

Southcentral Regional Office CLEAN WATER PROGRAM

Application Type Renewal
Facility Type Municipal
Major / Minor Minor

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0025381

APS ID 32006

Authorization ID 1395951

Applicant Name		on Borough Municipal Authority ord County	Facility Name	Saxton Borough STP	
Applicant Address	1002	Branch Street	Facility Address	1002 Branch Street	
	Saxto	n, PA 16678-8739	_	Saxton, PA 16678-8739	
Applicant Contact	Chris	Cooper	Facility Contact	Chris Cooper	
Applicant Phone	(814)	635-3403	Facility Phone	(814) 635-3403	
Client ID	5966		Site ID	451743	
Ch 94 Load Status	Not C	verloaded	Municipality	Liberty Township	
Connection Status	No Li	mitations	County	Bedford	
Date Application Rece	eived	May 10, 2022	EPA Waived?	No	
Date Application Accepted May 18, 2022		May 18, 2022	If No, Reason	Significant CB Discharge	

Approve	Deny	Signatures	Date
х		Nicholas Hong, P.E. / Environmental Engineer Nick Hong (via electronic signature)	June 24, 2022
х		Daniel W. Martin, P.E. / Environmental Engineer Manager Maria D. Bebenek for Daniel W. Martin	July 19, 2022
х		Maria D. Bebenek, P.E. / Environmental Program Manager Maria D. Bebenek	July 19, 2022

Summary of Review

The application submitted by the applicant requests a NPDES renewal permit for the Saxton Borough WWTP located at 1002 Branch Street, Saxton, PA 16678 in Bedford County, municipality of Liberty. The existing permit became effective on September 1, 2017 and expires(d) on August 31, 2022. The application for renewal was received by DEP Southcentral Regional Office (SCRO) on May 18, 2022.

The purpose of this Fact Sheet is to present the basis of information used for establishing the proposed NPDES permit effluent limitations. The Fact Sheet includes a description of the facility, a description of the facility's receiving waters, a description of the facility's receiving waters attainment/non-attainment assessment status, and a description of any changes to the proposed monitoring/sampling frequency. Section 6 provides the justification for the proposed NPDES effluent limits derived from technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), total maximum daily loading (TMDL), antidegradation, anti-backsliding, and/or whole effluent toxicity (WET). A brief summary of the outlined descriptions has been included in the Summary of Review section.

The subject facility is a 0.60 MGD treatment facility. The applicant does not anticipate any proposed upgrades to the treatment facility in the next five years. The NPDES application has been processed as a Minor Sewage Facility (Level 2) due to the type of sewage and the design flow rate for the facility. The applicant disclosed the Act 14 requirement to Bedford County Commissioners, Liberty Township Municipal Sewer Authority, Liberty Township Supervisors, and Saxton Borough Council. A planning approval letter was not necessary as the facility is neither new or expanding.

Utilizing the DEP's web-based Emap-PA information system, the receiving waters has been determined to be Raystown Branch Juniata River. The sequence of receiving streams that Raystown Branch Juniata River discharges into are the Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay. The subject site is subject to the Chesapeake Bay implementation requirements. The receiving water has protected water usage for trout stocking fish (TSF) and migratory fishes (MF). No Class A Wild Trout fisheries are impacted by this discharge. The absence of high quality and/or exceptional value surface waters removes the need for an additional evaluation of anti-degradation requirements.

The Raystown Branch Juniata River is a Category 2 stream listed in the 2020 Integrated List of All Waters (formerly 303d Listed Streams). This stream is an attaining stream that supports aquatic life and fish consumption. The receiving waters is subject to a total maximum daily load (TMDL) plan to improve water quality in the subject facility's watershed.

The existing permit and proposed permit differ as follows:

- Due to the EPA Triennial review, monitoring for E. Coli shall be at least 1x/quarter
- Monitoring shall be required 1x/month for Total Copper, Total Lead, and Total Zinc.

Sludge use and disposal description and location(s): Biosolids/sewage sludge disposed at Mostoller Landfill in Somerset, PA

The proposed permit will expire five (5) years from the effective date.

Based on the review in this report, it is recommended that the permit be drafted. DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Any additional information or public review of documents associated with the discharge or facility may be available at PA DEP Southcentral Regional Office (SCRO), 909 Elmerton Avenue, Harrisburg, PA 17110. To make an appointment for file review, contact the SCRO File Review Coordinator at 717.705.4700.

1.0 Applicant

1.1 General Information

This fact sheet summarizes PA Department of Environmental Protection's review for the NPDES renewal for the following subject facility.

Facility Name: Saxton Borough WWTP

NPDES Permit # PA0025381

Physical Address: 1002 Branch Street

Saxton, PA 16678

Mailing Address: 1002 Branch Street

Saxton, PA 16678

Contact: Chris Cooper

Chief Operator (814) 635-3403

sbma16678@gmail.com

Consultant: Maggie Weitzel

Senior Environmental Scientist Gwin, Dobson, and Foreman, Inc.

3121 Fairway Drive Altoona, PA 16602

mweitzel@gdfengineers.com

1.2 Permit History

Permit submittal included the following information.

- NPDES Application
- Flow Diagrams
- Influent Sample Data
- Effluent Sample Data

2.0 Treatment Facility Summary

2.1.1 Site location

The physical address for the facility is 1002 Branch Street, Saxton, PA 16678. A topographical and an aerial photograph of the facility are depicted as Figure 1 and Figure 2.

Figure 1: Topographical map of the subject facility

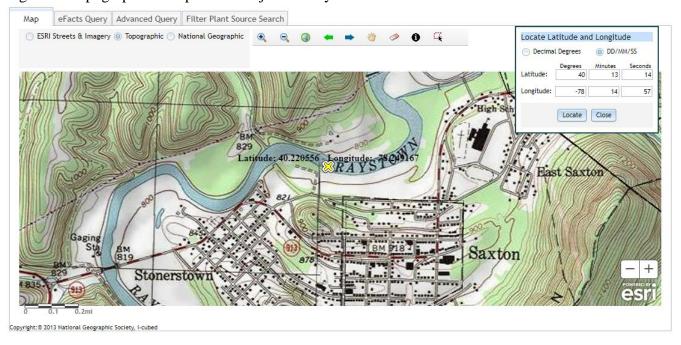



Figure 2: Aerial Photograph of the subject facility

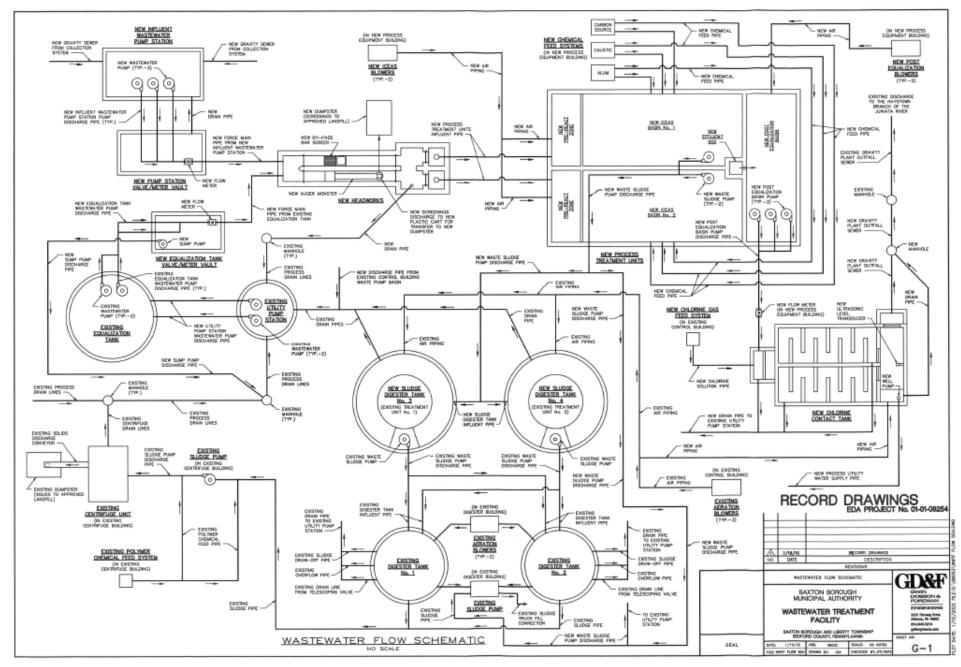
2.1.2 Sources of Wastewater/Stormwater

The facility received wastewater contributions from three different municipalities as summarized in the table.

Municipalities Served	Flow Contribution
Saxton Borough	47%
Liberty Township	52%
Hopewell Township	1%
Total	100%

The table summarizes industrial / commercial wastewater contributions.

Business	Type of Business	SIU/NSCIU/ Hauled-in-Waste	Flow- Average GPD
Craig Angelo Car Restoration	Car Restoration	madica in Waste	32.7
Dollar General Store	Retail Store		163
Community State Bank	Bank		98
Everett Marble & Granite Works	Monument Manufacture		30
First National Bank	Bank		60
Wine & Spirits	PA State Liquor Store		30
Saxton Floor Wall Mart	Carpet Retail Store		30
Saxton Library	Library		35
Saxton Pharmacy	Pharmacy		35
Johnson & Jenkins Insurance			30
Saxton Sportsman's Club	Insurance Company Bar and Grill Tavern		
	car and crim resent		350
Fisher's	Church		340
Saxton Borough Municipal Authority Water Treatment Plant	Water Treatment Plant		170
United Church of Christ	Church and Parsonage		246
Tussey Mountain High School	Education Institution		1960
Tussey Mountain Elem. School	Education Institution		2125
Sharton Sitch Beauty Shop	Hair Salon		245
Bubba's Pizza	Restaurant		265
Saxton Market	Grocery Store		1160
OIP	Restaurant		150
Country Blossoms	Flower Shop		30
Hairspray Kreations	Hair Salon		30
Martin Oil Company	Convenience Store		720
Dr. Michael Shuke	Dentist		240
Dr. John Snyder	Dentist		110
Wash-N-Go	Laundromat		560
Stoudnour Car Wash	Car Wash		460
Akers Funeral Chapel	Funeral Home		65
VFW Post	Bar and Grill Tavern		180
Saxton Family Practice	General Family Practitioner		50
Jan's Pet Grooming	Pet Grooming		95
McCahan's Pharmacy	Pharmacy		100
Hair By Kendal	Hair Salon		100
Saxton Borough Municipal Authority	Wastewater Treatment Plant		2,000
Wastewater Treatment Plant			
Green Leaf	Medical Marijuana Production Facility		4,500
First Church of God	Church		200
Saxton Methodist Church	Church		250
Titan Treats	Ice Cream Stand		100 (Seasonal)
John Swope Garage	Garage		70
Bob Horton Barber Shop	Barber Shop		35
Friendly's Tavern	Bar & Grill		35
Saxton Auto Parts	Retail Store		40
Crawshaw Printing Shop	Print Shop		35
Villa's Gym	Gymnasium		35
Saxton Treasure Emporium	Retail Store		30
Ritchey's Craft Shop	Retail Store		30


2.2 Description of Wastewater Treatment Process

The subject facility is a 0.60 MGD design flow facility. The subject facility treats wastewater using a ICEAS SBR and chlorine disinfection prior to discharge through the outfall. The facility is being evaluated for flow, pH, dissolved oxygen, TRC, CBOD5, TSS, fecal coliform, nitrogen species, and phosphorus. The existing permits limits for the facility is summarized in Section 2.4.

