

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0024350

 APS ID
 776931

 Authorization ID
 1434788

	Applicant and Facility Information								
Applicant Name	Daup	hin Borough	Facility Name	Dauphin Borough STP					
Applicant Address	200 S	Church Street (PO Box 487)	Facility Address	Delaware & Canal Streets					
	Daupl	nin, PA 17018-0487	_	Dauphin, PA 17018					
Applicant Contact	Brian	Cuddy	Facility Contact	Troy Toland					
Applicant Phone			Facility Phone	(717) 421-1228					
Client ID	11743	33	Site ID	269990					
Ch 94 Load Status	Not O	verloaded	Municipality	Dauphin Borough					
Connection Status	Self-Ir	mposed Connection Prohibition	County	Dauphin					
Date Application Rece	eived	April 3, 2023	EPA Waived?	Yes					
Date Application Acce	epted	April 14, 2023	If No, Reason						
Purpose of Application	n	Permit renewal to discharge treat	ed sewage.						

Summary of Review

1.0 General Discussion

This fact sheet supports the renewal of an existing NPDES permit for discharge of treated domestic wastewater from Dauphin Borough's (Borough) wastewater treatment plant (WWTP). The Borough owns, operates, and maintains the WWTP. The facility is located in Dauphin Borough, Dauphin County. The WWTP services Dauphin Borough (95%) and Middle Paxton (5%). The sewer collection system is not combined, and no bypasses or overflows are authorized in the collection system. The facility is a sequential batch reactor (SBR) secondary treatment plant with annual average design capacity of 0.20 MGD and a hydraulic design capacity of 0.3 MGD. The organic design capacity of the facility is 417 lbs/day- BOD₅. The discharge goes to Susquehanna River which is classified for warm water fishes (WWF) and Migratory Fishes (MF). The existing NPDES permit was issued on September 24, 2018 with an effective date of October 1, 2018 and expiration date of September 30, 2023. The applicant submitted an administratively complete NPDES renewal application to the Department and is currently operating under the terms and conditions in the existing permit pending Department action on the renewal application. A topographical map showing the discharge location is presented in attachment A.

1.1 Sludge use and disposal description and location(s):

Sludge is digested in aerobic digesters and hauled off to Capital Region Water Advance Wastewater Treatment Facility in Harrisburg for further processing and disposal.

Approve	Deny	Signatures	Date
Х		J. Pascal Kwedza J. Pascal Kwedza, P.E. / Environmental Engineer	April 12, 2024
Х		Maria D. Bebenek for Daniel W. Martin, P.E. / Environmental Engineer Manager	April 17, 2024
Х		Maria D. Bebenek Maria D. Bebenek, P.E. / Program Manager	April 17, 2024

Summary of Review

1.2 Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

1.3 Changes to the existing Permit

Quarterly E. Coli monitoring has been added.

1.4 Discharge, Receiving Waters and Water Supply Inf	formation	
Outfall No. 001	Design Flow (MGD)	.2
Latitude 40° 21' 54"	Longitude	-76º 56' 4"
Quad Name	Quad Code	
Wastewater Description: Sewage Effluent		
Receiving Waters Susquehanna River (WWF, MF)	Stream Code	06685
NHD Com ID <u>56399881</u>	RMI	79.23
Drainage Area 23423 sq. mi	Yield (cfs/mi²)	0.10
Q ₇₋₁₀ Flow (cfs) 2342.3	Q ₇₋₁₀ Basis	USGS Gage Station
Elevation (ft) 311	Slope (ft/ft)	
Watershed No. 7-C	Chapter 93 Class.	WWF, MF
Existing Use	Existing Use Qualifier	
Exceptions to Use	Exceptions to Criteria	
Assessment Status Impaired		
Cause(s) of Impairment Polychlorinated Biphenyls	(PCBS)	
Source(s) of Impairment Source Unknown		
TMDL Status	Name	
Background/Ambient Data	Data Source	
pH (SU)		
Temperature (°F)		
Hardness (mg/L)		
Other:		
Nearest Downstream Public Water Supply Intake	Veolia Water PA	
PWS Waters Susquehanna River	Flow at Intake (cfs)	
PWS RMI	Distance from Outfall (mi)	3
1 440 171411	Distance nom Outian (IIII)	<u> </u>

Changes Since Last Permit Issuance: None

1.4.1 Public Water Supply Intake

The closest water supply intake located downstream from the discharge is Veolia Water PA in Susquehanna Twp., Dauphin County. The distance downstream from the discharge to the intake is approximately 3 miles. No impact is expected on the intake as a result of this discharge.

	2.0 T	reatment Facility Summ	ary	
Treatment Facility I	Name: Dauphin STP			
WQM Permit No.	Issuance Date			
2290401 A-1	April 3, 2024			
2290401	April 9,1990			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Sequencing Batch		
Sewage	Secondary	Reactor	Gas Chlorine	0.2
Hydraulic	Organic Capacity			Biosolids
Capacity (MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.3	417	Not Overloaded	Aerobic Digestion	

Changes Since Last Permit Issuance: The facility was re-rated to a higher hydraulic capacity of 0.3MGD on 4/3/2024. The new permit addresses the projected hydraulic overload status of the facility. The facility has an approved corrective action plan to address I&I in the collection as needed.

