

Application Type
Facility Type
Major / Minor

Renewal
Municipal
Major

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Application No. PA0021857
APS ID 955278
Authorization ID 1206923

Applicant and Facility Information

Applicant Name	<u>Borough of Souderton</u>	Facility Name	<u>Borough of Souderton WWTP</u>
Applicant Address	<u>31 W Summit Street</u> <u>Souderton, PA 18964-1612</u>	Facility Address	<u>174 Cowpath Road</u> <u>Souderton, PA 18964-2007</u>
Applicant Contact	<u>Sara Jarrett-Eaton</u>	Facility Contact	<u>Sara Jarrett-Eaton</u>
Applicant Phone	<u>(215) 723-4371</u>	Facility Phone	<u>(215) 723-4371</u>
Client ID	<u>3685</u>	Site ID	<u>263090</u>
Ch 94 Load Status	<u>Not Overloaded</u>	Municipality	<u>Franconia Township</u>
Connection Status	<u>No Limitations</u>	County	<u>Montgomery</u>
Date Application Received	<u>November 8, 2017</u>	EPA Waived?	<u>No</u>
Date Application Accepted		If No, Reason	<u>Major Facility</u>
Purpose of Application	<u>Permit Renewal.</u>		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application from S C Engineers, Inc. (consultant) on behalf of Borough of Souderton (permittee) for permittee's Borough of Souderton WWTP (facility) on November 8, 2017. The draft permit was published in the PA Bulletin on November 24, 2018; however, it was never finalized. The permit was redrafted on January 10, 2023 and was published on PA Bulletin on January 28, 2023. A pre-draft permit was sent to the Consultant on July 20, 2023 but wasn't officially drafted or published in the PA Bulletin. This fact sheet will accompany the official 3rd draft. The current permit expired on May 31, 2018 and the permit is under administrative extension since then. This is a major sewage facility with design flow of 2.0 MGD and the treated effluent is discharged into an UNT to Skippack Creek (TSF, MF). Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this permit: Quarterly monitoring for TDS, Total Aluminum, Total Arsenic, Total Boron, Dissolved Iron, Total Zinc, and Chlorodibromomethane. Limits with schedule for Free Cyanide, Total Iron, Total Thallium, Dichlorobromomethane, and Chloroform. Monthly monitoring for E. Coli and Total Nitrogen, annual monitoring for PFOA, PFOS, PFBS, and HFPO-DA.

Sludge use and disposal description and location(s): Aerobic digestion and dewatering by means of a belt filter press. Digested and dewatered sludge is used under PAG08 in mine sites in Schuylkill County.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
✓		Reza H. Chowdhury, P.E. / Environmental Engineer 	November 5, 2025
X		Pravin Patel Pravin C. Patel, P.E. / Environmental Engineer Manager	11/06/2025

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	2.0
Latitude	40° 17' 40.14"	Longitude	-75° 19' 55.92"
Quad Name	Telford	Quad Code	1643
Wastewater Description:	Sewage Effluent		
Receiving Waters	Unnamed Tributary to Skippack Creek (TSF, MF)	Stream Code	01119
NHD Com ID	25999040	RMI	0.09
Drainage Area	1.76 mi ² /2.91 mi ²	Yield (cfs/mi ²)	0.05/0.1
Q ₇₋₁₀ Flow (cfs)	0.0829/0.291	Q ₇₋₁₀ Basis	USGS StreamStats
Elevation (ft)	267.3	Slope (ft/ft)	
Watershed No.	3-E	Chapter 93 Class.	TSF, MF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	ALGAE, SILTATION		
Source(s) of Impairment	RURAL (RESIDENTIAL AREAS), RURAL (RESIDENTIAL AREAS)		
TMDL Status	Final 04/09/2005, withdrawn	Name	Skippack Creek Watershed TMDL
Background/Ambient Data		Data Source	
pH (SU)	7.0	Previous fact sheet, default	
Temperature (°C)	20	Previous fact sheet, default	
Hardness (mg/L)	209	Previous fact sheet	
Other:			
Nearest Downstream Public Water Supply Intake		Aqua PA Main	
PWS Waters	Skippack Creek	Flow at Intake (cfs)	
PWS RMI	0.9	Distance from Outfall (mi)	15.98

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

USGS's web based watershed delineation tool StreamStats (accessible at <https://streamstats.usgs.gov/ss/>, accessed on October 18, 2022) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The drainage area was found to be 1.76 mi². The previous fact sheet accompanying the 2018 draft stated that "since the point of discharge is located only 0.09 mile from the main stem of the Skippack Creek, the model was utilized as if the discharge was directly to the main stem of Skippack Creek at RMI 14.05 (corrected to 13.88) This was done to ensure a sufficient stream length was modeled to observe the effects of DO lag. The Q₇₋₁₀ at river mile 14.05 (corrected to 13.88) of Skippack Creek was estimated as 0.0925-cfs (changed to 0.099 cfs)." The drainage area at Node 1 (at Skippack Creek RMI 13.88) is found to be 2.91 mi², which is outside of suggested range and other flow estimates may produce extrapolated results with unknown error. To avoid this, a default low flow yield of 0.1 cfs/mi², Q₁₋₁₀:Q₇₋₁₀ ratio of 0.64, and Q₃₀₋₁₀:Q₇₋₁₀ ratio of 1.36 will be utilized in modeling.

$$\begin{aligned} Q_{7-10} \text{ runoff rate} &= 0.1 \text{ cfs/mi}^2 \\ Q_{7-10} &= 0.1 \text{ cfs/mi}^2 * 2.91 \text{ mi}^2 = 0.291 \text{ cfs} \end{aligned}$$

PWS Intake:

The nearest downstream public water supply is Aqua PA Main on Perkiomen Creek, in Lower Merion Township at RMI 0.9. Its approximately 15.98 miles downstream of Outfall 001. Discharge from this facility is expected not to impact the PWS intake. The distance is calculated as follows:

+ Outfall 001 RMI at UNT to Skippack Creek (01119) -----	0.09 mi
+ RMI on Skippack Creek (01024) at confluence with 01119 -----	13.88 mi
+ RMI on Perkiomen Creek (01017) at confluence with 01024 -----	2.91 mi
- PWS RMI at 01017 -----	0.9 mi

Total 15.98 miles

Wastewater Characteristics:

A 90th percentile pH of 7.2 was calculated from daily DMR from October 1, 2024 through September 30, 2025. The application data indicated an average Total Hardness of 164 mg/l out of 3 samples. A default temperature of 20°C will be used for modeling.

Background data:

There is no nearby WQN station to calculate background pH, temperature, or hardness. The permit application indicated an average upstream hardness of 209 mg/l from data collected between 2015-2017. A default stream pH of 7.0 S.U. and temperature of 20°C will be used for modeling.

Skippack Creek Total Maximum Daily Load (TMDL):

Skippack Creek is a 15.2-mile stream located in sub-sub-basin 03E, Montgomery County, PA. it is a tributary to Perkiomen Creek whose drainage basin is composed of urban, suburban, agricultural, and rural components. Skippack Creek begins within Souderton Borough limits and flows generally southwest to its confluence with Perkiomen Creek at RMI 3.0. The Skippack Creek TMDL was finalized in April 9, 2005 for Sediments and Nutrients. There were 11 active NPDES permitted point source discharges in the watershed including 7 STPs, 1 meat packing plant, 1 dairy farm, and 2 manufacturers. No reduction for sediment load from point sources were proposed in the final TMDL. The nutrient portion of the TMDL was withdrawn in summer of 2007. No WLA was assigned to this treatment plant. The effluent limitations in the permit will be applied in a way that the discharge from this facility will not add to the existing impairment of the receiving stream.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Trout Stocking (TSF) and Migratory Fishes (MF.)

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge. The secondary receiving stream, Skippack Creek, is a stocked trout water. The existing permit has a minimum DO limit of 6.0 mg/l as minimum to protect the stocked trout. This requirement will be carried over during this renewal.

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	002	Design Flow (MGD)	0
Latitude	40° 17' 44"	Longitude	-75° 19' 55.97"
Quad Name	Telford	Quad Code	1643
Wastewater Description:	Stormwater		
Receiving Waters	UNT to Skippack Creek (TSF, MF)	Stream Code	
NHD Com ID	25999040	RMI	0.09

Changes Since Last Permit Issuance: None

Treatment Facility Summary				
Treatment Facility Name: Souderton Borough STP				
WQM Permit No.		Issuance Date		
4696406		05/02/1996		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Activated Sludge	Gas Chlorine	2.0
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
2	3,336	Not Overloaded	Aerobic Digestion	Landfill

Changes Since Last Permit Issuance: None

Treatment Plant Description

Borough of Souderton WWTP is a 2.0 MGD Major Sewer Facility (MASF1) located in Souderton Borough, Montgomery County which discharges treated sewage through Outfall 001 into an UNT to Skippack Creek in state watershed 3-E. The WWTP incorporates aerated grit removal, extended aeration for BOD5 removal and nitrification, ferrous sulfate addition for phosphorus removal, final clarification, chlorination, and post aeration. The treated effluent is discharged through Outfall 001. Outfall 002 is a stormwater only outfall.

The facility receives flows mostly from Souderton Borough and small contributions from few other municipalities:

Municipalities served	Flow contribution (%)	Type of Sewer System		Population
		Separate (%)	Combined (%)	
Souderton Borough	88	100	0	11,130
Franconia Township	11	100	0	1,360
Hilltown Township	1	100	0	125

There is one significant and categorical industry that discharges to this WWTP. Leidy's Inc. is in Franconia Township that discharged approximately 59,250 gallons to the WWTP in 2016. The facility is a categorical industry under pretreatment standard as coded in 40 CFR Part 432-Meat and Poultry Products Point Source Category (pork slaughterhouse). The permit application indicated that an industrial user permit been issued to Leidy's Inc.

Per PADEP's most recent site inspection on August 12, 2025, the WWTP consists of the following treatment units:

One influent screen, one grit removal, two aeration basins, two secondary clarifiers, two chlorine contact tanks, one dechlorination system, two aerobic digesters, and one belt filter press.

The following chemicals are used as wastewater treatment chemicals:

Chemical name	Purpose	Maximum use rate	Units
Ferrous Sulfate	Phosphorus coagulation	250	GPD
Chlorine	Disinfection	50	Lbs./day
Sulfur Dioxide	Dechlorination	25	Lbs./day

Biosolids Management:

Sludge handling for this WWTP includes aerobic digestion and dewatering by means of a belt filter press. Before dewatering, polymer is measured and mechanically blended with the liquid biosolids. Digested and dewatered sludge is used under PAG08 in mine sites in Schuylkill County.

Compliance History

DMR Data for Outfall 001 (from September 1, 2024 to August 31, 2025)

Parameter	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24
Flow (MGD) Average Monthly	0.910	1.277	1.372	2.095	1.600	1.373	1.414	0.961	1.445	1.020	0.855	0.926
Flow (MGD) Daily Maximum	1.125	1.773	1.642	3.169	2.125	1.745	1.861	1.672	1.756	1.193	0.909	1.043
pH (S.U.) IMIN	6.5	6.8	6.7	6.9	6.7	6.4	6.6	6.7	6.7	6.9	6.8	6.8
pH (S.U.) IMAX	7.3	7.2	7.3	7.3	7.3	7.2	7.2	7.1	7.2	7.3	7.3	7.2
DO (mg/L) Minimum	7.4	7.0	7.1	7.5	7.7	7.5	10.4	8.3	8.3	8.5	9.0	8.5
DO (mg/L) Average Monthly	8.1	7.5	7.8	9.0	9.2	9.5	12.0	10.1	10.0	9.7	9.5	9.0
TRC (mg/L) Average Monthly	0.004	0.004	0.004	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.003	0.005
TRC (mg/L) IMAX	0.026	0.013	0.022	0.008	0.007	0.004	0.005	0.005	0.009	0.003	0.017	0.018
CBOD5 (lbs/day) Average Monthly	15	25	29	42	40	42	47	57	36	17	20	23
CBOD5 (lbs/day) Weekly Average	17	38	39	56	100	58	56	117	41	20	36	33
CBOD5 (mg/L) Average Monthly	2.0	2	2.6	2.5	3.1	3.8	4.2	7.3	3.7	2.3	2.8	3.0
CBOD5 (mg/L) Weekly Average	2.2	2.1	3.2	2.8	5.6	5.5	5.1	16.4	4.7	2.8	5.1	4.5
TSS (lbs/day) Average Monthly	30	54	72	129	88	55	78	87	62.8	36	32.5	33
TSS (lbs/day) Weekly Average	34	80	119	175	245	76	117	107	94.1	38	37.2	35
TSS (mg/L) Average Monthly	< 4	4.4	6.1	7.5	6.7	4.7	6.4	10.8	6.5	5.1	4.6	4.3
TSS (mg/L) Weekly Average	< 4	5.5	8.4	9.4	14	5.1	8.3	14.5	10.9	6.6	5.5	4.6
Fecal Coliform (CFU/100 ml) Geometric Mean	35	54	38	48	34	58	70	129	56	59	111	57
Fecal Coliform (CFU/100 ml) IMAX	184	148	192	224	1100	358	216	277	132	204	373	83
Ammonia (lbs/day) Average Monthly	10.7	2.0	13.3	6.7	3.3	9.7	13.2	0.8	1.9	1.8	1.4	0.7
Ammonia (mg/L) Average Monthly	1.58	0.18	1.09	0.50	0.36	0.84	1.1	0.1	0.2	0.25	0.20	0.10

