

### Northcentral Regional Office CLEAN WATER PROGRAM

Application Type
Facility Type
Major / Minor
Major

## NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0023531

 APS ID
 1010370

 Authorization ID
 1303644

| Applicant and Facility Information |        |                                               |                  |                                          |  |  |
|------------------------------------|--------|-----------------------------------------------|------------------|------------------------------------------|--|--|
| Applicant Name                     |        | lle Borough Municipal Authority<br>our County | Facility Name    | Danville Borough STP                     |  |  |
| Applicant Address                  | PO Bo  | ox 179 12 West Market Street                  | Facility Address | 200 Northumberland Street                |  |  |
|                                    | Danvi  | lle, PA 17821-0179                            |                  | Danville, PA 17821-1511                  |  |  |
| Applicant Contact                  | Pete F | Rickert                                       | Facility Contact | Jane Graham                              |  |  |
| Applicant Phone                    | (570)  | 275-3091                                      | Facility Phone   | (570) 275-2731                           |  |  |
| Client ID                          | 16297  | 9                                             | Site ID          | 458709                                   |  |  |
| Ch 94 Load Status                  | Not O  | verloaded                                     | Municipality     | Danville Borough                         |  |  |
| Connection Status                  | No Lir | nitations                                     | County           | Montour                                  |  |  |
| Date Application Rece              | eived  | January 27, 2020                              | EPA Waived?      | No                                       |  |  |
| Date Application Accepted          |        | February 7, 2020                              | If No, Reason    | Major Facility, Significant CB Discharge |  |  |

#### **Summary of Review**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Approve | Deny | Signatures                                                   | Date              |
|---------|------|--------------------------------------------------------------|-------------------|
| X       |      | Jonathan P. Peterman                                         |                   |
| Λ       |      | Jonathan P. Peterman / Project Manager                       | December 16, 2020 |
| X       |      | Nicholas W. Hartranft                                        |                   |
|         |      | Nicholas W. Hartranft, P.E. / Environmental Engineer Manager | December 17, 2020 |

| Outfall No. 001                               |          |                             | Design Flow (MGD)          | 3.62              |
|-----------------------------------------------|----------|-----------------------------|----------------------------|-------------------|
|                                               | 7' 43.92 | )"                          | Longitude                  | 76° 37' 32.45"    |
| <del></del>                                   | erside   | <u> </u>                    | Quad Code                  | 1132              |
| Wastewater Descri                             |          | Treated Sewage Effluent     |                            | 1102              |
| Receiving Waters                              |          | uehanna River               | Stream Code                | 06685             |
| NHD Com ID                                    | 13350    |                             | RMI                        | 136.6             |
| Drainage Area                                 | 11,22    | 0                           | Yield (cfs/mi²)            | 0.0998            |
| Q <sub>7-10</sub> Flow (cfs)                  | 1,120    |                             | Q <sub>7-10</sub> Basis    | Gage No. 01540500 |
| Elevation (ft)                                | 438      |                             | Slope (ft/ft)              | 0.0007            |
| Watershed No.                                 | 5-E      |                             | Chapter 93 Class.          | WWF               |
| Existing Use                                  | WWF      |                             | Existing Use Qualifier     | N/A               |
| Exceptions to Use                             | None.    |                             | Exceptions to Criteria     | N/A               |
| Assessment Status                             |          | Impaired, See TMDL Imp      | airment Section Below      |                   |
| Cause(s) of Impair                            | nent     | Metals, PCB, Mercury        |                            |                   |
| Source(s) of Impair                           | ment     | Source Unknown              |                            |                   |
| TMDL Status                                   |          | Final, 03/12/1999           | Name Susquehanr            | na River PCB      |
| Nearest Downstream Public Water Supply Intake |          | Cherokee Pharmaceuticals, L | LC.                        |                   |
| PWS Waters _                                  | Susquel  | nanna River                 | Flow at Intake (cfs)       | 1,125             |
| PWS RMI                                       | 135.7    |                             | Distance from Outfall (mi) | 0.9               |

Changes Since Last Permit Issuance: The updated  $Q_{7-10}$  data was obtained from the updated stream gage information obtained from *Stuckey, M.H., and Roland, M.A., 2011, Selected Streamflow Statistics for Streamgage Locations In and Near Pennsylvania.* This report indicates that the  $Q_{7-10}$  is 1,120. Given that the associated stream gage (01540500) is located approximately 0.5 river miles upstream of the discharge location, no comparative gage analysis is needed. The flows measured at the gage will be used directly and will be minimally conservative.  $Q_{7-10}$  calculations are attached in Appendix A.

Other Comments: None.

|                              | Discharge, Receiving Waters and Water Supply Information |                            |                               |                             |  |  |  |  |
|------------------------------|----------------------------------------------------------|----------------------------|-------------------------------|-----------------------------|--|--|--|--|
| Outfall No. 002              |                                                          |                            | Design Flow (MGD)             | 3.62 (Between 001 & 002)    |  |  |  |  |
| Latitude 40° 5               | 7' 51.0                                                  | 0"                         | Longitude                     | 76° 37' 28.00"              |  |  |  |  |
| Quad Name Da                 | nville                                                   |                            | Quad Code                     | 1133                        |  |  |  |  |
| Wastewater Descrip           | otion:                                                   | Supplemental Treated Sew   | vage Effluent Outfall         |                             |  |  |  |  |
| Receiving Waters             | Maho                                                     | ning Creek                 | Stream Code                   | 27328                       |  |  |  |  |
| NHD Com ID                   | 6564                                                     | 1641                       | RMI                           | 0.93                        |  |  |  |  |
| Drainage Area                | 39.52                                                    |                            | Yield (cfs/mi²)               | 0.06                        |  |  |  |  |
| Q <sub>7-10</sub> Flow (cfs) | 2.42                                                     |                            | Q <sub>7-10</sub> Basis       | Gage No. 01539000           |  |  |  |  |
| Elevation (ft)               | 460                                                      |                            | Slope (ft/ft)                 | 0.004                       |  |  |  |  |
| Watershed No.                | 5-E                                                      |                            | Chapter 93 Class.             | WWF                         |  |  |  |  |
| Existing Use                 | WWF                                                      |                            | Existing Use Qualifier        | N/A                         |  |  |  |  |
| Exceptions to Use            | None                                                     | •                          | Exceptions to Criteria        | N/A                         |  |  |  |  |
| Assessment Status            |                                                          | Impaired, See TMDL Secti   | on Below.                     |                             |  |  |  |  |
| Cause(s) of Impairn          | nent                                                     | Organic enrichment, low di | issolved oxygen, and sediment | from agricultural and urban |  |  |  |  |
|                              |                                                          | land use practices.        |                               |                             |  |  |  |  |
| Source(s) of Impair          | ment                                                     | Agriculture.               |                               |                             |  |  |  |  |
| TMDL Status                  | · · · · · · · · · · · · · · · · · · ·                    |                            |                               | reek TMDL Watershed         |  |  |  |  |
| Nearest Downstrea            | Nearest Downstream Public Water Supply Intake            |                            |                               | LC.                         |  |  |  |  |
| PWS WatersS                  | Susque                                                   | hanna River                | Flow at Intake (cfs)          | 1,125                       |  |  |  |  |
| PWS RMI 1                    | 35.7                                                     |                            | Distance from Outfall (mi)    | 1.6                         |  |  |  |  |
|                              | •                                                        |                            |                               |                             |  |  |  |  |

Changes Since Last Permit Issuance: None.

Other Comments: This outfall is only utilized during extreme high flow conditions where the plant cannot discharge to the river via gravity. During these events, the effluent will be pumped to Mahoning Creek using the existing pump stations.

|                              | Discharge, Receiving Wat        | ers and Water Supply Informa   | tion                        |
|------------------------------|---------------------------------|--------------------------------|-----------------------------|
| Outfall No. 003              |                                 | Design Flow (MGD)              | N/A                         |
| Latitude 40° 5               | 57' 51.00"                      | Longitude                      | 76° 37' 26.00"              |
| Quad Name Da                 | nville                          | Quad Code                      | 1133                        |
| Wastewater Descrip           | otion: Stormwater               |                                |                             |
| Receiving Waters             | Mahoning Creek                  | Stream Code                    | 27328                       |
| NHD Com ID                   | 65641641                        | RMI                            | 0.93                        |
| Drainage Area                | 39.52                           | Yield (cfs/mi²)                | 0.06                        |
| Q <sub>7-10</sub> Flow (cfs) | 2.42                            | Q <sub>7-10</sub> Basis        | Gage No. 01539000           |
| Elevation (ft)               | 460                             | Slope (ft/ft)                  | 0.004                       |
| Watershed No.                | _5-E                            | Chapter 93 Class.              | WWF                         |
| Existing Use                 | WWF                             | Existing Use Qualifier         | N/A                         |
| Exceptions to Use            | None                            | Exceptions to Criteria         | N/A                         |
| Assessment Status            | Impaired, See TMDL Sec          | tion Below.                    |                             |
| Cause(s) of Impairr          | ment Organic enrichment, low of | dissolved oxygen, and sediment | from agricultural and urban |
|                              | land use practices.             |                                |                             |
| Source(s) of Impair          | ment Agriculture.               |                                |                             |
| TMDL Status                  | _ Final                         | Name Mahoning C                | reek TMDL Watershed         |
| Nearest Downstrea            | m Public Water Supply Intake    | Cherokee Pharmaceuticals, L    | LC.                         |
| PWS Waters                   | Susquehanna River               | _ Flow at Intake (cfs)         | 1,125                       |
| PWS RMI                      | 135.7                           | Distance from Outfall (mi)     | 1.6                         |
|                              |                                 |                                |                             |

Changes Since Last Permit Issuance: None.

Other Comments: None.

#### **TMDL** Impairment

#### **Mahoning Creek Watershed TMDL**

The pollutants that are the causes for the designated use impairments in the Mahoning Creek Watershed have been identified as organic enrichment, low dissolved oxygen, and sediment. The source of these pollutants is listed as agricultural. At present, there are no point source contributions within the segments addressed in this TMDL. Danville Municipal Authority was not considered in the WLA and therefore can't contribute to the impairment. However, the facility only discharges to the Mahoning Creek in emergency (flood stage) situations. Only the stormwater is Outfall 003 is a regular discharger to the creek. Stormwater BMPs will be assigned to this outfall to ensure that the facility doesn't further contribute to the impairment.

#### Susquehanna River PCB

The pollutants that are the causes for the designated use impairments in the Susquehanna River have been identified as organic Polychlorinated Biphenyls (PCBs). It is now illegal to manufacture, distribute, or use PCB in the United States. It is believed that the PCBs present in the Susquehanna River reside primarily in the sediment due to historic use. The main source of the PCBs was introduced into the environment while their use was unrestricted. However, occasional releases still occur. In addition, some permitted discharges and Superfund sites contribute PCB to surface water. It can be determined that a facility of this type with the associated industrial users, would not be a source for PCBs. In accordance with 40 CFR §122.44(d)(1)(ii)&(iii), it can be determined that the effluent from this facility has no "Reasonable potential to cause, or contributes to an in-stream excursion above the allowable ambient concentration of a State numeric criteria within a State water quality standard for an individual pollutant." Therefore, the permit will not be required to contain effluent limits for PCB's. The TMDL stipulates that natural attenuation may be the best implementation method because it involves less habitat disturbance/destruction than active removal of contaminated sediments.

#### **Treatment Facility Summary**

Treatment Facility Name: Danville Municipal Authority WWTP

**Tributary Sewer System Information:** The Danville Municipal Authority Wastewater Treatment Plant serves the Borough of Danville, Mahoning Township, Valley Township, and the Borough of Riverside. The Borough contributes 66% of the flow, Mahoning Township contributes 21% of the flow, Valley Township contributes 6% of the flow, and the Borough of Riverside contributes the remaining 7% of the flow. All sewer systems are 100% separated.

| Waste Type | Degree of<br>Treatment | Process Type          | Disinfection | Avg Annual<br>Flow (MGD) |
|------------|------------------------|-----------------------|--------------|--------------------------|
| Sewage     | Secondary              | Contact Stabilization | Gas Chlorine | 3.62                     |

| Hydraulic Capacity | Organic Capacity |                |                     | Biosolids        |
|--------------------|------------------|----------------|---------------------|------------------|
| (MGD)              | (lbs/day)        | Load Status    | Biosolids Treatment | Use/Disposal     |
| 4.71               | 9,812            | Not Overloaded | Anaerobic Digestion | Land Application |

#### Treatment System Components (See Appendix E for Plant Process Flow Diagram):

- Two (2) Manual Bar Screens.
- One (1) Grit Chamber.
- One (1) Mechanical Bar Screen.
- One (1) Wet Well.
- One (1) Main Distribution Box.
- Three (3) Primary Clarifiers.
- Three (3) Bio Reactors (Contact Stabilization activated sludge process)
- One (1) Flash Mixing tanks.
- Three (3) Secondary Clarifiers.
- One (1) Hypochlorite Disinfection System.
- One (1) Chlorine contact tank.
- Two (2) Outfalls\*
  - -Outfall 001 Primary Discharge Location
  - -Outfall 002 Emergency Outfall Location
- -Two (2) Anaerobic Digesters
- -One (1) Secondary Anaerobic Digester
- -One (1) Belt Filter Press

\*Outfall 003 is a Stormwater Outfall Location and not part of the treatment process.

Changes Since Last Permit Issuance: None.

#### **Trucked-In Waste**

The application indicates that the facility receives hauled-in waste from Valley Twp. WWTP. The annual average volume is approximately 4,000 gallons. A Part-C condition will be placed in the draft permit.

#### **Anti-Backsliding**

In accordance with 40 CFR 122.44(I)(1) and (2), this permit does not contain effluent limitations, standards, or conditions that are less stringent than the previous permit.