2.1 Treatment Facility Details

The treatment facility composed of flow metering, screening, grit removal, influent pump station, 2 SBRs, 2 chlorine contact tanks, post aeration cascade and 2 aerobic digestion tanks. Influent enters the headworks from the collection system by gravity sewer line and from a force main from the Canal and Market Street pump station. At the headworks, influent is pretreated by an aerated grit chamber and an inline screening unit. Screened influent is metered and pumped to the two SBRs for biological treatment. Decanted effluent is disinfected with chlorine in the two chlorine contact tanks and discharge to the river via a post aeration cascade. Sludge is digested in the two aerobic digesters and hauled off site.

3.0 Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations			Monitoring Requirement	
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	XXX	xxx	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	41.7	66.7	XXX	25	40	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	50	75	XXX	30	45	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation
Ammonia	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TKN	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Total Phosphorus	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite

3.1 Compliance History

3.1.1 DMR Data for Outfall 001 (from March 1, 2023 to February 29, 2024)

Parameter	FEB-24	JAN-24	DEC-23	NOV-23	OCT-23	SEP-23	AUG-23	JUL-23	JUN-23	MAY-23	APR-23	MAR-23
Flow (MGD)												
Average Monthly	0.127	0.229	0.123	0.083	0.083	0.095	0.092	0.104	0.078	0.113	0.081	0.103
Flow (MGD)												
Daily Maximum	0.171	0.963	0.378	0.186	0.137	0.249	0.198	0.230	0.121	0.423	0.122	0.202
pH (S.U.)												
Daily Minimum	6.95	6.77	6.67	6.86	7.11	7.07	7.00	7.08	7.08	6.99	6.74	6.95
pH (S.U.)												
Daily Maximum	7.2	7.16	7.04	7.23	7.26	7.26	7.29	7.29	7.28	7.12	7.09	7.09
DO (mg/L)												
Daily Minimum	8.13	8.08	7.96	8.06	7.99	8.05	8.01	7.78	7.87	8.11	7.85	8.08
TRC (mg/L)												
Average Monthly	0.40	0.30	0.40	0.30	0.40	0.40	0.40	0.50	0.40	0.5	0.40	0.30
TRC (mg/L)												
Instantaneous												
Maximum	0.75	0.51	0.61	0.55	0.57	0.65	0.66	0.81	0.61	0.71	0.61	0.56
CBOD5 (lbs/day)												
Average Monthly	2.0	7.4	4.0	3.9	4.2	3.6	6.0	4.7	2.8	3.9	2.8	2.2
CBOD5 (lbs/day)												
Weekly Average	2.2	11.5	5.3	5.5	5.7	4.9	17.7	9.5	3.4	6.6	4.1	2.9
CBOD5 (mg/L)	_	_	_	_	_	_		_	_			
Average Monthly	2	5	5	7	6	5	9	6	5	4	4	3
CBOD5 (mg/L)		4.0		4.0				4.0		_		
Weekly Average	2	12	9	10	8	6	29	10	6	5	4	4
BOD5 (lbs/day)												
Raw Sewage Influent	40	00	40	47	45	00	50	00	4.5	40	0.4	40
 Ave. Monthly	40	63	40	47	45	39	50	39	45	48	64	43
BOD5 (lbs/day)												
Raw Sewage Influent	52	122	50	62	58	51	68	61	35	73	85	50
 br/> Daily Maximum BOD5 (mg/L)	52	122	50	62	58	51	08	61	35	73	85	50
Raw Sewage Influent Ave. Monthly	41.5	43	49.2	83.1	69.8	52.9	68.3	47.9	70.7	49.2	86.6	59.2
TSS (lbs/day)	41.5	43	43.2	63.1	0.60	5∠.9	00.3	47.9	70.7	49.2	0.00	09.∠
Average Monthly	5	12	5	3	5	6	7	5	4	6	4	4
TSS (lbs/day)	J	14	J	J	J	U	,	J	4	U	4	4
Raw Sewage Influent												
<pre> Ave. Monthly</pre>	21	21	18	22	17	29	24	11	17	27	21	39
NOTE AND INITIALITY	<u> </u>	<u> </u>	10		17	۷5	۷4	1.1	17	<u> </u>	<u> </u>	Jy

		1		1	1			ı		1	ı	1
TSS (lbs/day)												
Raw Sewage Influent												
 br/> Daily Maximum	35	40	21	31	23	38	38	12	26	35	28	95
TSS (lbs/day)												
Weekly Average	5	25	8	4	7	9	16	7	6	8	5	5
TSS (mg/L)												
Average Monthly	5	7	6	6	8	7	10	6	6	6	5	5
TSS (mg/L)												
Raw Sewage Influent												
 br/> Ave. Monthly	22	13	21	38	26	38	32	14	26	26	29	54
TSS (mg/L)												
Weekly Average	5	15	8	7	10	9	27	7	9	8	5	5
Fecal Coliform												
(No./100 ml)												
Geometric Mean	1	5	3	3	1	5	2	1	1	2	1	4
Fecal Coliform												
(No./100 ml)												
Instant. Maximum	1	25	7	210	1	64	2	4	1	5	2	20
Nitrate-Nitrite (mg/L)												
Daily Maximum			1			1			1			1
Total Nitrogen (mg/L)												
Daily Maximum			19.6			5			5.9			2.5
Ammonia (lbs/day)												
Average Monthly	0.7	2	0.7	3	6	6	4	5	7	174	0.2	2
Ammonia (mg/L)												
Average Monthly	0.7	0.66	0.8	5.69	9.1	8.13	5.89	6.56	11.1	5.974	0.275	2.322
TKN (mg/L)												
Daily Maximum			12			8.9			7.6			3.4
Total Phosphorus							·					-
(mg/L) Daily Maximum			2.1			1.5			1.4			2

3.1.2 Summary of DMRs:

DMRs review for the facility for the last 12 months of operation, presented on the table above in section 3.1.1 indicates permit limits have been met most of the time. No effluent violations noted during the period reviewed.