NPDES Permit Fact Sheet
Borough of Souderton WWTP

NPDES Permit No. PA0021857

Total Phosphorus (lbs/day)												
Average Monthly	9.2	9.2	9.9	13.2	7.6	7.9	7.0	7.6	8.5	6.4	6.0	5.9
Total Phosphorus (mg/L)												
Average Monthly	1.26	0.76	0.87	0.80	0.67	0.70	0.62	0.96	0.88	0.82	0.86	0.75
Total Copper (mg/L)												
Average Monthly	0.021	0.010	0.009	0.012	0.016	0.018	0.010	0.019	0.013	0.011	0.016	0.015
Total Copper (mg/L)												
Daily Maximum	0.044	0.013	0.014	0.015	0.038	0.045	0.019	0.048	0.017	0.014	0.018	0.022

DMR Data for Outfall 002 (from September 1, 2024 to August 31, 2025)

Parameter	AUG-25	JUL-25	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24
TSS (mg/L)												
Daily Maximum									71			
Fecal Coliform (CFU/100 ml)												
Daily Maximum									2000			
TKN (mg/L)												
Daily Maximum									1.8			
Total Iron (mg/L)												
Daily Maximum									< 0.02			

Compliance History

Effluent Violations for Outfall 001, from: October 1, 2024 To: August 31, 2025

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Fecal Coliform	04/30/25	IMAX	1100	CFU/100 ml	1000	CFU/100 ml
Total Phosphorus	08/31/25	Avg Mo	1.26	mg/L	1.0	mg/L

Other Comments: The Non-compliance report submitted with April 2025 eDMR stated that the cause of April violation was due to chlorine gas injector spring broke during sample collection. The issue was identified and replaced the broken injector with a new one. No justification was provided for August TP exceedance.

Summary of Inspections:

August 12, 2025: FUI conducted on November 18 2024 (facility was cited for not having an employee or contractor who held a Class E, sub-class 4 certification required) and June 9 2025 (Operators passed the WWE4 test and application for license upgrade). The FUI addressed the concerns regarding these issues. No violations noted during the inspection.

June 9, 2025: INCDT inspection conducted in response to discharge containing floating materials, scums, sheen, foam, oil, grease or substances that produced an observable change or resulted in deposits in receiving waters. On June 8 2025, the PADEP's Emergency Response was notified of a fish kill in Skippack Creek in

the vicinity of Creekside Drive. DEP's responder observed both live and dead fish in the waterway. Turbidity from an active residential development was observed entering the creek. No increase of sedimentation was observed immediately downstream of this point. Above this point what seemed to be scattered STP clarifier solids were observed in the creek. The deposits became heavier as the waterway was walked up to the STP outfall. Numerous dead fish, mostly catfish, were observed upstream of the development discharge point. No live fish were observed. The solids deposition and dead fish were tracked up to the STP outfall. No solids deposition or dead fish were observed from the outfall upstream to the Cowpath Road bridge. Numerous live fish were observed above the outfall. At the time of the investigation the B side treatment tank was out of service for maintenance work. The A side treatment tank was reportedly operating normally. Effluent at the flume looked normal. Monitoring results were normal.

June 2, 2025: INC DT inspection conducted as a response to an SSO on May 30th. Sewage was intermittently discharging from a vent stack between 358 and 360. During the inspection, no residues or obvious negative impact was evident at the down gradient stormwater inlet or below the stormwater outfall point at West Street Park.

November 18, 2024: CEI conducted. Violation noted for failure to employ an operator with a valid, appropriate certificate required for operation of the collection system and pump stations (Class E, sub-class 4).

July 18, 2024: INC DT conducted. Violation noted for failure to orally notify DEP within 4 hours of a pollution incident or submit written report within 5 days of incident.

April 18, 2024: COMPL inspection conducted for a residential odor complaint that was occurring over past couple years. No malodor was observed during the inspection.

January 10, 2024: INC DT inspection conducted. Violations noted including SSO and STP treatment unit overflow, which are unpermitted discharge. The violations were immediately corrected.

October 23, 2023: CEI conducted. No violations noted.

September 5, 2023: INC DT conducted. Violations noted including failure to take necessary measures to prevent pollutants from reaching waters of the Commonwealth that resulted in a fish kill.

March 30, 2023: FUI conducted on October 7, 2022 NOV that was a result of October 4, 2022 inspection. No violations noted during the inspection. The facility stated that they'll install monitoring cameras so that the staffs can react quicker to changing conditions. The permittee's actions corrected two cited violations.

December 16, 2022: RTPT conducted. Violation noted for unauthorized, unpermitted discharge; and sample results exceeding permitted limits.

October 4, 2022: CEI conducted. Unpermitted discharge due to overflow from A side of the treatment tank aeration unit on September 6, 2022. The permittee reported this SSO. An NOV was issued on later date.

May 31, 2022: RTPT conducted. No violation noted during the inspection. Increased algal growth was observed at and immediately below outfall 001. Outfall 002 looked normal. The basin was dry and no obvious contamination was evident.

10/19/2021: CEI conducted. No violation noted during the inspection. A greater than normal deposition of plant solids was observed in the first pool downstream of the outfall, which may be due to side B clarifier issue. No issues were evident below this point.

07/20/2021: RTPT conducted. No violation noted.

10/08/2020: CEI conducted. No violation noted. Increased algal growth was present at and immediately below the outfall. Some normal settled solids were present in the first downstream pool.

04/13/2020: ADMIN review conducted. No violation noted. The facility didn't have issues with necessary materials supply due to COVID.

Existing Effluent Limitations and Monitoring Requirements

For Outfall 001:

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Inst. Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	Report	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.012	XXX	0.038	1/day	Grab
CBOD5 May 1 - Oct 31	250	383	XXX	15	23	30	2/week	24-Hr Composite
CBOD5 Nov 1 - Apr 30	417	667	XXX	25	40	50	2/week	24-Hr Composite
Total Suspended Solids	500	750	XXX	30	45	60	2/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) (October 01 to April 30)	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Fecal Coliform (CFU/100 ml) (May 01 to September 30)	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	2/week	Grab
Ammonia-Nitrogen May 1 - Oct 31	30.0	XXX	XXX	1.8	XXX	3.6	2/week	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	60.0	XXX	XXX	3.6	XXX	7.2	2/week	24-Hr Composite
Total Phosphorus Apr 1 - Oct 31	16.5	XXX	XXX	1.0	XXX	2.0	2/week	24-Hr Composite
Total Phosphorus Nov 1 - Mar 31	33.0	XXX	XXX	2.0	XXX	4.0	2/week	24-Hr Composite
Copper, Total	XXX	XXX	XXX	Report	Report Daily Max	Report	1/week	24 Hour Composite

NPDES Permit Fact Sheet
Borough of Souderton WWTP

NPDES Permit No. PA0021857

For Outfall 002:

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Inst. Minimum	Average Monthly	Daily Maximum	Instant. Maximum		
Total Suspended Solids	XXX	XXX	XXX	XXX	Report	XXX	1/Year	Upon Request
Fecal Coliform (CFU/100 ml)	XXX	XXX	XXX	XXX	Report	XXX	1/Year	Upon Request
Total Kjeldahl Nitrogen	XXX	XXX	XXX	XXX	Report	XXX	1/Year	Upon Request
Total Iron	XXX	XXX	XXX	XXX	Report	XXX	1/Year	Upon Request

Development of Effluent Limitations				
Outfall No.	001	Design Flow (MGD)	2.0	
Latitude	40° 17' 40.14"	Longitude	-75° 19' 55.92"	
Wastewater Description:	Sewage Effluent			

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Fecal Coliform	200 / 100 ml	Geo Mean	DRBC	92a.47(a)(5)
Fecal Coliform	1,000 / 100 ml	IMAX	DRBC	92a.47(a)(5)
Total Dissolved Solids	1,000	Average Monthly		DRBC
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Water Quality-Based Limitations

WQM 7.0:

The following data were used in the attached computer model (WQM 7.0) of the stream:

- Discharge pH 7.2 (Daily eDMR data, Oct 1 2024-Sep 30 2025)
- Discharge Temperature 20°C (Default)
- Discharge Hardness 164 mg/l (Application data)
- Stream pH 7.0 (Default)
- Stream Temperature 20°C (Default)
- Stream Hardness 209 mg/l (Application data)

The following two nodes were used in modeling:

Node 1: At the confluence of UNT 01119 to Skippack Creek with Skippack Creek (01024) at Skippack Creek RMI 13.88

Elevation: 265.75 ft (USGS TNM 2.0 viewer, 10/17/2022)
Drainage Area: 2.91 mi² (StreamStat Version 3.0, 10/17/2022)
River Mile Index: 13.88 (PA DEP eMapPA)
Low Flow Yield: 0.1 cfs/mi²
Discharge Flow: 2.0 MGD

Node 2: At confluence with UNT 01115 with Skippack Creek (01024)

Elevation: 237.18 ft (USGS TNM 2.0 viewer, 10/17/2022)
Drainage Area: 4.57 mi² (StreamStat Version 3.0, 10/17/2022)
River Mile Index: 13.18 (PA DEP eMapPA)
Low Flow Yield: 0.1 cfs/mi²
Discharge Flow: 0.0 MGD

Ammonia (NH₃-N), Carbonaceous Biochemical Oxygen Demand (CBOD₅), & Dissolved Oxygen (DO):

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and current background water quality levels of the stream.

NH₃-N:

WQM 7.0 suggested NH₃-N limit of 1.8 mg/l as monthly average and 3.6 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. The average monthly mass loading is calculated to be 30.0 lbs./day. The existing winter season limits of 3.6 mg/l as average monthly and 7.2 mg/l as IMAX limit will be carried over in this renewal. Winter average monthly mass limit was calculated as 60.0 lbs./day, which is the same as in the existing permit and will remain unchanged.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 15 mg/l. The average monthly and average weekly mass loadings were calculated as 250 lbs./day and 375 lbs./day respectively. These values are the same as existing permit with the exception of weekly mass limit which is believed to be miscalculated in previous permit. The weekly average limit should be 1.5 times of monthly average values. The current permit has winter season average monthly, weekly average, and IMAX limit of 25 mg/l, 40 mg/l, and 50 mg/l, respectively, which will be carried over in this renewal. Seasonal limit for CBOD₅ is allowed in PADEP's guidance ⁽¹⁾. The mass limit for winter season is calculated to be 417 lbs./day as monthly average and 667 lbs./day as weekly average which are the same as existing permit and will be carried over. Minimum monitoring frequency will remain the same as 2/week, 24-hr composite sampling.

Dissolved Oxygen (DO):

A minimum of 6.0 mg/L for D.O. is necessary to protect the designated use of the receiving stream and is supported by the output from WQM 7.0 modeling and consistent with Ch. 93.7. This limit will be applied in the draft permit.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.
3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

The permittee collected additional 7 samples for metals and Free Cyanide and 8 samples for volatiles. The results were plugged into TOXCONC to calculate Average Monthly Effluent Concentration (AMEC) and daily Coefficient of Variation (CoV). The calculated AMEC and daily CoV were the input of the TMS. The below table summarizes the output from TOXCONC:

		Reviewer/Permit Engineer: Reza Chowdhury	
Facility:	Souderton WWTP		
NPDES #:	PA0021857		
Outfall No:	001		
n (Samples/Month):	4		
Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Aluminum (mg/L)	Delta-Lognormal	0.5706911	0.1000000
Arsenic (mg/L)	Delta-Lognormal	1.0673208	0.0017680
Boron (mg/L)	Lognormal	0.4204188	0.2581798
Thallium (mg/L)	Delta-Lognormal	0.7815752	0.0008395
Total Iron (mg/L)	Lognormal	0.9154847	1.5348368
Dissolved Iron (mg/L)	Lognormal	0.5246481	0.1045980
Zinc (mg/L)	Lognormal	0.1884892	0.0500019
Free Cyanide (mg/L)	Delta-Lognormal	0.8141347	0.0067171
Dibromochloromethane (µg/L)	Delta-Lognormal	0.2069230	0.6437623
Chloroform (µg/L)	Lognormal	0.2249950	9.3333630
Bromodichloromethane (µg/L)	Lognormal	0.1816746	2.5639903
Total Copper (µg/L)	Lognormal	0.6338101	35.3683475

The below table summarizes the output from TMS:

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing	WQBEL	Comments
	AML	MDL	AMI	MDI	IMAX	Units			

