

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0024040

APS ID 1026358

Authorization ID 1332420

Applicant Name	Highs	spire Borough Authority	Facility Name	Highspire STP
Applicant Address	640 E	shelman Street	Facility Address	297 Industrial Road
	Highs	pire, PA 17034-1610		Highspire, PA 17034-1200
Applicant Contact	Von F	less	Facility Contact	Randy Kreider
Applicant Phone	(717)	939-3303	Facility Phone	(717) 939-6204
Client ID	18928	37	Site ID	252592
Ch 94 Load Status	Not O	verloaded	Municipality	Highspire Borough
Connection Status	No Li	mitations	County	Dauphin
Date Application Rece	eived	October 30, 2020	EPA Waived?	No
Date Application Acce	epted	November 16, 2020	If No, Reason	Major Facility, Significant CB Discharge

Summary of Review

1.0 General Discussion

This factsheet supports the re-issuance of an existing NPDES permit for discharge of treated domestic wastewater from Highspire Borough Authority's (Authority) wastewater treatment plant (WWTP). The Authority owns, operates, and maintains the wastewater treatment plant. The facility is located in the Borough of Highspire, Dauphin County near the intersection of Lumber Street and Industrial Road. The facility provides biological nutrient removal using two parallel oxidation ditches. The facility discharges treated wastewater to Susquehanna River. The collection system has no combined sewers. The facility has an average annual flow of 2.0 MGD, hydraulic design capacity as 2.0 MGD and an organic design capacity of 3,800lbs/day. The facility receives flows from Borough of Highspire (33%) and Lower Swatara Township (67%). The existing NPDES permit was issued on April 26, 2016 with an effective date of May 1, 2016 and expiration date of April 30, 2021. The applicant submitted a timely NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit under administrative extension provisions pending Department action on the renewal application. A topographic map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Digested sludge is dewatered in a centrifuge and landfilled at Cumberland County Landfill. Liquid sludge is sometimes hauled out by Kline's as needed.

Approve	Deny	Signatures	Date
Х		g. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	November 20, 2021
Х		Maria D. Bebenek 70R Daniel W. Martin, P.E. / Environmental Engineer Manager	December 10, 2021
Х		Maria D. Bebenek Maria D. Bebenek, P.E./ Program Manager	December 10, 2021

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3.0 Changes to the existing permit

• E. Coli monitoring has been added

1.3.1 Existing Limitations and Monitoring Requirements

			Effluent	Limitations			Monitoring Requ	uirements
Discharge Parameter	Mass Ur	nits (lbs/day)		Concent	rations (mg	Minimum	Required	
3	Monthly Average	Weekly Average	Minimum	Monthly Average	Weekly Average	Instantaneous Maximum	Measurement Frequency	Sample Type
Flow (mgd)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/Day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/Day	Grab
TSS	500	750	XXX	30	45	60	2/week	24-hr comp
CBOD ₅	417	667	XXX	25	40	50	2/week	24-hr comp
Fecal Coliform (5/1 to 9/30) ⁽⁵⁾	XXX	XXX	XXX	200	XXX	1000	2/week	Grab
Fecal Coliform (10/1 to 4/30)	XXX	XXX	XXX	2,000	XXX	10000	2/week	Grab
Total Phosphorus	33	XXX	XXX	2.0	XXX	4.0	2/week	24-hr comp
UV Transmittance (%)	XXX	xxx	Report	XXX	XXX	XXX	1/day	Metered

1.3.2 Chesapeake Bay Permit Requirements

		Effluent	Monitoring Requirements				
Discharge	Mass L	oad(lbs)	Con	centrations (mg/l)	Minimum	
Parameter	Monthly	Annual	Minimum	Monthly Average	Maximum	Measurement Frequency	Required Sample Type
AmmoniaN	Report	Report	XXX	Report	XXX	2/week	24-hr Comp
KjeldahlN	Report	XXX	XXX	Report	XXX	2/Week	24-hr Comp
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	2/Week	24-hr Comp
Total Nitrogen	Report	Report	XXX	Report	XXX	1/Month	Calculate
Total Phosphorus	Report	Report	XXX	Report	XXX	2/week	24-hr Comp
Net Total Nitrogen	Report	36,529	XXX	XXX	XXX	1/Month	Calculate
Net Total Phos.	Report	4,871	XXX	XXX	XXX	1/Month	Calculate

1.4.0 Discharge, Receiving	Waters and Water Supply Information				
Outfall No. 001	Design Flow (MGD)	2			
Latitude 40° 12' 21.35"	_ Longitude	76° 47' 26.87"			
Quad Name Steelton	_ Longitude Quad Code	1731			
Wastewater Description: Sewage	_ Quad Code	1731			
Wasiewater Bescription:					
Receiving Waters Susquehanna River	Stream Code	06685			
NHD Com ID 56404737	RMI	64.5			
Drainage Area 24280.0	Yield (cfs/mi²)	0.10			
Q ₇₋₁₀ Flow (cfs) 2828.0	Q ₇₋₁₀ Basis				
Elevation (ft)	Slope (ft/ft)				
Watershed No. 7-C	Chapter 93 Class.	WWF, MF			
Existing Use	Existing Use Qualifier				
Exceptions to Use	Exceptions to Criteria				
Assessment Status Impaired					
Cause(s) of ImpairmentpH, PCB					
Source(s) of Impairment unknown					
TMDL Status Pending	Name				
Background/Ambient Data pH (SU) Temperature (°F)	Data Source				
Hardness (mg/L) Other:					
Nearest Downstream Public Water Supply Intake	Colombia Water Company				
PWS Waters Susquehanna river	Flow at Intake (cfs)				
PWS RMI	Distance from Outfall (mi)	<22			

Changes Since Last Permit Issuance:

1.4.1 Water Supply Intake

The nearest downstream water supply intake is approximately 22 miles downstream by Colombia Water Company on Susquehanna River in York County. Due to the distance and dilution, no impact is expected from this discharge.

2.0 Treatment Facility Summary

Treatment Facility Name: Highspire Borough - STP

WQM Permit No.	Issuance Date
2286407	July 13, 1986
2286407 07-1	March 3, 2009

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
	Secondary With Total			
Sewage	Nitrogen Reduction	Oxidation Ditch	Ultraviolet	2

Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
2	3800	Not Overloaded	Anaerobic digestion	Land fill

Changes Since Last Permit Issuance: None

2.1 Treatment Facility Description

Wastewater flows from the Borough and Township via gravity sewer to the WWTP and then pumped via a screw lift pump to a grit removal system. The wastewater is then pumped from the grit system to a distribution box which could direct flow to the oxidation ditches directly or to primary clarifier/thickener prior to oxidation ditches. Oxidation ditches are designed to operate in anaerobic/oxic /anoxic mode to nitrify and denitrify. Treated effluent flows to either of the 3 final clarifiers controlled by gates. Treated effluent from final clarifier then flows to the UV system and then eventually to outfall 001 on Susquehanna River.

2.2 Chemicals

Ferous Sulfate for phosphorus precipitation. Micro CG as carbon source for biological nutrient removal Cationic Polymer to enhance settling in gravity thickeners

3.0 Compliance History

3.1 DMR Data for Outfall 001 (from October 1, 2020 to September 30, 2021)

Parameter	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20
Flow (MGD)												
Average Monthly	1.27	0.818	0.91	0.661	0.726	0.794	0.893	0.785	0.702	0.732	0.590	0.593
Flow (MGD)												
Daily Maximum	2.507	1.543	2.029	0.748	0.888	1.216	1.509	1.549	0.970	1.744	0.841	0.851
pH (S.U.)												
Minimum	7.1	7.3	7.2	7.1	7.0	6.9	7.0	7.1	7.1	6.9	7.2	7.0
pH (S.U.)												
Maximum	7.6	7.6	7.6	7.4	7.4	7.3	7.3	7.3	7.3	7.4	7.5	7.5
DO (mg/L)												
Minimum	7.7	7.5	7.6	7.5	7.7	8.1	8.3	9.2	8.8	8.3	7.6	7.2
CBOD5 (lbs/day)												
Average Monthly	< 36	< 19	< 22	< 17	< 19	< 19	< 22	< 19	< 17	< 15	< 14	< 15
CBOD5 (lbs/day)												
Weekly Average	< 57	< 21	< 31	< 18	< 22	< 22	< 29	< 24	< 19	< 19	< 14	< 18
CBOD5 (mg/L)												
Average Monthly	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3.0	< 3
CBOD5 (mg/L)	_	_	_	_	_	_	_	_		_		_
Weekly Average	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3.0	< 3
BOD5 (lbs/day)												
Raw Sewage Influent	4.445	1051	4075	4005	4.405	4.407	4.400	4505	4.455	4.407	4077	4000
 Ave. Monthly	1445	1251	1375	1285	1405	1487	1489	1565	1455	1427	1377	1330
BOD5 (lbs/day)												
Raw Sewage Influent	0007	4.407	0700	4040	4500	0040	4700	4000	4007	4004	4000	4000
 	2397	1497	2736	1612	1529	2212	1762	1830	1807	1891	1600	1628
BOD5 (mg/L)												
Raw Sewage Influent 	104	167	168	200	187	209	177	198	217	224	244	235
TSS (lbs/day)	104	107	100	200	107	209	177	190	211	224	244	233
Average Monthly	60	26	30	12	12	14	15	13	11	9	10	24
TSS (lbs/day)	00	20	30	12	12	17	10	10	11	3	10	27
Raw Sewage Influent												
<pre> Ave. Monthly</pre>	1385	1363	1472	1666	1541	1556	1626	1894	1980	1769	1607	1417
TSS (lbs/day)	1000	1000		1000	1011	1000	1020	1001	1000	1700	1007	
Raw Sewage Influent												
 dir/s Daily Maximum	2176	1739	1704	3178	1935	1772	2049	3186	4645	3135	1891	1667
TSS (lbs/day)												
Weekly Average	136	34	60	22	16	17	19	18	13	11	10	26

