

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0024686

 APS ID
 1072488

 Authorization ID
 1412242

Applicant and Facility Information

Mid Mon Valley Water F Applicant Name Authority		on Valley Water Pollution Control ity	Facility Name	Mid Mon Valley WPCA STP
Applicant Address	1 Ande	rson Street	Facility Address	1 Anderson Street
	Allenpo	rt, PA 15412-0197		Allenport, PA 15412-0197
Applicant Contact	Dave S	yrko	Facility Contact	Dave Syrko
Applicant Phone	(724) 3	26-4491	Facility Phone	(724) 326-4491
Client ID	62424		Site ID	271356
Ch 94 Load Status	Existing	g Hydraulic Overload	Municipality	Allenport Borough
Connection Status			County	Washington
Date Application Recei	ved	September 30, 2022	EPA Waived?	Yes
Date Application Accepted		December 1, 2022	If No, Reason	
Purpose of Application		NPDES permit renewal application.		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES renewal application from KLH Engineers, Inc. on behalf of Mid Mon Valley Water Pollution Control Authority (MMVWPCA/Authority/permittee) on September 30, 2022 for permittee's MMVWPCA STP (facility). The facility is in Allenport Borough, Washington County and the treated effluent is discharged into Monongahela River in state watershed 19-C. The current permit will expire on March 31, 2023. The terms and conditions of the current permit is automatically extended since the renewal application was received at least 180 days prior to the expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001.

This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in this renewal: E. Coli monitoring added

Sludge use and disposal description and location(s): The digested biosolids are dewatered in three on-site drying beds and then disposed at Westmoreland Waste landfill.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
		Reza H. Chowdhury, F.I.T. / Project Manager	December 8, 2022
x		Pravin Patel	
^		Pravin C. Patel, P.E. / Environmental Engineer Manager	12/09/2022

Discharge, Receiving Waters and Water Supply Information								
Outfall No. 001		Design Flow (MGD)	0.7					
Latitude 40° 6' 28"		Longitude	-79º 50' 53"					
Quad Name Fayette Ci	ty	Quad Code	1807					
Wastewater Description:	Sewage Effluent							
Receiving Waters Monc	ngahela River (WWF)	Stream Code	37185					
NHD Com ID 9941	0198	RMI	45.91					
Drainage Area 5,190	mi ²	Yield (cfs/mi ²)	0.077					
Q ₇₋₁₀ Flow (cfs)400/1	00	Q7-10 Basis	USGS StreamStats					
Elevation (ft) 757		Slope (ft/ft)						
Watershed No. 19-C		Chapter 93 Class.	WWF					
Existing Use		Existing Use Qualifier						
Exceptions to Use		Exceptions to Criteria						
Assessment Status	Attaining Use(s)							
Cause(s) of Impairment								
Source(s) of Impairment								
TMDL Status		Name						
Background/Ambient Data		Data Source						
pH (SU)	7.7	WQN0702, median Jul-Sep, 1	999-2019					
Temperature (°C)	25	WQN0702, median Jul-Sep, 1	999-2019					
Hardness (mg/L)	116	WQN0702, median Jul-Sep, 1	999-2019					
Other:								
Nearest Downstream Publ	ic Water Supply Intake	Belle Vernon Boro Municipal Authority						
PWS Waters Monong	ahela River	Flow at Intake (cfs)						
PWS RMI44.56		Distance from Outfall (mi) 1.4						

Changes Since Last Permit Issuance: None

Other Comments:

Stream flow:

USGS's web based watershed delineation tool StreamStats (accessible at <u>https://streamstats.usgs.gov/ss/</u>, accessed on December 1, 2022) was utilized to determine the drainage area and low flow statistics of the receiving stream at discharge point. The StreamStats delineation report shows a drainage area at the Outfall 001 to be 5,190 mi², Q₇₋₁₀ of 400 cfs, and Q₃₀₋₁₀ of 468 cfs.

Yield: 400/5190 or 0.077 cfs/mi² Q_{30-10} : $Q_{1-10} = 8.2/5.69$ or 1.44

Default Q_{1-10} : Q_{7-10} of 0.64 will be used in modeling, if needed.

DEP's SOP BCW-PMT-033 page 4.II.B.4 states that where a facility is eligible for technology-based limits of CBOD₅ exceeding 25 mg/l, application managers will evaluate a WQBEL for CBOD₅ as follows:

- a. Model the discharge using the Toxics Management Spreadsheet (TMS)
- b. Multiply the acute partial mix factor by the Q₇₋₁₀ of the receiving waters
- c. Run the WQM 7.0 model using the adjusted Q_{7-10} and apply the WQBEL in the permit, if less than the technology-based limits

NPDES Permit Fact Sheet Mid Mon Valley WPCA STP

d. Establish the average monthly concentration limit for TSS at the same concentration as for CBOD₅ using BPJ, if the CBOD₅ limit is a WQBEL

The attached PENTOXSD model suggested a PMFa of 5.9%. A partial mixing factor is used to describe the factional portion of the stream that mixes with the discharge at the criteria compliance times. The partial mix factor is a value between 0 and 1; 1 presenting complete mixing and less than 1 represents there is incomplete mixing between the discharge and the stream. EPA's manual (NPDES Permit Writers Manual (EPA-833-K-10-001, September 2010) Chapter 6.2.5.2) indicates a maximum of 25% of stream width available for acute mixing. Considering above guideline and the facility's performance, it is decided that PMFa of 25% will be used. Therefore, the revised Q₇₋₁₀ will be **400 cfs * 0.25 or 100 cfs**.

PWS Intake: The nearest downstream PWS intake is Belle Vernon Municipal Authority near Belle Vernon Borough, Fayette County, on Monongahela River at RMI 44.56. The intake is approximately 1.4 miles downstream of Outfall 001. Due to the distance, dilution at Mon river, effluent limitations, and the fact that the intake is located on the other side of the river, it is expected that the discharge from this facility won't affect the PWS intake.

Wastewater Characteristics:

A pH of 7.2 (median July- September 2022), default temperature of 25^oC (Default per 391-2000-007), and default Hardness value of 100 mg/l will be used for modeling, if needed.

Background data:

The nearest WQN station is WQN0702 on C Vance Deicas Memorial Bridge, Monongahela River @ Charleroi, North Charleroi Borough, Washington County, at approximate RMI 41.4 mile. Stream data at this station was analyzed for the low flow months for the years 1999-2019, and the resulting median pH is 7.7 S.U., temperature is 25°C, and hardness of 116.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm-Water Fishes (WWF). No High-Quality stream or Exceptional Value water is impacted by this discharge; therefore, no Antidegradation Analysis is performed for the discharge.

Class A Wild Trout Fisheries:

No Class A Wild Trout Fisheries are impacted by this discharge.

<u>Biosolids Management</u>: The digested biosolids are dewatered in three on-site drying beds and then disposed at Westmoreland Waste landfill.

