

Southeast Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0023256

APS ID 1070514

Authorization ID 1409049

Applicant Name	Upper	Gwynedd Township	Facility Name	Upper Gwynedd Township WWTP	
Applicant Address	1 Park	side Place	Facility Address	261 Township Line Road	
	West	Point, PA 19486-0001		North Wales, PA 19454	
Applicant Contact	Sandr	a Zadell	Facility Contact	Dan Farris	
Applicant Phone	(215)	699-7777	Facility Phone	(215) 699-5824	
Client ID	52550		Site ID	451712	
Ch 94 Load Status	Not O	verloaded	Municipality	Upper Gwynedd Township	
Connection Status	No Lir	nitations	County	Montgomery	
Date Application Rece	ived	August 30, 2022	EPA Waived?	No	
Date Application Acce	pted	December 2, 2022	If No, Reason	Major Facility	

1.0 Summary of Review

- 1.1 General discussion: The Pa Department of Environmental Protection received an NPDES permit renewal application from Environmental Engineering & Management Associates, Inc. (consultant) on August 30, 2022 on behalf of Upper Gwynedd Township (UGT/permittee) for UGT's WWTP (facility). This is a major sewage facility with a design flow of 6.4 MGD that discharges into Wissahickon Creek (TSF, MF) in state watershed 3-F. The current permit expired on February 28, 2023. The terms and conditions of the current permit is automatically extended since the renewal application is received at least 180 days prior to expiration date. Renewal NPDES permit application under Clean Water Program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.
- <u>1.2 Changes to existing permit:</u> Added: UV, TN, TP, Total Selenium, E-Coli, Total Zinc, 4,4-DDE (limits), TDS (limit). Removed: Total Iron, Sulfate, Chloride, Bromide, TRC from Part A to Part C.
- 1.3 Sludge use and disposal description and location(s): Liquid sludge is hauled off to other WWTP

1.4 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
		n. 1.	
·		Reza H. Chowdhury, E.I.T. / Project Manager	June 30, 2023
Х		Pravin Patel	
		Pravin C. Patel, P.E. / Environmental Engineer Manager	07/03/2023

2.0 Discharge, Receivir	ng Waters and Water Supply Inf	formation_				
Outfall No. 001		Design Flow (MGD)	6.4			
Latitude 40° 11'	24"	Longitude	-75º 17' 1"			
Quad Name Lanso	dale	Quad Code	1743			
Wastewater Description	on: Effluent					
Receiving Waters \(\frac{1}{2}\)	Wissahickon Creek (TSF, MF)	Stream Code	00844			
NHD Com ID 2	25979140	RMI	19.07			
Drainage Area _ 7	7.33 mi ²	Yield (cfs/mi²)				
Q ₇₋₁₀ Flow (cfs) <u>(</u>	0.44 and 0.1	Q ₇₋₁₀ Basis	TMDL/ previous fact sheet			
Elevation (ft)	271.74	Slope (ft/ft)				
Watershed No. 3	3-F	Chapter 93 Class.	TSF, MF			
Existing Use		Existing Use Qualifier				
Exceptions to Use		Exceptions to Criteria				
Assessment Status	Impaired					
Cause(s) of Impairme		ATION, NUTRIENTS, PATHOG				
Source(a) of Impairme		RCE DISCHARGES, SOURCE	UNKNOWN, URBAN			
Source(s) of Impairme TMDL Status	Final-10/09/2003	Name Wissahickor	TMDI			
TIVIDE Status	Fillal-10/09/2003	NameWissamckor	I TWIDE			
Background/Ambient	Data	Data Source				
pH (SU)	8.05	WQN0193, median Jul-Sep 20	002-2019			
Temperature (°C)	21.69	WQN0193, median Jul-Sep 20	002-2019			
Hardness (mg/L)	205	WQN0193, median Jul-Sep 2002-2019				
Other:						
			_			
Nearest Downstream	Public Water Supply Intake	PWD Queen Lane Water Plan	nt, Philadelphia			
PWS Waters Sch	huylkill River	Flow at Intake (cfs)				
PWS RMI 12.	.6	Distance from Outfall (mi)	19.62			

Changes Since Last Permit Issuance:

2.1 Stream flow The nearest StreamGage is 01473900 on Wissahickon Creek at 10.98 RMI, at Fort Washington, PA. Receiving stream's background data was collected from associated WQN station 0193. Per the previous fact sheet "The Q_{7-10} design flow was previously reduced by the Wissahickon TMDL from 1.53-cfs to 0.44-cfs. The original Q_{7-10} was based on the Q_{7-10} flow established for the USGS gage station (01474000) located near the mouth of Wissahickon Creek. The Q_{7-10} was adjusted by the Wissahickon TMDL to account for the influence of effluent dominated stream conditions. (See Figure 2-2 of the Wissahickon Creek TMDL report.) The adjusted Q_{7-10} was calculated based on the sum of the low-flow discharge from an upstream stormwater pond located at the Merck's West Point facility (0.1-cfs), and on the low-flow discharge from the North Wales STP (0.34-cfs). Moving forward, the Q_{7-10} design flow will be adjusted to account for the fact that the North Wales STP ceased discharging. Therefore, the Q_{7-10} design flow will be reduced to 0.10-cfs." The WQBELs will be calculated for a Q_{7-10} flow of 0.1 cfs.

2.2 PWS Intake:

The nearest downstream public water supply is PWD's Queen Lane intake, on Schuylkill River at RMI 12.6. Its approximately 19.62 miles downstream of Outfall 001. Discharge from this facility is expected not to impact the PWS intake.

2.3 Wastewater Characteristics:

A median pH of 7.83 was calculated from daily DMR during dry months July through September for the year 2022. The application data indicated an average Total Hardness of 228 mg/l out of 3 samples and average temperature of 23.3°C out of 3 sample results.

2.4 Background data:

The WQN station #193 is located on SR73 Bridge in Whitemarsh Township, Montgomery County is approximately 8 miles downstream of the outfall. Background stream data was collected from this station. The data shows a median temperature of 21.69°C, median pH of 8.05, and median hardness of 205 mg/l for the period of July-September 2002-2019. The application data indicated upstream hardness of 150 mg/l and average downstream hardness at Ambler WWTP (monthly data, 2012-2015) of 168 mg/l with a median of 174 mg/l. The facility's collected data will be used for modeling since the sampling point is very close to discharge point.

2.5 Wissahickon TMDL:

Wissahickon Creek Watershed TMDL was finalized on October 9, 2003 that included the Wasteload Allocation (WLA) for Upper Gwynedd Township WWTP in Table D-9. The table is provided below:

Table D-9: Allocations with Flows for North Wales Directed to Upper Gwynedd

WWTP	North Wales	Upper Gwynedd	Ambler	Abington	Upper Dublin
CBOD5 (mg/L)	NA	4.40	10.00	7.50	12.75
NH3-N (mg/L)	NA	0.65	1.50	0.72	2.25
NO3-NO2 (mg/L)	NA	19.93	29.90	30.27	36.71
ORTHO-PO4	NA	1.61	4.68	1.85	1.45

These limits/monitoring requirements were incorporated in the current NPDES permit and will be carried over. The current permit has monitoring for NO3-NO2-N with the understanding that average discharge concentration was below the TMDL and was consistent with TMDL assumptions. A review of the eDMR will be conducted to determine if that is still the case or a numeric NO3-NO2-N limit is warranted. Seasonal Orthophosphate (Ortho-PO4) limit was applied as 0.5 mg/l with the explanation from current Fact Sheet "The Orthophosphate limit is based on an Adaptive Management Strategy under the Wissahickon Creek TMDL Alternative currently under development. Upper Gwynedd Township is encouraged to achieve a total phosphorus limit of 0.5 mg/l upon completion of treatment plant upgrade." The current Ortho-PO4 limit will be carried over in this renewal. It is noteworthy that the above table reflects the limits after the treatment plant went to upgrade from 5.7 MGD to 6.4 MGD to accept flow from North Wales STP.

2.6 Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm Water Fishes (WWF) and Migratory Fishes (MF.) No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

2.7 Stormwater Outfalls:

The renewal application indicated that there are three stormwater outfalls associated with this WWTP. The details are below:

Outfall	L	Latitude		Lo	ngitu	de	Receiving Stream	Designated use	Drainage Area (sft)
002	40	11	22	-75	17	02	Wissahickon Creek	TSF, MF	317,988
003	40	11	25	-75	17	07	Wissahickon Creek	TSF, MF	74,052
004	40	11	30	-75	17	07	Haines Run, Wissahickon Creek	TSF, MF	26,136

The current permit has listed stormwater parameters in Part A of the permit. The Part C.VI of the permit contains requirements applicable to stormwater outfalls. These requirements, at a minimum, will be carried over in this renewal. Per the permit renewal application, Outfall 004 is inspected in lieu of monitoring since the water quality is similar to Outfalls 002 and 003.

Discharge, Receiving Waters and Water Supply Information	on			
Outfall No. 002	Design Flow (MGD)	0		
Latitude 40° 11' 22"	Longitude	-75° 17' 7"		
Quad Name Lansdale	Quad Code	1743		
Wastewater Description: Stormwater				
Receiving WatersWissahickon Creek (TSF, MF)	Stream Code	00844		
Discharge, Receiving Waters and Water Supply Information	on			
Outfall No. 003	Design Flow (MGD)	0		
Latitude 40° 11' 25"	Longitude	-75° 17' 7"		
Quad Name Lansdale	Quad Code 1743			
Wastewater Description: Stormwater				
Receiving Waters Wissahickon Creek (TSF, MF)	Stream Code	00844		
Discharge, Receiving Waters and Water Supply Information	on			
Outfall No. 004	Design Flow (MGD)	0		
Latitude 40° 11' 30"	Longitude	-75° 17' 7"		
Quad Name Lansdale	Quad Code 1743			
Wastewater Description: Stormwater				
Unnamed Tributary to Wissahickon Receiving Waters Creek (TSF, MF)	Stream Code	00844		

Changes Since Last Permit Issuance: None

		Treatment Facility Summary	у	
•	ame: Upper Gwynedd To	wnship WWTP		
WQM Permit No.	Issuance Date			
4618413	7/24/2019			
4604412	12/6/2017			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Extended Aeration With		,
	Tertiary	Solids Removal	Ultraviolet	6.4

Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs./day)	Load Status	Biosolids Treatment	Use/Disposal
7.5	10.842	Not Overloaded	Aerobic Digestion	Landfill

Changes Since Last Permit Issuance: None

3.1 Treatment plant

3.1.1 Summary

Upper Gwynedd Township (UGT) WWTP is a 6.4 MGD Major Sewage Facility (MASF2) located in Upper Gwynedd Township, Montgomery County. UGT WWTP provides tertiary treatment and discharges treated effluent and stormwater from the WWTP area into Wissahickon Creek. The application indicated the following treatment train: influent screen → grit removal → primary clarifiers → activated sludge (with Biomag) → chemical and polymer addition → final clarification → UV disinfection → discharge to Wissahickon Creek through Outfall 001. A process flow diagram is provided below:

3.1.2 Tributary information

The facility receives wastewater from the following tributary municipalities:

Municipality	Flow contribution (%)	Type of sewer system		
		Separate (%)	Combined (%)	
Upper Gwynedd Township	91	100	0	
North Wales Borough	4	100	0	
Worchester Township	2	100	0	
Montgomery Township	1	100	0	
Lower Gwynedd	1	100	0	
Whitpain Township	1	100	0	

3.1.3 Wastewater Treatment chemicals

UGT uses the following chemicals to treat the wastewater:

Chemical Name	Purpose	Maximum Usage Rate	Units
Polyaluminum Chloride	Phosphorus removal	5.5	GPH
Polymer (Zeta Lyte)	Settling Enhancer	2.4	GPH
Sodium Hypochlorite	Backup Disinfection	0	
Sodium Bisulfite	Backup Dechlorination	0	

3.1.4 Industrial/Commercial contributors

The following table summarizes the contributing industrial/commercial facilities:

Facility	Categorical	Letter	Title	SIU			Flow (GPD)	
					Process	NCCW	Sanitary	Other	Total
Colorcon, Inc.	Yes, 40 CFR 414	Н	Specialty Organic Chemicals	Yes	9,400	0	0	130,000	139,400
J. Meyer & Sons	Yes, 40 CFR 414	D	Thermoplastic Resins	Yes	0	850	900	0	1,750
Merck and Co.	Yes, 40 CFR 439	A,D	Fermentation products, Mixing/Compounding & Formulation	yes					1,000,000
Precision Tube Co.	Yes, 40 CFR 467, 468, 471			Yes	0	0	2,500	0	2,500
Triumph Controls, Inc.	Yes, 40 CFR 438				0	5	88 employees		500-1000
Visteon	Yes, 40 CFR 438			Yes	0	13,060	22,000	2,600	37,660

3.1.5 Pretreatment

The facility has EPA approved pretreatment program, most recently issued on March 30, 2022.

3.1.5 Biosolids management

The generated liquid sludge/biosolids are liquid hauled by HydroTech Environmental. The two facilities that the sludge is hauled to are DELCORA WWTP and Towamencin WWTP.

4.0 Compliance History

4.1 DMR Data for Outfall 001 (from November 1, 2021 to October 31, 2022)

Parameter	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21
Flow (MGD)												
Average Monthly	3.23	2.88	2.64	2.79	3.06	4.38	5.623	3.608	3.916	3.586	2.492	2.678
Flow (MGD)												
Daily Maximum	8.38	6.93	3.24	3.51	3.85	11.91	15.424	4.799	9.823	6.788	2.941	3.697
pH (S.U.) IMIN	7.7	7.74	7.73	7.66	7.6	7.49	7.36	7.58	7.51	7.41	7.68	7.81
pH (S.U.) IMAX	7.98	8.02	7.96	7.93	7.8	7.78	7.84	7.9	8.04	8.01	8.15	8.1
DO (mg/L) imin	8.59	8.0	7.8	7.8	8.3	8.6	9.5	9.6	9.9	9.65	9.4	9.1
TRC (mg/L)												
Average Monthly	< 0.015	< 0.015	GG	GG	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
TRC (mg/L) IMAX	< 0.015	< 0.015	GG	GG	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015	< 0.015
CBOD5 (lbs/day)												
Average Monthly	< 88	< 74	< 64	< 53	< 52	< 84	152	80	104	< 81	< 43	< 51
CBOD5 (lbs/day)												
Weekly Average	< 119	95	108	< 56	< 59	< 125	262	127	< 118	< 128	< 50	< 65
CBOD5 (mg/L)												
Average Monthly	< 3.3	< 3.2	< 2.9	< 2.3	< 2.1	< 2.2	2.9	2.7	3.1	< 2.5	< 2.1	< 2.3
CBOD5 (mg/L)												
Weekly Average	< 4.2	4.5	4.7	< 2.7	< 2.1	< 3.0	3.4	4.6	3.3	< 3.1	< 2.4	< 2.7
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	4445	4219	4453	3621	3494	5495	5058	4807	5427	5066	4974	5094
BOD5 (mg/L)												
Raw Sewage Influent	474	470	400	450	407.0	450	4.47	454	450	400	040	000
Average Monthly	174	179	190	158	137.6	152	117	151	158	166	216	208
TSS (lbs/day)	440	00	440	04	0.5	. 100	004	447	404	440	67	07
Average Monthly	110	92	110	81	65	< 129	294	117	164	110	67	97
TSS (lbs/day)												
Raw Sewage Influent Average Monthly	4506	4846	4976	4472	3826	5748	6126	4519	5824	5721	5373	6354
TSS (lbs/day)	4300	4040	4970	4472	3620	3746	0120	4319	3624	3/21	5575	0354
Weekly Average	267	124	151	96	74	255	643	141	217	147	113	182
TSS (mg/L)	201	124	131	30	74	200	043	1-+1	<u> </u>	147	113	102
Average Monthly	3.5	3.9	5.1	3.5	2.5	< 3.1	5.0	3.9	4.8	3.5	3.2	4.3
TSS (mg/L)	0.0	5.5	J. 1	5.5	2.0	\ \ 0.1	5.0	0.9	7.0	0.0	J.Z	7.0
Raw Sewage Influent												
Average Monthly	170	200	213	194	151	155	138	142	175	191	235	258
TSS (mg/L)	.,,	200	2.0						.,,	.51		
Weekly Average	6.0	4.0	7.0	4.0	3.0	5.0	8.0	5.0	5.0	4.0	5.1	6.5

