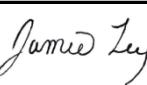


Application Type
Facility Type
Major / Minor

Renewal
Industrial
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL INDUSTRIAL WASTE (IW)
AND IW STORMWATER**

Application No. **PA0021971**
APS ID **1111753**
Authorization ID **1480956**


Applicant and Facility Information

Applicant Name	East Dunkard Water Authority PO Box 241 2790 South Eighty-Eight Road Dilliner, PA 15327-0241	Facility Name	East Dunkard Water Authority Treatment Plant PO Box 241 2790 South Eighty-Eight Road Dilliner, PA 15327-0241
Applicant Address		Facility Address	
Applicant Contact	Ryan Hargrove	Facility Contact	Same as applicant
Applicant Phone	(412) 690-5436	Facility Phone	Same as applicant
Client ID	24189	Site ID	248063
SIC Code	4941	Municipality	Dunkard Township
SIC Description	Trans. & Utilities - Water Supply	County	Greene
Date Application Received	<u>April 16, 2024</u>	EPA Waived?	Yes
Date Application Accepted		If No, Reason	
Purpose of Application	Renewal of NPDES Permit Coverage		

Summary of Review

The Department received a late NPDES permit renewal application from East Dunkard Water Authority on April 16, 2024 for coverage of its East Dunkard Water Authority Treatment Plant. As of February 2024, PA American Water entered a receivership with East Dunkard Water Authority. The renewal application was submitted on behalf of East Dunkard Water Authority by PA American Water. The renewal application was submitted without the requisite sample data due to the holding pond being offline for cleaning of excess solids. Sample results for Pollutants Groups 1 and 2, as well as sample results for Department PFAS parameters, were submitted at a later date. A detection above the Department's TQL for Perfluorooctanoic acid (PFOA) was reported. Monitoring requirements for PFAS parameters are not required for water treatment plants at this time.

The East Dunkard Water Authority Treatment Plant (plant pumping capacity rated at 1.152 MGD) purifies water obtained from the Monongahela River. The raw water has polymer (DelPAC) added, which then goes through a static mixer prior to entering the clarifier. The water then goes through one (1) of four (4) filter beds. The filtered water then has caustic soda, phosphate blend and chlorine added as needed prior to entering the clearwell. From the clearwell the treated water is then conveyed to the distribution system. Wastewaters generated at the facility are clarifier slurry from the clarifier and filter backwash water. The wastewaters are conveyed to the backwash/solids holding pond, which allows the solids to settle out prior to being discharged back to the Monongahela River. The backwash/solids holding pond is graded to prevent stormwater runoff from entering the pond.

Approve	Deny	Signatures	Date
X		 Jamie Ley / Environmental Engineering Specialist	July 10, 2024
X		 Michael E. Fifth, P.E. / Environmental Engineer Manager	July 19, 2024

