

Application Type	Renewal
Facility Type	Municipal
Major / Minor	Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No.	PA0024961
APS ID	211
Authorization ID	1307647

Applicant and Facility Information

Applicant Name	Oley Township Municipal Authority Berks County	Facility Name	Oley Township STP
Applicant Address	1 Rose Virginia Road, PO Box 19	Facility Address	94 Tollhouse Road
	Oley, PA 19547-8605		Oley, PA 19547
Applicant Contact	Shirley Moyer	Facility Contact	Mike Eshbach
Applicant Phone	(610) 987-3423	Facility Phone	(484) 650-0980
Client ID	69639	Site ID	445562
Ch 94 Load Status	Not Overloaded	Municipality	Oley Township
Connection Status	No Exceptions Allowed	County	Berks
Date Application Rece	Eived February 24, 2020	EPA Waived?	Yes
Date Application Acce	pted March 6, 2020	If No, Reason	

Summary of Review

Spotts, Stevens and McCoy, on behalf of the Oley Township Municipal Authority, has applied to the Pennsylvania Department of Environmental Protection (DEP) for issuance of the NPDES permit. The flow design is 0.4 MGD, and hydraulic capacity design is 0.5 MGD. This facility serves the areas of Oley Township (100%). The permit was reissued on October 26, 2015 and became effective on November 1, 2015. The permit expired on October 31, 2020 but the terms and conditions of the permit have been extended since that time.

The first amendment WQM Part II No. 0672403 A-1 was issued on June 26, 1998. The second amendment WQM Part II No. 0672403 09-1 was issued on April 17, 2009. The third amendment WQM Part II No. 067203 12-1 was issued on March 5, 2013. The fourth amendment WQM Part II No. 0672403 A-4 was issued on December 5, 2019.

Sludge use and disposal description and location(s): N/A due to the sludge is hauled away by Jesse Baro, Inc's Services.

This discharge may also be subject to effluent limitations and conditions as developed and required by the Delaware River Basin Commission (DRBC). The DRBC limits may be more stringent. The permittee shall comply with any more stringent effluent limitations or standards contained in their docket, in accordance with 25 Pa. Code § 92a.12(b). Please contact the DRBC for more information at (690) 883-9500.

The last docket was issued on March 12, 2014 and will expire on March 12, 2024 by the Delaware River Basin Commission (DRBC) for this facility: D-2001-036 CP-2. According to the DRBC docket, four municipal wells provide water in the service area. The DRBC will be copied on the draft permit so they will have an opportunity to review and comment.

<u>Changes from the previous permit</u>: Unit of Fecal Coliform changed from CFU/100 ml to No./100 ml. The E. Coli. monitoring and report requirements will add to the proposed permit.

Based on the review outline in this fact sheet, it is recommended that the permit be drafted and published in the Pennsylvania Bulletin for public comments for 30 days.

Approve	Deny	Signatures	Date
x		<i>Hilaryle</i> Hilary H. Le / Environmental Engineering Specialist	October 8, 2021
x		<i>Maria D. Bebenek for Daniel W. Martin</i> Daniel W. Martin, P.E. / Environmental Engineer Manager	October 13, 2021

Discharge, Receiving Waters and Water Supply Infor	Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001	Design Flow (MGD)	0.4				
Latitude 40° 22' 30.74"	Longitude	-75º 44' 4.75"				
Quad Name Manatawny	Quad Code					
Wastewater Description: Sewage Effluent						
Receiving Waters Manatawny Creek (CWF)	Stream Code	01655				
NHD Com ID 25981186	RMI	15.8 miles				
Drainage Area 48.6 mi. ²	Yield (cfs/mi ²)	0.3				
Q ₇₋₁₀ Flow (cfs) 14.3	Q ₇₋₁₀ Basis	UGSG StreamStats				
Elevation (ft) 302	Slope (ft/ft)					
Watershed No. <u>3-D</u>	Chapter 93 Class.	CWF				
Existing Use	Existing Use Qualifier					
Exceptions to Use	Exceptions to Criteria					
Assessment Status Attaining Use(s)						
Cause(s) of Impairment						
Source(s) of Impairment						
TMDL Status	Name					
Nearast Downstroom Dublic Water Supply Inteks	RA American Water Compon					
Nearest Downstream Public Water Supply Intake PWS Waters Schuylkill River	PA American Water Company Flow at Intake (cfs)					
PWS RMI 47 miles	Distance from Outfall (mi)	Approximate 24 miles				
	Distance from Outial (III)					

Changes Since Last Permit Issuance:

Drainage Area

The discharge is to Manatawny Creek at RMI 15.8 miles. A drainage area upstream of the discharge is estimated to be 48.6 mi.², according to USGS StreamStats available at <u>https://streamstats.usgs.gov/ss/</u>.

Stream Flow

According to StreamStats, the point of first use has a Q_{7-10} of 14.3 cfs and a drainage area of 48.6 mi.², which results in a Q_{7-10} low flow yield of 0.3 cfs/mi.². This information is used to obtain a chronic or 30-day (Q_{30-10}), and an acute or 1-day (Q_{1-10}) exposure stream flow for the discharge point as follows (Guidance No. 391-2000-023):

 $\begin{array}{l} Q_{7\text{-}10} = 14.3 \ \text{cfs} \\ \text{Low Flow Yield} = 14.3 \ \text{cfs} \ / \ 48.6 \ \text{mi.}^2 = 0.3 \ \text{cfs/mi.}^2 \\ Q_{30\text{-}10} = 1.36 \ ^* \ 14.3 \ \text{cfs} = 19.45 \ \text{cfs} \\ Q_{1\text{-}10} = 0.64 \ ^* \ 14.3 \ \text{cfs} = 9.15 \ \text{cfs} \end{array}$

The resulting Q₇₋₁₀ dilution ratio is: Q_{stream} / Q_{discharge} = 14.3 cfs / [0.4 MGD * (1.547 cfs/MGD)] =23.1:1

Manatawny Creek

25 Pa. Code § 93.9f classifies Manatawny Creek as Cold-Water Fishes (CWF) surface water. Based on the 2020 Integrated Report, Manatawny Creek, assessment unit IDs 6002; 19190; & 19191, is not impaired. A TMDL currently does not exist for this stream segment, therefore, no TMDL has been taken into consideration during this review.