NPDES Permit No. PA0023256

NPDES Permit Fact Sheet Upper Gwynedd Township WWTP

Total Dissolved Solids			
	989 536	1120	482
Fecal Coliform (No./100	000	1.20	102
ml) Geo Mean 39 46 40 30 16 5 3 5	8 8	11	11
Fecal Coliform (No./100	<u> </u>	1	
	232 44	43	30
Nitrate-Nitrite (mg/L)			
	22.8 14	24.8	16.3
Ammonia (lbs/day)			
Average Monthly < 3.0 < 2 < 2.0 < 2.0 < 3 < 4.0 < 5 < 3	< 3 < 3	< 2	< 2
Ammonia (mg/L)			
Average Monthly < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 < 0.10 <	< 0.10 < 0.10	< 0.10	< 0.10
Orthophosphate			
(lbs/day) Avg. Monthly 9 10 8 13 10 11 16 10	10 10	7	5
Orthophosphate (mg/L)			
	0.30 0.30	0.33	0.21
Total Aluminum (mg/L)			
	0.14	0.162	0.203
Total Copper (mg/L)			
	0.007	0.012	0.012
Dissolved Iron (mg/L)			
	0.072 0.04	0.063	0.045
Total Iron (mg/L)			
	< 0.1 < 0.1	< 0.1	< 0.1
Sulfate (mg/L)			
	288 152	144	87.9
Chloride (mg/L)			400
	310 148	275	190
Bromide (mg/L)			4.0
	< 1 < 1.0	< 1	< 1.0
Total Hardness (mg/L)	040	200	400
	216 156	209	186
Chronic WET -			
Ceriodaphnia Survival (TUc)			
Daily Maximum GG GG GG		1.02	
Chronic WET -		1.02	
Criodaphnia			
Reproduction (TUc)			
Daily Maximum GG GG GG		1.02	
Chronic WET -		1.02	
Pimephales Survival			
(TUc)			
Daily Maximum GG GG GG		1.02	

NPDES Permit No. PA0023256

Chronic WET -								
Pimephales Growth								
(TUc)								
Daily Maximum	GG		GG		GG		1.02	

4.2 DMR Data for Outfall 002 (from November 1, 2021 to October 31, 2022)

Parameter	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21
pH (S.U.)												
Annual Average											6.77	
CBOD5 (mg/L)												
Annual Average											6.9	
COD (mg/L)												
Annual Average											39	
TSS (mg/L)												
Annual Average											13	
Oil and Grease (mg/L)												
Annual Average											< 5.0	
Fecal Coliform												
(No./100 ml)												
Annual Average											> 20000	
TKN (mg/L)												
Annual Average											0.66	
Total Phosphorus												
(mg/L)												
Annual Average											0.82	
Dissolved Iron (mg/L)												
Annual Average											< 0.100	

4.3 DMR Data for Outfall 003 (from November 1, 2021 to October 31, 2022)

Parameter	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21
pH (S.U.)												
Annual Áverage											7.34	
CBOD5 (mg/L)												
Annual Average											3.7	
COD (mg/L)												
Annual Average											30.3	
TSS (mg/L)												
Annual Average											326	
Oil and Grease (mg/L)												
Annual Average											5.0	

NPDES Permit No. PA0023256

Fecal Coliform (No./100 ml) Annual Average						> 20000	
TKN (mg/L) Annual Average						0.56	
Total Phosphorus (mg/L) Annual Average						0.50	
Dissolved Iron (mg/L) Annual Average						0.332	

4.4 DMR Data for Outfall 004 (from November 1, 2021 to October 31, 2022)

Parameter	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21
pH (S.U.)												
Annual Average											7.06	
CBOD5 (mg/L)												
Annual Average											5.3	
COD (mg/L)												
Annual Average											34.65	
TSS (mg/L)												
Annual Average											169.5	
Oil and Grease (mg/L)												
Annual Average											< 5.0	
Fecal Coliform												
(No./100 ml)												
Annual Average											> 20000	
TKN (mg/L)												
Annual Average											0.61	
Total Phosphorus												
(mg/L)												
Annual Average											0.66	
Dissolved Iron (mg/L)												
Annual Average											0.216	

4.5 Discussion on non-compliance
There is currently no eDMR violation against this plant.

NPDES Permit No. PA0023256

NPDES Permit Fact Sheet Upper Gwynedd Township WWTP

4.6 Inspection summary

10/25/2022: CEI conducted. No violation noted. The facility received some mixed results from a study done on sludge thickening unit. They are adding VFDs to the pumps that feed into the thickener and hope that they'll help reduce the overloading the unit receives. Recommended that the aeration units be checked to ensure adequate and even aeration.

06/29/2022: CEI conducted. No violation noted. The plant appeared to be operating properly and well maintained. The permittee indicated that they will bring a primary clarifier that was offline for some time. They are also looking to make some changes to the sludge thickener unit to assist in a more accurate return and waste sludge count. They are planning to bring a new collection system project toward the end of the year to assist in eliminating some heavier I&I during rain events.

08/26/2021: RTPT conducted to verify the installation and operational status of the pumps and equipment for the diversion project from Towamencin WWTP to Upper Gwynedd WWTP. No violation noted.

05/07/2021: RTPT conducted. The facility recently removed and replaced the damaged Alum tank which wasn't online yet. Alum is being fed via temporary pumps near the aeration tanks. All 3 primary clarifiers had been replaced and were online. Overall, the plant appeared to be in good operating condition. The effluent was clear. No violation noted.

01/14/2021: CEI conducted. The plant was still replacing and repairing equipment that was damaged in the August flood but was making progress to being fully online. All three primary clarifiers were online and operable. They have moved PAC chemical storage to temporary sheds for containment and temperature control until the original PAC tank is removed and replaced. The facility was providing adequate treatment. No violation noted.

9/3/2020: RTPT conducted. No violation noted. Recommended to replace or repair any damaged or compromised equipment and replace the influent sampler with a flow paced sampler.

8/18/2020: RTPT conducted. No violation noted. The facility continued to make progress in recovering from the damage caused by the tropical storm. They were hoping to have the largest primary clarifier online by the week's end. Overall, the plant appeared to be providing adequate treatment.

08/05/2020: RTPT conducted. No violation noted. Primary clarifiers and other equipment at the lower level of the plant were flooded out by the tropical storm. Despite the challenging conditions the facility appeared to be on track to normal operational status. There were still partial treatment but disinfecting was occurring and effluent was clear. 05/05/2020: RTPT conducted. No violation noted. The treatment plant appeared to be well maintained and operating properly.

1/7/2020: CEI conducted. No violation identified. The treatment plant looked well maintained and operated.

3/6/2018: CEI conducted. No violation identified.

3/13/2018: SSO inspection conducted to investigate a manhole overflow during televising a sewer line. Approximately 50-60 gallons of sewage overflew the manhole, ran down the street gutter, into the storm drain, and into an UNT to Wissahickon Creek. The SSO was cleaned up right after. The receiving stream was observed, and no sign of solids deposit or gray water observed. Water samples were collected up- and down-stream of the SSO.

5.0 Existing limits

5.1 For Outfall 001 (treated sewage)

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	s (lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	7.0 Inst Min	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.016	XXX	0.052	Daily when Discharging	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	470	705	XXX	8.8	13.2 Wkly Avg	17.6	1/day	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	235	352	XXX	4.4	6.6 Wkly Avg	8.8	1/day	24-Hr Composite
Total Suspended Solids	1601	2402	XXX	30.0	45.0 Wkly Avg	60	1/day	24-Hr Composite
Total Dissolved Solids	XXX	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1000 (*)	1/day	Grab
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	105	XXX	XXX	1.95	XXX	3.9	1/day	24-Hr Composite
Ammonia-Nitrogen May 1 - Oct 31	35	XXX	XXX	0.65	XXX	1.3	1/day	24-Hr Composite
Orthophosphate Nov 1 - Mar 31	174	XXX	XXX	3.64	XXX	7.28	1/day	24-Hr Composite
Orthophosphate Apr 1 - Oct 31	48	XXX	XXX	1.00	XXX	2	1/day	24-Hr Composite
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Faranietei	Average	Weekly		Average	Daily	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Maximum	Maximum	Frequency	Туре
								24-Hr
Copper, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
				_				24-Hr
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Iron, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Cultata Tatal	V/V/	V/V/	VVV	Danasi	VVV	VVV	4 /	24-Hr
Sulfate, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Chlarida	XXX	VVV	XXX	Donort	VVV	xxx	1/month	24-Hr
Chloride	***	XXX	XXX	Report	XXX	***	1/month	Composite 24-Hr
Bromide	XXX	xxx	XXX	Report	XXX	XXX	1/month	Composite
Bioinide				Report			1/111011111	24-Hr
Hardness, Total (as CaCO3)	XXX	xxx	XXX	Report	XXX	XXX	1/month	Composite
Toxicity, Chronic -	7000	7001	7000	ποροπ	7001	7000	1/11101101	24-Hr
Ceriodaphnia Survival (TUc)	XXX	XXX	XXX	XXX	1.05	XXX	1/quarter	Composite
Toxicity, Chronic -							quenter	
Ceriodaphnia Reproduction								24-Hr
(TUc)	XXX	XXX	XXX	XXX	1.05	XXX	1/quarter	Composite
Toxicity, Chronic - Pimephales							·	24-Hr
Survival (TUc)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
Toxicity, Chronic - Pimephales								24-Hr
Growth (TUc)	XXX	XXX	XXX	XXX	Report	XXX	1/quarter	Composite
Biochemical Oxygen Demand								
(BOD5)	_			_				24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/day	Composite
Total Suspended Solids			,,,,,		2004	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/day	Composite

5.2 For Outfall 002 (Stormwater from eastern portion of WWTP)

			Effluent L	imitations			Monitoring Requiremen	
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

5.3 For Outfall 003 (Stormwater from western portion of WWTP)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentra	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

			Monitoring Requirement					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

5.4 For Outfall 004 (Stormwater from northwestern portion of WWTP)

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	tions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

	6.0 Development of Effluent Limitations								
Outfall No.	001	Design Flow (MGD)	5.7						
Latitude	40° 11' 22.00"	Longitude	-75° 17' 2.00"						
Wastewater D	Wastewater Description: Effluent								

6.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

6.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	_	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Fecal Coliform	200 / 100 ml	Geo Mean	-	DRBC, 92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	1,000 / 100 ml	10% rule	-	DRBC
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
Total Dissolved Solids	1,000	Average Monthly		DRBC

6.3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

6.4 Water Quality-Based Limitations

6.4.1 Model input data

The following data will be used for modeling, as needed:

•	Discharge pH	7.83	(median July-Sep 2022, daily eDMR data)
•	Discharge Temperature	23.3°C	(Application data)
•	Discharge Hardness	228 mg/l	(Application data)
•	Stream pH	8.05	(WQN#193, median Jul-Sep 2002-2019)
•	Stream Temperature	21.7°C	(WQN#193, median Jul-Sep 2002-2019)
•	Stream Hardness	150 ma/l	(Application data, upstream)

The following three nodes were used in modeling:

Node 1: At the outfall 001 on Wissahickon Creek (00844)

Elevation: 271.74 ft (USGS TNM 2.0 viewer, 12/19/2022) Drainage Area: 7.33 mi² (StreamStat Version 3.0, 12/19/2022)

River Mile Index: 19.07 (PA DEP eMapPA)

Low Flow Yield: 0.014 cfs/mi² Q₇₋₁₀: 0.1 cfs Discharge Flow: 6.4 MGD

Node 2: At confluence with Trewellyn Creek (00886)

Elevation: 237.82 ft (USGS TNM 2.0 viewer, 12/19/2022) Drainage Area: 12.4 mi² (StreamStat Version 3.0, 12/19/2022)

River Mile Index: 17.23 (PA DEP eMapPA)

Low Flow Yield: 0.014 cfs/mi² Discharge Flow: 0.0 MGD

6.4.2 WQM 7.0 Model

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and current background water quality levels of the stream.

6.4.2.1 NH₃-N

WQM 7.0 suggested NH₃-N limit of 0.65 mg/l as monthly average and 1.3 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. The current limits for summer and winter season will be carried over.

6.4.2.2 CBOD5

WQM 7.0 suggests CBOD5 limit of 4.4 mg/l which is the same as existing limit. Existing limit will be carried over.

6.4.2.3 DO

WQM 7.0 suggests minimum DO of 7.0 mg/l which is the model input and same as existing limit. Existing limit will be carried over.

6.4.3 General Discussion on Toxics Management Spreadsheet (TMS)

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

- 1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- 2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% 50% of the WQBEL.
- 3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for

WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

Output from the TMS is provided below:

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Aluminum	Report	Report	Report	Report	Report	μg/L	750	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	303	THH	Discharge Conc > 10% WQBEL (no RP)
Total Selenium	Report	Report	Report	Report	Report	μg/L	5.04	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	240	AFC	Discharge Conc > 10% WQBEL (no RP)
4,4-DDE	0.000001	0.000002	0.00002	0.00003	0.00006	μg/L	0.00002	CRL	Discharge Conc ≥ 50% WQBEL (RP)
UGT Copper	Report	Report	Report	Report	Report	μg/L	172	CFC	Discharge Conc > 10% WQBEL (no RP)

Each of the pollutants is discussed below:

6.4.3.1 Total Aluminum:

TMS recommended monitoring only for Total Aluminum based on a model input AMEC of 260 ug/l and daily CoV of 0.45. The AMEC and CoV was calculated from monthly eDMR Total Aluminum effluent data for last 24 months (April 1, 2021-March 31, 2023). The current permit has monitoring requirement which will be carried over in this renewal.

6.4.3.2 Total Copper:

Based on the current permit's Part C.VI condition "There is an existing site-specific criteria modification for total recoverable copper for this facility (Pennsylvania Bulletin, Volume 26, No. 15, April 13, 1996). Based on the results of a recalculation and water effects ratio (WER) study and a hardness of 200 mg/l as CaCO₃, DEP approved the site-specific chronic and acute life criteria for total recoverable copper of 0.17 mg/l and 0.27 mg/l, respectfully. Without the WER, the site-specific criteria are 0.0348 mg/l (CCC) and 0.0554 mg/l (CMC), respectfully. The basis for the site-specific criteria is as follows:

$$CCC = 4.89 \times Exp (0.8545 \times In[H] - 0.9773)$$

 $CMC = 4.89 \times Exp (0.9422 \times In[H] - 0.9772)$ "

The revised criteria were the input of the TMS model. The AMEC and Daily CoV was calculated to be 35 ug/l and 0.67, respectively, which were calculated from last 2 years of eDMR data. The model suggests that no RP was demonstrated for Total Copper. Existing monitoring requirement will be continued.

6.4.3.3 Dissolved Iron:

TMS recommended monitoring only for Dissolved Iron based on a model input AMEC of 101 ug/l and daily CoV of 0.577. The AMEC and CoV was calculated from monthly eDMR Dissolved Iron effluent data for last 24 months (April 1, 2021-March 31, 2023). The current permit has monitoring requirement which will be carried over in this renewal.

6.4.3.4 Total Selenium:

TMS recommended monitoring only for Total Selenium based on a model input maximum concentration of 0.7 ug/l from application. A quarterly monitoring will be applied to collect more data for a RP analysis during next permit renewal.

6.4.3.5 Total Zinc:

TMS recommended monitoring only for Total Zinc based on a model input maximum concentration of 32 ug/l from application. A quarterly monitoring will be applied to collect more data for a RP analysis during next permit renewal

6.4.3.6 4,4-DDE:

TMS recommended the following limits for 4,4-DDE: AML, MDL, and IMAX concentration of 0.00002 ug/l, 0.00003 ug/l, and 0.00006 ug/l, respectively; mass-based AML of 0.000001 lbs./day and MDL of 0.000002 lbs./day. The recommendation was based on a model input value of 0.006 ug/l (maximum of 3 sample results). Since this is a new parameter with limits requirements, it'll be included in the Pre-draft Survey. It should be noted that the TQL for this pollutant is 0.05 ug/l. Since WQBEL<TQL, the compliance will be demonstrated below TQL. The Part A will have WQBEL, but DMR and WMS will be coded with <0.05 ug/l (or 0.049 ug/l). It should be noted that the maximum concentration is approximately 8 times lower than proposed compliance limit of 0.049 ug/l; therefore, a compliance schedule isn't needed since the facility should be able to meet the limits from the effective date of the permit.

6.4.3.7 Total Iron:

The current permit has monitoring requirements for Total Iron. TMS model didn't recommend monitoring or limits requirements for this parameter based on model input AMEC value of 120 ug/l and daily CoV of 0.125 which were calculated from most recent 24 sample results between April 1, 2021 and March 31, 2023. Current monitoring requirement will be removed.

6.4.3.8 TDS, Sulfate, Chloride, Bromide:

Historically PADEP utilized the following logics to determine limits/monitoring requirements for these special monitoring parameters:

- Where the concentration of TDS in the discharge exceeds 1,000 mg/L, or the net TDS load from a discharge exceeds 20,000 lbs./day, and the discharge flow exceeds 0.1 MGD, Part A of the permit should include monitor and report for TDS, sulfate, chloride, and bromide. Discharges of 0.1 MGD or less should monitor and report for TDS, sulfate, chloride, and bromide if the concentration of TDS in the discharge exceeds 5,000 mg/L.
- Where the concentration of bromide in a discharge exceeds 1 mg/L and the discharge flow exceeds 0.1 MGD,
 Part A of the permit should include monitor and report for bromide. Discharges of 0.1 MGD or less should monitor and report for bromide if the concentration of bromide in the discharge exceeds 10 mg/L.