	Tr	eatment Facility Summa	rv	
Treatment Facility Na	me: Mid Mon Valley WPC	A STP	,	
WQM Permit No.	Issuance Date			
6321404	11/2/2021			
6321403	11/2/2021			
6321402	11/2/2021			
6315401	10/7/2015			
Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
		Activated Sludge with		· · ·
Sewage	Tertiary	Solids Removal	Gas Chlorine	0.7
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
0.7	1191	Existing Hydraulic Overload	Drying	Landfill

Treatment Plant Description

Mid Mon Valley WPCA (MMVWPCA) STP is a minor sewage treatment facility with an Average Annual Design Flow and hydraulic Design Capacity of 0.7 MGD and Organic Design Capacity of 1,191 lbs./day. The facility discharges treated sewage effluent through Outfall 001 into Monongahela River at RMI 45.91. Per the application *"the influent enters the plant at the metering chamber and then flows through a diversion box with bar screens. This flow is then divided into aeration/clarification tanks, identical to each other. After digestion, the flow enters the clarifiers where settling takes place. Sludge from the clarifiers enters the re-aeration tanks where it is further digested. Effluent from the clarifiers is then joined and enters a single chlorine contact tank. after disinfection, the flow proceeds to the outfall in the Monongahela River. The digested solids are then dewatered at three on-site drying beds and then disposed of at a landfill."*

The facility serves the following municipalities:

TRIBUTARY INFORMATION								
		Type of Sev	wer System					
Municipalities Served	Flow Contribution (%)	Separate (%)	Combined (%)	Population				
Allenport Borough	25	100		537				
Roscoe Borough	37	100		812				
Elco Borough Stockdale Borough	14 24	100 100		323 502				

The sewer system tributary to the MMVWPCA STP was at once time a combined system. Under the Authority's LTCP, the sewer system was separated. The separation project was completed in May of 2008. Due to the fact that the CSO outfalls were capped without addressing the I&I issues first or addressing illegal connections, the separation project resulted in several SSOs. MMVWPCA received an NOV in 2012 regarding the SSOs. MMVWPCA identified 254 illegal connections amongst other issues at the time. A Corrective Action Plan (CAP) was approved on June 19, 2017 that recounts the difficulty of having illegal connections removed in the tributary systems. The CAP requires the Authority to take all necessary actions to prevent unpermitted discharges, basement flooding, and the associated public health hazards. The CAP requires submission of Annual Tap Control Plan by January 31 each year until such time as the CAP is terminated. In addition, the CAP requires submission of progress reports every six months by July 30 and January 31 of each year. A review of submitted Ch. 94 report for the operating year 2021 indicated that the facility has little hydraulic capacity left and no concern on organic loading. The Authority stated that there is no current or projected overload resulted from the Ch. 94 spreadsheet. A review of the CAP Progress Report submitted for first half of 2022 (submitted on August 12, 2022) identified the following:

Six (6) of the SSO outfalls were re-categorized as "emergency" outfalls for the pump stations. These outfalls are SSO #2 (PS #1), SSO #3 (PS #2), SSO #6 (PS #3), SSO #11 (PS #4), SSO #12 (PS #5), and SSO #9 (PS #6).
 The outfalls that are categorized as SSO Outfalls and remain on the schedule to be closed are: SSO #5 (October 2017), SSO #10 (December 2021), and SSO #7 (December 2023).

3. Install flow meters in SSOs: Completed. Flow meters were installed between April 1, 2017 to April 7, 2017. The monitors are set to collect data on 1-hr interval. This data is regularly downloaded and compiled into an Excel spreadsheet.

4. Perform I&I repairs North of plant: Completed. Minor repairs were performed and the SSO at this location didn't record any discharges during the period monitored.

Close SSO #9: This SSO was closed on January 9, 2018; however, as this SSO has been re-classified as an emergency outfall for PS #6, it was re-opened and the flow monitor re-installed. No discharge has been recorded.
 Smoke and Dye Test Roscoe Borough: This work was performed between June 26th and June 28th of 2017. The report submitted to MMVWPCA identified eighteen (18) locations where storm water was entering the system.

7. Perform I&I repairs Roscoe Borough: Roscoe Borough completed the repairs on Spring Street, however, repairs are still underway in Roscoe. The Authority televised the line along Chester Street and several defects were noted. This included a collapsed pipe and several break-in taps that require repairs.

8. Close SSO #8: Closed on January 10, 2018.

9. Close SSO #5: This SSO was not closed as the defects identified above are still allowing infiltration into the sanitary system. If the SSO was closed, backups in the system would still occur.

10. Perform I&I repairs Elco Borough: Elco Borough hasn't performed any repairs to the deficiencies noted during the smoke testing, resulting in non-compliance with the CAP schedule.

NPDES Permit Fact Sheet Mid Mon Valley WPCA STP

11. Close SSO #2: This item was added to the list of emergency outfalls for the Pump Stations. It will not be closed, but monitoring will remain. This item is considered as 100% complete.

12. Smoke and Dye test Stroal Acres: Completed.

13. Close SSO #3: This SSO was re-classified as one of the emergency outfalls and will remain open. It is considered as 100% complete.

14. Perform I&I repairs Stroal Acres: This item is considered 90% complete as Allenport Borough removed one stormwater inlet from the system and letter were sent to violators. They also have replaced the collection system in the area between Railroad Street and Elm Street. Flow monitoring will continue to determine effectiveness of these repairs. 15. Smoke and Dye test Stockdale Borough: 100% complete.

16. Perform I&I repairs in Stockdale Borough: In 2021, Stockdale Borough completed a sewer separation project on Hickory Street, removing seven (7) catch basins on Hickory and Bow, and Hickory and Railroad street, from the sanitary sewer system. 100% complete.

17. Smoke and Dye test Allenport Borough: 100% complete.

No new connections were permitted during the reporting period of January 1- June 30, 2022. A summary is provided in next page of this fact sheet. In summary, the CAP is extended until 2023.

