

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0022250
APS ID	278096
Authorization ID	12/6201

Applicant Name	Biglerville Bo	orough Authority	Facility Name	Biglerville STP
Applicant Address	33 Musselman Avenue		Facility Address	3251 Biglerville Road
	Biglerville, PA	17307-9233		Biglerville, PA 17307
Applicant Contact	Richard Moun	tfort	Facility Contact	Kevin Bollinger
Applicant Phone	(717) 677-948	38	Facility Phone	7176778802
Client ID	64562		Site ID	237897
Ch 94 Load Status			Municipality	Biglerville Borough
Connection Status			County	Adams
Date Application Receiv	ved Sept	ember 24, 2018	EPA Waived?	Yes
Date Application Accep	ted Octo	ber 2, 2018	If No, Reason	

Summary of Review

1.0 General Discussion

This fact sheet supports the re-issuance of an existing NPDES permit for discharge of treated domestic wastewater from Biglerville Borough's wastewater treatment plant located in Butler Township, Adams County. Biglerville Borough Authority owns and operates the wastewater treatment plant, which provides sanitary services to Biglerville Borough (84.5% of the flow) and Butler Township (15.5% of the flow). The sewer collection system is not combined and there is no bypasses or overflows approved in the collection system. The Sequencing Batch Reactor treatment plant at the site has an annual design capacity of 0.37 MGD, hydraulic design capacity of 0.925MG and an organic design capacity of 750 lbs/day- BOD5. The facility discharge to unnamed tributary of Conewago Creek which is classified for Warm Water Fishes (WWF). The existing NPDES permit was issued on April 18, 2014 with an effective date of May 1, 2014 and expiration date of April 30, 2019. The applicant submitted timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application.

A topographic map showing the discharge location is presented in attachment A.

1.1 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is

Approve	Deny	Signatures	Date
Х		J. Pascal Kwedza, P.E. / Environmental Engineer	December 3, 2019
		Daniel W. Martin, P.E. / Environmental Engineer Manager	
		Maria D Bebenek, P.E. /Program Manager	

Summary of Review

significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.2 Changes to the existing Permit

- UV Light intensity monitoring has been added
- Mass limits were added for Total Lead and Total Copper

1.3 Existing Permit Limits and Monitoring Requirements

			Monitoring R	equirements					
Discharge Parameter	Mass Unit	s (lbs/day)		Concentra	ions (mg/L				
	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Averag e	Instantaneous Maximum	Minimum Measurement Frequency	Required Sample Type	
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured	
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab	
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab	
TRC	XXX	XXX	XXX	0.018	XXX	0.059	1/day	Grab	
CBOD5 Nov 1 - Apr 30	77	123	XXX	25	40	50	1/week	8-Hr Composite	
CBOD5 May 1 - Oct 31	46	67	XXX	15	22	30	1/week	8-Hr Composite	
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
TSS	92	138	XXX	30	45	60	1/week	8-Hr Composite	
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab	
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab	
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite	
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation	
Total Nitrogen	XXX Report	XXX	XXX	Report	XXX	XXX	1/month	Calculation	
Total Nitrogen (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation 8-Hr	
Nov 1 - Apr 30	12	XXX	XXX	3.9	XXX	7.8	1/week	8-Hr Composite	

	Summary of Review											
				-		·						
Ammonia								8-Hr				
May 1 - Oct 31	4.0	XXX	XXX	1.3	XXX	2.6	1/week	Composite				
	Report											
Ammonia (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation				
								8-Hr				
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite				
	Report											
TKN (lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation				
								8-Hr				
Total Phosphorus	6.0	XXX	XXX	2.0	XXX	4	1/week	Composite				
Total Phosphorus	Report											
(lbs)	Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation				
								8-Hr				
Total Copper	XXX	XXX	XXX	0.014	XXX	XXX	1/month	Composite				
								8-Hr				
Total Hardness	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite				

1.4 Discharge, Receiving Waters and Water Supply Info	1.4 Discharge, Receiving Waters and Water Supply Information										
Outfall No. 001	Design Flow (MGD)	.37									
Latitude 39° 55′ 9.10″	Longitude	-77º 14' 44.34"									
Quad Name	Quad Code										
Wastewater Description: Sewage Effluent											
Unnamed Tributary to Conewago		00440									
Receiving Waters Creek (WWF)	Stream Code	09140									
NHD Com ID <u>57472663</u>	RMI	0.52 mi									
Drainage Area 1.7 mi ²	Yield (cfs/mi²)	0.0218									
Q ₇₋₁₀ Flow (cfs) 0.037	Q ₇₋₁₀ Basis	USGS gage 01574000									
Elevation (ft) 595	Slope (ft/ft)										
Watershed No. 7-F	Chapter 93 Class.	WWF									
Existing Use	Existing Use Qualifier										
Exceptions to Use	Exceptions to Criteria										
Assessment Status Impaired											
Cause(s) of Impairment Siltation											
Source(s) of Impairment Agriculture											
TMDL Status	Name										
Background/Ambient Data	Data Source										
pH (SU)											
Temperature (°F)											
Hardness (mg/L)											
Other:											
Nearest Downstream Public Water Supply Intake	Wrightsville Water Supply Con	mpany									
PWS Waters Susquehanna River	Flow at Intake (cfs)										
PWS RMI	Distance from Outfall (mi)	77.75									

Changes Since Last Permit Issuance:

Other Comments:

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 16 miles downstream by Wrightsville Water Supply Company.No impact is expected from this discharge on the intake.