Model Results

11/4/2025

Page 13

Pollutants	(lbs/day)	(lbs/day)	AMWL	MDL	IMAX	Units	WQBEL	Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	mg/L	0.75	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Arsenic	Report	Report	Report	Report	Report	mg/L	0.011	THH	Discharge Conc > 10% WQBEL (no RP)
Total Boron	Report	Report	Report	Report	Report	mg/L	1.75	CFC	Discharge Conc > 10% WQBEL (no RP)
Free Cyanide	0.073	0.11	0.004	0.007	0.011	mg/L	0.004	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	Report	Report	Report	Report	Report	mg/L	0.33	THH	Discharge Conc > 10% WQBEL (no RP)
Total Iron	27.4	49.4	1.64	2.96	4.1	mg/L	1.64	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Thallium	0.004	0.008	0.0003	0.0005	0.0007	mg/L	0.0003	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	mg/L	0.19	AFC	Discharge Conc > 10% WQBEL (no RP)
Chlorodibromomethane	Report	Report	Report	Report	Report	µg/L	1.45	CRL	Discharge Conc > 25% WQBEL (no RP)
Chloroform	0.1	0.13	6.24	8.05	15.6	µg/L	6.24	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dichlorodibromomethane	0.029	0.035	1.73	2.1	4.31	µg/L	1.73	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Copper Souderton WWTP	0.57	0.94	33.9	56.5	84.8	µg/L	33.9	CFC	Discharge Conc ≥ 50% WQBEL (RP)

Each of the parameters are discussed below:

Total Aluminum: TMS suggests monitoring for Total Aluminum based on model input AMEC of 0.1 mg/l and daily CoV of 0.57. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

Total Arsenic: TMS suggests monitoring for Total Arsenic based on model input AMEC of 0.00177 mg/l and daily CoV of 1.067. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

Total Boron: TMS suggests monitoring for Total Boron based on model input AMEC of 0.258 mg/l and daily CoV of 0.42. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

Free Cyanide: RP has been demonstrated and TMS suggests numeric limit for Free Cyanide based on model input AMEC of <0.0067 mg/l and daily CoV of 0.814. The model suggested AML of 4.00 ug/l, MDL of 8.00 ug/l, IMAX of 11.0 ug/l, and calculated average monthly mass limit of 0.073 lbs./day and MDL of 0.13 lbs./day. Since this is a new pollutant with limits requirements, a schedule will be provided to meet the final WQBEL.

Dissolved Iron: TMS suggests monitoring for Dissolved Iron based on model input AMEC of 0.104 mg/l and daily CoV of 0.52. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

Total Iron: RP has been demonstrated and TMS suggests numeric limit for Total Iron based on model input AMEC of 1.535 mg/l and daily CoV of 0.915. The model suggested AML of 1.64 mg/l, MDL of 2.96 mg/l, IMAX of 4.1 mg/l, and calculated average monthly mass limit of 27.4 lbs./day and MDL of 49.4 lbs./day. Since this is a new pollutant with limits requirements, a schedule will be provided to meet the final WQBEL

Total Thallium: RP has been demonstrated and TMS suggests numeric limit for Total Thallium based on model input AMEC of 0.00084 mg/l and daily CoV of 0.78. The model suggested AML of 0.0003 mg/l, MDL of 0.0005 mg/l, IMAX of 0.0007 mg/l, and calculated average monthly mass limit of 0.004 lbs./day and MDL of 0.008 lbs./day. Since this is a new pollutant with limits requirements, a schedule will be provided to meet the final WQBEL

Total Zinc: TMS suggests monitoring for Total Zinc based on model input AMEC of 0.05 mg/l and daily CoV of 0.188. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

Chlorodibromomethane: TMS suggests monitoring for Chlorodibromomethane based on model input AMEC of 0.644 ug/l and daily CoV of 0.207. A quarterly monitoring requirement will provide sufficient effluent results for a Reasonable Potential analysis during next permit term.

Chloroform: RP has been demonstrated and TMS suggests numeric limit for Chloroform based on model input AMEC of 9.33 ug/l and daily CoV of 0.224. The model suggested AML of 6.24 ug/l, MDL of 7.9 ug/l, IMAX of 15.6 ug/l, and calculated average monthly mass limit of 0.1 lbs./day and MDL of 0.13 lbs./day. Since this is a new pollutant with limits requirements, a schedule will be provided to meet the final WQBEL

Dichlorobromomethane: RP has been demonstrated and TMS suggests numeric limit for Dichlorobromomethane based on model input AMEC of 2.56 ug/l and daily CoV of 0.182. The model suggested AML of 1.73 ug/l, MDL of 2.1 ug/l, IMAX of 4.31 ug/l, and calculated average monthly mass limit of 0.029 lbs./day and MDL of 0.035 lbs./day. Since this is a new pollutant with limits requirements, a schedule will be provided to meet the final WQBEL

Total Copper: Total Copper had monitoring requirement in current permit. The 2018 draft permit utilized results from 2015 WER study. The 2015 WER study wasn't approved by EPA. Based on the PA Bulletin publication dated August 12, 2006, the approved WER (Total Recoverable) was 2.55 and hardness was 143 mg/l. The bulletin also published the revised CCCrs of 25.9 ug/l and 40.1 ug/l. However, the equations to calculate CCCr and CMCr are changed. The new equations per Ch. 93.8c(b) Table 5 are as follows:

$$\begin{aligned} \text{CCCr: } & 0.960 \times \text{Exp}^{(0.8545 \times \ln[H] - 1.702)} \\ \text{CMCr: } & 0.960 \times \text{Exp}^{(0.9422 \times \ln[H] - 1.700)} \end{aligned}$$

Utilizing a published hardness of 143 mg/l, the equations resulted in CCCr of 12.16 ug/l and CMCr of 18.82 ug/l. The revised CCCr is 31 ug/l and CMCr is 48 ug/l. These values were plugged into the TMS as revised criteria for Souderton WWTP. Weekly eDMR data for the months July-September for the years 2018-2025 were plugged into TOXCONC to calculate AMEC and Daily CV. Calculated AMEC is 35.37 ug/l and Daily CV is 0.63. These values were the input of TMS and the model suggested AML of 33.9 ug/l, MDL of 56.5 ug/l, and IMAX of 84.8 ug/l. The calculated mass-based AML is 0.57 lbs./day and MDL is 0.94 lbs./day. A discussion between PADEP's CO and USEPA with regional upper management indicated that the permittee that conducted WER study and current monitoring was based on WER study will be allowed to continue monitor for one more permit term given that the permittee will be required to submit BLM work plan within 12 months from the permit's effective date and follow-up with BLM study and final report. Based on this discussion, it is decided that the Borough of Souderton will continue monitoring for Total Copper for this permit term.

Whole Effluent Toxicity Testing (WETT):

The permittee submitted five (5) WET Test results (annually for years 2012-2016) with the renewal application. The PADEP requested and obtained additional WETT reports for the years 2017-2025. All these reports were analyzed for QA/QC and the WETT reports for 2022-2025 (four) were evaluated for RP analysis. All four valid WET test results showed "Pass" for all end points. The dilution series is updated. The TIWCC was calculated to be 97% to evaluate the test results for a stream flow of 0.0829 cfs, discharge flow of 2.0 MGD, and PMFa/PMFc of 1. The WET tests are discussed in detail on pages 17-18 of this report.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation. These are existing limits and will be carried over.

E. Coli:

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

pH:

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 500 lbs./day and 750 lbs./day respectively, which are the same as were in existing permit.

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.013 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 001. The Instantaneous Maximum (IMAX) limit is 0.041 mg/l. The current permit has average monthly limit of 0.012 mg/l and IMAX limit of 0.038 mg/l which are very close to the recalculated limits and the existing limits will be carried over.

Flow and Influent BOD₅, CBOD₅, and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94. To demonstrate 85% removal efficiency, influent CBOD₅ will be added in the permit.

Total Dissolved Solids (TDS):

DRBC's basin-wide criteria (DRBC reg 3.10.4.D.2) requires monitoring for TDS. Therefore, a quarterly monitoring for TDS will be added in this renewal.

Best Professional Judgement (BPJ):

Total Phosphorus:

The current permit has a summer average monthly limit of 1.0 mg/l, IMAX of 2.0 mg/l, and mass-based average monthly limit of 16.5 lbs./day. The winter limits are 2.0 mg/l as average monthly, 4.0 mg/l as IMAX, and mass-based average monthly limit of 33.0 lbs./day. These limits will be carried over.

Total Nitrogen: Under the authority of Pa Code 25 § 92a.61, monthly monitoring will be added.

PFOA, PFOS, HFPO-DA and PFBS:

Per BCW-PMT-033 (revised February 5, 2024) and under the authority of Pa Code 25 § 92a.61, annual monitoring for PFOA, PFOS, HFPO-DA, and PFBS will be added in this renewal with a footnote that will read:

“The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detect results at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees must enter a No Discharge Indicator (NODI) Code of “GG” on DMRs.”

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Development of Effluent Limitations								
Outfall No.	002			Design Flow (MGD)	0			
Latitude	40° 17' 40.13"			Longitude		-75° 19' 55.92"		
Wastewater Description:	Stormwater							

Per Phase II stormwater regulations, major POTWs with point source discharge to surface waters are generally required to have a stormwater permit. The following limits are proposed for stormwater only Outfall 002:

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly		Minimum	Annual Average		Instant. Maximum		
pH (S.U.)	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
CBOD5	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
Chemical Oxygen Demand	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab
Dissolved Iron	XXX	XXX	XXX	Report	XXX	Report	1/year	Grab

Since the "treatment works treating domestic sewage" is considered as an "Industrial Activity" per 40 CFR §122.26(b)(14)(ix), the stormwater related to industrial activity under individual permit shall contain benchmark values. Therefore, the following benchmark values will be applied at the outfalls:

Parameter	Benchmark Value (mg/L)
Chemical Oxygen Demand	120
Total Suspended Solids	100

Whole Effluent Toxicity (WET)

For Outfall **Acute** **Chronic** WET Testing was completed:

- For the permit renewal application (4 tests).
- Quarterly throughout the permit term.
- Quarterly throughout the permit term and a TIE/TRE was conducted.
- Other: **Annual**

The dilution series used for the tests was: 100%, 97.8%, 95.6%, 93.5%, and 91.5%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 97.8%.

Summary of Four Most Recent Test Results

TST Data Analysis

(NOTE – *In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet*).

Test Date	Ceriodaphnia Results (Pass/Fail)		Pimephales Results (Pass/Fail)	
	Survival	Reproduction	Survival	Growth
9/2/2025	Pass	Pass	Pass	Pass
7/2/2024	Pass	Pass	Pass	Pass
6/27/2023	Pass	Pass	Pass	Pass
5/23/2022	Pass	Pass	Pass	Pass

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (NOTE – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

YES **NO**

Comments:

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): **1**

Chronic Partial Mix Factor (PMFc): **1**

1. Determine IWC – Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

$$[(2 \text{ MGD} \times 1.547) / ((0.0829 \text{ cfs} \times 1) + (2 \text{ MGD} \times 1.547))] \times 100 = \mathbf{97.4\%}$$

Is IWCa < 1%? **YES** **NO**

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: **Chronic**

2. Determine Target IWCC (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

$[(2 \text{ MGD} \times 1.547) / ((0.0829 \text{ cfs} \times 1) + (2 \text{ MGD} \times 1.547))] \times 100 = 97.4\%$

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 97%, 73%, 49%, and 24%.