The treatment process is summarized in the table.

	Treatment Facility Summary											
Treatment Facility Na	me: Saxton STP											
WQM Permit No.	Issuance Date											
0587402 99-1	04/19/1999											
0506403	10/17/2006											
	Degree of			Avg Annual								
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)								
Sewage	Secondary	SBR	Gas Chlorine	0.6								
Hydraulic Capacity	Organic Capacity			Biosolids								
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal								
•				Combination of								
0.6	1251	Not Overloaded	Aerobic Digestion	methods								

A schematic of the treatment process is depicted.

2.3 Facility Outfall Information

The facility has the following outfall information for wastewater.

Outfall No.	001	Design Flow (MGD)	.6
Latitude	40° 13' 12.57"	Longitude	-78º 14' 53.44"
Wastewater De	escription: Sewage Effluent		

2.3.1 Operational Considerations- Chemical Additives

Chemical additives are chemical products introduced into a waste stream that is used for cleaning, disinfecting, or maintenance and which may be detected in effluent discharged to waters of the Commonwealth. Chemicals excluded are those used for neutralization of waste streams, the production of goods, and treatment of wastewater.

The subject facility utilizes the following chemicals as part of their treatment process.

- · Alum as a coagulant
- Chlorine for disinfection
- · Polymer as a coagulant

2.4 Existing NPDES Permits Limits

The existing NPDES permit limits are summarized in the table.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS I. A. For Outfall 001 , Latitude 40° 13′ 12.57" , Longitude 78° 14′ 53.44" , River Mile Index 36.4 , Stream Code 13349 Receiving Waters: Raystown Branch Juniata River Type of Effluent: Sewage Effluent

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) (1)		Concentrat	ions (mg/L)		Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9	1/day	Grab
Dissolved Oxygen	XXX	XXX	5.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	xxx	0.50	XXX	1.64	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	125	200	xxx	25.0	40.0	50	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5)		Report						24-Hr
Raw Sewage Influent	Report	Daily Max	XXX	Report	XXX	XXX	1/week	Composite
Total Suspended Solids	150	225	XXX	30.0	45.0	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Fecal Coliform (CFU/100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (CFU/100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	1/week	Grab
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	xxx	2/week	24-Hr Composite

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

	Parameter			Effluent L	imitations			Monitoring Requirements		
1		Mass Units	(lbs/day) (1)		Concentrat	Minimum (2)	Required			
Parameter	Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample	
ı		Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type	
									24-Hr	
1	Total Phosphorus	10.0	XXX	XXX	2.0	XXX	4	2/week	Composite	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

^{1.} The permittee is authorized to discharge during the period from September 1, 2017 through August 31, 2022.

PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS I. B. For Outfall 001 , Latitude 40° 13' 12.57" , Longitude 78° 14' 53.44" , River Mile Index 36.4 , Stream Code 13349 Receiving Waters: Raystown Branch Juniata River Type of Effluent: Sewage Effluent

Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

			Effluent L	imitations			Monitoring Requirements		
Parameter	Mass Units	(lbs/day) (1)		Concentrat	tions (mg/L)		Minimum (2)	Required	
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type	
								24-Hr	
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite	
								24-Hr	
KieldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite	
								24-Hr	
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite	
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation	
-		•						24-Hr	
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite	
Net Total Nitrogen	Report	7306	XXX	xxx	xxx	XXX	1/month	Calculation	
Net Total Phosphorus	Report	974	XXX	XXX	XXX	XXX	1/month	Calculation	

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

(1) See Part C for Chesapeake Bay Requirements.

3.0 Facility NPDES Compliance History

3.1 Summary of Inspections

A summary of the most recent inspections during the existing permit review cycle is as follows.

The DEP inspector noted the following during the inspection.

06/13/2017:

- The effluent refrigerator was not chilled when inspected. The refrigerator should be stored about 4 C.
- pH buffers were expired and needed to be replaced.

08/21/2018:

- The effluent refrigerator was out of service.
- An operation and maintenance plan should be developed to address key wastewater processes.

09/11/2019:

- The refrigerator temperature reading was -1.3 C. Samples were not frozen. The facility was advised to obtain a traceable thermometer.
- The influent grinder motor was recently replaced. The unit still needed a new level sensor to work in automatic mode.
- There was a leak in the chemical storage room from alum feed. Leaks in the storage room drain to a floor drain that leads to the headworks.
- The influent and effluent composites samples was 23 hours instead of 24 hours.
- An operation and maintenance plan should be developed to address key wastewater processes.

^{1.} The permittee is authorized to discharge during the period from September 1, 2017 through August 31, 2017.

⁽²⁾ This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

01/09/2020:

• Submission errors for DMRs were submitted for incorrect months. The monthly nutrient monitoring form for January 2019 was submitted for July 2019. The daily effluent form for July 2018 was submitted for July 2019.

12/14/2020:

 The May 2020 DMR improperly reported the average monthly concentration of ammonia at 4750 mg/l. The correct concentration should be 0.0475 mg/l.

11/15/2021:

- The level sensor that controlled the comminutor was out of service. The comminutor was currently being run full time. The facility also had planned to repair the influent screen including replacement of the auger brush.
- The facility was advised that the refrigerator temperature should be monitored and remain around 6 C.
- The facility was advised of discrepancies in the January 2020 DMR for dissolved oxygen and TRC.
- The authority recently completed collection system repair work. Liners were installed in sections of the mainline and lateral piping where leaks were detected.
- A cannabis facility that employed 150 people was added to the system. The facility generates approximately 400 gpd. The BOD is approximately 350-450 mg/l.

3.2 Summary of DMR Data

A review of approximately 1-year of DMR data shows that the monthly average flow data for the facility below the design capacity of the treatment system. The maximum average flow data for the DMR reviewed was 0.381 MGD in April 2022. The design capacity of the treatment system is 0.60 MGD.

The off-site laboratory used for the analysis of the parameters was Fairway Laboratories located at 2019 Ninth Avenue, PO Box 1925, Altoona, PA 16601.

DMR Data for Outfall 001 (from May 1, 2021 to April 30, 2022)

Parameter	APR-22	MAR-22	FEB-22	JAN-22	DEC-21	NOV-21	OCT-21	SEP-21	AUG-21	JUL-21	JUN-21	MAY-21
Flow (MGD)												
Average Monthly	0.381	0.296	0.342	0.233	0.164	0.188	0.192	0.355	0.252	0.209	0.272	0.248
Flow (MGD)												
Daily Maximum	0.68	0.388	0.828	0.495	0.305	0.3	0.389	1.854	0.839	0.385	0.677	0.479
pH (S.U.)												
Minimum	6.8	6.4	6.7	6.6	6.4	6.5	6.5	6.3	6.3	6.4	6.5	6.5
pH (S.U.)												
Daily Maximum	7.2	7.3	7.8	7.4	7.0	7.9	6.8	6.8	6.8	7.1	6.9	7.0
DO (mg/L)												
Minimum	8.3	9.9	9.2	8.2	8.8	8.3	7.8	4.4	1.5	6.3	7.3	7.9
TRC (mg/L)												
Average Monthly	0.30	0.30	0.30	0.30	0.30	0.36	0.30	0.50	0.10	0.10	0.10	0.20
TRC (mg/L)												
Instantaneous												
Maximum	0.40	0.30	0.40	0.40	1.00	0.60	0.50	0.10	0.70	0.60	0.30	0.03
CBOD5 (lbs/day)												
Average Monthly	< 10	< 9	< 10	< 6	< 5	< 4.0	< 4.20	< 12.7	< 10.02	< 5.5	< 7.7	< 5.0
CBOD5 (lbs/day)												
Weekly Average	< 14	14	19	< 7	< 8	< 5.0	< 4.60	< 21.9	< 15.64	< 9.0	< 12.5	< 6.0
CBOD5 (mg/L)												
Average Monthly	< 3.0	< 3.7	< 4.1	< 3.2	< 3.0	< 3.0	< 3.0	< 3.0	< 5.70	< 3.0	< 3.0	< 3.0
CBOD5 (mg/L)												
Weekly Average	< 0.3	7.0	7.0	< 4.0	< 3.0	< 3.0	< 3.0	< 3.0	< 12.50	< 3.0	< 3.0	< 3.0
BOD5 (lbs/day)												
Raw Sewage Influent												
 Average	40.4	240	450	474	000	404	005.0	202.0	007.0	070.0	400.0	200.0
Monthly	424	310	452	174	236	184	265.0	362.0	227.0	276.0	162.0	220.0
BOD5 (lbs/day)												
Raw Sewage Influent br/> Daily Maximum	805	459	633	290	355	246	357.0	540.0	314.0	428.0	276.0	343.0
BOD5 (mg/L)	803	459	033	290	333	240	337.0	340.0	314.0	420.0	270.0	343.0
Raw Sewage Influent												
<pre> Average</pre>												
Monthly	111	126	193	100	177	125	188.0	127.0	131.0	162.0	63.0	125.0
TSS (lbs/day)	111	120	100	100	177	120	100.0	127.0	101.0	102.0	00.0	120.0
Average Monthly	< 8	< 7	< 8.0	< 3	< 4.0	< 2.3	< 2.10	< 21.88	< 15.10	4.2	11.0	< 6.1
TSS (lbs/day)	_ ` `		` ` 0.0	```	` 1.0	\ 2.0	` 2.10	121.00	10.10	1.2	11.0	10.1
Raw Sewage Influent												
 Average												
Monthly	359	310	712	402	251	286	358.0	717.0	226.0	809.0	366.0	407.0

789	529	1369	1138	481	460	571.0	1021.0	366.0	1841.0	432.0	718.0
10	12	22	4	< 8.0	< 3.3	< 2.80	< 61.29	< 27.60	5.5	18.8	< 10.5
< 2.3	< 3.1	< 3.4	< 1.9	< 2.2	< 2.3	< 1.50	< 3.5	< 8.3	2.4	2.0	< 3.3
107	129	299	248	188	200	253.0	292.0	150.0	447.0	160.0	231.0
4.0	6.0	9.0	2.0	3.0	< 3.3	< 2.00	< 8.4	< 20.0	3.6	7.6	< 5.2
< 2	3	< 3.0	< 1	< 2.0	< 2	5.0	115.0	35.0	3.0	74.0	8.0
5.2	24.6	51.2	< 4.0	9.7	4.1	46.4	2419.6	387.3	14.8	1413.6	72.7
4.646	4.62	4.4	4.842	2.66	3.302	< 4.9689	2.832	2.3885	4.174	3.833	3.188
415	348	283	9	127	153	< 213.0	292.0	331.0	252.0	309.0	179.0
5.184	5.0396	4.776	5.256	3.17	3.77	< 5.5577	< 3.353	5.2702	< 4.697	< 4.333	< 3.688
467	379	307	313	152	175	< 239.0	< 341.0	< 331.0	< 280.0	< 345.0	< 207.0
467	379	307	10	152	175	< 239.0	< 341.0	201.0	< 280.0	< 345.0	< 207.0
							< 3570				
							< 3570				
< 0.1	4.0	< 0.1	< 0.09	< 0.07	< 0.07	< 0.07	< 0.60	< 0.90	< 0.10	< 0.1	< 0.09
								<			<
< 0.0475	< 0.0475	< 0.0516	< 0.0475	< 0.0475	< 0.0475	< 0.0475	< 0.0638	0.62567	< 0.0617	< 0.048	0.04750
		۱ .	_	١ ٥٥	_	0.0	0.0	07.0			< 3.0
< 0.1	< 4.0	< 3	< 3	< 2.0	< 2	< 2.0	< 8.0	< 27.0	< 3.0	< 3.0	< 3.0
< 0.1	< 4.0	< 3	< 3	< 2.0	< 2	< 2.0	< 8.0	< 27.0	< 3.0	< 3.0	< 3.0
	10 < 2.3 107 4.0 < 2 5.2 4.646 415 5.184 467 467 < 0.1 < 0.0475	10 12 < 2.3	10 12 22 < 2.3	10 12 22 4 < 2.3	10 12 22 4 < 8.0	10 12 22 4 < 8.0	10 12 22 4 < 8.0	10 12 22 4 < 8.0	10 12 22 4 < 8.0	10 12 22 4 < 8.0	10 12 22 4 <8.0