2.0 Treatment Facility	Summary			
Treatment Facility Na	me: Biglerville STP			
WQM Permit No.	Issuance Date			
0185405 A-3	5/24/2016			
0185405 A-2	12/22/2015			
0185405 A-1	6/27/2006			
	T	1		
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
		Sequencing Batch		()
Sewage	Secondary	Reactor	Ultra Violet Light	0.37
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.925	750		Aerobic Digestion	

Changes Since Last Permit Issuance:

Other Comments:

2.1 Treatment Facility

The Biglerville Borough WWTP was originally built in early 1960s. In 1987, Biglerville replaces an old contact stabilization process with a new Fluidyne Sequencing Batch Reactor (SBR) system. The Water Quality Management (WQM) Permit (#0185405 06-1) was amended in 2006, approving an upgrade/expansion of the treatment plant and replacement of a portion of the interceptor. The amendment approved a hydraulic design capacity of 0.925MGD. In 2015 the WQM permit was amended to upgrade headworks and to install an Ultra Violet light disinfection system to replace the Chlorine System. This amendment changed the hydraulic design to coincide with the annual average design of 0.37MGD with no reason for the change. In 2016 the permit was amended to change the screenings system approved for the headworks in 2015. The WQM will need to be amended to include the hydraulic design capacity approved in 2006 if the reason for the reduction cannot be found. The treatment system consists of the following units:

Fine screen with Bar Screen back -up \rightarrow Influent Pump Station \rightarrow Sequencing Batch Reactors (2) \rightarrow UV system \rightarrow Cascade Aeration \rightarrow Outfall 001 to an unnamed tributary to Conewago Creek. There are two (2) aerobic digesters on-site, a screw press for sludge dewatering, and two (2) sludge storage pads. Solids are hauled to a landfill for disposal.

2.2 Chemicals

- Aluminum sulfate is added for phosphorous removal
- Mastercat 4230 is added for Copper removal

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from October 1, 2018 to September 30, 2019)

Parameter	SEP-19	AUG-19	JUL-19	JUN-19	MAY-19	APR-19	MAR-19	FEB-19	JAN-19	DEC-18	NOV-18	OCT-18
Flow (MGD)												
Average Monthly	0.112	0.171	0.265	0.192	0.368	0.302	0.370	0.352	0.372	0.427	0.540	0.228
Flow (MGD)												
Daily Maximum	0.148	0.250	0.819	0.400	1.070	0.736	1.218	0.737	1.286	1.037	1.043	0.535
pH (S.U.)												
Minimum	6.8	7.0	6.9	6.8	6.7	6.5	6.8	6.6	6.7	7.0	7.0	7.2
pH (S.U.)												
Maximum	7.7	7.4	7.3	7.2	7.1	7.2	7.2	7.2	7.3	7.4	7.5	7.6
DO (mg/L)												
Minimum	8.0	7.7	8.0	8.1	8.6	8.9	9.5	10.1	9.4	8.8	8.2	7.9
TRC (mg/L)												
Average Monthly	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG
TRC (mg/L)												
Instant. Maximum	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG	GG
CBOD5 (lbs/day)												
Average Monthly	< 2.7	< 5.0	< 5.8	< 5.2	< 6.8	< 6.6	< 8.0	< 9.8	< 7.1	< 7.2	< 12.4	< 5.6
CBOD5 (lbs/day)												
Weekly Average	< 3.2	6.9	< 7.4	5.9	7.9	< 8.9	< 10.6	< 15.5	< 8.8	< 9.5	< 17.5	8.5
CBOD5 (mg/L)	0.0		0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.0
Average Monthly	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
CBOD5 (mg/L)		4.0	. 0. 0	2.0	2.0	4.0	. 2. 0	4.0	2.0	2.0	2.0	2.0
Weekly Average	< 3.0	4.0	< 3.0	3.0	3.0	4.0	< 3.0	4.0	3.0	3.0	3.0	3.0
BOD5 (lbs/day) Raw Sewage Influent												
 Aver. Monthly	216	245	267	349	296	210	215	386	235	170	346	174
BOD5 (lbs/day)	210	245	207	349	290	210	215	300	233	170	340	174
Raw Sewage Influent												
 	260	293	489	527	369	302	241	652	322	205	619	196
BOD5 (mg/L)	200	233	703	321	303	302	271	002	JZZ	200	013	130
Raw Sewage Influent												
 Aver. Monthly	247	161	139	200	134	110	87	128	103	74	82	97
TSS (lbs/day)				200			<u> </u>	.20			<u> </u>	<u> </u>
Average Monthly	4.0	8.0	11.0	8.0	10	6.0	12	12	6.0	8.0	12	5.0
TSS (lbs/day)	11.5							<u> </u>				
Raw Sewage Influent												
 br/> Aver. Monthly	127	235	263	328	291	220	237	652	242	173	278	210

