

Southwest Regional Office CLEAN WATER PROGRAM

 Application Type
 Renewal

 Facility Type
 Industrial

 Major / Minor
 Minor

# NPDES PERMIT FACT SHEET INDIVIDUAL INDUSTRIAL WASTE (IW) AND IW STORMWATER

Application No.PA0025844APS ID1014926Authorization ID1311544

### **Applicant and Facility Information**

| Applicant Name         | USHHS, CDC, NIOSH Pittsburgh                           | Facility Name    | Bruceton Research Center            |
|------------------------|--------------------------------------------------------|------------------|-------------------------------------|
| Applicant Address      | 626 Cochrans Mill Road PO Box 18070                    | Facility Address | 626 Cochrans Mill Road PO Box 18070 |
|                        | Pittsburgh, PA 15236-3611                              |                  | Pittsburgh, PA 15236-3611           |
| Applicant Contact      | Ronald Cummings                                        | Facility Contact | Same as Applicant                   |
| Applicant Phone        | 412-386-6681                                           | Facility Phone   | Same as Applicant                   |
| Applicant Email        | rpc6@cdc.gov                                           |                  | Same as Applicant                   |
| Client ID              | 126423                                                 | Site ID          | 249646                              |
| SIC Code               | 9651                                                   | Municipality     | South Park Township                 |
| SIC Description        | Public Admin Regulation Of Misc.<br>Commercial Sectors | County           | Allegheny                           |
| Date Application Recei | vedApril 1, 2020                                       | EPA Waived?      | Yes                                 |
| Date Application Accep | ted December 6, 2023                                   | If No, Reason    |                                     |
| Purpose of Application | Renewal NPDES Permit Coverage                          |                  |                                     |

#### Summary of Review

The Department received an NPDES permit renewal application from the U.S. Department of Health and Human Services, Center for Disease Control and Prevention, National Institute for Occupational Safety and Heath for the Bruceton Research Center on April 1, 2020. The Department then received an updated NPDES permit application and a new Water Quality Management permit application on December 8, 2023 to reflect the proposed remediation project. The remediation project consists of soil and groundwater remediation of a historic waste disposal are by source removal. Onsite groundwater and stormwater that comes into contact with the contamination will be stored, treated, and discharged through an onsite water treatment system.

The Bruceton Research Center (BRC) is comprised of the U.S. Department of Health and Human Services Center for Disease Control, National Institute for Occupational Safety and Health (CDC NIOSH); U.S. Department of Energy National Energy Technology Laboratory (DOE NETL); and the U.S. Department of Labor Mine Safety and Health Administration that occupies NIOSH Property. The site has a SIC code of 8733, Noncommercial Research Organizations.

Since 1910, the U.S. Government has owned the Bruceton Research Site and conducted various research activities under several different agencies. The studies at this research facility included work on explosives compounds, coal analysis, acid mine drainage, and mine equipment design and use. NIOSH-Pittsburgh took over the facility from the Bureau of Mines in 1997.

CDC NIOSH is a federal agency that conducts research on mining health and safety and personal protective equipment. NETL is a U.S. Department of Energy national laboratory that produces technological solutions for America's energy

| Approve | Deny | Signatures                                              | Date           |
|---------|------|---------------------------------------------------------|----------------|
| x       |      | ahon                                                    |                |
|         |      | Adam Olesnanik, P.E. / Environmental Engineer           | April 26, 2024 |
| х       |      | Miden F. Fifet                                          |                |
|         |      | Michael E. Fifth, P.E. / Environmental Engineer Manager | May 3, 2024    |

#### **Summary of Review**

challenges. From developing creative innovations and efficient energy systems that make coal more competitive, to advancing technologies that enhance oil and natural gas extraction and transmission processes.

BRC covers an area of 238 acres of hilly ground varying in elevation between 910 feet and 1,160 feet above sea level. The land slopes from west to east and is characterized by a number of steep-sided gullies oriented west to east. All stormwater drainage discharges into Lick Run, the nearest water body. CDC owns 175.3 acres and DOE NETL owns 59.7 acres.

The primary objective and mission of NIOSH Pittsburgh is to conduct research in the areas of mining health and safety and personal protective equipment technology. New projects in these areas are continually being introduced or expanded. Research is conducted in building and the onsite research mine. There are also administrative offices.

The NETL-PGH site is an energy technology research and development laboratory owned and operated by DOE. Facilities include bench-scale projects related to the production of energy from fossil fuels; laboratory facilities for analytical support; and other supporting facilities, such as a boiler room, garage, etc. Site support contractors provide technical and engineering support to DOE projects areas, including Geological and Environmental Systems; Materials Engineering and Manufacturing; Energy Conversion Engineering; systems Engineering and Analysis; and Computational Science and Engineering. Various solid and hazardous wastes are generated from laboratory facilities and site maintenance activities that require proper handling, transport and in-transit storage. Ultimately these require treatment, storage, and disposal in an environmentally acceptable manner in compliance with applicable federal, state, and local laws and regulation. Research activities at NETL-PGH generate wastewater primarily from laboratory sinks and floor drain, air conditioner, and compressor condensate, boiler blow down, and non-contact cooling water. These wastewater streams are directed to the site's wastewater treatment facility before discharge to the Pleasant Hills Authority Municipal Sewage Treatment Plant.