NPDES Permit No. PA0025381

TKN (mg/L)												
Average Monthly	< 0.4618	< 0.4199	< 0.4643	< 0.3855	< 0.45	< 0.5	< 0.59	< 0.520	2.882	< 0.52	< 0.5	< 0.5
TKN (lbs)												
Total Monthly	< 43	< 31	< 30	< 22	< 22	< 23	< 25.0	< 49.0	< 129.0	< 28.0	< 36.0	< 28.0
Total Phosphorus												
(lbs/day)												
Average Monthly	4.9	3.9	3.5	2.6	1.7	1.4	1.0	< 2.0	3.0	2.0	3.0	2.0
Total Phosphorus												
(mg/L)												
Average Monthly	1.65	1.61	1.66	1.427	1.064	0.916	0.890	0.668	1.333	1.154	1.186	0.973
Total Phosphorus (lbs)												
Effluent Net 												
Total Monthly	147.8	119.7	98.8	81.5	53.0	42.7	39.0	61.0	78.0	61.0	1.186	55.0
Total Phosphorus (lbs)												
Total Monthly	147.8	119.7	98.8	81.5	53.0	42.7	39.0	61.0	78.0	61.0	86.0	55.0
Total Phosphorus (lbs)												
Effluent Net 												
Total Annual								742				
Total Phosphorus (lbs)												
Total Annual								742				

3.2.1 Chesapeake Bay Truing

The table summarizes the facility's compliance/noncompliance with Chesapeake Bay cap loads.

Chesapeake Bay Annual Nutrient Summary						
	Saxton Borough WWTP					
	PA0025381					
	Net Effluent Limits		Compliant with Permit Limits (Yes/			
Year for Truing Period (Oct 1 - Sept 30)	Nitrogen (lbs)	Phosphorus (lbs)	Nitrogon	Dhasabarus		
	7,306	974	Nitrogen	Phosphorus		
2018	5,573	327	Yes	Yes		
2019	5,752	794	Yes	Yes		
2020	3,785	652	Yes	Yes		
2021	7,306	974	Yes	Yes		

3.3 Non-Compliance

3.3.1 Non-Compliance- NPDES Effluent

A summary of the non-compliance to the permit limits for the existing permit cycle is as follows.

From the DMR data beginning in June 1, 2021 to April 30, 2022, the following were observed effluent non-compliances.

Effluent Violations for Outfall 001, from: June 1, 2021 To: April 30, 2022

Parameter	Date	SBC	DMR Value	Units	Limit Value	Units
DO	09/30/21	Min	4.4	mg/L	5.0	mg/L
DO	08/31/21	Min	1.5	mg/L	5.0	mg/L
Fecal Coliform	06/30/21	IMAX	1413.6	CFU/100 ml	1000	CFU/100 ml
Fecal Coliform	09/30/21	IMAX	2419.6	CFU/100 ml	1000	CFU/100 ml

3.3.2 Non-Compliance- Enforcement Actions

A summary of the non-compliance enforcement actions for the current permit cycle is as follows:

Beginning in September 1, 2017 to June 13, 2022, the following were observed enforcement actions.

Summary of Enforcement Actions Beginning September 1, 2017 and Ending June 13, 2022

ENF ID	ENF TYPE	ENF TYPE DESC	DATE	EXECUTED DATE	INITIATED DATE	VIOLATIONS	VIOLATIONS	ENF FINALSTATUS	DATE
<u>402699</u>	NOV	Notice of	04/11/2022	04/11/2022	04/01/2022	92A.75(A)	1	Administrative Close	05/10/2022
		Violation						Out	

3.4 Summary of Biosolids Disposal

A summary of the biosolids disposed of from the facility is as follows.

2021									
Sewage Sludge / Biosolids Production Information									
	Hauled Off-Site								
2021	Tons Dewatered	% Solids	Dry Tons						
January									
February	10.85	18.8	2.04						
March									
April	26.26	17.6	4.62						
May	13.66	18.1	2.48						
June									
July									
August	11.97	19.1	2.29						
September									
October	24.66	19.1	4.71						
November									
December									
Notes:									
Biosolids/s	sewage sludge dispose	d at Mostoller	Landfill in						
	Somerset,	PA							

3.5 Open Violations

As of June 2022, an open violation existed for the client. The Saxton WS under Permit Number PA0083143 was cited for failure to properly operate and maintain all facilities which are installed or used by the permittee to achieve compliance on May 11, 2022. The NPDES permit for the Saxton Borough WWTP may be withheld until the open violation has been addressed.

4.0 Receiving Waters and Water Supply Information Detail Summary

4.1 Receiving Waters

The receiving waters has been determined to be Raystown Branch Juniata River. The sequence of receiving streams that Raystown Branch Juniata River discharges into are the Juniata River and the Susquehanna River which eventually drains into the Chesapeake Bay.

4.2 Public Water Supply (PWS) Intake

The closest PWS to the subject facility is the Lake Raystown Resort (PWS ID #4310821) located approximately 11 miles downstream of the subject facility on the Raystown Lake. Based upon the distance and the flow rate of the facility, the PWS should not be impacted.

4.3 Class A Wild Trout Streams

Class A Wild Trout Streams are waters that support a population of naturally produced trout of sufficient size and abundance to support long-term and rewarding sport fishery. DEP classifies these waters as high-quality coldwater fisheries.

The information obtained from EMAP suggests that no Class A Wild Trout Fishery will be impacted by this discharge.

4.4 2020 Integrated List of All Waters (303d Listed Streams)

Section 303(d) of the Clean Water Act requires States to list all impaired surface waters not supporting uses even after appropriate and required water pollution control technologies have been applied. The 303(d) list includes the reason for impairment which may be one or more point sources (i.e. industrial or sewage discharges) or non-point sources (i.e. abandoned mine lands or agricultural runoff and the pollutant causing the impairment such as metals, pH, mercury or siltation).

States or the U.S. Environmental Protection Agency (EPA) must determine the conditions that would return the water to a condition that meets water quality standards. As a follow-up to listing, the state or EPA must develop a Total Maximum Daily Load (TMDL) for each waterbody on the list. A TMDL identifies allowable pollutant loads to a waterbody from both point and non-point sources that will prevent a violation of water quality standards. A TMDL also includes a margin of safety to ensure protection of the water.

The water quality status of Pennsylvania's waters uses a five-part categorization (lists) of waters per their attainment use status. The categories represent varying levels of attainment, ranging from Category 1, where all designated water uses are met to Category 5 where impairment by pollutants requires a TMDL for water quality protection.

The receiving waters is listed in the 2020 Pennsylvania Integrated Water Quality Monitoring and Assessment Report as a Category 2 waterbody. The surface waters is an attaining stream that supports aquatic life and fish consumption. The designated use has been classified as protected waters for trout stocking fish (TSF) and migratory fishes (MF).

4.5 Low Flow Stream Conditions

Water quality modeling estimates are based upon conservative data inputs. The data are typically estimated using either a stream gauge or through USGS web based StreamStats program. The NPDES effluent limits are based upon the combined flows from both the stream and the facility discharge.

A conservative approach to estimate the impact of the facility discharge using values which minimize the total combined volume of the stream and the facility discharge. The volumetric flow rate for the stream is based upon the seven-day, 10-year low flow (Q710) which is the lowest estimated flow rate of the stream during a 7 consecutive day period that occurs once in 10 -year time period. The facility discharge is based upon a known design capacity of the subject facility.

The closest WQN station to the subject facility is the Raystown Branch Juniata station (WQN223). This WQN station is located approximately 1.2 miles upstream of the subject facility.

The closest gauge station to the subject facility is the Raystown Branch Juniata River at Saxton, PA (USGS station number 1562000). This gauge station is located approximately 1.2 miles upstream of the subject facility.

For WQM modeling, pH and stream water temperature data from the water quality network station was used. pH was estimated to be 8.0 and the stream water temperature was estimated to be 23.3 C.

The hardness of the stream was estimated from the water quality network to be 96 mg/l CaCO₃.

The low flow yield and the Q710 for the subject facility was estimated as shown below.

Gauge Station Data					
USGS Station Number	1562000				
Station Name	Raystown Branch Juniata Ri	ver at Saxton, PA			
Q710	67.1	ft ³ /sec			
Drainage Area (DA)	756	mi ²			
Calculations					
The low flow yield of th	ne gauge station is:				
Low Flow Yield (LFY) = 0	Q710 / DA				
LFY =	(67.1 ft³/sec / 756 mi²)				
LFY =	0.0888	ft³/sec/mi²			
LFT =	0.0868	11 / 500/1111			
The low flow at the sub	ject site is based upon the DA of	760	mi ²		
Q710 = (LFY@gauge stat					
$Q710 = (0.0888 \text{ft}^3/\text{sec/r})$	mi²)(760 mi²)				
Q710 =	67.455	ft³/sec			

S Summary of Discharge, Receiving Waters and Water Supply Information					
Outfall No. 001			_ Design Flow (MGD)	.6	
Latitude 40° 1	3' 13.83	3"	_ Longitude	-78° 14' 53.24"	
Quad Name			_ Quad Code		
Wastewater Descrip	otion:	Sewage Effluent			
	Rays	town Branch Juniata River			
Receiving Waters	(TSF)		Stream Code	13349	
NHD Com ID	65842	2367	RMI	39	
Drainage Area	760		Yield (cfs/mi²)	0.0888	
Q ₇₋₁₀ Flow (cfs)	67.4		Q ₇₋₁₀ Basis	StreamStats/Streamgauge	
Elevation (ft)	793		Slope (ft/ft)		
Watershed No.	11-D		Chapter 93 Class.	TSF, MF	
Existing Use	Same	e as Chapter 93 class	Existing Use Qualifier		
Exceptions to Use			Exceptions to Criteria		
Assessment Status		Attaining Use(s) support	ts aquatic life and fish consumptio	on	
Cause(s) of Impairn	nent	Not appl.			
Source(s) of Impair	ment	Not appl.			
TMDL Status		Not appl.	Name		
Background/Ambie	nt Data		Data Source		
pH (SU)		8.0	WQN223; median July to Sept		
Temperature (°C)		23.3	WQN223; median July to Sept		
Hardness (mg/L) 96		WQN223; historical median			
Other:					
Nearest Downstrea	m Publi	ic Water Supply Intake	Lake Raystown Resort		
	learest Downstream Public Water Supply Intake PWS Waters Raystown Lake		Flow at Intake (cfs)		
_	<u> (aystov</u> 28	TI Lake	Distance from Outfall (mi)	11	
			Distance nom Cutan (IIII)		

5.0: Overview of Presiding Water Quality Standards

5.1 General

There are at least six (6) different policies which determines the effluent performance limits for the NPDES permit. The policies are technology based effluent limits (TBEL), water quality based effluent limits (WQBEL), antidegradation, total maximum daily loading (TMDL), anti-backsliding, and whole effluent toxicity (WET) The effluent performance limitations enforced are the selected permit limits that is most protective to the designated use of the receiving waters. An overview of each of the policies that are applicable to the subject facility has been presented in Section 6.