Public Water Supply

The nearest downstream public water supply intake is the PA American Water Company at E. Vincent Twp. on Schuylkill river, approximately 24 miles downstream of this discharge. Given the nature and dilution, the discharge is not expected to significantly impact the water supply.

Treatment Facility Summary Treatment Facility Name: Oley Township STP WQM Permit No. **Issuance Date** 0672403 A-1 6/26/1998 0672403 09-1 4/17/2009 0672403 12-1 3/05/2013 0672403 A-4 12/05/2019 Degree of Avg Annual Waste Type Treatment **Process Type** Disinfection Flow (MGD) Sequencing Batch Secondary Reactor Sewage Gas Chlorine 0.4 **Hydraulic Capacity Organic Capacity** Biosolids (MGD) (lbs/day) Load Status **Biosolids Treatment Use/Disposal** Combination of 0.5 methods 576 Not Overloaded

Changes Since Last Permit Issuance: The WQM Part II No. 0672403 A-4 amendment issued on 12/5/2019 as follows.

- Removed the existing grinder and four submersible influent pumps;
- Installed a dry well with three suction lift influent pumps, each with 700 gpm capacity, one as stand-by;
- Variable frequency drives and motors for new pumps and associated fittings, alarms, and controls;
- Added a vertical mechanically-cleaned screen in the influent wet well with guide rails to vertically lift the screen;
 Active ventilation of dry well and controls area and of existing wet well;
- Relocated the influent composite sampler and added an influent meter to the manhole upstream of the influent wet well (Manhole 1).

The WWTP consists:

One Sewage Pump Station, one muffin monster grinder, one influent lift station, two SBR tanks, two aerobic digesters, two chlorine contact tanks, one high flow effluent pump, one volute sludge press, four reed beds, outfall.

Chemical:

Uses Alum (Aluminum Sulfate) for Phosphorus removal and for settling. Uses polymer for sludge thickening. Uses Chlorine for disinfection.

	Compliance History
Summary of DMRs:	The DMRs reported from August 1, 2020 to July 31, 2021 are summarized in the Table below (Pages # 5 & 6).
Summary of Inspections:	8/5/2020: DEP WQS conducted inspection due to Oley Township STP notified the Department of flooding, influent overflow, and failure as a result of receiving over 6" of rainfall on 8/4/2020. There were no violations noted during inspection. Mr. Eshbach stated that the wet well and one digester was pumped yesterday morning by Klines prior to flooding. Stream was almost level with chlorine contact tank which experienced overflow. Composite samples were collected throughout the event.
	5/31/2019: DEP ECS conducted routine inspection. There were violations noted such as: Final effluent was discolored brown. A high concentration of suspended solids was observed discharging through the chlorine contact tank. Biosolids were observed on the ground outside belt filter press room overhead door. On 5/13/2019 – plant operation log entry "Cl ₂ tank overflowed". On 5/14/2019-plant operation log entry "effluent dirty, did not start sampler". Recommend notify the Department when the plant enters storm mode.
	11/30/2017- DEP ECS conducted a compliance evaluation inspection. There were no violations noted during inspection. There were recommendations such as notify the Department when return line piping in modified, or a pump or treatment unit will be taken offline for an extended period. Field test results were within the permit limits.
Other Comments:	There is currently no open violation associated with the permit.

Other Comments:

Compliance History

DMR Data for Outfall 001 (from August 1, 2020 to July 31, 2021)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter	JUL-21	JUN-21	MAY-21	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow (MGD)												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Average Monthly	0.225	0.199	0.183	0.267	0.476	0.331	0.303	0.380	0.211	0.167	0.163	0.291
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Flow (MGD)												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Daily Maximum	0.372	0.243	0.283	0.389	1.078	0.895	0.554	0.999	0.545	0.189	0.185	0.649
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	pH (S.U.)												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Minimum	7.2	7.2	7.2	6.8	7.7	7.1	7.0	6.6	6.4	6.7	6.7	7.1
Instantaneous 7.9 8.1 7.9 7.9 6.9 7.8 7.8 7.8 7.9 8.0 8.0 7.8 DO (mg/L) 5.2 5.3 5.9 5.2 6.0 5.3 5.4 6.3 7.2 5.5 5.5 Average Monthly 0.2 0.2 0.3 0.3 0.4 0.3 0.2 0.4 0.2 0.2 Average Monthly 0.2 0.2 0.3 0.3 0.4 0.3 0.2 0.4 0.2 0.2 Maximum 0.48 0.52 0.88 0.45 0.54 0.78 0.66 0.77 0.5 0.61 0.6 1.14 CBD5 (bs/day) -													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Maximum	7.9	8.1	7.9	7.9	6.9	7.8	7.8	7.8	7.9	8.0	8.0	7.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	DO (mg/L)												
TRC (mgL) Average Monthly 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.2 0.4 0.2 0.2 Instantaneous Maximum 0.48 0.52 0.88 0.45 0.54 0.78 0.66 0.77 0.5 0.61 0.6 1.14 CBOD5 (lbs/day) Average Monthly <7		5.1	5.2	5.3	5.9	5.2	6.0	5.3	5.4	6.3	7.2	5.5	5.5
Average Monthly 0.2 0.2 0.2 0.3 0.3 0.4 0.3 0.2 0.4 0.2 0.2 TRC (mg/L) Instantaneous Instantaneous 0.48 0.52 0.88 0.45 0.54 0.78 0.66 0.77 0.5 0.61 0.6 1.14 CBOD5 (lbs/day) Average Monthly <7													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.2	0.2	0.2	0.3	0.3	0.3	0.4	0.3	0.2	0.4	0.2	0.2
Instantaneous Maximum 0.48 0.52 0.88 0.45 0.54 0.78 0.66 0.77 0.5 0.61 0.6 1.14 CBOD5 (lbs/day) 5 11 9 <10													
Maximum 0.48 0.52 0.88 0.45 0.54 0.78 0.66 0.77 0.5 0.61 0.6 1.14 CBOD5 (lbs/day) -													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.48	0.52	0.88	0.45	0.54	0.78	0.66	0.77	0.5	0.61	0.6	1.14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		< 7	5	11	9	< 10	< 7	< 5	< 10	< 3.0	4.0	6	12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		11	6	33	13	20	13	< 7	15	6	4.0	11	25
Average Monthly <4 3 7 4 <2 <3 2.0 <4 <2.0 3.0 4 4 CBOD5 (mg/L) Weekly Average 6 4 19 5 3 4 3 5.6 3 3.0 6 6 BOD5 (lbs/day) Influent - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
CBOD5 (mg/L) 6 4 19 5 3 4 3 5.6 3 3.0 6 6 BOD5 (lbs/day) Influent 236 184 198 257 379 540 256 698 338 277 541 413 BOD5 (mg/L) Influent 236 184 198 257 379 540 256 698 338 277 541 413 BOD5 (mg/L) Influent 132 111 131 127 105 175 105 258 214 215 343 179 TSS (lbs/day) Average Monthly <10		< 4	3	7	4	< 2	< 3	2.0	< 4	< 2.0	3.0	4	4
Weekly Average 6 4 19 5 3 4 3 5.6 3 3.0 6 6 BOD5 (lbs/day) Influent				-							0.0		
BOD5 (lbs/day) Influent Average Monthly 236 184 198 257 379 540 256 698 338 277 541 413 BOD5 (mg/L) Influent Average Monthly 132 111 131 127 105 175 105 258 214 215 343 179 TSS (lbs/day) Average Monthly 413 Morage Monthly 132 111 131 127 105 175 105 258 214 215 343 179 TSS (lbs/day)		6	4	19	5	3	4	3	5.6	3	3.0	6	6
Influent Average Monthly 236 184 198 257 379 540 256 698 338 277 541 413 BOD5 (mg/L) Influent 132 111 131 127 105 175 105 258 214 215 343 179 Average Monthly 132 111 131 127 105 175 105 258 214 215 343 179 TSS (lbs/day) <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td>0.0</td> <td></td> <td>0.0</td> <td><u> </u></td> <td><u> </u></td>						<u> </u>			0.0		0.0	<u> </u>	<u> </u>
Average Monthly 236 184 198 257 379 540 256 698 338 277 541 413 BOD5 (mg/L) Influent													
BOD5 (mg/L) Influent 132 111 131 127 105 175 105 258 214 215 343 179 TSS (lbs/day) Average Monthly <10		236	184	198	257	379	540	256	698	338	277	541	413
Influent Influent <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Average Monthly 132 111 131 127 105 175 105 258 214 215 343 179 TSS (lbs/day)													
TSS (lbs/day) <10 <7 <6 <8 <16 <11 <9 <10 <6 <5.0 <6 <20 Average Monthly <10		132	111	131	127	105	175	105	258	214	215	343	179
Average Monthly < 10 < 7 < 6 < 8 < 16 < 11 < 9 < 10 < 6 < 5.0 < 6 < 20 TSS (lbs/day) Influent												0.0	
TSS (lbs/day) Influent Average Monthly 362 210 227 409 456 502 305 661 453 321 909 912 TSS (lbs/day) TSS (lbs/day) 7 7 <10	(3)	< 10	< 7	< 6	< 8	< 16	< 11	< 9	< 10	< 6	< 5.0	< 6	< 20
Influent Average Monthly 362 210 227 409 456 502 305 661 453 321 909 912 TSS (lbs/day) Weekly Average 15 7 7 <10													
Average Monthly 362 210 227 409 456 502 305 661 453 321 909 912 TSS (lbs/day)													
TSS (lbs/day) TSS (lbs		362	210	227	409	456	502	305	661	453	321	909	912
Weekly Average 15 7 7 < 10 < 25 < 14 < 15 < 7 < 6.0 < 10 55 TSS (mg/L) </td <td></td>													
TSS (mg/L)		15	7	7	< 10	< 25	< 14	< 14	< 15	< 7	< 6.0	< 10	55
	Average Monthly	< 5	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 7