WET Limits

Has reasonable potential been determined? YES NO

Will WET limits be established in the permit? YES NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum		
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	6.0 Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.012	XXX	0.038	1/day	Grab
CBOD5 Raw Sewage Influent	Report	Report	XXX	Report	Report Wkly Avg	XXX	2/week	24-Hr Composite
CBOD5 Nov 1 - Apr 30	417	667	XXX	25	40 Wkly Avg	50	2/week	24-Hr Composite
CBOD5 May 1 - Oct 31	250	375	XXX	15.0	23.0 Wkly Avg	30	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
TSS Raw Sewage Influent	Report	Report	XXX	Report	Report Wkly Avg	XXX	2/week	24-Hr Composite
TSS	500	750	XXX	30	45 Wkly Avg	60	2/week	24-Hr Composite
Total Dissolved Solids	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum		
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Ammonia Nov 1 - Apr 30	60.0	XXX	XXX	3.6	XXX	7.2	2/week	24-Hr Composite
Ammonia May 1 - Oct 31	30.0	XXX	XXX	1.8	XXX	3.6	2/week	24-Hr Composite
Total Phosphorus Nov 1 - Mar 31	33.0	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Total Phosphorus Apr 1 - Oct 31	16.5	XXX	XXX	1.0	XXX	2	2/week	24-Hr Composite
Total Aluminum (ug/L)	Report Avg Qrtly	Report Daily Max	XXX	Report Avg Qrtly	Report	XXX	1/quarter	24-Hr Composite
Total Arsenic (ug/L)	Report Avg Qrtly	Report Daily Max	XXX	Report Avg Qrtly	Report	XXX	1/quarter	24-Hr Composite
Total Boron (ug/L)	Report Avg Qrtly	Report Daily Max	XXX	Report Daily Max	Report	XXX	1/quarter	24-Hr Composite
Total Copper	XXX	XXX	XXX	Report	Report	XXX	1/week	24-Hr Composite
Dissolved Iron (ug/L)	Report Avg Qrtly	Report Daily Max	XXX	Report Avg Qrtly	Report	XXX	1/quarter	24-Hr Composite
Total Zinc (ug/L)	Report Avg Qrtly	Report Daily Max	XXX	Report Avg Qrtly	Report	XXX	1/quarter	24-Hr Composite
Chlorodibromo-methane (ug/L)	Report Avg Qrtly	Report Daily Max	XXX	Report Avg Qrtly	Report	XXX	1/quarter	24-Hr Composite
Chronic WET - Ceriodaphnia Survival (TUC)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	24-Hr Composite
Chronic WET - Ceriodaphnia Reproduction (TUC)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	24-Hr Composite
Chronic WET - Pimephales Survival (TUC)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	24-Hr Composite
Chronic WET - Pimephales Growth (TUC)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	24-Hr Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum		
Free Cyanide (ug/L)	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Total Iron (ug/L)	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Total Thallium (ug/L)	Report	Report	XXX	Report	Report	XXX	1/month	24-Hr Composite
Dichlorobromo-methane (ug/L)	XXX	XXX	XXX	Report	XXX	Report	1/month	Grab
Chloroform (ug/L)	XXX	XXX	XXX	Report	XXX	Report	1/month	Grab

Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: End of Interim Period 1 through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum		
Free Cyanide (ug/L)	0.073	0.13	XXX	4.0	8.0	11	1/month	24-Hr Composite
Total Iron	27.4	49.4	XXX	1.64	2.96	4.1	1/month	24-Hr Composite
Total Thallium (ug/L)	0.004	0.008	XXX	0.3	0.5	0.7	1/month	24-Hr Composite
Dichlorobromo-methane (ug/L)	XXX	XXX	XXX	1.73	XXX	4.31	1/month	Grab
Chloroform (ug/L)	XXX	XXX	XXX	6.24	XXX	15.6	1/month	Grab

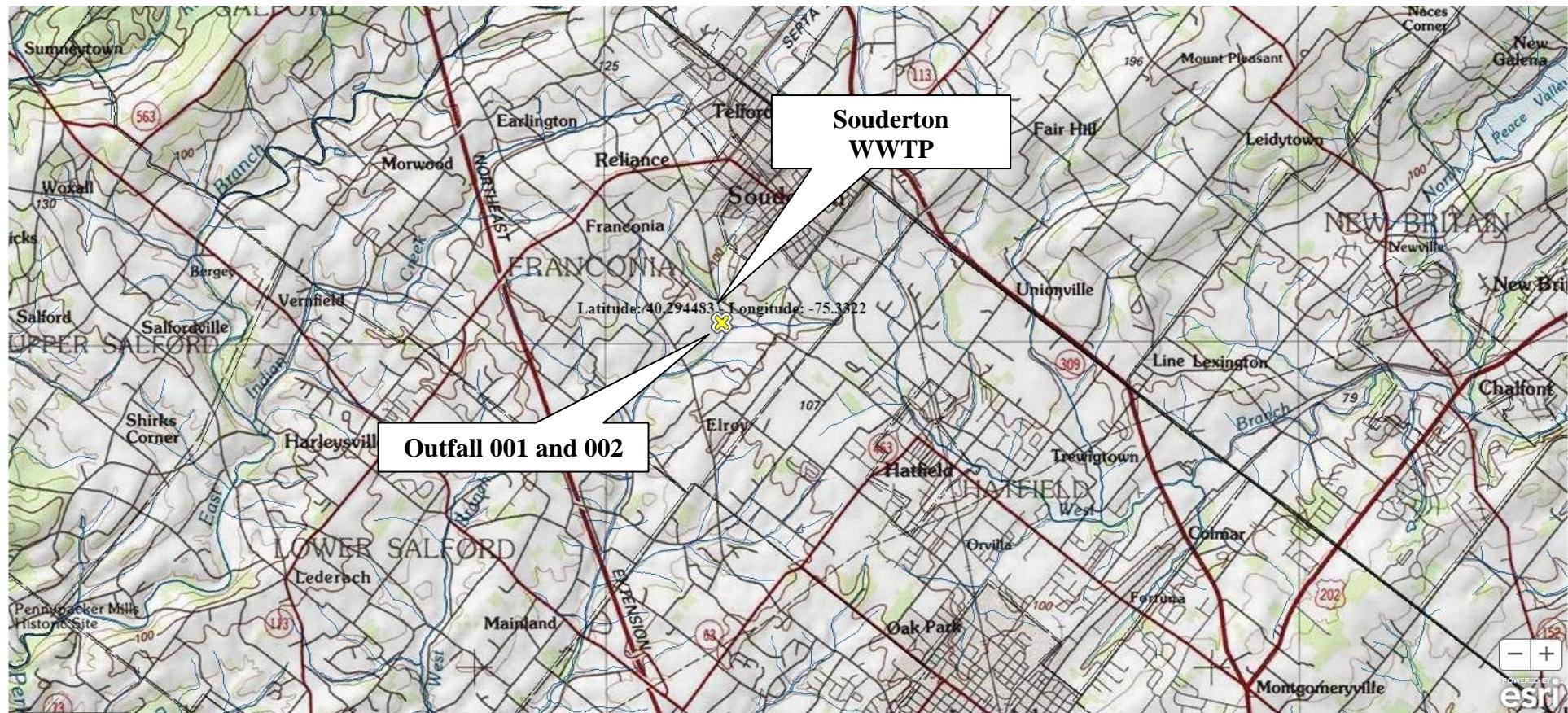
Compliance Sampling Location: At Outfall 001

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

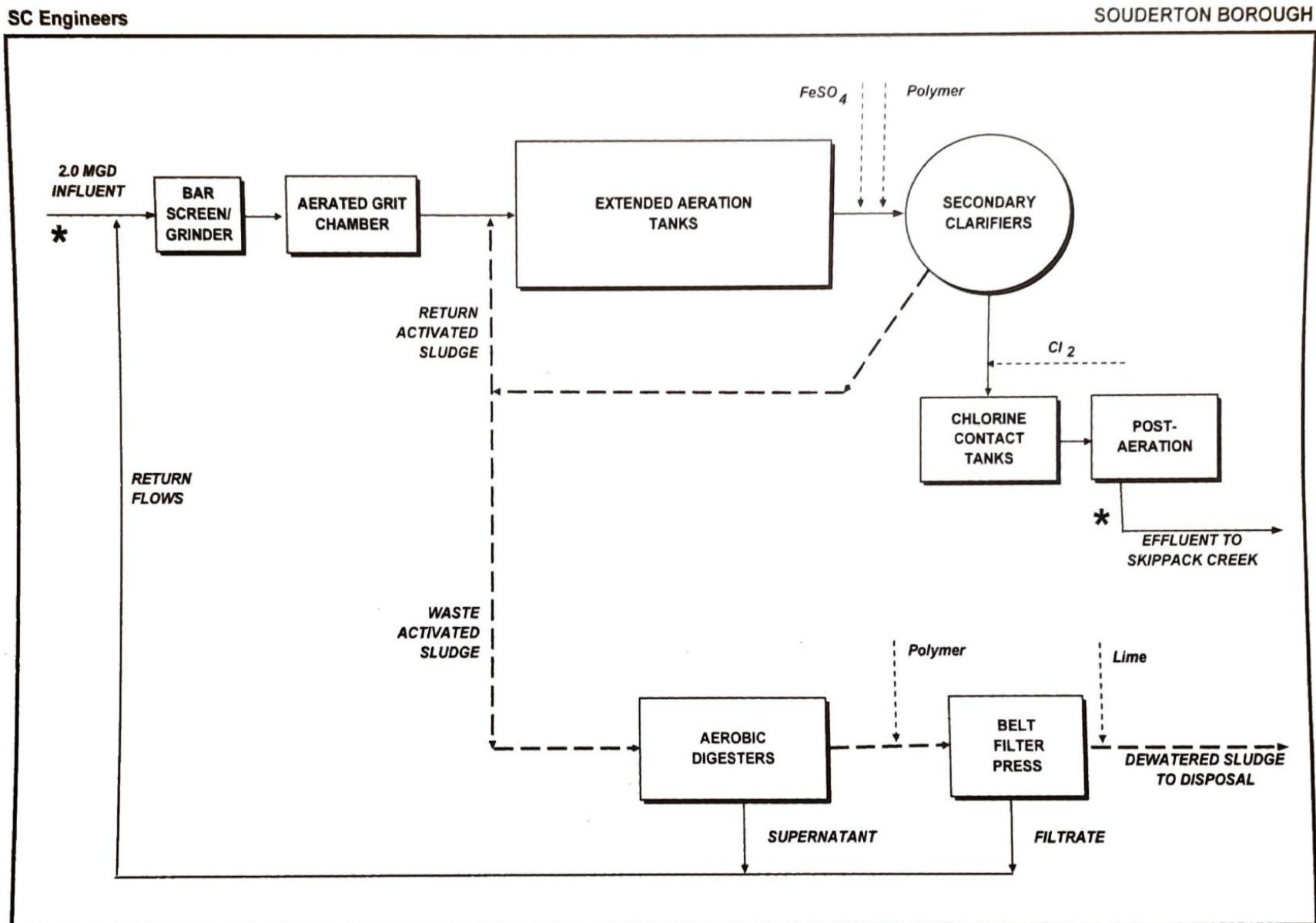

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum		
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
CBOD5	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
COD	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
TSS	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Dissolved Iron	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 002

Other Comments: None

Tools and References Used to Develop Permit	
<input checked="" type="checkbox"/>	WQM for Windows Model (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment [REDACTED])
<input checked="" type="checkbox"/>	TRC Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment [REDACTED])
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input checked="" type="checkbox"/>	SOP: BCW-PMT-033
<input type="checkbox"/>	Other: [REDACTED]

Locational Map



Borough of Souderton
NPDES Permit #: PA0021857; Borough of
Souderton WWTP
Franconia Township, Montgomery County

Reza H Chowdhury, P.E.
Environmental Engineer
November 5, 2025

Process flow diagram

LEGEND :

-----> CHEMICAL FEEDS

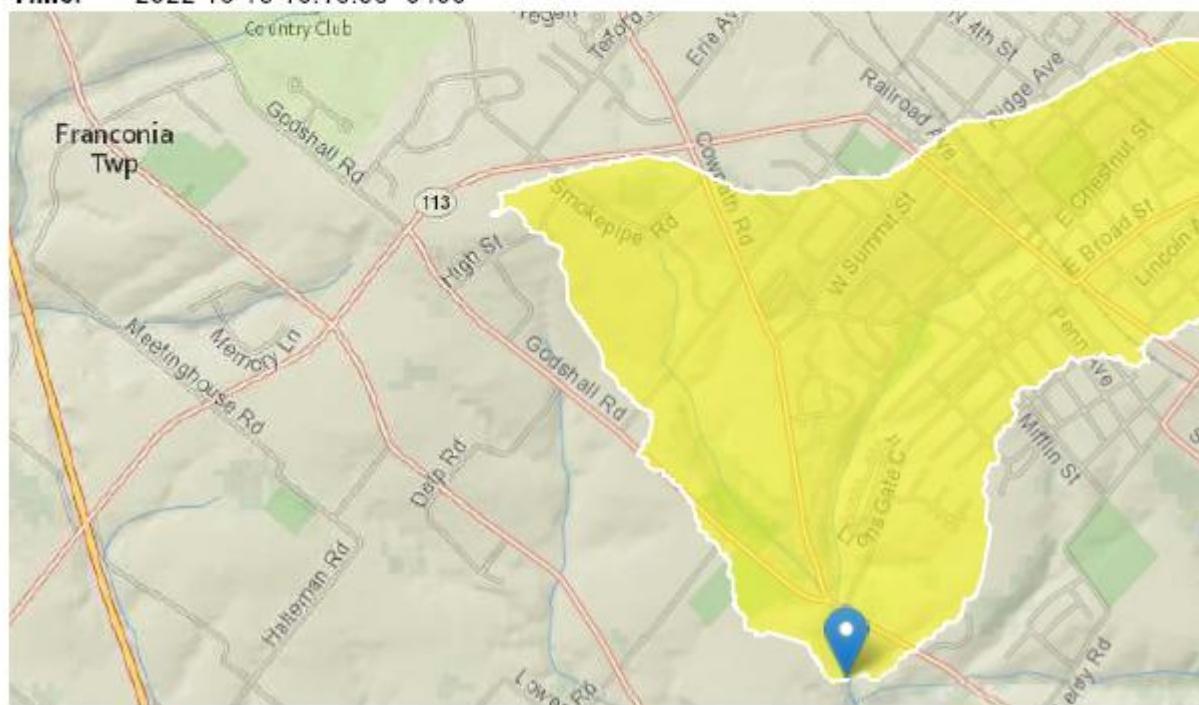
* SAMPLE POINTS

WASTEWATER FLOW LINES

— — → SLUDGE LINES

Figure 1
SCHEMATIC W.W.T.P. PROCESS DIAGRAM

StreamStats


Streamstats at Outfall 001

Region ID: PA

Workspace ID: PA20221018141312223000

Clicked Point (Latitude, Longitude): 40.29449, -75.33224

Time: 2022-10-18 10:13:33 -0400

 [Collapse All](#)

