

Application Type
Facility Type
Major / Minor

Renewal
Municipal
Minor

**NPDES PERMIT FACT SHEET
INDIVIDUAL SEWAGE**

Application No. **PA0024511**
APS ID **1142677**
Authorization ID **1536178**

Applicant and Facility Information

Applicant Name	<u>Redbank Valley Municipal Authority</u>	Facility Name	<u>Redbank Valley STP</u>
Applicant Address	<u>243 Broad Street</u> <u>New Bethlehem, PA 16242-1001</u>	Facility Address	<u>741 Kohlersburg Road</u> <u>New Bethlehem, PA 16242</u>
Applicant Contact	<u>Deborah Vangorder</u>	Facility Contact	<u>Rory Moore</u>
Applicant Phone	<u>(814) 275-2585</u>	Facility Phone	<u>(814) 275-3345</u>
Applicant Email	<u>office@rvmaonline.com</u>	Site ID	<u>249508</u>
Client ID	<u>71981</u>	Municipality	<u>Mahoning Township</u>
Ch 94 Load Status	<u>Existing Hydraulic Overload</u>	County	<u>Armstrong</u>
Connection Status	<u>Dept. Imposed Connection Prohibitions</u>	EPA Waived?	<u>Yes</u>
Date Application Received	<u>August 4, 2025</u>	If No, Reason	
Date Application Accepted	<u>August 12, 2025</u>		
Purpose of Application	<u>NPDES Permit Renewal for a Municipal Sewage Treatment Plant</u>		

Summary of Review

This is a NPDES Permit Renewal for a Municipal Sewage Treatment Plant for an Existing Design Flow of 0.59 MGD. The STP is serving portions of New Bethlehem Township and Porter Township in Clarion County and South Bethlehem Township in Armstrong County.

Monitoring requirements for E. Coli were added to this permit renewal.

No changes to discharge quantity or quality are being proposed as part of this renewal.

Act 14 – Proof of Notification was submitted and received.

This facility is currently using eDMR system.

SPECIAL CONDITIONS: NONE

There are **16** open violations in WMS for the subject Client ID (71981) as of August 27, 2025.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
X		Aeshah Shameseldin Aeshah Shameseldin / Project Manager	August 27, 2025
X		Adam Olesnanik Adam Olesnanik, P.E. / Environmental Engineer Manager	August 28, 2025

Discharge, Receiving Waters and Water Supply Information			
Outfall No.	001	Design Flow (MGD)	.59
Latitude	40° 59' 56.00"	Longitude	-79° 21' 4.00"
Quad Name	Distant	Quad Code	40079H3
Wastewater Description: Sewage Effluent			
Receiving Waters	Redbank Creek (TSF)	Stream Code	48064
NHD Com ID	123856806	RMI	22.9
Drainage Area	505 square miles	Yield (cfs/mi ²)	0.062
Q ₇₋₁₀ Flow (cfs)	31.31	Q ₇₋₁₀ Basis	Calculated
Elevation (ft)	1043	Slope (ft/ft)	---
Watershed No.	17-C	Chapter 93 Class.	TSF
Existing Use	---	Existing Use Qualifier	---
Exceptions to Use	---	Exceptions to Criteria	---
Assessment Status	Attaining Use(s)		
Cause(s) of Impairment	Aluminum, Iron, Manganese and pH		
Source(s) of Impairment	---		
TMDL Status	Final	Name	Redbank Creek TMDL
Background/Ambient Data			
pH (SU)	6.84	Data Source	WQN #820 ('94 - 02')
Temperature (°F)	77		Default
Hardness (mg/L)	100		Default
NH3-N (mg/L)	0.062		WQN #820 ('94 - 02')
TDS (mg/L)	162		USGS 3036500 ('85-'10) logarithmic regression
Chloride (mg/L)	16.9		WQN 884 (2009-2016) (June-Sept) (median)
Sulfate (mg/L)	23.8		WQN 884 (2007-2016) (June-Sept) (median)
Nearest Downstream Public Water Supply Intake			
PWS Waters	Allegheny River	PA American Water Company - Kittanning District	
PWS RMI	45.6	Flow at Intake (cfs)	---
		Distance from Outfall (mi)	41.6

Changes Since Last Permit Issuance: None.

Other Comments: None.

Treatment Facility Summary				
Treatment Facility Name: Redbank Valley STP				
WQM Permit No.	Issuance Date			
1672403	---			
1672403 A-1	February 15, 2011			
1607402	December 19, 2010			
1607402 A-1	June 27, 2019			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
Sewage	Secondary	Trickling Filter with Settling	Gas Chlorine	0.3
Hydraulic Capacity (MGD)	Organic Capacity (lbs/day)	Load Status	Biosolids Treatment	Biosolids Use/Disposal
0.59	520	Existing Hydraulic Overload	Combination	Landfill

Changes Since Last Permit Issuance: None.

Other Comments: Existing Treatment Process/Facilities and WQM Permit No. 1672403-A1: Convert the two existing imhoff tanks to primary clarifiers, addition of a 39-ft. diameter trickling filter (w/ synthetic media), addition of another final clarifier, two new aerobic digesters and a new dewatering centrifuge. Miscellaneous upgrades to the existing treatment units and equipment. [Brings the design capacity of the treatment plant to 0.59 MGD & 520 lb/day BOD).

WQM Permit No. 1672403: Imhoff Tank, Head Tank, (1) Trickling Filter, (2) Final Settling Tanks and Chlorination. Sludge handling: (2) Aerobic Digesters and Sludge Drying Beds.