Existing limits

			Effluent L	imitations.	s Monitoring Requirements				
	Mass	Units							
Parameter	(lbs/	/day)		Concentra	tions (mg/L)	1	Minimum	Required	
	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample	
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре	
		Report							
	Durit	Daily	~~~~			~~~~		Deserves	
Flow (MGD)	Кероп	Iviax	***	~~~	<u> </u>	~~~	Continuous	Recorded	
	~~~	~~~	6.0	~~~	9.0 Movimum	~~~	1/day	Grah	
рп (3.0.)	~~~		0.0	~~~	IVIAXIIIIUIII		1/uay	Grab	
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab	
TRC	xxx	xxx	xxx	0.5	xxx	16	1/day	Grab	
	7000	7000	7000	0.0	7000		i, day	8-Hr	
CBOD5	146	222	XXX	25.0	38.0	50	1/week	Composite	
BOD5		Report						•	
Raw Sewage		Daily						8-Hr	
Influent	Report	Max	XXX	Report	Report	XXX	1/week	Composite	
		Report							
TSS Raw Sewage		Daily	2007			2007	., .	8-Hr	
	Report	Max	XXX	Report	Report	XXX	1/week	Composite	
Total Suspended	475	000	XXXX	20.0	45.0	60	4 /	8-Hr	
Solids	175	263	~~~	30.0	45.0	60	1/week	Composite	
(No /100 ml)				2000					
Oct 1 - Apr 30	XXX	XXX	XXX	Mean	XXX	10000	1/week	Grab	
Fecal Coliform	7000	7000	7000	200	7000	10000	1/WCCR	Club	
(No./100 ml)				Geo					
May 1 - Sep 30	XXX	XXX	XXX	Mean	XXX	1000	1/week	Grab	
								8-Hr	
Ammonia-Nitrogen	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite	
					Report				
					Daily				
Total Phosphorus	XXX	XXX	XXX	XXX	Max	XXX	1/quarter	Grab	
					Report				
Tatal Nitra nan	XXXX	XXXX	XXXX	XXXX	Daily		Alexanter	Orah	
i otal Nitrogen	XXX	XXX	XXX	XXX	Max	XXX	1/quarter	Grab	

Mid Mon Valley Water I	Pollution Control Auth	nority - Correcticve	Action Plan Progress Rep	oort		REPORTING PERIOD
Allenport Borough Washington (	County	NPDES	Permit No. PA0024686		FROM: 1/1/2	2022 TO: 6/30/2022
Task Description	Proposed Start Date	Actual Start Date	Required Completion Date	Actual Completion Date	Percent Complete	Comments
Install Flow Meters in SSO's	April 1, 2017	April 1, 2017	April 7, 2017	April 7, 2017	100	
Perform I&I Repairs N. of Plant	May 1, 2017	May 1, 2017	July 31, 2017	July 31, 2017	100	
Close SSO # 009	August 1, 2017	August 1, 2017	August 31, 2017	January 9, 2018	100	This SSO reopened as it was reclassified as emergency outfall for P.S. #6
Smoke and Dye Test Roscoe Borough	May 1, 2017	June 26, 2017	July 1,2017	June 28, 2017	100	Completed, letters sent to violaters
Perform I&I Repairs Roscoe Borough	June 1, 2017	June 29, 2017	August 31,2017		90	Letters sent to violaters. Roscoe Borough has not removed all stormwater inlets from sanitary system. (Spring Street)
Close SSO #008	September 1, 2017	September 1, 2017	September 30, 2017	January 10, 2018	100	(spring succe)
Close SSO # 005	October 1, 2017	October 1, 2017	October 31, 2017		0	Letters sent to violaters. Roscoe Borough has not removed stormwater inlets from sanitary system. (Coal & Howard Streets)
Perform I&I Repairs Elco Borough	March 1, 2018	March 1, 2018	November 30, 2018		10	Elco Borough is currently working on removing Stormwater Inlets
Close SSO #002	December 1, 2018	N/A	December 31, 2018	N/A	100	Reclassified as Emergency Outlet - Will Remain
Smoke and Dye Test Stroal Acres	May 1, 2018	March 26, 2018	June 1, 2018	March 28, 2018	100	Open Completed, Letters sent to violaters
Perform I&I Repairs Stroal Acres	June 1, 2019		November 30, 2019		95	Allenport Borough replaced collection system
Close SSO #003	December 1, 2019	N/A	December 31, 2019	N/A	100	Reclassified as Emergency Outlet - Will Remain
Smoke and Dye Test Stockdale Borough	May 1, 2019	March 19, 2018	June 1, 2019	March 20, 2018	100	Completed. Letters sent to violaters
Perform I&I Repairs Stockdale Borough	June 1, 2020	January 1, 2020	November 30, 2020	December 31, 2020	100	Stockdale Borough completed sewer separation project on Hickory St. in 2020
Close SSO # 006	December 1, 2020		December 31, 2020	N/A	100	Reclassified as Emergency Outlet - Will Remain
Smoke and Dye Test Allenport Borough	May 1, 2021	March 26, 2018	June 1,2021	March 28, 2018	100	Completed. Letters sent to violaters
Close SSO #010	December 1, 2021	N/A	December 31, 2021	N/A	100	Reclassified as Emergency Outlet - Will Remain Open
Perform any Additional I&I Repairs in Stockdale Borough	June 1, 2021	2021	November 30, 2021	December 31, 2021	100	
Close SSO #011	December 1, 2022	N/A	December 31, 2022	N/A	100	Reclassified as Emergency Outlet - Will Remain Open
Perform I&I Repairs Allenport Borough	June 1, 2023		November 30, 2023			Allenport Borough is currently working on
Close SSO #007	December 1, 2023		December 31, 2023		0	removing Stormwater mets
Perform any Additional I&I Repairs in Entire System	June 1, 2023		November 30, 2023		0	
Close SSO #012	December 1, 2023	N/A	December 31, 2023	N/A	100	Reclassified as Emergency Outlet - Will Remain Open
TAPs Allocated for this Year	0		TAPS Uti	lized This Reporting Perio	d	0
Based on the above information, are you in compliance with the approved schedule?	Yes	4	No	x		
Engineer David A. Coldren, P.E.	01020	5-9-2	Municipal Official	William Sezawich	1	
Name	Signature	e / Date		Name		Signature / Date

Т

	Topogaphic and Discharge Information - Sanitary Sewer Overflows								
				Locat	tion				
SSO No. Name			Latitude			Longitude	Frequency (5 Years)		
		Degrees	Minutes	Seconds	Degrees	Minutes	Seconds		
002	Elco	40	04	37	79	52	24	37	
003	Agnes Alley	40	04	36	79	52	02	7	
005	Howard Street	40	04	37	79	51	49	17	
006	River Street	40	04	40	79	51	35	24	
007	Locust Street	40	04	55	79	50	47	28	
009	North of Plant	40	06	36	79	50	55	1	
010	Elm Street	40	04	46	79	51	31	35	
011	Pump Station #4	40	04	50	79	51	10	34	
012	Pump Station #5	40	05	55	79	50	41	15	

Overflows occur during significant rain events that exceed the hydraulic capacity of the collection system due to infiltration and inflow.

- II Per the Corrective Action Plan and Progress Reports, the following actions will be accompliashed to eliminate the SSOs:
  - A. SSO's 002, 003, 006, 011, 012, & 009 will be converted to Emergency Outfalls to prevent catastrophic events should mechanical failure occur at the down stream pump stations.