➤ Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	2.7105	degrees
DRNAREA	Area that drains to a point on a stream	1.76	square miles
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	60.8295	percent

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1.76	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	2.7105	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	60.8295	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

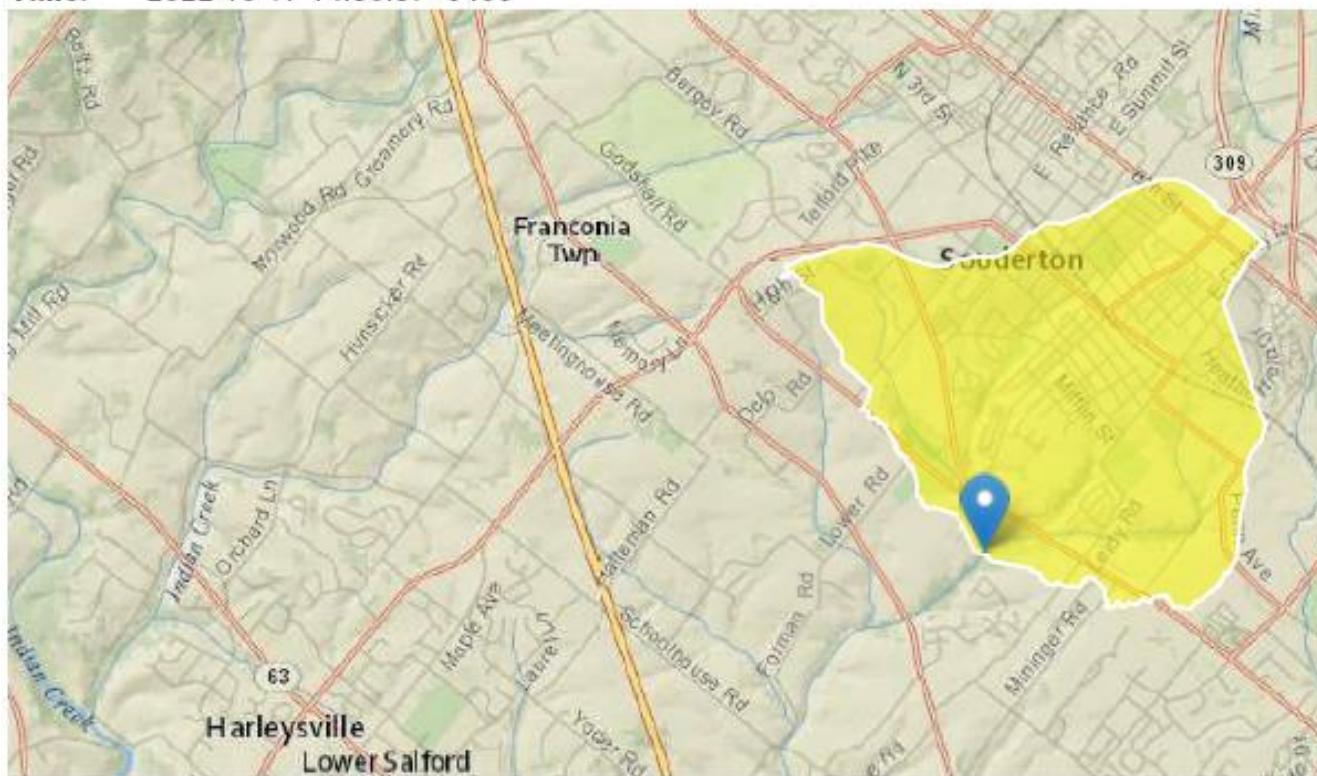
Statistic	Value	Unit
7 Day 2 Year Low Flow	0.216	ft^3/s
30 Day 2 Year Low Flow	0.351	ft^3/s
7 Day 10 Year Low Flow	0.0829	ft^3/s
30 Day 10 Year Low Flow	0.142	ft^3/s
90 Day 10 Year Low Flow	0.311	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the


PA0021857 at Node 1

Region ID: PA

Workspace ID: PA20221017183017077000

Clicked Point (Latitude, Longitude): 40.29310, -75.33169

Time: 2022-10-17 14:30:37 -0400

 [Collapse All](#)

► Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	2.4405	degrees
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	2.91	square miles
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	49.6476	percent

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	2.91	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	2.4405	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	49.6476	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.271	ft^3/s
30 Day 2 Year Low Flow	0.451	ft^3/s
7 Day 10 Year Low Flow	0.099	ft^3/s
30 Day 10 Year Low Flow	0.173	ft^3/s
90 Day 10 Year Low Flow	0.4	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

TRC Spreadsheet

TRC_CALC

TRC EVALUATION					
Input appropriate values in A3:A9 and D3:D9					
Source		Reference		AFC Calculations	
TRC	1.3.2.iii			WLA_afc = 0.028	1.3.2.iii
PENTOXSD TRG	5.1a			LTAMULT_afc = 0.373	5.1c
PENTOXSD TRG	5.1b			LTA_afc = 0.010	5.1d
Effluent Limit Calculations					
PENTOXSD TRG	5.1f			AML MULT = 1.231	
PENTOXSD TRG	5.1g			AVG MON LIMIT (mg/l) = 0.013	AFc
				INST MAX LIMIT (mg/l) = 0.041	
WLA_afc				(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))... ...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)	
LTAMULT_afc				EXP((0.5^LN(cvh^2+1))-2.326^LN(cvh^2+1)^0.5)	
LTA_afc				wla_afc*LTAMULT_afc	
WLA_cfc				(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))... ...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)	
LTAMULT_cfc				EXP((0.5^LN(cvd^2/no_samples+1))-2.326^LN(cvd^2/no_samples+1)^0.5)	
LTA_cfc				wla_cfc*LTAMULT_cfc	
AML_MULT				EXP(2.326^LN((cvd^2/no_samples+1)^0.5)-0.5^LN(cvd^2/no_samples+1))	
AVG_MON_LIMIT				MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	
INST_MAX_LIMIT				1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)	

WQM 7.0

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name		RMI	Elevation	Drainage Area	Slope	PWS Withdrawal	Apply FC	
					(ft)	(sq mi)	(ft/ft)	(mgd)		
03E		1024 SKIPACK CREEK		13.880	265.76	2.91	0.00000	0.00	<input checked="" type="checkbox"/>	
Stream Data										
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp pH	Stream Temp pH
	(cfs/m)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00
Q1-10		0.00	0.00	0.000	0.000				0.00	0.00
Q30-10		0.00	0.00	0.000	0.000					
Discharge Data										
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH			
Souderton WWTP	PA0021857	2.0000	2.0000	2.0000	0.000	20.00	7.20			
Parameter Data										
Parameter Name	Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/day)						
CBOD5	15.00	2.00	0.00	1.50						
Dissolved Oxygen	6.00	8.24	0.00	0.00						
NH3-N	1.80	0.00	0.00	0.70						

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name		RMI	Elevation	Drainage Area	Slope	PWS Withdrawal	Apply FC	
					(ft)	(sq mi)	(ft/ft)	(mgd)		
03E		1024 SKIPACK CREEK		13.180	237.18	4.57	0.00000	0.00	<input checked="" type="checkbox"/>	
Stream Data										
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp pH	Stream Temp pH
	(cfs/m)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)
Q7-10	0.100	0.00	0.00	0.000	0.000	0.0	0.00	0.00	20.00	7.00
Q1-10		0.00	0.00	0.000	0.000				0.00	0.00
Q30-10		0.00	0.00	0.000	0.000					
Discharge Data										
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH			
		0.0000	0.0000	0.0000	0.000	25.00	7.00			
Parameter Data										
Parameter Name	Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/day)						
CBOD5	25.00	2.00	0.00	1.50						
Dissolved Oxygen	3.00	8.24	0.00	0.00						
NH3-N	25.00	0.00	0.00	0.70						

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	6		

WQM 7.0 Hydrodynamic Outputs

RMI	Stream Flow	PWS With	Stream Code		Stream Name									
			03E	1024	SKIPACK CREEK									
			Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio (fps)	Velocity (ft/s)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-10 Flow														
13.880	0.29	0.00	0.29	3.094	0.00773		.6	16.56	27.62	0.34	0.125	20.00	7.18	
Q1-10 Flow														
13.880	0.19	0.00	0.19	3.094	0.00773		NA	NA	NA	0.33	0.128	20.00	7.19	
Q30-10 Flow														
13.880	0.40	0.00	0.40	3.094	0.00773		NA	NA	NA	0.35	0.123	20.00	7.17	

WQM 7.0 Wasteload Allocations

RMI	SWP Basin	Stream Code	Stream Name								
			03E	1024	SKIPACK CREEK						
NH3-N Acute Allocations											
	Discharge Name		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction			
13.880 Souderton WWT											
13.880	Souderton WWT		13.94	3.6	13.94	3.6	0	0			
NH3-N Chronic Allocations											
	Discharge Name		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction			
13.880 Souderton WWT											
13.880	Souderton WWT		1.75	1.8	1.75	1.8	0	0			
Dissolved Oxygen Allocations											
	Discharge Name		CBOD5 Baseline (mg/L)	CBOD5 Multiple (mg/L)	NH3-N Baseline (mg/L)	NH3-N Multiple (mg/L)	Dissolved Oxygen Baseline (mg/L)	Dissolved Oxygen Multiple (mg/L)	Critical Reach	Percent Reduction	
13.88 Souderton WWTP											
13.88	Souderton WWTP		15	15	1.8	1.8	6	6	0	0	

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>			
03E	1024	SKIPACK CREEK			
<u>RMI</u> 13.880	<u>Total Discharge Flow (mgd)</u> 2.000		<u>Analysis Temperature (°C)</u> 20.000		<u>Analysis pH</u> 7.179
<u>Reach Width (ft)</u> 16.560	<u>Reach Depth (ft)</u> 0.600		<u>Reach WDRatio</u> 27.618		<u>Reach Velocity (fps)</u> 0.341
<u>Reach CBOD5 (mg/L)</u> 13.88	<u>Reach Kc (1/days)</u> 1.480		<u>Reach NH3-N (mg/L)</u> 1.65		<u>Reach Kn (1/days)</u> 0.700
<u>Reach DO (mg/L)</u> 6.193	<u>Reach Kr (1/days)</u> 25.038		<u>Kr Equation</u> Tsivoglou		<u>Reach DO Goal (mg/L)</u> 6
<u>Reach Travel Time (days)</u> 0.125		<u>Subreach Results</u>			
	TravTime (days)	<u>CBOD5</u> (mg/L)	<u>NH3-N</u> (mg/L)	<u>D.O.</u> (mg/L)	
		0.013	13.63	1.63	6.61
		0.025	13.38	1.62	6.92
		0.038	13.13	1.60	7.15
		0.050	12.89	1.59	7.33
		0.063	12.65	1.57	7.46
		0.075	12.42	1.56	7.56
		0.088	12.19	1.55	7.65
		0.100	11.97	1.53	7.71
		0.113	11.75	1.52	7.77
		0.125	11.53	1.51	7.81

WQM 7.0 Effluent Limits

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>			
03E	1024	SKIPACK CREEK			
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)
13.880	Souderton WWTP	PA0021857	2.000	CBOD5	15
				NH3-N	1.8
				Dissolved Oxygen	3.6
					6

TOXCONC for Copper

TOXCONC for other pollutants

Toxics Management Spreadsheet (TMS)

Discharge Information

Instructions **Discharge** Stream

Facility: **Borough of Souderton WWTP** NPDES Permit No.: **PA0021857** Outfall No.: **001**

Evaluation Type: **Major Sewage / Industrial Waste** Wastewater Description: **Treated Sewage**

Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Discharge Characteristics					
			Partial Mix Factors (PMFs)			Complete Mix Times (min)		
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h
2	164	7.2						