WQM Permit No. 1607402: Grant Street Pump Station (to replace the Broad Street and Short Street Pump Stations) which includes parallel force mains to transmit wastewater to the STP. The 12-inch force main will carry normal, dry weather flows to the primary clarifiers and an 18-inch force main will carry wet weather flows to a new 1.842 MG equalization tank located at the STP.

WQM Permit No. 1607402: Removal of the comminutor at the Grant Street Pump Station and replace with a mechanically cleaned bar screen with a washer compactor.

Compliance History

DMR Data for Outfall 001 (from July 1, 2024, to June 30, 2025)

Parameter	JUN-25	MAY-25	APR-25	MAR-25	FEB-25	JAN-25	DEC-24	NOV-24	OCT-24	SEP-24	AUG-24	JUL-24
Flow (MGD) Average Monthly	0.370	0.425	0.367	0.285	0.453	0.197	0.285	0.200	0.152	0.177	0.213	0.161
Flow (MGD) Weekly Average	0.689	0.548	0.467	0.367	0.631	0.349	0.359	0.276	0.178	0.256	0.321	0.206
pH (S.U.) Minimum	6.1	6.4	6.2	6.6	6.6	6.0	6.0	6.0	6.0	6.0	6.0	6.0
pH (S.U.) Maximum	7.3	7.1	7.1	7.1	7.2	7.0	6.6	6.9	6.8	6.6	7.0	6.8
DO (mg/L) Daily Minimum	5.6	6.8	5.5	6.5	8.4	8.1	6.6	7.2	5.7	5.3	5.9	5.1
TRC (mg/L) Average Monthly	0.05	0.05	< 0.05	0.04	< 0.04	0.05	0.03	< 0.04	< 0.04	< 0.04	< 0.04	< 0.03
TRC (mg/L) Instantaneous Maximum	0.1	0.09	0.1	0.10	0.10	0.09	0.08	0.09	0.09	0.08	< 0.1	0.09
CBOD5 (lbs/day) Average Monthly	15.0	13.0	11.0	14.0	25.0	8.0	22.0	6.0	< 8.0	< 3.0	5.0	6.0
CBOD5 (lbs/day) Weekly Average	22.0	26.0	18.0	17.0	39.0	13.0	50.0	12.0	12.0	4.0	10.0	11.0
CBOD5 (mg/L) Average Monthly	6.0	4.0	5.0	7.0	8.0	6.0	6.0	4.0	< 5.0	< 3.0	3.0	7.0
CBOD5 (mg/L) Weekly Average	10.0	5.0	6.0	7.0	9.0	8.0	12.0	4.0	9.0	4.0	4.0	11.0
BOD5 (lbs/day) Raw Sewage Influent Average Monthly	216.0	202.0	257.0	87.0	484.0	< 138.0	< 276.0	167.0	164.0	228.0	190.0	247.0
BOD5 (lbs/day) Raw Sewage Influent Daily Maximum	606.0	428.0	580.0	118.0	929.0	200.0	674.0	235.0	279.0	239.0	274.0	611.0
BOD5 (mg/L) Raw Sewage Influent Average Monthly	69.1	64.0	100.8	40.7	168.1	< 100.1	< 92.1	127.8	119.6	206.0	120.0	248.6
TSS (lbs/day) Average Monthly	43.0	175.0	< 11.0	< 11.0	< 22.0	< 7.0	< 26.0	< 10.0	< 8.0	< 12.0	< 8.0	< 7.0

NPDES Permit Fact Sheet
Redbank Valley STP

NPDES Permit No. PA0024511

TSS (lbs/day) Raw Sewage Influent Average Monthly	69.0	77.0	58.0	44.0	97.0	89.0	112.0	106.0	149.0	164.0	177.0	309.0
TSS (lbs/day) Raw Sewage Influent Daily Maximum	89.0	120.0	136.0	58.0	148.0	119.0	171.0	147.0	209.0	206.0	229.0	1025
TSS (lbs/day) Weekly Average	49.0	542.0	< 16.0	13.0	46.0	< 8.0	63.0	22.0	< 12.0	27.0	12.0	11.0
TSS (mg/L) Average Monthly	19.0	90.0	< 5.0	< 5.0	< 7.0	< 5.0	< 8.0	< 6.0	< 5.0	< 11.0	< 5.0	< 8.0
TSS (mg/L) Raw Sewage Influent Average Monthly	31.0	42.0	29.0	21.0	29.0	67.0	50.0	80.0	106.0	148.0	112.0	290
TSS (mg/L) Weekly Average	26.0	314.0	< 5.0	6.0	11.0	5.0	15.0	7.0	< 5.0	23.0	5.0	11.0
Fecal Coliform (CFU/100 ml) Geometric Mean	49.0	44.0	< 7.0	34.0	< 39.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Fecal Coliform (CFU/100 ml) Instantaneous Maximum	1046	980.0	55.0	1046	2420	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
Total Nitrogen (lbs/day) Average Monthly	30.0	19.0	22.0	25.0	8.0	7.0	2.0	3.0	7.0	5.00	5.0	3.0
Total Nitrogen (mg/L) Average Monthly	15.8	2.86	12.0	11.0	2.79	4.44	1.1	2.66	2.92	4.22	2.19	2.92
Ammonia (lbs/day) Average Monthly	0.30	13.11	2.99	8.45	6.03	1.88	0.47	0.23	0.38	0.22	1.03	0.15
Ammonia (mg/L) Average Monthly	< 0.15	7.38	1.56	3.56	1.93	1.54	< 0.15	< 0.20	< 0.20	< 0.20	0.47	< 0.20
Total Phosphorus (lbs/day) Average Monthly	< 0.3	5.0	5.0	2.0	7.0	3.0	5.0	2.0	8.0	2.0	3.0	1.0
Total Phosphorus (mg/L) Average Monthly	< 0.15	0.822	2.6	1.06	2.39	1.63	3.36	1.89	3.49	1.39	1.35	1.42
Total Aluminum (lbs/day) Average Quarterly	0.76728			0.29857 2			0.10842			0.23852 4		