PADEP has determined that they have sufficient data over the past 7 years of implementing the special monitoring logic for these parameters and it is no longer needed. The recently approved DRBC Docket 1991-088 CP-10 requires an average quarterly TDS limit of 1,000 mg/l which will be incorporated in this NPDES permit for consistency purpose. The monitoring requirements for Sulfate, Chloride, and Bromide will be removed from the permit.

6.5 TMDL Parameters not covered in section 6.4.2:

6.5.1 Nitrate-Nitrite-N:

As stated in section 2.5 of this report, Wissahickon Creek TMDL has NO₃-NO₂-N WLA of 19.93 mg/l for Upper Gwynedd. A review of last 12 months eDMR data indicated an average discharge concentration of 18.92 mg/l which is less than WLA and hence continuation of monitoring is considered to be consistent with TMDL WLA assumptions, as per the discussion with EPA during last permit issuance. In addition, the TMDL Alternative for the Wissahickon Creek watershed isn't finalized yet for the outstanding impairment issues between the local municipalities and the EPA. Current monitoring will be carried over.

6.5.2 Ortho-P:

As discussed in section 2.5 of this report, existing limits will be carried over.

6.6 Additional Consideration:

6.6.1 Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation. These are existing requirements and will be carried over in this renewal.

6.6.2 E. Coli:

Pa Code 25 § 92a. 61 requires monitoring of E. Coli. DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for major sewage dischargers. This requirement will be applied from this permit term.

6.6.3 pH:

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 §§ 95.2(1), 92a.47) which are existing limits and will be carried over.

6.6.4 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 1,601 lbs./day and 2,402 lbs./day respectively, which are the same as were in existing permit and will be carried over.

6.6.5 UV Disinfection:

PADEP's SOP BCW-PMT-033 recommends UV parameter monitoring where UV is used as a method of disinfection, with the same frequency as would be if Chlorine is used for disinfection. The facility can monitor and report UV Transmittance in %. Daily minimum UV Transmittance will be applied in this renewal.

6.6.6 Total Residual Chlorine (TRC):

The facility utilizes chlorine to control filamentous bacteria in their return line but not for disinfection of the waste stream. The use of chlorine may be considered as a maintenance work. The current permit has AML of 0.016 mg/l and IMAX of 0.052 mg/l in Part A of the permit. The limits will be removed from Part A of the permit and a special condition will be included in the Part C of the permit that will require the permittee to report daily TRC whenever chlorine is utilized for bacterial control or other reason. The existing limits will be carried over in Part C.

6.6.7 Flow and Influent BOD₅ and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

6.7 Best Professional Judgement (BPJ):

6.7.1 Total Phosphorus:

PADEP's SOP BCW-PMT-033 recommends monitoring for Total Phosphorus for facilities with design flow more than 2000-GPD, which is also supported by Pa Code 25 Ch. 92a.61. A monthly monitoring will be added.

6.7.2 Total Nitrogen:

PADEP's SOP BCW-PMT-033 recommends monitoring for Total Phosphorus for facilities with design flow more than 2000-GPD, which is also supported by Pa Code 25 Ch. 92a.61. A monthly monitoring will be added.

6.7.3 Total Hardness:

Existing Total Hardness monitoring will be continued to evaluate toxicity of Total Copper and/or other hardness-based pollutants.

6.7.4 Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

7.0 Anti-Backsliding

The proposed limits are at least as stringent as current permit; therefore, anti-backsliding isn't applicable. Removing "monitoring only" requirements and limits from Part A to Part C aren't considered as backsliding.

		Development of Effluent Limitati	ions
Outfall No. Latitude Wastewater D	002 40° 11' 22.00 Description:		w (MGD) 0 -75° 17' 2.00"
		Development of Effluent Limitati	ions
Outfall No. Latitude Wastewater D	003 40° 11' 25.00 Description:		w (MGD) 0 -75° 17' 7.00"
		Development of Effluent Limitati	ions
Outfall No. Latitude Wastewater D	004 40° 11' 30.00 Description:		w (MGD) 0 -75° 17' 7.00"

UGT has three stormwater only outfalls, 002, 003, and 004. Per Phase II Stormwater regulations, major POTWs are required to have a permit for the discharge of stormwater. 40 CFR 122.26(b)(14)(IX) requires that the stormwater from major sewage facilities are to be covered under NPDES permit. The current permit has monitoring requirements in Part A and Part C of the permit. Current monitoring requirements will be carried over. The PPC plan is in place and is updated on July 2022. The following table was taken from updated PPC plan. Sector specific BMPs are in place. Drainage areas corresponding to the outfalls are 317,988 sft for Outfall 002, 74,052 sft for Outfall 003, and 26,136 sft for Outfall 004. Outfall 004 is inspected in lieu of sampling since the industrial activities/stormwater quality is similar to that of Outfall 002 and 003.

Preparedness, Prevr n, and Contingency (PPC) Plan

Upper Gwyned Twnship Wastewater Treatment Plant

		Affected	002		003	003	903	003	003	002	002	002	Morto	oortanie-
		Type of BMP Applied	Secondary spill Containment Absorbent Materials	Secondary spill Containment Absorbent Materials Drainage Control Drain Seal	Drainage Control	Drainage Control Steel Post Barricades Secondary Spill Containment	Secondary spill Containment Drain Seal	Secondary spill Containment Absorbent Materials Drain Seal	Secondary spill Containment Absorbent Materials Drain Seal	Secondary spill Containment Absorbent Materials No Open Container	Secondary spill Containment Absorbent Materials Drain Seal Spill Kit	Secondary spill Containment Absorbent Materials Drainage Control Drain Seal	effected stormwater outfall.	ic Acicase (ganons/pounds) is rej
	Summary of Potential Pollutant Sources/Best Management Practices Applied	SPCC Reportable Release Gallons/Pounds	1,000 gals to Navigational Waters OR two (2) discharges of 42 gals within 12 months	1,000 gals to Navigational Waters OR two (2) discharges of 42 gals within 12 months				1,000 gals to Navigational Waters OR two (2) discharges of 42 gals within 12 months	1,000 gals to Navigational Waters OR two (2) discharges of 42 gals within 12 months		1,000 gals to Navigational Waters OR two (2) discharges of 42 gals within 12 months		ppendix B for exact locations of chemical storage areas. spill, a spill berm and drain seals will be installed to protect the potentially effected stormwater outfall.	ppendix J)
Table 3.1	ant Sources/Best N	EPA Reportable Release Gallons/Pounds	25 gal / 175 lbs	25 gal / 175 lbs		80 gal. / 100 lbs	1,186 gal / 5,000 lbs	25 gal / 175 lbs	25 gal / 175 lbs		25 gal / 175 lbs	210 gal / 1000 lbs	 See Site Plan in Appendix B for exact locations of chemical storage areas. In the advent of a spill, a spill berm and drain seals will be installed to present the facility houndary and be a facility houndary and	Incidents causing or threatening pollution (Appendix J)
	otential Pollut	Potential Pollutants in Stormwater	Heating Oil	Heating Oil	Liquid Sludge Hauling	12.5% Sodium Hypochlorite	38% Sodium Bisulfite	Heating Oil	Heating Oil	Liquid Emulsion Polymer	Diesel Fuel	34% Aluminum Chloride	for exact locati	using or threat
	mmary of P	Storage	500 gal.	540 gal. (Two 270 gal. tanks)		1,000 gal. tank / 250 gal tote	550 gal.	270 gal.	270 gal.	250 gal.	1,000 / 1,500 gal.	5,000 gal	Appendix B 1 spill, a spill or release	ncidents car
	Su	Storage	Outside	Indoors Basement	Outside	Indoors	Indoors	Indoors Basement	Indoors Basement	Indoors	Indoors	Indoors Basement	 See Site Plan in A In the advent of a To decide if a smill 	1.33 — 1
		Notes:	1,3	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3	1, 2, 3	1,3	1, 2, 3	1, 2, 3	1: See S 2: In th	See PA 91.33 -
		Location for Potential Sources of Stormwater	Lab and Operations Building	BioMag Building	BioMag Building	BioMag Building/Garage	Tertiary Building	Service Building	Small Garage	Blower Building	Generator Substations	BioMag Building	Notes:	
L		Item No.	1	7	3	4	w	9	t	`	œ	•		

	Whole Effluent Toxicity (WET)								
For Ou	tfall 001, Acute Chronic WET Testing was completed:								
	For the permit renewal application (4 tests). Quarterly throughout the permit term. Quarterly throughout the permit term and a TIE/TRE was conducted. Other: 4 quarterly tests for 1 st year, annually thereafter.								
The dil	ution series used for the tests was:								

- 1. For first three years: 100%, 98%, 95%, 48%, and 24%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 95%.
- 2. After three years: 100%, 98%, 73%, 49%, and 24%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 98%.

Per previous fact sheet, quarterly sampling was required since the tests were performed (during last renewal review) by QC Laboratories and the analytical results were considered unreliable. Two dilution series corresponding to two design flows (5.7 MGD and 6.4 MGD).

Summary of Four Most Recent Test Results

(NOTE - Enter results into one table, depending on which data analysis method was used).

TST Data Analysis

(NOTE - In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia	Results (Pass/Fail)	Pimephales Results (Pass/Fail)			
Test Date	Survival	Reproduction	Survival	Growth		
3/13/2018	Pass	Pass	Pass	Pass		
4/10/2018	Pass	Pass	Pass	Pass		
9/18/2018	Pass	Pass	Pass	Pass		
11/13/2018	Pass	Pass	Pass	Pass		
11/26/2019	Pass	Pass	Pass	Pass		
12/22/2020	Pass	Pass	Pass	Pass		
12/7/2021	Pass	Pass	Pass	Pass		

^{*} A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

☐ YES ⋈ NO

Comments: Four quarterly results showed passing, so the permittee returned to annual sampling.

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 1 Chronic Partial Mix Factor (PMFc): 1

1. Determine IWC - Acute (IWCa):

 $(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$

 $[(6.4 \text{ MGD x } 1.547) / ((0.1 \text{ cfs x } 1) + (6.4 \text{ MGD x } 1.547))] \times 100 = 99\%$

Is IWCa < 1%? TYES NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

	If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:
	Type of Test for Permit Renewal: Chronic
2a.	Determine Target IWCa (If Acute Tests Required)
	TIWCa = IWCa / 0.3 = %
2b.	Determine Target IWCc (If Chronic Tests Required)
	(Q _d x 1.547) / (Q ₇₋₁₀ x PMFc) + (Q _d x 1.547)
	$[(6.4 \text{ MGD x } 1.547) / ((0.1 \text{ cfs x } 1) + (6.4 \text{ MGD x } 1.547))] \times 100 = 99\%$
3.	Determine Dilution Series
	(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).
	Dilution Series = 100%, 99%, 74%, 50%, and 25%.
<u>WE</u>	ET Limits
Has	s reasonable potential been determined? YES NO
Wil	I WET limits be established in the permit? ☐ YES ☒ NO
If V	VET limits will be established, identify the species and the limit values for the permit (TU).
N/A	A
If V	VET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing

WET limits:

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through End of Interim Period 1.

		Effluent Limitations						
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter	Average	Average		Average	Daily	Instant.	Measurement	Sample
	Monthly	Weekly	Minimum	Quarterly	Maximum	Maximum	Frequency	Type
								24-Hr
4,4-DDE (ug/L)	XXX	XXX	XXX	Report	Report	XXX	1/quarter	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: End of Interim Period 1 through Permit Expiration Date.

		Monitoring Red	quirements					
Parameter	Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required		
Farameter	Average Average		Average Instant.				Measurement	Sample
	Monthly	Weekly	Minimum	Quarterly	Maximum	Maximum	Frequency	Type
								24-Hr
4,4-DDE (ug/L)	XXX	XXX	XXX	0.049	XXX	XXX	1/quarter	Composite

Compliance Sampling Location: At Outfall 001

Other Comments: None

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent Lir	mitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ons (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Instantaneous Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	7.0	XXX	XXX	XXX	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5) Nov 1 - Apr 30	470	705	xxx	8.8	13.2 Wkly Avg	17.6	1/day	24-Hr Composite
Carbonaceous Biochemical Oxygen Demand (CBOD5) May 1 - Oct 31	235	352	xxx	4.4	6.6 Wkly Avg	8.8	1/day	24-Hr Composite
Biochemical Oxygen Demand (BOD5)	_			_				24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/day	Composite
Total Suspended Solids	1601	2402	XXX	30.0	45.0 Wkly Avg	60	1/day	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/day	24-Hr Composite
Total Dissolved Solids	XXX	XXX	XXX	1000.0 Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/day	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Ultraviolet light transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Recorded

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

			Monitoring Requirements					
Baramatar	Mass Units (lbs/day) (1)			Concentrati		Minimum (2)	Required	
Parameter	Average	Weekly	Instantaneous	Average	Daily	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Maximum	Maximum	Frequency	Type
								24-Hr
Nitrate-Nitrite as N	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Total Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Ammonia-Nitrogen								24-Hr
Nov 1 - Apr 30	105	XXX	XXX	1.95	XXX	3.9	1/day	Composite
Ammonia-Nitrogen	0.5	2004	2000	0.05	2007	4.0	4/1	24-Hr
May 1 - Oct 31	35	XXX	XXX	0.65	XXX	1.3	1/day	Composite
Total Dhaanharus	VVV	VVV	VVV	Donort	VVV	VVV	1 /m a m th	24-Hr
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite 24-Hr
Orthophosphate Nov 1 - Feb 28	53	xxx	xxx	1.00	XXX	xxx	1/day	Composite
Orthophosphate	55		^^^	1.00		^^^	1/uay	24-Hr
Apr 1 - Oct 31	27	xxx	XXX	0.5	xxx	xxx	1/day	Composite
Αρι 1 - Οσι 31	<u> </u>	XXX	XXX	0.5	XXX	XXX	17day	24-Hr
Aluminum, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
7 Harrim Giri, 1 Otal	7001	7001	7001	roport	7001	7001	17111011111	24-Hr
Copper, Total	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
·				Report				24-Hr
Selenium, Total	XXX	XXX	XXX	Avg Qrtly	Report	XXX	1/quarter	Composite
				Report				24-Hr
Zinc, Total	XXX	XXX	XXX	Avg Qrtly	Report	XXX	1/quarter	Composite
								24-Hr
Hardness, Total (as CaCO3)	XXX	XXX	XXX	Report	XXX	XXX	1/month	Composite
Toxicity, Chronic -								24-Hr
Ceriodaphnia Survival (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite
Toxicity, Chronic -								04.11.
Ceriodaphnia Reproduction	VVV	VVV	VVV	VVV	Da t	VVV	Coo Domesit	24-Hr
(TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite 24-Hr
Toxicity, Chronic - Pimephales Survival (TUc)	XXX	XXX	xxx	XXX	Report	XXX	See Permit	24-Hr Composite
Toxicity, Chronic - Pimephales	^^^	^^^	^^^	^^^	Report	^^^	See Femili	24-Hr
Growth (TUc)	xxx	xxx	xxx	XXX	Report	xxx	See Permit	Composite
Clowill (100)	\/\/	////	////	AAA	ιτεροιτ		See i eiiill	Composite

Compliance Sampling Location: At Outfall 001

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Red	quirements					
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 002

Other Comments: None

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (lbs/day) (1)			Concentra	Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 003

Other Comments: None

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 004, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Requirements						
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand (COD)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Iron, Dissolved	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 004

Other Comments: Inspected in lieu of sampling.