3.1.3 Summary of Inspections:

The facility has been inspected a couple of times during the previous permit cycle. No effluent violations were found during plant inspections. The facility is operated and maintained well.

4.0 Development of Effluent Limitations						
Outfall No.	001	Design Flow (MGD)	.2			
Latitude	40° 21' 53.00"	Longitude	-76° 56' 4.00"			
Wastewater D	Description: Sewage Effluent					

4.1 Basis for Effluent Limitations

In general, the Clean Water Act (CWA) requires that the effluent limits for a particular pollutant be the more stringent of either technology-based limits or water quality-based limits. Technology-based limits are set according to the level of treatment that is achievable using available technology. A water quality-based effluent limit is designed to ensure that the water quality standards applicable to a waterbody are being met and may be more stringent than technology-based effluent limits.

4.2 Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
СВОО5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
Ph	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform	200 / 400	Coo Moon		000 47(0)(4)
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	_	92a.47(a)(5)
Fecal Coliform	2,000 / 100 1111	Sco Wear		52a.+1 (a)(5)
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: None

4.3 Water Quality-Based Limitations

4.3.1 Mass-Based Limits

The federal regulation at 40 CFR 122.45(f) requires that effluent limits be expressed in terms of mass, if possible. The regulation at 40 CFR 122.45(b) requires that effluent limitations for POTWs be calculated based on the design flow of the facility. The mass-based limits are expressed in pounds per day and are calculated as follows:

Mass based limit (lb/day) = concentration limit (mg/L) \times design flow (mgd) \times 8.34

4.3.2 WQM 7.0 Stream Model

WQM 7.0 is a water quality model DEP utilizes to establish appropriate effluent limits for CBOD₅, NH₃-N and DO in permits. The model simulates mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria and also simulates mixing and consumption of

D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria and recommends effluent limits

4.3.3 Receiving Stream

The receiving stream is the Susquehanna River. According to 25 PA § 93.90, this stream is protected for Warm Water Fishes (WWF) and Migratory Fishes (MF). It is located in Drainage List o and State Watershed 7-C. It has been assigned stream code 06685. According to the Department's Integrated Water Quality Monitoring and Assessment Report, this segment of Susquehanna River, is impaired for fish consumption due to PCB. See section 5.4 for further discussions.

4.3.4 Streamflow:

Streamflows for the water quality analysis were determined by correlating with the yield of USGS gauging station No. 01570500 on Susquehanna River in Harrisburg. The Q₇₋₁₀ and drainage area at the gage is 2610 ft³/s and 24100mi² respectively. The resulting yields are as follows:

```
• Q_{7-10} = (2610 \text{ ft}^3/\text{s})/ 24100 \text{ mi}^2 = 0.10 \text{ ft}^3/\text{s}/ \text{mi}^2
```

• $Q_{30-10} / Q_{7-10} = 1.17$

 \bullet Q₁₋₁₀ / Q₇₋₁₀ = 0.95

The drainage area at discharge taken from the previous protection report = 23,423 mi²

The Q_{7-10} at discharge = 23,423 mi² x 0.10 ft³/s/mi² = 2,342.3 ft³/s.

For WQM modelling purposes, 25% of the flow will be used.

 Q_{7-10} model = 2,342.3 ft³/s. x 0.25 = 585.6 ft³/s

4.3.5 NH₃N Calculations

NH₃N calculations will be based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the instream NH₃N criteria used in the water quality modeling of the stream:

 $\begin{array}{ll} \mbox{Discharge pH} & = 7.1 \mbox{ (July -Sept DMR median)} \\ \mbox{Discharge Temperature} & = 25 \mbox{ °C (Default)} \\ \mbox{Stream pH} & = 8.2 \mbox{ (Taken from WQN station at Harrisburg)} \\ \mbox{Stream Temperature} & = 23.5 \mbox{ °C (Taken from WQN station at Harrisburg)} \\ \mbox{Background NH}_3-N & = 0.0 \mbox{ (default)} \end{array}$

4.3.6 CBOD₅

WQM 7.0 Model was used analyze the discharge from Dauphin Borough. The model results presented in attachment B indicate that, for the Dauphin Borough STP discharge of 0.2 MGD, an average monthly limit (AML) of 25mg/l CBOD₅ is required to protect the water quality of the stream. This limit is consistent with the existing permit and the STP has been consistently achieving below this limitation. Therefore, a limit of 25mg/l AML. 40mg/l average weekly limit (AWL) and 50 mg/l IMAX is recommended for this permit cycle. Mass limits are calculated as follows:

Mass based AML (lb/day) = 25 (mg/L) \times 0.2(mgd) \times 8.34 = 41.7 Mass based AWL (lb/day) = $40(mg/L) \times 0.2(mgd) \times 8.34 = 66.7$

4.3.7 NH₃-N

The attached model results of the WQM 7.0 stream model (attachment B) also indicates that no limitation on NH₃ as a monthly average is necessary to protect the aquatic life from toxicity effects. However, weekly ammonia monitoring will be required in the permit to ensure treatment efficiency.