Total Aluminum (mg/L) Average Quarterly	0.115			< 0.10			< 0.10			< 0.10		
Total Manganese (lbs/day) Average Quarterly	0.36028 8			0.14928 6			0.05421			0.19081 92		
Total Manganese (mg/L) Average Quarterly	0.054			< 0.05			< 0.05			0.08		

Compliance History

Effluent Violations for Outfall 001, from: August 1, 2024, To: June 30, 2025

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
TSS	05/31/25	Avg Mo	175.0	lbs/day	148	lbs/day
TSS	05/31/25	Avg Mo	175.0	lbs/day	148	lbs/day
TSS	05/31/25	Wkly Avg	542.0	lbs/day	221	lbs/day
TSS	05/31/25	Wkly Avg	542.0	lbs/day	221	lbs/day
TSS	05/31/25	Avg Mo	90.0	mg/L	30	mg/L
TSS	05/31/25	Avg Mo	90.0	mg/L	30	mg/L
TSS	05/31/25	Wkly Avg	314.0	mg/L	45	mg/L
TSS	05/31/25	Wkly Avg	314.0	mg/L	45	mg/L
Fecal Coliform	06/30/25	IMAX	1046	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	06/30/25	IMAX	1046	CFU/100 ml	1000	CFU/100 ml

Summary of Inspections: An inspection of the facility was conducted on February 19, 2025. The inspection report did not cite any violations.

Development of Effluent Limitations

Outfall No. 001
Latitude 40° 59' 56.00"
Wastewater Description: Sewage Effluent

Design Flow (MGD) .59
Longitude -79° 21' 4.00"

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended Solids	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pH	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)
E. Coli	Report (No./100 ml)	IMAX	-	§ 92a.61

Comments: Monitoring for E. Coli is placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BCW-PMT-033)".

Water Quality-Based Limitations

CBOD₅, Ammonia, and DO are evaluated using WQM 7.0 (Attachment 1). TRC is evaluated using the Department's TRC evaluation spreadsheet (Attachment 2). Total Dissolved Solids, Chloride, Bromide, Sulfate, Total Copper, Total Lead, Total Zinc, Total Aluminum and Total Manganese were evaluated using the Department's TMS (Attachment 3).

The following limitations were determined through water quality modeling (output files attached):

Parameter	Limit (mg/l)	SBC	Model
Dissolved Oxygen	4.0	Daily Min.	WQM 7.0
CBOD ₅	25	Average Monthly	WQM 7.0
	50	IMAX	
Ammonia Nitrogen (May 1 – Oct 31)	25	Average Monthly	WQM 7.0
	50	IMAX	
TRC	0.5	Average Monthly	TRC evaluation spreadsheet

Comment 1: WQM modeling did not calculate a more stringent average monthly Ammonia Nitrogen limit under perennial flow conditions. A review of the eDMR data for Ammonia Nitrogen over the past five years indicates consistent compliance with the limits of 25 mg/L (monthly average) and 50 mg/L (daily maximum) at a 100% rate. Therefore, the current monitoring requirements for Ammonia Nitrogen will be retained.

Comment 2: The TRC evaluation spreadsheet didn't calculate more stringent average monthly TRC limit at perennial conditions using the plant design flow. The technology-based limitations established in previous permits are attainable and will be retained.

Best Professional Judgment (BPJ) Limitations

Comment 1: The parameters associated with the Redbank Creek TMDL (Aluminum, Manganese) were evaluated using the Department's TMS and were found to be below the criteria established in Chapter 93. However, quarterly monitoring for Total Aluminum and Total Manganese will continue to be required in this permit renewal, in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BCW-PMT-033)" due to the existence of the TMDL for segment RC03 of the stream where this discharge is located as needing load reductions.

The table below shows the existing load at the time the TMDL was determined, the TMDL allowable load, and the reduction percentage required to achieve the allowable load for Aluminum and Manganese.

The Redbank Creek TMDL further states that the stream segment where this discharge is located does not address TMDLs for Total Iron, Acidity, or pH. Therefore, no monitoring requirements or WQBELs are necessary for these parameters in relation to the TMDL.

Station	Parameter	Existing Load (lbs/day)	TMDL Allowable Load (lbs/day)	WLA (lbs/day)	LA (lbs/day)	Load Reduction (lbs/day)	Percent Reduction %
RC03 Redbank Creek, 48064							
	Al	1783.8	1141.7	2.8	1138.9	642.2*	36*
	Fe	1442.2	1442.2	11.25	1130.95	0.0*	0*
	Mn	2410.7	1060.7	7.5	1053.2	1222.3*	54*
	Acidity	0.0	0.0	0.0	0.0	0.0*	0*

Comment 2: TMS did not recommend monitoring requirements or WQBELs for Total Dissolved Solids, Chloride, Bromide, Sulfate, Total Copper, Total Lead and Total Zinc because their concentrations were found to be below water quality criteria.