NPDES Permit Fact Sheet Biglerville STP

	•	T		T	T	T	T	T	T	T		, ,
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	161	335	182	488	374	291	401	1652	340	202	572	299
TSS (lbs/day)												
Weekly Average	7.4	11.7	26.2	14	19.9	17.9	21.1	19.1	10.0	15.8	17.5	6.8
TSS (mg/L)												
Average Monthly	4.0	5.0	5.0	5	4.0	3.0	5	4.0	2.0	3.0	3.0	3.0
TSS (mg/L)												
Raw Sewage Influent												
 br/> Ave. Monthly	144	152	134	188	128	109	89	228	107	76	63	116
TSS (mg/L)												
Weekly Average	10	7.0	11.0	10	8.0	6.0	6	7.0	4.0	5.0	4.0	4.0
Fecal Coliform				_				_			_	_
(CFU/100 ml)												
Geometric Mean	6.0	< 4.0	3.0	< 3.0	2	< 1.0	< 2.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0
Fecal Coliform			0.0									
(CFU/100 ml)												
Instant. Maximum	56	10	5.0	12	8	3.0	6.0	1.0	12	4.0	2.0	3.0
Nitrate-Nitrite (mg/L)			0.0		- J	0.0	0.0	1.0			2.0	0.0
Average Monthly	< 9.1	< 7.3	< 7.4	< 8.9	< 7.3	< 7.6	< 8.2	< 8.8	< 8.8	< 8.6	< 8.5	< 7.7
Nitrate-Nitrite (lbs)	V 0.1	V 7.0	~ 7	\ 0.0	V 7.0	V 7.0	\ 0. <u>Z</u>	\ 0.0	\ 0.0	\ 0.0	\ 0.0	77.7
Total Monthly	< 241	< 346	< 432	< 462	< 519	< 453	< 645	< 749	< 624	< 614	< 1076	< 442
Total Nitrogen (mg/L)	7211	V 0 10	102	102	1010	100	V 0 10	V 10	1021	\ \ \ \ \	1070	112
Average Monthly	< 9.6	< 8.2	< 7.9	< 9.4	< 7.8	< 8.21	< 8.7	< 9.6	< 9.3	< 9.1	< 9.0	< 8.4
Total Nitrogen (lbs)	V 0.0	₹ 0.2	V 7.5	₹ 5.4	V 1.0	V 0.21	V 0.1	V 0.0	V 0.0	V 0.1	\ 0.0	₹ 0.4
Effluent Net 												
Total Monthly	< 254	< 392	< 463	< 487	< 554	< 491	< 686	< 809	< 661	< 652	< 1138	< 489
Total Nitrogen (lbs)	\ Z0+	V 002	V 400	V 401	₹ 004	V 401	V 000	V 000	<u> </u>	V 002	V 1100	V 400
Total Monthly	< 254	< 392	< 463	< 487	< 554	< 491	< 686	< 809	< 661	< 652	< 1138	< 489
Total Nitrogen (lbs)	\ Z0+	V 002	V 400	V 401	₹ 004	V 401	V 000	V 000	<u> </u>	V 002	V 1100	V 400
Total Annual										< 8358		
Ammonia (lbs/day)										< 0000		
Average Monthly	< 0.09	< 0.4	< 0.2	< 0.2	< 0.2	< 0.4	< 0.4	< 0.8	< 0.8	< 0.4	< 0.4	< 0.2
Ammonia (mg/L)	V 0.00	₹ 0.4	₹ 0.2	₹ 0.2	₹ 0.2	₹ 0.4	₹ 0.4	₹ 0.0	₹ 0.0	₹ 0.4	₹ 0.4	₹ 0.2
Average Monthly	< 0.1	< 0.24	< 0.1	< 0.12	< 0.1	< 0.17	< 0.14	< 0.31	< 0.31	< 0.18	< 0.1	< 0.1
Ammonia (lbs)	< 0.1	< 0.24	V 0.1	< 0.12	< 0.1	< 0.17	< 0.14	< 0.51	< 0.51	< 0.10	< 0.1	< 0.1
Total Monthly	< 3.0	< 12	< 6.0	< 6.0	< 7	< 12	< 12	< 22	< 23	< 14	< 12	< 6.0
Ammonia (lbs)	₹ 3.0	< 1Z	< 0.0	< 0.0	_ ` '	\ \ IZ	< 1Z	\ <u>\</u> \ <u>\</u> \ <u>\</u> \ <u>\</u>	\ <u>\</u> \ <u>\</u> \ <u>\</u> \ <u>\</u> \ <u>\</u> \ <u>\</u>	<u> </u>	<u> </u>	< 0.0
Total Annual										< 385		
TKN (mg/L)	+									< 300		
Average Monthly	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.57	< 0.5	< 0.8	< 0.5	< 0.5	< 0.5	< 0.7
	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.57	< 0.5	< ∪.ŏ	< 0.5	< 0.5	< 0.5	< 0.7
TKN (lbs) Total Monthly	. 40	. 46	. 20	4.00	. OF	. 27	. 44	1.00	. 27	. 07	4.60	. 46
Total Monthly	< 13	< 46	< 30	< 26	< 35	< 37	< 41	< 60	< 37	< 37	< 62	< 46

NPDES Permit No. PA0022250

Total Phosphorus (lbs/day)												
Average Monthly	0.2	0.3	0.3	< 0.3	< 0.2	< 0.2	< 0.3	< 0.3	< 0.2	< 0.3	< 0.6	< 0.2
Total Phosphorus (mg/L) Aver. Monthly	0.2	0.17	0.15	< 0.14	< 0.1	< 0.11	< 0.11	< 0.11	< 0.1	< 0.12	< 0.14	< 0.1
Total Phosphorus (lbs)	-			-	_	-	-		-	-		_
Effluent Net 												
Total Monthly	5.0	8.0	9.0	< 8.0	< 7	< 7	< 9	< 9.0	< 8	< 9.0	< 17	< 6.0
Total Phosphorus (lbs)												
Total Monthly	5.0	8.0	9.0	< 8.0	< 7	< 7	< 9	< 9.0	< 8	< 9.0	< 17	< 6.0
Total Phosphorus (lbs)												
Total Annual										< 125		
Total Copper (mg/L) Average Monthly	0.022	0.008	0.011	0.008	0.007	0.007	0.007	0.013	0.009	0.008	0.009	0.014
Total Hardness (mg/L)												
Average Monthly	191	177	187	178	107	141	187	188	103	132	119	115