	Tools and References Used to Develop Permit
N 7	T
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
\boxtimes	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: BCW-PMT-033
	Other:

Locational Map

Permit No. PA0023256

Major Equipment Layout

Permit No. PA0023256

Flow Schematic

Permit No. PA0023256

High Flow Maintenance Plan Stage 1 for flow up to 10 MGD

Upper Gwynedd Township WWTP Operation & Maintenance Manual Appendix A High Flow Maintenance Plan August 2022

Flow Schematic 2 - High Flow Maintenance -

Stage 1 - Influent Flow Rate up to 10 MGD

High Flow Maintenance Plan Stage 2 for flow up to 14 MGD

Upper Gwynedd Township WWTP Operation & Maintenance Manual Appendix A High Flow Maintenance Plan August 2022

Flow Schematic 3 - High Flow Maintenance -

Stage 2 - Influent Flow Rate 14 MGD

High Flow Maintenance Plan for extreme high flow > 30 MGD

Upper Gwynedd Township WWTP Operation & Maintenance Manual Appendix A High Flow Maintenance Plan August 2022

Flow Schematic 4 - High Flow Maintenance -

Stage 3 - Extreme High Flow Event Influent Flow Rate 20+ MGD, 30+ MGD

StreamStats at Outfall 001

PA0023256 at Outfall 001

Region ID: PA
Workspace ID: PA20221207202613228000

Clicked Point (Latitude, Longitude): Time: 2022-12-07 15:26:37 -0500 40.18984, •75.28394

Time:

Collapse All

Parameter Code	Parameter Description	Value	Unit
BSLOPD	Mean basin slope measured in degrees	1.5842	degrees
DRNAREA	Area that drains to a point on a stream	7.33	square miles
ROCKDEP	Depth to rock	4	feet
URBAN	Percentage of basin with urban development	60.1343	percent

ow-Flow Statistics I	Parameters [Low Flow Region 1]				
arameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
RNAREA	Drainage Area	7.33	square miles	4.78	1150
SLOPD	Mean Basin Slope degrees	1.5842	degrees	1.7	6.4
	Barret de Barris	4	feet	4.13	5.21
OCKDEP	Depth to Rock	*	\$1000000		
OCKDEP IRBAN	Percent Urban	60.1343	percent	0	89
RBAN DW-Flow Statistics I One or more of the pare		60.1343	V (100000)	6	89

StreamStats at Node 2

PA0023256 at node 2

Region ID: PA

Workspace ID: PA20221219143647554000

Clicked Point (Latitude, Longitude): 40.18605, -75.25440

Time: 2022-12-19 09:37:07 -0500

Collapse All

Basin Characteristics Parameter Code Parameter Description Value Unit BSLOPD Mean basin slope measured in degrees 1.9248 degrees DRNAREA 12.4 square miles Area that drains to a point on a stream ROCKDEP Depth to rock feet URBAN Percentage of basin with urban development 45.3331 percent

Low-Flow Statistics Parameters [Low Flow Region 1]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	12.4	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	1.9248	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4	feet	4.13	5.21
URBAN	Percent Urban	45.3331	percent	0	89

Low-Flow Statistics Disclaimers [Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.817	ft^3/s
30 Day 2 Year Low Flow	1.41	ft^3/s
7 Day 10 Year Low Flow	0.288	ft^3/s
30 Day 10 Year Low Flow	0.519	ft^3/s
90 Day 10 Year Low Flow	1.32	ft^3/s

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006–5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

WQM 7.0

Input Data WQM 7.0

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	Witho	VS drawal gd)	Apply FC
	03F	8	344 WISS	AHICKON	CREEK		19.07	70	271.74	7.3	3 0.000	00	0.00	v
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Ten	Tributary p ph	н т	<u>Strear</u> emp	m pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.014	0.10 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	1.70 8	3.05	0.00	0.00	
					Di	scharge	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Dis Flo	c Res w Fa	erve Te ctor	isc emp °C)	Disc pH		
		UGT	WWTP	PAG	0023256	6.400	0 6.400	0 6.4	000	0.000	23.00	7.83		
					Pa	rameter	Data							
				Parameter	r Name	С	onc C	onc	Stream Conc	Fate Coef				
	_					(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				4.40	2.00	0.00	1.50				
			Dissolved	Oxygen			7.00	8.24	0.00	0.00				
			NH3-N				0.65	0.00	0.00	0.70				

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI		(ft)	Drainage Area (sq mi)	Slop (ft/f	Witho	VS drawal gd)	Apply FC
	03F	8	344 WISS	AHICKON	CREEK		17.23	30	237.82	12.4	0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pl	н	<u>Strear</u> Temp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.014	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	00 2	1.70	8.05	0.00	0.00	
430-10		0.00	0.00	0.000	0.000								_	
					Di	scharge [_		D:		
			Name	Per	mit Number	Disc Flow	Permitte Disc Flow	Dis Flo	ic Res w Fa	erve To ctor)isc emp	Disc pH		
						(mgd)	(mgd)	(mg	gd)	(°C)			
						0.0000		0.0	0000	0.000	25.00	7.00		
					Pa	rameter [
								Trib Conc	Stream Conc	Fate Coef				
			ı	Paramete	r Name	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5			-	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

		SWP Basin Stream 0 03F 844							ream Name HICKON CREEK			
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q7-1	0 Flow											
19.070	0.10	0.00	0.10	9.9008	0.00349	.699	29.95	42.85	0.48	0.235	22.99	7.83
Q1-1	0 Flow											
19.070	0.06	0.00	0.06	9.9008	0.00349	NA	NA	NA	0.48	0.236	22.99	7.83
Q30-	10 Flow	,										
19.070	0.14	0.00	0.14	9.9008	0.00349	NA	NA	NA	0.48	0.235	22.98	7.83

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	v
D.O. Goal	7		

WQM 7.0 Wasteload Allocations

	SWP Basin 03F	Stream 84			WIS	Stream SAHICK	Name ON CRE	EK		
NH3-N	Acute Alloc	ations								
RMI	Discharge I		Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterio (mg/L)	n I	ultiple WLA ng/L)	Critical Reach	Percent Reductio	
19.07	70 UGT WWTP		2.86	1.3	2.	.86	1.3	0	0	_
NH3-N	Chronic Allo		1S sseline	Raseline	Malifela	8.6.4	G-1-	Critical	Percent	
RMI	Discharge Na	ame Ci	riterion mg/L)	WLA (mg/L)	Multiple Criterion (mg/L)		LA g/L)	Reach	Reduction	
19.07	70 UGT WWTP		.77	.65		.77	.65	0	0	_
Dissolv	ed Oxygen /	Allocat	ions							_
RMI	Discharg	e Name	_	CBOD5 ne Multiple .) (mg/L)	NH3 Baseline (mg/L)			red Oxygen e Multiple (mg/L)	Critical	Percent Reduction
19.0	7 UGT WWTP		4	.4 4.4	.65	.65	7	7	0	0

WQM 7.0 D.O.Simulation

						_	
	SWP Basin 03F	Stream Code 844		WIS	Stream Name		
	RMI	Total Discharge	Flow (mgd) Ana	lysis Temperatu	re (°C)	Analysis pH
	19.070	6.40	0		22.987		7.832
	Reach Width (ft)	Reach De	pth (ft)		Reach WDRati	0	Reach Velocity (fps)
	29.949	0.69	9		42.846		0.478
	Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (m	g/L)	Reach Kn (1/days)
	4.38	1.49	_		0.64		0.881
	Reach DO (mg/L)	Reach Kr			Kr Equation		Reach DO Goal (mg/L)
	7.012	12.2	17		Tsivoglou		7
R	each Travel Time (day	<u>/S)</u>	Subreach	Results			
	0.235	TravTime	CBOD5	NH3-N	D.O.		
		(days)	(mg/L)	(mg/L)	(mg/L)		
		0.024	4.20	0.63	7.15		
		0.047	4.04	0.62	7.26		
		0.071	3.88	0.60	7.36		
		0.094	3.72	0.59	7.44		
		0.118	3.58	0.58	7.51		
		0.141	3.44	0.57	7.57		
		0.165	3.30	0.56	7.62		
		0.188	3.17	0.55	7.67		
		0.212	3.05	0.53	7.71		
		0.235		0.52	7.75		

WQM 7.0 Effluent Limits

SWP Basin St	ream Code		Stream Name	2		
03F	844		WISSAHICKON CI	REEK		
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
UGT WWTP	PA0023256	6.400	CBOD5	4.4		
			NH3-N	0.65	1.3	
			Dissolved Oxygen			7
	03F Name	03F 844 Name Permit Number	03F 844 Name Permit Flow Number (mgd)	Name Permit Number Disc Flow (mgd) Parameter UGT WWTP PA0023256 6.400 CBOD5 NH3-N	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) UGT WWTP PA0023256 6.400 CBOD5 4.4 NH3-N 0.65	Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) UGT WWTP PA0023256 6.400 CBOD5 4.4 NH3-N 0.65 1.3

Toxics Management Spreadsheet (TMS)

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information

Instructions Dis	charge Stream		
Facility: Uppe	r Gwynedd Township WWTP	NPDES Permit No.: PA0023256	Outfall No.: 001
Evaluation Type:	Major Sewage / Industrial Waste	Wastewater Description: Treated sewage	
Evaluation Type.	major Sewage / muusurar waste	wastewater Description.	

			Discharge	Characterist	tics							
Design Flow	Hardness (mg/l)t	-U (CII)*	P	artial Mix Fa	ctors (PMF	5)	Complete Mix	x Times (min)				
(MGD)*	Hardness (mg/l)*	pH (SU)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
6.4	228	7.83										

					-	O If le	ift blan	k	0.5 If le	ft blank	0	If left blan	k	1 If lef	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	_	rib onc		eam nc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L			+	\vdash	-								
7	Chloride (PWS)	mg/L				Ħ									
1	Bromide	mg/L				П									
Group	Sulfate (PWS)	mg/L			H	H									
	Fluoride (PWS)	mg/L				H									
	Total Aluminum	μg/L		260					0.45						
	Total Antimony	μg/L		0.5		П									
	Total Arsenic	μg/L		0.9	H		-								
	Total Barium	μg/L		90	Ħ	Ħ									
	Total Beryllium	μg/L	<	0.1		П									
	Total Boron	μg/L		145		\Box									
	Total Cadmium	μg/L	<	0.1	H	H									
	Total Chromium (III)	μg/L				\sqcap									
	Hexavalent Chromium	μg/L	<	0.1	\Box	П									
	Total Cobalt	μg/L	<	0.2	H	Ħ									
	Total Copper	mg/L			Ħ	Ħ									
2	Free Cyanide	μg/L	<	0.5		П									
ΙĦ	Total Cyanide	μg/L		10		\Box									
Group	Dissolved Iron	μg/L		101	H	Ħ			0.577						
	Total Iron	μg/L		120					0.125						
	Total Lead	μg/L	<	0.3	H	H									
	Total Manganese	μg/L	<	2	H										
	Total Mercury	μg/L	<	0.2											
	Total Nickel	μg/L		2	\Box	П									
	Total Phenols (Phenolics) (PWS)	μg/L		34	\vdash	H									
	Total Selenium	μg/L		0.7		H									
	Total Silver	μg/L		0.4	П	П									
	Total Thallium	μg/L	<	0.4	H	H									
	Total Zinc	μg/L		32	H	Ħ									
	Total Molybdenum	μg/L		6	\sqcap	\Box									
	Acrolein	μg/L	<	1		П									
	Acrylamide	μg/L	<												
	Acrylonitrile	μg/L	<	0.5		Ħ									
	Benzene	μg/L	<	0.5		П									
	Bromoform	μg/L	<	0.5		H	-								

	Carbon Tetrachloride	μg/L	<	0.5									
	Chlorobenzene	μg/L		0.5	Ц	Ш						Ш	Ш
1	Chlorodibromomethane	μg/L	<	0.5	H	\dashv						\square	\rightarrow
1	Chloroethane	μg/L	<	0.5	H	77							777
1	2-Chloroethyl Vinyl Ether	μg/L	<	0.5	Ħ	⇈						Ħ	77
1	Chloroform	µg/L		0.3		т						\Box	
1	Dichlorobromomethane	μg/L	<	0.5									$\overline{}$
1	1,1-Dichloroethane	µg/L	<	0.5	H	#	-					H	##
1			-	0.5	₩	↔	_					-	+++
60	1,2-Dichloroethane	μg/L	<		H	\Rightarrow	-					-	+++
Group	1,1-Dichloroethylene	μg/L	<	0.5	Ħ	\Rightarrow						\Box	$\Rightarrow\Rightarrow$
1,5	1,2-Dichloropropane	µg/L	<	0.5		ш							
١	1,3-Dichloropropylene	μg/L	<	0.5	Ц	Ш						Ш	
1	1,4-Dioxane	μg/L		0.2	\vdash	\dashv						\vdash	+
1	Ethylbenzene	μg/L	<	0.5	H	$\dashv \dashv$							
1	Methyl Bromide	μg/L	<	0.5	Ħ	77							77
1	Methyl Chloride	μg/L	<	0.5	П	\top							+
1	Methylene Chloride	µg/L	<	0.5									$\overline{}$
1	-		<	0.5	H	+	-						+++
1	1,1,2,2-Tetrachloroethane	μg/L	-	0.5	H	₩	-		_			₩	+
1	Tetrachloroethylene	μg/L	<		H	\dashv	-					-	+
1	Toluene	μg/L	<	0.5	H	\Rightarrow	_						
	1,2-trans-Dichloroethylene	μg/L	<	0.5									
1	1,1,1-Trichloroethane	μg/L	<	0.5									
1	1,1,2-Trichloroethane	μg/L	<	0.5	Ц	Щ						Щ	$\downarrow \downarrow \downarrow$
1	Trichloroethylene	μg/L	<	0.5	H	\dashv							-
	Vinyl Chloride	μg/L	<	0.5	H								77
\vdash	2-Chlorophenol	μg/L	<	0.16	H	$\dashv \dashv$							
1	2,4-Dichlorophenol	µg/L	<	0.10	Ħ	77	_						-
1	-		<	0.21			-			_			$\overline{}$
1	2,4-Dimethylphenol	μg/L	_		H	₩	-					Н	$+\!+\!+$
l_	4,6-Dinitro-o-Cresol	μg/L	<	1.14	Н	++	_					1	+
ď	2,4-Dinitrophenol	µg/L	<	1.77	H	\dashv	_						
Group	2-Nitrophenol	μg/L	<	0.21	H	11							
ြုံ	4-Nitrophenol	μg/L	<	1.33	Ħ								
1	p-Chloro-m-Cresol	μg/L	<	0.24	Ш	Ш							
1	Pentachlorophenol	μg/L	<	0.47	H	\dashv							$\Rightarrow \Rightarrow$
1	Phenol	μg/L	<	0.18	Ħ	#							77
1	2,4,6-Trichlorophenol	µg/L	<	0.21	H	++	_						-
\vdash	Acenaphthene		<	0.33	Ħ	₩	_						-
1		μg/L	<	0.32		#			_		_		-
1	Acenaphthylene	μg/L			H		-	-				\square	+
1	Anthracene	μg/L	<	0.3	Н	+						Н	++
1	Benzidine	μg/L	<	0.57	H	\dashv						-	
1	Benzo(a)Anthracene	μg/L	<	0.25	H	\dashv							\rightarrow
1	Benzo(a)Pyrene	μg/L	<	0.23	H	77	1						
1	3,4-Benzofluoranthene	μg/L	<	0.25	Ш								
1	Benzo(ghi)Perylene	μg/L	<	0.38	H	\Box							\rightarrow
1	Benzo(k)Fluoranthene	μg/L	<	0.31	Ħ	-							-
1	Bis(2-Chloroethoxy)Methane	μg/L	<	0.22	Ħ	++	_					H	+++
1	Bis(2-Chloroethyl)Ether	μg/L	<	0.25	H	***							
1			<	0.25	Ħ	#	_	_	_		_		-
1	Bis(2-Chloroisopropyl)Ether	μg/L	-		\Box	#	-	_				\blacksquare	$\overline{}$
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<	1.49	H	++	-					Н.	
	4-Bromophenyl Phenyl Ether	μg/L	<	0.37	H	+							
1	Butyl Benzyl Phthalate	μg/L	<	0.98									++
	2-Chloronaphthalene	μg/L	<	0.33									
1	4-Chlorophenyl Phenyl Ether	μg/L	<	0.32									
	Chrysene	μg/L	<	0.48	П	П						П	\Box
1	Dibenzo(a,h)Anthrancene	μg/L	<	0.38	H								-
1	1,2-Dichlorobenzene	μg/L	<	0.5	H	#							++
	1,3-Dichlorobenzene	µg/L	<	0.5									
1			<	0.5	H								-
5	1,4-Dichlorobenzene	μg/L	-										
ă	3,3-Dichlorobenzidine	µg/L	<	0.7	Щ	ĻĻ	_					Щ	Щ
Group	Diethyl Phthalate	μg/L	<	0.8	H	\Box						H	
٦	Dimethyl Phthalate	μg/L	<	0.48									++
	Di-n-Butyl Phthalate	μg/L	<	2.5	H								
	2,4-Dinitrotoluene	μg/L	<	0.43									
-			_									 	