5.2.1 Technology-Based Limitations

TBEL treatment requirements under section 301(b) of the Act represent the minimum level of control that must be imposed in a permit issued under section 402 of the Act (40 CFR 125.3). Available TBEL requirements for the state of Pennsylvania are itemized in PA Code 25, Chapter 92a.47.

The presiding sources for the basis for the effluent limitations are governed by either federal or state regulation. The reference sources for each of the parameters is itemized in the tables. The following technology-based limitations apply, subject to water quality analysis and best professional judgement (BPJ) where applicable:

Parameter	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD ₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD ₅	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 - 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 – 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 - 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

5.2.2 Mass Based Limits

For publicly owned treatment works (POTW), mass loadings are calculated based upon design flow rate of the facility and the permit limit concentration. The generalized calculation for mass loadings is shown below:

Quantity
$$\left(\frac{lb}{day}\right) = (MGD)(Concentration)(8.34)$$

5.3 Water Quality-Based Limitations

WQBEL are based on the need to attain or maintain the water quality criteria and to assure protection of designated and existing uses (PA Code 25, Chapter 92a.2). The subject facility that is typically enforced is the more stringent limit of either the TBEL or the WQBEL.

Determination of WQBEL is calculated by spreadsheet analysis or by a computer modeling program developed by DEP. DEP permit engineers utilize the following computing programs for WQBEL permit limitations: (1) MS Excel worksheet for Total Residual Chorine (TRC); (2) WQM 7.0 for Windows Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen Version 1.1 (WQM Model) and (3) Toxics using DEP Toxics Management Spreadsheet for Toxics pollutants.

The modeling point nodes utilized for this facility are summarized below.

General Data 1 (Modeling Point #1)	Input Value	Units
Stream Code	13349	
River Mile Index	39	miles
Elevation	793	feet
Latitude	40.220556	
Longitude	-78.249167	
Drainage Area	760	sq miles
Low Flow Yield	0.089	cfs/sq mile
General Data 2 (Modeling	Innut Value	Units
Point #2)	Input Value	Offics
Stream Code	13349	
River Mile Index	36.6	miles
Elevation	786	feet
Latitude	40.235251	
Longitude	-78.220221	
Drainage Area	784	sq miles
Low Flow Yield	0.089	cfs/sq mile

5.3.1 Water Quality Modeling 7.0

The WQM Model is a computer model that is used to determine NPDES discharge effluent limitations for Carbonaceous BOD (CBOD5), Ammonia Nitrogen (NH3-N), and Dissolved Oxygen (DO) for single and multiple point source discharges scenarios. WQM Model is a complete-mix model which means that the discharge flow and the stream flow are assumed to instantly and completely mixed at the discharge node.

WQM recommends effluent limits for DO, CBOD5, and NH₃-N in mg/l for the discharge(s) in the simulation.

Four types of limits may be recommended. The limits are

- (a) a minimum concentration for DO in the discharge as 30-day average;
- (b) a 30-day average concentration for CBOD5 in the discharge;
- (c) a 30-day average concentration for the NH₃-N in the discharge;
- (d) 24-hour average concentration for NH₃-N in the discharge.

The WQM Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

The applicable WQM Effluent Limit Type are discussed in Section 6 under the corresponding parameter which is either DO, CBOD, or ammonia-nitrogen.

5.3.2 Toxics Modeling

The Toxics Management Spreadsheet model is a computer model that is used to determine effluent limitations for toxics (and other substances) for single discharge wasteload allocations. This computer model uses a mass-balance water quality analysis that includes consideration for mixing, first-order decay, and other factors used to determine recommended water quality-based effluent limits. Toxics Management Spreadsheet does not assume that all discharges completely mix with the stream. The point of compliance with water quality criteria are established using criteria compliance times (CCTs). The available CCTs are either acute fish criterion (AFC), chronic fish criterion (CFC), or human health criteria (THH & CRL).

Acute Fish Criterion (AFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e.15 minutes travel time downstream of the current discharge) or the complete mix time whichever comes first. AFC is evaluated at Q710 conditions.

Chronic Fish Criterion (CFC) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CFC is evaluated at Q710 conditions.

Threshold Human Health (THH) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the estimated travel time downstream to the nearest potable water supply intake whichever comes first. THH is evaluated at Q710 conditions.

Cancer Risk Level (CRL) measures the criteria compliance time as either the maximum criteria compliance time (i.e. 12 hours travel time downstream of the current discharge) or the complete mix time whichever comes first. CRL is evaluated at Qh (harmonic mean or normal flow) conditions.

The Toxics Model requires several input values for calculating output values. The source of data originates from either EMAP, the National Map, or Stream Stats. Data for stream gauge information, if any, was abstracted from USGS Low-Flow, Base-Flow, and Mean-Flow Regression Equations for Pennsylvania Streams authored by Marla H. Stuckey (Scientific Investigations Report 2006-5130).

5.3.2.1 Determining if NPDES Permit Will Require Monitoring/Limits in the Proposed Permit for Toxic Pollutants

To determine if Toxics modeling is necessary, DEP has developed a Toxics Management Spreadsheet to identify toxics of concern. Toxic pollutants whose maximum concentrations as reported in the permit application or on DMRs are greater than the most stringent applicable water quality criterion are pollutants of concern. A Reasonable Potential Analysis was utilized to determine (a) if the toxic parameters modeled would require monitoring or (b) if permit limitations would be required for the parameters. The toxics reviewed for reasonable potential were the following pollutants: TDS, chloride, bromide, sulfate, total copper, total lead, and total zinc.

Based upon the SOP- Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants (Revised January 10, 2019), monitoring and/or limits will be established as follows.

- (a) When reasonable potential is demonstrated, establish limits where the maximum reported concentration equals or exceeds 50% of the WQBEL.
- (b) For non-conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 25% 50% of the WQBEL.
- (c) For conservative pollutants, establish monitoring requirements where the maximum reported concentration is between 10% 50% of the WQBEL.

Applicable monitoring or permit limits for toxics are summarized in Section 6.

The Toxics Management Spreadsheet output has been included in Attachment B.

5.3.3 Whole Effluent Toxicity (WET)

The facility is not subject to WET.

5.4 Total Maximum Daily Loading (TMDL)

5.4.1 TMDL

The goal of the Clean Water Act (CWA), which governs water pollution, is to ensure that all of the Nation's waters are clean and healthy enough to support aquatic life and recreation. To achieve this goal, the CWA created programs designed to regulate and reduce the amount of pollution entering United States waters. Section 303(d) of the CWA requires states to assess their waterbodies to identify those not meeting water quality standards. If a waterbody is not meeting standards, it is listed as impaired and reported to the U.S. Environmental Protection Agency. The state then develops a plan to clean up

the impaired waterbody. This plan includes the development of a Total Maximum Daily Load (TMDL) for the pollutant(s) that were found to be the cause of the water quality violations. A Total Maximum Daily Load (TMDL) calculates the maximum amount of a specific pollutant that a waterbody can receive and still meet water quality standards.

A TMDL for a given pollutant and waterbody is composed of the sum of individual wasteload allocations (WLAs) for point sources and load allocations (LAs) for nonpoint sources and natural background levels. In addition, the TMDL must include an implicit or explicit margin of safety (MOS) to account for the uncertainty in the relationship between pollutant loads and the quality of the receiving waterbody. The TMDL components are illustrated using the following equation:

TMDL =
$$\Sigma WLAs + \Sigma LAs + MOS$$

Pennsylvania has committed to restoring all impaired waters by developing TMDLs and TMDL alternatives for all impaired waterbodies. The TMDL serves as the starting point or planning tool for restoring water quality.

5.4.1.1 Local TMDL

The subject facility does not discharge into a local TMDL.

5.4.1.2 Chesapeake Bay TMDL Requirement

The Chesapeake Bay Watershed is a large ecosystem that encompasses approximately 64,000 square miles in Maryland, Delaware, Virginia, West Virginia, Pennsylvania, New York and the District of Columbia. An ecosystem is composed of interrelated parts that interact with each other to form a whole. All of the plants and animals in an ecosystem depend on each other in some way. Every living thing needs a healthy ecosystem to survive. Human activities affect the Chesapeake Bay ecosystem by adding pollution, using resources and changing the character of the land.

Most of the Chesapeake Bay and many of its tidal tributaries have been listed as impaired under Section 303(d) of the federal Water Pollution Control Act ("Clean Water Act"), 33 U.S.C. § 1313(d). While the Chesapeake Bay is outside the boundaries of Pennsylvania, more than half of the State lies within the watershed. Two major rivers in Pennsylvania are part of the Chesapeake Bay Watershed. They are (a) the Susquehanna River and (b) the Potomac River. These two rivers total 40 percent of the entire Chesapeake Bay watershed.

The overall management approach needed for reducing nitrogen, phosphorus and sediment are provided in the Bay TMDL document and the Phase I, II, and III WIPs which is described in the Bay TMDL document and Executive Order 13508.

The Bay TMDL is a comprehensive pollution reduction effort in the Chesapeake Bay watershed identifying the necessary pollution reductions of nitrogen, phosphorus and sediment across the seven Bay watershed jurisdictions of Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia to meet applicable water quality standards in the Bay and its tidal waters.

The Watershed Implementation Plans (WIPs) provides objectives for how the jurisdictions in partnership with federal and local governments will achieve the Bay TMDL's nutrient and sediment allocations.

Phase 3 WIP provides an update on Chesapeake Bay TMDL implementation activities for point sources and DEP's current implementation strategy for wastewater. The latest revision of the supplement was September 13, 2021.

The Chesapeake Bay TMDL (Appendix Q) categorizes point sources into four sectors:

- Sector A- significant sewage dischargers:
- Sector B- significant industrial waste (IW) dischargers;
- Sector C- non-significant dischargers (both sewage and IW facilities); and
- Sector D- combined sewer overflows (CSOs).

All sectors contain a listing of individual facilities with NPDES permits that were believed to be discharging at the time the TMDL was published (2010). All sectors with the exception of the non-significant dischargers have individual wasteload allocations (WLAs) for TN and TP assigned to specific facilities. Non-significant dischargers have a bulk or aggregate allocation for TN and TP based on the facilities in that sector that were believed to be discharging at that time and their estimated nutrient loads.

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30. For facilities that have received Cap Loads in any other form, the Cap Loads will be modified accordingly when the permits are renewed.

Offsets have been incorporated into Cap Loads in several permits issued to date. From this point forward, permits will be issued with the WLAs as Cap Loads and will identify Offsets separately to facilitate nutrient trading activities and compliance with the TMDL.

Based upon the supplement the subject facility has been categorized as a Sector A discharger. The supplement defines Sector A as a sewage facility if it has a design flow of at least 0.4 MGD.