Comment 3: Monitoring for Total Nitrogen and Total Phosphorus are placed in the permit in accordance with the Department's SOP entitled "Establishing Effluent Limitations for Individual Sewage Permits (SOP No. BCW-PMT-033)". Per the SOP, the monitoring frequency can be reduced for discharges to waters not impaired for nutrients. Therefore, the current 1/month monitoring frequency for N and P will be retained.

Anti-Backsliding

Pursuant to EPA's anti-backsliding regulation 40 CFR 122.44(l), the effluent limitations established in the previous permit remain applicable. Accordingly, the permit retains all prior limitations, monitoring requirements and conditions, with the addition of monitoring requirements for E. Coli.

Effluent Limitations and Monitoring Requirements Established in the Current Permit								
Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)					
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	123	197	XXX	25	40	50	1/week	24-Hr Composite
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	148	221	XXX	30	45	60	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Ammonia	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Total Aluminum	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Total Manganese	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.

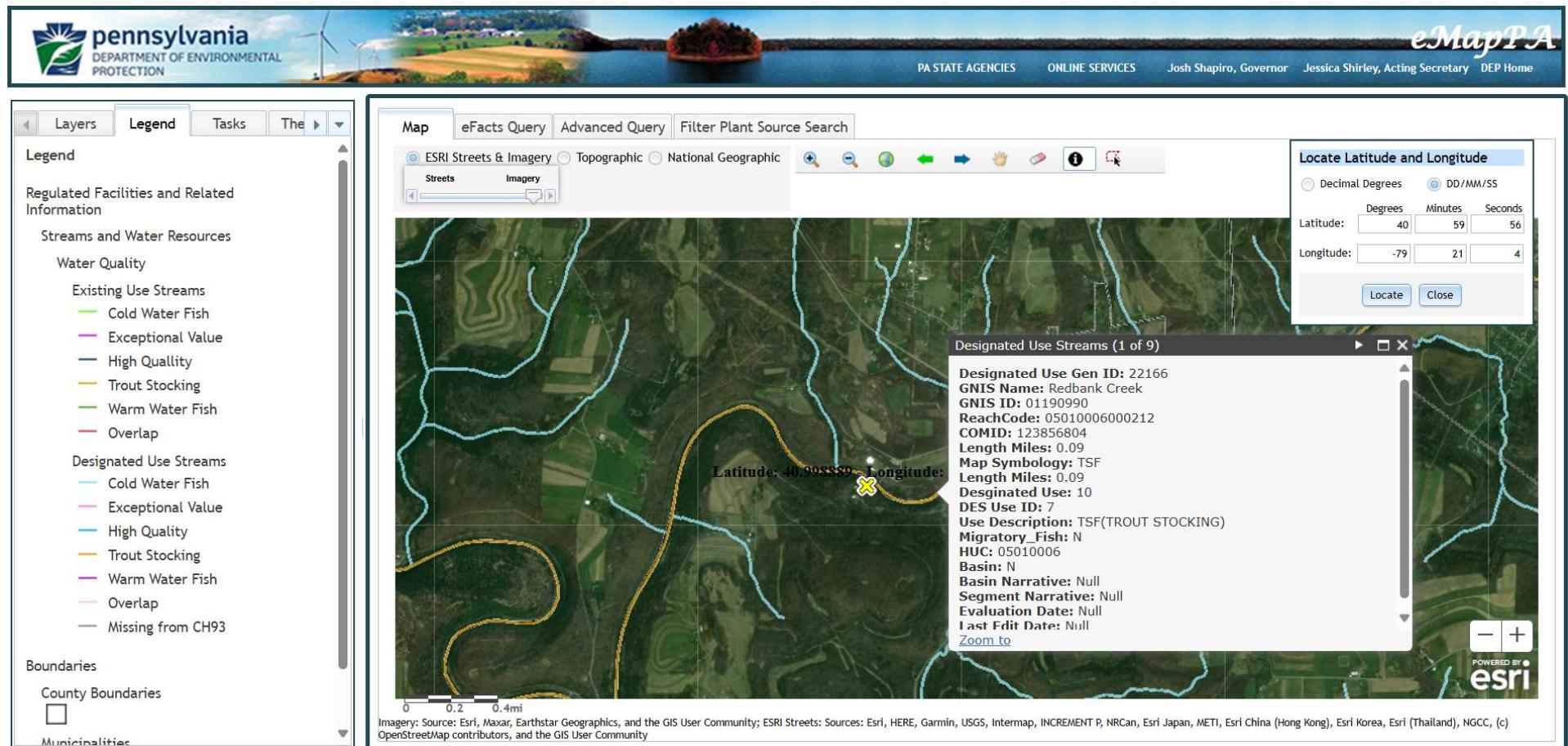
Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
BOD5 Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite

Compliance Sampling Location: At the STP Influent Location, Prior to Any Treatment.

Other Comments: Monitoring for influent BOD5 and Total Suspended Solids is based on Chapter 92a.61.

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (386-0400-001), SOPs and/or BPJ.


Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

Parameter	Effluent Limitations						Monitoring Requirements	
	Mass Units (lbs/day) ⁽¹⁾		Concentrations (mg/L)				Minimum ⁽²⁾ Measurement Frequency	Required Sample Type
	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum		
Flow (MGD)	Report	Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	9.0 Max	XXX	1/day	Grab
DO	XXX	XXX	4.0 Daily Min	XXX	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	123	197	XXX	25	40	50	1/week	24-Hr Composite
TSS	148	221	XXX	30	45	60	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/week	Grab
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/quarter	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Ammonia	Report	XXX	XXX	Report	XXX	XXX	2/month	Grab
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Total Aluminum	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Total Manganese	Report Avg Qrtly	XXX	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite

Compliance Sampling Location: Outfall 001, After Disinfection.