NPDES Permit Fact Sheet Harrisburg International Airport

TSS (mg/L)												
Average Monthly	5	4	4	2	2	2	2	2	2	2	2	5
TSS (mg/L)												
Raw Sewage Influent												
 br/> Ave. Monthly	108	182	174	262	204	217	198	238	299	280	284	251
TSS (mg/L)												
Weekly Average	7	5	6	4	2	3	2	2	3	2	2	5
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 4	7	3	< 1	1	< 1	< 2	< 1	< 2	< 1	< 1	< 2
Fecal Coliform												
(CFU/100 ml)												
Instant. Maximum	387.3	38.4	21.1	3.1	3.1	4.1	4.1	3.1	24.9	2	1	< 10.9
UV Transmittance (%)												
Minimum	76.9	75.2	73.7	76.3	78.3	74.9	79.7	76.8	79.6	73.4	74.7	76.1
Nitrate-Nitrite (mg/L)												
Average Monthly	< 2.02	< 1.79	< 1.94	< 1.69	< 2.61	< 2.27	< 2.95	< 3.57	< 1.85	< 2.28	< 1.98	< 1.83
Nitrate-Nitrite (lbs)												
Total Monthly	< 848	< 364	< 446	< 286	< 496	< 434	< 696	< 659	< 319	< 381	< 283	< 289
Total Nitrogen (mg/L)												
Average Monthly	< 2.60	< 2.63	< 2.91	< 2.48	< 3.33	< 2.97	< 3.91	< 4.32	< 2.77	< 3.5	< 2.78	< 2.96
Total Nitrogen (lbs)												
Effluent Net 												
Total Monthly	< 1046	< 531	< 658	< 419	< 635	< 567	< 913	< 793	< 482	< 583	< 398	< 461
Total Nitrogen (lbs)												
Total Monthly	< 1046	< 531	< 658	< 419	< 635	< 567	< 913	< 793	< 482	< 583	< 398	< 461
Ammonia (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.21	< 0.12	< 0.12	< 0.13	< 0.22	< 0.34	< 0.1	< 0.56	< 0.1	< 0.1
Ammonia (lbs)		0.4		0.4		0.4						4-
Total Monthly	< 36	< 21	< 44	< 21	< 23	< 24	< 52	< 67	< 17	< 93	< 14	< 15
TKN (mg/L)	0.50	0.04	0.07	0.70	0.70	0.7	0.00	0.75	0.00	4.04	0.0	4 4 4
Average Monthly	< 0.58	< 0.84	< 0.97	< 0.79	0.72	0.7	< 0.96	< 0.75	< 0.92	< 1.21	< 0.8	1.14
TKN (lbs)	400	407	040	400	400	400	047	404	400	004	445	470
Total Monthly	< 199	< 167	< 213	< 133	139	< 133	< 217	< 134	< 163	< 201	< 115	173
Total Phosphorus	7		•	4		4	_	_	0.7	_	_	
(lbs/day)Ave. Monthly	7	4	3	1	2	1	2	1	0.7	1	1	3
Total Phosphorus	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.70
(mg/L) Ave. Monthly	0.6	0.6	0.4	0.2	0.3	0.2	0.3	0.2	0.1	0.2	0.3	0.70
Total Phosphorus (lbs)												
Effluent Net Total Monthly	218	110	. 04	25	48	40	65	22	22	44	20	107
Total Monthly	∠18	119	< 84	35	48	40	05	33	23	41	39	107
Total Phosphorus (lbs)	210	110	0.4	25	40	40	65	22	22	44	20	107
Total Monthly	218	119	84	35	48	40	65	33	23	41	39	107

3.2 Summary of Discharge Monitoring Reports (DMRs):

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1 indicate permit limits have been met consistently. No effluent violations noted on DMRs during the period reviewed.

3.3 Summary of Inspections:

The facility has been inspected a couple times during last permit cycle. No effluent violations identified during plant inspections. The facility has been operated and maintained well.

4.0 Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	2			
Latitude	40° 12' 21.36"	Longitude	-76° 47' 26.88"			
Wastewater D	escription: Sewage Effluent					

4.1 Basis for Effluent Limitations

In general, the CWA requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: TRC limitation not applicable

4,3 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) × design flow (mgd) × 8.34

4,4 Water Quality-Based Limitations

4.4.1 Stream flows

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 01570500 on Susquehanna River in Harrisburg. The Q₇₋₁₀ and drainage area at the gage is 3200 ft³/s and 24100mi² respectively. The resulting yields are as follows:

- $Q_{7-10} = (3200 \text{ ft}^3/\text{s})/ 24100 \text{ mi}^2 = 0.133 \text{ ft}^3/\text{s}/ \text{mi}^2$
- \bullet Q₃₀₋₁₀ / Q₇₋₁₀ = 1.15
- \bullet Q₁₋₁₀ / Q₇₋₁₀ = 0.94

The drainage area at discharge estimated due to inability to accurately calculate using streamstats = 24,280 mi²

NPDES Permit Fact Sheet Highspire STP

The Q_{7-10} at discharge = 24,280mi² x 0.133 ft³/s/mi² = 3229.24 ft³/s.

For WQM 7.0 modelling purposes, 25% of the flow will be used

 Q_{7-10} model = 3229.24 ft³/s. x 0.25 = 807.31 ft³/s

4.4.2 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the attached computer model of the stream:

Discharge pH = 7.2 (DMR median July to Sept)

Discharge Temperature = 25 ° C (Default)

Stream pH
 Stream Temperature
 = 8.2 (Taken from WQN station at Harrisburg)
 = 23.5°C (Taken from WQN station at Harrisburg)

Background NH₃-N = 0.0 (default)

4.4.3 CBOD₅

The attached results of the WQM 7.0 stream model indicate that an average monthly limit (AML) of 25 mg/l **CBOD**₅ is adequate to protect the water quality of the stream for Highspire Borough STP discharge. The recommended AML of 25 mg/l, average weekly limit (AWL) of 40mg/l and instantaneous maximum limit of 50 mg/l are consistent with the existing permits and will remain in the permit. Past DMRs and inspection reports show the facility has been meeting the limits. Mass-based limits are calculated using the equation presented in section 4.3.

4.4.4 NH₃-N

The attached results of the WQM 7.0 stream model indicates also that no limitation on NH₃-N as a monthly average is necessary to protect the aquatic life from toxicity effects. However, 2/week monitoring of NH₃-N requirement in the permit to ensure treatment efficiency will remain.

4.4.5 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement per DEP guidance.

4.4.6 Total Residual Chlorine:

The discharge does not have any reasonable potential to cause or contribute to a water quality standards violation for total residual chlorine since the permittee utilizes UV instead of chlorine for wastewater disinfection. Therefore, the proposed permit does not contain effluent limits for total residual chlorine. The permittee may use chlorine-based chemicals for cleaning and is required to optimize chlorine usage to prevent negative impacts on receiving stream. Daily UV transmittance monitoring in (%) is required in the permit to ensure efficiency of the UV unit.

4.4.7 Total Suspended Solids (TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML in the existing permit which was based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) will remain in the permit. In addition, an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2) is added to the permit. Mass-based limits are calculated based on the equation presented in section 4.3.

4.4.8 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) which combines the logic in the previous Toxics Screening Analysis Spreadsheet and PENTOXSD Model to calculate WQBELs. The results of the TMS are presented in attachment C. The discharge levels for all parameters analyzed were well below DEP's target quantitation limits (TQL) and calculated WQBELs, therefore no limitation or monitoring is required in the permit.