Table 5 of the Phase 3 WIP (revised September 13, 2021) presents all NPDES permits for Significant Sewage dischargers with Cap Loads. The NPDES Permit No., phase, facility name, latest permit issuance date, expiration date, Cap Load compliance start date, TN and TP Cap Loads, and TN and TP Delivery Ratios are presented. In addition, if TN Offsets were incorporated into the TN Cap Loads when the permit was issued, the amount is shown; these Offsets will be removed from Cap Loads upon issuance of renewed permits to implement Section IV of this document (i.e., a facility may use Offsets for compliance but may not register them as credits).

The total nitrogen (TN) and total phosphorus (TP) cap loads itemized by Table 5 for the subject facility are as follows:

TN Cap Load (lbs/yr)	7,306
TN Delivery Ratio	0.897
TP Cap Load (lbs/yr)	974
TP Delivery Ratio	0.436

Expansions by any Significant Sewage discharger will not result in any increase in Cap Loads. Where non-significant facilities expand to a design flow of 0.4 MGD or greater, the lesser of baseline Cap Loads of 7,306 lbs/yr TN and 974 lbs/yr TP or existing performance will be used for permits, and the load will be moved from the Non-Significant sector load to the Significant Sewage sector load. If considered necessary for environmental protection, DEP may decide to move load from the Point Source Reserve to the Significant Sewage sector in the future.

The minimum monitoring frequency for TN species and TP in new or renewed NPDES permits for Significant Sewage dischargers is 2/week.

This facility is subject to Sector A monitoring requirements. Monitoring shall be required at least 2x/wk.

Reporting

Cap Loads will be established in permits as Net Annual TN and TP loads (lbs/yr) that apply during the period of October 1 – September 30.

Facilities with NPDES permits must use DEP's eDMR system for reporting, except small flow treatment facilities. An Annual DMR must be submitted by the end of the Truing Period, November 28. As attachments to the Annual DMR a facility must submit a completed Annual Chesapeake Bay Spreadsheet, available through DEP's Supplemental Reports website, which contains an Annual Nutrient Monitoring worksheet and an Annual Nutrient Budget worksheet. This Spreadsheet will be submitted once per Compliance Year only, and reflect all nutrient sample results (for the period October 1 – September 30), Credit transactions (including the Truing Period) and Offsets applied during the Compliance Year.

5.5 Anti-Degradation Requirement

Chapter 93.4a of the PA regulations requires that surface water of the Commonwealth of Pennsylvania may not be degraded below levels that protect the existing uses. The regulations specifically state that *Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected.* Antidegradation requirements are implemented through DEP's guidance manual entitled Water Quality Antidegradation Implementation Guidance (Document #391-0300-02).

The policy requires DEP to protect the existing uses of all surface waters and the existing quality of High Quality (HQ) and Exceptional Value (EV) Waters. Existing uses are protected when DEP makes a final decision on any permit or approval

for an activity that may affect a protected use. Existing uses are protected based upon DEP's evaluation of the best available information (which satisfies DEP protocols and Quality Assurance/Quality Control (QA/QC) procedures) that indicates the protected use of the waterbody.

For a new, additional, or increased point source discharge to an HQ or EV water, the person proposing the discharge is required to utilize a nondischarge alternative that is cost-effective and environmentally sound when compared with the cost of the proposed discharge. If a nondischarge alternative is not cost-effective and environmentally sound, the person must use the best available combination of treatment, pollution prevention, and wastewater reuse technologies and assure that any discharge is nondegrading. In the case of HQ waters, DEP may find that after satisfaction of intergovernmental coordination and public participation requirements lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. In addition, DEP will assure that cost-effective and reasonable best management practices for nonpoint source control in HQ and EV waters are achieved.

The subject facility's discharge will be to a non-special protection waters and the permit conditions are imposed to protect existing instream water quality and uses. Neither HQ waters or EV waters is impacted by this discharge.

5.6 Anti-Backsliding

Anti-backsliding is a federal regulation which prohibits a permit from being renewed, reissued, or modified containing effluent limitations which are less stringent than the comparable effluent limitations in the previous permit (40 CFR 122.I.1 and 40 CFR 122.I.2). A review of the existing permit limitations with the proposed permit limitations confirm that the facility is consistent with anti-backsliding requirements. The facility has proposed effluent limitations that are as stringent as the existing permit.

6.0 NPDES Parameter Details

The basis for the proposed sampling and their monitoring frequency that will appear in the permit for each individual parameter are itemized in this Section. The final limits are the more stringent of technology based effluent treatment (TBEL) requirements, water quality based (WQBEL) limits, TMDL, antidegradation, anti-degradation, or WET.

The reader will find in this section:

- a) a justification of recommended permit monitoring requirements and limitations for each parameter in the proposed NPDES permit;
- b) a summary of changes from the existing NPDES permit to the proposed permit; and
- c) a summary of the proposed NPDES effluent limits.

6.1 Recommended Monitoring Requirements and Effluent Limitations

A summary of the recommended monitoring requirements and effluent limitations are itemized in the tables. The tables are categorized by (a) Conventional Pollutants and Disinfection, (b) Nitrogen Species and Phosphorus, and (c) Toxics.

6.1.1 Conventional Pollutants and Disinfection

		ı	Saxton Borough WWTP, PA0025381	
Parameter	Permit Limitation Required by ¹ :		Recommendation	
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3). Effluent limits may range from pH = 6.0 to 9.0	
pH (S.U.)	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 95.2(1).	
		Monitoring:	The monitoring frequency shall be daily as a grab sample (Table 6-3).	
Dissolved	BPJ	Effluent Limit	: Effluent limits shall be greater than 5.0 mg/l.	
Oxygen	BFJ	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by best professional judgement.	
		Monitoring:	The monitoring frequency shall be 1x/wk as a 24-hr composite sample (Table 6-3).	
		Effluent Limit	Effluent limits shall not exceed 125 lbs/day and 25 mg/l as an average monthly.	
CBOD	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). WQM modeling indicates that the TBEL is more stringent than the WQBEL. Thus, the permit limit is confined to TBEL.	
		Monitoring:	The monitoring frequency shall be 1/wk as a 24-hr composite sample (Table 6-3).	
		Effluent Limit	: Effluent limits shall not exceed 150 lbs/day and 30 mg/l as an average monthly.	
TSS TB	TSS	TBEL	Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(1). While there is no WQM modeling for this parameter, the permit limit for TSS is generally assigned similar effluent limits as CBOD or BOD. Since the TBEL is more stringent than TBEL, TBEL will apply.
		Monitoring:	The monitoring frequency shall be on a daily basis as a grab sample (Table 6-3).	
		Effluent Limit	The average monthly limit should not exceed 0.5 mg/l and/or 1.64 mg/l as an instantaneous maximum.	
TRC	TBEL	Rationale: Chlorine in both combined (chloramine) and free form is extremely toxic to freshwater fis other forms of aquatic life (Implementation Guidance Total Residual Chlorine 1). The TRC effluent lir to be imposed on a discharger shall be the more stringent of either the WQBEL or TBEL requireme shall be expressed in the NPDES permit as an average monthly and instantaneous maximum efflue concentration (Implementation Guidance Total Residual Chlorine 4). Based on the stream flow rate (lowest 7-day flow rate in 10 years) and the design flow rate of the sufacility calculated by the TRC Evaluation worksheet, the TBEL is more stringent than the WQBEL. The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits as Chapter 92a.48(b)(2)		
		Monitoring:	The monitoring frequency shall be 1x/wk as a grab sample (Table 6-3).	
Fecal Coliform	TBEL	Effluent Limit	Summer effluent limits shall not exceed 200 No./100 mL as a geometric mean. Winter effluent limits shall not exceed 2000 No./100 mL as a geometric mean.	
		Rationale:	The monitoring frequency has been assigned in accordance with Table 6-3 and the effluent limits assigned by Chapter 92a.47(a)(4) and 92a.47(a)(5).	
		Monitoring:	The monitoring frequency shall be 1x/quarter as a grab sample (SOP).	
	SOP: Chanter	Effluent Limit	: No effluent requirements.	
E. Coli	SOP; Chapter 92a.61	Rationale:	Consistent with the SOP- Establishing Effluent Limitations for Individual Sewage Permits (Revised March 22, 2019) and under the authority of Chapter 92a.61, the facility will be require to monitor for E.Coli.	

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 0.60 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementaton Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.2 Nitrogen Species and Phosphorus

Summary of Proposed NPDES Parameter Details for Nitrogen Species and Phosphorus

Saxton Borough WWTP, PA0025381

Parameter	Permit Limitation Required by ¹ :	Recommendation		
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample	
Ammonia-	Chesapeake Bay	Effluent Limit:	No effluent requirements.	
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.	
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample	
Nitrate-	Chesapeake Bay	Effluent Limit:	No effluent requirements.	
Nitrite as N	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.	
		Monitoring:	The monitoring frequency shall be 1x/mo as a calculation sample	
Total	Chesapeake Bay	Effluent Limit:	No effluent requirements.	
Nitrogen T	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/mo.	
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample	
TKN	Chesapeake Bay TMDL	Effluent Limit:	No effluent requirements.	
INI		Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 2x/wk.	
		Monitoring:	The monitoring frequency shall be 2x/wk as a 24-hr composite sample	
		Effluent Limit:	Effluent limits shall not exceed 10 lbs/day and 2.0 mg/l as an average monthly.	
Total Phosphorus	Δntihacksliding	Rationale:	The phosphorus limitation of 2.0 mg/l as a monthly average was established in the previous permit to protect the Raystown Lake. Due to anti-backsliding, the phosphorus limitation has been recommended to be continued. The monitoring frequency is based upon the Chesapeake Bay WIP supplement	
		Monitoring:	The monitoring frequency shall be 1x/yr as a calculation	
Net Total	Chesapeake Bay	Effluent Limit:	The effluent should not exceed 7,306 lbs/yr.	
Nitrogen	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.	
		Monitoring:	The monitoring frequency shall be 1x/yr as a calculation	
Net Total	Chesapeake Bay	Effluent Limit:	The effluent should not exceed 974 lbs/yr.	
Phosphorus	TMDL	Rationale:	Due to the Chesapeake Bay Implementation Plan, the facility is required to be monitored on a frequency at least 1x/yr.	
Notes:				

¹ The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other

² Monitoring frequency based on flow rate of 0.60 MGD.

³ Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97

⁴ Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

⁵ Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3 Toxics

Notes:

	Summary of Proposed NPDES Parameter Details for Toxics					
	Saxton Borough WWTP, PA0025381					
Parameter	Permit Limitation Required by ¹ :	Recommendation				
		Monitoring:	The monitoring frequency shall be 1x/month as a 24-hr composite sample			
Total	Total WQBEL	Effluent Limit:	No effluent requirements			
Copper	WQBLL	Rationale:	Toxics Management Spreadsheet recommends limits. Monitoring shall be required 1x/month. Pending favorable results, monitoring may be reduced or eliminated in future renewals.			
		Monitoring:	The monitoring frequency shall be 1x/month as a 24-hr composite sample			
Total Lead	WQBEL	Effluent Limit:	No effluent requirements			
Total Leau	WQBLL	Rationale:	Toxics Management Spreadsheet recommends limits. Monitoring shall be required 1x/month. Pending favorable results, monitoring may be reduced or eliminated in future renewals.			
		Monitoring:	The monitoring frequency shall be 1x/month as a 24-hr composite sample			
Total Zinc	WQBEL	Effluent Limit:	No effluent requirements			
		1				

1 The NPDES permit was limited by (a) anti-Backsliding, (b) Anti-Degradation, (c) SOP, (d) TBEL, (e) TMDL, (f) WQBEL, (g) WET, or (h) Other 2 Monitoring frequency based on flow rate of 0.60 MGD.