	2,6-Dinitrotoluene	μg/L	<	0.42	Н		-	-					
	Di-n-Octyl Phthalate		_	2.06	Н	Н	+	-	_			₩	++
	1,2-Diphenylhydrazine	µg/L	<	0.49	+	H	\Rightarrow	_				H	+
		μg/L	-				-	-					
	Fluoranthene	μg/L	<	0.59	Н	H	+	-				H	₩
	Fluorene	μg/L	<		Н	Н	+	-				₩	
	Hexachlorobenzene	μg/L	<	0.39	Н	H	+	-				H	\Rightarrow
	Hexachlorobutadiene	μg/L	<	0.25			#						\Rightarrow
	Hexachlorocyclopentadiene	μg/L	<	0.37			Ų					Щ	
	Hexachloroethane	μg/L	<	0.44		Ц	4					Щ	
	Indeno(1,2,3-cd)Pyrene	μg/L	<	0.36		Н	\pm						
	Isophorone	μg/L	<	0.24			\pm						
	Naphthalene	μg/L	<	0.24			T						
	Nitrobenzene	μg/L	<	0.22			7						
	n-Nitrosodimethylamine	µg/L	<	0.22	Н	H	7						\dashv
	n-Nitrosodi-n-Propylamine	μg/L	<	0.39	Ħ	Ħ	7					H	-
	n-Nitrosodiphenylamine	μg/L	<	0.34	т	Н	$^{+}$					Н	\dashv
	Phenanthrene	μg/L	<	0.39			3		 				
			<	0.55		H	#	-					#
	Pyrene	μg/L	<		Н	H	+	-				H	\dashv
	1,2,4-Trichlorobenzene	μg/L	_	0.25		H	+	-					
	Aldrin	μg/L	<	0.005									
	alpha-BHC	μg/L	<	0.005									
	beta-BHC	μg/L	<	0.005									
	gamma-BHC	μg/L	<	0.005								H	
	delta BHC	µg/L	<	0.02	H		7						\dashv
	Chlordane	μg/L	<	0.5	Ħ	Ħ	7					H	
	4,4-DDT	μg/L	<	0.02	Т	П	\neg						$\dashv \dashv$
	4.4-DDE	μg/L		0.006		Ħ	Ť						#
	4.4-DDD	μg/L	<	0.02	Н		#	-	 				#
	Dieldrin		<	0.02	Н	H	+	-	-			H	₩
		μg/L	_		Н	Н	+	-	-			H	
	alpha-Endosulfan	μg/L	<	0.02	Н	H	+						\Rightarrow
9	beta-Endosulfan	μg/L	<	0.005		Ħ	\Rightarrow						\Rightarrow
ď	Endosulfan Sulfate	μg/L	<	0.02		П	7					П	\Box
•	Endrin	μg/L	<	0.005		Ц	4					Щ	
ö	Endrin Aldehyde	μg/L	<	0.02	Н	Н	\pm					\vdash	\dashv
	Heptachlor	μg/L	<	0.005	Н	H	7	1					77
	Heptachlor Epoxide	μg/L	<	0.02									
	PCB-1016	μg/L	<				_					П	
	PCB-1221	μg/L	<		Н	Ħ	7						-
	PCB-1232	μg/L	<		Ħ	H	+	_				H	+
	PCB-1242	μg/L	<		Н	Н	+					Н	+
	PCB-1242		<		H	Ħ	\rightarrow	_					-
		µg/L	_				#	-					\blacksquare
	PCB-1254	μg/L	<		-	Н	+	_				Н	+
	PCB-1260	µg/L	<		Н	Н	4					H	\dashv
	PCBs, Total	μg/L	<		Н	H	\Rightarrow						\Rightarrow
	Toxaphene	μg/L	<	0.5			Ì						
	2,3,7,8-TCDD	ng/L	<										
	Gross Alpha	pCi/L				Ц	4					Щ	\Box
7	Total Beta	pCi/L	<		Н	H	7					H	\dashv
		pCi/L	<		Ħ	Ħ	⇉					Ħ	77
ĕ	Radium 226/228 Total Strontium Total Uranium	μg/L	<		т	Н	\rightarrow						$\dashv \dashv$
ō	Total Uranium	μg/L	<				#		 				
	Osmotic Pressure	mOs/kg	_			Н	#						#
	UGT Copper	μg/L		35	+	H	+		0.67				
	оот соррег	pg/L	_	30	Н	H	+	_	0.07			 \vdash	
							1	_					
						H	J						
						H	T						
							I						
							+						
					H	H	+						

Stream / Surface Water Information

Upper Gwynedd Township WWTP, NPDES Permit No. PA0023256, Outfall 001

Instructions Disch	narge Stre	eam														
Receiving Surface V	Vater Name:	Wissahick	on Cr	reek				No. Re	aches to	Model:	1	~	tewide Criteri			
Location	Stream Cod	e' RM	nı*	Elevati (ft)*	ion	DA (mi²)*	Slope (ft/f	1	Withdrav MGD)	wal Apply Crite		OR	SANCO Crite	ria		
Point of Discharge	000844	19.	07	271.7	4	7.33				Ye	es .					
End of Reach 1	000844	17.	23	237.8	2	12.4				Ye	25					
Q ₇₋₁₀		•								·						
Location	RMI	LFY		Flow			//D Width		Velocit	Time	Tributa		Stream		Analys	
		(cfs/mi ²)*	St	tream	Trib	utary R	atio (ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	19.07	0.014											150	8.05		
End of Reach 1	17.23	0.014											150	8.05		
Qh										Travel						
Location	RMI	LFY		Flow			//D Width		Velocit	Time	Tributa	_	Stream		Analys	
		(cfs/mi ²)	St	tream	Trib	utary R	atio (ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	19.07		-													
End of Reach 1	17.23		Î													
Model Res	sults	RE	TURN	TO INPU	лѕ	SAV	E AS PDF	Upp	PRINT	edd Townshi	i p WWTP, NPC		esults () L		utfall 001	
✓ Wasteload All	locations	CCT (min): 0.0	004 Stream			1 WQ	Analysis	Hardnes	s (mg/l):	227.2	Analy	sis pH: 7	.83		
Pollu	tants	Co	one	CV			oef (µg/		ug/L)	WLA (µg/L)			Commen	ts		
Total Al	uminum	- 111	0	0			0 75		750	758						
Total Ar	ntimony		0	0			0 1,10	00 1	,100	1,111						
	Arsenic		0	0			0 34		340	344		Che	m Translator o	of 1 appl	ied	
Total E			0	0			0 21,0		1,000	21,218						
Total C	admium		0 0	0			0 8,10 0 4.46		,100 4.91	8,184 4.96		Cham	Translator of	0.01.00	plied	
Hexavalent			0	0			0 16		16.3	16.5			Translator of			
	Cobalt		0	0			0 95		95.0	96.0						
Free C	yanide		0	0			0 22	: :	22.0	22.2						
Dissolv			0	0			0 N//		N/A	N/A						
	I Iron	_	0	0			0 N//	_	N/A	N/A						
	Lead		0	0			0 155.8		232	234		Chem	Translator of	0.671 ap	pplied	
	nganese		D D	0			0 N// 0 1.40		N/A 1.65	N/A 1.66		Chom	Translator of	0.05.00	plied	
Total M	Nickel		0	0			0 1.40		939	949			Translator of Translator of			
Total Phenols (P			0	0			0 N//		N/A	N/A		Offerin	Translator or	0.000 ap	plied	
	elenium		0	0			0 N//		N/A	N/A		Chem	Translator of	0.922 ap	plied	
Total	Silver		0	0			0 13.1	96	15.5	15.7		Chem	Translator of	0.85 ap	plied	
	hallium		0	0			0 65		35.0	65.7						
	Zinc		0	0			0 234.8		240	243		Chem		0.070		
	olein		0	0			0 3	- 1					Translator of	и.в/в ap	pplied	
	- itali-								3.0	3.03			Translator of	J.978 ар	plied	
Benz	onitrile		0	0			0 65	0	650	657			Translator of	U.978 ap	pplied	
Brome	zene		D D	0			0 65 0 64	0	650 640	657 647			Translator of	v.978 ap	pplied	
			0	0			0 65	0 0 1	650	657			Translator of	D.978 ap	pplied	

Chlorodibromomethane	0	T 0	0	N/A	N/A	N/A	
	0	0	 0	18.000	18.000	18.187	
2-Chloroethyl Vinyl Ether		_					
Chloroform	0	0	0	1,900	1,900	1,920	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	15,155	
1,1-Dichloroethylene	0	0	0	7,500	7,500	7,578	
1,2-Dichloropropane	0	0	0	11,000	11,000	11,114	
1,3-Dichloropropylene	0	0	0	310	310	313	
Ethylbenzene	0	0	0	2,900	2,900	2,930	
Methyl Bromide	0	0	0	550	550	556	
Methyl Chloride	0	0	0	28,000	28,000	28,290	
Methylene Chloride	0	0	0	12,000	12,000	12,124	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	1,010	
Tetrachloroethylene	0	0	0	700	700	707	
Toluene	0	0	0	1,700	1,700	1,718	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	6,870	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	3,031	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	3,435	
Trichloroethylene	0	0	0	2,300	2,300	2,324	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	566	
2,4-Dichlorophenol	0	0	0	1,700	1,700	1,718	
2,4-Dimethylphenol	0	0	0	660	660	667	
4.6-Dinitro-o-Cresol	0	0	0	80	80.0	80.8	
2.4-Dinitrophenol	0	0	0	660	660	667	
2-Nitrophenol	0	0	0	8,000	8,000	8,083	
4-Nitrophenol	0	0	0	2.300	2.300	2.324	
p-Chloro-m-Cresol	0	0	0	160	160	162	
Pentachlorophenol	0	0	0	20.124	20.1	20.3	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	465	
Acenaphthene	0	0	0	83	83.0	83.9	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	303	
Benzo(a)Anthracene	0	0	0	0.5	0.5	0.51	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30.000	30.000	30.311	
Bis(2-Chloroisopropyl)Ether	0	0	0	30,000 N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4.500	4.500	4,547	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	273	
4-Bromophenyi Phenyi Ether Butyl Benzyl Phthalate	0	0	0	140	140	141	
	0	0	0	140 N/A	140 N/A	141 N/A	
2-Chloronaphthalene		_					
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	828	
1,3-Dichlorobenzene	0	0	0	350	350	354	

Conc

Pollutants
Total Aluminum

Stream CV

0

Trib Conc (μg/L) Fate Coef

0

Permit No. PA0023256

1,4-Dichlorobenzene 3,3-Dichlorobenzidine Diethyl Phthalate	0	0		0	730 N/A	730	738	
	0	0		0	NI/A	B1// B		
Diethyl Phthalate				U	N/A	N/A	N/A	
Dietriyi i ilulalate	0	0		0	4,000	4,000	4,041	
Dimethyl Phthalate	0	0		0	2,500	2,500	2,526	
Di-n-Butyl Phthalate	0	0		0	110	110	111	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	1,617	
2,6-Dinitrotoluene	0	0		0	990	990	1,000	
1,2-Diphenylhydrazine	0	0		0	15	15.0	15.2	
Fluoranthene	0	0		0	200	200	202	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	10.1	
Hexachlorocyclopentadiene	0	0		0	5	5.0	5.05	
Hexachloroethane	0	0		0	60	60.0	60.6	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10.000	10,000	10,104	
Naphthalene	0	0		0	140	140	141	
Nitrobenzene	0	0		0	4,000	4,000	4,041	
n-Nitrosodimethylamine	0	0		0	17,000	17,000	17,176	
n-Nitrosodi-n-Propylamine	0	0	 	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	303	
Phenanthrene	0	0		0	5	5.0	5.05	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	130	130	131	
Aldrin	0	0		0	3	3.0	3.03	
alpha-BHC	0	0		0	N/A	N/A	N/A	
beta-BHC	0	0		0	N/A	N/A	N/A	
gamma-BHC	0	0		0	0.95	0.95	0.96	
Ghlordane	0	0		0	2.4	2.4	2.42	
4.4-DDT	0	0		0	1.1	1.1	1.11	
	0	0		0	1.1	1.1	1.11	
4,4-DDE		_						
4,4-DDD	0	0		0	1.1	1.1	1.11	
Dieldrin	0	0		0	0.24	0.24	0.24	
alpha-Endosulfan	0	0		0	0.22	0.22	0.22	
beta-Endosulfan	0	0		0	0.22	0.22	0.22	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	0.086	0.086	0.087	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.52	0.52	0.53	
Heptachlor Epoxide	0	0		0	0.5	0.5	0.51	
Toxaphene	0	0		0	0.73	0.73	0.74	
UGT Copper	0	0		0	270	270	273	

Model Results 6/30/2023 Page 7

WQ Obj (µg/L)

N/A

WLA (µg/L)

N/A

Comments

WQC (µg/L)

N/A

Total Antimony	0	0	0	220	220	222	
Total Arsenic	0	0	0	150	150	152	Chem Translator of 1 applied
Total Barium	0	0	0	4,100	4,100	4,142	
Total Boron	0	0	0	1,600	1,600	1,617	
Total Cadmium	0	0	0	0.435	0.5	0.5	Chem Translator of 0.875 applied
Hexavalent Chromium	0	0	0	10	10.4	10.5	Chem Translator of 0.962 applied
Total Cobalt	0	0	0	19	19.0	19.2	
Free Cyanide	0	0	0	5.2	5.2	5.25	
Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	1,516	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	6.072	9.04	9.14	Chem Translator of 0.671 applied
Total Manganese	0	0	0	N/A	N/A	N/A	
Total Mercury	0	0	0	0.770	0.91	0.92	Chem Translator of 0.85 applied
Total Nickel	0	0	0	104.131	104	106	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	5.04	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	13.1	
Total Zinc	0	0	0	236.798	240	243	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	3.03	
Acrylonitrile	0	0	0	130	130	131	
Benzene	0	0	0	130	130	131	
Bromoform	0	0	0	370	370	374	
Carbon Tetrachloride	0	0	0	560	560	566	
Chlorobenzene	0	0	0	240	240	242	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	3,536	
Chloroform	0	0	0	390	390	394	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	3,132	
1,1-Dichloroethylene	0	0	0	1,500	1,500	1,516	
1,2-Dichloropropane	0	0	0	2,200	2,200	2,223	
1,3-Dichloropropylene	0	0	0	61	61.0	61.6	
Ethylbenzene	0	0	0	580	580	586	
Methyl Bromide	0	0	0	110	110	111	
Methyl Chloride	0	0	0	5,500	5,500	5,557	
Methylene Chloride	0	0	0	2,400	2,400	2,425	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	212	
Tetrachloroethylene	0	0	0	140	140	141	
Toluene	0	0	0	330	330	333	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	1,415	
1,1,1-Trichloroethane	0	0	0	610	610	616	
1,1,2-Trichloroethane	0	0	0	680	680	687	
Trichloroethylene	0	0	0	450	450	455	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	

2-Chlorophenol	0	0		0	110	110	111	
2,4-Dichlorophenol	0	0		0	340	340	344	
2,4-Dimethylphenol	0	0	+++++	0	130	130	131	
4.8-Dinitro-o-Cresol	0	0		0	16	16.0	16.2	
2,4-Dinitrophenol	0	0		0	130	130	131	
2-Nitrophenol	0	0		0	1.600	1.600	1.617	
4-Nitrophenol	0	0		0	470	470	475	
p-Chloro-m-Cresol	0	0	+++++	0	500	500	505	
Pentachlorophenol	0	0		0	15.440	15.4	15.6	
Phenol	0	0		0	15.440 N/A	15.4 N/A	15.0 N/A	
		0			91	91.0	91.9	
2,4,6-Trichlorophenol	0			. 0				
Acenaphthene	0	0		0	17	17.0	17.2	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		. 0	59	59.0	59.6	
Benzo(a)Anthracene	0	0		0	0.1	0.1	0.1	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	6,062	
Bis(2-Chloroisopropyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	919	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	54.6	
Butyl Benzyl Phthalate	0	0		0	35	35.0	35.4	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	162	
1,3-Dichlorobenzene	0	0		0	69	69.0	69.7	
1,4-Dichlorobenzene	0	0		0	150	150	152	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	808	
Dimethyl Phthalate	0	0		0	500	500	505	
Di-n-Butyl Phthalate	0	0		0	21	21.0	21.2	
2,4-Dinitrotoluene	0	0		0	320	320	323	
2,6-Dinitrotoluene	0	0		0	200	200	202	
1,2-Diphenylhydrazine	0	0		0	3	3.0	3.03	
Fluoranthene	0	0		0	40	40.0	40.4	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	2.02	
Hexachlorocyclopentadiene	0	0		0	1	1.0	1.01	
Hexachloroethane	0	0		0	12	12.0	12.1	
Indeno(1,2,3-od)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2.100	2.100	2.122	
Naphthalene	0	0		0	43	43.0	43.4	
rvapntnaiene	U	U		U	43	43.0	43.4	

Nitrobenzene	0	0	0	810	810	818	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	3,435	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	59.6	
Phenanthrene	0	0	0	1	1.0	1.01	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	26.3	
Aldrin	0	0	0	0.1	0.1	0.1	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	N/A	N/A	N/A	
Chlordane	0	0	0	0.0043	0.004	0.004	
4,4-DDT	0	0	0	0.001	0.001	0.001	
4,4-DDE	0	0	0	0.001	0.001	0.001	
4,4-DDD	0	0	0	0.001	0.001	0.001	
Dieldrin	0	0	0	0.056	0.056	0.057	
alpha-Endosulfan	0	0	0	0.056	0.056	0.057	
beta-Endosulfan	0	0	0	0.056	0.056	0.057	
Endosulfan Sulfate	0	0	0	N/A	N/A	N/A	
Endrin	0	0	0	0.036	0.036	0.036	
Endrin Aldehyde	0	0	0	N/A	N/A	N/A	
Heptachlor	0	0	0	0.0038	0.004	0.004	
Heptachlor Epoxide	0	0	0	0.0038	0.004	0.004	
Toxaphene	0	0	0	0.0002	0.0002	0.0002	
UGT Copper	0	0	0	170	170	172	
	-		 -				!