#### **Industrial Users**

Danville Municipal Authority receives wastewater from the following industrial users:

| Industrial User          | Wastewater Flows (GPD) |      |          |       |         | Significant      | Pollutant |  |
|--------------------------|------------------------|------|----------|-------|---------|------------------|-----------|--|
| ilidustriai Osei         | Process                | NCCW | Sanitary | Other | Total   | Industrial User? | Groups    |  |
| Geisinger Medical Center | -                      | -    | 143,000  | -     | 143,000 | Yes*             | 1,2,3,4,5 |  |
| Danville State Hospital  | -                      | -    | 131,000  | -     | 131,000 | Yes*             | 1,2,3,4,5 |  |
| TOTAL                    | -                      | -    | 274,000  | -     | 274,000 |                  |           |  |

- -Geisinger Medical Center is a medical hospital that only discharges sanitary sewage from patients and staff. No medical or laboratory wastewater is generated on-site. Laundry services are outsourced.
- -Danville State Hospital is a medical hospital that only discharges sanitary sewage from patients and staff. Laundry services are outsourced.
- \* The applicant indicated on the application that both of these facilities are significant industrial users, but given that no industrial process water is discharged, neither user should be considered as a significant industrial user.

#### **Chesapeake Bay Requirements**

In order to address the TMDL, Pennsylvania developed a Chesapeake Watershed Implementation Plan (WIP) – Phase I. Since the publication of Pennsylvania's Phase I Chesapeake WIP in January 2011 and the Chesapeake Bay TMDL, several activities have occurred that necessitated the development of the Phase II WIP. Initially, a phased approach was utilized which imposed TN and TP cap loads in reissued permits for significant sewage dischargers. Accordingly, Galeton the renewed permit included these TN and TP cap loads. In accordance with the Wastewater Supplement to Phase II WIP, these cap loads will remain in the permit. Per the April 6, 2015 revisions to the Chesapeake Bay Watershed Implementation Plan (WIP), Phase II, the monitoring frequencies for the Nitrogen series and Total Phosphorus have been increased from 1/week to 2/week. Additionally, the Chesapeake Bay language at Part C I of the permit has been revised to reflect the revised WIP.

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy:

Outfall 001 & 002, Effective Period: Permit Effective Date through Permit Expiration Date

|                      |           | Effluent Limitations |         |                       |         |             | Monitoring Requirements |  |
|----------------------|-----------|----------------------|---------|-----------------------|---------|-------------|-------------------------|--|
| Discharge            | Mass Unit | Mass Units (lbs/day) |         | Concentrations (mg/L) |         |             |                         |  |
| Parameter            |           |                      |         | Monthly               |         | Measurement | Required                |  |
|                      | Monthly   | Annual               | Minimum | Average               | Maximum | Frequency   | Sample Type             |  |
| AmmoniaN             | Report    | Report               |         | Report                |         | 2/week      | 24-Hr Comp.             |  |
| KjeldahlN            | Report    |                      |         | Report                |         | 2/week      | 24-Hr Comp.             |  |
| Nitrate-Nitrite as N | Report    |                      |         | Report                |         | 2/week      | 24-Hr Comp.             |  |
| Total Nitrogen       | Report    | Report               |         | Report                |         | 1/month     | Calculation             |  |
| Total Phosphorus     | Report    | Report               |         | Report                |         | 2/week      | 24-Hr Comp.             |  |
| Net Total Nitrogen   | Report    | 66,118*              |         |                       |         | 1/month     | Calculation             |  |
| Net Total Phosphorus | Report    | 8,816**              |         |                       |         | 1/month     | Calculation             |  |

\*TN = 3.62 MGD x 6.0 mg/l x 8.34 x 365 days/yr = 66,118 lb/yr

<sup>\*\*</sup>TP = 3.62 MGD x 0.8 mg/l x 8.34 x 365 days/yr = 8,816 lb/yr

#### **Existing Effluent Limitations and Monitoring Requirements**

#### **Existing Limits – Outfalls 001 and 002**

|                                                  | Effluent Limitations |                                |         |                      |                   |                     | Monitoring Re            | quirements         |
|--------------------------------------------------|----------------------|--------------------------------|---------|----------------------|-------------------|---------------------|--------------------------|--------------------|
| Parameter                                        |                      | s Units<br>day) <sup>(1)</sup> |         | Concentrat           | ions (mg/L        | .)                  | Minimum <sup>(2)</sup>   | Required           |
|                                                  | Average<br>Monthly   | Daily<br>Maximum               | Minimum | Average<br>Monthly   | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type     |
| Flow (MGD)                                       | Report               | Report                         | XXX     | XXX                  | XXX               | XXX                 | Continuous               | Metered            |
| pH (S.U.)                                        | XXX                  | XXX                            | 6.0     | XXX                  | XXX               | 9.0                 | 1/day                    | Grab               |
| Dissolved<br>Oxygen                              | XXX                  | XXX                            | Report  | XXX                  | XXX               | XXX                 | 1/day                    | Grab               |
| Total Residual Chlorine                          | XXX                  | XXX                            | XXX     | 0.5                  | XXX               | 1.6                 | 1/day                    | Grab               |
| CBOD5                                            | 755                  | 1,210<br>Wkly Avg              | XXX     | 25                   | 40                | 50                  | 2/week                   | 24-Hr<br>Composite |
| BOD5<br>Raw Sewage<br>Influent                   | Report               | Report                         | xxx     | Report               | xxx               | XXX                 | 2/week                   | 24-Hr<br>Composite |
| Total<br>Suspended<br>Solids                     | 905                  | 1,360<br>Wkly Avg              | XXX     | 30                   | 45                | 60                  | 2/week                   | 24-Hr<br>Composite |
| Total Suspended Solids Raw Sewage Influent       | Report               | Report                         | XXX     | Report               | XXX               | XXX                 | 2/week                   | 24-Hr<br>Composite |
| Fecal Coliform<br>(No./100 ml)<br>May 1 - Sep 30 | XXX                  | XXX                            | XXX     | 200<br>Geo<br>Mean   | XXX               | 1,000               | 2/week                   | Grab               |
| Fecal Coliform<br>(No./100 ml)<br>Oct 1 - Apr 30 | XXX                  | XXX                            | XXX     | 2,000<br>Geo<br>Mean | XXX               | 10,000              | 2/week                   | Grab               |
| Ammonia-<br>Nitrogen                             | XXX                  | XXX                            | XXX     | Report               | XXX               | Report              | 2/week                   | 24-Hr<br>Composite |
| Total<br>Phosphorus                              | XXX                  | XXX                            | XXX     | Report               | XXX               | XXX                 | 2/week                   | 24-Hr<br>Composite |

<sup>\*</sup>The existing effluent limits for Outfall 001 were based on a design flow of 3.62 MGD.

| Development of Effluent Limitations |              |                         |                   |             |  |  |
|-------------------------------------|--------------|-------------------------|-------------------|-------------|--|--|
| Outfall No.                         | 001 &002     |                         | Design Flow (MGD) | 3.62        |  |  |
| Latitude                            | 40° 57' 44"  |                         | Longitude         | 76° 37' 33" |  |  |
| Wastewater I                        | Description: | Treated Sewage Effluent | _                 |             |  |  |

#### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

| Pollutant               | Limit (mg/l)                          | SBC             | Federal Regulation | State Regulation |
|-------------------------|---------------------------------------|-----------------|--------------------|------------------|
| CBOD₅                   | 25                                    | Average Monthly | 133.102(a)(4)(i)   | 92a.47(a)(1)     |
| CBOD5                   | 40                                    | Average Weekly  | 133.102(a)(4)(ii)  | 92a.47(a)(2)     |
| Total Suspended         | 30                                    | Average Monthly | 133.102(b)(1)      | 92a.47(a)(1)     |
| Solids                  | 45                                    | Average Weekly  | 133.102(b)(2)      | 92a.47(a)(2)     |
| рН                      | 6.0 – 9.0 S.U.                        | Min – Max       | 133.102(c)         | 95.2(1)          |
| Fecal Coliform          |                                       |                 |                    |                  |
| (5/1 – 9/30)            | 200 / 100 ml                          | Geo Mean        | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                                       |                 |                    |                  |
| (5/1 – 9/30)            | 1,000 / 100 ml                        | IMAX            | -                  | 92a.47(a)(4)     |
| Fecal Coliform          |                                       |                 |                    |                  |
| (10/1 - 4/30)           | 2,000 / 100 ml                        | Geo Mean        | -                  | 92a.47(a)(5)     |
| Fecal Coliform          | · · · · · · · · · · · · · · · · · · · |                 |                    |                  |
| (10/1 – 4/30)           | 10,000 / 100 ml                       | IMAX            | -                  | 92a.47(a)(5)     |
| Total Residual Chlorine | 0.5                                   | Average Monthly | -                  | 92a.48(b)(2)     |

#### **Water Quality-Based Limitations**

To establish whether or not water-quality based effluent limitations (WQBELs) are required, the Department models instream conditions. In order to determine limitations for CBOD5, ammonia-N and dissolved oxygen, the Department utilizes the WQM 7.0 v1.0b model and in order to determine limitations for toxics, the Department utilizes the PENTOXSD v2.0d model.

**WQM 7.0** for Windows, Version 1.0b, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen The model was run using the Q7-10 stream flow, background water quality, average annual design flow, and other discharge characteristics. The existing water technology-based limits for CBOD<sub>5</sub> (25 mg/l) and NH3-N (25.0 mg/l) were used as inputs for the modeling. The DO minimum daily average criterion from §93.7 (6.0 mg/L for WWF) was used for the in-stream objective for the model. The summary of the output is as follows:

| Doromotor        | Effl           | Effluent Limit |         |  |  |  |  |  |  |
|------------------|----------------|----------------|---------|--|--|--|--|--|--|
| Parameter        | 30 Day Average | Maximum        | Minimum |  |  |  |  |  |  |
| CBOD5            | 25             | N/A            | N/A     |  |  |  |  |  |  |
| Ammonia-N        | 25             | 50             | N/A     |  |  |  |  |  |  |
| Dissolved Oxygen | N/A            | N/A            | 3       |  |  |  |  |  |  |

The previous model did not recommend more stringent water-quality based effluent limitations with regards to CBOD5, ammonia-nitrogen, and dissolved oxygen. Refer to Appendix B for the previous WQM 7.0 inputs and results.

#### **PENTOXSD for Windows Version 2.0d**

PENTOXSD V2.0d is a single discharge Wasteload Allocation (WLA) program for toxics that uses a mass-balance water quality analysis to determine recommended water quality-based effluent limits. The model incorporates consideration for mixing, first-order decay and other factors to computes a WLA for each applicable criterion. Finally, the model determines a maximum water quality-based effluent limitation (WQBEL) for each parameter and outputs the more stringent of the WQBEL or the input concentration. The output of which is the recommended average monthly and maximum daily effluent limitations.

In order to determine which parameters are required to be analyzed in the PENTOXSD model, a Toxics Screening Analysis is used to identify toxic pollutants of concern. In this particular case, sampling for pollutants was submitted with the

application. This is required by the application given the types of industrial users connected to the collection system. These values were input into the Toxics Screening Analysis v2.7 spreadsheet to determine if each pollutant was a candidate for PENTOXSD modeling (pollutant of concern). Refer to Appendix C for the Toxics Screening Analysis v2.7.

The Toxics Screening Analysis v2.7 determines pollutants of concern using the following logic:

- All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, that are greater than the most stringent applicable water quality criterion were considered to be pollutants of concern.
- Also, where the maximum reported value in an application for a pollutant is less than the detection limit using the most sensitive analytical method listed in Chapter 16, the parameter is not a parameter of concern, even if the maximum reported value exceeds the applicable Chapter 93 criterion.
- Where the maximum reported values in an application for a parameter is less than the detection limit for some analytical method other than the most sensitive analytical method listed in Chapter 16, the parameter is a pollutant of concern if the maximum reported value exceeds the Chapter 93 criterion, even if the value is reported as "non-detect."

The PENTOXSD model was then run for all parameters of concern to evaluate reasonable potential (RP) for other toxic pollutants to cause an excursion above water quality standards. See Appendix D for the PENTOXSD model input/output. The most stringent WQBEL recommended by the model was then entered back into the same Toxics Screening Analysis v2.7 spreadsheet in order to determine which action to take regarding the pollutant. The permit recommendations of Monitor, Establish Limits, or to take no action (-) are established in the Toxics Screening Analysis v2.7 spreadsheet for each pollutant based upon the following logic:

- Establish average monthly and IMAX limits in the draft permit where the maximum reported concentration exceeds 50% of the WQBEL.
- For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

A "Reasonable Potential Analysis" (See Appendix C) determined that the following parameters were candidates for monitoring or limitations shown below:

| Parameter              | Effluent<br>Limit (µg/l) | Governing<br>Criterion | Max Daily<br>Limit (µg/l) | WQBEL<br>(µg/l) | WQBEL<br>Criterion | Permit Recommendation |
|------------------------|--------------------------|------------------------|---------------------------|-----------------|--------------------|-----------------------|
| Free Available Cyanide | 22.2                     | INPUT                  | 34.636                    | 77.724          | AFC                | Monitor               |

Comments: See the Free Available Cyanide effluent limit section below.

#### **Best Professional Judgment (BPJ) Limitations**

See D.O. and Ammonia-Nitrogen section below.

#### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst the abovementioned technology, water quality, and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001) and/or BPJ.