The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL.

4.4.9 Chesapeake Bay Strategy

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay Foundation requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by Central Office based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers will receive annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) will be required to monitor and report TN and TP during permit renewal at a monitoring frequency following Table 6-3 of DEP's Technical Guidance for Development and Specification of effluent Limitations (No. 362-0400-001). Any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away.

EPA published the Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs in addition to the original Chesapeake Bay Strategy. As outlined in the current Phase 3 WIP and supplement to the WIP, re-issuing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy. This facility falls in phase 1 of the strategy and is required to meet a total maximum annual Total Nitrogen Cap load of 36,529 lbs/year based on a design annual wasteflow of 2 MGD and 6 mg/l total nitrogen and a TP cap load of 4,871 lbs/year based on annual wasteflow of 2 MGD and 0.8 mg/l total phosphorus. The facility is in compliance with the bay cap load requirements.

4.4.10 Phosphorus:

The limit of 2 mg/l established in the existing permit was for the protection of the Lower Susquehanna River basin. This approach has been superseded by the Chesapeake Bay Strategy but will remain in the permit due to anti-backsliding. This STP was designed to remove phosphorus and contains phosphorus limits in all previous permits. Past DMRs and inspection reports show that the STP is in compliance with the phosphorus effluent limits.

4.4.11 Influent BOD and TSS Monitoring

The permit will include influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.12 Industrial Users

Highspire Borough wastewater treatment plant receives wastewater from some industrial users throughout its service area. The industrial users and a brief description are as follows:

		Discha	rge Rate (G	PD)		Significant Industrial User?
Industrial Users*	Process	NCCW	Sanitary	Other	Total	industrial Oser?
Higher Wash LLC	563	-	-	-	563	Yes
Homestat Farm	-	-	220	-	220	No
Plouse Precision Manufacturing	843			-	843	Yes
Mack/Volvo Trucks Reman	2300		1300	-	3600	Yes
Oaul Bitting Trucking/Foodliner	1880		20	-	1900	Yes
Conagra Flour Mill						
TOTAL	5586	-	1540	-	400,000	-

4.4.13 Pretreatment Requirements

The design annual average flow of the treatment plant is 2 MGD and the facility receives some flow from categorical Industrial users. However, EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. But the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

4.4.14 Stormwater

The permit application listed outfall 002 (40°12'09"/76°47'28") as receiving stormwater runoff from the treatment plant site. To comply with stormwater requirements of 40CFR 122.26(b)(14)(ix), part C of the permit will require compliance with the standard requirements applicable to stormwater outfalls for 002 with best management practices.

4.4.15 Biosolids Management

The biosolids treatment system comprises of 2 primary thickeners/clarifiers and 2 gravity thickeners. The gravity thickeners receive sludge from the final clarifiers. There are two anaerobic digesters, a primary anaerobic digester with fix roof(mesophilic) which receives sludge from the primary thickeners and the gravity thickeners and a secondary floating roof anaerobic digester that receives the digested sludge from the primary digester. Methane gas is captured and scrubbed and utilized in boiler to heat rooms.

4.4.16 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. Quarterly monitoring of E. Coli is required in the permit following DEP recommendation of 1/quarter monitoring of E. Coli at a minimum for this type of facility.

5.0 Other Requirements

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is located on a 303d listed stream segment. Susquehanna River is impaired for fish consumption by PCB and aquatic life by pH. The sources of the impairments are unknown. This discharge does not appear to contribute to these impairments; therefore, no action is warranted at this time.

5.5 Special Permit Conditions

The permit contains the following special conditions:

• Stormwater Prohibition, Approval Contingencies, Solids Management, Restriction on receipt of hauled in waste under certain conditions, and requirement for pretreatment program development and implementation.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge monitoring Reports (DMRs).

5.7 Effluent Monitoring

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

6.0 Whole Effluent Toxicity (WET)

Whole Effluent Toxicity (WET) is a term used to describe the aggregate toxic effect of an aqueous sample (i.e whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (lethality, impaired growth or reproduction). WET tests replicate, to the greatest extent possible, the total effect and actual environmental exposure of aquatic life to toxic pollutants in an effluent without requiring the identification of the specific pollutants. WET testing is a vital component of the water quality standards implementation through the NPDES permitting process. EPA's promulgated WET test methods include acute and chronic tests.

<u>6.1 F</u>	For Outfall 001, 🗌 Acute 🔀 Chronic WET Testing was completed:
\boxtimes	For the permit renewal application (4 tests).
	Quarterly throughout the permit term.

Quarterly throughout the permit term and a TIE/TRE was conducted.

Other:

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 2.

6.2 Summary of Four Most Recent Test Results

6.2.1 TST Data Analysis

(NOTE - In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	WET Su	ımmary and	Evaluation		
Facility Name	Highspire Bor	ough Authorit	hy QTD		
Permit No.	PA0024040	ough Authori	ly STF		
Design Flow (MGD)					
Q ₇₋₁₀ Flow (cfs)	807.31				
PMF _a	0.026				
PMF _c	0.179				
	1 1		Toet Doeulte	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	7/23/18	7/16/19	5/12/20	5/10/21
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS
'					
			Test Results	s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	7/23/18	7/23/19	5/12/20	5/10/21
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS
				s (Pass/Fail)	
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	7/24/18	7/23/19	5/12/20	5/11/21
Pimephales	Survival	PASS	PASS	PASS	PASS
			-		
		T . D .		s (Pass/Fail)	T (D)
		Test Date	Test Date	Test Date	Test Date
Species	Endpoint	7/24/18	7/23/19	5/12/20	5/11/21
Pimephales	Growth	PASS	PASS	PASS	PASS

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 2 % Effluent

Dilution Series 1, 2, 30, 60, 100 % Effluent

Permit Limit None

Permit Limit Species

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

☐ YES ⊠ NO

^{*} A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

6.3 Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): **0.026** Chronic Partial Mix Factor (PMFc): **0.179**

6.3.1. Determine IWC - Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

 $[(2.0 \text{ MGD} \times 1.547) / ((807.31 \text{ cfs} \times 0.026) + (2.0 \text{ MGD} \times 1.547))] \times 100 = 12.8\%$

Is IWCa < 1%? Type YES No (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

N/A

6.3.2 Type of Test for Permit Renewal:

Chronic Test

6.3.2a. Determine Target IWCa (If Acute Tests Required)

6.3.2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(2.0 \text{ MGD x } 1.547) / ((807.31 \text{ cfs x } 0.179) + (2 \text{ MGD x } 1.547))] \times 100 = 2.1\%$

6.3.3 Determine Dilution Series

(NOTE - check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 60%, 30%, 2%, and 1%.

6.4 WET Limits

Has reasonable potential been determined? ☐ YES ☒ NO

Will WET limits be established in the permit? ☐ YES ☒ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

No WETT limit or monitoring is deemed necessary. The standard Part C condition for WET testing will be included in the permit.

7.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
CBOD5	417	667	XXX	25	40	50	2/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TSS	500	750	XXX	30	45	60	2/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	2/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	2/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
UV Transmittance (%)	XXX	XXX	Report	XXX	XXX	XXX	1/day	Metered
Nitrate-Nitrite	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Nitrate-Nitrite (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

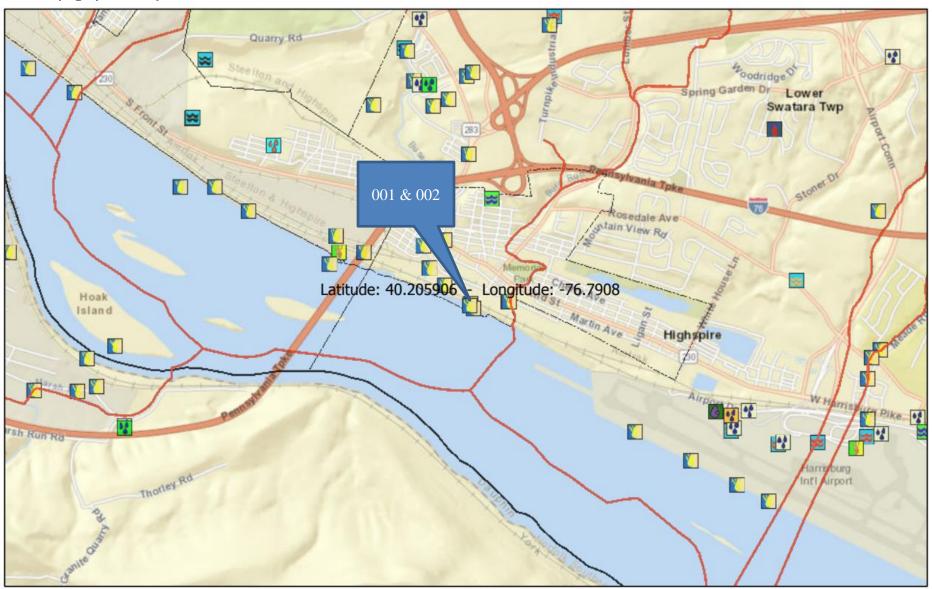
			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat		Minimum ⁽²⁾	Required	
Farameter	Average Monthly	Weekly Average	Daily Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen	xxx	XXX	xxx	Report	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs) Effluent Net	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Nitrogen (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Ammonia	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
Ammonia (Ibs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
TKN	XXX	XXX	XXX	Report	XXX	XXX	2/week	24-Hr Composite
TKN (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus	33	XXX	XXX	2.0	XXX	4	2/week	24-Hr Composite
Total Phosphorus (lbs) Effluent Net	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation
Total Phosphorus (lbs)	Report Total Mo	XXX	XXX	XXX	XXX	XXX	1/month	Calculation

Compliance Sampling Location: Outfall 001

7.1 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, to comply with Pennsylvania's Chesapeake Bay Tributary Strategy.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.