3.1.1 Effluent Violations for Outfall 001, from: November 1, 2018 To: September 30, 2019

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
Total Copper	09/30/19	Avg Mo	0.022	mg/L	0.014	mg/L

3.2 Compliance History	
Summary of DMRs:	Discharge Monitoring Reports (DMRs) review for the facility for the last 12 months of operation presented on the table above in section 3.1 indicate permit limits have been met consistently except in September 2019 where Total Copper violation occurred shown on table in section 3.1.1. The violation appeared to be a onetime occurrence.
Summary of Inspections:	The facility was inspected 6 times during the past permit cycle. Inspection reports review for the facility during the period indicate permit limits have been met satisfactorily. Copper limit violations occurred numerous times in 2017. The violations have been addressed with the start of addition of Mastercat 4230 on 12/15/2017.

4.0 Develop	ment of Effluent Limitations		
Outfall No.	_001	Design Flow (MGD)	37
Latitude	39° 55′ 9.10″	Longitude	-77° 14' 44.34"
Wastewater D	Description: Sewage Effluent	-	

4.1 Basis for Effluent Limitations

In general, the Clean Water Act(AWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.1.1 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC is not applicable to this discharge

4.2 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) x design flow (mgd) x 8.34

4.3 Water Quality-Based Limitations

4.3.1 Stream flows

These flows were determined by correlating with the yield of USGS gage No. 01574000 on the West Conewago Creek near Manchester. The Q_{7-10} and drainage area at the gage is 11.1 ft³/s and 510mi² respectively. The Q_{30-10} and Q_{1-10} at the gage are 17.7 ft³/s and 8 ft³/s, respectively as well. The resulting yields are as follows:

- $Q_{7-10} = (11.1ft^3/s)/510 \text{ mi}^2 = 0.0218ft^3/s/\text{ mi}^2$
- $Q_{30-10} / Q_{7-10} = 1.59$
- \bullet Q₁₋₁₀ / Q₇₋₁₀ = 0.72

The drainage area at the point of discharge taken from the previous protection report = 1.7 mi^2 .

The Q_{7-10} at discharge = 1.7 mi² x 0.0218 ft³/s/mi² = 0.037 ft³/s.

4.3.2 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached computer model of the stream:

Discharge pH
 Discharge Temperature
 Stream pH
 Stream Temperature
 Background NH₃-N
 Discharge flow
 6.9 (DMR median)
 25 ° C (Default)
 7.0 ((Default)
 20 °C ((Default)
 0.0 (Default)
 0.37MGD

4.3.3CBOD5

WQM7.0 which is a steady state model that simplifies many natural processes into a reach-by-reach simulation was used for the water quality analysis. The attached result of the WQM 7.0 stream model (attachment B) indicates that an average monthly limit of 25mg/l is adequate to protect the water quality of the stream. However due to anti-backsliding, the previous limit of 15mg/l for the summer months and 25mg/l for winter months will remain with their corresponding mass limits calculated following the equation discussed in section 4.2. Past DMRs and inspection reports show the facility has been consistently achieving these limits.

4.3.4 NH₃-N

The attached model results of the WQM 7.0 stream model (attachment B) also indicates that a summer limit of 1.6 mg/l NH₃ as a monthly average is necessary to protect the aquatic life from toxicity effects. This limit is less stringent than the existing summer limit of 1.3mg/l. Due to anti-backsliding restrictions, the existing summer limit of 1.3mg/l and winter limit of 3.9mg/l will remain in the permit with their corresponding mass limits calculated following the equation discussed in section 4.2

4.3.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l as well, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.3.6 Total Suspended Solids(TSS):

There is no water quality criteria for TSS. The existing limit of 30 mg/l AML based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1), 40 CFR 133.102b(1), 25 PA § 92a.47(a)(1) and 92a.47(a)(2) will remain in the permit. Mass limit were calculated using the equation discussed in section 4.2

4.3.7 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance

NPDES Permit Fact Sheet Biglerville STP

for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

NPDES Permit No. PA0022250

EPA published the Chesapeake Bay Total Maximum Daily Load (TMDL) in December of 2010. Despite extensive restoration efforts during the past 25 years, the TMDL was prompted by insufficient progress and continued poor water quality in the Chesapeake Bay and its tidal tributaries.

In order to address the TMDL, Pennsylvania developed in addition to the Bay Strategy, a Chesapeake Watershed Implementation Plan (WIP) Phase 1 in January 2011 and Phase 2 in March 2012. In accordance with the Phase 2 WIP and its supplement, re-issuing permits for significant dischargers follow the same phased approach formulated in the original Bay strategy, whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewal. This facility is, classified as a phase 4, and has been monitoring Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen weekly and will continue to monitor them weekly during this permit cycle to collect data. There is limitation on Total Phosphorus in the permit, no monitoring is required.

4.3.8 Phosphorus

The existing average monthly phosphorus limitation of 2mg/l and maximum daily limitation of 4mg/l established in the permit to control phosphorus discharges to the Lower Susquehanna River Basin had been superseded by the Chesapeake Bay Strategy/TMDL but would be continued due to anti-backsliding. The existing mass limit of 6lbs/day will remain as well.