4.3.8 Dissolved Oxygen

The existing permit contains a limit of 5 mg/l for Dissolved Oxygen (DO). DEP's Technical Guidance for the Development and Specification of Effluent Limitations (362-0400-001, 10/97) suggests that either the adopted minimum stream D.O. criteria for the receiving stream or the effluent level determined through water quality modeling be used for the limit. Since the WQM 7.0 model was run using a minimum D.O. of 5.0 mg/l, this limit will be continued in the renewed permit with a daily monitoring requirement.

4.3.9 Total Suspended Solids(TSS):

There is no water quality criterion for TSS. A limit of 30 mg/l AML will be required based on the minimum level of effluent quality attainable by secondary treatment as defined in 40 CFR 133.102b(1) and 25 PA § 92a.47(a)(1) and an AWL of 45mg/l per 40CFR 133.102(b)(2) and 25 PA § 92a.47(a)(2)

```
Mass based AML (lb/day) = 30 (mg/L) \times 0.2(mgd) \times 8.34 = 50.04 Mass based AWL (lb/day) = 45(mg/L) \times 0.2(mgd) \times 8.34 = 75.06
```

4.3.10 Total Residual Chlorine

The attached TRC calculation results presented in attachment D utilizes the equations and calculations as presented in the Department's May 1, 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID No. 391-2000-015) for developing chlorine limitations. The Guidance references Chapter 92a, Section 92a.48 (b) which establishes a standard BAT limit of 0.5 mg/l unless a facility-specific BAT has been developed. TRC calculation was run using a PMFs of 0.011 AFC & 0.075 CFC taken from Toxics Management Spreadsheet used to analyzed reasonable potential. The results presented in attachment D indicates that a technology limit of 0.5 mg/l monthly average and IMAX of 1.6 mg/l would be needed to prevent toxicity concerns. This is consistent with the existing permit and will remain for the current permit renewal. DMR and inspection reports indicate the facility has been complying with the limitation consistently.

4.3.11 Toxics

A reasonable potential (RP) analysis was done for pollutants sampled in support of the permit renewal application. All pollutants that were presented in the application sampling data were entered into DEP's Toxics Management Spreadsheet (TMS) to calculate WQBELs. The results of the TMS are presented in attachment C. The results of the TMS indicate discharge levels for all pollutants are well below DEP's target quantitation limits and the calculated WQBELs, therefore, no monitoring or limitation was recommended. The recommended limitations follow the logic presented in DEPs SOP, to establish limits in the permit where the maximum reported concentration exceeds 50% of the WQBEL, or for non-conservative pollutants to establish monitoring requirements where the maximum reported concentration is between 25% - 50% of the WQBEL, or to establish monitoring requirements for conservative pollutants where the maximum reported concentration is between 10% - 50% of the WQBEL

4.3.12 Fecal Coliform and E. Coli

The existing Fecal Coliform limit is consistent with the technology limits recommended in 92a.47(a)(4) and (a)(5) and will remain in the permit. In March of 2021, EPA approved DEP's Triennial Review of Water Quality Standards, which included a new swimming season criterion for E. coli. As a result, DEP is including monitoring

requirements for E. Coli in new and renewed sewage permits above 2000gpd. Monitoring frequency is based on annual average flow as follows: 1/month for design flows >= 1 MGD, 1/quarter for design flows >= 0.05 and < 1 MGD and 1/year for design flows of 0.002 and < 0.05 MGD. Your discharge of 0.2MGD requires 1/quarter monitoring as included in the permit.

4.3.13 Chesapeake Bay Strategy:

The Department formulated a strategy in April 2007, to comply with the EPA and Chesapeake Bay requirements to reduce point source loadings of Total Nitrogen (TN) and Total Phosphorus (TP) to the Bay. In the Strategy, sewage dischargers have been prioritized by DEP based on their delivered TN loadings to the Bay. The highest priority (Phases 1, 2, and 3) dischargers received annual loading caps based on their design flow on August 29, 2005 and concentrations of 6 mg/l TN and 0.8 mg/l TP. Phase 4 (0.2 -0.4mgd) and Phase 5(below 0.2mdg) are required to monitor and report TN and TP during permit renewal and any facility in Phases 4 and 5 that undergoes expansion is subjected to cap load right away. EPA published Chesapeake Bay TMDL in December of 2010. In order to address the TMDL, Pennsylvania developed Chesapeake Watershed Implementation Plan (WIP) Phase 1, Phase 2 and currently Phase 3 WIP and a supplement to the WIPs to be implemented with the original Chesapeake Bay Strategy.

Phase 3 WIP and the supplement to the WIP, indicates renewing permits for significant dischargers would follow the same phased approach formulated in the original Bay strategy whilst Phase 4 and Phase 5 will be required to monitor and report TN and TP during permit renewals. This facility is, classified as a phase 5, has been and will continue monitoring and reporting Total Phosphorus, Nitrate-Nitrite as N, Total Kjeldahl Nitrogen and Total Nitrogen quarterly throughout the next permit cycle.