NPDES Permit No. PA0024961

TSS (mg/L)												
Influent Average Monthly	203	< 129	149	217	123	164	126	252	284	249	580	326
TSS (mg/L)	203	< 129	149	217	123	104	120	252	204	249	560	320
Weekly Average	10	< 4	4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	< 4	13
Total Dissolved Solids	10		•									10
(lbs/day)												
Average Monthly		799			926			749			1001	
Total Dissolved Solids												
(mg/L)												
Average		420			398			538			566	
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 3	< 5	< 4	3	< 1	< 1	< 1	< 1	< 2	4	9	23
Fecal Coliform												
(CFU/100 ml)												
Instantaneous											400	100
Maximum	11	64	22	8	2	< 1	4	1	8	15	186	180
Total Nitrogen												
(lbs/day)	0	. 7	10		10	10	4.00	10	0	5.0		10
Average Monthly	8	< 7	13	14	19	12	4.28	10	9	5.0	< 8	16
Total Nitrogen (mg/L)	4.0	4.26	8.49	7.26	4.63	4.72	0	3.83	3.53	4.16	. 2. 01	5.07
Average Monthly Ammonia (lbs/day)	4.2	4.20	8.49	1.20	4.03	4.72	9	3.83	3.53	4.10	< 3.21	5.07
Average Monthly	< 0.2	< 0.3	8	10	5	3	5	4	4	< 0.9	< 6	< 8
Ammonia (mg/L)	< 0.2	< 0.5	0	10	5	5	5	4	4	< 0.5	< 0	< 0
Average Monthly	< 1	0.18	5	5	1	1	2	2	< 1	< 1	< 1	< 2
Total Phosphorus		0.10			•	•	-	-				~ 2
(lbs/day)												
Average Monthly	2.3	2.6	1.5	1.0	1.7	2.1	1.7	1.6	3.0	1.2	2.3	1.4
Total Phosphorus		1						1			1	
(mg/L)												
Average Monthly	1.3	1.5	1.0	0.5	0.4	0.9	0.8	0.6	0.8	0.9	1.5	0.5

Development of Effluent Limitations

Outfall No.	001		Design Flow (MGD)	0.4
Latitude	40° 22' 30.00	"	Longitude	-75º 44' 6.00"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments:

Water Quality-Based Limitations

Ammonia (NH₃-N):

NH₃N calculations are based on the Department's Implementation Guidance of Section 93.7 Ammonia Criteria, dated 11/4/97 (ID No. 391-2000-013). The following data is necessary to determine the in-stream NH₃-N criteria used in the attached WQM 7.0 computer model of the stream:

*	Discharge pH	=	7.0	(Default)
*	Discharge Temperature	=	25°C	(Default)
*	Stream pH	=	7.0	(Default)
*	Stream Temperature	=	20°C	(Default)
*	Background NH ₃ -N	=	0 mg/L	(Default)

Regarding NH₃-N limits, the attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a limit of 25.0 mg/L as a monthly average and 50.0 mg/L IMAX are necessary to protect the aquatic life from toxicity effects at the point of discharge. The DRBC Ammonia limit of 20.0 mg/L is therefore imposed, the same as in the previous NPDES permit. Then, the existing limits of 20.0 mg/L monthly average & 40.0 mg/L IMAX are more stringent and will remain in the proposed permit. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: 20.0 mg/L x 0.4 MGD x 8.34 = 66.7 (67.0) lbs/day

Carbonaceous Biochemical Oxygen Demand (CBOD₅):

The attached computer printout of the WQM 7.0 stream model (version 1.1) indicates that a monthly average limit of 25.0 mg/L, or secondary treatment, is adequate to protect the water quality of the stream. However, the existing limits of 25.0 mg/L monthly average (AML), 40.0 mg/L weekly average, and 50.0 mg/L instantaneous maximum (IMAX) will remain in the proposed permit as per guidance document 391-2000-014. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $25.0 \text{ mg/L} \times 0.4 \text{ MGD} \times 8.34 = 83.4 (83.0) \text{ lbs/day}$ Average weekly mass limit: $40.0 \text{ mg/L} \times 0.4 \text{ MGD} \times 8.34 = 133.4 (133.0) \text{ lbs/day}$

The effluent discharge pH should remain above 6.0 and below 9.0 standard units according to 25 Pa. Code § 95.2(1).

Dissolved Oxygen (D.O.):

A minimum D.O. of 5.0 mg/L is required per 25 Pa. Code § 93.7. It is recommended that this limit be maintained in the proposed permit to ensure the protection of water quality standards. This approach is consistent with DEP's current Standard Operating Procedure (SOP) No. BPNPSM-PMT-033 and has been applied to other point source dischargers throughout the state.

Fecal Coliform:

The recent coliform guidance in 25 Pa. Code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100 ml and 25 Pa. Code § 92a.47.(a)(5) requires a winter limit of 2,000/100 ml as a geometric mean and an instantaneous maximum not greater than 10,000/100 ml.

E. Coli:

As recommended by DEP's SOP no. BPNPSM-PMT-033, a routine monitoring for E. Coli will be included in the proposed permit under 25 Pa Code § 92a.61. This requirement applies to all sewage dischargers greater than 0.002 MGD in their new and reissued permits. A monitoring frequency of 1/week will be included in the permit to be consistent with the recommendation from this SOP.

Total Suspended Solids (TSS):

The existing technology-based limits of 30.0 mg/L average monthly, 45.0 mg/L weekly average, and 60.0 mg/L instantaneous maximum will remain in the proposed permit based on the minimum level of effluent quality attainable by secondary treatment based on 25 Pa. Code § 92a.47. Recent DMRs and inspection reports show that the facility has been consistently achieving these limits. Mass limits are calculated as follows:

Average monthly mass limit: $30.0 \text{ mg/L} \times 0.4 \text{ MGD} \times 8.34 = 100.0 \text{ lbs/day}$ Average weekly mass limit: $45.0 \text{ mg/L} \times 0.4 \text{ MGD} \times 8.34 = 150.1 (150.0) \text{ lbs/day}$

Total Phosphorus:

Previous permit had average monthly concentration monitoring requirement 2.0 mg/l and instantaneous maximum limit of 4.0 mg/l. Accordingly, existing TP limits will remain in the proposed permit. See the EPA guidance, Nutrient Criteria Technical Guidance Manual – Rivers and Streams, 07/2000 EPA-822-B-00-002, for more information about nutrient impacts on streams. Mass limits are calculated as follows:

Average monthly mass limit: 2.0 mg/L x 0.4 MGD x 8.34 = 6.7 lbs/day

Biosolids Management:

Sludge is digested on-site, via an aerobic sludge digester, and removed by a certified hauler.