			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	s (lbs/day) ⁽¹⁾		Concentrat	Minimum (2)	Required		
Farameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Total Nitrogen (lbs)		36529						
Effluent Net	XXX	Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Nitrogen (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Ammonia (Ibs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs) Effluent Net	XXX	4871 Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation
Total Phosphorus (lbs)	XXX	Report Total Annual	XXX	XXX	XXX	XXX	1/year	Calculation

Compliance Sampling Location: Outfall 001

	8.0 Tools and References Used to Develop Permit
\square	WOM for Windows Model (see Attachment B)
	WQM for Windows Model (see Attachment B)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment C)
	Toxics Screening Analysis Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
\boxtimes	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
\boxtimes	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
\boxtimes	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
\boxtimes	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing effluent limitation for individual sewage permit
	Other: WIP 3 Supplement

9. Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits Stream Name SWP Basin Stream Code 07 K 6685 SUSQUEHANNA RIVER Disc Effl. Limit Effl. Limit Effl. Limit 30-day Ave. (mg/L) RMI Name Permit Flow Parameter Maximum Minimum Number (mgd) (mg/L) (mg/L) 64.470 Highspire PA0024040 2.000 CBOD5 25 NH3-N 25 50 Dissolved Oxygen 5 Sunday, November 28, 2021 Version 1.1 Page 1 of 1

Input Data WQM 7.0

					шр	utDau	a vv Qii	n 7.0						
	SWP Basin			Stre	eam Name		RMI		ation (t)	Drainage Area (sq mi)	Slop (ft/f	Witho	VS drawal gd)	Apply FC
	07K	66	885 SUSQ	UEHANN	A RIVER		64.4	70	280.62	24280.0	0.00	000	0.00	☑
					St	ream Da	ta							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p ph	1	<u>Strear</u> Temp	m pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.133	0.00 0.00 0.00	807.31 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2	3.50 8	3.20	0.00	0.00	
					D	lacharge	Data						1	
			Name	Per	mit Numbe	Disc	Permitt Disc Flow (mgd	Disc Flow	Res Fa	erve Te	isc imp °C)	Disc pH		
		Highs	pire	PAG	0024040	2.000	0 2.000	00.00	00	0.000	25.00	7.20		
					Pi	a ra me ter	Data							
				Paramete	r Name				tream Conc	Fate Coef				
						(n	ng/L) (r	ng/L) (mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

Input Data WQM 7.0

	SWF Basi			Stre	am Name		RMI	E	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	07K	60	885 SUSQ	UEHANN	A RIVER		63.18	80	276.00	24281.00	0.00000	0.00	V
					St	tream Da	ta						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	W D Ratio	Rch Width	Rch Depth	n Tem	Tributary p pH	Ten	<u>Stream</u> np pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)	(°C)	
27-10	0.133	0.00	807.34	0.000	0.000	0.0	0.00	0.	00 2	3.50 8.2	20	0.00 0.00)
21-10		0.00	0.00	0.000	0.000								
230-10		0.00	0.00	0.000	0.000								

Discharge Data											
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH				
Hbg Aipart TW	PA0082244	0.0460	0.0460	0.048	0.000	25.00	7.00				
	Par	rameter D	ata								
Disc Trib Stream Fate Conc Conc Conc Coef Parameter Name											
Fai	aneter Name	(mg	/L) (mg	/L) (m	g/L) (1/da	iys)					
CBOD5		25	5.00	2.00	0.00	1.50	_				
Dissolved Ox		5.00	8.24	0.00	0.00						
NH3-N		25	5.00	0.00	0.00	0.70					

Sunday, November 28, 2021 Page 2 of 2 Version 1.1

WQM 7.0 Wasteload Allocations

 SWP Basin
 Stream Code
 Stream Name

 07 K
 6685
 SUSQUEHANNA RIVER

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
64.470	Highspire	2.05	50	2.05	50	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
64.47	0 Highspire	.47	25	.47	25	0	0

Dissolved Oxygen Allocations

		CBC			3-N		d Oxygen	Critical	Percent
RMI	RMI Discharge Name		Baseline Multiple (mg/L) (mg/L)		Baseline Multiple (mg/L) (mg/L)		Mulapie	Reach	Reduction
64.47	Highspire	25	25	25	25	5	5	0	0

WQM 7.0 D.O. Simulation

SWP Basin	Stream Code			Stream Nan	ne	
07K	6685		SUS	QUEHA NNA	RIVER	
RMI	Total Discharge) Ana	lysis Tempera	ture (°C)	Analysis pH
64.470	2.00	0		23.506		8.185
Reach Width (ft)	Reach De	pth (ft)		Reach WDR	atio	Reach Velocity (fps)
659.239	1.22	2		539.396		1.006
Reach CBOD5 (mg/L)	Reach Kc (1/days)	R	each NH3-N ((mg/L)	Reach Kn (1/days)
2.09	0.06	-		0.10		0.917
Reach DO (mg/L)	Reach Kr (Kr Equatio	_	Reach DO Goal (mg/L)
8.231	3.45	8		Tsivoglou	1	5
Reach Travel Time (days	<u>s)</u>	Subreach	Results			
0.078	TravTime	CBOD5	NH3-N	D.O.		
	(days)	(mg/L)	(mg/L)	(mg/L)		
	0.008	2.09	0.09	7.74		
	0.016	2.09	0.09	7.74		
	0.024	2.08	0.09	7.74		
	0.031	2.08	0.09	7.74		
	0.039	2.08	0.09	7.74		
	0.047	2.08	0.09	7.74		
	0.055	2.08	0.09	7.74		
	0.063	2.08	0.09	7.74		
	0.071	2.08	0.09	7.74		
	0.078	2.08	0.09	7.74		

W	QM 7.0 Modeli	ing Specifications	
<u></u>	an i io modeli		_
Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	2
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio Q30-10/Q7-10 Ratio	0.94 1.15	Use Inputted Reach Travel Times	
D.O. Saturation	90.00%	Temperature Adjust Kr	☑ ☑
D.O. Goal	5	Use Balanced Technology	œ.
nday, November 28, 2021	Version	0.1.1	Page 1 of 1

WQM 7.0 Hydrodynamic Outputs

	SWP Basin	Strea	m Code		<u>Stream Name</u>									
		07 K	6685				SUS							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-10	0 Flow													
64.470	807.31	0.00	807.31	3.094	88000.0	1.222	659.24	539.4	1.01	0.078	23.51	8.19		
Q1-10	0 Flow													
64.470	758.87	0.00	758.87	3.094	88000.0	NA	NA	NA.	0.97	0.081	23.51	8.18		
Q30-1	10 Flow	,												
64,470	928.41	0.00	928.41	3.094	88000.0	NA	NA	NA.	1.09	0.072	23.50	8.19		

C. Toxic Management Spreadsheet Results

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions Disci	harge Stream			
Facility: Highsp	oire STP		NPDES Permit No.: PA0024040	Outfall No.: 001
Evaluation Type:	Major Sewage /	Industrial Waste	Wastewater Description: Sewage	
			Discharge Characteristics	
Decign Flow			Partial Mix Factors (PMFs)	Complete Mix Times (min)

	Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	Complete Mix Times (min)							
(MGD)*	nardness (mgn)	μη (30)	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh				
2	182	7.2										

						t blank	0.5 if le	oft blank	0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L											
2	Chloride (PWS)	mg/L		94.6									
Group	Bromide	mg/L		0.2									
ලි	Sulfate (PWS)	mg/L		49.9									
	Fluoride (PWS)	mg/L											
\Box	Total Aluminum	μg/L		11									
1	Total Antimony	μg/L	٧	0.4									
1	Total Arsenio	μg/L	٧	1									
1	Total Barlum	µg/L		38									
1	Total Beryllium	μg/L	٧.	0.4									
1	Total Boron	μg/L		162									
1	Total Cadmium	μg/L	<	0.08									
1	Total Chromium (III)	μg/L	٧.	1									
1	Hexavalent Chromium	μg/L	٧.	0.15									
1	Total Cobalt	μg/L	<	1									
1	Total Copper	μg/L		6									
64	Free Cyanide	μg/L		6									
l ş	Total Cyanide	μg/L	<	5									
Group	Dissolved Iron	µg/L		29									
1	Total Iron	μg/L		419									
1	Total Lead	μg/L	٧.	1									
1	Total Manganese	μg/L		39									
1	Total Mercury	μg/L	<	0.2									
1	Total Nickel	μg/L		4									
1	Total Phenois (Phenolics) (PWS)	µg/L	٧.	5									
1	Total Selenium	μg/L	٧.	2									
1	Total Silver	µg/L	<	0.05									
1	Total Thallium	μg/L	٧.	0.4									
1	Total Zinc	μg/L		56									
1	Total Molybdenum	µg/L	<	1									
\vdash	Acrolein	µg/L	<	1									
1	Acrylamide	µg/L	<	0.5									
1	Acrylonitrile	µg/L	<	0.5									
1	Benzene	µg/L	<	0.5									
ı	Bromoform	µg/L	<	0.5									

Discharge Information 11/21/2021 Page 1

1	Code - Total - Maria		-	0.5						
	Carbon Tetrachloride	μg/L	٧	0.5						
	Chlorobenzene	μg/L		0.5						
	Chlorodibromomethane	μg/L	<	0.5						
	Chloroethane	μg/L	٧	0.5						
	2-Chloroethyl Vinyl Ether	μg/L	<	0.5						
	Chloroform	μg/L	٧	0.5						
	Dichlorobromomethane	μg/L	<	0.5						
	1,1-Dichloroethane	μg/L	<	0.5						
69	1,2-Dichloroethane	μg/L	٧	0.5						
9	1,1-Dichloroethylene	μg/L	<	0.5						
Group	1,2-Dichloropropane	μg/L	٧	0.5						
G	1,3-Dichloropropylene	µg/L	<	0.5						
	1,4-Dioxane	µg/L	<	0.1						
	Ethylbenzene	µg/L	<	0.5						
	Methyl Bromide	μg/L	<	0.5						
	Methyl Chloride	µg/L	<	0.5		_		_	_	
	Methylene Chloride	µg/L	۷.	0.5		_			_	
	1,1,2,2-Tetrachioroethane		٧.	0.5		_			_	
		µg/L	_	0.5		_			_	
	Tetrachloroethylene Tetrach	µg/L	٧							
	Toluene	μg/L		0.9						
	1,2-trans-Dichloroethylene	μg/L	٧	0.5						
	1,1,1-Trichloroethane	μg/L	٧	0.5						
	1,1,2-Trichloroethane	μg/L	<	0.5						
	Trichloroethylene	μg/L	٧	0.5						
	Vinyl Chloride	μg/L	٧	0.5						
г	2-Chlorophenol	μg/L	٧	1						
	2,4-Dichlorophenol	µg/L	<	1						
	2,4-Dimethylphenol	µg/L	<	1						
	4,6-Dinitro-o-Cresol	µg/L	<	1						
*	2,4-Dinitrophenol	μg/L	<	3.16						
Group	2-Nitrophenol	µg/L	<	1		_			_	
2	4-Ntrophenol		٧,	1		_			_	
9	p-Chloro-m-Cresol	µg/L	, v	1		_			_	
		μg/L	v							
	Pentachiorophenol	μg/L	_	1					_	
	Phenol	μg/L	4	5						
\vdash	2,4,6-Trichlorophenol	μg/L	٧	1						
	Acenaphthene	μg/L	٧	1						
	Acenaphthylene	μg/L	٧	1						
	Anthracene	μg/L	٧	1						
	Benzidine	μg/L	٧	5.26						
	Benzo(a)Anthracene	μg/L	٧	1						
	Benzo(a)Pyrene	μg/L	٧	1						
	3,4-Benzofluoranthene	μg/L	٧	1						
	Benzo(ghi)Perylene	µg/L	4	1						
	Benzo(k)Fluoranthene	µg/L	4	1						
	Bis(2-Chloroethoxy)Methane	µg/L	<	1						
	Bis(2-Chloroethyl)Ether	µg/L	<	1						
	Bis(2-Chloroisopropyl)Ether	µg/L	<	1						
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	3						
	4-Bromophenyl Phenyl Ether	µg/L	4	1						
			٧.	1						
	Butyl Benzyl Phthalate	μg/L	_							
	2-Chloronaphthalene	μg/L	٧.	1						
	4-Chlorophenyl Phenyl Ether	μg/L	<	1						
	Chrysene	μg/L	4	1						
	Dibenzo(a,h)Anthrancene	μg/L	٧	1						
	1,2-Dichlorobenzene	μg/L	٧	0.5						
	1,3-Dichloroberzene	μg/L	٧	0.5						
40	1,4-Dichlorobenzene	μg/L	٧	0.5						
Group	3,3-Dichlorobenzidine	μg/L	٧	0.146						
2	Diethyl Phthalate	μg/L	٧	1						
9	Dimethyl Phthalate	µg/L	4	1						
	Di-n-Butyl Phthalate	μg/L	<	3						
	2,4-Dinitrotoluene	µg/L	<	1						
	-,	10-								

2,6-Dinitrotoluene μg/L < 1 Di-n-Octyl Phthalate μg/L < 1 1,2-Diphenythydrazine μg/L 1 Fluoranthene μg/L 1 Fluorene μg/L 1 Hexachlorobenzene μg/L 1 Hexachlorobutadiene μg/L 0.086 Hexachlorocyclopentadiene μg/L 1 Hexachlorocethane μg/L 0.073 Indeno(1,2,3-od)Pyrene μg/L 1 Isophorone μg/L 1 Naphthalene μg/L 0.07 Nitroberzene μg/L 1 n-Nitrosodinethylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
1,2-Diphenylhydrazine µg/L 1 Fluoranthene µg/L 1 Fluorene µg/L 1 Hexachlorobenzene µg/L 1 Hexachlorobutadiene µg/L 1 Hexachlorocyclopentadiene µg/L 1 Hexachlorocyclopentadiene µg/L 1 Hexachlorocyclopentadiene µg/L 1 Hexachlorocyclopentadiene µg/L 1 Indeno(1,2,3-cd)Pyrene µg/L 1 Isophorone µg/L 1 Naphthalene µg/L 1 Nitrobenzene µg/L 1 n-Nitrosodimethylamine µg/L 1 n-Nitrosodi-n-Propylamine µg/L 1 n-Nitrosodiphenylamine µg/L 1 Phenanthrene µg/L 1	
Fluoranthene μg/L 1 Fluorene μg/L 1 Hexachlorobenzene μg/L 1 Hexachlorobutadiene μg/L 0.086 Hexachlorocyclopentadiene μg/L 1 Hexachlorocethane μg/L 0.073 Indeno(1,2,3-cd)Pyrene μg/L 1 Isophorone μg/L 1 Naphthalene μg/L 0.07 Nitrobenzene μg/L 1 n-Nitrosodimethylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
Fluorene μg/L 1 Hexachlorobenzene μg/L 1 Hexachlorobutadiene μg/L 0.086 Hexachlorocyclopentadiene μg/L 1 Hexachloroethane μg/L 1 Hexachloroethane μg/L 1 Indeno(1,2,3-cd)Pyrene μg/L 1 Isophorone μg/L 1 Naphthalene μg/L 1 Nitrobenzene μg/L 1 n-Nitrosodimethylamine μg/L 1 n-Nitrosodi-n-Propylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
Hexachlorobenzene μg/L 1 Hexachlorobutadiene μg/L 0.086 Hexachlorocyclopentadiene μg/L 1 Hexachloroethane μg/L 0.073 Indeno(1,2,3-cd)Pyrene μg/L 1 Isophorone μg/L 1 Naphthalene μg/L 0.07 Nitrobenzene μg/L 1 n-Nitrosodimethylamine μg/L 1 n-Nitrosodi-n-Propylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
Hexachlorobutadiene μg/L 0.086 Hexachlorocyclopentadiene μg/L 1 </td <td></td>	
Hexachlorocyclopentadiene μg/L 1 Hexachloroethane μg/L 0.073 Indeno(1,2,3-cd)Pyrene μg/L 1 Isophorone μg/L 1 Naphthalene μg/L 0.07 Nitrobenzene μg/L 1 n-Nitrosodimethylamine μg/L 1 n-Nitrosodi-n-Propylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
Hexachloroethane μg/L 0.073	
Indeno(1,2,3-cd)Pyrene μg/L 1 Isophorone μg/L 1 Naphthalene μg/L 0.07 Nitrobenzene μg/L 1 n-Nitrosodimethylamine μg/L 1 n-Nitrosodi-n-Propylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
Isophorone	
Naphthalene μg/L 0.07 Nitrobenzene μg/L 1 n-Nitrosodimethylamine μg/L 1 n-Nitrosodi-n-Propylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
Nitrobenzene μg/L 1 n-Nitrosodimethylamine μg/L 1 n-Nitrosodi-n-Propylamine μg/L 1 n-Nitrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
n-Ntrosodimethylamine μg/L 1 n-Ntrosodi-n-Propylamine μg/L 1 n-Ntrosodiphenylamine μg/L 1 Phenanthrene μg/L 1	
n-Nitrosodi-n-Propylamine μg/L < 1 n-Nitrosodi-n-Propylamine μg/L < 1 Phenanthrene μg/L < 1	
n-Nitrosodiphenylamine µg/L < 1 Phenanthrene µg/L < 1	
Phenanthrene µg/L < 1	
Pyrene	
1,2,4-Trichlorobenzene µg/L < 0.098	
Aldrin µg/L <	
alpha-BHC µg/L <	
beta-BHC µg/L <	
gamma-BHC µg/L <	
delta BHC µg/L <	
Chlordane µg/L <	
4,4-DOT µg/L <	
4,4-DDE µg/L <	
The state of the s	
alpha-Endosulfan µg/L <	
beta-Endosulfan µg/L <	
Endosulfan Sulfate µg/L <	
Endrin Aldehyde µg/L <	
Heptachlor µg/L <	
Heptachlor Epoxide µg/L <	
PCB-1016 µg/L <	
PCB-1221 µg/L <	
PCB-1232 µg/L <	
PCB-1242 µg/L <	
PCB-1248 µg/L <	
PCB-1254 µg/L <	
PCB-1260 µg/L <	
PCBs, Total µg/L <	
Toxaphene µg/L <	
2,3,7,8-TCDD ng/L <	
Gross Alpha pCi/L	
Total Beta pCi/L <	
Radium 226/228 pCl/L < Total Strontium µg/L < Total Uranium µg/L <	
Total Uranium µg/L <	
Osmotic Pressure mOs/kg	
Canoni I many	