Outfall 001 & 002, Effective Period: Permit Effective Date through Permit Expiration Date

| Outrail 001 & 002,                               | Litective          | crioa. i cim       | Effluent Li |                      | JII I CIIIIIC L   |                     | Monitoring Re            | guirements         |
|--------------------------------------------------|--------------------|--------------------|-------------|----------------------|-------------------|---------------------|--------------------------|--------------------|
| Parameter                                        |                    | units (1)          |             | Concentrat           | ions (mg/L        | .)                  | Minimum (2)              | Required           |
|                                                  | Average<br>Monthly | Daily<br>Maximum   | Minimum     | Average<br>Monthly   | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type     |
| Flow (MGD)                                       | Report             | Report             | XXX         | XXX                  | XXX               | XXX                 | Continuous               | Metered            |
| pH (S.U.)                                        | XXX                | XXX                | 6.0         | XXX                  | XXX               | 9.0                 | 1/day                    | Grab               |
| Dissolved<br>Oxygen                              | XXX                | XXX                | Report      | XXX                  | XXX               | XXX                 | 1/day                    | Grab               |
| Total Residual Chlorine                          | xxx                | XXX                | XXX         | 0.5                  | XXX               | 1.6                 | 1/day                    | Grab               |
| CBOD5                                            | 755                | 1,210<br>Wkly Avg  | XXX         | 25                   | 40                | 50                  | 2/week                   | 24-Hr<br>Composite |
| BOD5<br>Raw Sewage<br>Influent                   | Report             | Report             | XXX         | Report               | XXX               | XXX                 | 2/week                   | 24-Hr<br>Composite |
| Total<br>Suspended<br>Solids                     | 905                | 1,360<br>Wkly Avg  | xxx         | 30                   | 45                | 60                  | 2/week                   | 24-Hr<br>Composite |
| Total Suspended Solids Raw Sewage Influent       | Report             | Report             | XXX         | Report               | XXX               | xxx                 | 2/week                   | 24-Hr<br>Composite |
| Fecal Coliform<br>(No./100 ml)<br>May 1 - Sep 30 | xxx                | xxx                | xxx         | 200<br>Geo<br>Mean   | XXX               | 1,000               | 2/week                   | Grab               |
| Fecal Coliform<br>(No./100 ml)<br>Oct 1 - Apr 30 | XXX                | XXX                | XXX         | 2,000<br>Geo<br>Mean | XXX               | 10,000              | 2/week                   | Grab               |
| Ammonia-<br>Nitrogen<br>(Nov – April)            | Report             | Report<br>Wkly Avg | XXX         | Report               | Report            | XXX                 | 2/week                   | 24-Hr<br>Composite |
| Ammonia-<br>Nitrogen<br>(May-Oct)                | 755                | 1,210<br>Wkly Avg  | XXX         | 25                   | 40                | 50                  | 2/week                   | 24-Hr<br>Composite |
| Free Available<br>Cyanide                        | XXX                | XXX                | XXX         | Report               | XXX               | XXX                 | 1/Month                  | 24-Hr<br>Composite |

The proposed effluent limits for Outfall 001 were based on a design flow of 3.62 MGD.

#### **General Information**

The associated mass-based limits (lbs/day) for all parameters were based on the formula: design flow (average annual) (MGD) x concentration limit (mg/L) at design flow x conversion factor (8.34). All effluent limits were then rounded down in accordance with the rounding rules established in the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001), Chapter 5 - Specifying Effluent Limitations in NPDES Permits. The existing

### NPDES Permit Fact Sheet Danville Municipal Authority WWTP

monitoring frequencies and sample types for these parameters generally correspond with the *Technical Guidance for the Development and Specification of Effluent Limitations* (362-0400-001) Table 6-3 and will remain.

#### Flow

Reporting of the average monthly and daily maximum flow is consistent with monitoring requirements for other treatment plants of this size.

#### Carbonaceous Biochemical Oxygen Demand (CBOD<sub>5</sub>)

The results of the WQM 7.0 model show that the previously applied secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for CBOD₅ are protective of water quality and will remain.

#### **Total Suspended Solids (TSS)**

The previously applied technology based secondary treatment standards (25 PA Code §92a.47 (a) (1&2)) for TSS will remain as well.

#### pН

CFR Title 40 §133.102(c) and 25 PA Code §95.2(1) provide the basis of effluent limitations for pH. The existing limits will remain.

#### **Fecal Coliforms**

The existing fecal coliform limits with I-max limits were updated from the previous Chapter 92 code to correspond with what is specified in the updated 25 PA Code § 92a.47 (a)(4)&(5) and will remain.

#### Ammonia-Nitrogen (NH3-N)

The results of the WQM 7.0 model show that the previously applied technology-based limits for Ammonia-Nitrogen are protective of water quality and will remain. The Implementation Guidance also states that the winter seasonal limits shall be 3.0 times the summer limits. However, effluent concentrations of NH3-N are not expected to exceed 25 mg/l which is considered a conventional influent level (*Table 7-3, Metcalf & Eddy*). Therefore, monitoring of NH3-N concentrations in the effluent will be remain as a minimum BPJ requirement for the winter months.

#### Influent BOD5 and TSS

The Department requires the reporting of raw sewage influent monitoring for BOD₅ and TSS in all POTW permits. This provides the Department with the ability to monitor the percent removal of each parameter as stipulated in section 2 of the Part A conditions and maintain records of the BOD₅ loading as required by 25 Pa. Code Chapter 94. The monitoring frequencies and sample types are identical to the effluent sampling.

#### **Dissolved Oxygen (DO)**

Given results of the WQM 7.0 model, a discharge of effluent from this facility with a DO concentration of 3 mg/l would not result in an exceedance of water quality requirements for this stream. It is anticipated, based on similar technology, that the DO concentration in the effluent would be greater than 3.0 mg/l. Therefore, based on BPJ, only monitoring will be required for this facility.

#### **Total Residual Chlorine (TRC)**

A TRC model evaluation was conducted by using the technology-based effluent limitations recommended as input. (See Appendix F for the spreadsheet results.) In accordance with 25 Pa. Code § 92a.48(b)(2), a value of 0.5 mg/l (which was also the existing limit) was used in the evaluation given that the facility utilizes an hypochlorite disinfection system which has a relatively high degree of control. This effluent limit for TRC of 0.5 mg/l constitutes BAT. The attached TRC model indicates that the existing water technology based effluent limits of 0.5 mg/L (Average Monthly) and 1.6 mg/L (Instantaneous Maximum) will be protective of water quality.

#### Free Available Cyanide

Based on the Reasonable Potential Analysis, monitoring will be established for this pollutant. In order to obtain data regarding these pollutants for future decision-making, a monthly 24-hr composite sample is proposed.

All of the limits proposed above are consistent with other permits issued for major wastewater treatment plants in the region.

Compliance Sampling Location: Chlorine Contact Tank

Other Comments: None.

| Whole Effluent Toxicity (WET)                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For Outfall 001,  Acute Chronic WET Testing was completed:                                                                                                      |
| For the permit renewal application (4 tests).  Quarterly throughout the permit term.  Quarterly throughout the permit term and a TIE/TRE was conducted.  Other: |

The dilution series used for the tests was: 100%, 60%, 30%, 3%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 3.

#### **Summary of Four Most Recent Test Results**

(NOTE – Enter results into one table, depending on which data analysis method was used).

#### NOEC/LC50 Data Analysis

|           | Ceriodapi        | nnia Results (% E    | ffluent) | Pimephale        | Pimephales Results (% Effluent) |      |         |  |  |  |
|-----------|------------------|----------------------|----------|------------------|---------------------------------|------|---------|--|--|--|
| Test Date | NOEC<br>Survival | NOEC<br>Reproduction | LC50     | NOEC<br>Survival | NOEC<br>Growth                  | LC50 | Pass? * |  |  |  |
| 7/13/16   | 100              | 100                  |          | 100              | 100                             |      | Yes     |  |  |  |
| 7/24/17   | 100              | 100                  |          | 100              | 100                             |      | Yes     |  |  |  |
| 6/19/18   | 100              | 100                  |          | 100              | 100                             |      | Yes     |  |  |  |
| 7/16/19   | 100              | 100                  |          | 100              | 100                             |      | Yes     |  |  |  |

<sup>\*</sup> A "passing" result is that which is greater than or equal to the TIWC value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

☐ YES ⊠ NO

Comments: None.

#### Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.022 Chronic Partial Mix Factor (PMFc): 0.156

1. Determine IWC - Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

 $[(3.62 \text{ MGD x } 1.547) / ((1120 \text{ cfs x } 0.022) + (3.62 \text{ MGD x } 1.547))] \times 100 = 18.52\%$ 

Is IWCa < 1%?  $\square$  YES  $\boxtimes$  NO

Type of Test for Permit Renewal: Chronic Tests Required

#### 2b. Determine Target IWCc (If Chronic Tests Required)

 $(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$ 

 $[(3.62 \text{ MGD} \times 1.547) / ((1120 \text{ cfs} \times 0.156) + (3.62 \text{ MGD} \times 1.547))] \times 100 = 3.10\%$ 

#### 3. Determine Dilution Series

Dilution Series = 100%, 60%, 30%, 3%, and 1%.

| WET Limits |
|------------|
|------------|

| Has reasonable potential been determined? ☐ YES ☒ NO                                             |
|--------------------------------------------------------------------------------------------------|
| Will WET limits be established in the permit? $\ \square$ YES $\ \boxtimes$ NO                   |
| If WET limits will be established, identify the species and the limit values for the permit (TU) |

#### N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

#### N/A

#### Part C of the permit will contain following requirements for this major sewage facility:

1. Part C Condition 114 "Whole Effluent Toxicity (WET)"

#### **Stormwater Requirements**

The industrial activities associated with Danville Municipal Authority's WWTP are identified in 40 CFR 122.26(b)(14)(ix) and thus the facility required to obtain an NPDES permit to discharge stormwater into waters of the Commonwealth of Pennsylvania. The facility is classified under SIC Code 4952- Sewerage Systems. Establishments primarily engaged in the collection and disposal of wastes conducted through a sewer system, including such treatment processes as may be provided. SIC code major group 4952 is under the coverage of Appendix J. For that reason, General Stormwater (PAG-03) Appendix J Monitoring Requirements and Best Management Practices (BMPs) have been assigned.

Part C of the permit will contain following requirements for this stormwater facility:

- 1. Applicable Discharges
- 2. Preparedness, Prevention and Contingency (PPC) Plan
- 3. Minimum Required BMPs
- 4. Annual Inspection and Compliance Evaluation
- 5. Stormwater Sampling Requirements

#### **Compliance History**

<u>Summary of Inspections</u> -The most recent Clean Water Program Compliance Evaluation for this facility was a Compliance Evaluation Inspection on 7/31/2020. The inspection reports indicated that the facility was operating normally.

<u>WMS Query Summary</u> - A WMS Query was run at *Reports - Violations & Enforcements - Open Violations for Client Report* to determine whether there are any unresolved violations associated with the client that will affect issuance of the permit (per CSL Section 609). This query revealed no open violations.

**eDMRs Summary** - Upon review of the eDMR's, the facility has generally been in compliance with the existing effluent limits.

#### **Compliance History**

#### DMR Data for Outfall 001 (from September 1, 2019 to August 31, 2020)

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AUG-20 | JUL-20 | JUN-20 | MAY-20 | APR-20 | MAR-20 | FEB-20 | JAN-20 | DEC-19 | NOV-19 | OCT-19 | SEP-19 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Flow (MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.402  | 1.336  | 1.537  | 1.557  | 1.966  | 2.144  | 2.184  | 2.173  | 2.095  | 1.953  | 1.746  | 1.487  |
| Flow (MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |        |        |        |        |        |        |        |        |        |        |
| Daily Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.308  | 1.512  | 2.205  | 4.304  | 3.626  | 2.871  | 4.154  | 3.554  | 2.783  | 3.589  | 3.042  | 2.089  |
| pH (S.U.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.9    | 7.0    | 7.0    | 6.8    | 6.8    | 6.8    | 6.8    | 6.8    | 6.9    | 6.7    | 6.9    | 6.9    |
| pH (S.U.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.4    | 7.3    | 7.3    | 7.2    | 7.2    | 7.2    | 7.2    | 7.3    | 7.7    | 7.3    | 7.3    | 7.4    |
| DO (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |        |        |        |        |        |        |        |        |        |        |        |
| Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.8    | 5.9    | 5.9    | 6.0    | 6.8    | 6.2    | 6.3    | 6.2    | 6.2    | 5.8    | 6.1    | 5.5    |
| TRC (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23   | 0.20   | 0.16   | 0.23   | 0.29   | 0.24   | 0.35   | 0.28   | 0.29   | 0.26   | 0.27   | 0.29   |
| TRC (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |        |        |        |        |        |        |        |        |        |        |        |
| Instantaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |        |        |        |        |        |        |        |        |        |        |        |
| Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4    | 0.71   | 0.76   | 0.65   | 0.66   | 0.47   | 0.61   | 0.55   | 0.5    | 0.63   | 0.46   | 0.78   |
| CBOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52     | 47     | 40     | 51     | 65     | 82     | 53     | 60     | 71     | 59     | 53     | 41     |
| CBOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 86     | 58     | 41     | 59     | 93     | 104    | 64     | 71     | 92     | 85     | 85     | 47     |
| CBOD5 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |        |        |        |        |        |        |        |        |        |        |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0    | 4.24   | 3.19   | 3.25   | 4.04   | 4.6    | 3.22   | 3.4    | 3.92   | 3.75   | 3.56   | 3.29   |
| CBOD5 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |        |        |        |        |        |        |        |        |        |        |        |
| Weekly Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.87   | 5.34   | 4.67   | 3.69   | 5.64   | 5.73   | 3.83   | 4.11   | 5.97   | 5.44   | 5.81   | 3.83   |
| BOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |        |        |        |        |        |        |        |        |        |        |
| <br>br/> Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |        |        |        |        |        |        |        |        |        |        |        |
| Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1900   | 1709   | 1856   | 1817   | 1435   | 2460   | 3062   | 2630   | 1737   | 2771   | 2675   | 1933   |
| BOD5 (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1001   | 0.400  | 0004   | 0.500  | 0.400  | 0004   | 40.40  | 00.40  | 0040   |        |        | 0000   |
| <br><br>description of the control of the contr | 4004   | 2123   | 3081   | 2533   | 2436   | 2961   | 4243   | 3949   | 2610   | 6334   | 5749   | 2668   |
| BOD5 (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |        |        |        |        |        |        |        |        |        |
| Raw Sewage Influent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |        |        |        |        |        |        |        |        |        |        |        |
| <br><br>Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 151    | 455    | 4.47   | 116    | 00     | 420    | 400    | 454    | 00     | 100    | 470    | 457    |
| Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 151    | 155    | 147    | 116    | 90     | 139    | 188    | 151    | 96     | 180    | 178    | 157    |
| TSS (lbs/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 144    | 50     | 40     | 50     | 40     | 55     | 20     | 44     | 67     | 40     | F.2    | 40     |
| Average Monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44     | 59     | 40     | 59     | 40     | 55     | 38     | 41     | 67     | 49     | 53     | 49     |