Additional Considerations

Flow Monitoring

Flow monitoring is recommended by the permit guidance and is also required by 25 Pa. Code §§ 92a.27 and 92a.61.

Influent Monitoring

As a result of negotiation with EPA, influent monitoring of TSS and BOD₅ are required for any POTWs; therefore, influent sampling of BOD₅ and TSS will be included in the draft permit. A 24-hr composite sample type will be required to be consistent with the proposed sampling frequency for TSS and CBOD₅ in the effluent.

Total Dissolved Solids (TDS)

The DRBC regulation [18 CFR Part 410] includes an effluent limit for TDS of 1,000 mg/L, because eight rounds of sampling per the application resulted in an average concentration of 466.0 mg/L for TDS (page 6), the Department contents that there is not a "reasonable potential" for the effluent to exceed this limit and is not imposing a limit. Additionally, State regulations [25 Pa. Code § 95.10] do not require a TDS limit until existing permittees increase their TDS mass load to less than or equal 5,000 lbs/day. Mass limits are calculated as follows:

Average monthly mass limit: 466.0 mg/L x 0.4 MGD x 8.34 = 1,554.6 lbs/day

The TDS mass load average monthly is 1,554.6 lbs/day and is well below 5,000 lbs/day. Due to DRBC's requirements, then the TDS monitoring and report (1/quarter) requirements will remain in the proposed permit.

Total Nitrogen

Monitoring requirements for Total Nitrogen are being added to all NPDES permits in the State if the permit does not already include them, as authorized by 25 Pa. Code § 92a.61. Controlling nutrients in waterways requires data collection. The existing minimum monitoring and report calculation of monthly for Total Nitrogen permit will be remain in the proposed permit

<u>Toxics</u>

DEP utilizes a Toxics Management Spreadsheet (last modified on March 2021 ver. 1.3) to facilitate calculations necessary for completing a reasonable potential analysis and determining WQBELs for toxic pollutants. The effluent testing information renewal application (page 6) indicates that there are no toxic pollutants of concern.

Class A Wild Trout Fisheries

No Class A Wild Trout Fisheries are impacted by this discharge.

Anti-Backsliding

No limits have been included in the renewal permit that are less stringent than in the previous permit.

Antidegradation (Chapter 93.4)

The effluent limits for this discharge have been developed to ensure that existing stream uses and the level of water quality necessary to protect the existing uses are maintained and protected. No High Quality (HQ) or Exceptional Value (EV) waters are impacted by this discharge.

WQM 7.0 Data:

D.O. Goal: 6.0 mg/L

Node 1: Manatawny Creek (01655)

Elevation:	302 ft (USGS National Map Viewer)
Drainage Area:	48.6 mi. ² (USGS PA StreamStats)
River Mile Index:	15.8 (PA DEP eMapPA)
Low Flow Yield:	0.3 cfs/mi. ²
Discharge Flow:	0.4 MGD (NPDES Application)

Node 2: Just before confluence with Furnace Run

Elevation:	287 ft (USGS National Map Viewer)
Drainage Area:	49.9 mi. ² (USGS PA StreamStats)
River Mile Index:	13.9 (PA DEP eMapPA)
Low Flow Yield:	0.3 cfs/mi. ²
Discharge Flow:	0.000 MGD

eFacts Query Advanced Query Map 🔿 ESRI Streets & Imagery 🍥 Topographic 🔿 National Geographic 🔍) 🔍 🔍 🖉 🖝 🐡 👋 🥔 🕻 Locate Latitude and Longitude Degrees Minutes Seconds 40 22 30.74 Latitude: Longitude: 44 -75 4.75 Locate Close Manatawny Manataony 0 0 Cem Pleasantville Ote Covered Valle Creek Latitude: 40,5/5206 Longitude: 45,734652 * Valley 6 Sewage C Shanesville Ch Valle ALL A Pinnacle C Leaflet | Esri Shillington Basin Characteristics Pennsylvania 0 Parameter Code Parameter Description Value Unit Ŷ DRNAREA Area that drains to a point on a stream 48.6 square miles NTIFY A STUDY AREA Basin Delineated 🗸 BSLOPD Mean basin slope measured in degrees 6.6066 degrees ROCKDEP Depth to rock 5.2 feet URBAN Percentage of basin with urban development 1.6025 percent × Low-Flow Statistics Parameters [99.8 Percent (48.4 square miles) Low Flow Region 1] Parameter Code Parameter Name Value Units Min Limit Max Limit DRN BSL

Show Basin Characteristics

Select available reports to display:

✓ Basin Characteristics Report

Cooporio Flow Doporto

POWERED BY WIM

USGS Home Contact USGS Search USGS

DRNAREA	Drainage Area	48.6	square miles	4.78	1150	
BSLOPD	Mean Basin Slope degrees	6.6066	degrees	1.7	6.4	
ROCKDEP	Depth to Rock	5.2	feet	4.13	5.21	
URBAN	Percent Urban	1.6025	percent	0	89	

Low-Flow Statistics Disclaimers [99.8 Percent (48.4 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [99.8 Percent (48.4 square miles) Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	23.1	ft^3/s
30 Day 2 Year Low Flow	25.9	ft^3/s
7 Day 10 Year Low Flow	14.3	ft^3/s
30 Day 10 Year Low Flow	15.9	ft^3/s
90 Day 10 Year Low Flow	19	ft^3/s