Summary of Review

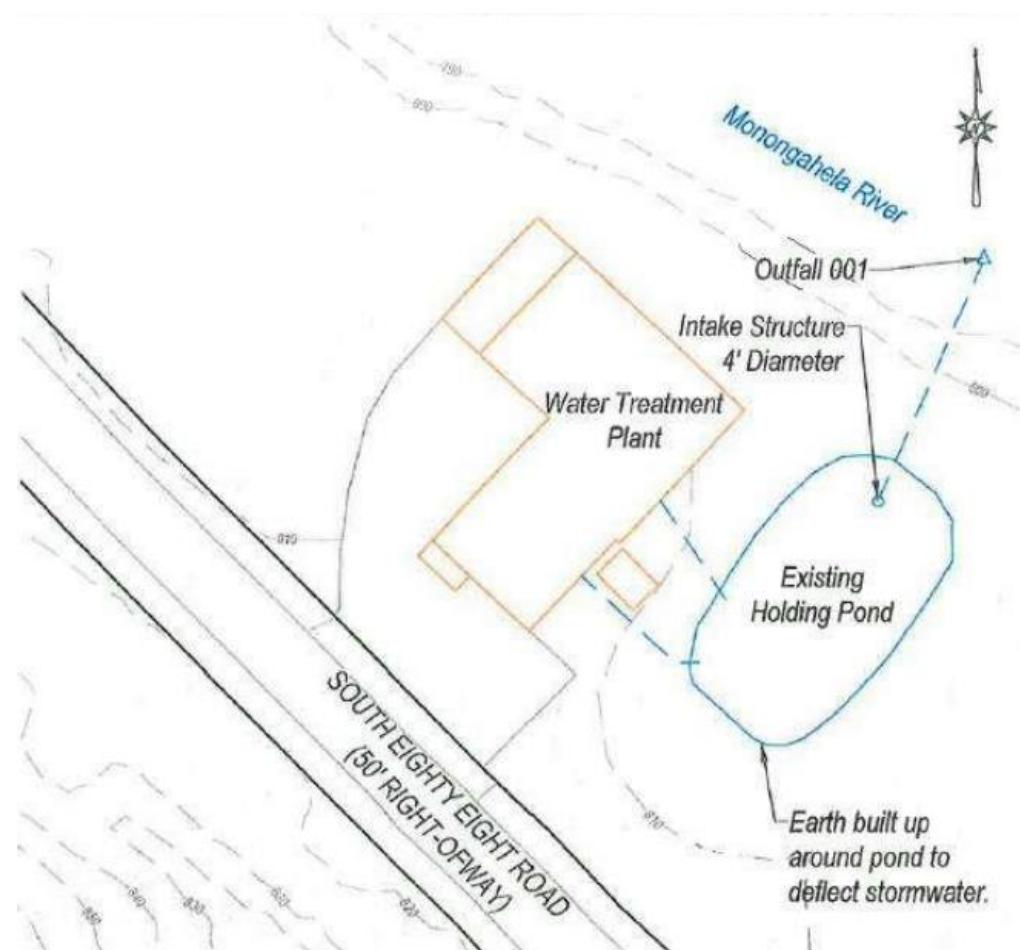


Figure 1 – Site Plan

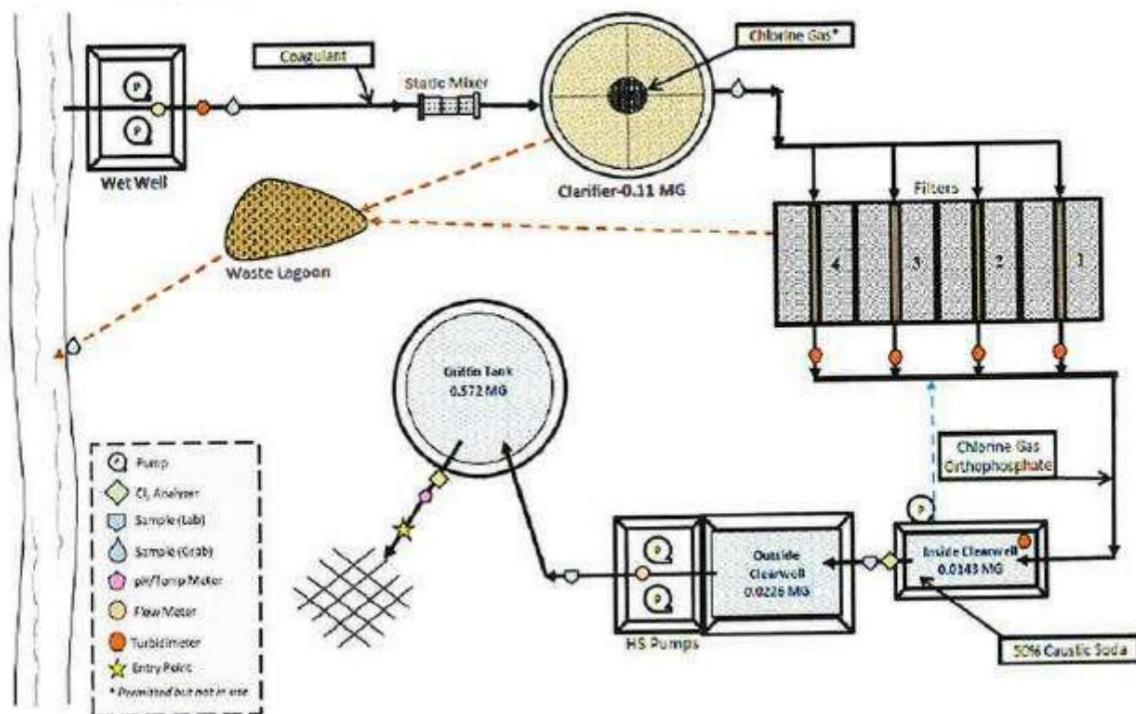


Figure 2 – Plant Schematic

Summary of Review

The facility was inspected multiple times during the current permit cycle:

PERMIT	FACILITY NAME	INSP REGION	COUNTY	MUNICIPALITY	INSP ID	INSP CATEGORY	INSPECTED DATE	INSP TYPE	AGENCY
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	3592986	PF	07/31/2023	Routine/Partial Inspection	PA Dept of Environmental Protection
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	3622863	PF	09/27/2023	Follow-up Inspection	PA Dept of Environmental Protection
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	3591180	PF	07/11/2023	Routine/Partial Inspection	PA Dept of Environmental Protection
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	3246982	PF	09/08/2021	Compliance Evaluation	PA Dept of Environmental Protection
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	3632072	PF	09/06/2023	Administrative/File Review	PA Dept of Environmental Protection
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	3731590	PF	02/28/2024	Routine/Partial Inspection	PA Dept of Environmental Protection
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	3731599	PF	10/31/2023	Routine/Partial Inspection	PA Dept of Environmental Protection

The following violations were noted:

PERMIT	FACILITY	INSP REGION	COUNTY	MUNICIPALITY	VIOL ID	VIOLATION DATE	VIOLATION TYPE	VIOLATION TYPE DESC	RESOLVED DATE
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	928923	09/08/2021	92A.41(A)5	NPDES - Failure to properly operate and maintain all facilities which are installed or used by the permittee to achieve compliance	09/08/2021
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	8153449	07/11/2023	92A.41(A)5	NPDES - Failure to properly operate and maintain all facilities which are installed or used by the permittee to achieve compliance	01/11/2024
PA0021971	EAST DUNKARD WATER AUTH WTP	SWRO	Greene	Dunkard Twp	8162483	09/06/2023	92A.62	NPDES - Failure to pay annual fee	09/12/2023

The permittee currently has no open violations.