4.3.9 Total Residual Chlorine:

The permittee installed a UV disinfection system to replace the chlorine disinfection system at the facility during the last permit cycle. Since UV rather than chlorine is currently utilized for disinfection, Total Residual Chlorine limitation is no longer applicable to this discharge and has been removed from the permit. Daily monitoring of UV light intensity will be required in the permit.

4.3.10 Toxics

A reasonable potential (RP) analysis was done for pollutants submitted with the application. All pollutants sampled were entered into a Toxics Screening Analysis spreadsheet to determine if any pollutants were parameters of concern that require PENTOXSD modeling. All pollutants above the most stringent Chapter 93 criteria are considered parameters of concern. This also includes samples that resulted in non-detect, but the method detection limit that was used is higher than DEP's target quantitation limit (QL). All pollutants that were determined to be candidates for PENTOXSD modeling were entered into the PENTOXSD model. The most stringent WQBELs recommended by the PENTOXSD model were then entered into the same Toxics Screening Analysis spreadsheet in order to determine which parameters of concern needs limitation or monitoring. Total Copper and Total Lead were determined to be parameters of concern and were analyzed with the PENTOXSD Model. The most stringent WQBELs recommended by the PENTOXSD model presented in attachment C were then entered into the same Toxics Screening Analysis spreadsheet (attachment D) in order to determine if limitation or monitoring was necessary. A monthly average limit of 0.014 mg/l was recommended for Total Copper and a monthly limit of 0.06mg/l was recommended for Total Lead. Total Lead was reported as non-detect using a less sensitive method. The permit was given an opportunity to re-sample lead using DEP's target QL. The permittee submitted 3 additional non-detect sample results collected weekly using DEP'S target QL of 0.001 mg/L. Total Lead was no longer a pollutant of concern when added to the Toxic screening spreadsheet and was not added to the draft permit. Hardness monitoring requirement in the permit will remain. Mass limits will be calculated for Total Lead and Total Copper.

The recommended limit follows the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL

4.3.11 TDS, Sulfate, Chloride, Bromide & 1,4-Dioxane

Under the authority of §92a.61, DEP has determined it should implement increased monitoring in NPDES permits for TDS, sulfate, chloride, bromide, and 1,4-dioxane. The following approach will be implemented for point source discharges upon issuance or reissuance of an individual NPDES permit:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs/day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD,
 Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.
- Where the concentration of 1,4-dioxane (CAS 123-91-1) in a discharge exceeds 10 µg/L and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for 1,4-dioxane. Discharges of 0.1 MGD or less should monitor and report for 1,4-dioxane if the concentration of 1,4-dioxane in the discharge exceeds 100 µg/L.

The maximum daily TDS discharge submitted with the application is 218 mg/L which is equivalent to 673lbs/day based on the permitted flow of 0.37 MGD. The discharge level for TDS is below the minimum 1000 mg/l and 20,000lbs/day, to require monitoring, therefore no monitoring of TDS, Chloride, Sulfate, and Bromide will be required in the permit. There is no data for 1,4-dioxane, therefore no monitoring is required for 1,4-dioxane

4.3.12 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.3.13 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.37 MGD and the facility receives flow from no significant Industrial users. There is no approved pretreatment program for the facility, however, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Stormwater:

No storm water outfall is associated with this facility

5.3 Special Permit Conditions

The permit will contain the following special conditions:

1. Stormwater Prohibition. 2. Approval Contingencies, 3. Management of collected screenings, slurries, sludges and other solids 4. Restrictions on flow acceptance under certain conditions.

5.4 Biosolids Management

Digested sludge is dewatered using a filter belt press and hauled off site to landfill.

5.5 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.6 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.7 303d Listed Streams:

The discharge is located on a 303d listed stream segment within the impaired Upper Conewago Creek watershed for aquatic life and recreational use due to pathogens and siltation caused by agricultural activities .A draft TMDL was developed for the Upper Conewago Creek watershed. The document which is not final allocated the existing Total Suspended Solids load of 92lbs/day or 33,580 lb/yr. in the permit to this Facility. No further action is needed at this time. If the finalized TMDL change the allocation, the permit will be amended to address it.

5.8 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.9 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