					Gilbertsville			
E COGO	Shillingt	on Slog Byp	0		Gilbertsville	Leaflet Esri		🛤 Report 🚯 About 🔅
SELECT A STATE / RE Pennsylvania							. 5-	Layers
							ztown	Base Maps
	AREA Parameter Code	Parameter Description				nit	Clare SI	
Basin Delineate		Area that drains to a point on				quare miles	50	Application Layers
	BSLOPD	Mean basin slope measured in	n degrees			egrees	1 2-	
	State - Transportant	Depth to rock				et	1 horas	National Layers
	URBAN	Percentage of basin with urba	in developmen		1.5611 p	ercent	star star	✓ PA Map Layers
							Re III	Hereford.
	port							Hereford,
Step 1: You can modify computed basi		meters [99.8 Percent (49.7 square miles)	Low Flow Region	1]			B	
characteristics here, then select the typ reports you wish to generate. Then clic		Parameter Name	Value	Units	Min Limit	Max Limit	2	
"Build Report" button	DRNAREA	Drainage Area	49.9	square miles	4.78	1150	The state of the s	
	BSLOPD	Mean Basin Slope degrees	6.5564	degrees	1.7	6.4		
 Show Basin Characteristics 	ROCKDEP	Depth to Rock	5.2	feet	4.13	5.21		Bally
	URBAN	Percent Urban	1.5611	percent	0	89	ale A	eano Rd
elect available reports to display:							,E	Barto
	Low-Flow Statistics Disc	laimers [99.8 Percent (49.7 square miles)	Low Flow Region	1]			10-00	
 Basin Characteristics Report 	One or more of the p	arameters is outside the suggested range	e. Estimate <u>s were</u>	extrapolated with unit	known errors		echtelsville*	
Scenario Flow Reports	and a second sec							
Continue	Low-Flow Statistics Flow	/ Report [99.8 Percent (49.7 square miles)	Low Flow Region	1]				
Continue	Statistic			Value	Uni	t		and the second second
	7 Day 2 Year Low Fl	ow		23.4	ft^:	3/s	.New Berl	linville 🛞 Sassamansville*
POWERED BY WIM	30 Day 2 Year Low F	low		26.3	ft^:	3/s	Boyertown	
FOWERED BY WIM	7 Day 10 Year Low F	low		14.5	ft^:	B/s	BAR ER	
JSGS Home Contact USGS Search U	ISGS La 30 Day 10 Year Low	Flow		16.2	ft^:	3/s	Disp	laying simplified Basin.
cessibility FOIA Privacy Policy & N		Flow		19.4	ft^:	3/s	See I	FAQ for more information.
Hydrodynamics	s NH3-N Allocatio	D.O. Allocati	ons	D.O. Simu	lation	Effluent Li	mitations	
Hydrodynamics	s NH3-N Allocatio					Effluent Li	mitations	
Hydrodynamics				D.O. Simu nber Disc Flo (mgd)	W	Effluent Li	mitations	
Hydrodynamics		F charge Name		nber Disc Flo (mgd)	W	Effluent Li	mitations	
Hydrodynamics	RMI Dis	charge Name	Permit Nur PA00249	nber Disc Flo (mgd) 61 0.400			mitations	
Hydrodynamics	RMI Dis	charge Name ship	Permit Nur PA00249 nt Limit 1	nber Disc Flo (mgd) 61 0.400	w DO : Effluent	Limit	mitations	
Hydrodynamics	RMI Dis	charge Name ship v Efflue eter 30 Day	Permit Nur PA00249	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum	w DO Effluent Minimu	Limit	mitations	
Hydrodynamics	RMI Dis	charge Name ship eter 30 Day (mag	Permit Nur PA00249 nt Limit I Average g/L)	nber Disc Flo (mgd) 61 0.400	w DO : Effluent	Limit	mitations	
Hydrodynamics	RMI Dis	charge Name ship eter SD Day (mage) 2	Permit Nur PA00249 nt Limit f Average g/L)	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L)	w DO Effluent Minimu	Limit	mitations	
Hydrodynamics	RMI Dis	charge Name ship eter 30 Day (mg 2 2	Permit Nur PA00249 nt Limit I Average g/L)	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis	charge Name ship eter 30 Day (mg 2 2	Permit Nur PA00249 nt Limit f Average g/L)	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L)	w DO Effluent Minimu	Limit	mitations	
Hydrodynamics	RMI Dis	charge Name ship eter 30 Day (mg 2 2	Permit Nur PA00249 nt Limit f Average g/L)	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L)	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis 15.80 Oley Towns Param CBOD5 NH3-N Dissolved Oxyger	charge Name Ship V eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis	charge Name ship eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis 15.80 Oley Towns Param CBOD5 NH3-N Dissolved Oxyger	charge Name Ship V eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis 15.80 Oley Towns Param CBOD5 NH3-N Dissolved Oxyger	charge Name Ship V eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis 15.80 Oley Towns Param CBOD5 NH3-N Dissolved Oxyger	charge Name Ship V eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis 15.80 Oley Towns Param CBOD5 NH3-N Dissolved Oxyger	charge Name Ship V eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	
Hydrodynamics	RMI Dis 15.80 Oley Towns Param CBOD5 NH3-N Dissolved Oxyger	charge Name Ship V eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	
	RMI Dis 15.80 Oley Towns Param Param CB0D5 NH3-N Dissolved Oxyger Record: 1 of 1	charge Name F ship V eter 30 Day (m 22 1 + H M X	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	W Effluent Minimu (mg/L	Limit		
Hydrodynamics	RMI Dis 15.80 Oley Towns Param CBOD5 NH3-N Dissolved Oxyger	charge Name Ship V eter 30 Day (my 2 1 2 1	Permit Nur PA00249 nt Limit I Average g/L) 25	nber Disc Flo (mgd) 61 0.400 Effluent Limit Maximum (mg/L) 50	00 t Effluent Minimu (mg/L	Limit	mitations	