  - B. B. Will work with each Borough and their collection system for sewer rehabilitation.

### **Compliance History**

### DMR Data for Outfall 001 (from November 1, 2021 to October 31, 2022)

Parameter	OCT-22	SEP-22	AUG-22	JUL-22	JUN-22	MAY-22	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21
Flow (MGD)												
Average Monthly	0.27	0.31	0.30	0.23	0.28	0.43	0.45	0.40	0.59	0.57	0.52	
Flow (MGD)												
Daily Maximum	0.99	0.64	0.58	0.53	0.66	1.29	1.02	0.64	1.06	1.39	1.15	
pH (S.U.)												
Instantaneous												
Minimum	6.8	6.8	7.0	7.0	7.0	6.8	6.7	6.6	6.7	7.1	7.1	
pH (S.U.) IMAX	7.4	7.4	7.4	7.4	7.4	7.4	7.1	7.3	7.5	7.6	7.5	
DO (mg/L)												
Instantaneous												
Minimum	6.0	6.7	6.8	7.1	7.2	7.3	6.4	6.4	6.8	7.0	6.8	
TRC (mg/L)												
Average Monthly	0.41	0.23	0.26	0.14	0.20	0.22	0.28	0.43	0.37	0.28	0.34	
TRC (mg/L) IMAX	0.71	0.35	0.40	0.63	0.39	0.42	0.42	1.13	0.57	0.58	0.64	
CBOD5 (lbs/day)												
Average Monthly	7.4	11.9	7.8	6.0	6.9	6.2	8.6	6.3	14.2	9.3	9.4	
CBOD5 (lbs/day)												
Weekly Average	10.9	24.6	10.3	7.3	11.0	10.3	10.0	7.8	24.3	10.8	18.0	
CBOD5 (mg/L)												
Average Monthly	3.8	3.9	3.1	3.4	2.5	2.1	2.3	2.0	2.9	2.2	2.0	
CBOD5 (mg/L)												
Weekly Average	5.7	4.6	4.1	4.0	3.2	2.6	2.9	2.2	4.7	2.5	2.0	
BOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	30.6	33.0	33.4	14.8	42.8	28.4	37.1	18.6	60.7	29.1	63.8	
BOD5 (lbs/day)												
Raw Sewage Influent												
Daily Maximum	66.1	52.9	54.3	29.0	81.2	53.3	60.0	23.1	83.9	38.0	130.6	
BOD5 (mg/L)												
Raw Sewage Influent												
Average Monthly	17.8	12.0	14.2	8.2	20.6	10.7	9.6	6.5	15.0	7.1	132.5	
BOD5 (mg/L)												
Raw Sewage Influent												
Weekly Average	44.0	23.5	24.0	15.1	48.7	21.8	18.1	9.9	30.5	11.1	16.8	
TSS (lbs/day)												
Average Monthly	11.4	17.0	12.3	8.9	14.8	14.6	27.1	19.9	33.2	21.8	23.5	
TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	44.3	77.5	71.0	40.7	91.9	32.4	39.1	49.3	292.4	36.0	146.0	

### NPDES Permit Fact Sheet Mid Mon Valley WPCA STP

### NPDES Permit No. PA0024686

TSS (lbs/day)												
Raw Sewage Influent												
Daily Maximum	57.0	165.5	97.6	65.2	198.2	56.9	61.9	78.9	1015.8	43.4	324.3	
TSS (lbs/day)												
Weekly Average	14.6	26.7	12.5	9.6	27.5	25.9	44.2	25.7	52.5	27.1	45.0	
TSS (mg/L)												
Average Monthly	6.0	6.0	5.0	5.0	5.0	5.0	6.8	6.8	7.0	5.0	5.0	
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	24.5	24.5	31.2	22.8	32	12.0	9.3	16.0	52.5	8.8	29.0	
TSS (mg/L)												
Raw Sewage Influent												
Weekly Average	38.0	37.0	48.0	34.0	52	22.0	14.0	22.0	174.0	12.0	36.0	
TSS (mg/L)												
Weekly Average	8.0	8.0	5.0	5.0	5.0	5.0	10.0	11.0	9.0	5.0	5.0	
Fecal Coliform												
(No./100 ml)												
Geometric Mean	8	12	3	73	37	8	11	16	31	83	10	
Fecal Coliform												
(No./100 ml) IMAX	10	46	4	430	184	42	34	183	42	388	46	
Total Nitrogen (mg/L)												
Daily Maximum		8.21			8.8			7.5			5.34	
Ammonia (mg/L)												
Average Monthly	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.7	0.2	
Ammonia (mg/L)												
Weekly Average	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	2.1	0.3	
Total Phosphorus												
(mg/L)												
Daily Maximum		0.7			0.4			0.3			0.8	

**Compliance History** 

No eDMR violation noted for the evaluation period of 12 months.

Inspection Summary: January 18, 2018: CEI conducted. No details are available.

### **Development of Effluent Limitations**

Outfall No.	001		Design Flow (MGD)	0.7
Latitude	40° 6' 28.00"		Longitude	-79º 50' 53.00"
Wastewater De	escription:	Sewage Effluent		

### **Technology-Based Limitations**

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

### Water Quality-Based Limitations

#### WQM 7.0:

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using updated Q₇₋₁₀ and historic background water quality levels of the river. The following data were used in the attached computer model of the stream:

٠	Discharge pH	7.2	(median Jul-Sep, 2022, eDMR data)
٠	Discharge Temperature	25°C	(Default)
٠	Discharge Hardness	100 mg/l	(Default)
٠	Stream pH	7.7	(WQN0702, Jul-Sep, 1999-2019)
٠	Stream Temperature	25°C	(WQN0702, Jul-Sep, 1999-2019)
٠	Stream Hardness	116 mg/l	(WQN0702, Jul-Sep, 1999-2019)
•	Sileann Haiuness	r to mg/i	(WQN0702, Jul-Sep, 1999-2019)

The following nodes were considered in modeling:

Node 1:	Outfall 001 at Outfall 00	1 on Monongahela River (37185)
	Elevation:	757 ft (USGS National Map viewer, 12/2/2022)
	Drainage Area:	5,190 mi ² (StreamStat Version 3.0, 12/2/2022)
	River Mile Index:	45.91 (PA DEP eMapPA)
	Low Flow Yield:	0.077 cfs/mi ²
	Discharge Flow:	0.7 MGD
Node 2:	At confluence with Spee	ers Run (39817)
	Elevation:	743.66 ft (USGS National Map viewer, 12/2/2022)
	Drainage Area:	5,200 mi ² (StreamStat Version 3.0, 12/2/2022)
	Drainage Area: River Mile Index:	5,200 mi ² (StreamStat Version 3.0, 12/2/2022) 43.72 (PA DEP eMapPA)
	Drainage Area: River Mile Index: Low Flow Yield:	5,200 mi ² (StreamStat Version 3.0, 12/2/2022) 43.72 (PA DEP eMapPA) 0.077 cfs/mi ²

### <u>NH3-N:</u>

WQM 7.0 suggested 25.0 mg/l is protective to the receiving stream, and 25.0 mg/l is model input. Therefore, year-round monitoring is still valid and will be carried over.

### CBOD₅:

The WQM 7.0 model confirms the existing limits are still protective. Existing limits will be carried over.

### Dissolved Oxygen (DO):

The existing permit has a minimum DO of 4.0 mg/l which is supported by WQM output as protective and will be carried over.

### Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The permittee submitted sample results for few metals as required by the permit. Those metals are Total Copper, Total Lead, and Total Zinc. The following is the model output:

#### ☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	ts Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

There is no concern of metals from this facility.

### TDS and its constituents:

TMS suggests no RP for TDS and its constituents. Therefore, no monitoring or limits requirement will be placed in the permit.