☑ THH	CCT (min): 0.0	004	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc (ug/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	5.66	
Total Arsenic	0	0		0	10	10.0	10.1	
Total Barium	0	0		. 0	2,400	2,400	2,425	
Total Boron	0	0		0	3,100	3,100	3,132	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	4.04	
Dissolved Iron	0	0		0	300	300	303	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	1,010	
Total Mercury	0	0		0	0.050	0.05	0.051	
Total Nickel	0	0		0	610	610	616	

Total Phenols (Phenolics) (PWS)	0	0	0	5	5.0	N/A	
Total Selenium	0	0	0	N/A	N/A	N/A	
Total Silver	0	0	0	N/A	N/A	N/A	
Total Thallium	0	0	0	0.24	0.24	0.24	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	3	3.0	3.03	
Acrylonitrile	0	0	0	N/A	N/A	N/A	
Benzene	0	0	0	N/A	N/A	N/A	
Bromoform	0	0	0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0	0	N/A	N/A	N/A	
Chlorobenzene	0	0	0	100	100.0	101	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	5.76	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0	0	33	33.0	33.3	
1,2-Dichloropropane	0	0	0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0	0	N/A	N/A	N/A	
Ethylbenzene	0	0	0	68	68.0	68.7	
Methyl Bromide	0	0	0	100	100.0	101	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1.1.2.2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	57.6	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	101	
1.1.1-Trichloroethane	0	0	0	10.000	10.000	10.104	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	30.3	
2,4-Dichlorophenol	0	0	0	10	10.0	10.1	
2,4-Dimethylphenol	0	0	 0	100	100.0	101	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	2.02	
2,4-Dinitrophenol	0	0	0	10	10.0	10.1	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4.000	4.000	4,041	
2,4,6-Trichlorophenol	0	0	0	4,000 N/A	4,000 N/A	N/A	
	0	0	0	70	70.0	70.7	
Acenaphthene				300	300	303	
Anthracene	0	0	0				
Benzidine	0	0	0	N/A	N/A	N/A	

			_	****			
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	202	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	0.1	
2-Chloronaphthalene	0	0	0	800	800	808	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	1,010	
1,3-Dichlorobenzene	0	0	0	7	7.0	7.07	
1,4-Dichlorobenzene	0	0	0	300	300	303	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	606	
Dimethyl Phthalate	0	0	0	2,000	2,000	2,021	
Di-n-Butyl Phthalate	0	0	0	20	20.0	20.2	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	20.2	
Fluorene	0	0	0	50	50.0	50.5	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	4.04	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	34.4	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	10.1	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	20.2	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	0.071	
Aldrin	0	0	0	N/A	N/A	N/A	
alpha-BHC	0	0	0	N/A	N/A	N/A	
beta-BHC	0	0	0	N/A	N/A	N/A	
gamma-BHC	0	0	0	4.2	4.2	4.24	
Chlordane	0	0	0	N/A	N/A	N/A	
4,4-DDT	0	0	0	N/A	N/A	N/A	
-							

4,4-DDD	0	0		0	N/A	N/A	N/A	
Dieldrin	0	0	Ш	0	N/A	N/A	N/A	
alpha-Endosulfan	0	0	\Box	0	20	20.0	20.2	
beta-Endosulfan	0	0		0	20	20.0	20.2	
Endosulfan Sulfate	0	0		0	20	20.0	20.2	
Endrin	0	0		0	0.03	0.03	0.03	
Endrin Aldehyde	0	0		0	1	1.0	1.01	
Heptachlor	0	0		0	N/A	N/A	N/A	
Heptachlor Epoxide	0	0		0	N/A	N/A	N/A	
Toxaphene	0	0		0	N/A	N/A	N/A	
UGT Copper	0	0		0	N/A	N/A	N/A	

	CCT (min): 0.	291	PMF:	1	Ana	alysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
	Sueam				-			
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(uall)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		- Comments
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS) 0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	0.066	
Benzene	0	0		0	0.58	0.58	0.64	
Bromoform	0	0		0	7	7.0	7.72	
Carbon Tetrachloride	0	0		0	0.4	0.4	0.44	
Chlorobenzene	0	0		0	N/A	N/A	N/A	
Chlorodibromomethane	0	0		0	0.8	0.8	0.88	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	

Dichlorobromomethane	0	0	0	0.95	0.95	1.05	
1.2-Dichloroethane	0	0	0	9.9	9.9	10.9	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
	0	0	0	0.9	0.9	0.99	
1,2-Dichloropropane		_					
1,3-Dichloropropylene	0	0	0	0.27	0.27	0.3	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	22.1	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	0.22	
Tetrachloroethylene	0	0	0	10	10.0	11.0	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	0.61	
Trichloroethylene	0	0	0	0.6	0.6	0.66	
Vinyl Chloride	0	0	0	0.02	0.02	0.022	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.033	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,8-Trichlorophenol	0	0	0	1.5	1.5	1.65	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.0001	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.001	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.0001	
3.4-Benzofluoranthene	0	0	0	0.001	0.001	0.001	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.011	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.033	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	0.35	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
2-Unioronaphthalene Chrysene	0	0	0	0.12	0.12	0.13	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.12	0.0001	
		_	0	0.0001 N/A		0.0001 N/A	
1,2-Dichlorobenzene	0	0	0		N/A N/A		
1,3-Dichlorobenzene	U	0	U	N/A	N/A	N/A	

				 				<u> </u>
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	0.055	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	0.055	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	0.055	
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	0.033	
Fluoranthene	0	0		0	N/A	N/A	N/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.00009	
Hexachlorobutadiene	0	0		0	0.01	0.01	0.011	
Hexachlorocyclopentadiene	0	0	##	0	N/A	N/A	N/A	
Hexachloroethane	0	0		0	0.1	0.1	0.11	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.001	
Isophorone	0	0	$\dagger \uparrow \uparrow$	0	N/A	N/A	N/A	
Naphthalene	0	0		0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	#	0	0.0007	0.0007	0.0008	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.006	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	3.64	
Phenanthrene	0	0	\vdash	0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	##	0	N/A	N/A	N/A	
Aldrin	0	0	\vdash	0	0.0000008	8.00E-07	8.82E-07	
alpha-BHC	0	0		0	0.0004	0.0004	0.0004	
beta-BHC	0	0		0	0.008	0.008	0.009	
gamma-BHC	0	0	_	0	N/A	N/A	N/A	
Chlordane	0	0		0	0.0003	0.0003	0.0003	
4.4-DDT	0	0	##	0	0.00003	0.00003	0.00003	
4.4-DDE	0	0		0	0.00002	0.00002	0.00002	
4,4-DDD	0	0		0	0.0001	0.0001	0.0001	
Dieldrin	0	0		0	0.000001	0.000001	0.000001	
alpha-Endosulfan	0	0		0	N/A	N/A	N/A	
beta-Endosulfan	0	0		0	N/A	N/A	N/A	
Endosulfan Sulfate	0	0		0	N/A	N/A	N/A	
Endrin	0	0		0	N/A	N/A	N/A	
Endrin Aldehyde	0	0		0	N/A	N/A	N/A	
Heptachlor	0	0		0	0.000008	0.000006	0.000007	
Heptachlor Epoxide	0	0	-	0	0.00000	0.00000	0.000007	
Toxaphene	0	0		0	0.0007	0.0007	0.0008	
UGT Copper	0	0		0	N/A	N/A	N/A	
OG i Copper	U	U	44	U	DV/A	IWA	DWA	

[☑] Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML	MDL	AML	AML MDL	IMAX	Units	Governing	WQBEL	Comments
1 Ollutarits	(lbs/day)	os/day) (lbs/day)	AWIL WIDE	IIIIAA	Onnis	WQBEL	Basis	Comments	
Total Aluminum	Report	Report	Report	Report	Report	μg/L	750	AFC	Discharge Conc > 10% WQBEL (no RP)
Dissolved Iron	Report	Report	Report	Report	Report	μg/L	303	THH	Discharge Conc > 10% WQBEL (no RP)
Total Selenium	Report	Report	Report	Report	Report	μg/L	5.04	CFC	Discharge Conc > 10% WQBEL (no RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	240	AFC	Discharge Conc > 10% WQBEL (no RP)
4,4-DDE	0.000001	0.000002	0.00002	0.00003	0.00006	μg/L	0.00002	CRL	Discharge Conc ≥ 50% WQBEL (RP)
UGT Copper	Report	Report	Report	Report	Report	μg/L	172	CFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Antimony	5.66	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	10.1	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	2,425	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	1,617	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	N/A	N/A	Discharge Conc < TQL
Hexavalent Chromium	N/A	N/A	Discharge Conc < TQL
Total Cobalt	N/A	N/A	Discharge Conc < TQL
Free Cyanide	4.04	μg/L	Discharge Conc < TQL
Total Cyanide	N/A	N/A	No WQS
Total Iron	1,516	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	9.14	μg/L	Discharge Conc < TQL
Total Manganese	1,010	μg/L	Discharge Conc < TQL
Total Mercury	0.051	μg/L	Discharge Conc < TQL
Total Nickel	106	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Silver	15.5	μg/L	Discharge Conc ≤ 10% WQBEL
Total Thallium	0.24	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.0	μg/L	Discharge Conc < TQL
Acrylonitrile	0.066	μg/L	Discharge Conc < TQL
Benzene	0.64	μg/L	Discharge Conc < TQL
Bromoform	7.72	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	0.44	μg/L	Discharge Conc < TQL
Chlorobenzene	101	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	0.88	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS

2-Chloroethyl Vinyl Ether	3,536	μg/L	Discharge Conc < TQL
Chloroform	5.76	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	1.05	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	10.9	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	33.3	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	0.99	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	0.3	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	68.7	μg/L	Discharge Conc < TQL
Methyl Bromide	101	μg/L	Discharge Conc < TQL
Methyl Chloride	5,557	μg/L	Discharge Conc < TQL
Methylene Chloride	22.1	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	0.22	μg/L	Discharge Conc < TQL
Tetrachloroethylene	11.0	μg/L	Discharge Conc < TQL
Toluene	57.6	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	101	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	616	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	0.61	μg/L	Discharge Conc < TQL
Trichloroethylene	0.66	μg/L	Discharge Conc < TQL
Vinyl Chloride	0.022	μg/L	Discharge Conc < TQL
2-Chlorophenol	30.3	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	10.1	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	101	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	2.02	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	10.1	μg/L	Discharge Conc < TQL
2-Nitrophenol	1,617	μg/L	Discharge Conc < TQL
4-Nitrophenol	475	μg/L	Discharge Conc < TQL
p-Chloro-m-Cresol	160	µg/L	Discharge Conc < TQL
Pentachlorophenol	0.033	μg/L	Discharge Conc < TQL
Phenol	4,041	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	1.65	μg/L	Discharge Conc < TQL
Acenaphthene	17.2	μg/L	Discharge Conc < TQL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	303	μg/L	Discharge Conc < TQL
Benzidine	0.0001	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.001	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.0001	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.001	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.011	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.033	μg/L	Discharge Conc < TQL
Bis(2-Chloroisopropyl)Ether	202	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	0.35	μg/L	Discharge Conc < TQL

4-Bromophenyl Phenyl Ether	54.6	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.1	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	808	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	0.13	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.0001	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	162	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	7.07	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	152	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	0.055	μg/L	Discharge Conc < TQL
Diethyl Phthalate	606	μg/L	Discharge Conc < TQL
Dimethyl Phthalate	505	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	20.2	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	0.055	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	0.055	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.033	μg/L	Discharge Conc < TQL
Fluoranthene	20.2	μg/L	Discharge Conc < TQL
Fluorene	50.5	μg/L	Discharge Conc < TQL
Hexachlorobenzene	0.00009	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.011	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	1.01	μg/L	Discharge Conc < TQL
Hexachloroethane	0.11	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.001	μg/L	Discharge Conc < TQL
Isophorone	34.4	μg/L	Discharge Conc < TQL
Naphthalene	43.4	μg/L	Discharge Conc < TQL
Nitrobenzene	10.1	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.0008	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.006	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	3.64	μg/L	Discharge Conc < TQL
Phenanthrene	1.01	μg/L	Discharge Conc < TQL
Pyrene	20.2	μg/L	Discharge Conc < TQL
1,2,4-Trichlorobenzene	0.071	μg/L	Discharge Conc < TQL
Aldrin	8.82E-07	μg/L	Discharge Conc < TQL
alpha-BHC	0.0004	μg/L	Discharge Conc < TQL
beta-BHC	0.009	μg/L	Discharge Conc < TQL
gamma-BHC	0.95	μg/L	Discharge Conc < TQL
delta BHC	N/A	N/A	No WQS
Chlordane	0.0003	μg/L	Discharge Conc < TQL
4,4-DDT	0.00003	μg/L	Discharge Conc < TQL
4,4-DDD	0.0001	μg/L	Discharge Conc < TQL
Dieldrin	0.000001	μg/L	Discharge Conc < TQL
alpha-Endosulfan	0.057	μg/L	Discharge Conc < TQL
beta-Endosulfan	0.057	μg/L	Discharge Conc < TQL
Endosulfan Sulfate	20.2	μg/L	Discharge Conc < TQL

Endrin	0.03	μg/L	Discharge Conc < TQL
Endrin Aldehyde	1.01	μg/L	Discharge Conc < TQL
Heptachlor	0.000007	μg/L	Discharge Conc < TQL
Heptachlor Epoxide	0.00003	μg/L	Discharge Conc < TQL
Toxaphene	0.0002	μg/L	Discharge Conc < TQL

WETT: 2018 four quarterly analysis

	DED III	F(0 T	- W. CANTETT A			
'	DEP Whole	Effluent Tox	icity (WET) Analysis	Spreadshee	ŧt	
Type of Test	Chr	ronic		Facility Na	me	
Species Test		nephales				
Endpoint TIWC (decim		vival 5		UGT WWT	Р	
No. Per Repli	cate 10			Permit No		
TST b value TST alpha va	0.73 lue 0.2			PA002325	56	
151 alpha va	iue 0.2					
	Test Com	pletion Date		Test Completion Date		
Replicate		/2018	Replicate		/2018	
No.	Control	TIWC	No.	Control	ПИС	
1 2	10 9	10	1 2	10 9	10	
3	10	9	3	10	10	
4	10	9	4	10	10	
5			5			
6			6			
7			7			
8			8			
9 10			9 10			
11			11			
12			12			
13			13			
14			14			
15			15			
Mean	9.750	9.250	Mean	9.750	10.000	
Std Dev.	0.500 4	0.500	Std Dev.	0.500 4	0.000	
# Replicates	4	4	# Replicates	4	-	
T-Test Result	5.1	1314	T-Test Result	123	5523	
				12.0	3023	
Deg. of Freed	om	5	Deg. of Freedo		3	
Critical T Valu	e 0.7	5 7267	Critical T Value	om e 0.7	3 '649	
	e 0.7	5	•	om e 0.7	3	
Critical T Valu	e 0.1	5 7267 ASS	Critical T Value	om e 0.7 PA	3 /649 ASS	
Critical T Valu Pass or Fail	e 0.1 P/ Test Com	5 7267	Critical T Value Pass or Fail	om e 0.7 PA	3 '649	
Critical T Valu	e 0.1 P/ Test Com	5 7287 ASS pletion Date	Critical T Value	om e 0.7 PA	3 649 ASS oletion Date	
Critical T Valu Pass or Fail Replicate No.	e 0.: P/ Test Com 9/18	5 7267 ASS pletion Date 72018	Critical T Value Pass or Fail Replicate [No. 1 [om 0.7 PA Test Comp 11/13 Control	3 649 ASS oletion Date 3/2018	
Critical T Valu Pass or Fail Replicate No. 1	Test Com 9/18 Control 10	5 7267 ASS pletion Date 7/2018 TIWC 9	Critical T Value Pass or Fail Replicate [No. 1 2	om 0.7 PA Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8	
Critical T Value Pass or Fail Replicate No. 1 2 3	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate [No. 1 2 3	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4	Test Com 9/18 Control 10	5 7267 ASS pletion Date 7/2018 TIWC 9	Critical T Value Pass or Fail Replicate [No. 1 2 3 4	om 0.7 PA Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate [No. 1 2 3 4 5	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate [No. 1 2 3 4	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate [No. 1 2 3 4 5 6	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 9/18 Control 10 9	5 7267 ASS pletion Date 7/2018 TIWC 9 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Com 9/18 Control 10 9 10	5 7267 ASS pletion Date 72018 TIWC 9 9 10 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/13 Control 9 8	3 649 ASS oletion Date 3/2018 TIWC 8 9 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Com 9/18 Control 10 9 10 10	5 7267 ASS pletion Date 1/2018 TIWC 9 9 10 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 11/13 Control 9 8 9 9	3	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P 0.1 P) Test Com 9/18 Control 10 9 10 10 10 0 10 0 10 0 10 0 10 0 10	5 7267 ASS pletion Date 1/2018 TIWC 9 9 10 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 11/13 Control 9 8 9 9	3	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Com 9/18 Control 10 9 10 10	5 7267 ASS pletion Date 1/2018 TIWC 9 9 10 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 11/13 Control 9 8 9 9	3	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	9.750 0.500 4	9.250 0.500 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 11/13 Control 9 8 9 9	3 649 ASS Deletion Date 8/2018 TIWC 8 9 7 7	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	9.750 0.500 4	5 7267 ASS pletion Date 1/2018 TIWC 9 9 10 9	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/13 Control 9 8 9 9	3	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	9.750 0.500 4	9.250 0.500 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp 11/13 Control 9 8 9 9 9	3 (649 ASS) (740 ASS) (740 ASS) (750 ASS) (750 ASS) (750 ASS) (740 ASS) (741 ASS) (741 ASS) (751 ASS) (751 ASS) (752 ASS) (753 ASS) (754 ASS) (754 ASS) (755 ASS	
Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	9.750 9.750 0.500 4	9.250 0.500 4	Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	Test Comp 11/13 Control 9 8 9 9 9	3 (649 ASS) Reference of the second of the	