rptEffLimits —	- 🗆 X 📓 rpt_WLA – 🗆) ×
WQM 7.0 Effluent Limits <u>WP Badin</u> <u>Stream Code</u> 01D 165 MAANTAWNY CREEK	WQM 7.0 Wasteload Allocations Strem Code Strem Name 03D 966 MANATAMAY CREEK	
RMI Name Permit Provide Permit Fill Units Effic. Limit Ef	NH5-14 Acute all locations Baseline Multiple Multiple Multiple Official Percent (mol_L) RM Discharge Name Criterion WLA Criterion WLA Reach Reduction 15.800.01ey Township 16.33 50 16.33 50 0 0	
	(mail) (mail) (mail) (mail) 15800 Gley Township 1.87 25 1.87 25 0 15800 Gley Township 1.87 25 1.87 25 0 0 Desolved Oxygen Allocations Baselowed Oxygen Allocations RMI Discharge Name Baselne Mutbele Baselne Mutbele Baselne Mutbele Reach 15.800 Cley Township 25 25 25 5 0 0	
Thursday, September 20, 2021 Vention 1.1 Page 1 o	Page 1 of 1 Thursday, September 20, 2021 Version 1.1 Page 1 of 1	
Page: IK I I I I I I I I I I I I I I I I I I	Page: H < 1 >> H >> Too No Filter	

						Hydi	rody	nam																	Inpu	t Dat	a WQ						PWS			
	3	03D		18						tream N		ĸ				_				Ē	lasin	Stream Code		Stream	Name		EM		(ft)	A	nage rea (mi)	siope (π/π)	Withdrav (mgd)	wal FC	2	
RMI	Flow	PWS	n Sin	lat aam / low	nalysis	Reach Slope	Depth	n Wk	idth	WD Ratio	Velocity	Reach Trav Time	Te	lysis i mp	Analysis pH					03	D	1655 MA	ANAT A	WNY CRE			15.8	800	302.0	0	48.60 0	.00000	(0.00	<u> </u>	
) (6	:fs)	(cts)	(11/1)	(ft)	(T	t)		(fps)	(days) (1	C)						LFY		Trib Stream		tch R	ch i	eam Da WD	Rch	Rdt		Tribu	itary		Stream			
	0 Flow		0 1	4.58	.6188	0.00150	.78	34 52	2.24	66.67	0.37	0.31	3 20.	20	7.00				Cond.	(cfsm)		(ds) (cfs)	1	ime	odity I ps)	Ratio	(ft)	Depl (ft)		emp PC)	pH	Terr (°C		pH		
	0 Flow		0	9.33	.6188	0.00150	N	M	NA	NA	0.29	0.39	7 20.1	31	7.00				Q7-10 Q1-10	0.3	00			0.000	0.000	0.0	0.00	0	.00	20.00	7.00		0.00	0.00		
Q30	10 Flo	w	. 1	9.83	6188	0.00150	N		NA	NO	0.44	0.26	5 20	15	700				Q30-10					0.000	0.000											
12000															120							Nam	ne	Permit		Disc	Permit Disc Flox	c 🗆	lisc R Row H	eserve Factor	Disc Temp (°C)	De	sc H			
																						Oley Townsh	ihip	PA0024		0.40 ameter	0 0.40	00 0	.4000	0.000	25.	00	7.00			
																									Pa			Trib	Stream	n Fa	to ref					
																							Pa	ameter Na	me		ngL)									
																						CBOD	05				25.00	200	0.0	00	1.50					
																						Dissol NH3-N		ygen			5.00 25.00	824			0.00					
																				l		NH3-N					25.00				0.70					
Thursda	y, Septer	nber 23	2021				v	/arsion :	1.1						Page	1 of 1			Thursda	y, Septern	her 22	3 2021				Version	11							Page 1	012	
																			i nuista	iy, explain	Jer 23	.o, 2021				version	1.1							maga 1	012	

F	rptGeneral		_		\times
ſ					
		Input Data WQM 7.0			
		SWP Stream RMI Elevation DraInage Slope Basin Code Stream Name Area (ft) (sq.mi) (ft/ft)	PWS Appl Withdrawal PC (mgd)		
		03D 1655 MANATAWNY CREEK 13,900 287.00 49.90 0.0000	o 0.00 P	<u> </u>	
		Stream Data LFY Trib Stream Rich Rich WD Rich Rich <u>Tributary</u> Flow Flow Trav Velodity Ratio Width Depth Temp pH Te	Stream		
	Design Cond.	Time	mp pH C)		
	Q7-10 Q1-10 Q30-10	0.300 0.00 0.00 0.000 0.00 0.0 0.00 20.00 7.00 0.00 0.00 0.000 0.000 0.00 0.00	0.00 0.00		
			Disc		
		Name Permit Number Flow Flow Flow Flow Factor (mgd) (mgd) (mgd) (************************************	pH		
		Oley Township PA0024961 0.0000 0.0000 0.0000 0.000 25.00 Parameter Data	7.00		
		Disc Trib Stream Fate Conc Conc Conc Coet Parameter Name			
		(mgL) (mgL) (mgL) (18ays) CBOD5 25.00 2.00 0.00 1.50	-		
		Dissolved Oxygen 5.00 8.24 0.00 0.00			
		NH3-N 25.00 0.00 0.70			
	Thursday,	September 23, 2021 Version 1.1	Page 2	of 2	
Page	14 4 2	► ► ► 😽 🏹 No Filter			