### **Additional Considerations**

### Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. These are existing limits that will be carried over.

### E. Coli:

DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends quarterly E. Coli monitoring for all sewage dischargers with design flows ≥ 0.05 MGD and < 1.0 MGD. This requirement will be applied from this permit term.

### <u>pH:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

### Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 175 lbs./day and 263 lbs./day respectively. These are all existing limits that will be carried over.

### NPDES Permit Fact Sheet Mid Mon Valley WPCA STP

### Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that the existing limits are still protective and will be carried over.

### Flow and Influent BOD₅ and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94.

### Best Professional Judgement (BPJ):

### Total Phosphorus:

Pa Code 25 §92.61 requires monitoring TP. PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is an existing parameter with monitoring requirement that will be carried over.

### Total Nitrogen:

Pa Code 25 §92.61 requires monitoring TN. PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria. This is an existing parameter with monitoring requirement that will be carried over.

### Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

### Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

### **Proposed Effluent Limitations and Monitoring Requirements**

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

### Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Paramotor	Mass Units	(lbs/day) ⁽¹⁾		Concentrat		Minimum ⁽²⁾	Required	
Farameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Туре
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
50	2007		4.0	2007	2004			
DO	XXX	XXX	Inst Min	XXX	XXX	XXX	1/day	Grab
TRC	xxx	xxx	xxx	0.5	xxx	1.6	1/day	Grab
								8-Hr
CBOD5	146	222	XXX	25.0	38.0	50	1/week	Composite
BOD5		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	Report	XXX	1/week	Composite
								8-Hr
TSS	175	263	XXX	30.0	45.0	60	1/week	Composite
TSS		Report						8-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	Report	XXX	1/week	Composite
Fecal Coliform (No./100 ml)				2000				
Oct 1 - Apr 30	XXX	XXX	XXX	Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml)	~~~~			200		4000	4/	01
May 1 - Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/Week	Grab
E-Coli (No./100 ml)	xxx	xxx	xxx	xxx	xxx	Report	1/quarter	Grab
					Report			
Total Nitrogen	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Grab
								8-Hr
Ammonia	XXX	XXX	XXX	Report	Report	XXX	1/week	Composite
					Report			
Total Phosphorus	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Grab

Compliance Sampling Location: At Outfall 001

	Tools and References Used to Develop Permit
	WQM for Windows Model (see Attachment )
	Toxics Management Spreadsheet (see Attachment
	TRC Model Spreadsheet (see Attachment )
	Temperature Model Spreadsheet (see Attachment )
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\square$	SOP: BCW-PMT-033
	Other:

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

### Permit No. PA0024686





## PA0024686 at 001

 Region ID:
 PA

 Workspace ID:
 PA20221202012804553000

 Clicked Point (Latitude, Longitude):
 40.10828, -79.84717

 Time:
 2022-12-01 20:28:29 -0500



Collapse All

### Basin Characteristics

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5190	square miles
ELEV	Mean Basin Elevation	1845	feet

### > Low-Flow Statistics

Low-Flow Statistics Parameters [99.9 Percent (5190 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	5190	square miles	2.26	1400
ELEV	Mean Basin Elevation	1845	feet	1050	2580

Low-Flow Statistics Disclaimers [99.9 Percent (5190 square miles) Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [99.9 Percent (5190 square miles) Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	687	ft^3/s
30 Day 2 Year Low Flow	912	ft^3/s
7 Day 10 Year Low Flow	400	ft^3/s
30 Day 10 Year Low Flow	468	ft^3/s
90 Day 10 Year Low Flow	696	ft^3/s

Low-Flow Statistics Citations

### Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the 3800-PM-BPNPSM0011 Rev. 10/2014 Permit

Permit No. PA0024686

## PA0024686 at node 2

 Region ID:
 PA

 Workspace ID:
 PA20221202014147254000

 Clicked Point (Latitude, Longitude):
 40.12790, -79.88275

 Time:
 2022-12-01 20:42:11 -0500



Collapse All

Dasin Gharacten	3103		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	5200	square miles
ELEV	Mean Basin Elevation	1844	feet

### > Low-Flow Statistics

Low-Flow Statistics Parameters [99.9 Percent (5200 square miles) Low Flow Region 4]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	5200	square miles	2.26	1400
ELEV	Mean Basin Elevation	1844	feet	1050	2580

Low-Flow Statistics Disclaimers [99.9 Percent (5200 square miles) Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [99.9 Percent (5200 square miles) Low Flow Region 4]

Statistic	Value	Unit
7 Day 2 Year Low Flow	688	ft^3/s
30 Day 2 Year Low Flow	913	ft^3/s
7 Day 10 Year Low Flow	401	ft^3/s
30 Day 10 Year Low Flow	469	ft^3/s
90 Day 10 Year Low Flow	697	ft^3/s

Low-Flow Statistics Citations

### Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006– 5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the

	SWF Basi	o Strea n Coo	in ie	Stre	am Name		RM	II EK	evation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	/S rawal gd)	Apply FC
	19A	371	185 MONO	NGAHEL	A RIVER		45.9	910	757.00	5190.00	0.000	00	0.00	$\checkmark$
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	h Ten	<u>Tributary</u> 1p pH	т	<u>Strean</u> emp	<u>р</u> н	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	)	(	°C)		
Q7-10 Q1-10 Q30-10	0.077	100.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	) 0.	00 2	5.00 7.3	70	0.00	0.00	
					Di	ischarge (	Data							
			Name	Per	mit Numbe	Existing Disc r Flow (mgd)	Permi Dis Flor (mg	tted Des c Di w Fl d) (m	sign isc Res low Fa lgd)	Dis serve Ten sctor (°C	ic np ;)	Disc pH		
		MMV	WPCA STR	P PA	0024686	0.700	0.70	000 0.	7000	0.000 2	5.00	7.20		