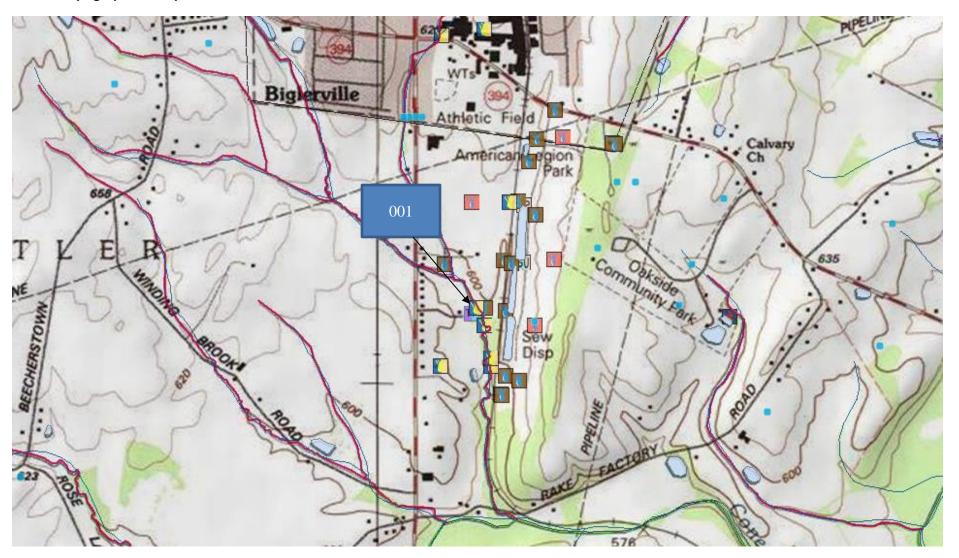
6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Daramatar	Mass Units	(lbs/day) (1)		Concentrati	ons (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	XXX	XXX	1/day	Grab
CBOD5 Nov 1 - Apr 30	77	123	XXX	25	40	50	1/week	8-Hr Composite
CBOD5 May 1 - Oct 31	46	67	XXX	15	22	30	1/week	8-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	8-Hr Composite
TSS	92	138	XXX	30	45	60	1/week	8-Hr Composite
TSS		Report						8-Hr
Raw Sewage Influent Fecal Coliform (No./100 ml)	Report	Daily Max	XXX	Report 2,000	XXX	XXX	1/week	Composite
Oct 1 - Apr 30 Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Geo Mean 200	XXX	10.000	1/week	Grab
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1.000	1/week	Grab
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	1/week	8-Hr Composite
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Calculation
Ammonia Nov 1 - Apr 30	12	XXX	XXX	3.9	XXX	7.8	1/week	8-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Ammonia								8-Hr
May 1 - Oct 31	4.0	XXX	XXX	1.3	XXX	2.6	1/week	Composite
								8-Hr
TKN	XXX	XXX	XXX	Report	XXX	XXX	1/week	Composite
								8-Hr
Total Phosphorus	6.0	XXX	XXX	2.0	XXX	4	1/week	Composite
								8-Hr
Total Copper	0.043	XXX	XXX	0.014	XXX	XXX	1/month	Composite
								8-Hr
Total Hardness	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
			Report	·				
UV Light Intensity (mW/cm²)	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Recorded

Compliance Sampling Location: At Outfall 001

7.0 Tools	and References Used to Develop Permit
	WQM for Windows Model (see Attachment B)
	PENTOXSD for Windows Model (see Attachment C)
	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
\boxtimes	Toxics Screening Analysis Spreadsheet (see Attachment E)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\boxtimes	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: 1. Establishing effluent limitation for individual sewage permit,
	Other:

8. Attachment

A. Topographical Map

B. WQM Model Results

SWP Basin

Stream Code

WQM 7.0 Effluent Limits

Stream Name

07F	9140	Т	rib 09140 to Conew	ago Creek		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
Biglerville STP	PA0022250	0.370	CBOD5	25		
			NH3-N	1.61	3.22	
			Dissolved Oxygen			5
	· Name	Name Permit Number	Disc Name Permit Flow Number (mgd)	Name Permit Flow Parameter Number (mgd) Biglerville STP PA0022250 0.370 CBOD5 NH3-N	Name Permit Flow Parameter 30-day Ave. (mg/L) Biglerville STP PA0022250 0.370 CBOD5 25 NH3-N 1.61	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Biglerville STP PA0022250 0.370 CBOD5 25 NH3-N 1.61 3.22

Input Data WQM 7.0

	SWP Başin	Strea Cod		Stre	eam Name		RMI		evation (ft)	Draina Area (sq m	3	Slope (ft/ft)	PWS Withdra (mgd	awal	Apply FC
	07F	9	140 Trib 09	9140 to C	onewago Cr	eek	0.52	20	595.00		1.70 0	0.00000		0.00	✓
	-				St	ream Da	ta				AND A BLOOD OF THE STREET				
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributa</u> ip	ry pH	Tem	Stream p	рН	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C))		
27-10 21-10 230-10	0.022	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	0.00	7.00	(0.00	0.00	
			Name	Pei	Di rmit Number	Existing Existing Disc Flow (mgd)	Permitte Disc Flow	Dis Flo	sc Res	erve ctor	Disc Temp (°C)	Di: p	sc H		
		Bigle	rville STP	PA	0022250 Pa	0.370 arameter		00 0.3	3700 -	0.000	25.	00	6.90		
			. 1	Paramete	r Name	C	onc C	Trib Conc ng/L)	Stream Conc (mg/L)	Fate Coet	f				
	. =		CBOD5 Dissolved	Oxygen		a tourist of the Printer of the Prin	25.00 5.00	2.00	0.00		.50		-		
			NH3-N	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			25.00	0.00	0.00	0.	.70				

Input Data WQM 7.0

	SWP Basir			Str	eam Name		RM	l El	evation (ft)	Drainag Area (sq mi		ft/ft)	PW Withdr (mg	awal	Apply FC
	07F	9	140 Trib 09	140 to C	onewago C	reek	0.1	00	583.00	2	2.04 0.	00000		0.00	V
					St	ream Da	ta				,				
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti	n Tem	Tributar ip	У pH	Tem	<u>Stream</u> ip	pH	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.022	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	0.00	7.00		0.00	0.00	
					D	ischarge	Data								
			Name	Per	mit Numbe	Disc	Permit Disc Flov (mgc	Di Fl	sc Res	erve	Disc Temp (°C)		sc H		
			TO COLUMN TO ST.			0.000	0.00	00 0.	0000	0.000	25.0	0	7.00		
					Pa	arameter	Data								
			F	Paramete	r Name	C	onc	Trib Conc	Stream Conc	Fate Coef					
						(n	ng/L) (mg/L)	(mg/L)	(1/days					
			CBOD5				25.00	2.00	0.00	1.5	60				
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	00				
			NH3-N				25.00	0.00	0.00	0.7	0				

