			2,100	2,420	4,160	2,960	5,130	4,100
01576000	21974-2008	35	2,990	3,270	5,680	3,980	7,180	5,540
01576085	1984-1995	12	.4	.5	.8	.7	1.2	1.
01576500	1931–2008	78	27.2	38.6	79.4	49.1	97.3	66.
01576754	1986-2008	23	74.2	84.9	151	106	189	147
401578310	1969-2008	40	549	2,820	5,650	4,190	7,380	6,140
01578400	1964-1981	18	1.4	1.5	2.7	1.9	3.2	2.:
101580000	1928-2008	81	19.7	22.8	48.1	28.1	51.8	35.
401581500	1946-2008	28	.2	.3	1.2	.8	1.7	1.
401581700	1969-2008	40	4.7	5.5	17.5	8.1	18.3	12.
101582000	1946-2008	63	11.3	12.5	25.0	15.5	28.0	20.
401582500	1979–2008	27	41.2	43.9	78.8	53.8	90.6	74.
401583000	1949-1981	33	.3	.3	.7	.3	1.0	ا
401583100	1984-2008	15	2.1	2.4	5.5	3.2	6.0	4.

Attachment B

Modeling Input Values WQM 7.0 Modeling Output Values

Master Input Sheet								
Millerstown Municipal Authority								
PA0021849								
December 2020								
General Data 1								
(Modeling Point	Туре	Default	Input Value	Units				
#1)	,,,,,	2 Gyarano	par varae					
Stream Code	R		11414					
River Mile Index	R		16.4	miles				
Elevation	R		380	feet				
Latitude			40.536389					
Longitude			-77.148167					
Drainage Area	R		3200	sq miles				
Reach Slope	0		Default	ft/ft				
Low Flow Yield	R	0.1	509.481	cfs/sq mile				
Potable Water	0	0	Default	mad				
Supply Withdrawal	U	0	Default	mgd				
General Data 2								
(Modeling Point	Туре	Default	Input Value	Units				
#2)	Турс	Dejauit	input value	O.M.G				
Stream Code	R		11414					
River Mile Index	R		14.36	miles				
Elevation	R		374	feet				
Latitude			40.50994					
Longitude			-77.131192					
Drainage Area	R		3270	sq miles				
Reach Slope	0		Default	ft/ft				
Low Flow Yield	R	0.1	509.481	cfs/sq mile				
Potable Water	О	0	Default	mgd				
Supply Withdrawal				85				
Hydrodynamic and								
Related Data	Туре	Default	Input Value	Units				
Tributary Flow	0		Default	cfs				
Stream Flow	0		Default	cfs				
Tributary								
, Temperature	R	20	23.97	С				
Tributary pH	R	7	8.4	pH units				
Stream	0		Default	С				
Temperature			Default					
Stream pH	0		Default	pH Units				
Tributary Hardness	R (Pentox)	100	97	mg/l				

Parameter Data	Туре	Default	Input Value	Units
CBOD				
Average	5	25	25	
Discharge	R	25	25	mg/l
Concentration				
Tributary	R	2	Default	mg/l
Concentration				
Stream	0		Default	mg/l
Concentration				
Discharge		4.5	Default	1/day
Deoxygenation	R	1.5		
Rate				
NH3-N				
Average	_	25	Default	mg/l
Discharge	R	25		
Concentration				
Tributary	R	0	Default	mg/l
Concentration				
Stream	0		Default	mg/l
Concentration				
Stream	R	0.7	Default	1/day
Nitrification Rate				
DO				
Average	_		5	mg/l
Discharge	R	3		
Concentration				
Tributary	R	Calculated	Default	mg/l
Concentration				
Stream	0		Default	mg/l
Concentration				<u> </u>
Stream	0		Default	1/day
Reaeration Rate				
Tributary	R	90	Default	percent
Saturation				

Model	Туре	Default	Input Value	Units
Specifications		Default		
Parameters	R	Doth	Both	NH3-N/DO/Both
(DO/NH3-N)		Both		
WLA Method	R	EMPR	EMPR	UT/EMPR/DO
Use entered Q1-10	R	Yes	Yes	Yes/No
and Q30-10 data		res		
Default Q1-10/Q7-	R	0.64	0.94	Dimensionless
10 ratio		0.64		
Default Q30-10 / Q7-	R	1.6	1.10	Dimensionless
10 ratio		1.0		
Use input reach	R	No	Default	Yes/No
width/depth ratios		No		
Use input reach	R	No	Default	Yes/No
travel times		INO		
Temperature Adjust	R	Yes	Default	Yes/No
Kr		163		
Default DO Goal	R	6	5	mg/l
Use Balanced	R	Yes	Yes	Yes/No
Technology		163		163/110
Number of Samples for PENTOXSD	R		4	Dimensionless