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Highspire STP, NPDES Permit No. PA0024040, Outfall 001

Instructions Disch	arge Str	eam													
Receiving Surface Water Name:							No. Rea	aches to	Model:	1	_	tewide Criteri at Lakes Crit			
Location	Stream Coo	le* RMI	Elevat	DA (mi²)	* Slo	ope (ft/ft)		Withdraw MGD)	/al Apply F		○ OR	SANCO Crite	eria		
Point of Discharge	006685	64.4	7 280.6	32 24280					Yes						
End of Reach 1	006685	61.4	4 274	24282					Yes	1					
Q ₇₋₁₀		LFY	Flow	(cfs)	WID	18/:-444	Donth	Volesit	mavei	Tributa	201	Strea	22	Analys	nio.
Location	RMI	(cfs/mi ²)*	Stream		W/D Ratio	Width (ft)	Depth (ft)	Velocit y (fps)	Time (days)	Hardness	pН	Hardness*	pH*	Analys Hardness	pH
Point of Discharge	64.47	0.133	807.31						mane			100	8.2		
End of Reach 1	61.4	0.133	807.38												
Q _h															
Location	RMI	LFY		, ,	W/D	Width	Depth	Velocit	Time	Tributa	ary	Strea		Analys	
Location	TAVII	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(dave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	64.47														
End of Reach 1	61.4														

Model Results

Highspire STP, NPDES Permit No. PA0024040, Outfall 001

Instructions	Results	RETURN TO INPUTS	SAVE AS PDF	PRINT	All Inputs	○ Results	O Limits
Hydrodyna	amics						
 Wasteload	l Allocations						
✓ AFC		CCT (min): 15	PMF: 0.026	Analysis Hardness (mg/l):	110.61	Analysis pH:	7.86

	Oucam		=	-	11100			
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	5,797	
Total Antimony	0	0		0	1,100	1,100	8,502	
Total Arsenic	0	0		0	340	340	2,628	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	162,304	
Total Boron	0	0		0	8,100	8,100	62,603	
Total Cadmium	0	0		0	2.221	2.36	18.3	Chem Translator of 0.94 applied
Total Chromium (III)	0	0		0	618.816	1,958	15,135	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	126	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	734	
Total Copper	0	0		0	14.779	15.4	119	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	170	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	72.063	92.8	717	Chem Translator of 0.776 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	12.7	Chem Translator of 0.85 applied
Total Nickel	0	0		0	509.934	511	3,949	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	Ω	U		0	N/A	N/A	N/A	Chem Translator of 0 922 applied
Total Silver	0	0		0	3.826	4.5	34.8	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	502	
Total Zinc	0	0		0	127.632	131	1,009	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	23.2	
Acrylamide	0	0		0	N/A	N/A	N/A	

Acrylonitrile	0	0	0	650	650	5,024	
Benzene	0	0	0	640	640	4,946	
Bromoform	0	0	0	1,800	1,800	13,912	
Carbon Tetrachloride	0	0	0	2,800	2,800	21,641	
Chlorobenzene	0	0	0	1,200	1,200	9,275	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	139,118	
Chloroform	0	0	 0	1,900	1,900	14,685	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	115,932	
1,1-Dichloroethylene	0	0	0	7,500	7,500	57,966	
		0	_	_	_	85,016	
1,2-Dichloropropane	0	,	0	11,000	11,000		
1,3-Dichloropropylene	0	0	0	310	310	2,396	
Ethylbenzene	0	0	0	2,900	2,900	22,413	
Methyl Bromide	0	0	0	550	550	4,251	
Methyl Chloride	0	0	0	28,000	28,000	216,406	
Methylene Chloride	0	0	0	12,000	12,000	92,745	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	7,729	
Tetrachloroethylene	0	0	0	700	700	5,410	
Toluene	0	0	0	1,700	1,700	13,139	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	52,556	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	23,186	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	26,278	
Trichloroethylene	0	0	0	2,300	2,300	17,776	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	4,328	
2,4-Dichlorophenol	0	0	0	1,700	1,700	13,139	
2,4-Dimethylphenol	0	0	0	660	660	5,101	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	618	
2,4-Dinitrophenol	0	0	0	660	660	5,101	
2-Nitrophenol	0	0	0	8,000	8,000	61,830	
4-Nitrophenol	0	0	0	2,300	2,300	17,776	
p-Chloro-m-Cresol	0	0	0	160	160	1,237	
Pentachlorophenol	0	0	0	20.800	20.8	161	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	3,555	
Acenaphthene	0	0	0	83	83.0	641	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	2,319	
Benzo(a)Anthracene	0	0	0	0.5	0.5	3.86	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	231,863	
Bis(2-Chloroisopropyl)Ether	0	0	 0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	34,779	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	2,087	
Butyl Benzyl Phthalate			 	-	140	1,082	

Model Results 11/21/2021 Page 6

2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	6,338	
1,3-Dichlorobenzene	0	0	0	350	350	2,705	
1,4-Dichlorobenzene	0	0	0	730	730	5,642	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	30,915	
Dimethyl Phthalate	0	0	0	2,500	2,500	19,322	
Di-n-Butyl Phthalate	0	0	0	110	110	850	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	12,366	
2,6-Dinitrotoluene	0	0	0	990	990	7,651	
1,2-Diphenylhydrazine	0	0	0	15	15.0	116	
Fluoranthene	0	0	0	200	200	1,546	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	77.3	
Hexachlorocyclopentadiene	0	0	0	5	5.0	38.6	
Hexachloroethane	0	0	0	60	60.0	464	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	77,288	
Naphthalene	0	0	0	140	140	1,082	
Nitrobenzene	0	0	0	4,000	4,000	30,915	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	131,389	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	2,319	
Phenanthrene	0	0	0	5	5.0	38.6	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	1,005	

☑ CFC CCT (min):	720	PMF:	0.179	Analysis Hardness (mg/l):	101.72	Analysis pH:	8.12]
------------------	-----	------	-------	---------------------------	--------	--------------	------	---

Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	10,476	
Total Arsenic	0	0		0	150	150	7,143	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	195,235	
Total Boron	0	0		0	1,600	1,600	76,189	
Total Cadmium	0	0		0	0.249	0.27	13.1	Chem Translator of 0.908 applied
Total Chromium (III)	0	0		0	75.158	87.4	4,162	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	495	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	905	
Total Copper	0	0		0	9.087	9.47	451	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	248	

Dissolved Iron	0	0	0	N/A	N/A	N/A	
Total Iron	0	0	0	1,500	1,500	392,891	WQC = 30 day average; PMF = 1
Total Lead	0	0	0	2.564	3.25	155	Chem Translator of 0.789 applied
Total Manganese	0	0	0	N/A	N/A	N/A	·
Total Mercury	0	0	0	0.770	0.91	43.1	Chem Translator of 0.85 applied
Total Nickel	0	0	0	52.763	52.9	2,520	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0	0	N/A	N/A	N/A	
Total Selenium	0	0	0	4.600	4.99	238	Chem Translator of 0.922 applied
Total Silver	0	0	0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	0	13	13.0	619	,
Total Zinc	0	0	0	119.860	122	5,789	Chem Translator of 0.986 applied
Acrolein	0	0	0	3	3.0	143	•
Acrylamide	0	0	0	N/A	N/A	N/A	
Acrylonitrile	0	0	0	130	130	6,190	
Benzene	0	0	0	130	130	6,190	
Bromoform	0	0	0	370	370	17,619	
Carbon Tetrachloride	0	0	0	560	560	26,666	
Chlorobenzene	0	0	0	240	240	11,428	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	3,500	3,500	166,664	
Chloroform	0	0	0	390	390	18,571	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	3,100	3,100	147,617	
1,1-Dichloroethylene	0	0	0	1,500	1,500	71,427	
1,2-Dichloropropane	0	0	0	2,200	2,200	104,760	
1,3-Dichloropropylene	0	0	0	61	61.0	2,905	
Ethylbenzene	0	0	0	580	580	27,619	
Methyl Bromide	0	0	0	110	110	5,238	
Methyl Chloride	0	0	0	5,500	5,500	261,901	
Methylene Chloride	0	0	0	2,400	2,400	114,284	
1,1,2,2-Tetrachloroethane	0	0	0	210	210	10,000	
Tetrachloroethylene	0	0	0	140	140	6,667	
Toluene	0	0	0	330	330	15,714	
1,2-trans-Dichloroethylene	0	0	0	1,400	1,400	66,666	
1,1,1-Trichloroethane	0	0	0	610	610	29,047	
1,1,2-Trichloroethane	0	0	0	680	680	32,380	
Trichloroethylene	0	0	0	450	450	21,428	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	110	110	5,238	
2,4-Dichlorophenol	0	0	0	340	340	16,190	
2,4-Dimethylphenol	0	0	0	130	130	6,190	
4,6-Dinitro-o-Cresol	0	0	0	16	16.0	762	
2,4-Dinitrophenol	0	0	0	130	130	6,190	
2-Nitrophenol	0	0	0	1,600	1,600	76,189	
4-Nitrophenol	0	0	0	470	470	22,381	

p-Chloro-m-Cresol	0	0	0	500	500	23,809	
Pentachlorophenol	0	0	0	15.958	16.0	760	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	91	91.0	4,333	
Acenaphthene	0	0	0	17	17.0	810	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	59	59.0	2,809	
Benzo(a)Anthracene	0	0	0	0.1	0.1	4.76	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	6,000	6,000	285,710	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	910	910	43,333	
4-Bromophenyl Phenyl Ether	0	0	0	54	54.0	2,571	
Butyl Benzyl Phthalate	0	0	0	35	35.0	1,667	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	160	160	7,619	
1,3-Dichlorobenzene	0	0	0	69	69.0	3,286	
1,4-Dichlorobenzene	0	0	0	150	150	7,143	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	800	800	38,095	
Dimethyl Phthalate	0	0	0	500	500	23,809	
Di-n-Butyl Phthalate	0	0	0	21	21.0	1,000	
2,4-Dinitrotoluene	0	0	0	320	320	15,238	
2,6-Dinitrotoluene	0	0	0	200	200	9,524	
1,2-Diphenylhydrazine	0	0	0	3	3.0	143	
Fluoranthene	0	0	0	40	40.0	1,905	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	2	2.0	95.2	
Hexachlorocyclopentadiene	0	0	0	1	1.0	47.6	
Hexachloroethane	0	0	0	12	12.0	571	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	2,100	2,100	99,998	
Naphthalene	0	0	0	43	43.0	2,048	
Nitrobenzene	0	0	0	810	810	38,571	
n-Nitrosodimethylamine	0	0	0	3,400	3,400	161,902	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	59	59.0	2,809	
Phenanthrene	Ü	Ü	 0	1	1.0	47.6	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	26	26.0	1,238	

☑ THH CCT (min): 720 PMF: 0.179 Analysis Hardness (mg/l): N/A Analysis pH: N/A

Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)		Communic
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	267	
Total Arsenic	0	0		0	10	10.0	476	
Total Barium	0	0		0	2,400	2,400	114,284	
Total Boron	0	0		0	3,100	3,100	147,617	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	190	
Dissolved Iron	0	0		0	300	300	14,285	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	47,618	
Total Mercury	0	0		0	0.050	0.05	2.38	
Total Nickel	0	0		0	610	610	29,047	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	11.4	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	143	
Acrylamide	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	4,762	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	1,571	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	3,238	

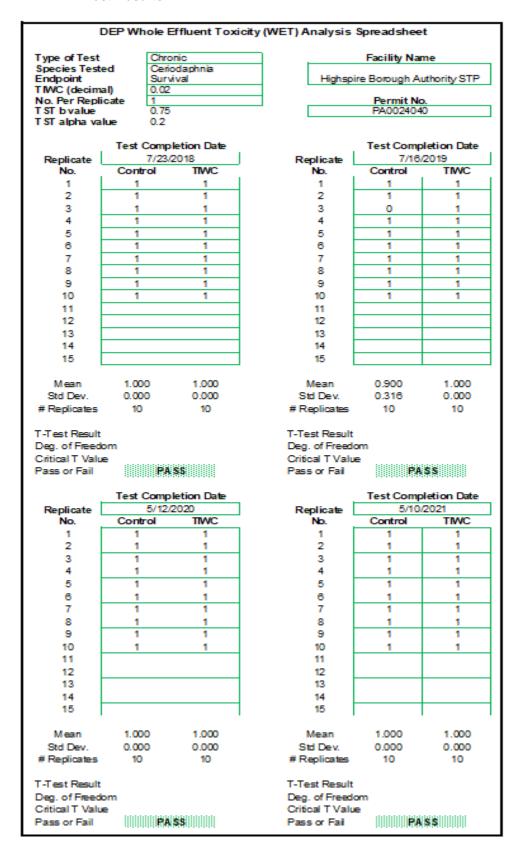
Methyl Bromide	0	0	0	100	100.0	4,762	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0	0	N/A	N/A	N/A	
Tetrachloroethylene	0	0	0	N/A	N/A	N/A	
Toluene	0	0	0	57	57.0	2,714	
1,2-trans-Dichloroethylene	0	0	0	100	100.0	4,762	
1,1,1-Trichloroethane	0	0	0	10,000	10,000	476,183	
1,1,2-Trichloroethane	0	0	0	N/A	N/A	N/A	
Trichloroethylene	0	0	0	N/A	N/A	N/A	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	30	30.0	1,429	
2,4-Dichlorophenol	0	0	0	10	10.0	476	
2,4-Dimethylphenol	0	0	0	100	100.0	4,762	
4,6-Dinitro-o-Cresol	0	0	0	2	2.0	95.2	
2,4-Dinitrophenol	0	0	0	10	10.0	476	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	N/A	N/A	N/A	
Phenol	0	0	0	4,000	4,000	190,473	
2,4,6-Trichlorophenol	0	0	0	N/A	N/A	N/A	
Acenaphthene	0	0	0	70	70.0	3,333	
Anthracene	0	0	0	300	300	14,285	
Benzidine	0	0	0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroisopropyl)Ether	0	0	0	200	200	9,524	
Bis(2-Ethylhexyl)Phthalate	0	0	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	0.1	0.1	4.76	
2-Chloronaphthalene	0	0	0	800	800	38,095	
Chrysene	0	0	0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	1,000	1,000	47,618	
1,3-Dichlorobenzene	0	0	0	7	7.0	333	
1,4-Dichlorobenzene	0	0	0	300	300	14,285	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	600	600	28,571	
Dimethyl Phthalate	0	0	0	2,000	2,000	95,237	
Di-n-Butyl Phthalate	0	0	0	20	20.0	952	
2,4-Dinitrotoluene	0	0	0	N/A	N/A	N/A	