WQM 7.0 Hydrodynamic Outputs

	SW	<u>'P Basin</u> 07F		<u>ım Code</u> 9140		•••		Stream 40 to Co	Name newago ⁽	Creek		
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow				-				-		,,	7,03,7
0.520	0.04	0.00	0.04	.5724	0.00541	.467	9.16	19.63	0.14	0.180	24.70	6.91
Q1-1	0 Flow						*					
0.520	0.03	0.00	0.03	.5724	0.00541	NA	NA	NA	0.14	0.182	24.78	6.90
Q30-	10 Flow	,										
0.520	0.06	0.00	0.06	.5724	0.00541	NA	NA	NA	0.15	0.176	24.53	6.91

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.72	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.59	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

SWP Basin Stream Cod

Stream Name

07E

9140

Trib 09140 to Conewago Creek

07F 914		9140		Trib 0914	0 to Co	newago	Creek				
NH3-N Acute Allocations											
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	V	ltiple /LA ig/L)	Critical Reach	Percent Reductio			
0.52	0 Biglerville STP	7.29	7.63	7.2	9	7.63	0	0			
NH3-N	Chronic Allocat	ons						e [*]			
RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multi WL (mg	A	Critical Reach	Percent Reduction	_		
0.52	0 Biglerville STP	1.46	1.61	1.4	6	1.61	0	0			
issolve	ed Oxygen Alloc	ations		,							
		<u>Q</u>	BOD5	<u>NH3-</u>	<u>N</u>	Dissolv	ed Oxygen	Critical	Percent		
RMI	Discharge Na	me Baseli (mg/L	•		Viultiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction		
0.5	2 Biglerville STP		25 25	1.61	1.61	5	5	0	0		

WQM 7.0 D.O.Simulation

SWP Basin Str 07F	eam Code 9140		Trib 091	Stream Name 40 to Conewago Cree	ek
RMI	Total Discharge	Flow (mgd	<u>) Ana</u>	ysis Temperature (°C)	Analysis pH
0.520	0.370)		24.696	6.905
Reach Width (ft)	Reach De	oth (ft)		Reach WDRatio	Reach Velocity (fps)
9.158	0.467	7		19.626	0.143
Reach CBOD5 (mg/L)	Reach Kc (1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
23.60	1.491			1.51	1.005
Reach DO (mg/L)	Reach Kr (-		Kr Equation	Reach DO Goal (mg/L)
5.197	26.94	4		Owens	5
Reach Travel Time (days) 0.180	7ravTime (days) 0.018 0.036 0.054 0.072 0.090 0.108 0.126	Subreach CBOD5 (mg/L) 22.83 22.08 21.36 20.66 19.98 19.33 18.70	NH3-N (mg/L) 1.49 1.46 1.43 1.41 1.38 1.36	D.O. (mg/L) 5.42 5.59 5.72 5.84 5.94 6.02 6.11	
	0.144	18.08	1.31	6.18	
	0.162	17.49	1.29	6.25	
	0.180	16.92	1.26	6.32	

C. PENTOXSD Model Results

PENTOXSD Analysis Results

Recommended Effluent Limitations

SWP Basin 07F	Stream Code: 9140		<u>Stream Name:</u> Trib 09140 to Conewago Creek							
RMI	Name	Per Nur	mit nber	Disc Flow (mgd)						
0.52	Biglerville STP	PA0022250		0.3700	_					
		Effluent Limit			Max. Dailv	Most Stringent				
F	Parameter	Govern (µg/L) Criteri			Limit (µg/L)	WQBEL (µg/L)	WQBEL Criterion			
COPPER		13.897	AF	C	21.681	13.897	AFC			
LEAD		5.62	CF	С	8.768	5.62	CFC			

PENTOXSD

Mode	lina	Input	Data

Stre Co	eam ode	RMI	Elevati (ft)		Orainage Area (sq mi)		Slope	PWS '			,	Apply FC	-	•		
	9140	0.52	59	5.00	1.	70	0.00000		0.00			V			///	
									Stream D	ata						
		LFY	Trib Flow	Strea Flo			Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tribut</u> Harđ	ary pH	<u>Strear</u> Hard	pН		<u>is</u> pH
	(cfsm)	(cfs)	(cfs	s)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10) (0.0218	0		0	0	0	0	0	0	100	7	0	0	0	0
Qh			0		0	0	0	0	0	0	100	7	0	0	0	0
					1.00				ischarge [Data						
	Nan	ne	Pern Num		Existing Disc Flow		rmitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
					(mgd)	(mgd)	(mgd)						(mg/L)		
E	Biglervill	le STP	PA002	2250	0.37		0.37	0.37	0	0	0	0	0	152	6.9	_
								Р	arameter [Data						
	Par	rameter f	lame		Dis Co	nc	Trib Conc	Dis Dail C\	y Hour	y Con	c CV			Crit Mod	Conc	
					(µg/	L)	(µg/L)		(µg/					(µg/L)	
COP	PER					0	0	0.			0			1	0	
LEAD)				5	0	0	0.	.5 0.8	5 0	. 0	0	0	1	0	