Other Comments: Monitoring for Ammonia-Nitrogen, Total Nitrogen, Total Phosphorus, Total Aluminum, Total Iron, and Total Manganese is based on Chapter 92a.61.

Outfall Location - eMap with Aerial Imagery

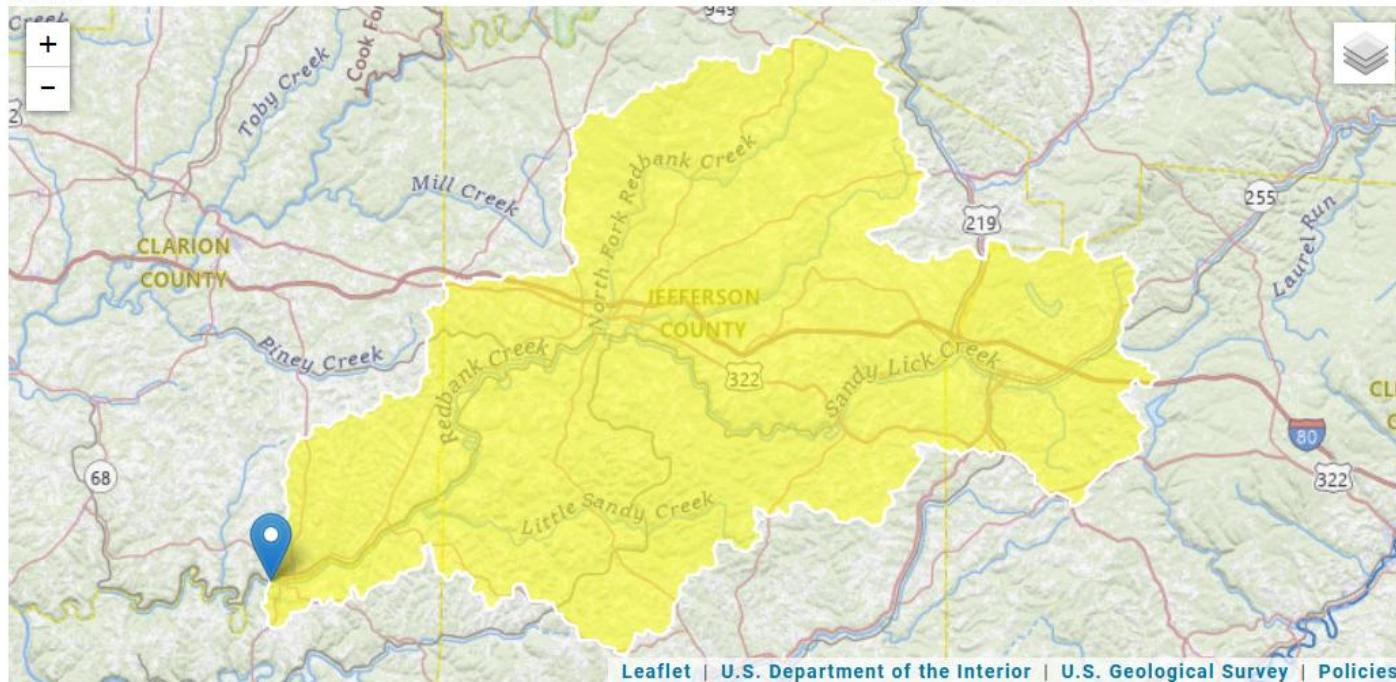
Drainage Area Location – StreamStats with Aerial Imagery

StreamStats Report

Region ID:

PA

Workspace ID:


PA20250818193746520000

Clicked Point (Latitude, Longitude):

40.99923, -79.35069

Time:

2025-08-18 15:38:10 -0400

 Collapse All

➤ Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	505	square miles

Attachment 1

Approximately 3 miles upstream, the Hawthorn Redbank Municipal Authority WWTP (PA0263893) discharges 0.2 MGD (design flow). To verify that an interaction will not happen when both discharges model together, the 0.59 MGD discharge from the Redbank Valley STP and the 0.2 MGD discharge from the Hawthorn Redbank Municipal Authority WWTP have been modeled together as part of this renewal. The results show that no water quality interactions were determined.

WQM 7.0 Effluent Limits

<u>SWP Basin</u>		<u>Stream Code</u>	<u>Stream Name</u>				
17C	48064		REDBANK CREEK				
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
26.200	Hawthorn Redban	PA0263893	0.200	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
22.900	Redbank Val STP	PA0024511	0.590	CBOD5	25		
				NH3-N	25	50	
				Dissolved Oxygen			4