NPDES Permit Fact Sheet

Oley Township STP

TRG EVAL	UATION				
Input appropri	iate values ir	n A3:A9 and D3:D9			
14.3	3 = Q stream	n (cfs)	0.5	= CV Daily	
0.4	4 = Q discha	arge (MGD)	0.5	= CV Hourly	
30	= no. sam	oles	1	= AFC_Partia	al Mix Factor
0.3	3 = Chlorine	Demand of Stream	1	= CFC_Partia	al Mix Factor
() = Chlorine	Demand of Discharge	15	= AFC_Crite	ria Compliance Time (min)
0.8	5 = BAT/BP.	J Value	720	= CFC_Crite	ria Compliance Time (min)
(0 = % Facto	r of Safety (FOS)		=Decay Coef	fficient (K)
Source	Reference	AFC Calculations		Reference	CFC Calculations
TRC	1.3.2.iii	WLA afc =	7.391	1.3.2.iii	WLA cfc = 7.198
PENTOXSD TRO	G 5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581
PENTOXSD TRO	G 5.1b	LTA_afc=	2.754	5.1d	LTA_cfc = 4.185
Source		Effluer	nt Limit Calcu	lations	
PENTOXSD TRO	G 5.1f		AML MULT =	1.231	
PENTOXSD TRO	G 5.1g	AVG MON L	.IMIT (mg/l) =	0.500	BAT/BPJ
		INST MAX L	.IMIT (mg/l) =	1.635	
WLA afc		AFC_tc)) + [(AFC_Yc*Q		e(-k*AFC_tc))	
	-	AFC_Yc*Qs*Xs/Qd)]*(1-			
LTAMULT afc		(cvh^2+1))-2.326*LN(cvh^2	2+1)^0.5)		
LTA_afc	wla_afc*LT4	AMULT_afc			
			+ • • • • • •		
WLA_cfc		CFC_tc) + [(CFC_Yc*Qs		(-K-CFC_tc))	
	-	CFC_Yc*Qs*Xs/Qd)]*(1-	-		
LTAMULT_cfc LTA_cfc		l(cvd^2/no_samples+1))-2.3	SZO LIN(CVd.,2	2no_samples+	() 0.3)
LTA_CIC	wla_cfc*LT4	AMOLT_CIC			
AML MULT	EXP(2.326*)	N((cvd^2/no_samples+1)^	0.5)-0.5*I.N(c	vd^2/no_sampl	es+1))
AVG MON LIMIT		PJ,MIN(LTA_afc,LTA_cfc)*		va zno_sampi	
INST MAX LIMIT		ion_limit/AML_MULT)/L1		c)	
	([av_1		and a large state of the second state of the s	,	

Existing Effluent Limitations and Monitoring Requirements

			Effluent L	imitations.			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	XXX	xxx	XXX	ххх	Continuous	Metered
pH (S.U.)	ХХХ	xxx	6.0	XXX	XXX	9.0	1/day	Grab
D.O.	ХХХ	xxx	5.0	xxx	XXX	ХХХ	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	83	133	xxx	25	40	50	1/week	24-Hr Composite
TSS	100	150	XXX	30	45	60	1/week	24-Hr Composite
BOD5 Effluent Net	Report	xxx	xxx	Report	XXX	xxx	1/week	24-Hr Composite
TSS Effluent Net	Report	xxx	XXX	Report	XXX	xxx	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	xxx	xxx	XXX	200 Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	XXX	2,000 Geo Mean	XXX	10,000	1/week	Grab
Total Dissolved Solids	Report Average	XXX	XXX	Report Average	XXX	XXX	1/quarter	24-Hr Composite
Ammonia	67	XXX	XXX	20	XXX	40	1/week	24-Hr Composite
Total Phosphorus	6.7	XXX	XXX	2.0	XXX	4.0	1/week	24-Hr Composite
Total Nitrogen	Report	XXX	XXX	Report	XXX	ХХХ	1/month	Calculation

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 001, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrati	ions (mg/L)		Minimum ⁽²⁾	Required
Farameter	Average Monthly	Daily Maximum	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report	xxx	xxx	XXX	ХХХ	Continuous	Metered
pH (S.U.)	ХХХ	xxx	6.0	XXX	XXX	9.0	1/day	Grab
D.O.	XXX	XXX	5.0	xxx	XXX	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.6	1/day	Grab
CBOD5	83.0	133.0 Wkly Avg	XXX	25.0	40.0	50.0	1/week	24-Hr Composite
TSS	100.0	150.0 Wkly Avg	xxx	30.0	45.0	60.0	1/week	24-Hr Composite
BOD5 Effluent Net	Report	xxx	XXX	Report	XXX	ххх	1/week	24-Hr Composite
TSS Effluent Net	Report	xxx	xxx	Report	XXX	ххх	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1,000	1/week	Grab
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	ххх	xxx	xxx	2,000 Geo Mean	XXX	10,000	1/week	Grab
E. Coli (No./100 ml)	ХХХ	XXX	XXX	xxx	XXX	Report	1/week	Grab
Ammonia	67.0	XXX	XXX	20.0	XXX	40.0	1/week	24-Hr Composite
Total Phosphorus	6.7	xxx	xxx	2.0	XXX	4.0	1/week	24-Hr Composite
Total Nitrogen	Report	XXX	XXX	Report	XXX	ххх	1/month	Calculation
Total Dissolved Solids	Report Avg Qrtly	xxx	XXX	Report Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite

Compliance Sampling Location:

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP:
Other: DRBC