The renewal application stated that an engineering project (currently in the design phase) will add safety features to facilitate easier collection of samples from Outfall 001 along with upgrades at the Griffin Tank (system entry point). Rehabilitation of the filter units is currently underway.

Draft Permit issuance is recommended.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Discharge, Receiving Waters and Water Supply Information

Outfall No.	001	Design Flow (MGD)	0.03
Latitude	39° 45' 15"	Longitude	-79° 55' 36"
Quad Name	Masontown	Quad Code	2006
Wastewater Description:	Supernatant water from wastewater holding lagoon. Lagoon receives waste from clarifier and filter backwash process in the form of sludge, slurry, or water.		
Receiving Waters	Monongahela River	Stream Code	37185
NHD Com ID	99418626	RMI	88.5
Drainage Area	4140 mi ²	Yield (cfs/mi ²)	0.128
Q ₇₋₁₀ Flow (cfs)	530	Q ₇₋₁₀ Basis	US Army Corp of Engineers
Elevation (ft)	781	Slope (ft/ft)	0.001
Watershed No.	19-G	Chapter 93 Class.	WWF
Existing Use		Existing Use Qualifier	
Exceptions to Use		Exceptions to Criteria	
Assessment Status	Impaired		
Cause(s) of Impairment	POLYCHLORINATED BIPHENYLS (PCBS)		
Source(s) of Impairment	SOURCE UNKNOWN		
TMDL Status	N/A	Name	N/A
Nearest Downstream Public Water Supply Intake	Dunkard Valley Joint Municipal Authority		
PWS Waters	Monongahela River	Flow at Intake (cfs)	530
PWS RMI	83.62	Distance from Outfall (mi)	5

Changes Since Last Permit Issuance:

Other Comments:

Development of Effluent Limitations

Outfall No.	001	Design Flow (MGD)	0.03
Latitude	39° 45' 15"	Longitude	-79° 55' 36"
Wastewater Description:	Supernatant water from wastewater holding lagoon. Lagoon receives waste from clarifier and filter backwash process in the form of sludge, slurry, or water.		

Technology-Based Limitations

The East Dunkard Water Authority Treatment Plant is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) which is displayed in Table 1 below.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code §§ 95.2(1) which is displayed in Table 1 below.

Pennsylvania regulations at 25 Pa. Code § 92a.48(b) require the imposition of technology-based TRC limits for facilities that use chlorination and that are not already subject to TRC limits based on applicable federal ELGs or a facility-specific BPJ evaluation which is displayed in Table 1 below.

Table 1. Regulatory Effluent Standards

Parameter	Monthly Avg	Daily Max	IMAX
Flow	Monitor	Monitor	----
pH	6.0 – 9.0 at all times		----
TRC	0.5 mg/l	----	1.6 mg/l

Best Practicable Control Technology Currently Achievable (BPT)

BPT for wastewater from treatment of WTP sludges and filter backwash is found in DEPs Technology-Based Control Requirements for Water Treatment Plant Wastes Document which falls under Best Professional Judgement under 40 CFR § 125.3 and the limits imposed are displayed in Table 2 below.

Table 2. BPT Limits for WTP sludge and filter backwash wastewater

Parameter	Monthly Avg (mg/l)	Daily Max (mg/l)
Suspended solids	30.0	60.0
Iron (total)	2.0	4.0
Aluminum (total)	4.0	8.0
Manganese (total)	1.0	2.0
Flow	Monitor	----
pH	6.0 – 9.0 at all times	
Total Residual Chlorine	0.5	1.0

Total Dissolved Solids (TDS)

Integral to the implementation of 25 Pa. Code § 95.10 is the principle that existing, authorized mass loadings of TDS are exempt from any treatment requirements under these provisions. Existing mass loadings of TDS up to and including the maximum daily discharge loading for any existing discharge, provided that the loading was authorized prior to August 21, 2010 are exempt. Discharge loadings of TDS authorized by the Department are typically exempt from the treatment requirements of Chapter 95.10 until the net TDS loading is increased, an existing discharge proposes a hydraulic expansion or a change in the waste stream. If there are existing mass or production-based TDS effluent limits, then these are used as the basis for the existing mass loading. The facility is not new or expanding waste loading of TDS, therefore, the facility is exempt from 25 Pa. Code § 95.10 treatment requirements.