Strea		Elevati (ft)	Α	inage rea mi)	Slope	PWS (m	With gd)			pply FC				
91	40 0.10	58	3.00	2.04	0.00000)	0.00			Y	-			
							Stream D	ata						
	LFY	Trib Flow	Stream Flow	WD Ratio	Rch Width	Rch Depth	Rch Velocity	Rch Trav Time	<u>Tributa</u> Hard	<u>ry</u> pH	<u>Strear</u> Hard	<u>n</u> pH	Analys Hard	<u>sis</u> pH
	(cfsm)	(cfs)	(cfs)		(ft)	(ft)	(fps)	(days)	(mg/L)		(mg/L)		(mg/L)	
Q7-10	0.0218	0	0	0	0	0	0	0	100	7	0	0	0	0
Qh		0	0	0	0	0	0	0	100	7	0	0	0	0
						E	ischarge I	Data						
	Name	Pern Numi	ber Di	sc	rmitted Disc Flow	Design Disc Flow	Reserve Factor	AFC PMF	CFC PMF	THH PMF	CRL PMF	Disc Hard	Disc pH	
_	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(m	gd) (mgd)	(mgd)						(mg/L)		
			(0	0	0	0	0	0	0	0	100	7	./
						P	arameter D	ata						
	Parameter N	lame		Disc Conc	Trib Cond	Dis Daily C\	/ Houri			Fate Coef	FOS	Crit Mod	Max Disc Conc	
	35746660 ·			(µg/L)	(µg/L			(µg/l	L)		·		(µg/L)	
COPPE	R			0	0	0.			0	0	0	1	0	
LEAD				0	0	0.	5 0.5	0	0	0	0	1	0	

PENTOXSD Analysis Results

Hydrodynamics

<u>s</u>	WP Basiı	1	Stream	n Code:			Stream	n Name	<u>:</u>				
	07F		9	140	Trib 09140 to Conewago Creek								
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope	Depth (ft)	Width (ft)	WD Ratio	Velocity (fps)	Reach Trav Time (days)	CMT (min)		
					Q7	-10 Hyd	irodyna	mics					
0.520	0.0371	. (0.0371	0.57239	0.0054	0.4666	9.1584	19.626	0.1426	0.18	.018		
0.100	0.0445	C	0.0445	NA NA	0	0	0	0	0	0	NA		
					Q	h Hydr	odynan	nics					
0.520	0.4171	(0.4171	0.57239	0.0054	0.5776	9.1584	15.857	0.1871	0.1372	.632		
0.100	0.4891	(0.4891	NA	0	0	0	0	0	0	NA		

PENTOXSD Analysis Results

Wasteload Allocations

RMI	Name F	Permit Nur	mber						
0.52	Biglerville STP	PA00222	250						
				P	AFC		,		
Q7-	10: CCT (min)	0.018	PMF	1 ·	Analysis p	H 6.905	Analysis	Hardness	148.837
	Parameter		Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)
	\(\rangle \)	•	(1-9/-/		/La>		···		
	COPPER		0	0	0	0	19.548	20.362	21.681
		D			nemical tran			105 155	444.00
	LEAD	_	0	0	0	0	99.296	135.455	144.22
		. D	issolved	WQC. C	nemical tran	slator of 0.	733 applied	l.	•
				C	FC				
Q7-10:	CCT (min)	0.018	PMF	1	Analysis p	H 6.905	Analysi	s Hardness	148.837
	Parameter		Stream Conc.	Stream CV	Trib Conc.	Fate Coef	WQC	WQ Obj	WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	12.58	13.104	13.953
		D	issolved	WQC. CI	nemical tran	slator of 0.	96 applied.		
	LEAD		0	0	0	0	3.869	5.278	5.62
		D	issolved	WQC. CI	nemical tran	slator of 0.	733 applied	i.	
				Т	'HH				
Q7-10:	CCT (min)	0.018	PMF	NA	Analysis	pH NA	Analysi	s Hardness	NA
	Parameter	\$	Stream	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj (µg/L)	WLA (µg/L)
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA
	LEAD		0	0	0 .	0	NA	NA	NA
				·	CRL	-			
Qh:	CCT (min)	0.632	PMF	1					
	Parameter	٠	Stream Conc	Stream CV	Trib Conc	Fate Coef	WQC	WQ Obj	. WLA
			(µg/L)		(µg/L)		(µg/L)	(µg/L)	(µg/L)
	COPPER		0	0	0	0	NA	NA	NA
	LEAD		0	0	0 .	0	NA	NA	NA

D. Toxics Screening Spreadsheet

TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7

CLEAR FORM

Facility: Biglerville STP

Analysis Hardness (mg/L): 152

Stream Flow, Q₇₋₁₀ (cfs): 0.037

NPDES Permit No.: Discharge Flow (MGD): PA0022250 0.37 Outfall: Outfall: Analysis pH (SU):

Maximum Concentration in Most Stringent Candidate for Most Stringent Screening Parameter Application or DMRs (µg/L) Criterion (µg/L) PENTOXSD Modeling? WQBEL (µg/L) Recommendation Total Dissolved Solids 218000 500000 No 5000 250000 Chloride No < 50 N/A No Bromide Sulfate 21000 250000 No Total Aluminum 750 Total Antimony 5.6 Total Arsenic 10 2400 Total Barium Total Beryllium N/A Total Boron 1600 Total Cadmium 0.369 Total Chromium N/A Hexavalent Chromium 10.4 Total Cobalt 19 30 13.3 13.897 Establish Limits **Total Copper** Yes Free Available Cyanide 5.2 Total Cyanide N/A Dissolved Iron 300 Total Iron 1500 Total Lead 5.4 No (Value < QL) Total Manganese 1000 0.05 Total Mercury Total Nickel 74.3 Total Phenols (Phenolics) 5 Total Selenium 5.0 Total Silver 7.8 Total Thallium 0.24 Total Zinc < 50 170.8 No Total Molybdenum N/A