## NPDES Permit Fact Sheet Danville Borough STP

| TSS (lbs/day)              |        |        |        |        |        |        |        |        |        |        |        |          |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|
| Raw Sewage Influent        |        |        |        |        |        |        |        |        |        |        |        |          |
| <br>br/> Average           |        |        |        |        |        |        |        |        |        |        |        |          |
| Monthly                    | 1945   | 1763   | 2070   | 2366   | 1304   | 1789   | 1670   | 1672   | 1961   | 1933   | 1930   | 1408     |
| TSS (lbs/day)              |        |        |        |        |        |        |        |        |        | .000   |        | 1.00     |
| Raw Sewage Influent        |        |        |        |        |        |        |        |        |        |        |        |          |
| <br><br>br/> Daily Maximum | 3103   | 1995   | 2958   | 5128   | 2228   | 2615   | 2534   | 2257   | 2850   | 2677   | 2715   | 2355     |
| TSS (lbs/day)              | 0.00   |        |        | 0.20   |        |        |        |        |        |        |        |          |
| Weekly Average             | 58     | 104    | 50     | 79     | 57     | 97     | 52     | 58     | 107    | 67     | 80     | 72       |
| TSS (mg/L)                 |        |        |        |        |        |        |        |        |        |        |        |          |
| Average Monthly            | 3.7    | 5.4    | 3.2    | 3.8    | 2.5    | 3.05   | 2.3    | 2.3    | 3.6    | 3.1    | 3.4    | 3.9      |
| TSS (mg/L)                 |        |        |        |        |        |        |        |        |        |        |        |          |
| Raw Sewage Influent        |        |        |        |        |        |        |        |        |        |        |        |          |
| <br>br/> Average           |        |        |        |        |        |        |        |        |        |        |        |          |
| Monthly                    | 158    | 160    | 164    | 158    | 82     | 102    | 104    | 93     | 107    | 123    | 129    | 113      |
| TSS (mg/L)                 |        |        |        |        |        |        |        |        |        |        |        |          |
| Weekly Average             | 5.5    | 9.6    | 3.8    | 4.4    | 3.0    | 5.6    | 2.6    | 3.2    | 5.4    | 4.1    | 4.8    | 5.8      |
| Fecal Coliform             |        |        |        |        |        |        |        |        |        |        |        |          |
| (CFU/100 ml)               |        |        |        |        |        |        |        |        |        |        |        |          |
| Geometric Mean             | 1.0    | 2      | 2      | 3      | 1      | 2      | 1.09   | 1.4    | 3.0    | 16     | 5      | 3        |
| Fecal Coliform             |        |        |        |        |        |        |        |        |        |        |        |          |
| (CFU/100 ml)               |        |        |        |        |        |        |        |        |        |        |        |          |
| Instantaneous              |        |        |        |        |        |        |        |        |        |        |        |          |
| Maximum                    | 2.0    | 6.3    | 6.1    | 46.4   | 4.1    | 6.3    | 2      | 9.6    | 12     | 2419   | 20.3   | 12       |
| Nitrate-Nitrite (mg/L)     |        |        |        |        |        |        |        |        |        |        |        |          |
| Average Monthly            | 5.174  | 5.252  | 8.863  | 6.643  | 10.315 | 6.327  | 4.703  | 6.082  | 7.051  | 7.984  | 5.96   | 5.615    |
| Nitrate-Nitrite (lbs)      |        |        |        |        |        |        |        |        |        |        |        |          |
| Total Monthly              | 1978.4 | 1794.1 | 3320.8 | 3298.5 | 4898   | 3473.6 | 2227.9 | 3333   | 4065.4 | 3797.4 | 2761.5 | 2110.1   |
| Total Nitrogen (mg/L)      |        |        |        |        |        |        |        |        |        |        |        |          |
| Average Monthly            | 6.322  | 5.76   | 9.917  | 7.444  | 10.815 | 7.284  | 6.871  | 7.3    | 7.879  | 8.984  | 6.96   | < 7.006  |
| Total Nitrogen (lbs)       |        |        |        |        |        |        |        |        |        |        |        |          |
| Effluent Net<br>           |        |        |        |        |        |        |        |        |        |        |        |          |
| Total Monthly              | 2423.9 | 1967.7 | 3714.3 | 3671.1 | 5136.8 | 4006.6 | 3305.4 | 3996.2 | 4512.6 | 4272.6 | 3225.8 | < 2628.2 |
| Total Nitrogen (lbs)       |        |        |        |        |        |        |        |        |        |        |        |          |
| Total Monthly \( \)        | 2423.9 | 1967.7 | 3714.3 | 3671.1 | 5136.8 | 4006.6 | 3305.4 | 3996.2 | 4512.6 | 4272.6 | 3225.8 | < 2628.2 |
| Total Nitrogen (lbs)       |        |        |        |        |        |        |        |        |        |        |        |          |
| Effluent Net<br>           |        |        |        |        |        |        |        |        |        |        |        |          |
| Total Annual               |        |        |        |        |        |        |        |        |        |        |        | 58784    |
| Total Nitrogen (lbs)       |        |        |        |        |        |        |        |        |        |        |        |          |
| Total Annual               |        |        |        |        |        |        |        |        |        |        |        | 58784    |
| Ammonia (mg/L)             |        |        |        |        |        |        |        |        |        |        |        |          |
| Average Monthly            | 0.15   | 0.107  | 0.1    | 0.381  | 0.1    | 0.59   | 1.686  | 0.835  | 0.213  | 0.101  | 0.186  | < 0.672  |
| Ammonia (lbs)              |        |        |        |        |        |        |        |        |        |        |        | ]        |
| Total Monthly              | 56.8   | 36.5   | 37.8   | 169.3  | 47.8   | 334    | 841.4  | 450.9  | 126.5  | 48.1   | 90.5   | < 251.3  |

## NPDES Permit Fact Sheet Danville Borough STP

#### NPDES Permit No. PA0023531

| Ammonia (lbs)          |       |       |       |       |       |       |        |       |       |       |       |         |
|------------------------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|---------|
| Total Annual           |       |       |       |       |       |       |        |       |       |       |       | < 4998  |
| TKN (mg/L)             |       |       |       |       |       |       |        |       |       |       |       |         |
| Average Monthly        | 1.148 | 0.509 | 1.054 | 0.801 | 0.5   | 0.905 | 2.168  | 1.18  | 0.83  | 1.0   | 1.0   | < 1.391 |
| TKN (lbs)              |       |       |       |       |       |       |        |       |       |       |       |         |
| Total Monthly          | 445.5 | 173.6 | 393.4 | 372.6 | 238.8 | 505.4 | 1077.5 | 645.7 | 447.3 | 475.2 | 464.3 | < 518.2 |
| Total Phosphorus       |       |       |       |       |       |       |        |       |       |       |       |         |
| (mg/L)                 |       |       |       |       |       |       |        |       |       |       |       |         |
| Average Monthly        | 1.338 | 1.332 | 1.761 | 0.725 | 0.764 | 0.839 | 0.744  | 0.755 | 0.965 | 1.155 | 1.95  | 1.801   |
| Total Phosphorus (lbs) |       |       |       |       |       |       |        |       |       |       |       |         |
| Effluent Net<br>       |       |       |       |       |       |       |        |       |       |       |       |         |
| Total Monthly          | 509.3 | 456   | 665   | 343   | 364.2 | 454.8 | 360.6  | 410.9 | 551.7 | 546.6 | 898.1 | 668.1   |
| Total Phosphorus (lbs) |       |       |       |       |       |       |        |       |       |       |       |         |
| Total Monthly          | 509.3 | 456   | 665   | 343   | 364.2 | 454.8 | 360.6  | 410.9 | 551.7 | 546.6 | 898.1 | 668.1   |
| Total Phosphorus (lbs) |       |       |       |       |       |       |        |       |       |       |       |         |
| Effluent Net<br>       |       |       |       |       |       |       |        |       |       |       |       |         |
| Total Annual           |       |       |       |       |       |       |        |       |       |       |       | 7062    |
| Total Phosphorus (lbs) |       |       |       |       |       |       |        |       |       |       |       |         |
| Total Annual           |       |       |       |       |       |       |        |       |       |       |       | 7062    |

|                        | Tools and References Used to Develop Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Turour with a surface of the surface |
|                        | WQM for Windows Model (see Attachment A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | PENTOXSD for Windows Model (see Attachment B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | TRC Model Spreadsheet (see Attachment C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | Temperature Model Spreadsheet (see Attachment )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | Toxics Screening Analysis Spreadsheet (see Attachment <b>D</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | Pennsylvania CSO Policy, 385-2000-011, 9/08.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\boxtimes$            | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\boxtimes$            | Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | Implementation Guidance Design Conditions, 391-2000-006, 9/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\boxtimes$            | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\boxtimes$            | Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\boxtimes$            | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\boxtimes$            | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\boxtimes$            | Design Stream Flows, 391-2000-023, 9/98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\overline{\boxtimes}$ | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | SOP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# APPENDIX A Q<sub>7-10</sub> ANALYSIS AND STREAM DATA

### Q<sub>7-10</sub> Analysis

Facility: Danille Municipal Authority WWTP
Outfall: 001

| Reference Stream Gage Information |                                     |  |  |  |  |  |
|-----------------------------------|-------------------------------------|--|--|--|--|--|
| Stream Name                       | Susquehanna River                   |  |  |  |  |  |
| Reference Gage                    | 1540500                             |  |  |  |  |  |
| Station Name                      | Susquehanna River Near Danville, PA |  |  |  |  |  |
| Gage Drainage Area (sq. ml.)      | 11220                               |  |  |  |  |  |
| Q <sub>7-10</sub> at gage (cfs)   | 1120                                |  |  |  |  |  |
| Yield Ratio (cfs/ml²)             | 0,0998                              |  |  |  |  |  |

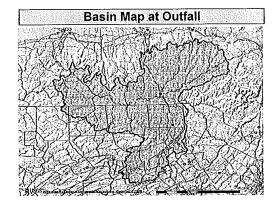
| at Outfall                                       |
|--------------------------------------------------|
| 11220                                            |
| 1120.0000                                        |
| 723.8749                                         |
| fs/mi <sup>2</sup> (For Approx, Comparison Only) |
| 1122.0000                                        |
| 725,1675                                         |
|                                                  |

| Q <sub>7-10</sub> at Dow         | nstream Reach #2 |
|----------------------------------|------------------|
| Drainage Area at Reach (sq. ml.) |                  |
| RMI                              |                  |
| Q <sub>7-10</sub> at reach (cfs) | 0.0000           |
| Q <sub>7-10</sub> at reach (mgd) | 0.0000           |

#### Basin Characteristics Report at Reach #1

Date: Tue Jul 23 2013 07:48:32 Mountain Daylight Time
NAD27 Latitude: 40,9637 (40 57 49)
NAD27 Longitude: -76.6329 (-76 37 59)
NAD83 Latitude: 40.9638 (40 57 50)
NAD83 Longitude: -76.8326 (-76 37 57)

| Parameter                                                                           | Value     |
|-------------------------------------------------------------------------------------|-----------|
| Area in square miles                                                                | 11270.83  |
| Mean Basin Elevation in feet                                                        | 1434.2    |
| Unadjusted basin slope, in degrees                                                  | 7,5       |
| Adjusted basin slope, in degrees                                                    | 7.3       |
| Total stream length in miles                                                        | 19229.70  |
| Stream density (miles/square mile)                                                  | 1.71      |
| Percent of area covered by lakes,<br>ponds, reservoirs and wetlands                 | 1,2       |
| Percent of area covered by<br>carbonate bedrock                                     | 1.0       |
| Percent of area covered by glacial activity                                         | 93.9      |
| Depth to rock in feet                                                               | 4,5       |
| Mean annual precipitation in inches                                                 | 38.3      |
| Maximum Daily Temperature in degrees F                                              | 54.8      |
| Percent of area covered by forest                                                   | 67.6      |
| Percentage of impervious area<br>determined from NLCD 2001<br>Impervious dataset    | 1.2       |
| Percent of area covered by urban land according to an enhanced version of NLCD 1992 | 3.1       |
| Percentage of urban land cover determined from NLCD 2001 land cover dataset         | 6.5       |
| Drainage quality index from STATSGO                                                 | 3.8       |
| X coordinate of the centroid, in map projection, meters                             | 151315.0  |
| Y coordinate of the centroid, in map                                                | 151315.0  |
| X coordinate of the outlet, in map                                                  | 115085.0  |
| Y coordinate of the outlet, in map projection, meters                               | 218935.0  |
| Longitude of the outlet, in decimal degrees                                         | -78.63263 |


| NPDES Permit No.: | PA0023531 |
|-------------------|-----------|
| RMI at Outfall:   | 136.6     |

| Was Ecoflows Used?        | No |    | • |
|---------------------------|----|----|---|
| Correlation From Ecoflows |    | NA |   |

| Check Dilu                      | tion Ratio  |             |
|---------------------------------|-------------|-------------|
| Discharge at Outfall (wf) (mgd) | 3           | .62         |
|                                 | sf (cfs)    | wf (cfs)    |
| Dilution Ratio = sf/wf          | 1120.0000   | 5,600968081 |
| Dilution Ratio =                | 199.9654317 | to 1        |

| Q <sub>7-10</sub> at Dow         | nstream Reach #1 |
|----------------------------------|------------------|
| Drainage Area at Reach (sq. ml.) | 11270.83         |
| RMI                              | 136.24           |
| Q <sub>7-10</sub> at reach (cfs) | 1125.0739        |
| Q <sub>7-19</sub> at reach (mgd) | 727.1542         |

| RMI                              |        |  |  |  |  |  |  |  |  |  |
|----------------------------------|--------|--|--|--|--|--|--|--|--|--|
| Drainage Area at Reach (sq. ml.) |        |  |  |  |  |  |  |  |  |  |
| RMI                              |        |  |  |  |  |  |  |  |  |  |
| Q <sub>7-10</sub> at reach (cfs) | 0.0000 |  |  |  |  |  |  |  |  |  |
| Q <sub>7-10</sub> at reach (mgd) | 0.0000 |  |  |  |  |  |  |  |  |  |





Prepared in cooperation with the Pennsylvania Department of Environmental Protection