Water Quality-Based Limitations

Toxics Management Spread Sheet

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

Reasonable Potential Analysis and WQBEL Development for Outfall 001

Discharges from Outfall 001 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 3.

Table 3: TMS Inputs for Outfall 001

Parameter	Value
River Mile Index	88.5
Discharge Flow (MGD)	0.03
Basin/Stream Characteristics	
Parameter	Value
Area in Square Miles	4,140
Q ₇₋₁₀ (cfs)	530
Low-flow yield (cfs/mi ²)	0.128
Elevation (ft)	781
Slope	0.001

For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application or DMRs. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported

discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment B of this Fact Sheet.

The Toxics Management Spread Sheet recommended multiple monitoring requirements for Outfall 001.

Table 4: TMS Recommended Monitoring Requirements for Outfall 001

Parameter	AML	MDL	IMAX	Units
Total Aluminum	Report	Report	Report	mg/L

Total Residual Chlorine

To determine if WQBELs are required for discharges containing total residual chlorine (TRC), a discharge evaluation is performed using a DEP program called TRC_CALC created with Microsoft Excel for Windows. TRC_CALC calculates TRC Waste Load Allocations (WLAs) through the application of a mass balance model which considers TRC losses due to stream and discharge chlorine demands and first-order chlorine decay. Input values for the program include flow rates and chlorine demands for the receiving stream and the discharge, the number of samples taken per month, coefficients of TRC variability, partial mix factors, and an optional factor of safety. The mass balance model calculates WLAs for acute and chronic criteria that are then converted to long term averages using calculated multipliers. The multipliers are functions of the number of samples taken per month and the TRC variability coefficients (normally kept at default values unless site specific information is available). The most stringent limitation between the acute and chronic long-term averages is converted to an average monthly limit for comparison to the BAT average monthly limit of 0.5 mg/l from 25 Pa. Code § 92a.48(b)(2). The more stringent of these average monthly TRC limitations is imposed in the permit. The results of the modeling, included in Attachment C, indicate that BAT/BPJ are required for TRC.

Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 and are displayed below in Table 6.

Table 6: Current Permit Effluent Limits

Parameters	Mass (lb/day)		Concentration (mg/L)			
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX
Total Suspended Solids	XXX	XXX	XXX	30	60	XXX
Total Residual Chlorine	XXX	XXX	XXX	0.5	1.0	XXX
Total Aluminum	XXX	XXX	XXX	4.0	8.0	XXX
Total Iron	XXX	XXX	XXX	2.0	4.0	XXX
Total Manganese	XXX	XXX	XXX	1.0	2.0	XXX
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX

Proposed Effluent Limitations for Outfall 001

The proposed effluent limitations and monitoring requirements for Outfall 001 are shown below in Table 7. The limits are the most stringent values from the above limitation analysis.

Table 7: Proposed Effluent Limitations for Outfall 001

Parameters	Mass (lb/day)		Concentration			Monitoring Requirements		
	Average Monthly	Daily Maximum	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	2/Month	Measure
Total Suspended Solids (mg/L)	XXX	XXX	XXX	30.0	60.0	XXX	2/Month	Grab
Total Residual Chlorine (mg/L)	XXX	XXX	XXX	0.5	1.0	XXX	2/Month	Grab
Total Aluminum (mg/L)	XXX	XXX	XXX	4.0	8.0	XXX	2/Month	Grab
Total Iron (mg/L)	XXX	XXX	XXX	2.0	4.0	XXX	2/Month	Grab
Total Manganese (mg/L)	XXX	XXX	XXX	1.0	2.0	XXX	2/Month	Grab
pH (S.U.)	XXX	XXX	6.0	XXX	9.0	XXX	2/Month	Grab

Tools and References Used to Develop Permit	
<input type="checkbox"/>	WQM for Windows Model (see Attachment)
<input checked="" type="checkbox"/>	Toxics Management Spreadsheet (see Attachment B)
<input checked="" type="checkbox"/>	TRC Model Spreadsheet (see Attachment C)
<input type="checkbox"/>	Temperature Model Spreadsheet (see Attachment)
<input type="checkbox"/>	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
<input type="checkbox"/>	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
<input type="checkbox"/>	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
<input type="checkbox"/>	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
<input type="checkbox"/>	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
<input type="checkbox"/>	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
<input type="checkbox"/>	Pennsylvania CSO Policy, 386-2000-002, 9/08.
<input type="checkbox"/>	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
<input type="checkbox"/>	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
<input type="checkbox"/>	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
<input type="checkbox"/>	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
<input type="checkbox"/>	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.
<input type="checkbox"/>	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.
<input type="checkbox"/>	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
<input type="checkbox"/>	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
<input type="checkbox"/>	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
<input type="checkbox"/>	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
<input type="checkbox"/>	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
<input type="checkbox"/>	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
<input type="checkbox"/>	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
<input type="checkbox"/>	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
<input type="checkbox"/>	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
<input type="checkbox"/>	Design Stream Flows, 386-2000-003, 9/98.
<input type="checkbox"/>	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
<input type="checkbox"/>	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
<input type="checkbox"/>	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
<input checked="" type="checkbox"/>	SOP: BCW-PMT-001, BCW-PMT-032, BCW-PMT-033, BCW-PMT-037
<input type="checkbox"/>	Other:

Attachment A – Outfall 001 & End of Reach StreamStats Reports

StreamStats Report_E Dunkard Water Authority Outfall 001

Region ID: PA

Workspace ID: PA20240430175619842000

Clicked Point (Latitude, Longitude): 39.75468, -79.92635

Time: 2024-04-30 13:56:48 -0400

[Collapse All](#)

► Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	4140	square miles
ELEV	Mean Basin Elevation	2014	feet
FOREST	Percentage of area covered by forest	80.4666	percent
PRECIP	Mean Annual Precipitation	49	inches
STORAGE	Percentage of area of storage (lakes ponds reservoirs wetlands)	0.69	percent
URBAN	Percentage of basin with urban development	1.9285	percent

➤ Peak-Flow Statistics

Peak-Flow Statistics Parameters [Peak Flow Region 2 SIR 2019 5094]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4140	square miles	0.92	1160
STORAGE	Percent Storage	0.69	percent	0	8.9

Peak-Flow Statistics Disclaimers [Peak Flow Region 2 SIR 2019 5094]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Peak Flow Region 2 SIR 2019 5094]

Statistic	Value	Unit
50-percent AEP flood	66300	ft^3/s
20-percent AEP flood	96100	ft^3/s
10-percent AEP flood	118000	ft^3/s
4-percent AEP flood	150000	ft^3/s
2-percent AEP flood	176000	ft^3/s
1-percent AEP flood	205000	ft^3/s
0.5-percent AEP flood	236000	ft^3/s
0.2-percent AEP flood	282000	ft^3/s

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H., 2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019-5094, 36 p. (<https://doi.org/10.3133/sir20195094>)

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4140	square miles	2.26	1400
ELEV	Mean Basin Elevation	2014	feet	1050	2580

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	571	ft^3/s
30 Day 2 Year Low Flow	770	ft^3/s
7 Day 10 Year Low Flow	318	ft^3/s
30 Day 10 Year Low Flow	381	ft^3/s
90 Day 10 Year Low Flow	585	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

► Annual Flow Statistics

Annual Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4140	square miles	2.26	1720
ELEV	Mean Basin Elevation	2014	feet	130	2700
PRECIP	Mean Annual Precipitation	49	inches	33.1	50.4
FOREST	Percent Forest	80.4666	percent	5.1	100
URBAN	Percent Urban	1.9285	percent	0	89

Annual Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Annual Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Mean Annual Flow	9480	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

► General Flow Statistics

General Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4140	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	49	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	80.4666	percent	5.1	100
URBAN	Percent Urban	1.9285	percent	0	89

General Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

General Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Harmonic Mean Streamflow	3830	ft^3/s

General Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

➤ Base Flow Statistics

Base Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4140	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	49	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	80.4666	percent	5.1	100
URBAN	Percent Urban	1.9285	percent	0	89

Base Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Base Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	3760	ft^3/s
Base Flow 25 Year Recurrence Interval	3400	ft^3/s
Base Flow 50 Year Recurrence Interval	3180	ft^3/s

Base Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.20.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

StreamStats Report_End of Reach 1_E Dunkard Water Authority

Region ID: PA
Workspace ID: PA20240430184834291000
Clicked Point (Latitude, Longitude): 39.75561, -79.92878
Time: 2024-04-30 14:49:02 -0400

[Collapse All](#)

► Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
CARBON	Percentage of area of carbonate rock	0	percent
DRNAREA	Area that drains to a point on a stream	4150	square miles
ELEV	Mean Basin Elevation	2014	feet
FOREST	Percentage of area covered by forest	80.4661	percent
PRECIP	Mean Annual Precipitation	49	inches
STORAGE	Percentage of area of storage (lakes ponds reservoirs wetlands)	0.69	percent
URBAN	Percentage of basin with urban development	1.9284	percent

➤ Peak-Flow Statistics

Peak-Flow Statistics Parameters [Peak Flow Region 2 SIR 2019 5094]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4150	square miles	0.92	1160
STORAGE	Percent Storage	0.69	percent	0	8.9

Peak-Flow Statistics Disclaimers [Peak Flow Region 2 SIR 2019 5094]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Peak-Flow Statistics Flow Report [Peak Flow Region 2 SIR 2019 5094]

Statistic	Value	Unit
50-percent AEP flood	66400	ft^3/s
20-percent AEP flood	96300	ft^3/s
10-percent AEP flood	119000	ft^3/s
4-percent AEP flood	150000	ft^3/s
2-percent AEP flood	177000	ft^3/s
1-percent AEP flood	205000	ft^3/s
0.5-percent AEP flood	237000	ft^3/s
0.2-percent AEP flood	283000	ft^3/s