					Pa	arameter l	Data							
				Paramete	r Name	Di	sc onc	Trib Conc	Stream Conc	Fate Coef				
				anannete		(m	g/L)	(mg/L)	(mg/L)	(1/days)				
			CBOD5			:	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

### Input Data WQM 7.0

### Input Data WQM 7.0

	SWP Basir	9 Strea n Coo	am le	Stre	am Name		RMI	Ele	vation (ft)	Drainage Area (sq mi)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	19A	37	185 MONO	NGAHEL	A RIVER		43.78	30	743.66	5191.00	0.00000	0.00	$\checkmark$
					S	tream Da	ta						
Design	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary pppH	Tem	<u>Stream</u> p pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C	)	(°C	)	
Q7-10	0.080	132.00	0.00	0.000	0.000	0.0	0.00	0.0	0 2	5.00 7.7	70	0.00 0.00	
Q1-10 Q30-10		0.00 0.00	0.00 0.00	0.000 0.000	0.000								

	Dis	icharge Di	ata				
Name	Permit Number	Existing Disc Flow (mgd)	Permitted Disc Flow (mgd)	Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Disc pH
Belle Vernon MA	PA0092355	0.9500	0.9500	0.9500	0.000	20.00	7.00
	Par	rameter D	ata				
Par	amotor Namo	Dis/ Cor	c Trit nc Cor	b Stri no Co	eam Fa onc Co	ate oef	
Fall	ameter Name	(mg	/L) (mg	/L) (m	g/L) (1/d	ays)	
CBOD5		2	5.00 2	2.00	0.00	1.50	
Dissolved Ox	ygen		5.00 8	8.24	0.00	0.00	
NH3-N		2	5.00 0	0.00	0.00	0.70	

### Input Data WQM 7.0

	SWP Basir	o Strea n Cod	im le	Stre	am Name		RMI	Elevat (ft)	ion D	)rainage Area (sq mi)	Slope (ft/ft)	PWS Withdra (mgd	; wal )	Apply FC
	19A	371	185 MON	ONGAHEL	A RIVER		43.72	20 74	3.60	5200.00	0.00000		0.00	$\checkmark$
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Ti</u> Temp	ributary pH	Ten	<u>Stream</u> np	pН	
	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	;)		
27-10 21-10 230-10	0.080	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	25.0	00 7.7	0	0.00	0.00	
					Di	scharge l	Data							
			Name	Per	mit Number	Existing Disc Flow (mgd)	Permitte Disc Flow (mgd)	ed Design Disc Flow (mgd)	Reser Fact	Dis ve Tem or (°C	c D IP (	isc oH		
						0.000	0.000	0 0.000	0.0	000	0.00	7.00		
					Pa	rameter i	Data 7			E-t-				
				Paramete	r Name	C	onc C	onc C	onc	Coef				
						(m	g/L) (n	ng/L) (m	ig/L) (	1/days)				

25.00

3.00

25.00

2.00

8.24

0.00

0.00

0.00

0.00

1.50

0.00

0.70

CBOD5

NH3-N

Dissolved Oxygen

	right he right outpute												
	SW	P Basin	Strea	m Code				Stream	Name				
		19A	37185			MONONGAHELA RIVER							
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH	
	(cfs)	(cfs)	(cfs)	(cfs)	(ft/ft)	(ft)	(ft)		(fps)	(days)	(°C)		
Q7-10 Flow													
45.910	100.00	0.00	100.00	1.0829	0.00119	1.22	203.31	166.64	0.41	0.319	25.00	7.69	
43.780	232.00	0.00	232.00	2.5525	0.00019	1.264	314.48	248.85	0.59	0.006	24.97	7.69	
Q1-1	0 Flow												
45.910	64.00	0.00	64.00	1.0829	0.00119	NA	NA	NA	0.32	0.409	25.00	7.68	
43.780	148.48	0.00	148.48	2.5525	0.00019	NA	NA	NA	0.46	0.008	24.95	7.68	
Q30-	Q30-10 Flow												
45.910	144.00	0.00	144.00	1.0829	0.00119	NA	NA	NA	0.50	0.261	25.00	7.69	
43.780	334.08	0.00	334.08	2.5525	0.00019	NA	NA	NA	0.72	0.005	24.98	7.69	

### WQM 7.0 Hydrodynamic Outputs

3800-PM-BPNPSM0011 Rev. 10/2014 Permit

### Permit No. PA0024686

### WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	$\checkmark$
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.44	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	V
D.O. Goal	4		

### WQM 7.0 Wasteload Allocations

SWP Basin	Stream Code	Stream Name
19A	37185	MONONGAHELA RIVER

### NH3-N Acute Allocations

RMI Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
45.910 MMVWPCA STP	3.15	50	3.15	50	0	0
43.780 Belle Vernon MA	3.17	50	3.2	50	0	0

### NH3-N Chronic Allocations

RMI Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
45.910 MMVWPCA STP	.91	25	.91	25	0	0
43.780 Belle Vernon MA	.91	25	.91	25	0	0

### Dissolved Oxygen Allocations

	Discharge Name	CBOD5		NH3-N		Dissolve	d Oxygen	Critical	Persont
RMI		Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
45.91	MMVWPCA STP	25	25	25	25	4	4	0	0
43.78	Belle Vernon MA	25	25	25	25	5	5	0	0

SWP Basin	Stream Code			Stream Name	
19A	37185		MO	NONGAHELA RIVER	
RMI	Total Discharge	e Flow (mgd	) <u>Ana</u>	lysis Temperature (°C	) Analysis pH
45.910	0.70	0		25.000	7.690
Reach Width (ft)	Reach De	epth (ft)		Reach WDRatio	Reach Velocity (fps)
203.313	1.22	0		166.642	0.408
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	R	each NH3-N (mg/L)	Reach Kn (1/days)
2.25	0.13 Deceb Ke	8 (1 (days)		0.27	1.029 Reach DO Cool (moll.)
Reach DO (mg/L)	Reach Kr	(1/days)		KrEquation	Reach DO Goal (mg/L)
8.198	8.198 2.000 Travel Time (days) s			Isivogiou	4
Reach Travel Time (days)	<u>ch Iravel Lime (days)</u> 0.319 TravTime CB				
0.319	(days)	(mg/L)	(mg/L)	D.O. (moll.)	
	(days)	(119/12)	(ingre)	(118/2)	
	0.032	2.23	0.26	7.54	
	0.064	2.22	0.25	7.54	
	0.096	2.21	0.24	7.54	
	0.128	2.20	0.23	7.54	
	0.160	2.18	0.23	7.54	
	0.192	2.17	0.22	7.54	
	0.224	2.16	0.21	7.54	
	0.256	2.15	0.21	7.54	
	0.287	2.14	0.20	7.54	
	0.319	2.13	0.19	7.54	
	Tetel Discharge	Electron de la companya de la			Analysis all
42 790	Total Discharge	e Flow (mgo	<u>) Ana</u>	24.080	Analysis pH 7 eos
House Width (#)	Reach De	woth (ft)		24.808 Reach WDRatio	Peach Velocity (fns)
314 475	1.26	4		248 854	0.500
Reach CBOD5 (mg/L)	Reach Ko	(1/days)	R	each NH3-N (mo/L)	Reach Kn (1/days)
2.20	0.14	9	-	0.24	1.026
Reach DO (mg/L)	Reach Kr	(1/days)		Kr Equation	Reach DO Goal (mg/L)
7.919	0.58	7		Tsivoglou	4
Reach Travel Time (days	<u>)</u>	Subreact	Results		
0.006	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.001	2.20	0.24	7.54	
	0.001	2.20	0.24	7.54	
	0.002	2.20	0.24	7.54	
	0.002	2.20	0.24	7.54	
	0.003	2.20	0.24	7.54	
	0.004	2.20	0.24	7.54	
	0.004 2.20		0.24	7.54	
	0.005 2.2		0.24	7.54	
	0.006	2.20	0.24	7.54	
	0.006 2.20			7.54	

### WQM 7.0 D.O.Simulation

Thursday, December 8, 2022

			WQM 1	7.0 Eff	fluent Limits	3		
	SWP Basin	Stream Cod	le		Stream Name	<u>.</u>		
	19A	37185			MONONGAHELA F	RIVER		
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
45.910	MMVWPCA S	TP P.	A0024686	0.700	CBOD5	25		
					NH3-N	25	50	
					Dissolved Oxygen			4