# **Selected Streamflow Statistics for Streamgage Locations** in and near Pennsylvania



Open-File Report 2011–1070

U.S. Department of the Interior U.S. Geological Survey

Table 2 25

 Table 2.
 Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued

 [ft³/s; cubic feet per second; —, statistic not computed; <, less than]</td>

| 01531000         219           01531000         319           01531500         319           01531500         319           01532000         19           01532850         19           01533500         19           01533950         19           01533950         19           01534000         19           01534500         319           01534500         319           01536000         319           01536500         319           01536500         319           01537500         19           01537500         19           01538000         19           01539500         19           01540200         19           01540500         319           01541200         19           01541200         19           01541200         319           01541500         319           01541500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319  | 940–2008<br>981–2008          |                       | (ft³/s)           | 10-year<br>(ft³/s) | 2-year<br>(ft³/s) | 10-year<br>(ft³/s) | 2-year<br>(ft³/s) | 10-year<br>(ft³/s) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|
| 01531000         319           01531500         319           01531500         319           01532000         19           01532850         19           01533400         319           01533950         19           01533950         19           01534000         19           01534500         319           01534500         319           01536000         319           01536500         319           01536500         319           01537500         19           01537500         19           01539500         19           01539500         19           01540200         19           01540500         319           01541200         319           01541303         19           01541200         319           01541500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01543000         19 |                               | 69                    | 5.0               | 6,1                | 11.0              | 7.6                | 13                | 9.0                |
| 01531500         219           01531500         319           01532000         19           01532850         19           01533400         219           01533500         19           01533950         19           01534000         19           01534500         219           01534500         219           01536000         219           01536500         219           01536500         219           01537500         19           01537500         19           01539500         19           01539500         19           01540200         19           01540500         219           01541200         219           01541200         219           01541500         219           01541500         219           01541500         219           01542500         219           01542500         219           01542500         319           01542500         319           01542810         19                                                              |                               | 28                    | 138               | 147                | 237               | 169                | 296               | 203                |
| 01531500         319           01532000         19           01532850         19           01533400         219           01533500         19           01533950         19           01534000         19           01534500         219           01534500         319           01536000         319           01536500         319           01536500         319           01537500         19           01537500         19           01538000         19           01539500         19           01540200         19           01540500         319           01541200         219           01541303         19           01541300         29           01541500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542810         19           01543000         19   | 905-1979                      | 68                    | 86.3              | 97.0               | 175               | 116                | 219               | 161                |
| 01532000         19           01532850         19           01533400         219           01533500         19           01533950         19           01534000         19           01534500         219           01534500         319           01536000         319           01536500         319           01536500         319           01537500         19           01537500         19           01539500         19           01539500         19           01540200         19           01540500         319           01541500         319           01541200         19           01541500         319           01541500         319           01541500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542810         19           01543000         19                                                                | 9812008                       | 28                    | 550               | 592                | 1,030             | 733                | 1,340             | 952                |
| 01532850         19           01533400         219           01533500         19           01533950         19           01534000         19           01534500         219           01534500         319           01536000         219           01536500         319           01536500         319           01536500         319           01537500         19           01537500         19           01539500         19           01539500         19           01540200         19           01540500         219           01541200         219           01541200         219           01541303         19           01541500         219           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542810         19           01543000         19                                                               | 915-1979                      | 65                    | 539               | 571                | 990               | 675                | 1,230             | 928                |
| 01533400         219           01533500         19           01533950         19           01534000         19           01534500         219           01534500         319           01536000         319           01536500         319           01536500         319           01536500         319           01537500         19           01537500         19           01539500         19           01539500         19           01540200         19           01540500         319           01541200         219           01541303         19           01541308         19           01541500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542810         19           01543000         19                                                                                                                             | 915-2008                      | 94                    | 2.2               | 2.8                | 9.7               | 4.6                | 14.4              | 9.4                |
| 01533500         19           01533950         19           01534900         19           01534500         219           01534500         319           01534500         319           01536000         319           01536500         319           01536500         319           01537500         19           01537500         19           01538000         19           01539500         19           01540200         19           01540500         319           01541000         19           01541303         19           01541303         19           01541500         219           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542810         19           01543000         19                                                                                                                                                             | 967-1979                      | 13                    |                   | .2                 | .4                | .3                 | .8                | .7                 |
| 01533500         19           01533950         19           01534900         19           01534500         219           01534500         319           01534500         319           01536000         319           01536500         319           01536500         319           01537500         19           01537500         19           01538000         19           01539500         19           01540200         19           01540500         319           01541000         19           01541303         19           01541303         19           01541500         219           01542500         319           01542500         319           01542500         319           01542500         319           01542500         319           01542810         19           01543000         19                                                                                                                                                             | 981–2008                      | 28                    | 602               | 648                | 1,110             | 790                | 1,430             | 1,060              |
| 01534000 19 01534300 19 01534500 219 01534500 319 01536000 319 01536500 319 01536500 319 01537500 19 01537500 19 01539500 19 01540200 19 01540200 219 01541200 319 01541200 319 01541303 19 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 942–1958                      | 17                    | .4                | .6                 | 1.5               | .8                 | 2.0               | 1.7                |
| 01534000 19 01534300 19 01534500 219 01534500 319 01536000 319 01536500 319 01536500 319 01537500 19 01537500 19 01539500 19 01540200 19 01540200 219 01541200 319 01541200 319 01541303 19 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 962–1978                      | 17                    | .2                | .3                 | 1.0               | .6                 | 1.4               | 1.0                |
| 01534300 19 01534500 219 01534500 319 01536000 319 01536500 319 01536500 319 01536500 319 01537500 19 01537500 19 01539500 19 01540200 19 01540200 219 01541200 319 01541200 319 01541303 19 01541303 19 01541500 319 01541500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 915-2008                      | 94                    | 15.2              | 17.3               | 35.9              | 24.2               | 51.0              | 38.7               |
| 01534500 219 01534500 319 01536000 219 01536500 319 01536500 319 01536500 319 01537500 19 01537500 19 01538000 19 01539500 19 01540200 19 01540500 319 01541200 219 01541200 319 01541200 319 01541303 19 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01541500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960-2008                      | 49                    | 1.1               | 1.7                | 5,1               | 2.8                | 7.6               | 4.8                |
| 01534500 319<br>01536000 219<br>01536000 319<br>01536500 319<br>01536500 319<br>01537500 19<br>01537500 19<br>01537500 19<br>01539500 19<br>01540200 19<br>01540500 319<br>01541200 319<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 319<br>01542500 319<br>01542500 319<br>01542500 319<br>01542500 319<br>01542500 319<br>01542500 319<br>01542500 319<br>01542500 319<br>01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 961-2008                      | 48                    | 16.7              | 18.8               | 29.2              | 21.9               | 35.8              | 27.6               |
| 01536000 219 01536000 319 01536500 319 01536500 319 01537500 19 01537500 19 01539500 19 01540200 19 01540500 319 01541200 319 01541200 319 01541303 19 01541303 19 01541500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542500 319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 941–1959                      | 19                    | 18.8              | 23.0               | 33,3              | 25.6               | 39.2              | 34.9               |
| 01536500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9612008                       | 48                    | 28.7              | 32.7               | 51.7              | 40.8               | 68.1              | 54.3               |
| 01536500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 940–1959                      | 20                    | 77.8              | 93.9               | 119               | 105                | 138               | 124                |
| 01536500 319 01537500 19 01537500 19 01538000 19 01538000 19 01539500 19 01540200 19 01540500 319 01541200 219 01541200 319 01541303 19 01541308 19 01541500 319 01542500 319 01542500 319 01542500 319 01542500 319 01542810 19 01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 981–2008                      | 28                    | 828               | 872                | 1,450             | 1,030              | 1.830             | 1,350              |
| 01537000 19 01537500 19 01538000 19 01539000 19 01539500 19 01540200 19 01540500 219 01540500 219 01541200 219 01541200 319 01541303 19 01541308 19 01541500 219 01542500 19 01542500 219 01542500 219 01542500 319 01542810 19 01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9011979                       | 79                    | 778               | 811                | 1,350             | 927                | 1,640             | 1,260              |
| 01537500 19<br>01538000 19<br>01539000 19<br>01539500 19<br>01540200 19<br>01540500 219<br>01540500 219<br>01541000 19<br>01541200 219<br>01541303 19<br>01541308 19<br>01541500 219<br>01542000 19<br>01542500 219<br>01542500 319<br>01542500 319<br>01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 943–1993                      | 51                    | 1.3               | 2.0                | 4.9               | 3.1                | 6.4               | 4.7                |
| 01538000 19<br>01539000 19<br>01539500 19<br>01540200 19<br>01540500 219<br>01540500 219<br>01541000 19<br>01541200 219<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01542500 219<br>01542500 319<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 941-1990                      | 50                    | .2                | .3                 | 1.9               | .5                 | 3.1               | 1.6                |
| 01539000 19<br>01539500 19<br>01540200 19<br>01540500 219<br>01540500 319<br>01541000 19<br>01541200 219<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01542500 19<br>01542500 319<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 921–2008                      | 88                    | 3.1               | 3.6                | 7.1               | 5.0                | 9.3               | 7.5                |
| 01539500 19<br>01540200 19<br>01540500 219<br>01540500 319<br>01541000 19<br>01541200 219<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01542000 19<br>01542500 219<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 940-2008                      | 69                    | 15.4              | 16.8               | 36.8              | 21.1               | 51.1              | 36.8               |
| 01540200 19<br>01540500 219<br>01540500 319<br>01541000 19<br>01541200 219<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>0154500 19<br>01542500 219<br>01542500 319<br>01542500 319<br>01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 942-1958                      | 17                    | .1                | .3                 | 1.4               | 1.0                | 3.3               | 2.3                |
| 01540500 219<br>01540500 319<br>01541000 19<br>01541200 219<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01541500 319<br>01542000 19<br>01542500 319<br>01542810 19<br>01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 965-1981                      | 17                    | 0                 | 0                  | .3                | .1                 | .3                | .1                 |
| 01540500 319<br>01541000 19<br>01541200 319<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01541500 319<br>01542000 19<br>01542500 319<br>01542810 19<br>01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 981-2008                      | 28                    | 1,080             | 1,120              | 1,870             | 1,320              | 2,330             | 1,690              |
| 01541000 19<br>01541200 219<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01541500 319<br>01542000 19<br>01542500 219<br>01542500 319<br>01542810 19<br>01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 906-1979                      | 20<br>74              | 927               | 978                | 1,660             | 1,160              | 2,050             | 1,590              |
| 01541200 219<br>01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01541500 319<br>01542000 19<br>01542500 219<br>01542810 19<br>01542810 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 915–2008                      | 94                    | 25,3              | 27.9               | 50.7              | 35.3               | 66.6              | 49.6               |
| 01541200 319<br>01541303 19<br>01541308 19<br>01541500 219<br>01541500 319<br>01542000 19<br>01542500 219<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 967-2008                      | 40                    | 34.6              | 45.2               | 66.0              | 63.1               | 100               | 92,4               |
| 01541303         19           01541308         19           01541500         219           01541500         319           01542000         19           01542500         219           01542500         319           01542500         319           01542810         19           01543000         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 957–1965                      | g                     | 22.9              | 24.7               | 44.7              | 27.7               | 58.2              | 36.4               |
| 01541308 19<br>01541500 219<br>01541500 319<br>01542000 19<br>01542500 219<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 980-2008                      | 29                    | 53.4              | 58.5               | 94.0              | 74.4               | 123               | 102                |
| 01541500 219<br>01541500 319<br>01542000 19<br>01542500 219<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 969-1979                      | 11                    | 1.3               | 1.3                | 1.9               | 1.6                | 2.4               | 2.1                |
| 01541500 319<br>01542000 19<br>01542500 219<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 962-2008                      | 47                    | 39.0              | 41.9               | 66.5              | 51.9               | 86.3              | 70.6               |
| 01542000 19<br>01542500 219<br>01542500 319<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9151960                       | 46                    | 14.9              | 21.3               | 41.9              | 28.5               | 55.0              | 42.9               |
| 01542500 <sup>2</sup> 19<br>01542500 <sup>3</sup> 19<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9421993                       | 52                    | 8,1               | 9.1                | 14.8              | 11.3               | 17.8              | 14.6               |
| 01542500 <sup>3</sup> 19<br>01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 967-2008                      | 33                    | 216               | 235                | 326               | 285                | 435               | 402                |
| 01542810 19<br>01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 941–1965                      | 20                    |                   | 131                | 189               | 152                | 243               | 221                |
| 01543000 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 966-2008                      | 43                    | 1                 | .1                 | .3                | .2                 | .5                | .3                 |
| 생기가 열심하다는 사람들은 사람들이 얼마를 했다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 915-2008<br>915-2008          | 93<br>94              | <br>2.9           | 4.2                | .5<br>16.0        | .2<br>9.6          | .3<br>27.4        | .s<br>19.2         |
| ひょうすううひひ 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 913-2008<br>940-2008          | 94<br>69              | 2,9<br>10.7       | 4.2<br>14,5        | 10.0<br>44,9      | 9.6<br>26.6        | 74.9              | 19.2<br>50.5       |
| (*) : 일은 : 1일은 1990년 사람들은 1990년 등 일을 다 살아 있다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 940–2008<br>95 <b>7–</b> 2008 | 52                    | 3.3               | 14.5<br>6.9        |                   |                    |                   | 行动作为阿伯克 阿拉伯拉拉      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 937-2008<br>942-2008          | and the second second | <b>3.3</b><br>4.2 |                    | 19.0              | 11.2               | 31.1              | 19.0               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 942-2008<br>964-2008          | 67                    |                   | 4.9                | 12.5              | 7.5                | 17.4              | 11.7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | 45                    | 6.8               | 8.2                | 21.2              | 12.0               | 32.7              | 20.7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 963–2008<br>909–1961          | 46                    | 217               | 238                | 446               | 306                | 629               | 428                |
| 01545500 <sup>3</sup> 19<br>01545600 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | unu_tur:                      | 53<br>43              | 125<br>1.2        | 141<br>1.5         | 278<br>4.4        | 190<br>2,4         | 387<br>6.7        | 296<br>4.2         |