Peak-Flow Statistics Citations

Roland, M.A., and Stuckey, M.H., 2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019-5094, 36 p. (<https://doi.org/10.3133/sir20195094>)

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4150	square miles	2.26	1400
ELEV	Mean Basin Elevation	2014	feet	1050	2580

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	573	ft^3/s
30 Day 2 Year Low Flow	772	ft^3/s
7 Day 10 Year Low Flow	319	ft^3/s
30 Day 10 Year Low Flow	383	ft^3/s
90 Day 10 Year Low Flow	586	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

► Annual Flow Statistics

Annual Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4150	square miles	2.26	1720
ELEV	Mean Basin Elevation	2014	feet	130	2700
PRECIP	Mean Annual Precipitation	49	inches	33.1	50.4
FOREST	Percent Forest	80.4661	percent	5.1	100
URBAN	Percent Urban	1.9284	percent	0	89

Annual Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Annual Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Mean Annual Flow	9500	ft^3/s

Annual Flow Statistics Citations

Stuckey, M.H., 2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

► General Flow Statistics

General Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4150	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	49	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	80.4661	percent	5.1	100
URBAN	Percent Urban	1.9284	percent	0	89

General Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

General Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Harmonic Mean Streamflow	3830	ft^3/s

General Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

➤ Base Flow Statistics

Base Flow Statistics Parameters [Statewide Mean and Base Flow]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4150	square miles	2.26	1720
PRECIP	Mean Annual Precipitation	49	inches	33.1	50.4
CARBON	Percent Carbonate	0	percent	0	99
FOREST	Percent Forest	80.4661	percent	5.1	100
URBAN	Percent Urban	1.9284	percent	0	89

Base Flow Statistics Disclaimers [Statewide Mean and Base Flow]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Base Flow Statistics Flow Report [Statewide Mean and Base Flow]

Statistic	Value	Unit
Base Flow 10 Year Recurrence Interval	3770	ft^3/s
Base Flow 25 Year Recurrence Interval	3410	ft^3/s
Base Flow 50 Year Recurrence Interval	3190	ft^3/s

Base Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (<http://pubs.usgs.gov/sir/2006/5130/>)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.20.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.1

Attachment B – TMS Input & Results

Discharge Information

Instructions **Discharge** Stream

Facility: **East Dunkard Water Authority**

NPDES Permit No.: **PA0021971**

Outfall No.: **001**

Evaluation Type: **Major Sewage / Industrial Waste**

Wastewater Description: **Clarifier slurry & filter backwash water**

Discharge Characteristics													
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)				Complete Mix Times (min)			Q ₇₋₁₀	Q _h		
			AFC	CFC	THH	CRL							
0.03	88.7	8											
Discharge Pollutant			Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
Group 1	Total Dissolved Solids (PWS)	mg/L		182									
	Chloride (PWS)	mg/L		24.2									
	Bromide	mg/L	<	0.011									
	Sulfate (PWS)	mg/L		74.3									
	Fluoride (PWS)	mg/L		0.279									
Group 2	Total Aluminum	mg/L		211.1									
	Total Antimony	µg/L	<	0.348									
	Total Arsenic	µg/L	<	2.5									
	Total Barium	µg/L		33.5									
	Total Beryllium	µg/L	<	0.676									
	Total Boron	mg/L	<	0.0565									
	Total Cadmium	µg/L	<	0.123									
	Total Chromium (III)	mg/L	<	0.00199									
	Hexavalent Chromium	mg/L	<	0.00025									
	Total Cobalt	µg/L		0.562									
	Total Copper	µg/L	<	2.21									
	Free Cyanide	µg/L	<	0.5									
	Total Cyanide	mg/L		0.017									
	Dissolved Iron	µg/L	<	20									
	Total Iron	mg/L		22.3									
	Total Lead	µg/L		0.24									
	Total Manganese	mg/L		1.4									
	Total Mercury	mg/L		0.00012									
	Total Nickel	µg/L		2.45									
	Total Phenols (Phenolics) (PWS)	mg/L	<	0.005									
	Total Selenium	µg/L	<	2.5									
	Total Silver	µg/L	<	0.274									
	Total Thallium	µg/L	<	0.068									
	Total Zinc	µg/L		5.07									
	Total Molybdenum	µg/L		0.297									
	Acrolein	µg/L	<										
	Acrylamide	µg/L	<										
	Acrylonitrile	µg/L	<										
	Benzene	µg/L	<										
	Bromoform	µg/L	<										
	Carbon Tetrachloride	µg/L	<										