4.4.14 Influent BOD and TSS Monitoring

The permit includes influent BOD5 and TSS monitoring at the same frequency as is done for effluent in order to implement Chapter 94.12 and assess percent removal requirements.

4.4.15 Stormwater

There is no stormwater outfall associated with this facility.

4.4.16 Industrial Users

This Wastewater Treatment Plant does not receive wastewater from any significant industrial users.

4.4.17 Pretreatment Requirements

The design annual average flow of the treatment plant is 0.2 MGD and the facility receives no flow from significant Industrial users. EPA does not require development of pretreatment program for facilities with design flow less than 5MGD. However, the permit contains standard conditions requiring the permittee to monitor and control industrial users if applicable.

5.0 Other Considerations

5.1 Anti-backsliding

Not applicable to this permit

5.2 Anti-Degradation (93.4)

The effluent limits for this discharge have been developed to ensure that existing instream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High-Quality Waters are impacted by this discharge. No Exceptional Value Waters are impacted by this discharge.

5.3 Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

5.4 303d Listed Streams

The discharge is located on a 303d listed stream segment. It is impaired for fish consumption by PCB. The source of the impairment is unknown. This discharge does not contribute to the impairment; therefore, no action is warranted at this time.

5.5 Special Permit Conditions

The permit contains the following special conditions:

 Stormwater Prohibition, Approval Contingencies, Solids Management and Restriction on receipt of hauled in waste under certain conditions, SBR discharge condition and chlorine minimization requirement.

5.6 Basis for Effluent and Surface Water Monitoring

Section 308 of the CWA and federal regulation 40 CFR 122.44(i) require monitoring in permits to determine compliance with effluent limitations. Monitoring may also be required to gather effluent and surface water data to determine if additional effluent limitations are required and/or to monitor effluent impacts on receiving water quality. The permittee is responsible for conducting the monitoring and for reporting results on Discharge Monitoring Reports (DMRs).

5.7 Effluent Monitoring Frequency

Monitoring frequencies are based on the nature and effect of the pollutant, as well as a determination of the minimum sampling necessary to adequately monitor the facility's performance. Permittees have the option of taking more frequent samples than are required under the permit. These samples can be used for averaging if they are conducted using EPA-approved test methods (generally found in 40 CFR 136) and if the Method Detection Limits are less than the effluent limits. The sampling location must be after the last treatment unit and prior to discharge to the receiving water. If no discharge occurs during the reporting period, "no discharge" shall be reported on the DMR.

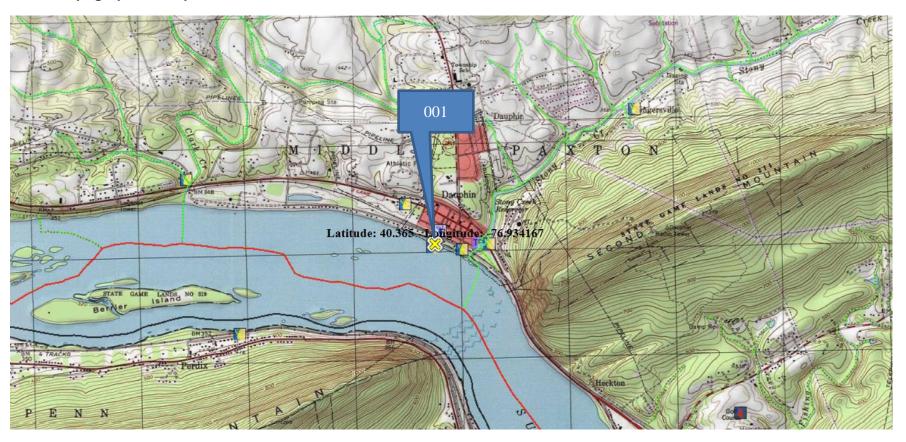
6.0 Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

		Monitoring Re	quirements					
Darameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Daily Min	XXX	9.0 Daily Max	XXX	1/day	Grab
DO	XXX	XXX	5.0 Daily Min	XXX	xxx	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	41.7	66.7	XXX	25	40	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	50	75	XXX	30	45	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Nitrate-Nitrite	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	24-Hr Composite
Total Nitrogen	XXX	XXX	XXX	XXX	Report Daily Max	XXX	1/quarter	Calculation

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)


		Effluent Limitations							
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required			
raiametei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type	
								24-Hr	
Ammonia	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite	
					Report			24-Hr	
TKN	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite	
					Report			24-Hr	
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Composite	

Compliance Sampling Location: At Outfall 001

	7.0 Tools and References Used to Develop Permit
	7.0 10013 and References 03ed to Develop 1 crimit
\boxtimes	WQM for Windows Model (see Attachment B)
\boxtimes	Toxics Management Spreadsheet (see Attachment C)
$\overline{\boxtimes}$	TRC Model Spreadsheet (see Attachment D)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
\square	Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.
\boxtimes	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.
	Pennsylvania CSO Policy, 386-2000-002, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.
	Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.
	Implementation Guidance Design Conditions, 386-2000-007, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen
	and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004. Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges,
	386-2000-012, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.
	Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999.
	Design Stream Flows, 386-2000-003, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
	SOP: Establishing
	Other:

8. Attachments

A. Topographical Map

B. WQM Model Results

WQM 7.0 Effluent Limits

SWP Basin Str 07K	6685	<u>Stream Name</u> SUSQUEHANNA RIVER								
Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)					
Dauphin Boro	PA0024350	0.200	CBOD5	25						
			NH3-N	25	50					
			Dissolved Oxygen			5				
	07K Name	07K 6685 Name Permit Number	07K 6685 Disc Name Permit Flow Number (mgd)	07K 6685 SUSQUEHANNA R Name Permit Flow (mgd) Parameter Dauphin Boro PA0024350 0.200 CBOD5 NH3-N	O7K 6685 SUSQUEHANNA RIVER Name Permit Number Disc Flow (mgd) Parameter Effl. Limit 30-day Ave. (mg/L) Dauphin Boro PA0024350 0.200 CBOD5 25 NH3-N 25	Name Permit Number Disc Flow (mgd) Parameter Beffl. Limit 30-day Ave. (mg/L) Effl. Limit Maximum (mg/L) Dauphin Boro PA0024350 0.200 CBOD5 25 NH3-N 25 50				

Input Data WQM 7.0

	SWP Basin	Strea Cod		Stre	eam Name		RMI		vation (ft)	Drainag Area (sq mi			VS Irawal gd)	Apply FC
	07K	66	885 SUSQ	UEHANN	A RIVER		79.2	30	311.00	23423	.00 0.0	00000	0.00	~
					St	ream Da	ta							
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth		<u>Tributar</u> p	Υ pH	<u>Strear</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	585,60 0.00 0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.0	00 2	3.50	8,20	0.00	0.00	
					Di	ischarge	Data						7	
			Name	Pe	rmit Numbe	Existing Disc r Flow (mgd)	Disc Flow	Dis Flo	sc Res	erve ctor	Disc Temp (°C)	Disc pH		
		Daup	hin Boro	PA	0024350	0.200	00 0.20	00 0.:	2000	0.000	25.0	0 7.10	-	
	[Pa	arameter	Data							
				Paramete	or Nama			Trib Conc	Stream Conc	Fate Coef				
				ratamete	ai iagilie	(r	ng/L) (mg/L)	(mg/L)	(1/days	s)	V0.00=11		
	_		CBOD5				25.00	2.00	0.00	1.9	50			
			Dissolved	Oxygen			5.00	8.24	0.00	0.0	00			
			NH3-N				25.00	0.00	0.00	0.1	70			

Input Data WQM 7.0

	SWP Basir			Stre	eam Name		RMI	El	evation (ft)	Drainage Area (sq mi)		lope ft/ft)	PW: Withdr (mg	awal	Apply FC
	07K	6	685 SUSQ	UEHANN	A RIVER		76.00	00	300.00	23564.	.00 0.	00000		3.75	V
	- 1 1004		V/WW/		St	ream Dat	a						-		
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depti		Tributary	<u>′</u> oH	Tem	Stream p	рН	
oona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	;)		(°C)		
Q7-10 Q1-10 Q30-10	0.100	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.	00 2	3.50	8.20	į.	0.00	0.00	5 A7
				*	Di	scharge l	Data					***************************************			
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Di Fl	sc Res	erve 1	Disc l'emp (°C)	Dis p	sc H		
		Veoli	a Water	PAC	0014621	0.5440	0.544	0 0.	5440	0.000	25.0	0	7.00		
					Pa	rameter l	Data								
			ı	² aramete	r Name			rib onc	Stream Conc	Fate Coef	•				
			•			(m	g/L) (m	ıg/L)	(mg/L)	(1/days)					
			CBOD5			:	25.00	2.00	0.00	1.50)				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00)				
			NH3-N			:	25.00	0.00	0.00	0.70)				

WQM 7.0 Hydrodynamic Outputs

		<u>P Basin</u> 07K		m Code 685				Stream QUEHAN	<u>Name</u> INA RIVE	R			
ŖMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH	-
Q7-1 79,230	0 Flow	0.00	585.60		0.00064	1.274	546.99	429.44	0.84	0.235	23.50	8.20	
Q1-1 79.230	0 Flow 556.32	0.00	556,32	.3094	0.00064	NA	NA	NA	0.82	0.242	23.50	8.20	
Q30- 79.230	10 Flow 685,15	0.00	685.15	.3094	0.00064	NA	NA	NΑ	0.92	0.215	23.50	8.20	

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	V
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.95	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.17	Temperature Adjust Kr	V
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	5		

WQM 7.0 Wasteload Allocations

NH3-N RMI	Acute Alloc	E	Saseline Criterion	Baseline WLA	Multiple Criterio	n V	ıltiple VLA	Critical Reach	Percent Reduction	1
70.7	30 Dauphin Bor		(mg/L)	(mg/L) 50	(mg/L)	2 (n	ng/L.) 50	0	0	_
NH3-N RMI	Chronic All Discharge N	Ba lame C	is aseline riterion mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Mult W (mg	ĹA	Critical Reach	Percent Reduction	
	30 Dauphin Bor		.46	25	,	46	25	0	0	_
	red Oxygen		<u>C</u>	BOD5	NH3			ed Oxygen	Critical	Percent
RMI	Dischar	ge Name	Baselii (mg/L		Baseline (mg/L)	Multiple (mg/L)	Baselin (mg/L)		Reach	Reductio
				25 25	25	25	5	5	0	0