#### 12 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

| Streamgage<br>number | Streamgage name                                       | Latitude | Longitude | Drainage<br>area<br>(mi²) | Regulated |
|----------------------|-------------------------------------------------------|----------|-----------|---------------------------|-----------|
| 01508803             | West Branch Tioughnioga River at Homer, N.Y.          | 42,638   | -76,176   | 71.5                      | N         |
| 01509000             | Tioughnioga River at Cortland, N.Y.                   | 42,603   | -76.159   | 292                       | N         |
| 01510000             | Otselic River at Cincinnatus, N.Y.                    | 42,541   | -75.900   | 147                       | N         |
| 01512500             | Chenango River near Chenango Forks, N.Y.              | 42.218   | -75.848   | 1,483                     | N         |
| 01515000             | Susquehanna River near Waverly, N.Y.                  | 41.985   | -76.501   | 4,773                     | N         |
| 01516350             | Tioga River near Mansfield, Pa.                       | 41.797   | -77.080   | 153                       | N         |
| 01516500             | Corey Creek near Mainesburg, Pa.                      | 41,791   | -77.015   | 12.2                      | N         |
| 01518000             | Tioga River at Tioga, Pa.                             | 41.908   | -77,129   | 282                       | Y         |
| 01518700             | Tioga River at Tioga Junction, Pa.                    | 41.953   | -77.115   | 446                       | Y         |
| 01518862             | Cowanesque River at Westfield, Pa.                    | 41.923   | -77.532   | 90.6                      | N         |
| 01520000             | Cowanesque River near Lawrenceville, Pa.              | 41,997   | -77.140   | 298                       | Y         |
| 01520500             | Tioga River at Lindley, N.Y.                          | 42,029   | -77.132   | 771                       | Y         |
| 01521500             | Canisteo River at Arkport, N.Y.                       | 42.396   | -77.711   | 30.6                      | Y         |
| 01523500             | Canacadea Creek near Hornell, N.Y.                    | 42.335   | -77.683   | 57.9                      | Y         |
| 01524500             | Canisteo River below Canacadea Creek at Hornell, N.Y. | 42,314   | -77.651   | 158                       | Υ         |
| 01526500             | Tioga River near Erwins, N.Y.                         | 42.121   | -77.129   | 1,377                     | Y         |
| 01527000             | Cohocton River at Cohocton, N.Y.                      | 42,500   | -77.500   | 52.2                      | N         |
| 01527500             | Cohocton River at Avoca, N.Y.                         | 42.398   | -77.417   | 152                       | N         |
| 01528000             | Fivemile Creek near Kanona, N.Y.                      | 42.388   | -77.358   | 66.8                      | N         |
| 01529000             | Mud Creek near Savona, N.Y.                           | 42,308   | -77.197   | 76.6                      | Y         |
| 01529500             | Cohocton River near Campbell, N.Y.                    | 42.253   | -77.217   | 470                       | N         |
| 01529950             | Chemung River at Corning, N.Y.                        | 42.146   | -77.057   | 2,006                     | Y         |
| 01530332             | Chemung River at Elmira, N.Y.                         | 42.086   | -76.801   | 2,162                     | Υ         |
| 01530500             | Newtown Creek at Elmira, N.Y.                         | 42.105   | -76.798   | 77.5                      | Y         |
| 01531000             | Chemung River at Chemung, N.Y.                        | 42.002   | -76,635   | 2,506                     | Υ         |
| 01531500             | Susquehanna River at Towanda, Pa.                     | 41.765   | -76.441   | 7,797                     | Y         |
| 01532000             | Towanda Creek near Monroeton, Pa.                     | 41.707   | -76.485   | 215                       | N         |
| 01532850             | MB Wyalusing Creek near Birchardville, Pa.            | 41.863   | -76.007   | 5.67                      | N         |
| 01533400             | Susquehanna River at Meshoppen, Pa.                   | 41.607   | -76.050   | 8,720                     | Y         |
| 01533500             | North Branch Mehoopany Creek near Lovelton, Pa.       | 41.531   | -76.156   | 35.2                      | N         |
| 01533950             | SB Tunkhannock Creek near Montdale, Pa.               | 41.575   | -75,642   | 12.6                      | N         |
| 01534000             | Tunkhannock Creek near Tunkhannock, Pa.               | 41.558   | -75.895   | 383                       | N         |
| 01534300             | Lackawanna River near Forest City, Pa.                | 41.680   | -75.472   | 38.8                      | Y         |
| 01534500             | Lackawanna River at Archbald, Pa.                     | 41.505   | -75.542   | 108                       | Y         |
| 01536000             | Lackawanna River at Old Forge, Pa.                    | 41.359   | -75.744   | 332                       | Υ         |
| 01536500             | Susquehanna River at Wilkes-Barre, Pa.                | 41.251   | -75.881   | 9,960                     | Y         |
| 01537000             | Toby Creek at Luzerne, Pa.                            | 41,281   | -75.896   | 32.4                      | Y         |
| 01537500             | Solomon Creek at Wilkes-Barre, Pa.                    | 41,228   | -75.904   | 15.7                      | N         |
| 01538000             | Wapwallopen Creek near Wapwallopen, Pa.               | 41.059   | -76.094   | 43.8                      | N         |
| 01539000             | Fishing Creek near Bloomsburg, Pa.                    | 41.078   | -76.431   | 274                       | N         |
| 01539500             | Little Fishing Creek at Eyers Grove, Pa.              | 41.080   | -76.511   | 56.5                      | N         |
| 01540200             | Trexler Run near Ringtown, Pa.                        | 40.853   | -76.280   | , 1.77                    | N         |
| 01540500             | Susquehanna River at Danville, Pa.                    | 40.958   | -76.619   | 11,220                    | Y         |
| 01541000             | West Branch Susquehanna River at Bower, Pa.           | 40,897   | -78.677   | 315                       | N         |
| 01541200             | West Branch Susquehanna River near Curwensville, Pa.  | 40.961   | -78.519   | 367                       | Υ         |

# APPENDIX B WQM 7.0 MODEL INPUT/OUTPUT

#### Input Data WQM 7.0

|                          | SWP Stream<br>Basin Code |                      | Stream Name             |                         |                         | RMI         | Ele                               | evation<br>(ft) | Drainage<br>Area<br>(sq mi) | Slope<br>(ft/ft)         | Witho            | VS<br>Irawal<br>gd)  | Apply<br>FC |   |
|--------------------------|--------------------------|----------------------|-------------------------|-------------------------|-------------------------|-------------|-----------------------------------|-----------------|-----------------------------|--------------------------|------------------|----------------------|-------------|---|
|                          | 07K                      | 66                   | 85 SUSQ                 | UEHANN                  | A RIVER                 |             | 136.60                            | 00              | 438.00                      | 11220.00                 | 0.000            | 00                   | 0.00        | ✓ |
|                          |                          |                      |                         |                         | St                      | ream Dat    | a                                 |                 |                             |                          |                  |                      |             |   |
| Design<br>Cond.          | LFY                      | Trib<br>Flow         | Stream<br>Flow          | Rch<br>Trav<br>Time     | Rch<br>Velocity         | WD<br>Ratio | Rch<br>Width                      | Rch<br>Depth    |                             | <u>Tributary</u><br>p pH | т т              | <u>Strear</u><br>emp | n<br>pH     |   |
| Conu.                    | (cfsm)                   | (cfs)                | (cfs)                   | (days)                  | (fps)                   |             | (ft)                              | (ft)            | (℃                          | )                        | (                | (°C)                 |             |   |
| Q7-10<br>Q1-10<br>Q30-10 | 0.100                    | 0.00<br>0.00<br>0.00 | 1120.00<br>0.00<br>0.00 | 0.000<br>0.000<br>0.000 | 0.000<br>0.000<br>0.000 | 0.0         | 0.00                              | 0.0             | 00 2                        | 0.00 7                   | .00              | 0.00                 | 0.00        |   |
|                          |                          |                      |                         |                         | Di                      | scharge (   | Data                              |                 |                             |                          |                  |                      | 1           |   |
|                          |                          |                      | Name                    | Per                     | mit Number              | Disc        | Permitto<br>Disc<br>Flow<br>(mgd) | Dis<br>Flo      | sc Res<br>ow Fa             | erve Te<br>ctor          | isc<br>mp<br>(C) | Disc<br>pH           |             |   |
|                          |                          | Danv                 | ile MA                  | PAG                     | 0023531                 | 3.6200      | 3.620                             | 00 3.6          | 8200                        | 0.000                    | 25.00            | 7.00                 |             |   |
|                          |                          |                      |                         |                         | Pa                      | arameter [  | Data                              |                 |                             |                          |                  |                      |             |   |
|                          |                          |                      | ı                       | Paramete                | r Name                  |             |                                   | Frib<br>Conc    | Stream<br>Conc              | Fate<br>Coef             |                  |                      |             |   |
|                          |                          |                      |                         |                         |                         | (m          | g/L) (n                           | ng/L)           | (mg/L)                      | (1/days)                 |                  |                      |             |   |
|                          |                          |                      | CBOD5                   |                         |                         | :           | 25.00                             | 2.00            | 0.00                        | 1.50                     |                  |                      |             |   |
|                          |                          |                      | Dissolved               | Oxygen                  |                         |             | 3.00                              | 8.24            | 0.00                        | 0.00                     |                  |                      |             |   |
|                          |                          |                      | NH3-N                   |                         |                         |             | 25.00                             | 0.00            | 0.00                        | 0.70                     |                  |                      |             |   |

### WQM 7.0 Hydrodynamic Outputs

|         | SWI               | Strea       | m Code  |        | Stream Name    |       |        |                |          |                |                  |                |
|---------|-------------------|-------------|---------|--------|----------------|-------|--------|----------------|----------|----------------|------------------|----------------|
|         | 07K 6685          |             |         |        |                |       |        |                |          |                |                  |                |
| RMI     | Stream<br>Flow    | PWS<br>With |         |        | Reach<br>Slope | Depth | Width  | h W/D<br>Ratio | Velocity | Trav           | Analysis<br>Temp | Analysis<br>pH |
|         | (cfs)             | (cfs)       | (cfs)   | (cfs)  | (ft/ft)        | (ft)  | (ft)   |                | (fps)    | Time<br>(days) | (°C)             |                |
| Q7-1    | Q7-10 Flow        |             |         |        |                |       |        |                |          |                |                  |                |
| 138.600 | 1120.00           | 0.00        | 1120.00 | 5.6001 | 0.00053        | 1.105 | 760.81 | 688.35         | 1.34     | 0.016          | 20.02            | 7.00           |
|         | 0 Flow<br>1079.68 | 0.00        | 1079.68 | 5.6001 | 0.00053        | NA    | NA     | NA             | 1.31     | 0.017          | 20.03            | 7.00           |
| Q30-    | 10 Flow           |             |         |        |                |       |        |                |          |                |                  |                |
| 138.600 | 1320.48           | 0.00        | 1320.48 | 5.6001 | 0.00053        | NA    | NA     | NA             | 1.47     | 0.015          | 20.02            | 7.00           |

#### WQM 7.0 Modeling Specifications

| Parameters         | Both   | Use Inputted Q1-10 and Q30-10 Flows | <b>~</b> |
|--------------------|--------|-------------------------------------|----------|
| WLA Method         | EMPR   | Use Inputted W/D Ratio              |          |
| Q1-10/Q7-10 Ratio  | 0.964  | Use Inputted Reach Travel Times     |          |
| Q30-10/Q7-10 Ratio | 1.179  | Temperature Adjust Kr               | ~        |
| D.O. Saturation    | 90.00% | Use Balanced Technology             | <b>~</b> |
| D.O. Goal          | 6      |                                     |          |

Tuesday, November 17, 2020

Version 1.0b

Page 1 of 1

#### WQM 7.0 Wasteload Allocations

|                | SWP Basin St<br>07K              | ream Code<br>6685                  |                           | _                               | ream Name<br>JEHANNA RI   | VER               |                      |                      |
|----------------|----------------------------------|------------------------------------|---------------------------|---------------------------------|---------------------------|-------------------|----------------------|----------------------|
| NH3-N          | Acute Allocation                 | ons                                |                           |                                 |                           |                   |                      |                      |
| RMI            | Discharge Nan                    | Baseline<br>ne Criterion<br>(mg/L) | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction | 1                    |
| 136.60         | 00 Danville MA                   | 9.66                               | 50                        | 9.66                            | 50                        | 0                 | 0                    | -                    |
| NH3-N<br>RMI   | Chronic Alloca<br>Discharge Name | Baseline                           | Baseline<br>WLA<br>(mg/L) | Multiple<br>Criterion<br>(mg/L) | Multiple<br>WLA<br>(mg/L) | Critical<br>Reach | Percent<br>Reduction |                      |
| 136.60         | 00 Danville MA                   | 1.91                               | 25                        | 1.91                            | 25                        | 0                 | 0                    |                      |
| Dissolv<br>RMI | ed Oxygen Alk<br>Discharge N     | ر<br>Jame Baseli                   |                           |                                 | ıltiple Basel             |                   | Critical             | Percent<br>Reduction |
|                |                                  | (mg/L                              | .) (mg/L)                 | (mg/L) (m                       | ng/L) (mg/l               | L) (mg/L)         |                      |                      |