WQM 7.0 D.O.Simulation

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>		
17C	48064	REDBANK CREEK		
<u>RMI</u> 26.200	<u>Total Discharge Flow (mgd)</u> 0.200	<u>Analysis Temperature (°C)</u> 25.000	<u>Analysis pH</u> 6.841	
<u>Reach Width (ft)</u> 96.936	<u>Reach Depth (ft)</u> 0.973	<u>Reach WDRatio</u> 99.608	<u>Reach Velocity (fps)</u> 0.319	
<u>Reach CBOD5 (mg/L)</u> 2.24	<u>Reach Kc (1/days)</u> 0.105	<u>Reach NH3-N (mg/L)</u> 0.32	<u>Reach Kn (1/days)</u> 1.029	
<u>Reach DO (mg/L)</u> 7.504	<u>Reach Kr (1/days)</u> 1.729	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5	
<u>Reach Travel Time (days)</u> 0.633	<u>Subreach Results</u> TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)			
	0.063	2.22	0.30	7.48
	0.127	2.20	0.28	7.47
	0.190	2.18	0.26	7.46
	0.253	2.16	0.24	7.46
	0.316	2.15	0.23	7.46
	0.380	2.13	0.21	7.47
	0.443	2.11	0.20	7.48
	0.506	2.09	0.19	7.49
	0.569	2.07	0.18	7.51
	0.633	2.06	0.17	7.52
<u>RMI</u> 22.900	<u>Total Discharge Flow (mgd)</u> 0.790	<u>Analysis Temperature (°C)</u> 25.000	<u>Analysis pH</u> 6.820	
<u>Reach Width (ft)</u> 103.035	<u>Reach Depth (ft)</u> 1.018	<u>Reach WDRatio</u> 101.215	<u>Reach Velocity (fps)</u> 0.310	
<u>Reach CBOD5 (mg/L)</u> 2.70	<u>Reach Kc (1/days)</u> 0.290	<u>Reach NH3-N (mg/L)</u> 0.86	<u>Reach Kn (1/days)</u> 1.029	
<u>Reach DO (mg/L)</u> 7.427	<u>Reach Kr (1/days)</u> 2.422	<u>Kr Equation</u> Tsivoglou	<u>Reach DO Goal (mg/L)</u> 5	
<u>Reach Travel Time (days)</u> 0.577	<u>Subreach Results</u> TravTime CBOD5 NH3-N D.O. (days) (mg/L) (mg/L) (mg/L)			
	0.058	2.64	0.81	7.26
	0.115	2.59	0.76	7.13
	0.173	2.53	0.72	7.03
	0.231	2.48	0.68	6.96
	0.289	2.43	0.64	6.90
	0.346	2.38	0.60	6.87
	0.404	2.33	0.57	6.85
	0.462	2.28	0.53	6.84
	0.520	2.23	0.50	6.84
	0.577	2.19	0.47	6.85

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	<input checked="" type="checkbox"/>
WLA Method	EMPR	Use Inputted W/D Ratio	<input type="checkbox"/>
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	<input type="checkbox"/>
Q30-10/Q7-10 Ratio	1.36	Temperature Adjust Kr	<input checked="" type="checkbox"/>
D.O. Saturation	90.00%	Use Balanced Technology	<input checked="" type="checkbox"/>
D.O. Goal	5		

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
17C	48064	REDBANK CREEK	26.200	1061.00	480.00	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tributary Temp	pH	Stream Temp	pH
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)	
Q7-10	0.062	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25.00	6.84	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data								
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH	
Hawthorn Redban	PA0263893	0.2000	0.0000	0.0000	0.000	25.00	7.00	
Parameter Data								
Parameter Name		Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)			
CBOD5		25.00	2.00	0.00	1.50			
Dissolved Oxygen		4.00	7.54	0.00	0.00			
NH3-N		25.00	0.06	0.00	0.70			

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RML	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
17C	48064	REDBANK CREEK	22.900	1043.00	505.00	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	pH	Stream Temp (°C)	pH
	(cfs/m)	(cfs)	(cfs)									
Q7-10	0.062	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25.00	6.84	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data								
Name		Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Redbank Val STP		PA0024511	0.5900	0.0000	0.0000	0.000	25.00	6.40
Parameter Data								
Parameter Name			Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)		
CBOD5			25.00	2.00	0.00	1.50		
Dissolved Oxygen			4.00	7.54	0.00	0.00		
NH3-N			25.00	0.06	0.00	0.70		

Input Data WQM 7.0

SWP Basin	Stream Code	Stream Name	RMI	Elevation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
17C	48064	REDBANK CREEK	19.970	1020.00	510.00	0.00000	0.00	<input checked="" type="checkbox"/>

Stream Data

Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time (days)	Rch Velocity (fps)	WD Ratio	Rch Width (ft)	Rch Depth (ft)	Tributary Temp (°C)	pH	Stream Temp (°C)	pH
	(cfs/m)	(cfs)	(cfs)									
Q7-10	0.062	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25.00	6.84	0.00	0.00
Q1-10		0.00	0.00	0.000	0.000							
Q30-10		0.00	0.00	0.000	0.000							

Discharge Data									
Name		Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH	
			0.0000	0.0000	0.0000	0.000	25.00	7.00	
Parameter Data									
Parameter Name			Disc Conc (mg/L)	Trib Conc (mg/L)	Stream Conc (mg/L)	Fate Coef (1/days)			
CBOD5			25.00	2.00	0.00	1.50			
Dissolved Oxygen			3.00	8.24	0.00	0.00			
NH3-N			25.00	0.00	0.00	0.70			

WQM 7.0 Hydrodynamic Outputs

SWP Basin			Stream Code			Stream Name								
17C			48064			REDBANK CREEK								
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)			
Q7-10 Flow														
26.200	29.76	0.00	29.76	.3094	0.00103	.973	96.94	99.61	0.32	0.633	25.00	6.84		
22.900	31.31	0.00	31.31	1.2221	0.00149	1.018	103.04	101.21	0.31	0.577	25.00	6.82		
Q1-10 Flow														
26.200	19.05	0.00	19.05	.3094	0.00103	NA	NA	NA	0.25	0.810	25.00	6.84		
22.900	20.04	0.00	20.04	1.2221	0.00149	NA	NA	NA	0.24	0.733	25.00	6.81		
Q30-10 Flow														
26.200	40.47	0.00	40.47	.3094	0.00103	NA	NA	NA	0.38	0.533	25.00	6.84		
22.900	42.58	0.00	42.58	1.2221	0.00149	NA	NA	NA	0.37	0.489	25.00	6.83		