Toxics Management Spreadsheet recommends limits. Monitoring shall be required 1x/month.

Pending favorable results, monitoring may be reduced or eliminated in future renewals.

- 3 Table 6-3 (Self Monitoring Requirements for Sewage Discharges) in Technical Guidance for the Development and Specification of Effluent Limitations and Other Permit Conditions in NPDES Permits) (Document # 362-0400-001) Revised 10/97
- 4 Water Quality Antidegradation Implementation Guidance (Document # 391-0300-002)

Rationale:

5 Chesapeake Bay Phase 3 Watershed Implementation Plan Wastewater Supplement, Revised September 13, 2021

6.1.3.1 Implementation of Regulation- Chapter 92a.61

Chapter 92a.61 provides provisions to DEP to monitor for pollutants that may have an impact on the quality of waters of the Commonwealth. Based upon DEP policy directives issued on March 22, 2021 and in conjunction with EPA's 2017 Triennial Review, monitoring for E. Coli shall be required.

6.2 Summary of Changes From Existing Permit to Proposed Permit

A summary of how the proposed NPDES permit differs from the existing NPDES permit is summarized as follows.

	Changes in Permit Monitoring or Effluent Quality						
Parameter	Existing Permit	Draft Permit					
E. Coli	No monitoring or effluent requirement	Due to the EPA Triennial review, monitoring for E. Coli shall be at least 1x/quarter					
Total Copper	No monitoring or effluent requirement	Toxics Management Spreadsheet recommends limits. Monitoring shall be required 1x/month to collect additional data. Pending favorable results, monitoring may be reduced or eliminated in future renewals.					
Total Lead	No monitoring or effluent requirement	Toxics Management Spreadsheet recommends limits. Monitoring shall be required 1x/month to collect additional data. Pending favorable results, monitoring may be reduced or eliminated in future renewals.					
Total Zinc	No monitoring or effluent requirement	Toxics Management Spreadsheet recommends limits. Monitoring shall be required 1x/month to collect additional data. Pending favorable results, monitoring may be reduced or eliminated in future renewals.					

6.3.1 Summary of Proposed NPDES Effluent Limits

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

The proposed NPDES effluent limitations are summarized in the table below.

PART	RT A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS								
I. A.	For Outfall 001	, Latitude <u>40° 13' 12.57"</u> , Longitude <u>78° 14' 53.44"</u> , River Mile Index <u>39</u> , Stream Code <u>13349</u>							
	Receiving Waters:	Raystown Branch Juniata River (TSF)							
	Type of Effluent:	Sewage Effluent							

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

	Effluent Limitations						Monitoring Requirements	
Doramator	Mass Units (lbs/day) (1)		Concentrations (mg/L)				Minimum (2)	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	xxx	xxx	XXX	xxx	Continuous	Measured
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	9.0 Daily Max	XXX	1/day	Grab
Dissolved Oxygen	XXX	xxx	5.0 Inst Min	xxx	XXX	xxx	1/day	Grab
Total Residual Chlorine (TRC)	XXX	XXX	XXX	0.50	XXX	1.64	1/day	Grab
Carbonaceous Biochemical Oxygen Demand (CBOD5)	125	200	XXX	25.0	40.0	50	1/week	24-Hr Composite
Biochemical Oxygen Demand (BOD5) Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	150	225	XXX	30.0	45.0	60	1/week	24-Hr Composite
Total Suspended Solids Raw Sewage Influent	Report	Report Daily Max	xxx	Report	XXX	xxx	1/week	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	xxx	xxx	2000 Geo Mean	XXX	10000	1/week	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	xxx	200 Geo Mean	XXX	1000	1/week	Grab

Outfall 001, Continued (from Permit Effective Date through Permit Expiration Date)

		Effluent Limitations						
Parameter	Mass Units	Mass Units (lbs/day) (1)		Concentrat	Minimum (2)	Required		
Parameter	Average	Weekly		Average	Weekly	Instant.	Measurement	Sample
	Monthly	Average	Minimum	Monthly	Average	Maximum	Frequency	Type
					Report			
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	Daily Max	XXX	1/quarter	Grab
								24-Hr
Ammonia-Nitrogen	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Total Phosphorus	10.0	XXX	XXX	2.0	XXX	4	2/week	Composite
								24-Hr
Copper, Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Lead, Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
Zinc. Total	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

PART	A - EFFLUENT LIMITA	TIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS
I. B.	For Outfall 001	, Latitude 40° 13' 12.57" , Longitude 78° 14' 53.44" , River Mile Index 39 , Stream Code 13349
	Receiving Waters:	Raystown Branch Juniata River (TSF)
	Type of Effluent:	Sewage Effluent

- 1. The permittee is authorized to discharge during the period from Permit Effective Date through Permit Expiration Date.
- Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

	Effluent Limitations						Monitoring Requirement	
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum (2)	Required		
Parameter	Monthly	Annual	Monthly	Monthly Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
AmmoniaN	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
KjeldahlN	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
								24-Hr
Nitrate-Nitrite as N	Report	XXX	XXX	Report	XXX	XXX	2/week	Composite
Total Nitrogen	Report	Report	XXX	Report	XXX	XXX	1/month	Calculation
								24-Hr
Total Phosphorus	Report	Report	XXX	Report	XXX	XXX	2/week	Composite
Net Total Nitrogen	Report	7306	XXX	XXX	XXX	XXX	1/month	Calculation
Net Total Phosphorus	Report	974	XXX	XXX	XXX	XXX	1/month	Calculation

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s):

at Outfall 001

Footnotes:

- (1) See Part C for Chesapeake Bay Requirements.
- (2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events required.

6.3.2 Summary of Proposed Permit Part C Conditions

The subject facility has the following Part C conditions.

- Chlorine Minimization
- SBR Batch Discharge Condition
- Hauled-in Waste Restrictions
- Chesapeake Bay Nutrient Definitions
- Solids Management for Non-Lagoon Treatment Systems

	Tools and References Used to Develop Permit
\square	WOM (an Windows Madel (and Attack most)
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
$\overline{\boxtimes}$	SOP: Establishing Effluent Limitations for Individual Sewage Permits, revised 3/24/2021
	Other:

Attachment A Stream Stats/Gauge Data

14 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

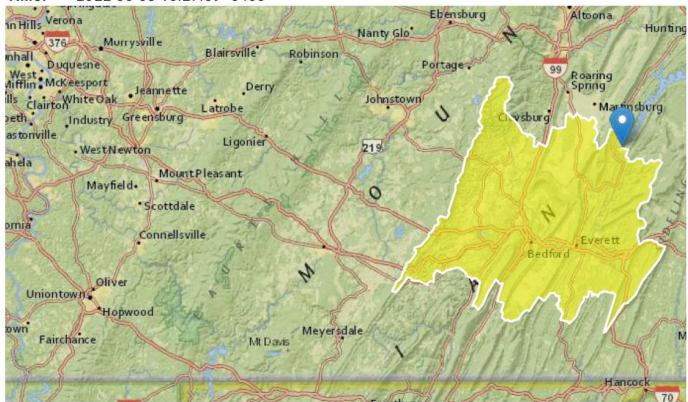
Table 1. List of U.S. Geological Survey streamgage locations in and near Pennsylvania with updated streamflow statistics.—Continued [Latitude and Longitude in decimal degrees; mi², square miles]

Streamgage number	Streamgage name	Latitude	Longitude	Drainage area (mi²)	Regulated¹
01561000	Brush Creek at Gapsville, Pa.	39.956	-78.254	36.8	N
01562000	Raystown Branch Juniata River at Saxton, Pa.	40.216	-78.265	756	N
01562500	Great Trough Creek near Marklesburg, Pa.	40.350	-78.130	84.6	N
01563200	Raystown Branch Juniata River below Rays Dam nr Huntingdon, Pa.	40.429	-77.991	960	Y
01563500	Juniata River at Mapleton Depot, Pa.	40.392	-77.935	2,030	Y
01564500	Aughwick Creek near Three Springs, Pa.	40.213	-77.925	205	N
01565000	Kishacoquillas Creek at Reedsville, Pa.	40.655	-77.583	164	N
01565700	Little Lost Creek at Oakland Mills, Pa.	40.605	-77.311	6.52	N
01566000	Tuscarora Creek near Port Royal, Pa.	40.515	-77.419	214	N
01566500	Cocolamus Creek near Millerstown, Pa.	40.566	-77.118	57.2	N
01567000	Juniata River at Newport, Pa.	40.478	-77.129	3,354	Y
01567500	Bixler Run near Loysville, Pa.	40.371	-77.402	15.0	N
01568000	Sherman Creek at Shermans Dale, Pa.	40.323	-77.169	207	N
01568500	Clark Creek near Carsonville, Pa.	40.460	-76.751	22.5	LF
01569000	Stony Creek nr Dauphin, Pa.	40.380	-76.907	33.2	N
01569800	Letort Spring Run near Carlisle, Pa.	40.235	-77.139	21.6	N
01570000	Conodoguinet Creek near Hogestown, Pa.	40.252	-77.021	470	LF
01570500	Susquehanna River at Harrisburg, Pa.	40.255	-76.886	24,100	Y
01571000	Paxton Creek near Penbrook, Pa.	40.308	-76.850	11.2	N
01571500	Yellow Breeches Creek near Camp Hill, Pa.	40.225	-76.898	213	N
01572000	Lower Little Swatara Creek at Pine Grove, Pa.	40.538	-76.377	34.3	N
01572025	Swatara Creek near Pine Grove, Pa.	40.533	-76.402	116	N
01572190	Swatara Creek near Inwood, Pa.	40.479	-76.531	167	N
01573000	Swatara Creek at Harper Tavern, Pa.	40.403	-76.577	337	N
01573086	Beck Creek near Cleona, Pa.	40.323	-76.483	7.87	N
01573160	Quittapahilla Creek near Bellegrove, Pa.	40.343	-76.562	74.2	N
01573500	Manada Creek at Manada Gap, Pa.	40.397	-76.709	13.5	N
01573560	Swatara Creek near Hershey, Pa.	40.298	-76.668	483	N
01574000	West Conewago Creek near Manchester, Pa.	40.082	-76.720	510	N
01574500	Codorus Creek at Spring Grove, Pa.	39.879	-76.853	75.5	Y
01575000	South Branch Codorus Creek near York, Pa.	39.921	-76.749	117	Y
01575500	Codorus Creek near York, Pa.	39.946	-76.755	222	Y
01576000	Susquehanna River at Marietta, Pa.	40.055	-76.531	25,990	Y
01576085	Little Conestoga Creek near Churchtown, Pa.	40.145	-75.989	5.82	N
01576500	Conestoga River at Lancaster, Pa.	40.050	-76.277	324	N
01576754	Conestoga River at Conestoga, Pa.	39.946	-76.368	470	N
01578310	Susquehanna River at Conowingo, Md.	39.658	-76.174	27,100	Y
01578400	Bowery Run near Quarryville, Pa.	39.895	-76.114	5.98	N
01580000	Deer Creek at Rocks, Md.	39.630	-76.403	94.4	N
01581500	Bynum Run at Bel Air, Md.	39.541	-76.330	8.52	N
01581700	Winters Run near Benson, Md.	39.520	-76.373	34.8	N
01582000	Little Falls at Blue Mount, Md.	39.604	-76.620	52.9	N
01582500	Gunpowder Falls at Glencoe, Md.	39.550	-76.636	160	Y
01583000	Slade Run near Glyndon, Md.	39.495	-76.795	2.09	N
01583100	Piney Run at Dover, Md.	39.521	-76.767	12.3	N