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
43.780	Belle Vernon M	MA P.	A0092355	0.950	CBOD5	25		
					NH3-N	25	50	
					Dissolved Oxygen			5

0.7



### **Discharge Information**

100

7.2

Instructions D	ischarge Stream										
Facility: Mid	Mon Valley WPCA	STP		NPDES Per	mit No.: PAC	0024686	Outfall	No.: 001			
Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Treated Sewage											
Discharge Characteristics											
Design Flow			F	Partial Mix Fa	octors (PMFs	s)	Complete Mi	x Times (min)			
(MGD)*	naruness (mg/i)"	pn (30)-	AFC	CFC	тнн	CRL	Q ₇₋₁₀	Qh			

	ŀ													
				011	left	blank	0.5 lf le	nt blank	0	) if left blan	k	1 If lef	t blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Cone		Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		393										
5	Chloride (PWS)	mg/L		52		H								
1	Bromide	mg/L	<	0.2										
5	Sulfate (PWS)	mg/L		119.8		-								
	Fluoride (PWS)	mg/L				H								
	Total Aluminum	µg/L				İ.								
	Total Antimony	µg/L												
	Total Arsenic	µg/L												
	Total Barium	µg/L				i T								
	Total Beryllium	µg/L												
	Total Boron	µg/L												
	Total Cadmium	µg/L				H								
	Total Chromium (III)	µg/L				Ì								
	Hexavalent Chromium	µg/L				H								
	Total Cobalt	µg/L												
	Total Copper	µg/L	۷	10		i i								
0 2	Free Cyanide	µg/L												
Ino	Total Cyanide	µg/L				-								
5	Dissolved Iron	µg/L				i T								
	Total Iron	µg/L				Ĺ								
	Total Lead	µg/L	۷	0.5		-								
	Total Manganese	µg/L												
	Total Mercury	µg/L				Ì.								
	Total Nickel	µg/L												
	Total Phenols (Phenolics) (PWS)	µg/L				-								
	Total Selenium	µg/L				i T								
	Total Silver	µg/L												
	Total Thallium	µg/L				-								
	Total Zinc	µg/L	۷	10										
	Total Molybdenum	µg/L												
	Acrolein	µg/L	۷			-								
	Acrylamide	µg/L	۷											
	Acrylonitrile	µg/L	<			i i								
	Benzene	µg/L	<											
	Bromoform	µg/L	<											

Toxics Management Spreadsheet Version 1.3, March 2021

1	Carbon Tetrachloride	ual	<							
		Parc		 ++	+-				┿┥	-+-+-
	Chiorobenzene	µg/L		++	+				 ╞╡	
	Chlorodibromomethane	µg/L	<		$\pm$				H	
	Chloroethane	µg/L	<		Ť				itt	
	2-Chloroethyl Vinyl Ether	µg/L	<		1				$\square$	
	Chloroform	ua/L	<						$\square$	
	Dichlorohromomethane	ugl	<							
	1.1 Disbloresthans	ug/l		 ++	+				 ₩	++
	1,1-Dichloroethane	Pg/L		 	+					
ŝ	1,2-Dichloroethane	µg/L	<		$\downarrow$				$\square$	
<u>₽</u>	1,1-Dichloroethylene	µg/L	<		+				$\vdash$	
2	1,2-Dichloropropane	µg/L	<						$\vdash$	
Ø	1,3-Dichloropropylene	µg/L	<		1				$\square$	
	1.4-Dioxane	ug/L	<	<u> </u>	Ť				Ħ	ŤŤ
	Ethylograpp	ug/l	-						Ħ	
	Mathid Descride	Pg/L		 ++	+	 	 		 H	++
	Metnyi Bromide	µg/L	<	 ++		 	 		 ++	++
	Methyl Chloride	µg/L	<						$\square$	
	Methylene Chloride	µg/L	<		+-				$\vdash$	
	1,1,2,2-Tetrachloroethane	µg/L	<		1				H	
	Tetrachloroethylene	µg/L	<		1				$\square$	
	Toluene	µo/L	<							
	1.2-trans-Dichloroethylene	uo/l	<							
	1.1.1.Trichloroethane	Holl.	<		+					++
	1.1.0 Tricklessethers	Part							+++	
	1,1,2-I nonioroethane	µg/L	<		+				÷	++
	Trichloroethylene	µg/L	<	11	$\downarrow$				Ħ	
	Vinyl Chloride	µg/L	<		İ				ΠÌ	
	2-Chlorophenol	µg/L	<							
	2,4-Dichlorophenol	µg/L	<							
	2.4-Dimethylphenol	ug/L	<		+				H	
	4 6-Dinitro-o-Cresol	uo/l	<	 ++	+				H	++
4	2.4 Disitrashanal	- Pare	-	<del></del>	÷				H	
<u>₽</u>	2,4-Dinitrophenoi	µg/L		 ++	÷				Ħ	+++
ē	2-Nitrophenol	µg/L	<	 	Ì					
Ø	4-Nitrophenol	µg/L	<				 			
	p-Chloro-m-Cresol	µg/L	<						Ц	
	Pentachlorophenol	µg/L	<						$\left  - \right $	
	Phenol	µg/L	<						$\vdash$	
	2.4.6-Trichlorophenol	ug/L	<						Ħ	
	Acenanbthene	10/	<	 Ħ	Ť				 Ħ	ŤŤ
	Accessebtbulance	ug/L								
	Acthereses	Pg/L		 ++	+	 	 		 ₩	++
	Anthracene	µg/L	<	 ++		 	 		 ++	++
	Benzidine	µg/L	<						$\square$	
	Benzo(a)Anthracene	µg/L	<		+				$\vdash$	
	Benzo(a)Pyrene	µg/L	<		1				H	
	3,4-Benzofluoranthene	µg/L	<							
	Benzo(ghi)Pervlene	µg/L	<							
	Benzo(k)Fluoranthene	µo/l	<		+					-
	Bis(2-Chloroethovy)Methane	uo/	<		+				++	+++
	Dis(2-Onlordentoxy)methane	Pare		 +++	+				╈	
	Dis(2-Onloroethyt)Ether	pg/L			+				Ħ	++
	Bis(2-Chloroisopropyl)Ether	µg/L	<	 11	Ť					
	Bis(2-Ethylhexyl)Phthalate	µg/L	<							
	4-Bromophenyl Phenyl Ether	µg/L	<						$\square$	
	Butyl Benzyl Phthalate	µg/L	<		-				$\square$	
	2-Chloronaphthalene	µg/L	<						$\vdash$	
	4-Chlorophenyl Phenyl Ether	ug/L	<						Ħ	
	Chrysene	10/	<	<del>-i-i-</del>	Ť				 Ħ	
	Dihenzo(a h)Anthransson	Pg/L	-		-					
	Dibenzo(a,n)Anthrancene	Pg/L		 ++	+				 H	++
	1,2-Dichlorobenzene	µg/L	<		-				+	++
	1,3-Dichlorobenzene	µg/L	<							
5	1,4-Dichlorobenzene	µg/L	<							
đ	3,3-Dichlorobenzidine	µg/L	<						i f	11
2	Diethyl Phthalate	µg/L	<		Î					
O	Dimethyl Phthalate	µa/L	<							
	Di-n-Butyl Phthalate	µo/l	<		+					-
	2 4-Dinitrotoluene	µo/l	<	++	+				++	++
	all a sum available for	Pare								

**Discharge Information** 

	2.6-Dinitrotoluene	ua/L	<			F				H	
	Di-n-Octyl Phthalate	ug/l	<	H	+	t				+	+++
	1.2-Dinhenylhydrazine	ug/l	~	Ħ	╪	h				 Ħ	+++
	T,2-Ophenyinyurazine	Pg/L		 ∃	+	E					
	Fluoranthene	µg/L	-	⊢	+	Ļ				⊢	++
	Fluorene	µg/L	<	 $\rightarrow$	+-	┝				$\vdash$	
	Hexachlorobenzene	µg/L	<	 ╞╡	╞	╞				╞╡	====
	Hexachlorobutadiene	µg/L	<		+	È				Ħ	
	Hexachlorocyclopentadiene	µg/L	<								
	Hexachloroethane	µg/L	<			Ļ				$\square$	
	Indeno(1,2,3-cd)Pyrene	µg/L	۸		-	F				$\vdash$	
	Isophorone	µg/L	<		-	F					
	Naphthalene	ua/L	<		1	i				Ħ	
	Nitrobenzene	ua/L	<	Ť	Ť	Ĺ				 Ħ	
	n-Nitrosodimethylamine	uo/l	<	Ħ	+						
	n-Nitrosodi-n-Propulamine	ug/l	<	Ħ	+	t				 ╞	++
	- Mitesedisheadamiaa	Parc	_	 +	+	⊢				+	++
	n-Nitrosodipnenylamine	µg/L	<	 Ħ	+	F				Ħ	++
	Phenanthrene	µg/L	<	 Ì	+	È				Ħ	
	Pyrene	µg/L	<					 			
	1,2,4-Trichlorobenzene	µg/L	<			L				$\square$	
	Aldrin	µg/L	<	$\rightarrow$	+					$\vdash$	
	alpha-BHC	µg/L	<			F					
	beta-BHC	µg/L	<	T	1	i				ΠÌ	
	gamma-BHC	µg/L	<								
	delta BHC	µg/L	<		+	t					
	Chlordane	ua/L	<	=	÷	t				 H	++
	4.4-DDT	10/	<	 H	+-	t					-+++
	4.4-DDE	ug/l	<	Ħ	÷	F		 		 Ħ	Ħ
	4.4 DDD	Pg/C		∃		E				H	$\rightarrow$
	Dialdria	µg/L	-	 ╞╡	+	ł		 	 	 ⊢	++