	Discharge Pollutant	Units	Max Discharge Conc	0 if left blank		0.5 if left blank		0 if left blank		1 if left blank	
				Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod
Group 1	Total Dissolved Solids (PWS)	mg/L									
	Chloride (PWS)	mg/L									
	Bromide	mg/L									
	Sulfate (PWS)	mg/L									
	Fluoride (PWS)	mg/L									
	Total Aluminum	mg/L	0.1				0.57				
	Total Antimony	µg/L	0.5								
	Total Arsenic	mg/L	0.00177				1.067				
	Total Barium	µg/L	47								
	Total Beryllium	µg/L	< 0.05								
	Total Boron	mg/L	0.258				0.42				
	Total Cadmium	µg/L	< 0.08								
	Total Chromium (III)	µg/L									
	Hexavalent Chromium	µg/L	< 0.1								
	Total Cobalt	µg/L	0.6								
	Total Copper	mg/L									
	Free Cyanide	mg/L	< 0.0067								
	Total Cyanide	µg/L	2								
	Dissolved Iron	mg/L	0.104				0.52				
	Total Iron	mg/L	1.535				0.915				
	Total Lead	µg/L	0.4								
	Total Manganese	µg/L	26								
	Total Mercury	µg/L	< 0.2								
	Total Nickel	µg/L	4								
	Total Phenols (Phenolics) (PWS)	µg/L	< 5								
	Total Selenium	µg/L	< 0.5								
	Total Silver	µg/L	< 0.05								
	Total Thallium	mg/L	0.00084				0.78				
	Total Zinc	mg/L	< 0.05				0.188				
	Total Molybdenum	µg/L	4								
Group 2	Acrolein	µg/L	< 1								
	Acrylamide	µg/L	< 1								
	Acrylonitrile	µg/L	< 0.5								
	Benzene	µg/L	< 0.5								
	Bromoform	µg/L	< 0.5								
	Carbon Tetrachloride	µg/L	< 0.5								

Group 3	Chlorobenzene	µg/L	0.5				
	Chlorodibromomethane	µg/L	0.644		0.207		
	Chloroethane	µg/L	< 0.5				
	2-Chloroethyl Vinyl Ether	µg/L	< 0.5				
	Chloroform	µg/L	0.33		0.244		
	Dichlorobromomethane	µg/L	2.56		0.182		
	1,1-Dichloroethane	µg/L	< 0.5				
	1,2-Dichloroethane	µg/L	< 0.5				
	1,1-Dichloroethylene	µg/L	< 0.5				
	1,2-Dichloropropane	µg/L	< 0.5				
	1,3-Dichloropropylene	µg/L	< 0.5				
	1,4-Dioxane	µg/L	0.2				
	Ethylbenzene	µg/L	0.5				
	Methyl Bromide	µg/L	<				
	Methyl Chloride	µg/L	<				
	Methylene Chloride	µg/L	< 0.5				
	1,1,2,2-Tetrachloroethane	µg/L	< 0.5				
	Tetrachloroethylene	µg/L	< 0.5				
	Toluene	µg/L	0.7				
	1,2-trans-Dichloroethylene	µg/L	<				
	1,1,1-Trichloroethane	µg/L	< 0.5				
	1,1,2-Trichloroethane	µg/L	< 0.5				
	Trichloroethylene	µg/L	< 0.5				
	Vinyl Chloride	µg/L	< 0.5				
Group 4	2-Chlorophenol	µg/L	< 1				
	2,4-Dichlorophenol	µg/L	< 1				
	2,4-Dimethylphenol	µg/L	< 1				
	4,6-Dinitro-o-Cresol	µg/L	<				
	2,4-Dinitrophenol	µg/L	< 3				
	2-Nitrophenol	µg/L	< 1				
	4-Nitrophenol	µg/L	< 1				
	p-Chloro-m-Cresol	µg/L	<				
	Pentachlorophenol	µg/L	< 1				
	Phenol	µg/L	< 5				
	2,4,6-Trichlorophenol	µg/L	< 1				
Group 5	Acenaphthene	µg/L	< 1				
	Acenaphthylene	µg/L	< 1				
	Anthracene	µg/L	< 1				
	Benzidine	µg/L	< 5				
	Benzol(a)Anthracene	µg/L	< 1				
	Benzol(a)Pyrene	µg/L	< 1				
	3,4-BenzoFuranthene	µg/L	< 1				
	Benzol(ghi)Perylene	µg/L	< 1				
	Benzol(k)Fluoranthene	µg/L	< 1				
	Bis(2-Chloroethoxy)Methane	µg/L	< 1				
	Bis(2-Chloroethyl)Ether	µg/L	< 1				
	Bis(2-Chloroisopropyl)Ether	µg/L	< 1				
	Bis(2-Ethylhexyl)Phthalate	µg/L	< 3				
	4-Bromophenyl Phenyl Ether	µg/L	< 1				
	Butyl Benzyl Phthalate	µg/L	< 1				
	2-Chloronaphthalene	µg/L	< 1				
	4-Chlorophenyl Phenyl Ether	µg/L	< 1				
	Chrysene	µg/L	< 1				
	Dibenzol(a,h)Anthracene	µg/L	< 1				
	1,2-Dichlorobenzene	µg/L	< 0.5				
	1,3-Dichlorobenzene	µg/L	< 0.5				
	1,4-Dichlorobenzene	µg/L	< 0.5				
	3,3-Dichlorobenzidine	µg/L	< 0.3				
	Diethyl Phthalate	µg/L	< 1				
	Dimethyl Phthalate	µg/L	< 1				
	Di-n-Butyl Phthalate	µg/L	< 3				
	2,4-Dinitrotoluene	µg/L	< 3				
	2,6-Dinitrotoluene	µg/L	< 1				
	Di-n-Octyl Phthalate	µg/L	< 3				

Stream / Surface Water Information

Borough of Souderton WWTP, NPDES Permit No. PA0021857, Outfall 001

Instructions Discharge Stream

Receiving Surface Water Name: Skippack Creek

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ONSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	001024	13.88	265.75	2.91			Yes
End of Reach 1	001024	13.18	237.18	4.57			Yes

Q_{7,10}

Q₁

Model Results

Borough of Souderton WWTP, NPDES Permit No. PA0021857, Outfall 001

Instructions **Results** [RETURN TO INPUTS](#) [SAVE AS PDF](#) [PRINT](#) All Inputs Results Limits

Hydrodynamics

Wasteload Allocations

AFC

CCT (min): **0.068**

PMF: **1**

Analysis Hardness (mg/l): **167.87**

Analysis pH: **7.18**

Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	750	750	821	
Total Antimony	0	0		0	1,100	1,100	1,203	
Total Arsenic	0	0		0	340	340	372	
Total Barium	0	0		0	21,000	21,000	22,975	
Total Boron	0	0		0	8,100	8,100	8,882	
Total Cadmium	0	0		0	3.331	3.61	3.95	
Hexavalent Chromium	0	0		0	16	16.3	17.8	
Total Cobalt	0	0		0	95	95.0	104	
Free Cyanide	0	0		0	22	22.0	24.1	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	112.964	158	173	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1,400	1.65	1.8	
Total Nickel	0	0		0	725.753	727	796	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	7.841	8.22	10.1	
Total Thallium	0	0		0	65	65.0	71.1	
Total Zinc	0	0		0	181.749	186	203	
Acrolein	0	0		0	3	3.0	3.28	
Acrylonitrile	0	0		0	650	650	711	
Benzene	0	0		0	640	640	700	
Bromoform	0	0		0	1,800	1,800	1,989	
Carbon Tetrachloride	0	0		0	2,800	2,800	3,083	
Chlorobenzene	0	0		0	1,200	1,200	1,313	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	

Model Results

11/4/2025

Page 5

2-Chloroethyl Vinyl Ether	0	0		0	18,000	18,000	19,693	
Chloroform	0	0		0	1,900	1,900	2,079	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	15,000	15,000	16,411	
1,1-Dichloroethylene	0	0		0	7,500	7,500	8,205	
1,2-Dichloropropane	0	0		0	11,000	11,000	12,035	
1,3-Dichloropropylene	0	0		0	310	310	339	
Ethylbenzene	0	0		0	2,900	2,900	3,173	
Methylene Chloride	0	0		0	12,000	12,000	13,129	
1,1,2,2-Tetrachloroethane	0	0		0	1,000	1,000	1,094	
Tetrachloroethylene	0	0		0	700	700	766	
Toluene	0	0		0	1,700	1,700	1,860	
1,1,1-Trichloroethane	0	0		0	3,000	3,000	3,282	
1,1,2-Trichloroethane	0	0		0	3,400	3,400	3,720	
Trichloroethylene	0	0		0	2,300	2,300	2,518	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	560	560	613	
2,4-Dichlorophenol	0	0		0	1,700	1,700	1,860	
2,4-Dimethylphenol	0	0		0	660	660	722	
2,4-Dinitrophenol	0	0		0	660	660	722	
2-Nitrophenol	0	0		0	8,000	8,000	8,752	
4-Nitrophenol	0	0		0	2,300	2,300	2,516	
Pentachlorophenol	0	0		0	10,439	10.4	11.4	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	460	460	503	
Acenaphthene	0	0		0	83	83.0	90.8	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	300	300	328	
Benz(a)Anthracene	0	0		0	0.5	0.5	0.55	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benz(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	30,000	30,000	32,822	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	4,500	4,500	4,923	
4-Bromophenyl Phenyl Ether	0	0		0	270	270	295	
Butyl Benzyl Phthalate	0	0		0	140	140	153	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	897	
1,3-Dichlorobenzene	0	0		0	350	350	383	
1,4-Dichlorobenzene	0	0		0	730	730	799	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	4,376	
Dimethyl Phthalate	0	0		0	2,500	2,500	2,735	
Di-n-Butyl Phthalate	0	0		0	110	110	120	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	1,750	

Model Results

11/4/2025

Page 6

2,6-Dinitrotoluene	0	0		0	990	990	1,083	
1,2-Diphenylhydrazine	0	0		0	15	15.0	16.4	
Fluoranthene	0	0		0	200	200	219	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	10.9	
Hexachlorocyclopentadiene	0	0		0	5	5.0	5.47	
Hexachloroethane	0	0		0	60	60.0	65.6	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10,000	10,000	10,941	
Naphthalene	0	0		0	140	140	153	
Nitrobenzene	0	0		0	4,000	4,000	4,376	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	18,599	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	328	
Phenanthere	0	0		0	5	5.0	5.47	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	142	
Copper Souderton WWTP	0	0		0	48	48.0	52.5	

CFC CCT (min): 0.068 PMF: 1 Analysis Hardness (mg/l): 167.87 Analysis pH: 7.18

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	241	
Total Arsenic	0	0		0	150	150	164	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	4,488	
Total Boron	0	0		0	1,600	1,600	1,750	
Total Cadmium	0	0		0	0.352	0.4	0.43	Chem Translator of 0.887 applied
Hexavalent Chromium	0	0		0	10	10.4	11.4	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	19	19.0	20.8	
Free Cyanide	0	0		0	5.2	5.2	5.69	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	1,641	WQC = 30 day average, PMF = 1
Total Lead	0	0		0	4,402	6.15	6.73	Chem Translator of 0.716 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	0.99	Chem Translator of 0.85 applied
Total Nickel	0	0		0	80,809	80.9	88.5	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4,600	4.99	5.46	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	14.2	
Total Zinc	0	0		0	183,236	186	203	Chem Translator of 0.986 applied
Acrolein	0	0		0	3	3.0	3.28	
Acrylonitrile	0	0		0	130	130	142	
Benzene	0	0		0	130	130	142	

Bromoform	0	0		0	370	370	405	
Carbon Tetrachloride	0	0		0	560	560	613	
Chlorobenzene	0	0		0	240	240	263	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	3,500	3,500	3,829	
Chloroform	0	0		0	390	390	427	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	3,100	3,100	3,392	
1,1-Dichloroethylene	0	0		0	1,500	1,500	1,641	
1,2-Dichloropropane	0	0		0	2,200	2,200	2,407	
1,3-Dichloropropylene	0	0		0	61	61.0	66.7	
Ethylbenzene	0	0		0	580	580	635	
Methylene Chloride	0	0		0	2,400	2,400	2,626	
1,1,2,2-Tetrachloroethane	0	0		0	210	210	230	
Tetrachloroethylene	0	0		0	140	140	153	
Toluene	0	0		0	330	330	361	
1,1,1-Trichloroethane	0	0		0	610	610	667	
1,1,2-Trichloroethane	0	0		0	680	680	744	
Trichloroethylene	0	0		0	450	450	492	
Vinyl Chloride	0	0		0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	110	110	120	
2,4-Dichlorophenol	0	0		0	340	340	372	
2,4-Dimethylphenol	0	0		0	130	130	142	
2,4-Dinitrophenol	0	0		0	130	130	142	
2-Nitrophenol	0	0		0	1,600	1,600	1,750	
4-Nitrophenol	0	0		0	470	470	514	
Pentachlorophenol	0	0		0	8,009	8,01	8.78	
Phenol	0	0		0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0		0	91	91.0	99.6	
Acenaphthene	0	0		0	17	17.0	18.6	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	64.5	
Benzo(a)Anthracene	0	0		0	0.1	0.1	0.11	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benz(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	6,564	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	998	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	59.1	
Butyl Benzyl Phthalate	0	0		0	35	35.0	38.3	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenz(a,h)Anthracene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	175	
1,3-Dichlorobenzene	0	0		0	69	69.0	75.5	