### WQM 7.0 D.O.Simulation

| SWP Basin Str<br>07K     | eam Code<br>6685   |                 | sus             | <u>Stream Name</u><br>QUEHANNA RIVER | 1                    |
|--------------------------|--------------------|-----------------|-----------------|--------------------------------------|----------------------|
| <u>RMI</u>               | Total Discharge    | Flow (mgd       | ) Anal          | ysis Temperature (°0                 | C) Analysis pH       |
| 136.600                  | 3.620              | )               |                 | 20.025                               | 7.000                |
| Reach Width (ft)         | Reach Dep          | oth (ft)        |                 | Reach WDRatio                        | Reach Velocity (fps) |
| 760.807                  | 1.108              | 5               |                 | 688.350                              | 1.339                |
| Reach CBOD5 (mg/L)       | Reach Kc (         | 1/days)         | R               | each NH3-N (mg/L)                    | Reach Kn (1/days)    |
| 2.11                     |                    |                 |                 | 0.12                                 | 0.701                |
| Reach DO (mg/L)          |                    |                 |                 | Kr Equation                          | Reach DO Goal (mg/L) |
| 8.217                    | 3.287              | 7               | Tsivo           |                                      | 6                    |
| Reach Travel Time (days) |                    | Subreach        | Results         |                                      |                      |
| 0.016                    | TravTime<br>(days) | CBOD5<br>(mg/L) | NH3-N<br>(mg/L) | D.O.<br>(mg/L)                       |                      |
|                          | 0.002              | 2.11            | 0.12            | 8.22                                 |                      |
|                          | 0.003              | 2.11            | 0.12            | 8.22                                 |                      |
|                          | 0.005              | 2.11            | 0.12            | 8.23                                 |                      |
|                          | 0.007              | 2.11            | 0.12            | 8.23                                 |                      |
|                          | 0.008              | 2.11            | 0.12            | 8.24                                 |                      |
|                          | 0.010              | 2.11            | 0.12            | 8.24                                 |                      |
|                          | 0.012              | 2.11            | 0.12            | 8.24                                 |                      |
|                          | 0.013              | 2.11            | 0.12            | 8.24                                 |                      |
|                          | 0.015              | 2.11            | 0.12            | 8.24                                 |                      |
|                          | 0.016              | 2.11            | 0.12            | 8.24                                 |                      |

Tuesday, November 17, 2020 Version 1.0b Page 1 of 1

# APPENDIX C

# TOXICS SCREENING ANALYSIS V2.7 / REASONABLE POTENTIAL ANALYSIS

#### TOXICS SCREENING ANALYSIS WATER QUALITY POLLUTANTS OF CONCERN VERSION 2.7 PA0023531 Facility: Danville Municipal Authority NPDES Permit No.: Outfall: 001 3.62 Analysis Hardness (mg/L): Stream Flow, Q<sub>7-10</sub> (cfs): 100 Discharge Flow (MGD): Analysis pH (SU): 7 Maximum Concentration in Most Stringent Candidate for Most Stringent Screening Parameter PENTOX8D Modeling Application or DMRs (µg/L) Critierion (µg/L) WQBEL (µg/L) Recommendation Total Dissolved Solids 497000 500000 Group 1 Chloride 140000 250000 No 560 No Bromide N/A Total Aluminum 750 No Total Antimony 0.6 5.6 No Total Arsenic 0.7 10 No Total Barlum 8.2 2400 No 0.26 N/A No Total Boron Total Cadmium 140 1600 No 0.271 0.25 No Total Chromium N/A No 0.99 10.4 0.45 19 No (Value < QL) Total Cobalt 9.3 Free Available Cyanide 5.2 Yes 77.724 Monitor Group Total Cyanide 0.026 N/A 53.7 300 Dissolved Iron No otal Iron 1500 No Total Lead 0.6 3.2 1000 No Total Manganese 44.9 No Total Mercury 0.05 0.03 No 3.8 52.2 No (Value < QL 5.0 Total Selenium 3.8 No (Value < QL) Total Silver 0.3 3.8 No (Value < QL) Total Thaillum 0.24 65.4 119.8 Total Molybdenum 8.3 N/A No No (Value < QL) Acrolein Acrylonitrie 0.58 0.051 No (Value < QL) < 0.41 Benzene No (Value < QL) 0.55 Carbon Tetrachloride 0.23 32.013 No Limits/Monitoring 0.52 Yes 0.19 130 Chlorobenzene No (Value < QL) Chlorodibromomethane 10.6 0.4 55.674 Yes No Limits/Monitoring 2-Chloroethyl Vlnyl Ether 0.34 3500 No (Value < QL) Chloroform 793.362 5.7 No Limits/Monitoring Yes 0.55 Dichlorobromomethane Yes No Limits/Mon ,1-Dichloroethane 1.2-Dichloroethane 0.35 0.38 No (Value < QL) 1,1-Dichloroethylene 0.28 33 No (Value < QL) 0.3 2200 No (Value < QL) 1,2-Dichloropropane < 1,3-Dichloropropylene 0.34 0.34 No (Value < QL) 0.31 No (Value < QL) Ethylbenzene 530 0.83 Methyl Bromide Methyl Chloride 5500 No (Value < QL) Methylene Chloride < .1.2.2-Tetrachloroethane 0.24 0.17 No (Value < QL) Tetrachloroethylene 0.69 No (Value < QL) 0.24 330 No (Value < QL) 1,2-trans-Dichloroethylene 0.33 140 No (Value < QL) • 0.43 610 No (Value < QL) 0.21 1.1.2-Trichloroethane 0.59 No (Value < QL) 0.33 Trichioroethylene 2.5 No (Value < QL) Vinyl Chloride 0.28 0.025 No (Value < QL) No (Value < QL) 2-Chlorophenol .4-Dichlorophenol 0.33 No (Value < QL) 2,4-Dimethylphenol 0.36 130 No 0.63 13 No 4,6-Dinitro-o-Cresol 2,4-Dinitrophenol 0.58 69 No Group 0.35 1600 No 4-Nitrophenol 0.75 470 No 30 p-Chloro-m-Cresol 1.03 0.27 Yes 30.819 No Limits/Monitoring entachiorophenoi 10400 No (Value < QL) 2.4.6-Trichlorophenol 0.35 1.4 No

Danville\_Toxic\_Screening\_2.7.xism, 12/16/2020

|                        | _                                                                          |                |                 |                 |                  |                                                  |
|------------------------|----------------------------------------------------------------------------|----------------|-----------------|-----------------|------------------|--------------------------------------------------|
| Acenaphthene           |                                                                            | 0.39           | 17              | No              |                  |                                                  |
| Acenaphthylene         | $\Box$                                                                     | 0.38           | N/A             | No              |                  |                                                  |
| Anthracene             | <                                                                          | 0.26           | 8300            | No (Value < QL) |                  |                                                  |
| Benzidine              | •                                                                          | 4.8            | 0.000086        | No (Value < QL) |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | -                                                                          |                |                 |                 |                  |                                                  |
|                        | *                                                                          |                |                 |                 |                  |                                                  |
|                        | $\vdash$                                                                   |                |                 |                 |                  | No. 11 No. 2 to No. of                           |
|                        | $\vdash$                                                                   |                |                 |                 | 4.176            | No Limits/Monitorin                              |
|                        | Н                                                                          |                |                 |                 |                  |                                                  |
|                        | Н                                                                          |                |                 |                 |                  |                                                  |
|                        | _                                                                          |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | _                                                                          |                |                 |                 |                  |                                                  |
|                        | -                                                                          |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | _                                                                          |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | $\overline{}$                                                              |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | -                                                                          |                |                 |                 |                  |                                                  |
|                        | *                                                                          |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  | <del>                                     </del> |
|                        |                                                                            |                |                 |                 | 3497 551         | No Limits/Monitori                               |
|                        |                                                                            |                |                 |                 | JA21.301         | rea contamination                                |
|                        |                                                                            |                |                 |                 | 5,011            | No Limits/Monitori                               |
|                        | <                                                                          |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | _                                                                          |                |                 |                 | 35,329           | No Limits/Monitori                               |
|                        | <                                                                          |                | 1               |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | <                                                                          |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | <                                                                          |                |                 |                 |                  |                                                  |
|                        |                                                                            |                |                 |                 |                  |                                                  |
|                        | <                                                                          |                |                 |                 |                  |                                                  |
|                        | •                                                                          | 0.53           | 0.005           |                 |                  |                                                  |
|                        | •                                                                          | 0.25           | 3.3             | No (Value < QL) |                  |                                                  |
|                        |                                                                            | 0.34           | 1               | No              |                  |                                                  |
| Pyrene                 |                                                                            | 0.3            | 830             | No              |                  |                                                  |
|                        | *                                                                          | 0.76           | 26              | No              |                  |                                                  |
|                        |                                                                            |                | 0.000049        |                 |                  |                                                  |
| sipha-BHC              |                                                                            |                | 0.0026          |                 |                  |                                                  |
| seta-BHC               |                                                                            |                | 0.0091          |                 |                  |                                                  |
| gamma-BHC              |                                                                            |                | 0.098           |                 |                  |                                                  |
| delta BHC              |                                                                            |                | N/A             |                 |                  |                                                  |
| Chlordane              |                                                                            |                | 0.0008          |                 |                  |                                                  |
| 4,4-DDT                |                                                                            |                | 0.00022         |                 |                  |                                                  |
| 4,4-DDE                |                                                                            |                | 0.00022         |                 |                  |                                                  |
|                        |                                                                            |                | 0.00031         |                 |                  |                                                  |
| Dieldrin               |                                                                            |                | 0.000052        |                 |                  |                                                  |
| alpha-Endosulfan       |                                                                            |                | 0.056           |                 |                  |                                                  |
| aeta-Endosulfan        |                                                                            |                | 0.056           |                 |                  |                                                  |
|                        |                                                                            |                | N/A             |                 |                  |                                                  |
| Endrin                 |                                                                            |                | 0.036           |                 |                  |                                                  |
| Endrin Aldehyde        |                                                                            |                | 0.29            |                 |                  |                                                  |
| Heptachior             |                                                                            |                | 0.000079        |                 |                  |                                                  |
|                        |                                                                            |                | 0.000039        |                 |                  |                                                  |
| -                      |                                                                            |                | 0.0002          |                 |                  |                                                  |
|                        |                                                                            |                | 0.000000005     |                 |                  |                                                  |
| Gross Alpha (pCI/L)    |                                                                            |                | N/A             |                 |                  |                                                  |
| Total Beta (pCVL)      |                                                                            |                | N/A             |                 |                  |                                                  |
| Radium 226/228 (pCI/L) |                                                                            |                | N/A             |                 |                  |                                                  |
| Total Strontium        |                                                                            |                | 4000            |                 |                  |                                                  |
|                        |                                                                            |                | N/A             |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 | I               |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
| Total Uranium          |                                                                            |                |                 |                 |                  |                                                  |
|                        | 4,4-000 Dieldrin alpha-Endosulfan beta-Endosulfan Endosulfan Sulfate Endin | Senzo(a)Pyrene | Berzo(a) Pyrene | Berzo(aliPyrene | Beranols   Prene | Betton Sir/Printer                               |

Danville\_Toxic\_Screening\_2.7.xlsm, 12/16/2020

# APPENDIX D PENTOXSD V2.0D MODEL INPUT/OUTPUT

#### PENTOXSD

#### **Modeling Input Data**

| Stre  | am<br>de | RMI                 | Elevation (ft) | Α              | nage<br>rea<br>( mi) | Slope                    | PWS V                  |                   |                     |                        | pply<br>FC  |                       |              |                     |                 |
|-------|----------|---------------------|----------------|----------------|----------------------|--------------------------|------------------------|-------------------|---------------------|------------------------|-------------|-----------------------|--------------|---------------------|-----------------|
| -     | 685      | 136.60              | 438            |                |                      | 0.00000                  |                        | 0.00              |                     |                        | <b>v</b>    | -                     |              |                     |                 |
|       |          |                     |                |                |                      |                          |                        | Stream D          | ata                 |                        |             |                       |              |                     |                 |
|       |          | LFY                 | Trib<br>Flow   | Stream<br>Flow | WD<br>Ratio          | Rch<br>Width             | Rch<br>Depth           | Rch<br>Velocity   | Rch<br>Trav<br>Time | <u>Tributa</u><br>Hard | pH          | <u>Strear</u><br>Hard | n<br>pH      | Analys<br>Hard      | <u>is</u><br>pH |
|       |          | (cfsm)              | (cfs)          | (cfs)          |                      | (ft)                     | (ft)                   | (fps)             | (days)              | (mg/L)                 |             | (mg/L)                |              | (mg/L)              |                 |
| Q7-10 | )        | 0.1                 | 0              | 1120           | 0                    | 0                        | 0                      | 0                 | 0                   | 100                    | 7           | 100                   | 0            | 0                   | 0               |
| Qh    |          |                     | 0              | 0              | 0                    | 0                        | 0                      | 0                 | 0                   | 100                    | 7           | 0                     | 0            | 0                   | 0               |
|       |          |                     |                |                |                      |                          | Di                     | ischarge [        | )ata                |                        |             |                       |              |                     |                 |
|       | Na       | ame                 | Perm<br>Numb   | er Di          | sc                   | ermitted<br>Disc<br>Flow | Design<br>Disc<br>Flow | Reserve<br>Factor | AFC<br>PMF          | CFC<br>PMF             | THH<br>PMF  | CRL<br>PMF            | Disc<br>Hard | Disc<br>pH          |                 |
|       |          |                     |                | (m             | gd) (                | (mgd)                    | (mgd)                  |                   |                     |                        |             |                       | (mg/L)       |                     |                 |
|       | Danv     | ille MA             | PA0023         | 3531 3.        |                      | 3.62                     | 3.62                   | 0                 | 0                   | 0                      | 0           | 0                     | 100          | 7                   | _               |
|       |          |                     |                |                |                      |                          | Pa                     | rameter D         | ata                 |                        |             |                       |              |                     |                 |
|       | P        | arameter N          | lame           |                | Disc<br>Conc         | Trib<br>Conc             | Disc<br>Daily<br>CV    | Hourl             | y Con               | c CV                   | Fate<br>Coe |                       | Crit<br>Mod  | Max<br>Disc<br>Conc |                 |
|       |          |                     |                |                | (µg/L)               | (µg/L)                   |                        |                   | (µg/l               |                        |             |                       |              | (µg/L)              |                 |
|       |          | NYLHYDR             |                |                | 0.35                 | 0                        | 0.5<br>0.5             |                   | _                   | 0                      | 0           | 0                     | 1            | 0                   |                 |
|       |          | ROTOLUEN<br>OROETHY |                | ь              | 0.41                 | 0                        | 0.5                    |                   |                     | 0                      | 0           | 0                     | 1            | 0                   |                 |
|       |          | TETRACHI            |                | .rc            | 0.52                 | 0                        | 0.5                    |                   | _                   | 0                      | 0           | 0                     | - 1          | 0                   |                 |
|       |          | IBROMON             |                | E              | 10.6                 | ō                        | 0.5                    |                   |                     | ō                      | 0           | 0                     | 1            | 0                   |                 |
| CHLC  | ROF      | ORM                 |                |                | 22.7                 | 0                        | 0.5                    | 5 0.5             | 0                   | 0                      | 0           | 0                     | 1            | 0                   |                 |
| CYAN  | NIDE,    | FREE                |                |                | 22.2                 | 0                        | 0.5                    | 5 0.5             | 0                   | 0                      | 0           | 0                     | 1            | 0                   |                 |
| DICH  | LORG     | DBROMON             | METHAN         | E              | 2.5                  | 0                        | 0.5                    | 5 0.5             | 0                   | 0                      | 0           | 0                     | 1            | 0                   |                 |
| DINIT | ROT      | OLUENE,             | TOTAL          |                | 0.41                 | 0                        | 0.5                    | 5 0.5             | 0                   | 0                      | 0           | 0                     | 1            | 0                   |                 |
|       |          | OROBUTA<br>LOROPHE  |                |                | 1.03                 | 0                        | 0.6<br>0.6             |                   |                     | 0                      | 0           | 0                     | 1            | 0                   |                 |