26 Selected Streamflow Statistics for Streamgage Locations in and near Pennsylvania

Table 2. Selected low-flow statistics for streamgage locations in and near Pennsylvania.—Continued [ft³/s; cubic feet per second; —, statistic not computed; <, less than]

Streamgage number	Period of record used in analysis¹	Number of years used in analysis	1-day, 10-year (ft³/s)	7-day, 10-year (ft³/s)	7-day, 2-year (ft³/s)	30-day, 10-year (ft³/s)	30-day, 2-year (ft³/s)	90-day, 10-year (ft³/s)
01546000	1912-1934	17	1.8	2.2	6.8	3.7	12.1	11.2
01546400	1986-2008	23	13.5	14.0	19.6	15.4	22.3	18.7
01546500	1942-2008	67	26.8	29.0	41.3	31.2	44.2	33.1
01547100	1969-2008	40	102	105	128	111	133	117
01547200	1957-2008	52	99.4	101	132	106	142	115
01547500	21971-2008	38	28.2	109	151	131	172	153
01547500	31956-1969	14	90.0	94.9	123	98.1	131	105
01547700	1957-2008	52	.5	.6	2.7	1.1	3.9	2.
01547800	1971-1981	11	1.6	1.8	2.4	2.1	2.9	3.
01547950	1970-2008	39	12.1	13.6	28.2	17.3	36.4	23.
01548005	21971-2000	25	142	151	206	178	241	223
01548005	31912-1969	58	105	114	147	125	165	140
01548500	1920-2008	89	21.2	24.2	50.1	33.6	68.6	49.
01549000	1910-1920	11	26.0	32.9	78.0	46.4	106	89.
01549500	1942-2008	67	.6	.8	2.5	1.4	3.9	2.
01549700	1959-2008	50	33.3	37.2	83.8	51.2	117	78.
01550000	1915-2008	94	6.6	7.6	16.8	11.2	24.6	18.
01551500	21963-2008	46	520	578	1,020	678	1,330	919
01551500	31901-1961	61	400	439	742	523	943	752
01552000	1927-2008	80	20.5	22.2	49.5	29.2	69.8	49.
01552500	1942-2008	67	.9	1.2	3.1	1.7	4.4	3.
01553130	1969-1981	13	1.0	1.1	1.5	1.3	1.8	1.
01553500	21968-2008	41	760	838	1,440	1,000	1,850	1,470
01553500	31941-1966	26	562	619	880	690	1,090	881
01553700	1981-2008	28	9.1	10.9	15.0	12.6	17.1	15.
01554000	21981-2008	28	1,830	1,990	3,270	2,320	4,210	3,160
01554000	31939-1979	41	1,560	1,630	2,870	1,880	3,620	2,570
01554500	1941-1993	53	16.2	22.0	31.2	25.9	35.7	31.
01555000	1931-2008	78	33.5	37.6	58.8	43.4	69.6	54.
01555500	1931-2008	78	4.9	6.5	18.0	9.4	24.3	16.
01556000	1918-2008	91	43.3	47.8	66.0	55.1	75.0	63.
01557500	1946-2008	63	2.8	3.2	6.3	4.2	8.1	5.
01558000	1940-2008	69	56.3	59.0	79.8	65.7	86.2	73.
01559000	1943-2008	66	104	177	249	198	279	227
01559500	1931-1958	28	9.3	10.5	15.0	12.4	17.8	15.
01559700	1963-1978	16	.1	.1	.2	.1	.3	
01560000	1941-2008	68	8.5	9.4	15.6	12.0	20.2	16.
01561000	1932-1958	27	.4	.5	1.6	.8	2.5	1.
01562000	1913-2008	96	64.1	67.1	106	77.4	122	94.
01562500	1931-1957	27	1.1	1.6	3.8	2.3	5.4	3.
01563200	21974-2008	35	_	_	_	112	266	129
01563200	31948-1972	25	10.3	28.2	86.1	64.5	113	95.
01563500	² 1974–2008	35	384	415	519	441	580	493
01563500	³ 1939–1972	34	153	242	343	278	399	333
01564500	1940-2008	69	3.6	4.2	10.0	6.2	14.4	10.


StreamStats Report

Region ID: PA

Workspace ID: PA20220608142736025000

Clicked Point (Latitude, Longitude): 40.22068, -78.24907

Time: 2022-06-08 10:27:59 -0400

Saxton Borough WWTP PA0025381 Modeling Point #1 June 2022

Collapse All

> Basin Characteristics

Parameter Description	Value	Unit
Percentage of area of carbonate rock	15.85	percent
Area that drains to a point on a stream	760	square miles
Mean Annual Precipitation	38	inches
Depth to rock	4.3	feet
	Percentage of area of carbonate rock Area that drains to a point on a stream Mean Annual Precipitation	Percentage of area of carbonate rock 15.85 Area that drains to a point on a stream 760 Mean Annual Precipitation 38

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	2.34	miles per square mile

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (760 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	760	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.34	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65
CARBON	Percent Carbonate	15.85	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (760 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp	
7 Day 2 Year Low Flow	79.9	ft^3/s	38	38	
30 Day 2 Year Low Flow	103	ft^3/s	33	33	
7 Day 10 Year Low Flow	45.1	ft^3/s	51	51	
30 Day 10 Year Low Flow	58.7	ft^3/s	46	46	
90 Day 10 Year Low Flow	82.8	ft^3/s	36	36	

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

NPDES Permit Fact Sheet Saxton Borough STP

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

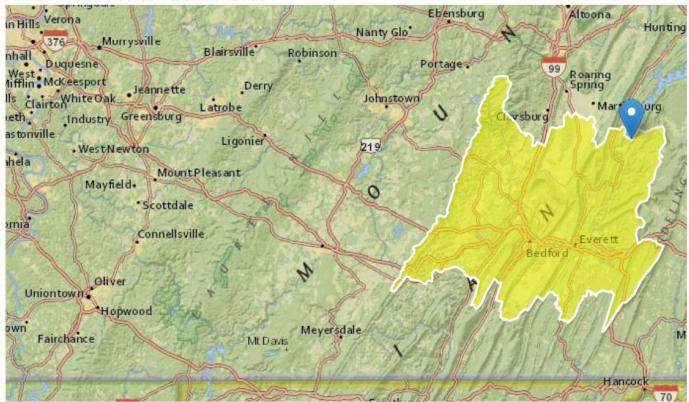
USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.9.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.0


StreamStats Report

Region ID: PA

Workspace ID: PA20220608143358372000

Clicked Point (Latitude, Longitude): 40.23472, -78.22036

Time: 2022-06-08 10:34:20 -0400

Saxton Borough WWTP PA0025381 Modeling Point #2 June 2022

Collapse All

acteristics		
Parameter Description	Value	Unit
Percentage of area of carbonate rock	15.37	percent
Area that drains to a point on a stream	784	square miles
Mean Annual Precipitation	38	inches
Depth to rock	4.3	feet
	Parameter Description Percentage of area of carbonate rock Area that drains to a point on a stream Mean Annual Precipitation	Parameter Description Value Percentage of area of carbonate rock 15.37 Area that drains to a point on a stream 784 Mean Annual Precipitation 38

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	2.32	miles per square mile

➤ Low-Flow Statistics

Low-Flow Statistics Parameters [100.0 Percent (784 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	784	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	38	inches	35	50.4
STRDEN	Stream Density	2.32	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.3	feet	3.32	5.65
CARBON	Percent Carbonate	15.37	percent	0	99

Low-Flow Statistics Flow Report [100.0 Percent (784 square miles) Low Flow Region 2]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, ASEp: Average Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	SE	ASEp
7 Day 2 Year Low Flow	82.8	ft^3/s	38	38
30 Day 2 Year Low Flow	107	ft^3/s	33	33
7 Day 10 Year Low Flow	46.9	ft^3/s	51	51
30 Day 10 Year Low Flow	60.9	ft^3/s	46	46
90 Day 10 Year Low Flow	86	ft^3/s	36	36

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

NPDES Permit Fact Sheet Saxton Borough STP

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.9.0

StreamStats Services Version: 1.2.22

NSS Services Version: 2.2.0

Attachment B

WQM 7.0 Modeling Output Values
Toxics Management Spreadsheet Output
Values

WQM 7.0 Effluent Limits

	SWP Basin 11D	<u>Stream Co</u> 13349		Stream Name STOWN BRANCH JUI				
RMI	Name		Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)	Effl. Limit Maximum (mg/L)	Effl. Limit Minimum (mg/L)
39.000	Saxton Boro	MA	PA025381	0.600	CBOD5	25		
					NH3-N	25	50	
					Dissolved Oxygen			5

39.00 Saxton Boro MA

Reach Reduction

0

5

WQM 7.0 Wasteload Allocations

H3-N /	Acute Allocati	ons					
RMI	Discharge Nar	Baseline ne Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
39.000	D Saxton Boro MA	3.44	50	3.44	50	0	0
RMI	Discharge Name	Baseline	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
	D Saxton Boro MA	.69	25	.69	25	0	0

25

25

(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

25

5

25

Input Data WQM 7.0

						ut Date								
	SWP Basin			Stre	eam Name		RMI	Eleva (fi		Drainage Area (sq mi)	Slo (ft/	Witho	VS Irawal gd)	Apply FC
	11D	133	349 RAYS	TOWN B	RANCH JU	NIATA RIV	/ 39.00	0 7	93.00	760.0	00.00	000	0.00	•
					St	tream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p	н	<u>Strear</u> Temp	m pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.089	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	2:	3.30	8.00	0.00	0.00	
					D	ischarge (Data]	
			Name	Per	rmit Numbe	Disc	Permitt d Disc Flow (mgd)	Disc Flow	Res Fa	erve T ctor	Disc emp (°C)	Disc pH		
		Saxto	on Boro MA	PAI	025381	0.6000	0.600	0.600	00 (0.000	20.00	6.83		
					P	arameter l	Data							
				Paramete	r Name	C	onc C	onc	tream Conc mg/L)	Fate Coef (1/days)				
	-		CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N			:	25.00	0.00	0.00	0.70				

Input Data WQM 7.0

					ıııp	ut Data	i ii Qiii	7.0						
	SWP Basin			Stre	eam Name		RMI	Eleva (ft		Drainage Area (sq mi)		Witt	PWS hdrawal mgd)	Appl FC
	11D	133	349 RAYS	TOWN B	RANCH JUI	NIATA RIV	36.60	0 7	86.00	784.0	0.0	0000	0.00	✓
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary np pl	н	<u>Stre</u> Temp	<u>am</u> pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.089	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	2:	3.30 {	8.00	0.00	0.00	
					Di	ischarge [Data						\neg	
			Name	Per	mit Number	Existing Disc r Flow (mgd)	Permitte d Disc Flow (mgd)	Design Disc Flow (mgd)	Res Fa	erve To	oisc emp °C)	Disc pH		
						0.0000	0.0000	0.000	0 (0.000	0.00	7.00		
					Pa	arameter [Data							
			,	Paramete	r Name	Di: Co			ream Conc	Fate Coef				
						(m	g/L) (m	ig/L) (r	ng/L)	(1/days)				
			CBOD5			2	25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N			2	25.00	0.00	0.00	0.70				