1,4-Dichlorobenzene	0	0		0	150	150	164	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	875	
Dimethyl Phthalate	0	0		0	500	500	547	
Di-n-Butyl Phthalate	0	0		0	21	21.0	23.0	
2,4-Dinitrotoluene	0	0		0	320	320	350	
2,6-Dinitrotoluene	0	0		0	200	200	219	
1,2-Diphenylhydrazine	0	0		0	3	3.0	3.28	
Fluoranthene	0	0		0	40	40.0	43.8	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	2.19	
Hexachlorocyclopentadiene	0	0		0	1	1.0	1.09	
Hexachloroethane	0	0		0	12	12.0	13.1	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	2,298	
Naphthalene	0	0		0	43	43.0	47.0	
Nitrobenzene	0	0		0	810	810	886	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	3,720	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	64.5	
Phenanthrene	0	0		0	1	1.0	1.09	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	28.4	
Copper Souderton WWTP	0	0		0	31	31.0	33.9	

THH CCT (min): 0.068 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	6.13	
Total Arsenic	0	0		0	10	10.0	10.9	
Total Barium	0	0		0	2,400	2,400	2,628	
Total Boron	0	0		0	3,100	3,100	3,392	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	4.38	
Dissolved Iron	0	0		0	300	300	328	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,094	
Total Mercury	0	0		0	0.050	0.05	0.055	
Total Nickel	0	0		0	610	610	667	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	

Total Selenium	0	0		0	N/A	N/A	N/A
Total Silver	0	0		0	N/A	N/A	N/A
Total Thallium	0	0		0	0.24	0.24	0.28
Total Zinc	0	0		0	N/A	N/A	N/A
Acrolein	0	0		0	3	3.0	3.28
Acrylonitrile	0	0		0	N/A	N/A	N/A
Benzene	0	0		0	N/A	N/A	N/A
Bromoform	0	0		0	N/A	N/A	N/A
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A
Chlorobenzene	0	0		0	100	100.0	109
Chlorodibromomethane	0	0		0	N/A	N/A	N/A
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A
Chloroform	0	0		0	5.7	5.7	6.24
Dichlorobromomethane	0	0		0	N/A	N/A	N/A
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A
1,1-Dichloroethylene	0	0		0	33	33.0	36.1
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A
Ethylbenzene	0	0		0	68	68.0	74.4
Methylene Chloride	0	0		0	N/A	N/A	N/A
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A
Tetrachloroethylene	0	0		0	N/A	N/A	N/A
Toluene	0	0		0	57	57.0	62.4
1,1,1-Trichloroethane	0	0		0	10,000	10,000	10,941
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A
Trichloroethylene	0	0		0	N/A	N/A	N/A
Vinyl Chloride	0	0		0	N/A	N/A	N/A
2-Chlorophenol	0	0		0	30	30.0	32.8
2,4-Dichlorophenol	0	0		0	10	10.0	10.9
2,4-Dimethylphenol	0	0		0	100	100.0	109
2,4-Dinitrophenol	0	0		0	10	10.0	10.9
2-Nitrophenol	0	0		0	N/A	N/A	N/A
4-Nitrophenol	0	0		0	N/A	N/A	N/A
Pentachlorophenol	0	0		0	N/A	N/A	N/A
Phenol	0	0		0	4,000	4,000	4,378
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A
Acenaphthene	0	0		0	70	70.0	76.6
Anthracene	0	0		0	300	300	328
Benzidine	0	0		0	N/A	N/A	N/A
Benzo(a)Anthracene	0	0		0	N/A	N/A	N/A
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A
3,4-Benzo fluoranthene	0	0		0	N/A	N/A	N/A
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A
Bis(2-Chloroisopropyl)Ether	0	0		0	200	200	219
Bis(2-Ethylhexyl)Phthalate	0	0		0	N/A	N/A	N/A

Model Results

11/4/2025

Page 10

4-Bromophenyl Phenyl Ether	0	0	0	0	N/A	N/A	N/A
Butyl Benzyl Phthalate	0	0	0	0	0.1	0.1	0.11
2-Chloronaphthalene	0	0	0	0	800	800	875
Chrysene	0	0	0	0	N/A	N/A	N/A
Dibenzo(a,h)Anthracene	0	0	0	0	N/A	N/A	N/A
1,2-Dichlorobenzene	0	0	0	0	1,000	1,000	1,094
1,3-Dichlorobenzene	0	0	0	0	7	7.0	7.66
1,4-Dichlorobenzene	0	0	0	0	300	300	328
3,3-Dichlorobenzidine	0	0	0	0	N/A	N/A	N/A
Diethyl Phthalate	0	0	0	0	600	600	656
Dimethyl Phthalate	0	0	0	0	2,000	2,000	2,188
Di-n-Butyl Phthalate	0	0	0	0	20	20.0	21.9
2,4-Dinitrotoluene	0	0	0	0	N/A	N/A	N/A
2,6-Dinitrotoluene	0	0	0	0	N/A	N/A	N/A
1,2-Diphenylhydrazine	0	0	0	0	N/A	N/A	N/A
Fluoranthene	0	0	0	0	20	20.0	21.9
Fluorene	0	0	0	0	50	50.0	54.7
Hexachlorobenzene	0	0	0	0	N/A	N/A	N/A
Hexachlorobutadiene	0	0	0	0	N/A	N/A	N/A
Hexachlorocyclopentadiene	0	0	0	0	4	4.0	4.38
Hexachloroethane	0	0	0	0	N/A	N/A	N/A
Indeno(1,2,3- <i>cd</i>)Pyrene	0	0	0	0	N/A	N/A	N/A
Isophorone	0	0	0	0	34	34.0	37.2
Naphthalene	0	0	0	0	N/A	N/A	N/A
Nitrobenzene	0	0	0	0	10	10.0	10.9
n-Nitrosodimethylamine	0	0	0	0	N/A	N/A	N/A
n-Nitrosodi- <i>n</i> -Propylamine	0	0	0	0	N/A	N/A	N/A
n-Nitrosodiphenylamine	0	0	0	0	N/A	N/A	N/A
Phenanthrene	0	0	0	0	N/A	N/A	N/A
Pyrene	0	0	0	0	20	20.0	21.9
1,2,4-Trichlorobenzene	0	0	0	0	0.07	0.07	0.077
Copper Souderton WWTP	0	0	0	0	N/A	N/A	N/A

CRL CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0	0	0	N/A	N/A	N/A	
Total Antimony	0	0	0	0	N/A	N/A	N/A	
Total Arsenic	0	0	0	0	N/A	N/A	N/A	
Total Barium	0	0	0	0	N/A	N/A	N/A	
Total Boron	0	0	0	0	N/A	N/A	N/A	
Total Cadmium	0	0	0	0	N/A	N/A	N/A	
Hexavalent Chromium	0	0	0	0	N/A	N/A	N/A	
Total Cobalt	0	0	0	0	N/A	N/A	N/A	
Free Cyanide	0	0	0	0	N/A	N/A	N/A	

Dissolved Iron	0	0		0	N/A	N/A	N/A
Total Iron	0	0		0	N/A	N/A	N/A
Total Lead	0	0		0	N/A	N/A	N/A
Total Manganese	0	0		0	N/A	N/A	N/A
Total Mercury	0	0		0	N/A	N/A	N/A
Total Nickel	0	0		0	N/A	N/A	N/A
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A
Total Selenium	0	0		0	N/A	N/A	N/A
Total Silver	0	0		0	N/A	N/A	N/A
Total Thallium	0	0		0	N/A	N/A	N/A
Total Zinc	0	0		0	N/A	N/A	N/A
Acrolein	0	0		0	N/A	N/A	N/A
Acrylonitrile	0	0		0	0.06	0.06	0.11
Benzene	0	0		0	0.58	0.58	1.05
Bromoform	0	0		0	7	7.0	12.7
Carbon Tetrachloride	0	0		0	0.4	0.4	0.73
Chlorobenzene	0	0		0	N/A	N/A	N/A
Chlorodibromomethane	0	0		0	0.8	0.8	1.45
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A
Chloroform	0	0		0	N/A	N/A	N/A
Dichlorobromomethane	0	0		0	0.95	0.95	1.73
1,2-Dichloroethane	0	0		0	9.9	9.9	18.0
1,1-Dichloroethylene	0	0		0	N/A	N/A	N/A
1,2-Dichloropropane	0	0		0	0.9	0.9	1.63
1,3-Dichloropropylene	0	0		0	0.27	0.27	0.49
Ethylbenzene	0	0		0	N/A	N/A	N/A
Methylene Chloride	0	0		0	20	20.0	36.3
1,1,2,2-Tetrachloroethane	0	0		0	0.2	0.2	0.36
Tetrachloroethylene	0	0		0	10	10.0	18.2
Toluene	0	0		0	N/A	N/A	N/A
1,1,1-Trichloroethane	0	0		0	N/A	N/A	N/A
1,1,2-Trichloroethane	0	0		0	0.55	0.55	1.
Trichloroethylene	0	0		0	0.6	0.6	1.09
Vinyl Chloride	0	0		0	0.02	0.02	0.036
2-Chlorophenol	0	0		0	N/A	N/A	N/A
2,4-Dichlorophenol	0	0		0	N/A	N/A	N/A
2,4-Dimethylphenol	0	0		0	N/A	N/A	N/A
2,4-Dinitrophenol	0	0		0	N/A	N/A	N/A
2-Nitrophenol	0	0		0	N/A	N/A	N/A
4-Nitrophenol	0	0		0	N/A	N/A	N/A
Pentachlorophenol	0	0		0	0.030	0.03	0.054
Phenol	0	0		0	N/A	N/A	N/A
2,4,6-Trichlorophenol	0	0		0	1.5	1.5	2.72
Acenaphthene	0	0		0	N/A	N/A	N/A
Anthracene	0	0		0	N/A	N/A	N/A
Benzidine	0	0		0	0.0001	0.0001	0.0002

Model Results

11/4/2025

Page 12

Benzo(a)Anthracene	0	0		0	0.001	0.001	0.002
Benzo(a)Pyrene	0	0		0	0.0001	0.0001	0.0002
3,4-Benzofluoranthene	0	0		0	0.001	0.001	0.002
Benzo(k)Fluoranthene	0	0		0	0.01	0.01	0.018
Bis(2-Chloroethyl)Ether	0	0		0	0.03	0.03	0.054
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A
Bis(2-Ethylhexyl)Phthalate	0	0		0	0.32	0.32	0.58
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A
Butyl Benzyl Phthalate	0	0		0	N/A	N/A	N/A
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A
Chrysene	0	0		0	0.12	0.12	0.22
Dibenzo(a,h)Anthracene	0	0		0	0.0001	0.0001	0.0002
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	0.091
Diethyl Phthalate	0	0		0	N/A	N/A	N/A
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A
2,4-Dinitrotoluene	0	0		0	0.05	0.05	0.091
2,6-Dinitrotoluene	0	0		0	0.05	0.05	0.091
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	0.054
Fluoranthene	0	0		0	N/A	N/A	N/A
Fluorene	0	0		0	N/A	N/A	N/A
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.0001
Hexachlorobutadiene	0	0		0	0.01	0.01	0.018
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A
Hexachloroethane	0	0		0	0.1	0.1	0.18
Indeno(1,2,3- <i>cd</i>)Pyrene	0	0		0	0.001	0.001	0.002
Isophorone	0	0		0	N/A	N/A	N/A
Naphthalene	0	0		0	N/A	N/A	N/A
Nitrobenzene	0	0		0	N/A	N/A	N/A
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.001
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.009
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	5.99
Phenanthrene	0	0		0	N/A	N/A	N/A
Pyrene	0	0		0	N/A	N/A	N/A
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A
Copper Souderton WWTP	0	0		0	N/A	N/A	N/A

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits			Concentration Limits				Governing	WQBEL	Comments
	AML	MDL	AMT	MDL	IMAX	Units				

Model Results

11/4/2025

Page 13

Pollutants	(lbs/day)	(lbs/day)	CWL	MDL	WQBEL	Units	WQBEL	Basis	Comments
Total Aluminum	Report	Report	Report	Report	0.75	mg/L	0.75	AFC	Discharge Conc > 10% WQBEL (no RP)
Total Arsenic	Report	Report	Report	Report	0.011	mg/L	THH	THH	Discharge Conc > 10% WQBEL (no RP)
Total Boron	Report	Report	Report	Report	1.75	mg/L	1.75	CFC	Discharge Conc > 10% WQBEL (no RP)
Free Cyanide	0.073	0.11	0.004	0.007	0.011	mg/L	0.004	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dissolved Iron	Report	Report	Report	Report	0.33	mg/L	0.33	THH	Discharge Conc > 10% WQBEL (no RP)
Total Iron	27.4	49.4	1.64	2.98	4.1	mg/L	1.64	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Thallium	0.004	0.008	0.0003	0.0005	0.0007	mg/L	0.0003	THH	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	0.19	mg/L	0.19	AFC	Discharge Conc > 10% WQBEL (no RP)
Chlorodibromomethane	Report	Report	Report	Report	1.45	µg/L	1.45	CRL	Discharge Conc > 25% WQBEL (no RP)
Chloroform	0.1	0.13	6.24	8.05	15.6	µg/L	6.24	THH	Discharge Conc ≥ 50% WQBEL (RP)
Dichlorobromomethane	0.029	0.035	1.73	2.1	4.31	µg/L	1.73	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Copper Souderton WWTP	0.57	0.94	33.9	56.5	84.8	µg/L	33.9	CFC	Discharge Conc ≥ 50% WQBEL (RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Antimony	6.13	µg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	2,626	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Cadmium	N/A	N/A	Discharge Conc < TQL
Hexavalent Chromium	N/A	N/A	Discharge Conc < TQL
Total Cobalt	20.8	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cyanide	N/A	N/A	No WQS
Total Lead	6.73	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	1,094	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.055	µg/L	Discharge Conc < TQL
Total Nickel	88.5	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	Discharge Conc < TQL
Total Selenium	5.48	µg/L	Discharge Conc < TQL
Total Silver	9.22	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.0	µg/L	Discharge Conc < TQL
Acrylonitrile	0.11	µg/L	Discharge Conc < TQL
Benzene	1.05	µg/L	Discharge Conc < TQL
Bromoform	12.7	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	0.73	µg/L	Discharge Conc < TQL
Chlorobenzene	109	µg/L	Discharge Conc ≤ 25% WQBEL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	3,829	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	18.0	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	36.1	µg/L	Discharge Conc < TQL