Group 3	Chlorobenzene	µg/L	<											
	Chlorodibromomethane	µg/L	<											
	Chloroethane	µg/L	<											
	2-Chloroethyl Vinyl Ether	µg/L	<											
	Chloroform	µg/L	<											
	Dichlorobromomethane	µg/L	<											
	1,1-Dichloroethane	µg/L	<											
	1,2-Dichloroethane	µg/L	<											
	1,1-Dichloroethylene	µg/L	<											
	1,2-Dichloropropane	µg/L	<											
	1,3-Dichloropropylene	µg/L	<											
	1,4-Dioxane	µg/L	<											
	Ethylbenzene	µg/L	<											
	Methyl Bromide	µg/L	<											
	Methyl Chloride	µg/L	<											
	Methylene Chloride	µg/L	<											
	1,1,2,2-Tetrachloroethane	µg/L	<											
	Tetrachloroethylene	µg/L	<											
	Toluene	µg/L	<											
	1,2-trans-Dichloroethylene	µg/L	<											
	1,1,1-Trichloroethane	µg/L	<											
	1,1,2-Trichloroethane	µg/L	<											
	Trichloroethylene	µg/L	<											
	Vinyl Chloride	µg/L	<											
Group 4	2-Chlorophenol	µg/L	<											
	2,4-Dichlorophenol	µg/L	<											
	2,4-Dimethylphenol	µg/L	<											
	4,6-Dinitro-o-Cresol	µg/L	<											
	2,4-Dinitrophenol	µg/L	<											
	2-Nitrophenol	µg/L	<											
	4-Nitrophenol	µg/L	<											
	p-Chloro-m-Cresol	µg/L	<											
	Pentachlorophenol	µg/L	<											
	Phenol	µg/L	<											
	2,4,6-Trichlorophenol	µg/L	<											
	Acenaphthene	µg/L	<											
Group 5	Acenaphthylene	µg/L	<											
	Anthracene	µg/L	<											
	Benzidine	µg/L	<											
	Benzo(a)Anthracene	µg/L	<											
	Benzo(a)Pyrene	µg/L	<											
	3,4-Benzofluoranthene	µg/L	<											
	Benzo(ghi)Perylene	µg/L	<											
	Benzo(k)Fluoranthene	µg/L	<											
	Bis(2-Chloroethoxy)Methane	µg/L	<											
	Bis(2-Chloroethyl)Ether	µg/L	<											
	Bis(2-Chloroisopropyl)Ether	µg/L	<											
	Bis(2-Ethylhexyl)Phthalate	µg/L	<											
	4-Bromophenyl Phenyl Ether	µg/L	<											
	Butyl Benzyl Phthalate	µg/L	<											
	2-Chloronaphthalene	µg/L	<											
	4-Chlorophenyl Phenyl Ether	µg/L	<											
	Chrysene	µg/L	<											
	Dibenzo(a,h)Anthracene	µg/L	<											
	1,2-Dichlorobenzene	µg/L	<											
	1,3-Dichlorobenzene	µg/L	<											
	1,4-Dichlorobenzene	µg/L	<											
	3,3-Dichlorobenzidine	µg/L	<											
	Diethyl Phthalate	µg/L	<											
	Dimethyl Phthalate	µg/L	<											
	Di-n-Butyl Phthalate	µg/L	<											
	2,4-Dinitrotoluene	µg/L	<											
	2,6-Dinitrotoluene	µg/L	<											
	Di-n-Octyl Phthalate	µg/L	<											

Stream / Surface Water Information

East Dunkard Water Authority, NPDES Permit No. PA0021971, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Monangahela River**

No. Reaches to Model: **1**

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	037185	88.5	781	4140	0.001		Yes
End of Reach 1	037185	88	780	4150	0.001		Yes

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	88.5	0.128	530			636	15					100	7		
End of Reach 1	88	0.127	530			597	15								

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	88.5														
End of Reach 1	88														

Model Results

East Dunkard Water Authority, NPDES Permit No. PA0021971, Outfall 001

[Instructions](#) [Results](#) [RETURN TO INPUTS](#) [SAVE AS PDF](#) [PRINT](#) All Inputs Results Limits

Hydrodynamics

Wasteload Allocations

AFC CCT (min): PMF: Analysis Hardness (mg/l): Analysis pH:

Pollutants	Stream Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,910,413	
Total Antimony	0	0		0	1,100	1,100	2,801,939	
Total Arsenic	0	0		0	340	340	866,054	
Total Barium	0	0		0	21,000	21,000	53,491,566	Chem Translator of 1 applied
Total Boron	0	0		0	8,100	8,100	20,632,461	
Total Cadmium	0	0		0	2.014	2.13	5,433	Chem Translator of 0.944 applied
Total Chromium (III)	0	0		0	569.743	1,803	4,592,591	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	41,503	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	241,986	
Total Copper	0	0		0	13.439	14.0	35,657	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	56,039	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	64.578	81.6	207,956	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	4,195	Chem Translator of 0.85 applied
Total Nickel	0	0		0	468.218	469	1,195,044	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	3.217	3.78	9,639	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	165,569	
Total Zinc	0	0		0	117.176	120	305,187	Chem Translator of 0.978 applied