Tuesday, December 15, 2020 Version 2.0d Page 1 of 2

#### **PENTOXSD Analysis Results**

#### Hydrodynamics

| <u>\$</u> | WP Basir<br>07K         | 1                    |                                | n Code:<br>885                    |                | SI            | <u>Strear</u><br>USQUEH | m Name<br>ANNA R | _                 |                                 |              |
|-----------|-------------------------|----------------------|--------------------------------|-----------------------------------|----------------|---------------|-------------------------|------------------|-------------------|---------------------------------|--------------|
| RMI       | Stream<br>Flow<br>(cfs) | PWS<br>With<br>(cfs) | Net<br>Stream<br>Flow<br>(cfs) | Disc<br>Analysis<br>Flow<br>(cfs) | Reach<br>Slope | Depth<br>(ft) | Width<br>(ft)           | WD<br>Ratio      | Velocity<br>(fps) | Reach<br>Trav<br>Time<br>(days) | CMT<br>(min) |
|           | Q7-10 Hydrodynamics     |                      |                                |                                   |                |               |                         |                  |                   |                                 |              |
| 136.600   | 1120                    | 0                    | 1120                           | 5.60013                           | 0.0005         | 1.1053        | 760.81                  | 688.35           | 1.3386            | 0.0164                          | 1000+        |
| 136.240   | 1125                    | 0                    | 1125                           | NA                                | 0              | 0             | 0                       | 0                | 0                 | 0                               | NA           |
|           |                         |                      |                                |                                   | Q              | h Hydr        | odynan                  | nics             |                   |                                 |              |
| 136.600   | 3435.6                  | 0                    | 3435.6                         | 5.60013                           | 0.0005         | 1.8072        | 760.81                  | 420.98           | 2.5028            | 0.0088                          | 1000+        |
| 136.240   | 3449.0                  | 0                    | 3449.0                         | NA                                | 0              | 0             | 0                       | 0                | 0                 | 0                               | NA           |

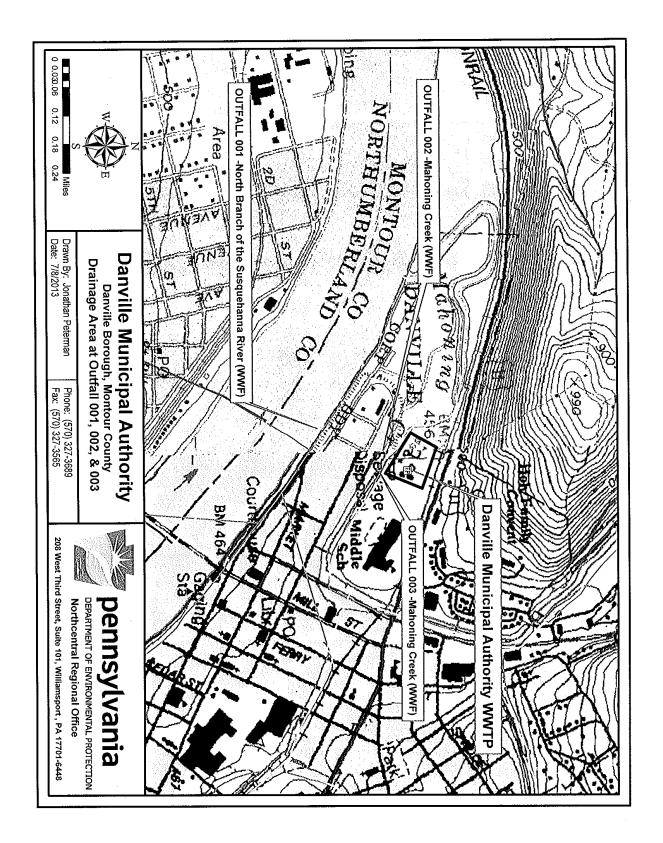
Tuesday, December 15, 2020 Version 2.0d Page 1 of 1

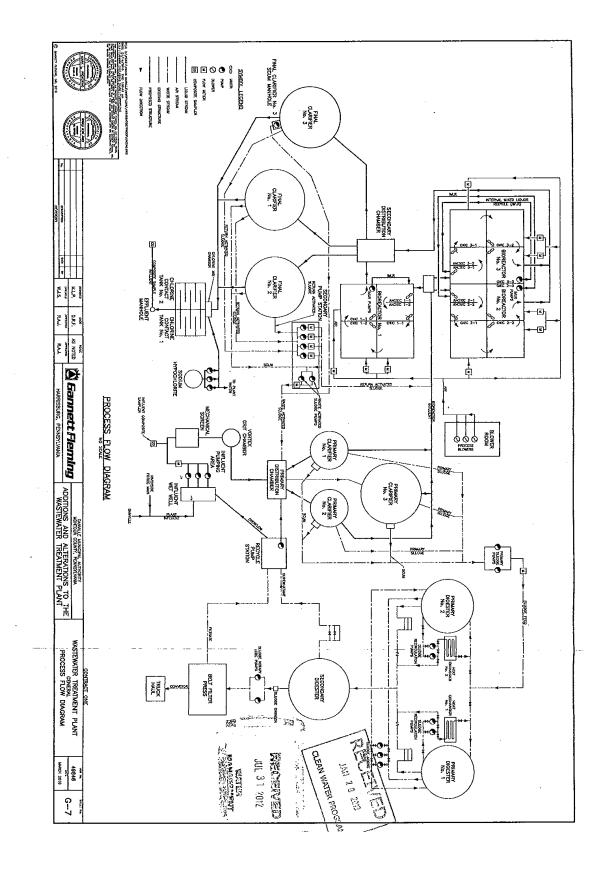
#### PENTOXSD Analysis Results

#### Wasteload Allocations

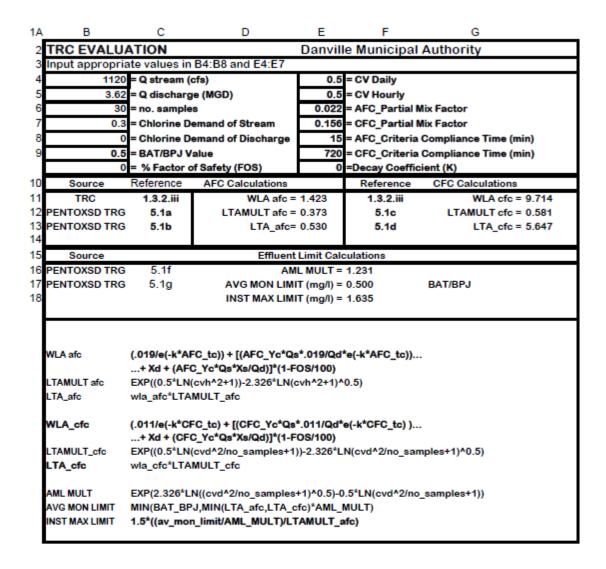
| RMI     | Name            | Permit No | umber                    |              |                        |              |               |                     |               |
|---------|-----------------|-----------|--------------------------|--------------|------------------------|--------------|---------------|---------------------|---------------|
| 136.60  | Danville MA     | PA0023    | 3531                     |              |                        |              |               |                     |               |
|         |                 |           |                          |              | AFC                    |              |               |                     |               |
| Q7-1    | 0: CCT (mi      | in) 15    | PMF                      | 0.022        | Analysis               | pH 7         | Analysis      | Hardness            | 100           |
|         | Parameter       |           | Stream<br>Conc<br>(µg/L) | Stream<br>CV | Trib<br>Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ<br>Obj<br>(µg/L) | WLA<br>(µg/L) |
|         |                 |           |                          |              |                        |              |               |                     |               |
|         | CYANIDE, FREE   |           | 0                        | 0            | 0                      | 0            | 22            | 22                  | 121.261       |
| PEN     | TACHLOROPHE!    | NOL       | 0                        | 0            | 0                      | 0            | 8.723         | 8.723               | 48.082        |
| CARE    | BON TETRACHLO   | RIDE      | 0                        | 0            | 0                      | 0            | 2800          | 2800                | 15433.25      |
| CHLO    | RODIBROMOMET    | HANE      | 0                        | 0            | 0                      | 0            | NA            | NA                  | NA            |
|         | CHLOROFORM      |           | 0                        | 0            | 0                      | 0            | 1900          | 1900                | 10472.57      |
| DICHL   | OROBROMOMET     | HANE      | 0                        | 0            | 0                      | 0            | NA            | NA                  | NA            |
| BIS(2-0 | CHLOROETHYL) E  | ETHER     | 0                        | 0            | 0                      | 0            | 30000         | 30000               | 165356.3      |
| 2,6     | B-DINITROTOLUEI | NE        | 0                        | 0            | 0                      | 0            | 990           | 990                 | 5456.758      |
| 1,2-0   | DIPHENYLHYDRA   | ZINE      | 0                        | 0            | 0                      | 0            | 15            | 15                  | 82.678        |
| HEXA    | ACHLOROBUTA-D   | IENE      | 0                        | 0            | 0                      | 0            | 10            | 10                  | 55.119        |
| DINI    | TROTOLUENE, TO  | DTAL      | 0                        | 0            | 0                      | 0            | NA            | NA                  | NA            |
|         |                 |           |                          | 0            | CFC                    |              |               |                     |               |
| Q7-10:  | CCT (min        | 1) 720    | PMF                      | 0.156        | Analysis               | pH 7         | Analysi       | s Hardness          | 100           |
|         | Parameter       |           | Stream<br>Conc.          | Stream<br>CV | Trib<br>Conc.          | Fate<br>Coef | WQC           | WQ<br>Obi           | WLA           |
|         | rarameter       |           | (µg/L)                   | O.           | (µg/L)                 | COE          | (µg/L)        | (µg/L)              | (µg/L)        |
|         | CYANIDE, FREE   |           | 0                        | 0            | 0                      | 0            | 5.2           | 5.2                 | 167.748       |
| PEN     | TACHLOROPHEN    | NOL       | 0                        | 0            | 0                      | 0            | 6.693         | 6.693               | 215.897       |
| CARB    | ON TETRACHLO    | RIDE      | 0                        | 0            | 0                      | 0            | 560           | 560                 | 18065.15      |
| CHLOR   | RODIBROMOMET    | HANE      | 0                        | 0            | 0                      | 0            | NA            | NA                  | NA            |
|         | CHLOROFORM      |           | 0                        | 0            | 0                      | 0            | 390           | 390                 | 12581.09      |
| DICHL   | OROBROMOMET     | HANE      | 0                        | 0            | 0                      | 0            | NA            | NA                  | NA            |

Tuesday, December 15, 2020 Version 2.0d Page 1 of 3


#### PENTOXSD Analysis Results


#### Recommended Effluent Limitations

| SWP Basin |        | Stream Code: |                  | Stream Nam         | e:    |   |
|-----------|--------|--------------|------------------|--------------------|-------|---|
| 07K       |        | 6685         | S                | USQUEHANNA         | RIVER |   |
|           | RMI    | Name         | Permit<br>Number | Disc Flow<br>(mgd) |       | _ |
|           | 136.60 | Danville MA  | PA0023531        | 3.6200             |       |   |


|                          | Effluent<br>Limit |                        | Max.<br>Daily   | Most S          | tringent           |  |
|--------------------------|-------------------|------------------------|-----------------|-----------------|--------------------|--|
| Parameter                | (µg/L)            | Governing<br>Criterion | Limit<br>(µg/L) | WQBEL<br>(µg/L) | WQBEL<br>Criterion |  |
| 1,2-DIPHENYLHYDRAZINE    | 0.35              | INPUT                  | 0.546           | 5.011           | CRL                |  |
| 2,6-DINITROTOLUENE       | 0.41              | INPUT                  | 0.64            | 3497.561        | AFC                |  |
| BIS(2-CHLOROETHYL) ETHER | 0.41              | INPUT                  | 0.64            | 4.176           | CRL                |  |
| CARBON TETRACHLORIDE     | 0.52              | INPUT                  | 0.811           | 32.013          | CRL                |  |
| CHLORODIBROMOMETHANE     | 10.6              | INPUT                  | 16.538          | 55.674          | CRL                |  |
| CHLOROFORM               | 22.7              | INPUT                  | 35.416          | 793.362         | CRL                |  |
| CYANIDE, FREE            | 22.2              | INPUT                  | 34.636          | 77.724          | AFC                |  |
| DICHLOROBROMOMETHANE     | 2.5               | INPUT                  | 3.9             | 76.552          | CRL                |  |
| DINITROTOLUENE, TOTAL    | 0.41              | INPUT                  | 0.64            | 6.959           | CRL                |  |
| HEXACHLOROBUTA-DIENE     | 0.98              | INPUT                  | 1.529           | 35.329          | AFC                |  |
| PENTACHLOROPHENOL        | 1.03              | INPUT                  | 1.607           | 30.819          | AFC                |  |

# APPENDIX E FACILITY MAP AND SCHEMATIC





# APPENDIX F TRC ANALYSIS SPREADSHEET



Page 1