WQM 7.0 Wasteload Allocations

<u>SWP Basin</u>	<u>Stream Code</u>	<u>Stream Name</u>			
17C	48064	REDBANK CREEK			

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
26.200	Hawthorn Redba	12.53	50	12.53	50	0	0
22.900	Redbank Val STP	12.82	50	12.8	50	0	0

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
26.200	Hawthorn Redba	1.44	25	1.44	25	0	0
22.900	Redbank Val STP	1.45	25	1.45	25	0	0

Dissolved Oxygen Allocations

RMI	Discharge Name	CBOD5		NH3-N		Dissolved Oxygen		Critical Reach	Percent Reduction
		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)		
26.20	Hawthorn Redban	25	25	25	25	4	4	0	0
22.90	Redbank Val STP	25	25	25	25	4	4	0	0

Attachment 2

TRC EVALUATION							
Input appropriate values in A3:A9 and D3:D9							
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA_afc =	2.186	1.3.2.iii	WLA_cfc =	10.679	
PENTOXSD TRG	5.1a	LTAMULT_afc =	0.373	5.1c	LTAMULT_cfc =	0.581	
PENTOXSD TRG	5.1b	LTA_afc =	0.814	5.1d	LTA_cfc =	6.209	
Effluent Limit Calculations							
PENTOXSD TRG	5.1f	AML MULT =	1.231				
PENTOXSD TRG	5.1g	AVG MON LIMIT (mg/l) =	0.500				BAT/BPJ
		INST MAX LIMIT (mg/l) =	1.635				
WLA_afc		$(.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))...\\...+Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$					
LTAMULT_afc		$\text{EXP}((0.5*\text{LN}(cvh^2+1))-2.326*\text{LN}(cvh^2+1)^0.5)$					
LTA_afc		wla_afc*LTAMULT_afc					
WLA_cfc		$(.011/e(-k*CFC_tc)) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))...\\...+Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)$					
LTAMULT_cfc		$\text{EXP}((0.5*\text{LN}(cvd^2/no_samples+1))-2.326*\text{LN}(cvd^2/no_samples+1)^0.5)$					
LTA_cfc		wla_cfc*LTAMULT_cfc					
AML MULT		$\text{EXP}(2.326*\text{LN}(cvd^2/no_samples+1)^0.5)-0.5*\text{LN}(cvd^2/no_samples+1))$					
AVG MON LIMIT		MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)					
INST MAX LIMIT		1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)					

Attachment 3

Toxics Management Spreadsheet
Version 1.4, May 2025

Discharge Information

Instructions	Discharge	Stream									
Facility:	Redbank Valley STP	NPDES Permit No.:	PA0024511	Outfall No.:	001						
Evaluation Type:	Major Sewage / Industrial Waste		Wastewater Description: Sewage								
Discharge Characteristics											
Design Flow (MGD)*	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs)			Complete Mix Times (min)					
			AFC	CFC	THH	CRL	Q ₇₋₁₀	Q _h			
0.59	100	6.4									
Discharge Pollutant			<i>0 if left blank</i>	<i>0.5 if left blank</i>	<i>0 if left blank</i>	<i>1 if left blank</i>	<i>0 if left blank</i>				
Group 1	Units	Max Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Stream CV	Fate Coeff	FOS	Criteria Mod	Chem Transl
	mg/L	473		162							
	mg/L	84.3		16.9							
	mg/L	0.0013									
	mg/L	98.8		23.8							
	mg/L										
	mg/L	0.31									
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
	μg/L										
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											
μg/L											

Group 3	Carbon Tetrachloride	µg/L	<											
	Chlorobenzene	µg/L												
	Chlorodibromomethane	µg/L	<											
	Chloroethane	µg/L	<											
	2-Chloroethyl Vinyl Ether	µg/L	<											
	Chloroform	µg/L	<											
	Dichlorobromomethane	µg/L	<											
	1,1-Dichloroethane	µg/L	<											
	1,2-Dichloroethane	µg/L	<											
	1,1-Dichloroethylene	µg/L	<											
	1,2-Dichloropropane	µg/L	<											
	1,3-Dichloropropylene	µg/L	<											
	1,4-Dioxane	µg/L	<											
	Ethylbenzene	µg/L	<											
	Methyl Bromide	µg/L	<											
	Methyl Chloride	µg/L	<											
	Methylene Chloride	µg/L	<											
	1,1,2,2-Tetrachloroethane	µg/L	<											
	Tetrachloroethylene	µg/L	<											
	Toluene	µg/L	<											
	1,2-trans-Dichloroethylene	µg/L	<											
	1,1,1-Trichloroethane	µg/L	<											
	1,1,2-Trichloroethane	µg/L	<											
	Trichloroethylene	µg/L	<											
	Vinyl Chloride	µg/L	<											
Group 4	2-Chlorophenol	µg/L	<											
	2,4-Dichlorophenol	µg/L	<											
	2,4-Dimethylphenol	µg/L	<											
	4,6-Dinitro-o-Cresol	µg/L	<											
	2,4-Dinitrophenol	µg/L	<											
	2-Nitrophenol	µg/L	<											
	4-Nitrophenol	µg/L	<											
	p-Chloro-m-Cresol	µg/L	<											
	Pentachlorophenol	µg/L	<											
	Phenol	µg/L	<											
Group 5	2,4,6-Trichlorophenol	µg/L	<											
	Acenaphthene	µg/L	<											
	Acenaphthylene	µg/L	<											
	Anthracene	µg/L	<											
	Benzidine	µg/L	<											
	Benzo(a)Anthracene	µg/L	<											
	Benzo(a)Pyrene	µg/L	<											
	3,4-Benzofluoranthene	µg/L	<											
	Benzo(ghi)Perylene	µg/L	<											
	Benzo(k)Fluoranthene	µg/L	<											
	Bis(2-Chloroethoxy)Methane	µg/L	<											
	Bis(2-Chloroethyl)Ether	µg/L	<											
	Bis(2-Chloroisopropyl)Ether	µg/L	<											
	Bis(2-Ethylhexyl)Phthalate	µg/L	<											
	4-Bromophenyl Phenyl Ether	µg/L	<											
	Butyl Benzyl Phthalate	µg/L	<											
	2-Chloronaphthalene	µg/L	<											
	4-Chlorophenyl Phenyl Ether	µg/L	<											
	Chrysene	µg/L	<											
	Dibenzo(a,h)Anthracene	µg/L	<											
	1,2-Dichlorobenzene	µg/L	<											
	1,3-Dichlorobenzene	µg/L	<											
	1,4-Dichlorobenzene	µg/L	<											
	3,3-Dichlorobenzidine	µg/L	<											
	Diethyl Phthalate	µg/L	<											
	Dimethyl Phthalate	µg/L	<											
	Di-n-Butyl Phthalate	µg/L	<											
	2,4-Dinitrotoluene	µg/L	<											