WQM 7.0 D.O.Simulation

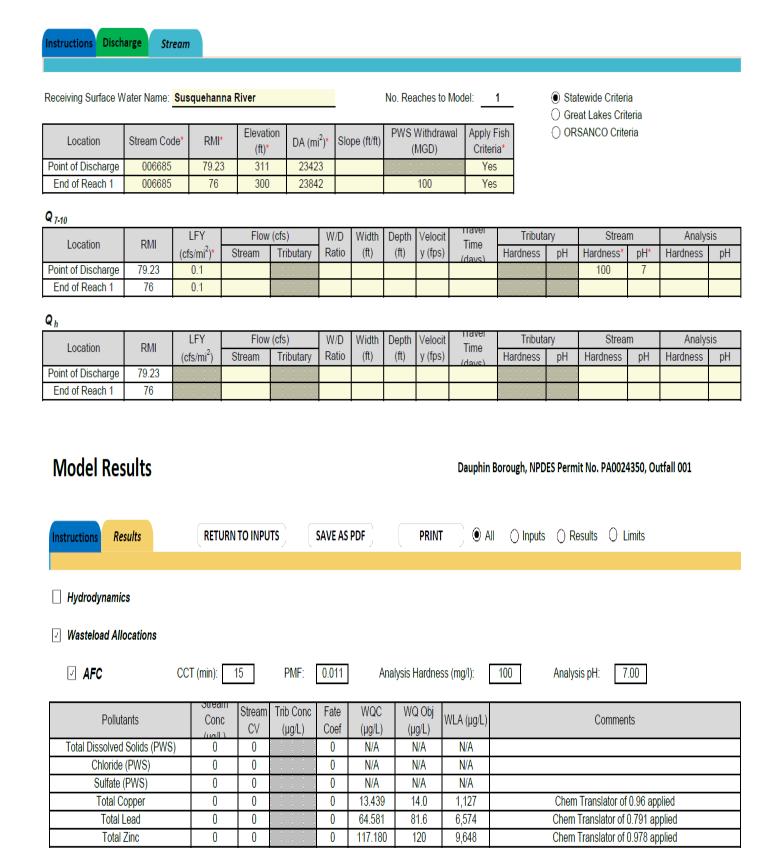
SWP Basin S	Stream Code			Stream Name	
07K	6685		SUS	QUEHANNA RIVEI	₹
<u>RMI</u>	Total Discharge	Flow (mgd) Anai	ysis Temperature (°	C) Analysis pH
79.230	0.20	0		23.501	8.197
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
546.990	1.27	4		429.441	0.841
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
2.01	0.00	-		0.01	0.916
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L)
8.241	2.74	9		Tsivoglou	5
Reach Travel Time (days)	Subreach	Results		
0.235	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.023	2.01	0.01	7.74	
	0.047	2.01	0.01	7.74	
	0.070	2.01	0.01	7.74	
	0.094	2.01	0.01	7.74	
	0.117	2.01	0.01	7.74	
	0.141	2.01	0.01	7.74	
	0.164	2.01	0.01	7.74	
	0.188	2.01	0.01	7.74	
	0.211	2.01	0.01	7.74	
	0.235		0.01	7.74	

C. TMS Results

0.2

Toxics Management Spreadsheet Version 1.4, May 2023

Discharge Information


100

Instructions D	Discharge Stream							
Facility: Dat	iphin Borough			NPDES Perr	mit No.: PA	0024350	Outfall	No.: 001
Evaluation Type:	Major Sewage /	Industrial Wast	e	Wastewater	Description:	Sewage		
			Discharge	Characterist	ics			
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	ctors (PMF	s)	Complete Mi	x Times (min)
(MGD)*	Haruness (mg/l)	pii (30)*	AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h

					0 if lef	blank	0.5 if le	eft blank	0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
\Box	Total Dissolved Solids (PWS)	mg/L		328									
7	Chloride (PWS)	mg/L		104									
Group	Bromide	mg/L		1.1									
ြာ	Sulfate (PWS)	mg/L		34.4									
	Fluoride (PWS)	mg/L	<										
	Total Aluminum	μg/L											
	Total Antimony	μg/L	<										
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L	<										
	Total Boron	μg/L	<										
	Total Cadmium	μg/L	<										
	Total Chromium (III)	μg/L	<										
	Hexavalent Chromium	μg/L	<										
	Total Cobalt	μg/L	<										
	Total Copper	μg/L		15									
2	Free Cyanide	μg/L											
l g	Total Cyanide	μg/L	<										
Group	Dissolved Iron	μg/L	<										
	Total Iron	μg/L											
	Total Lead	μg/L		3									
	Total Manganese	μg/L											
	Total Mercury	μg/L	<										
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L	<										
	Total Selenium	μg/L	<										
	Total Silver	μg/L	<										
	Total Thallium	μg/L	<										
	Total Zinc	μg/L	<	0.88									
	Total Molybdenum	μg/L	<										