WQM 7.0 D.O.Simulation

SWP Basin	Stream Code		Stream Name							
11D	13349	F	RAYSTOW	YSTOWN BRANCH JUNIATA RIVER						
RMI 39.000	Total Discharge 0.60) Ana	lysis Temperat 23.255	ture (°C)	Analysis pH 7.926				
Reach Width (ft) 148.658	Reach De 1.10			Reach WDRa 135.174	atio	Reach Velocity (fps) 0.419				
Reach CBOD5 (mg/L) 2.31 Reach DO (mg/L) 8.199	Reach Kc (0.17 Reach Kr (1.16	0 1/days)	R	each NH3-N (r 0.34 Kr Equation Tsivoglou		Reach Kn (1/days) 0.899 Reach DO Goal (mg/L) 5				
Reach Travel Time (days 0.350	TravTime (days)	Subreach CBOD5 (mg/L)	Results NH3-N (mg/L)	D.O. (mg/L)						
	0.035		0.33 0.32	7.77						
	0.105 0.140	2.26 2.25	0.31 0.30	7.77 7.77						
	0.175 0.210 0.245	2.22	0.29 0.28 0.27	7.77 7.77 7.77						
	0.243 0.280 0.315 0.350	2.19 2.17	0.26 0.25 0.25	7.77 7.77						
	0.350	2.16	0.25	7.77						

WQM 7.0 Hydrodynamic Outputs

	SW	P Basin	Strea	m Code				Stream	Name					
		11D	1	3349		RAY	rstown	BRANC	BRANCH JUNIATA RIVER					
RMI	Stream Flow	PWS With	Net Stream	Disc Analysis	Reach Slope	Depth	Width	W/D Ratio	Velocity	Trav	Analysis Temp	Analysis pH		
	(cfs)	(cfs)	Flow (cfs)	Flow (cfs)	(ft/ft)	(ft)	(ft)		(fps)	Time (days)	(°C)			
Q7-1	0 Flow													
39.000	67.64	0.00	67.64	.9282	0.00055	1.1	148.66	135.17	0.42	0.350	23.26	7.93		
Q1-1	0 Flow													
39.000	64.93	0.00	64.93	.9282	0.00055	NA	NA	NA	0.41	0.358	23.25	7.92		
Q30-	10 Flow	,												
39.000	77.79	0.00	77.79	.9282	0.00055	NA	NA	NA	0.45	0.324	23.26	7.93		

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.96	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.15	Temperature Adjust Kr	•
D.O. Saturation	90.00%	Use Balanced Technology	✓
D.O. Goal	5		

Friday, June 17, 2022 Version 1.1 Page 1 of 1

Toxics Management Spreadsheet Version 1.3, March 2021

Discharge Information

Instructions	Disch	narge	Stream				
Facility:	Saxton	Borou	igh WWTP		NPDES Permit No.:	PA0025381	Outfall No.: 001
Evaluation T	уре:	Major	Sewage / Inc	lustrial Waste	Wastewater Descrip	otion: Sewage effluent	t
					-		

	Discharge Characteristics											
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	s)	Complete Mix	(Times (min)				
(MGD)*	naruness (mg/i)	pn (30)	AFC CFC THH CRL Q ₇₋₁₀ Q _h									
0.6	100	6.83										

					0 if lef	blank	0.5 if left blank		0 if left blank			1 if left blank	
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS		Chem Transl
	Total Dissolved Solids (PWS)	mg/L		358									
1	Chloride (PWS)	mg/L		61.6									
Group	Bromide	mg/L		0.072									
ច	Sulfate (PWS)	mg/L		60.5									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L											
	Total Antimony	μg/L											
	Total Arsenic	μg/L											
	Total Barium	μg/L											
	Total Beryllium	μg/L											
	Total Boron	μg/L											
	Total Cadmium	μg/L											
	Total Chromium (III)	μg/L											
	Hexavalent Chromium	μg/L											
	Total Cobalt	μg/L											
	Total Copper	mg/L		13.3									
2	Free Cyanide	μg/L											
l ≱	Total Cyanide	μg/L											
Group	Dissolved Iron	μg/L											
	Total Iron	μg/L											
	Total Lead	mg/L		0.819									
	Total Manganese	μg/L											
	Total Mercury	μg/L											
	Total Nickel	μg/L											
	Total Phenols (Phenolics) (PWS)	μg/L											
	Total Selenium	μg/L											
	Total Silver	μg/L											
	Total Thallium	μg/L											
	Total Zinc	mg/L		73.7									
	Total Molybdenum	μg/L											
	Acrolein	μg/L	<										
	Acrylamide	μg/L	<										
	Acrylonitrile	μg/L	<										
	Benzene	μg/L	<										
	Bromoform	μg/L	<										

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Saxton Borough WWTP, NPDES Permit No. PA0025381, Outfall 001

Instructions Disch	arge Str	ream															
Receiving Surface W	/ater Name:	Raysto	wn Bra	nch Junia	ta River			No. Rea	aches to I	Mode	l: <u> </u>	<u> </u>	_	tewide Criteri at Lakes Crit			
Location	Stream Co	de*	RMI*	Elevation (ft)*	DA (mi	2)* 5	Slope (ft/ft)		Withdraw MGD)	/al	Apply F Criteria		OR	SANCO Crite	eria		
Point of Discharge	013349		39	793	760						Yes						
End of Reach 1	013349		36.6	786	784						Yes						
Q 7-10	DM	LFY	'	Flow	(cfs)	W/E) Width	Depth	Velocit		avei	Tributa	ıry	Stream	m	Analys	is
Location	RMI	(cfs/m	i ²)*	Stream	Tributary	Rati	o (ft)	(ft)	y (fps)		me avs)	Hardness	pН	Hardness*	pH*	Hardness	рН
Point of Discharge	39	0.088	38							1112	4051			96	8		
End of Reach 1	36.6	0.088	38											96	8		
Q _h				•							'						
Location	RMI	LFY	′	Flow	(cfs)	W/E	Width	Depth	Velocit		me -	Tributa	ıry	Stream	m	Analys	is
Location	IXIVII	(cfs/m	ni ²)	Stream	Tributary	Rati	o (ft)	(ft)	y (fps)		ave)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	39																
End of Reach 1	36.6																

Toxics Management Spreadsheet Version 1.3, March 2021

Model Results

Saxton Borough WWTP, NPDES Permit No. PA0025381, Outfall 001

Instructions Results	RETURN	TO INPU	TS	SAVE AS	PDF	PRINT	r ⊚ A	II Inputs	○ Results (Limits
☐ Hydrodynamics ☑ Wasteload Allocations										
✓ AFC CC	` '	5	PMF:	0.118	Ana	lysis Hardnes	ss (mg/l):	96.419	Analysis pH:	7.61
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Com	nments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Copper Total Lead	0	0		0	12.985 62.066	13.5 77.9	129 744			or of 0.96 applied
Total Zinc	0	0		0	113,615	116	1,109			or of 0.796 applied or of 0.978 applied
Total ZIIIC	U	U		U	113.013	110	1,109		Chem Hansiato	огогозто аррнец
☑ CFC CC	T (min): 7	20	PMF:	0.814	Ana	alysis Hardne	ess (mg/l):	96.066	Analysis pH:	7.91
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Com	nments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Copper	0	0		0	8.654	9.01	543		Chem Translate	or of 0.96 applied
Total Lead	0	0		0	2.409	3.02	182			or of 0.797 applied
Total Zinc	0	0		0	114.190	116	6,973		Chem Translato	or of 0.986 applied
☑ THH CC	` '	20	PMF:	0.814	Ana	alysis Hardne	ess (mg/l):	N/A	Analysis pH:	N/A
Pollutants	Conc	Stream CV	Trib Conc (μg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (μg/L)		Com	nments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A			
Chloride (PWS)	0	0		0	250,000	250,000	N/A	<u> </u>		
Sulfate (PWS)	0	0		0	250,000	250,000	N/A			

NPDES Permit Fact Sheet Saxton Borough STP

Total Copper	0	0	0	N/A	N/A	N/A	
Total Lead	0	0	0	N/A	N/A	N/A	
Total Zinc	0	0	0	N/A	N/A	N/A	

CCT (min): ###### PMF: 1 N/A N/A ☑ CRL Analysis Hardness (mg/l): Analysis pH:

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	ition Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	0.41	0.65	0.083	0.13	0.21	mg/L	0.083	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Lead	0.91	1.42	0.18	0.28	0.46	mg/L	0.18	CFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	3.56	5.55	0.71	1.11	1.78	mg/L	0.71	AFC	Discharge Conc ≥ 50% WQBEL (RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants	Governing WQBEL	Units	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable

Model Results 6/17/2022 Page 6

Attachment C TRC Evaluation

Saxton Borough STP June 2022 PA0025381

1A	В	С	D	Е	F	G	
2	TRC EVALUATION						
3	Input appropriate values in B4:B8 and E4:E7						
4	67.4 = Q stream (cfs)			0.5	= CV Daily		
5	0.6 = Q discharge (MGD)				= CV Hourly		
6	30 = no. samples				= AFC_Partial Mix Factor		
7	0.3 = Chlorine Demand of Stream				1 = CFC_Partial Mix Factor		
8	0 = Chlorine Demand of Discharge			= AFC_Criteria Compliance Time (min)			
9					720 = CFC_Criteria Compliance Time (min)		
40	0 = % Factor of Safety (FOS)			0	0 =Decay Coefficient (K)		
10	Source	Reference	AFC Calculations	00.400	Reference	CFC Calculations	
11	TRC PENTOXSD TRG	1.3.2.iii 5.1a	WLA afc = LTAMULT afc =		1.3.2.iii 5.1c	WLA cfc = 22.594	
	PENTOXSD TRG		LTAMULT atc = LTA_afc=		5.1c 5.1d	LTAMULT cfc = 0.581 LTA_cfc = 13.135	
14	I ENTOXOD TRO	3.16	LIA_aic-	0.000	5.14	ETA_010 = 10.100	
15	Source Effluent Limit Calculations						
16	PENTOXSD TRG 5.1f AML MULT = 1.231						
	PENTOXSD TRG 5.1g AVG MON LIMIT (mg/l) = 0.500 BAT/BPJ						
18	INST MAX LIMIT (mg/l) = 1.635						
	WLA afc (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc))						
	+ Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
	LTAMULT afc EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5)						
	LTA_afc wla_afc*LTAMULT_afc						
	WLA_cfc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc))						
	+ Xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100)						
	LTAMULT_cfc EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)						
	LTA_cfc wla_cfc*LTAMULT_cfc						
	AML MULT EXP(2.326*LN((cvd^2/no_samples+1)^0.5)-0.5*LN(cvd^2/no_samples+1))						
	AVG MON LIMIT MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AML_MULT)						
	INST MAX LIMIT 1.5*((av_mon_limit/AML_MULT)/LTAMULT_afc)						