	Julea Forderulfer	Pg/L		 H	┿	┝		 	 		
	alpha-Endosultan	µg/L	<	Ħ	+	F				H	++
60	beta-Endosulfan	µg/L	<	Ì	i.						
۵.	Endosulfan Sulfate	µg/L	<		_						++
5	Endrin	µg/L	<							$\square$	
ō	Endrin Aldehyde	µg/L	<		+						
	Heptachlor	µg/L	<	Ť	İ	Ĺ				ΠÌ	
	Heptachlor Epoxide	µg/L	<								
	PCB-1016	µg/L	۸			Ļ				$\downarrow$	
	PCB-1221	µg/L	<	$\vdash$	+-	┢					
	PCB-1232	µg/L	<	T	1	i				Π	
	PCB-1242	µg/L	<								
	PCB-1248	ua/L	<		+	t					
	PCB-1254	ug/L	<	Ħ	+	t				H	++
	PCB-1260	uo/l	<	 H	+	+				+	++
	PCBs Total	ug/l	~	Ħ	÷	÷				Ħ	+++
	Tevenhees	Pg/L	-	 ∃	+	E					
	Toxaphene	µg/L	~	╞	+	Ļ				H	++
	2,3,7,8-1CDD	ng/L	<	 	+-	Ļ	 	 	 	 $\vdash$	
	Gross Alpha	pCi/L		╞	+	╞				⊢	++
5	Total Beta	pCi/L	<	Ì	÷	È					
₽	Radium 226/228	pCi/L	<			Ļ	 	 	 		
2	Total Strontium	µg/L	<			L				Ц	
0	Total Uranium	µg/L	<		_	Ŀ				$\vdash$	
	Osmotic Pressure	mOs/kg			+	F					
				=	+	F					
				Ħ	+	F					
					Ŧ	E					_
					-	1					
				+	+-	-					
				H	+	1					
					1	E					
					-	-					
						1					

PROTECTION

1

Yes

Toxics Management Spreadsheet Version 1.3, March 2021

# Stream / Surface Water Information

Mid Mon Valley WPCA STP, NPDES Permit No. PA0024686, Outfall 001

Instructions Discharge Stream

pennsylvania

DEPARTMENT OF ENVIRONMENTAL

Receiving Surface Water Name: Monongahela River

037185

43.72

743.66

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ² )*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	037185	45.91	757	5190			Yes

5200

Statewide Criteria

O Great Lakes Criteria

ORSANCO Criteria

### Q 7-10

End of Reach 1

Location	PMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	iry	Stream	m	Analys	sis
Location	ISINI1	(cfs/mi ² )*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	45.91	0.077										116	7.7		
End of Reach 1	43.72	0.077										116	7.7		

No. Reaches to Model:

#### Qh

Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time	Tributa	ary	Stream	m	Analys	sis
Location	TSIMIT	(cfs/mi ² )	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pH	Hardness	pН
Point of Discharge	45.91														
End of Reach 1	43.72														



**Toxics Management Spreadsheet** Version 1.3, March 2021

#### RETURN TO INPUTS SAVE AS PDF PRINT ○ Inputs ○ Results ○ Limits nstructions Results (i) All Hydrodynamics Wasteload Allocations AFC CCT (min): 15 PMF: 0.059 Analysis Hardness (mg/l): 115.3 Analysis pH: 7.66 10.000 Trib Conc Fate WQC WQ Obj Stream WLA (µg/L) Pollutants Conc Comments CV Coef (µg/L) (µg/L) (µg/L) na (l Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) N/A 0 0 0 N/A N/A 0 0 15.368 16.0 364 Chem Translator of 0.96 applied Total Copper 0 2.223 Total Lead 0 0 0 75.380 97.9 Chem Translator of 0.77 applied Total Zinc 0 0 0 132.199 135 3,070 Chem Translator of 0.978 applied CFC CCT (min): 720 PMF: 0.408 Analysis Hardness (mg/l): 115.89 Analysis pH: 7.69 suean Trib Conc Fate WQC WQ Obj Stream Pollutants WLA (µg/L) Comments Conc CV Coef (µg/L) (µg/L) (µg/L) ura/II Total Dissolved Solids (PWS) 0 0 0 N/A N/A N/A Chloride (PWS) 0 0 0 N/A N/A N/A Sulfate (PWS) 0 0 0 N/A N/A N/A 0 10.159 10.6 1,603 Total Copper 0 0 Chem Translator of 0.96 applied Total Lead 0 2.954 3.84 581 Chem Translator of 0.77 applied 0 0 136 Total Zinc 0 0 0 133.867 20,562 Chem Translator of 0.986 applied . . . . . THH CCT (min): 720 PMF: 0.408 Analysis Hardness (mg/l): N/A N/A Analysis pH: sueam Stream Trib Conc Fate WQC WQ Obj WLA (µg/L) Pollutants Conc Comments CV (µg/L) Coef (µg/L) (µg/L) ura/I Total Dissolved Solids (PWS) 0 0 500,000 500,000 N/A 0 Chloride (PWS) 250,000 250.000 N/A 0 0 0 Sulfate (PWS) 0 0 0 250,000 250,000 N/A

Model Results

Mid Mon Valley WPCA STP, NPDES Permit No. PA0024686, Outfall 001

Model Results

Total Copper	0	0		0	N/A	N/A	N/A				
Total Lead	0	0		0	N/A	N/A	N/A				
Total Zinc	0	0		0	N/A	N/A	N/A				
CRL	CCT (min): 7	20	PMF:	0.614	Ana	ilysis Hardne	ss (mg/l):	N/A	Analysis pH:	N/A	

Pollutants	Conc (uo/L)	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

#### Recommended WQBELs & Monitoring Requirements

#### No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits		Ι		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments

#### Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Copper	233	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	N/A	N/A	Discharge Conc < TQL
Total Zinc	1,968	µg/L	Discharge Conc ≤ 10% WQBEL

12/7/2022

TRC_CALC

TRC EVALUATION											
Input appropriate values in A3:A9 and D3:D9											
100	= Q stream (	cfs)	0.5	= CV Daily							
0.7	= Q discharg	je (MGD)	0.5	= CV Hourly							
30	= no. sample	8	1	= AFC_Partial N	lix Factor						
0.3	= Chlorine D	emand of Stream	1	= CFC_Partial N	lix Factor						
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria	Compliance Time (min)						
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria Compliance Time (min)							
0	= % Factor o	of Safety (FOS)		=Decay Coeffic	ient (K)						
Source	Reference	AFC Calculations		Reference	CFC Calculations						
TRC	1.3.2.iii	WLA afc =	29.477	1.3.2.iii	WLA cfc = 28.730						
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581						
PENTOXSD TRG	5.1b	LTA_afc=	10.984	5.1d	LTA_cfc = 16.702						
Source		Efflue	nt Limit Calcul	ations							
PENTOXSD TRG	5.1f		AML MULT =	1.231							
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ						
		INST MAX	LIMIT (mg/l) =	1.635							
WI A afc	( 019/0/	EC. to)) + [(AEC. Yo*Os* 019)		te))							
TEN alo	+ Xd + (AF)	C Ye*Os*Xs/Od)1*(1-FOS/10)	0)								
LTAMULT afc	EXP((0.5*LN	(cvh^2+1))-2.326*LN(cvh^2+	-, 1)^0.5)								
LTA_afc	wla afc*LTA	MULT afc	,,								
	-	-									
WLA_cfc	(.011/e(-k*C	FC_tc) + [(CFC_Yc*Qs*.011/0	Qd*e(-k*CFC_t	tc))							
	+ Xd + (CF	C_Yc*Qs*Xs/Qd)]*(1-FOS/10	0)								
LTAMULT_cfc	LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)										
LTA_cfc	wla_cfc*LTA	MULT_cfc									
AML MULT	EXP(2.326*L	N((cvd^2/no_samples+1)^0.	5)-0.5*LN(cvd	^2/no_samples+	1))						
AVG MON LIMIT	MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AN	IL_MULT)								
INST MAX LIMIT	1.5*((av_moi	n_limit/AML_MULT)/LTAMUL	T_afc)								