NPDES Permit Fact Sheet
East Dunkard Water Authority

NPDES Permit No. PA0021971

CFC CCT (min): ##### PMF: 1 Analysis Hardness (mg/l): 99.999 Analysis pH: 7.00

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	2,512,610	
Total Arsenic	0	0		0	150	150	1,713,143	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	46,825,906	
Total Boron	0	0		0	1,600	1,600	18,273,524	
Total Cadmium	0	0		0	0.246	0.27	3,091	Chem Translator of 0.909 applied
Total Chromium (III)	0	0		0	74.114	86.2	984,246	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	118,721	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	216,998	
Total Copper	0	0		0	8.956	9.33	106,544	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	59,389	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	1,500	1,500	17,131,429	WQC = 30 day average; PMF = 1
Total Lead	0	0		0	2.517	3.18	36,336	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	0.770	0.91	10,346	Chem Translator of 0.85 applied
Total Nickel	0	0		0	52.006	52.2	595,746	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	4.600	4.99	56,981	Chem Translator of 0.922 applied
Total Silver	0	0		0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0		0	13	13.0	148,472	
Total Zinc	0	0		0	118.138	120	1,368,406	Chem Translator of 0.986 applied

THH CCT (min): ##### PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Fluoride (PWS)	0	0		0	2,000	2,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	63,957	
Total Arsenic	0	0		0	10	10.0	114,210	
Total Barium	0	0		0	2,400	2,400	27,410,286	
Total Boron	0	0		0	3,100	3,100	35,404,953	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	

Hexavalent Chromium	0	0		0	N/A	N/A	N/A
Total Cobalt	0	0		0	N/A	N/A	N/A
Total Copper	0	0		0	N/A	N/A	N/A
Free Cyanide	0	0		0	4	4.0	45,684
Dissolved Iron	0	0		0	300	300	3,426,286
Total Iron	0	0		0	N/A	N/A	N/A
Total Lead	0	0		0	N/A	N/A	N/A
Total Manganese	0	0		0	1,000	1,000	11,420,953
Total Mercury	0	0		0	0.050	0.05	571
Total Nickel	0	0		0	610	610	6,966,781
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A
Total Selenium	0	0		0	N/A	N/A	N/A
Total Silver	0	0		0	N/A	N/A	N/A
Total Thallium	0	0		0	0.24	0.24	2,741
Total Zinc	0	0		0	N/A	N/A	N/A

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Fluoride (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			
Total Aluminum	Report	Report	Report	Report	Report	mg/L	1,224	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Fluoride (PWS)	N/A	N/A	PWS Not Applicable
Total Antimony	N/A	N/A	Discharge Conc < TQL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	27,410,286	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	13,225	mg/L	Discharge Conc < TQL
Total Cadmium	3,091	µg/L	Discharge Conc < TQL
Total Chromium (III)	984	mg/L	Discharge Conc < TQL
Hexavalent Chromium	26.6	mg/L	Discharge Conc < TQL
Total Cobalt	155,103	µg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	22,855	µg/L	Discharge Conc < TQL
Free Cyanide	35,919	µg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	3,426,286	µg/L	Discharge Conc < TQL
Total Iron	17,131	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	36,336	µg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	11,421	mg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.57	mg/L	Discharge Conc ≤ 10% WQBEL
Total Nickel	595,746	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		mg/L	Discharge Conc < TQL
Total Selenium	56,981	µg/L	Discharge Conc < TQL
Total Silver	6,178	µg/L	Discharge Conc < TQL
Total Thallium	2,741	µg/L	Discharge Conc < TQL
Total Zinc	195,613	µg/L	Discharge Conc ≤ 10% WQBEL
Total Molybdenum	N/A	N/A	No WQS

Attachment C – TRC Evaluation Model for Outfall 001

TRC EVALUATION

530	= Q stream (cfs)	0.5	= CV Daily
0.03	= Q discharge (MGD)	0.5	= CV Hourly
4	= no. samples	1	= AFC_Partial Mix Factor
0.3	= Chlorine Demand of Stream	1	= CFC_Partial Mix Factor
0	= Chlorine Demand of Discharge	15	= AFC_Criteria Compliance Time (min)
0.5	= BAT/BPJ Value	720	= CFC_Criteria Compliance Time (min)
	= % Factor of Safety (FOS)		= Decay Coefficient (K)
Source	Reference	AFC Calculations	Reference
TRC	1.3.2.iii	WLA_afc = 3642.984	1.3.2.iii
PENTOXSD TRG	5.1a	LTAMULT_afc = 0.373	5.1c
PENTOXSD TRG	5.1b	LTA_afc= 1357.463	5.1d
Source	Effluent Limit Calculations		
PENTOXSD TRG	5.1f	AML MULT = 1.720	
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) = 0.500	BAT/BPJ
		INST MAX LIMIT (mg/l) = 1.170	
WLA_afc		(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))... ...+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)	
LTAMULT_afc		EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)	
LTA_afc		wla_afc*LTAMULT_afc	
WLA_cfc		(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))... ...+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)	
LTAMULT_cfc		EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)	
LTA_cfc		wla_cfc*LTAMULT_cfc	
AML_MULT		EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))	
AVG_MON_LIMIT		MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)	
INST_MAX_LIMIT		1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)	