	EP Whole	Effluent Toxi	city (WET) Analysis S	preadshee	t	
Type of Test	Chr	onic	_	Facility Na	770	
Species Teste		ephales	_	racility Na	ine	
Endpoint	Gro			UGT WWT	p I	
TIWC (decima				00111111		
No. Per Repli				Permit No		
TST b value	0.75			PA002325	6	
TST alpha val	ue 0.25	5				
l						
Ι.		letion Date	_		letion Date	
Replicate		2018	Replicate	4/10/2018		
No.	Control	TIWC	No.	Control	пис	
1	0.296	0.313	1	0.409	0.326	
2	0.289	0.368	2	0.452	0.412	
3	0.382	0.367	3	0.419	0.421	
4	0.318	0.394	4	0.393	0.368	
5			5			
6			6			
7			7			
8			8			
9			g -			
10			10		\vdash	
11			11			
						
12			12			
13			13			
14			14			
15			15			
Mean	0.321	0.361	Mean	0.418	0.382	
Std Dev.	0.042	0.034	Std Dev.	0.025	0.044	
# Replicates	4	4	# Replicates	4	4	
T-Test Result Deg. of Freedo		362 5	T-Test Result Deg. of Freedon		591 4	
Critical T Value	e 0.7	267	Critical T Value	0.7	407	
Pass or Fail		SS	Pass or Fail		SS	
Ι.		letion Date	_		letion Date	
Replicate	9/18/	/2018	Replicate	11/13	V2018	
No.	Control	TIWC	No.	Control	TIWC	
1 1	0.387	0.376	1	0.261	0.299	
2	0.372	0.401	2	0.311	0.344	
3	0.444	0.543	3	0.265	0.349	
4	0.389	0.398	4	0.306	0.278	
5			5			
6			6			
l ~			7			
8			8		\vdash	
9			9		\vdash	
10			10			
11			11		\vdash	
12			12			
13			13			
14			14			
15			15			
Mean	0.398	0.430	Mean	0.286	0.318	
Std Dev.	0.032	0.430	Std Dev.	0.026	0.035	
# Replicates	4	4	# Replicates T-Test Result	4	4	
T-Test Result	22	722		5.1	739	
T-Test Result		722 4			739 5	
Deg. of Freedo	om e	4	Deg. of Freedon	n	5	
	om 4 e 0.7			n 0.7		

	DEP Whole	Effluent Tox	icity (WET) Analysis	Spreadshee	t
Type of Test Species Test		ronic riodaphnia		Facility Na	me
Endpoint	Su	rvival		UGT WWT	P
TIWC (decim No. Per Repli		5	_	Permit No	o.
TST b value	0.7			PA002325	6
TST alpha va	lue 0.2				
l .	Test Com	pletion Date		Test Comp	oletion Date
Replicate		3/2018	Replicate		/2018
No.	Control	TIWC	No.	Control	TIWC
1 2	1	1	1 2	1	1
3	1	1	3	1	1
4	1	1	4	1	1
5	1	1	5	1	1
6	1	1	6	1	1
7 8	1	1	7 8	1	1
9	1	1	9	1	1
10	1	1	10	0	1
11			11		
12			12		
13 14			13 14		
15			15		
Mean	1.000	0.900	Mean	0.900	1.000
Std Dev.	0.000	0.316	Std Dev.	0.316	0.000
# Replicates	10	10	# Replicates	10	10
T-Test Result			T-Test Result		
Deg. of Freed	om		Deg. of Freed	om	
Critical T Valu	10				
			Critical T Valu		
Pass or Fail		ASS	Pass or Fail		ISS
Pass or Fail	P			PA	
Pass or Fail Replicate	P. Test Com	ASS pletion Date 3/2018		PA Test Comp	ASS Detion Date 3/2018
Replicate No.	Test Com 9/10 Control	pletion Date 8/2018 TIWC	Pass or Fail Replicate No.	Test Comp 11/13 Control	oletion Date 3/2018 TIWC
Replicate No. 1	P. Test Com 9/10 Control	pletion Date 8/2018 TIWC	Pass or Fail Replicate No. 1	Test Comp 11/13 Control	V2018 TIWC
Replicate No. 1 2	Test Com 9/18 Control 0	pletion Date 8/2018 TIWC 1	Pass or Fail Replicate No. 1 2	Test Comp 11/13 Control	oletion Date 3/2018 TIWC 1
Replicate No. 1	P. Test Com 9/10 Control	pletion Date 8/2018 TIWC	Pass or Fail Replicate No. 1	Test Comp 11/13 Control 1	V2018 TIWC
Replicate No. 1 2 3 4	P Test Com 9/10 Control 0 1 1 1 1	pletion Date 8/2018 TIWC 1 1 1 1 1	Replicate No. 1 2 3 4 5	Test Comp 11/13 Control 1 1 1 1	72018 TIWC 1 1 1 1 1
Replicate No. 1 2 3 4 5	P Test Com 9/10 Control 0 1 1 1 1 1	pletion Date 8/2018 TIWC 1 1 1 1 1	Replicate No. 1 2 3 4 5 6	Test Comp 11/13 Control 1 1 1 1 1	0letion Date 3/2018 TIWC 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7	P Test Com 9/10 Control 0 1 1 1 1 1 1	pletion Date 8/2018 TIWC 1 1 1 1 1 1	Replicate No. 1 2 3 4 5 6 7	Test Comp 11/13 Control 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1
Replicate No. 1 2 3 4 5	P Test Com 9/11 Control 0 1 1 1 1 1 1 1 1	pletion Date 3/2018 TIWC 1 1 1 1 1 1 1 1	Replicate No. 1 2 3 4 5 6	Test Comp 11/13 Control 1 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7	P Test Com 9/10 Control 0 1 1 1 1 1 1	pletion Date 8/2018 TIWC 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 11/13 Control 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10	P. Test Com 9/10 Control 0 1 1 1 1 1 1 1	pletion Date 3/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	P. Test Com 9/10 Control 0 1 1 1 1 1 1 1	pletion Date 3/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	P. Test Com 9/10 Control 0 1 1 1 1 1 1 1	pletion Date 3/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11	P. Test Com 9/10 Control 0 1 1 1 1 1 1 1	pletion Date 3/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	P. Test Com 9/10 Control 0 1 1 1 1 1 1 1	pletion Date 3/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1	0letion Date 9/2018 TIWC 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	P Test Com 9/10 Control 0 1 1 1 1 1 1 1 1 1 0.900	pletion Date 8/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Detion Date 9/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P Test Com 9/10 Control 0 1 1 1 1 1 1 1 1 1 1 0.900 0.316	pletion Date 8/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Detion Date 9/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	P Test Com 9/10 Control 0 1 1 1 1 1 1 1 1 1 0.900	pletion Date 8/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Detion Date 9/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	P Test Com 9/10 Control 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1	pletion Date 8/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	PA Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Detion Date 9/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Professional Profe	pletion Date 8/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	PA Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Detion Date 9/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	P. Test Com 9/10 Control 0 1 1 1 1 1 1 1 1 0.900 0.316 10 om	pletion Date 8/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/13 Control 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0	Detion Date 9/2018 TIWC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ι '	DEP Whole I	Effluent Tox	icity (WET) Analysis	Spreadshee	t
Type of Test		onic		Facility Na	me
Species Test Endpoint		iodaphnia		UGT WWT	
TIWC (decim		roduction	_	OGI WWI	F
No. Per Repli	icate 1			Permit No	
TST b value	0.75	5		PA002325	6
TST alpha va	lue 0.2				
l	Test Comp	oletion Date		Test Comp	letion Date
Replicate		/2018	Replicate		2018
No.	Control	TIWC	No.	Control	TIWC
1	39	0] 1 [34	36
2	38	32	2	30	34
3	27	23	3	32	36
4	30	39	4	32	31
5	40	37	5	28	29
6	41	31	6	30	31
7	30	32	7	34	35
8	25	36	8	25	34
9	36	38	9	31	34
10	32	39	10	24	34
11			11		
12			12		
13			13		
14			14		
15] 15 [
Mean	33.800	30.700	Mean	30.000	33.400
Std Dev.	5.731	11.851	Std Dev.	3.432	2.319
# Replicates	10	10	# Replicates	10	10
# Iveplicates	10	10	# Iveplicates	10	10
T-Test Result	1.3	420	T-Test Result	9.9	491
Deg. of Freed		13	Deg. of Freedo		7
Critical T Valu		702	Critical T Value		633
Pass or Fail	PA.	ISS	Pass or Fail	PA	SS
l					
Ι.					
		oletion Date			letion Date
Replicate	9/18	/2018	Replicate [11/13	V2018
No.	9/18 Control	/2018 TIWC	No.	11/13 Control	V2018 TIWC
No. 1	9/18 Control	/2018 TIWC 24	No. 1 [11/13 Control 32	V2018 TIWC 33
No. 1 2	9/18 Control 0 30	/2018 TIWC 24 38	No. 1 2	11/13 Control 32 36	V2018 TIWC 33 39
No. 1 2 3	9/18 Control 0 30 27	72018 TIWC 24 38 29	No. 1 2 3	11/13 Control 32 36 40	V2018 TIWC 33 39 35
No. 1 2 3 4	9/18 Control 0 30 27 33	72018 TIWC 24 38 29 35	No. 1 2 3 4	11/13 Control 32 36 40 38	72018 TIWC 33 39 35 31
No. 1 2 3 4 5	9/18 Control 0 30 27 33 24	72018 TIWC 24 38 29 35 30	No. 1 2 3 4 5	11/13 Control 32 36 40 38 36	72018 TIWC 33 39 35 31 38
No. 1 2 3 4 5 6	9/18 Control 0 30 27 33 24 17	72018 TIWC 24 38 29 35 30 29	No. 1 2 3 4 5	11/13 Control 32 36 40 38 36 36 33	72018 TIWC 33 39 35 31 38 37
No. 1 2 3 4 5 6 7	9/18 Control 0 30 27 33 24 17 31	72018 TIWC 24 38 29 35 30 29 30	No. 1 2 3 4 5 6 7	11/13 Control 32 36 40 38 36 36 33	72018 TIWC 33 39 35 31 38 37 38
No. 1 2 3 4 5 6 7	9/18 Control 0 30 27 33 24 17 31 25	72018 TIWC 24 38 29 35 30 29 30 28	No. 1 2 3 4 5 6 7	11//3 Control 32 36 40 38 36 33 32 26	72018 TIWC 33 39 35 31 38 37 36 36
No. 1 2 3 4 5 6 7 8	9/18 Control 0 30 27 33 24 17 31 25 30	72018 TIWC 24 38 29 35 30 29 30 28 32	No. 1 2 3 4 5 6 7 8	11/13 Control 32 36 40 38 36 33 32 26 32	72018 TIWC 33 39 35 31 38 37 38 36 36 37
No. 1 2 3 4 5 6 7 8 9	9/18 Control 0 30 27 33 24 17 31 25	72018 TIWC 24 38 29 35 30 29 30 28	No. 1 2 3 4 5 6 7 8 9	11//3 Control 32 36 40 38 36 33 32 26	72018 TIWC 33 39 35 31 38 37 36 36
No. 1 2 3 4 5 6 7 8 9 10	9/18 Control 0 30 27 33 24 17 31 25 30	72018 TIWC 24 38 29 35 30 29 30 28 32	No. 1 2 3 4 5 6 7 8 9	11/13 Control 32 36 40 38 36 33 32 26 32	72018 TIWC 33 39 35 31 38 37 38 36 36 37
No. 1 2 3 4 5 6 7 8 9 10 11	9/18 Control 0 30 27 33 24 17 31 25 30	72018 TIWC 24 38 29 35 30 29 30 28 32	No. 1 2 3 4 5 6 7 8 9 10	11/13 Control 32 36 40 38 36 33 32 26 32	72018 TIWC 33 39 35 31 38 37 38 36 36 37
No. 1 2 3 4 5 6 7 8 9 10 11 12	9/18 Control 0 30 27 33 24 17 31 25 30	72018 TIWC 24 38 29 35 30 29 30 28 32	No. 1 2 3 4 5 6 7 8 9	11/13 Control 32 36 40 38 36 33 32 26 32	72018 TIWC 33 39 35 31 38 37 38 36 36 37
No. 1 2 3 4 5 6 7 8 9 10 11	9/18 Control 0 30 27 33 24 17 31 25 30	72018 TIWC 24 38 29 35 30 29 30 28 32	No. 1 2 3 4 5 6 7 8 9 10 11 12	11/13 Control 32 36 40 38 36 33 32 26 32	72018 TIWC 33 39 35 31 38 37 38 36 36 37
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	9/18 Control 0 30 27 33 24 17 31 25 30	72018 TIWC 24 38 29 35 30 29 30 28 32	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	11/13 Control 32 36 40 38 36 33 32 26 32	72018 TIWC 33 39 35 31 38 37 38 36 36 37
No. 1 2 3 4 5 6 7 8 9 10 11 12 13	9/18 Control 0 30 27 33 24 17 31 25 30	72018 TIWC 24 38 29 35 30 29 30 28 32	No. 1 2 3 4 5 6 7 8 9 10 11 12 13	11/13 Control 32 36 40 38 36 33 32 26 32	72018 TIWC 33 39 35 31 38 37 38 36 36 37
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	9/18 Control 0 30 27 33 24 17 31 25 30 29	72018 TIWC 24 38 29 35 30 29 30 28 32 35	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	11//13 Control 32 36 40 38 36 33 32 26 32 38	V2018 TIWC 33 39 35 31 38 37 36 38 37 43
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	9/18 Control 0 30 27 33 24 17 31 25 30 29	72018 TIWC 24 38 29 35 30 29 30 28 32 35 30	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	11//13 Control 32 36 40 38 36 33 32 26 32 38 34.300	72018 TIWC 33 39 35 31 38 37 36 36 37 43
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	9/18 Control 0 30 27 33 24 17 31 25 30 29	72018 TIWC 24 38 29 35 30 29 30 28 32 35 30 4,082	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	11//13 Control 32 36 40 38 36 33 32 26 32 38 34.300 4.111	72018 TIWC 33 39 35 31 38 37 36 36 37 43
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	9/18 Control 0 30 27 33 24 17 31 25 30 29 24.600 9.766 10	72018 TIWC 24 38 29 35 30 29 30 28 32 35 30 4,082	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	11//3 Control 32 36 40 38 36 33 32 26 32 38 34.300 4.111 10	72018 TIWC 33 39 35 31 38 37 36 36 37 43
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	9/18 Control 0 30 27 33 24 17 31 25 30 29 24.800 9.766 10	72018 TIWC 24 38 29 35 30 29 30 28 32 35 30 29 30 28 32 35	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	11//13 Control 32 36 40 38 36 33 32 26 32 38 34.300 4.111 10 7.5	72018 TIWC 33 39 35 31 38 37 36 36 37 43 38.500 3.274 10
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	9/18 Control 0 30 27 33 24 17 31 25 30 29 24.800 9.766 10 4.7	72018 TIWC 24 38 29 35 30 29 30 28 32 35 30 29 10 30 28 31.000 4.082 10	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	11//3 Control 32 36 40 38 36 33 32 26 32 38 34.300 4.111 10 7.5	759 TIWC 33 39 35 31 38 37 36 36 37 43
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	9/18 Control 0 30 27 33 24 17 31 25 30 29 24.600 9.766 10 4.7 om 1 ie 0.8	2018 TIWC 24 38 29 35 30 29 30 28 32 35 30 29 10 30 28 32 35	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	11/13 Control 32 36 40 38 36 33 32 26 32 38 34.300 4.111 10 7.5 om 1 e 0.8	759 77

	WET S	ummary and	Evaluation		
Facility Name	UGT WWTP				
Permit No.	PA0023256				
Design Flow (MGD)	6.4				
Q ₇₋₁₀ Flow (cfs)	0.1				
PMF _a	1				
PMF _c	1				
			Test Results	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/13/18	4/10/18	9/18/18	11/13/18
Pimephales	Survival	PASS	PASS	PASS	PASS
				s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/13/18	4/10/18	9/18/18	11/13/18
Pimephales	Growth	PASS	PASS	PASS	PASS
			T : D14	75 /F-10	
		Took Date		s (Pass/Fail)	Total Data
6	Fordersina	Test Date 3/13/18	Test Date 4/10/18	Test Date 9/18/18	Test Date 11/13/18
Species	Endpoint Survival	3/13/16 PASS	PASS	PASS	PASS
Ceriodaphnia	Survivai	PASS	PASS	PASS	PA55
	1		Teet Decult	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	3/13/18	4/10/18	9/18/18	11/13/18
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS
Concapina	reproduction			.,,,,,	
Reasonable Potential	I? NO				
Permit Recommenda	tions				
Test Type	Chronic				
TIWC	99	% Effluent			
Dilution Series	25, 50,	74, 99, 100	% Effluent		
Permit Limit	None				
Permit Limit Species					