For modeling purposes, the Point of Discharge (POD) was assigned an RMI value of 41.6, representing the distance in miles between the POD and the End of Reach 1 (Public Water Supply) location. This value differs from the actual RMI on Redbank Creek, which is 22.9. Similarly, the End of Reach 1 was assigned an RMI value of 0 for modeling consistency, although its actual RMI on the Allegheny River is 45.6 miles.

Stream / Surface Water Information

Redbank Valley STP, NPDES Permit No. PA0024511, Outfall 001

Instructions **Discharge** Stream

Receiving Surface Water Name: **Redbank Creek**

No. Reaches to Model: **1**

Statewide Criteria
 Great Lakes Criteria
 ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	048064	41.6	1043	505			Yes
End of Reach 1	042122	0	772	8980			Yes

Q₇₋₁₀

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	41.6	0.062										100	6.84		
End of Reach 1	0	0.086										100	7		

Q_h

Location	RMI	LFY (cfs/mi ²)*	Flow (cfs)		W/D Ratio	Width (ft)	Depth (ft)	Velocity (fps)	Travel Time (days)	Tributary		Stream		Analysis	
			Stream	Tributary						Hardness	pH	Hardness*	pH*	Hardness	pH
Point of Discharge	41.6														
End of Reach 1	0														

Model Results

Redbank Valley STP, NPDES Permit No. PA0024511, Outfall 001

Instructions **Results** [RETURN TO INPUTS](#) [SAVE AS PDF](#) [PRINT](#) All Inputs Results Limits

Hydrodynamics

Q₇₋₁₀

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
41.6	31.31		31.31	0.913	0.001	1.019	103.511	101.534	0.305	8.325	383.494
0	760.16		760.16								

Q_h

RMI	Stream Flow (cfs)	PWS Withdrawal (cfs)	Net Stream Flow (cfs)	Discharge Analysis Flow (cfs)	Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Travel Time (days)	Complete Mix Time (min)
41.6	150.74		150.74	0.913	0.001	2.015	103.511	51.361	0.727	3.497	144.38
0	2448.498		2448.50								

Wasteload Allocations

AFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	162000	0		0	N/A	N/A	N/A	
Chloride (PWS)	16900	0		0	N/A	N/A	N/A	
Sulfate (PWS)	23800	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	5,838	
Total Copper	0	0		0	13.439	14.0	109	Chem Translator of 0.96 applied
Total Lead	0	0		0	64.581	81.6	636	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	117.180	120	933	Chem Translator of 0.978 applied

CFC

CCT (min):

PMF:

Analysis Hardness (mg/l):

Analysis pH:

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments

Total Dissolved Solids (PWS)	162000	0		0	N/A	N/A	N/A	
Chloride (PWS)	16900	0		0	N/A	N/A	N/A	
Sulfate (PWS)	23800	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	8.956	9.33	329	Chem Translator of 0.96 applied
Total Lead	0	0		0	2.517	3.18	112	Chem Translator of 0.791 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	118.139	120	4,230	Chem Translator of 0.986 applied

THH

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	162000	0		0	500,000	500,000	N/A	
Chloride (PWS)	16900	0		0	250,000	250,000	N/A	
Sulfate (PWS)	23800	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	35,304	
Total Zinc	0	0		0	N/A	N/A	N/A	

CRL

CCT (min): #####

PMF: 1

Analysis Hardness (mg/l):

N/A

Analysis pH: N/A

Pollutants	Stream Conc (µg/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	162000	0		0	N/A	N/A	N/A	
Chloride (PWS)	16900	0		0	N/A	N/A	N/A	
Sulfate (PWS)	23800	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

4

Pollutants	Mass Limits		Concentration Limits				Governing WQBEL	WQBEL Basis	Comments
	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units			

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	3.74	mg/L	Discharge Conc ≤ 10% WQBEL
Total Copper	0.07	mg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	0.11	mg/L	Discharge Conc ≤ 10% WQBEL
Total Manganese	35.3	mg/L	Discharge Conc ≤ 10% WQBEL
Total Zinc	0.6	mg/L	Discharge Conc ≤ 10% WQBEL