Stream / Surface Water Information

Dauphin Borough, NPDES Permit No. PA0024350, Outfall 001

☑ CFC CC	, ,	20	PMF:	0.073	An	alysis Hardn	ess (mg/l):	100 Analysis pH: 7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	5,149	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	1,756	Chem Translator of 0.791 applied
Total Zinc	0	0		0	118.139	120	66,133	Chem Translator of 0.986 applied
☑ THH CC	T (min): ###		THH PMF:	0.073		alysis Hardne	ess (mg/l):	N/A Analysis pH: N/A PWS PMF: 0.0338
Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	#######################################	WQC applied at RMI 76 with a design stream flow of 2384.2 cfs
Chloride (PWS)	0	0		0	250,000	250,000	65,416,190	WQC applied at RMI 76 with a design stream flow of 2384.2 cfs
Sulfate (PWS)	0	0		0	250,000	250,000	65,416,190	WQC applied at RMI 76 with a design stream flow of 2384.2 cfs
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
☑ CRL CC	T (min): 7	20	PMF:	0.102		lysis Hardnes	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
, over Elliv		_		J	1			

NPDES Permit Fact Sheet Dauphin Borough STP

✓	Recommended	WQBELs	& Monitoring	Requirements
---	-------------	---------------	--------------	--------------

No. Samples/Month:

4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

Model Results 4/11/2024 Page

✓ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	130,832	mg/L	Discharge Conc ≤ 10% WQBEL
Chloride (PWS)	65,416	mg/L	Discharge Conc ≤ 10% WQBEL
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	65,416	mg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	723	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	1,756	μg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	N/A	N/A	Discharge Conc < TQL

D. TRC Calculations

mpacappi opi	iate valu <u>es i</u>	n A3:A9 and D3:D9					
	3 = Q stream		0.5	= CV Daily			
	2 = Q discha	• •		= CV Hourly			
30 = no. samples			0.011	= AFC_Partial Mix Factor			
0.0	3 = Chlorine	Demand of Stream	0.075 = CFC_Partial Mix Factor				
0 = Chlorine Demand of Discharge 0.5 = BAT/BPJ Value			15 = AFC_Criteria Compliance Time				
			720	= CFC_Criteria Compliance Time (m			
(= % Facto	r of Safety (FOS)	0	=Decay Coef	ficient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	26.584	1.3.2.iii	WLA cfc = 176.59		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	9.906	5.1d	LTA_cfc = 102.66		
Source		Effluer	it Limit Calcu	lations			
PENTOXSD TRG	5.1f AML MULT = 1.231						
PENTOXSD TRG	5.1g	5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ					
		INST MAX	-IMIT (mg/l) =	1.035			
WLA afc		*AFC_tc)) + [(AFC_Yc*Qs		(-k*AFC_tc)).			
	+ Xd + (A	AFC_Yc*Qs*Xs/Qd)]*(1-F	OS/100)	(-k*AFC_tc)).	-		
LTAMULT afc	+ Xd + (A EXP((0.5*LN	AFC_Yc*Qs*Xs/Qd)]*(1-F0 I(cvh^2+1))-2.326*LN(cvh^	OS/100)	(-k*AFC_tc)).			
LTAMULT afc	+ Xd + (A	AFC_Yc*Qs*Xs/Qd)]*(1-F0 I(cvh^2+1))-2.326*LN(cvh^	OS/100)	(-k*AFC_tc)).			
LTAMULT afc LTA_afc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k*	AFC_Yc*Qs*Xs/Qd)]*(1-F0 I(cvh^2+1))-2.326*LN(cvh^	OS/100) 2+1)^0.5) *.011/Qd*e(
LTAMULT afc LTA_afc WLA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	AFC_Yc*Qs*Xs/Qd)]*(1-F0 I(cvh^2+1))-2.326*LN(cvh^ AMULT_afc *CFC_tc) + [(CFC_Yc*Qs	0 S/100) 2+1)^0.5) *.011/Qd*e(0S/100)	-k*CFC_tc)).			
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0	AFC_Yc*Qs*Xs/Qd)]*(1-F0 l(cvh^2+1))-2.326*LN(cvh^3 AMULT_afc FCFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-F0 l(cvd^2/no_samples+1))-2.3	0 S/100) 2+1)^0.5) *.011/Qd*e(0S/100)	-k*CFC_tc)).			
LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0 EXP((0.5*LN wla_cfc*LTA	AFC_Yc*Qs*Xs/Qd)]*(1-F0 l(cvh^2+1))-2.326*LN(cvh^3 AMULT_afc FCFC_tc) + [(CFC_Yc*Qs CFC_Yc*Qs*Xs/Qd)]*(1-F0 l(cvd^2/no_samples+1))-2.3	0S/100) 2+1)^0.5) *.011/Qd*e(0S/100) 326*LN(cvd^2	- k*CFC_tc)). 2/no_samples+	 I)^0.5)		
WLA afc LTAMULT afc LTA_afc WLA_cfc LTAMULT_cfc LTA_cfc AML MULT AVG MON LIMIT	+ Xd + (A EXP((0.5*LN wla_afc*LTA (.011/e(-k* + Xd + (0 EXP((0.5*LN wla_cfc*LTA EXP(2.326*L	AFC_Yc*Qs*Xs/Qd)]*(1-Fo l(cvh^2+1))-2.326*LN(cvh^3 AMULT_afc *CFC_tc) + [(CFC_Yc*Qs *CFC_Yc*Qs*Xs/Qd)]*(1-Fo l(cvd^2/no_samples+1))-2.3 AMULT_cfc	OS/100) 2+1)^0.5) *.011/Qd*e(OS/100) 326*LN(cvd^2	- k*CFC_tc)). 2/no_samples+	 I)^0.5)		