WETT: 2019-2021 annual sampling analysis

Type of Test		Effluent Toxic	ity (WET) Analysis	Spreadshee	t
Consider Tooks		onic		Facility Nar	ne
Species Teste		ephales			_
Endpoint TIWC (decima		vival		UGT WWT	P
No. Per Replic		,	-	Permit No	
TST b value	0.75	5		PA002325	
TST alpha valu	ue 0.25	5			
ı	T 40	1-6 D-4-		T 40	L.C D.4
		oletion Date			letion Date
Replicate		2021	Replicate		/2020
No. 1	Control 10	TIWC 10	No. 1	Control 10	TIWC 10
2	10	8	2	10	9
3	10	9	3	10	10
4	10	10	4	10	10
5	10	10	5	10	- 10
6			6		
7			7		
l ś			8		
9			9		
10			10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	10.000	9.250	Mean	10.000	9.750
Std Dev.	0.000	0.957	Std Dev.	0.000	0.500
# Replicates	4	4	# Replicates	4	4
ı					
T-Test Result		125	T-Test Result	7.6	
Deg. of Freedo		3	Deg. of Freedo		3
Critical T Value		649	Critical T Valu	_	
Pass or Fail	PA	ISS	Pass or Fail	PA	SS
l	T	1-6 D-4-		T	letter Dete
5 m / F		V2019		Test Comp	letion Date
Replicate No.	Control	TIWC	Replicate No.	Control	TIWC
1 T	9	10	1 [Condo	IIIIC
2	10	9	2		
3	10	10	3		
4	10	10	4		
-					
	10		5		
5 6	10		5 6		
5	10				
5 6	10		6		
5 6 7			6 7		
5 6 7 8			6 7 8		
5 6 7 8			6 7 8 9		
5 6 7 8 9			6 7 8 9 10		
5 6 7 8 9 10			6 7 8 9 10		
5 6 7 8 9 10 11 12 13 14	10		6 7 8 9 10 11 12 13		
5 6 7 8 9 10 11 12	10		6 7 8 9 10 11 12 13		
5 6 7 8 9 10 11 12 13 14			6 7 8 9 10 11 12 13 14		
5 6 7 8 9 10 11 12 13 14 15	9.750	9.750	6 7 8 9 10 11 12 13 14 15		
5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	9.750 0.500	9.750 0.500	6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		
5 6 7 8 9 10 11 12 13 14 15	9.750	9.750	6 7 8 9 10 11 12 13 14 15		
5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	9.750 0.500 4	9.750 0.500 4	6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates		
5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	9.750 0.500 4	9.750 0.500 4	6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates		
5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	9.750 0.500 4 6.7	9.750 0.500 4	6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo		
5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	9.750 0.500 4 6.7 m	9.750 0.500 4	6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates		

	DEP Whole	Effluent Toxicit	ty (WET) Analysis	Spreadshee	t
Type of Test		ronic		Facility Nar	me
Species Test		nephales	-	LICTIANAT	.
Endpoint TIWC (decim		wth B	_	UGT WWT	F
No. Per Repli			┪	Permit No).
TST b value	0.7			PA002325	6
TST alpha va	ilue 0.2	5			
	Test Com	pletion Date		Test Comp	letion Date
Replicate	12/7	//2021	Replicate	12/22	/2020
No.	Control	TIWC	No.	Control	TIWC
1	0.326	0.342	1 [0.327	0.389
2	0.341	0.337	2	0.347	0.417
3	0.336	0.311	3	0.405	0.526
4	0.332	0.324	4	0.36	0.483
5			5		
6			6		
7			7		
8			8		
9			9		
10		 	10		
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	0.334	0.329	Mean	0.360	0.454
Std Dev.	0.006	0.014	Std Dev.	0.033	0.082
# Replicates	4	4	# Replicates	4	4
T-Test Result	10.	6324	T-Test Result	5.40	910
Deg. of Freed		4	Deg. of Freedo	om 4	4
Critical T Valu		7407	Critical T Valu		
Pass or Fail		ASS	Pass or Fail		SS
1 433 61 1 411		100	1 055 01 1 011		
	Test Com	pletion Date		Tost Comp	letion Date
Replicate		ore don't butte			
No.	11/2	8/2019	Poplicato	rest Comp	
		6/2019 TIWC	Replicate No.		
	Control	TIWC	No.	Control	TIWC
1	Control 0.422	TIWC 0.426	No. 1		
1 2	0.422 0.413	TIWC 0.426 0.418	No. 1 2		
1 2 3	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3		
1 2 3 4	0.422 0.413	TIWC 0.426 0.418	No. 1 2 3 4		
1 2 3 4 5	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5		
1 2 3 4 5	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5		
1 2 3 4 5 6	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7		
1 2 3 4 5 6 7	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7		
1 2 3 4 5 6 7 8	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7 8		
1 2 3 4 5 6 7	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7		
1 2 3 4 5 6 7 8	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7 8		
1 2 3 4 5 6 7 8 9	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7 8 9		
1 2 3 4 5 6 7 8 9 10	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7 8 9 10		
1 2 3 4 5 6 7 8 9 10 11	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7 8 9 10 11		
1 2 3 4 5 6 7 8 9 10 11 12 13	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7 8 9 10 11 12 13		
1 2 3 4 5 6 7 8 9 10 11 12	0.422 0.413 0.439	0.426 0.418 0.579	No. 1 2 3 4 5 6 7 8 9 10 11 12		
1 2 3 4 5 6 7 8 9 10 11 12 13 14	Control 0.422 0.413 0.439 0.356	TIWC 0.426 0.418 0.579 0.434	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.422 0.413 0.439 0.356	0.426 0.418 0.579 0.434	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	0.422 0.413 0.439 0.356	0.426 0.418 0.579 0.434	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.422 0.413 0.439 0.356	0.426 0.418 0.579 0.434	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.422 0.413 0.439 0.356	0.426 0.418 0.579 0.434	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Control	
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.422 0.413 0.439 0.356	0.426 0.418 0.579 0.434 0.434	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	0.408 0.408 0.036 4	0.464 0.077 4	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	Control	
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	0.408 0.036 0.408 0.036 4	0.426 0.418 0.579 0.434 0.434	No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Control	

Type of Test	
Endpoint Survival UGT WWTP	
TIWC (decimal) 0.98	
No. Per Replicate	
TST b value 0.75 PA0023256 TST alpha value 0.2 Test Completion Date Test Completion Date Replicate 12/7/2021 Replicate 12/2/20/20	
Test Completion Date Test Completi Replicate 12/7/2021 Replicate 12/22/20	
Replicate 12/7/2021 Replicate 12/22/202	
Replicate 12/7/2021 Replicate 12/22/202	
Replicate	
No. Control TIWC No. Control	TIWC
1 1 1 1 1 1 1	1
2 1 1 2 1 3 1	1
	1
5 1 1 5 1	1
	1
7 1 1 7 1	1
	1
	1
10 1 1 10 1	1
11 11	
12 12	
13 13	
14 14	
15 15	
Mean 1.000 1.000 Mean 1.000	1.000
Std Dev. 0.000 0.000 Std Dev. 0.000	0.000
#Replicates 10 10 #Replicates 10	10
Deg. of Freedom Deg. of Freedom Critical T Value Critical T Value Pass or Fail PASS Pass or Fail PASS	
Test Completion Date Test Completi	on Date
Replicate 11/26/2019 Replicate	
No. Control TIWC No. Control	TIWC
1 1 1	
2 1 1 2	
3 1 1 3	
4 1 1 4	
4 1 1 4 5 1 1 5	
4 1 1 5 5 1 1 5 6 1 1 6	
4 1 1 5 5 6 7 1 1 7 7 1 1 1 7	
4 1 1 5 5 6 6 7 1 1 7 8 1 1 8	
4 1 1 5 5 6 6 7 1 1 7 8 1 1 1 8 9 1 1 1 9	
4 1 1 5 5 6 6 7 7 1 1 7 8 1 1 1 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
4 1 1 5 5 6 6 7 7 1 1 7 8 1 1 1 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 1 1 5 5 6 6 7 7 1 1 7 8 1 1 1 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
4 1 1 5 5 6 6 7 7 1 1 7 8 1 1 1 9 10 11 1 11 12 12 12	
4 1 1 5 5 6 6 7 7 1 1 7 8 1 1 1 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 1 1 5 5 6 6 7 7 1 1 7 8 1 1 7 8 8 1 1 1 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 1 1 5 5 6 6 7 7 1 1 7 8 1 1 7 8 8 1 1 1 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1	
4 1 1 5 5 6 6 7 7 1 1 1 7 8 8 1 1 1 8 8 9 1 1 1 9 10 11 1 1 11 12 12 13 13 14 14 15	
4 1 1 5 5 6 6 1 1 1 6 6 7 7 1 1 1 8 8 9 1 1 1 9 9 10 11 1 10 11 11 12 12 12 13 13 14 14 15 Mean 1.000 1.000 Mean	
4 1 1 5 4 5 6 6 6 7 1 1 6 6 7 7 1 1 1 7 7 8 8 1 1 1 8 8 9 9 1 1 1 9 9 10 10 1 1 1 10 11 11 12 12 12 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	

	DEP Whole	Effluent Tox	icity (WET) Analysis	Spreadshee	t
Type of Test Species Test		ronic riodaphnia		Facility Nar	me
Endpoint	Reg	production		UGT WWT	P
TIWC (decim No. Per Repli		В		Permit No	
TST b value	0.7			PA002325	
TST alpha va	lue 0.2				
l .		pletion Date			letion Date
Replicate		7/2021	Replicate		/2020
No.	Control 37	TIWC 29	No. 1	Control 22	TIWC 36
2	33	32	2	33	43
3	41	34	3	36	32
4	28	30	4	34	36
5	41	39	5	34	35
6	35	25	6	37	36
7	36	38	7	38	38
8	37	37	8	38	42
9	38	34	9	40	42
10	39	36	10	34	44
11			11		
12			12		
13			13		
14			14		
15			15		
Mean	38.500	33.400	Mean	34.600	38.400
Std Dev.	3.894	4.427	Std Dev.	4.971	4.061
# Replicates	10	10	# Replicates	10	10
			•		
T-Test Result		5922	T-Test Result		419
Deg. of Freed	om	16	Deg. of Freed	om 1	7
			0.00 17141		000
Critical T Valu	e 0.8	8647 Nee	Critical T Valu		633
Pass or Fail	e 0.8	ASS	Critical T Valu Pass or Fail	PA	SS
Pass or Fail	e 0.8 P/ Test Com	ASS pletion Date	Pass or Fail	PA	
Pass or Fail Replicate	Test Com	ASS pletion Date 6/2019	Pass or Fail Replicate	PA Test Comp	ISS Detion Date
Pass or Fail Replicate No.	Test Com 11/2 Control	pletion Date 8/2019 TIWC	Pass or Fail Replicate No.	PA	SS
Pass or Fail Replicate No. 1	Test Com 11/2 Control 25	pletion Date 6/2019 TIWC 32	Pass or Fail Replicate No. 1	PA Test Comp	ISS Detion Date
Pass or Fail Replicate No. 1 2	Test Com 11/2 Control 25 28	pletion Date 8/2019 TIWC 32 28	Pass or Fail Replicate No. 1	PA Test Comp	ISS Detion Date
Replicate No.	Test Com 11/2 Control 25 28 16	Pletion Date 8/2019 TIWC 32 28 30	Pass or Fail Replicate No. 1	PA Test Comp	ISS Detion Date
Pass or Fail Replicate No. 1 2	Test Com 11/2 Control 25 28	pletion Date 8/2019 TIWC 32 28	Replicate No. 1 2 3	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4	Test Com 11/2 Control 25 28 16 26	ASS pletion Date 8/2019 TIWC 32 26 30 38	Pass or Fail Replicate No. 1 2 3 4	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5	Test Com 11/2 Control 25 28 16 26 16	Pletion Date 8/2019 TIWC 32 26 30 36 32	Replicate No. 1 2 3 4 5	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5	Test Com 11/2 Control 25 28 16 26 16 24	Pletion Date 8/2019 TIWC 32 26 30 36 32 33	Replicate No. 1 2 3 4 5	PA Test Comp	ISS Detion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Com 11/2 Control 25 28 16 26 16 24 24	ASS pletion Date 8/2019 TIWC 32 26 30 36 32 33 30	Pass or Fail Replicate No. 1 2 3 4 5 6 7	PA Test Comp	ISS Detion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Com 11/2 Control 25 28 16 26 16 24 24	ASS pletion Date 8/2019 TIWC 32 26 30 36 32 33 30 28	Pass or Fail Replicate No. 1 2 3 4 5 6 7	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7	Test Com 11/2 Control 25 28 16 26 16 24 24 29	ASS pletion Date 6/2019 TIWC 32 26 30 36 30 38 32 32 33 30 28 41	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7 8 9	Test Com 11/2 Control 25 28 16 26 16 24 24 29	ASS pletion Date 6/2019 TIWC 32 26 30 36 30 38 32 32 33 30 28 41	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Com 11/2 Control 25 28 16 26 16 24 24 29	ASS pletion Date 6/2019 TIWC 32 26 30 36 30 38 32 32 33 30 28 41	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com 11/2 Control 25 28 16 26 16 24 24 29	ASS pletion Date 6/2019 TIWC 32 26 30 36 30 38 32 32 33 30 28 41	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	PA Test Comp	ISS Detion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 11/2 Control 25 28 16 26 16 24 24 29	ASS pletion Date 6/2019 TIWC 32 26 30 36 30 38 32 32 33 30 28 41	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	PA Test Comp	ISS Detion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Com 11/2 Control 25 28 16 26 16 24 24 29 14 24	Pletion Date 8/2019 TIWC 32 28 30 36 32 33 30 28 41 34	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Com 11/2 Control 25 28 16 26 16 24 24 24 24 24 24 24 24	Pletion Date 8/2019 TIWC 32 26 30 36 32 33 30 28 41 34	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Com 11/2 Control 25 28 16 26 16 24 24 29 14 24	Pletion Date 8/2019 TIWC 32 28 30 36 32 33 30 28 41 34	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	PA Test Comp	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Com 11/2 Control 25 28 16 26 16 24 24 29 14 24 29 10 22 20 20 20 20 20 20 20 20 20 20 20 20	ASS pletion Date 8/2019 TIWC 32 26 30 36 32 33 30 28 41 34 32 31 30 30 30 30 30 30 30 30 30	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates	Test Comp Control	ISS Detion Date
Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com 11/2 Control 25 28 16 26 16 24 24 29 14 24 24 29 10 10 83	ASS pletion Date 6/2019 TIWC 32 26 30 36 32 33 30 28 41 34 32 32 31 30 28 41 34	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	ISS Detion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Com 11/2 Control 25 28 16 26 16 24 24 29 14 24 29 10 30 5317 10 83	ASS pletion Date 6/2019 TIWC 32 28 30 38 32 33 30 28 41 34 32 200 4.237 10	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp Control	ISS Detion Date
Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Com 11/2 Control 25 28 16 26 16 24 24 29 14 24 29 10 5.317 10 83 om le 0.8	ASS pletion Date 6/2019 TIWC 32 26 30 36 32 33 30 28 41 34 32 32 31 30 28 41 34	Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp Control	ISS Detion Date

	WET S	ummary an	d Evaluation		
Facility Name	UGT WWTP				
Permit No.	PA0023256				
Design Flow (MGD)	6.4				
Q ₇₋₁₀ Flow (cfs)	0.1				
PMF _a	1				
PMF _c	1				
			Test Result	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	12/7/21	12/22/20	11/26/19	
Pimephales	Survival	PASS	PASS	PASS	
			_	s (Pass/Fail)	
		Test Date		Test Date	Test Date
Species	Endpoint	12/7/21	12/22/20	11/26/19	
Pimephales	Growth	PASS	PASS	PASS	
			Teet Decult	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	12/7/21	12/22/20	11/26/19	Tost Date
Ceriodaphnia	Survival	PASS	PASS	PASS	
Облючарина	Curren	17100	1700	17100	
			Test Result	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	12/7/21	12/22/20	11/26/19	
Ceriodaphnia	Reproduction	PASS	PASS	PASS	
Reasonable Potential	l? NO				
Permit Recommenda					
Test Type	Chronic				
TIWC	99	% Effluent	0.0/ 5/0		
Dilution Series		74, 99, 10	0 % Effluent		
Permit Limit	None				
Permit Limit Species					