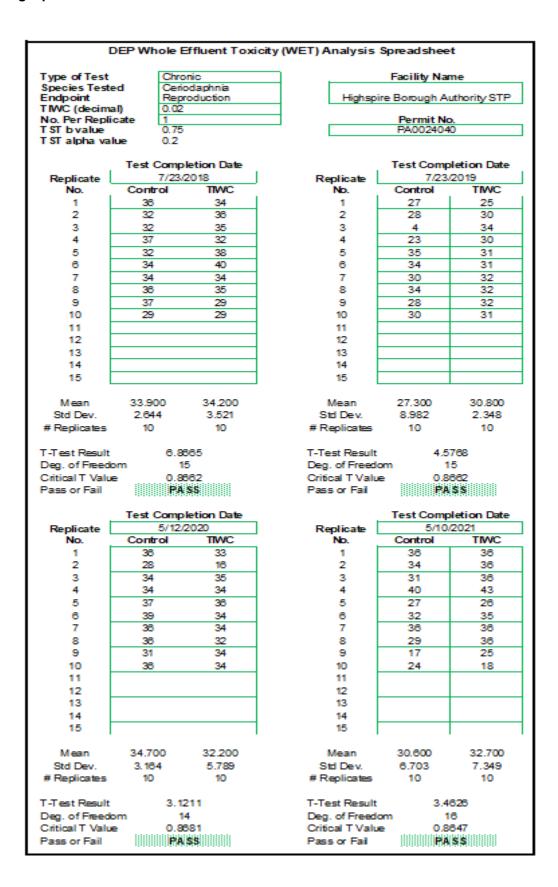
2,6-Dinitrotoluene	0	0	0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0	0	N/A	N/A	N/A	
Fluoranthene	0	0	0	20	20.0	952	
Fluorene	0	0	0	50	50.0	2,381	
Hexachlorobenzene	0	0	0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	N/A	N/A	N/A	
Hexachlorocyclopentadiene	0	0	0	4	4.0	190	
Hexachloroethane	0	0	0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	34	34.0	1,619	
Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	10	10.0	476	
n-Nitrosodimethylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	N/A	N/A	N/A	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	20	20.0	952	
1,2,4-Trichlorobenzene	0	0	0	0.07	0.07	3.33	

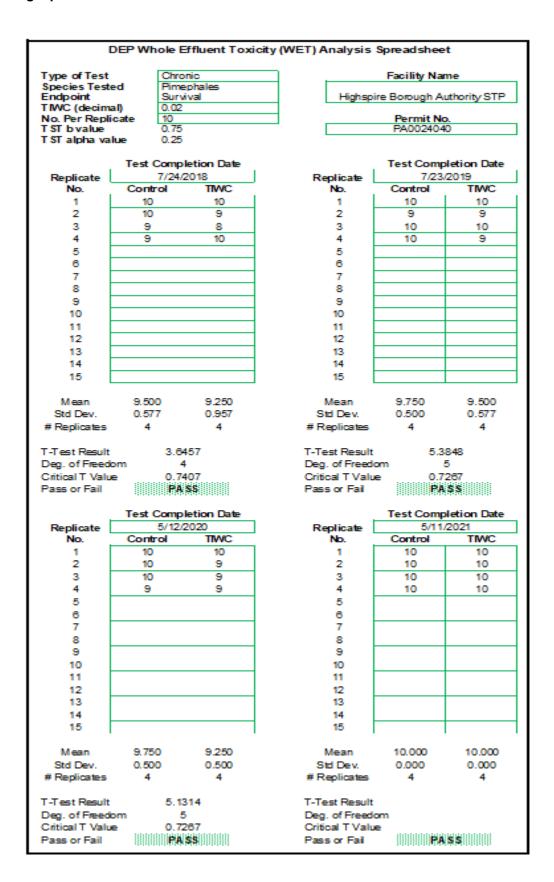
☑ CRL	CCT (min): 720	PMF: 0.261	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	ı
-------	----------------	------------	---------------------------	-----	--------------	-----	---

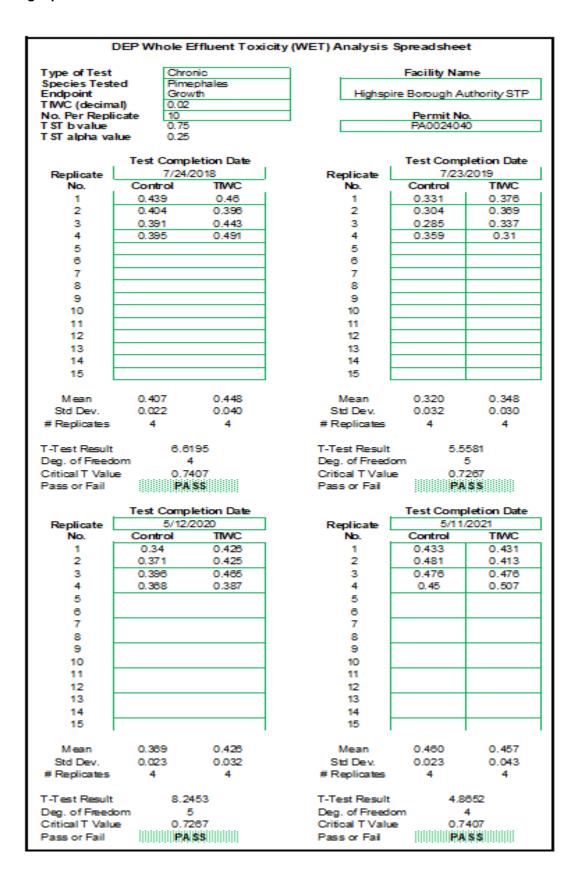
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	

Total Thallium	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	
Acrolein	0	0	0	N/A	N/A	N/A	
Acrylamide	0	0	0	0.07	0.07	15.3	
Acrylonitrile	0	0	0	0.06	0.06	13.1	
Benzene	0	0	0	0.58	0.58	127	
Bromoform	0	0	0	7	7.0	1,532	
Carbon Tetrachloride	0	0	0	0.4	0.4	87.6	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	175	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	1,248	
Dichlorobromomethane	0	0	0	0.95	0.95	208	
1,2-Dichloroethane	0	0	0	9.9	9.9	2,167	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	197	
1,3-Dichloropropylene	0	0	0	0.27	0.27	59.1	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	4,378	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	43.8	
Tetrachloroethylene	0	0	0	10	10.0	2,189	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	120	
Trichloroethylene	0	0	0	0.6	0.6	131	
Vinyl Chloride	0	0	0	0.02	0.02	4.38	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
p-Chloro-m-Cresol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	6.57	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	328	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.022	
Benzo(a)Anthracene	0	0	0	0.0001	0.0001	0.022	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.022	
Delizo(a)r ylelle	V	Ų	v	0.0001	0.0001	0.022	


3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.22	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	2.19	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	6.57	
Bis(2-Chloroisopropyl)Ether	0	0	0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	70.1	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	0.12	0.12	26.3	
Dibenzo(a,h)Anthrancene	0	0	0	0.0001	0.0001	0.022	
1,2-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0	0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0	0	0.05	0.05	10.9	
Diethyl Phthalate	0	0	0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0	0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0	0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0	0	0.05	0.05	10.9	
2,6-Dinitrotoluene	0	0	0	0.05	0.05	10.9	
1,2-Diphenylhydrazine	0	0	0	0.03	0.03	6.57	
Fluoranthene	0	0	0	N/A	N/A	N/A	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	0	0.00008	0.00008	0.018	
Hexachlorobutadiene	0	0	0	0.01	0.01	2.19	
Hexachlorocyclopentadiene	0	0	0	N/A	N/A	N/A	
Hexachloroethane	0	0	0	0.1	0.1	21.9	
Indeno(1,2,3-cd)Pyrene	0	0	0	0.001	0.001	0.22	
Isophorone	0	0	0	N/A	N/A	N/A	
Naphthalene Naphthalene	0	0	0	N/A	N/A	N/A	
Nitrobenzene	0	0	0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0	0	0.0007	0.0007	0.15	
n-Nitrosodi-n-Propylamine	0	0	0	0.005	0.005	1.09	
n-Nitrosodiphenylamine	0	0	0	3.3	3.3	722	
Phenanthrene	0	0	0	N/A	N/A	N/A	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	N/A	N/A	N/A	


✓ Recommended WQBELs & Monitoring Requirements


No. Samples/Month: 4


	Mass Limits			Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

D. WET Test Results