1,2-Dichloropropane	1.63	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	0.49	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	74.4	µg/L	Discharge Conc ≤ 25% WQBEL
Methylene Chloride	36.3	µg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	0.36	µg/L	Discharge Conc < TQL
Tetrachloroethylene	18.2	µg/L	Discharge Conc < TQL
Toluene	62.4	µg/L	Discharge Conc ≤ 25% WQBEL
1,1,1-Trichloroethane	667	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	1.	µg/L	Discharge Conc < TQL
Trichloroethylene	1.09	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.036	µg/L	Discharge Conc < TQL
2-Chlorophenol	32.8	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	10.9	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	109	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	10.9	µg/L	Discharge Conc < TQL
2-Nitrophenol	1.750	µg/L	Discharge Conc < TQL
4-Nitrophenol	514	µg/L	Discharge Conc < TQL
Pentachlorophenol	0.054	µg/L	Discharge Conc < TQL
Phenol	4.378	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	2.72	µg/L	Discharge Conc < TQL
Acenaphthene	18.6	µg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	328	µg/L	Discharge Conc < TQL
Benzidine	0.0002	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.002	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.0002	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.002	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.018	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.054	µg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	219	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	0.58	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	59.1	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.11	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	875	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.22	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthracene	0.0002	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	175	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	7.66	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	184	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.091	µg/L	Discharge Conc < TQL
Diethyl Phthalate	656	µg/L	Discharge Conc < TQL
Dimethyl Phthalate	547	µg/L	Discharge Conc < TQL

Model Results

11/4/2025

Page 15

Di-n-Butyl Phthalate	21.9	µg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	0.091	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.091	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.054	µg/L	Discharge Conc < TQL
Fluoranthene	21.9	µg/L	Discharge Conc < TQL
Fluorene	54.7	µg/L	Discharge Conc < TQL
Hexachlorobenzene	0.0001	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.018	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1.09	µg/L	Discharge Conc < TQL
Hexachloroethane	0.18	µg/L	Discharge Conc < TQL
Indeno(1,2,3- <i>cd</i>)Pyrene	0.002	µg/L	Discharge Conc < TQL
Isophorone	37.2	µg/L	Discharge Conc < TQL
Naphthalene	47.0	µg/L	Discharge Conc < TQL
Nitrobenzene	10.9	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.001	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.009	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	5.99	µg/L	Discharge Conc < TQL
Phenanthrene	1.09	µg/L	Discharge Conc < TQL
Pyrene	21.9	µg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.077	µg/L	Discharge Conc < TQL

Whole Effluent Toxicity (WET) Analysis Spreadsheet

NPDES Permit Fact Sheet
Borough of Souderton WWTP

NPDES Permit No. PA0021857

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet					
Type of Test		Species Tested		Facility Name	
Endpoint		Chronic		Souderton Boro WWTP	
TIWC (decimal)		Pimephales		Permit No.	
No. Per Replicate		Survival		PA0021857	
TST b value		0.978		TST alpha value	
TST b value		0.75		0.25	
Test Completion Date					
Replicate No.		5/24/2022		Replicate No.	
Control		TIWC		Control	
1	9	10		1	9
2	10	9		2	10
3	10	10		3	9
4	10	10		4	10
5				5	
6				6	
7				7	
8				8	
9				9	
10				10	
11				11	
12				12	
13				13	
14				14	
15				15	
Mean	9.750	9.750		Mean	9.500
Std Dev.	0.500	0.500		Std Dev.	0.577
# Replicates	4	4		# Replicates	4
T-Test Result	6.7314			T-Test Result	5.0564
Deg. of Freedom	5			Deg. of Freedom	5
Critical T Value	0.7267			Critical T Value	0.7267
Pass or Fail	PASS			Pass or Fail	PASS
Test Completion Date					
Replicate No.		7/2/2024		Replicate No.	
Control		TIWC		Control	
1	10	10		1	9
2	10	10		2	10
3	10	10		3	10
4	10	10		4	10
5				5	
6				6	
7				7	
8				8	
9				9	
10				10	
11				11	
12				12	
13				13	
14				14	
15				15	
Mean	10.000	10.000		Mean	9.750
Std Dev.	0.000	0.000		Std Dev.	0.500
# Replicates	4	4		# Replicates	4
T-Test Result				T-Test Result	6.7314
Deg. of Freedom				Deg. of Freedom	5
Critical T Value				Critical T Value	0.7267
Pass or Fail	PASS			Pass or Fail	PASS
Test Completion Date					
Replicate No.		6/27/2023		Replicate No.	
Control		TIWC		Control	
1	9	9		1	9
2	10	10		2	10
3	9	10		3	10
4	10	9		4	10
5				5	
6				6	
7				7	
8				8	
9				9	
10				10	
11				11	
12				12	
13				13	
14				14	
15				15	
Mean	9.500	9.500		Mean	0.341
Std Dev.	0.577	0.577		Std Dev.	0.380
# Replicates	4	4		# Replicates	4
T-Test Result				T-Test Result	5.6403
Deg. of Freedom				Deg. of Freedom	5
Critical T Value				Critical T Value	0.7267
Pass or Fail	PASS			Pass or Fail	PASS
Test Completion Date					
Replicate No.		5/24/2022		Replicate No.	
Control		TIWC		Control	
1	0.279	0.339		1	0.304
2	0.358	0.347		2	0.357
3	0.358	0.376		3	0.311
4	0.37	0.378		4	0.332
5				5	
6				6	
7				7	
8				8	
9				9	
10				10	
11				11	
12				12	
13				13	
14				14	
15				15	
Mean	0.341	0.380		Mean	0.326
Std Dev.	0.042	0.020		Std Dev.	0.024
# Replicates	4	4		# Replicates	4
T-Test Result				T-Test Result	2.6148
Deg. of Freedom				Deg. of Freedom	5
Critical T Value				Critical T Value	0.7267
Pass or Fail	PASS			Pass or Fail	PASS
Test Completion Date					
Replicate No.		6/27/2023		Replicate No.	
Control		TIWC		Control	
1	0.304	0.275		1	0.301
2	0.357	0.262		2	0.337
3	0.311	0.295		3	0.385
4	0.332	0.333		4	0.392
5				5	
6				6	
7				7	
8				8	
9				9	
10				10	
11				11	
12				12	
13				13	
14				14	
15				15	
Mean	0.326	0.291		Mean	0.323
Std Dev.	0.024	0.031		Std Dev.	0.026
# Replicates	4	4		# Replicates	4
T-Test Result				T-Test Result	2.7870
Deg. of Freedom				Deg. of Freedom	5
Critical T Value				Critical T Value	0.7267
Pass or Fail	PASS			Pass or Fail	PASS

NPDES Permit Fact Sheet
Borough of Souderton WWTP

NPDES Permit No. PA0021857

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet

Type of Test	Chronic
Species Tested	Ceriodaphnia
Endpoint	Survival
TIWC (decimal)	0.978
No. Per Replicate	1
TST b value	0.75
TST alpha value	0.2

Facility Name	
Souderton Boro WWTP	
Permit No.	
PA0021857	

Test Completion Date	
Replicate No.	5/23/2022
Control	TIWC
1	1
2	1
3	0
4	1
5	1
6	1
7	1
8	1
9	1
10	1
11	
12	
13	
14	
15	

Test Completion Date	
Replicate No.	6/27/2023
Control	TIWC
1	0
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	1
11	
12	
13	
14	
15	

Mean 1.000 0.900
Std Dev. 0.000 0.316
Replicates 10 10

T-Test Result
Deg. of Freedom
Critical T Value
Pass or Fail **PASS**

Test Completion Date	
Replicate No.	7/2/2024
Control	TIWC
1	1
2	1
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	1
11	
12	
13	
14	
15	

Test Completion Date	
Replicate No.	9/1/2025
Control	TIWC
1	1
2	0
3	1
4	1
5	1
6	1
7	1
8	1
9	1
10	1
11	
12	
13	
14	
15	

Mean 1.000 1.000
Std Dev. 0.000 0.000
Replicates 10 10

T-Test Result
Deg. of Freedom
Critical T Value
Pass or Fail **PASS**

DEP Whole Effluent Toxicity (WET) Analysis Spreadsheet

Type of Test	Chronic
Species Tested	Ceriodaphnia
Endpoint	Reproduction
TIWC (decimal)	0.978
No. Per Replicate	1
TST b value	0.75
TST alpha value	0.2

Facility Name	
Souderton Boro WWTP	
Permit No.	
PA0021857	

Test Completion Date	
Replicate No.	5/23/2022
Control	TIWC
1	43
2	41
3	0
4	41
5	37
6	39
7	37
8	35
9	35
10	37
11	
12	
13	
14	
15	

Test Completion Date	
Replicate No.	8/27/2023
Control	TIWC
1	4
2	23
3	28
4	28
5	24
6	28
7	24
8	26
9	28
10	27
11	
12	
13	
14	
15	

Mean 33.400 34.500
Std Dev. 6.851 12.412
Replicates 10 10

T-Test Result 2.2246
Deg. of Freedom 14
Critical T Value 0.8681
Pass or Fail **PASS**

Test Completion Date	
Replicate No.	7/2/2024
Control	TIWC
1	24
2	35
3	33
4	32
5	35
6	25
7	41
8	35
9	28
10	16
11	
12	
13	
14	
15	

Test Completion Date	
Replicate No.	9/1/2025
Control	TIWC
1	45
2	0
3	32
4	38
5	29
6	35
7	34
8	39
9	34
10	40
11	
12	
13	
14	
15	

Mean 38.700 30.400
Std Dev. 6.147 7.214
Replicates 10 10

T-Test Result 1.0619
Deg. of Freedom 16
Critical T Value 0.8647
Pass or Fail **PASS**

Test Completion Date	
Replicate No.	7/2/2024
Control	TIWC
1	37
2	41
3	42
4	34
5	42
6	33
7	34
8	38
9	41
10	16
11	
12	
13	
14	
15	

Test Completion Date	
Replicate No.	9/1/2025
Control	TIWC
1	45
2	0
3	42
4	38
5	29
6	35
7	34
8	39
9	34
10	40
11	
12	
13	
14	
15	

Mean 38.200 32.200
Std Dev. 3.521 12.081
Replicates 10 10

T-Test Result 0.9078
Deg. of Freedom 11
Critical T Value 0.8755
Pass or Fail **PASS**

52

WET Summary and Evaluation							
Facility Name	Souderton Boro WWTP						
Permit No.	PA0021857						
Design Flow (MGD)	2						
Q ₇₋₁₀ Flow (cfs)	0.0829						
PMF _a	1						
PMF _c	1						
		Test Results (Pass/Fail)					
		Test Date	Test Date	Test Date			
Species	Endpoint	5/24/22	6/27/23	7/2/24			
Pimephales	Survival	PASS	PASS	PASS			
		Test Results (Pass/Fail)					
		Test Date	Test Date	Test Date			
Species	Endpoint	5/24/22	6/27/23	7/2/24			
Pimephales	Growth	PASS	PASS	PASS			
		Test Results (Pass/Fail)					
		Test Date	Test Date	Test Date			
Species	Endpoint	5/23/22	6/27/23	7/2/24			
Ceriodaphnia	Survival	PASS	PASS	PASS			
		Test Results (Pass/Fail)					
		Test Date	Test Date	Test Date			
Species	Endpoint	5/23/22	6/27/23	7/2/24			
Ceriodaphnia	Reproduction	PASS	PASS	PASS			
Reasonable Potential? NO							
<u>Permit Recommendations</u>							
Test Type	Chronic						
TIWC	97	% Effluent					
Dilution Series	24, 49, 73, 97, 100 % Effluent						
Permit Limit	None						
Permit Limit Species							