While storage activities vary with the type of research projects occurring, very little outdoor storage occurs. Hazardous waste materials are contained within B-92, the Chemical Handling Facility. There are also twelve permanent dumpsters located around the facility containing different types of wastes. Road salt is stored indoors at a new road salt storage facility that was constructed in the valley fill area. In addition, construction activities occur on a regular basis either as part of research projects or routine maintenance to existing buildings and access roads. These activities required the installation of effective sedimentation control measures and stormwater diversion and detention facilities, when necessary, to prevent stormwater pollution.

There are two identified stormwater outfalls at NETL-PGH, the north outfall (Outfall 001) and the south outfall (Outfall 002). In addition, there are two groundwater discharge outfalls, the north extension outfall (Outfall 003) and the south extension outfall (Outfall 004). The current permit only requires sampling at Outfalls 001 and 002. Significant materials include substances related to industrial activities, such as process chemicals, raw materials, fuels, pesticides, dumpsters, and fertilizers. The site has four additional stormwater outfalls at the CDC NIOSH facilities, identified as SW-2, SW-4, SW-5 and SW-6. These outfalls will be renamed in the permit to be consistent with the Department's naming convention. SW-2 will be renamed Outfall 005, SW-4 will be renamed Outfall 006, SW-5 will be renamed Outfall 007, and SW-6 will be renamed Outfall 008. The drainage area of Outfall 001 contains office and laboratory buildings where activities are conducted indoors, an outside cage storage area for compressed gases, and a 200-gallon diesel aboveground storage tank. The drainage area of Outfall 002 contains a road salt storage shed, three 1,000-gallon gasoline ASTs, two 1,000-gallon diesel ASTs, office buildings, and maintenance buildings. The drainage areas of Outfalls 003 and 004 are grassy, wooded hillsides where no industrial activities occur. The drainage area of Outfall 005 is a grassy, wooded hillside with a roadway that is closed to traffic. The drainage area of Outfall 006 is a grassy, wooded hillside and a warehouse building where materials are unloaded and stored inside until transferred to other locations. The drainage areas of Outfalls 007 and 008 are grassy, wooded hillsides with an office and laboratory building and parking lots; all work is conducted inside the buildings. The site is proposing to include a new outfall, that will be the discharge from the remediation treatment plant. This outfall was designated at DS-01 in the application but will be renamed Outfall 009 to be consistent with the Department's naming convention.

Outfall 001 also discharges treated acid mine drainage from IMP 101. IMP 101 receives treated acid mine drainage from the onsite mine used for research. Acid mine drainage collects in the onsite research coal mine. The water is collected in the "Bridge Sump." Lime, approximately 40 lbs., is added to raise the pH level to between 6 and 9 S.U. and the water is aerated for approximately one hour. The water is then allowed to settle in the Bridge Sump for approximately 24 hours and pumped to the "Dam Sump." After letting the water settle for at least 48 hours, the water is discharged to the Internal Monitoring Point 101 where samples are collected and analyzed. The water eventually discharges to Lick Run via Outfall 001. The Bridge Sump capacity is 12,500 gallons and the Dam Sump capacity is 33,000 gallons. Discharge from IMP 101 occurs once or

#### **Summary of Review**

twice a week depending on the amount of water that accumulates in the mine. The IMP 101 treatment system is permitted under Water Quality Management Permit 0297201.

The site also has eight groundwater seep collection catch basins that do not discharge to the stream. As part of a plan to remediate the disposal area, the seep collectors are intended to be combined and conveyed to a treatment plant (along with any stormwater that is exposed to the contaminated material during construction) and discharged via Outfall 009 to an unnamed tributary to Lick Run (also known as McElheney Run).

During the last permit renewal NIOSH commenced the planning, permitting and design phases of a project to cap the historic waste disposal area located onsite. This historic waste and chemical disposal area, referred to as the NIOSH-Pittsburgh landfill, covers approximately 4.4 acres along the northwestern portion of the site. The disposal area was created over several years from the dumping of mill slag from offsite sources and contaminated waste generated from research conducted at the facility by the BOM. Some amount of laboratory wastes from coal research were disposed of or stored in various areas within the facility. These wastes included resin hardeners, coal derived liquids, heavy metals, construction debris, red dog fragments, coal refuse, coal ash, bricks, coal fragments and mill slag and other organic chemicals. There are no precise records of the dates, nature, locations or quantities of such waste disposal into the landfill area. The use of the landfill was discontinued in 1986 and converted to inactive status by capping the landfill with a thin layer of clay and then grading and vegetating it. The landfill was previously planning to be capped in accordance with the Pennsylvania Department of Environmental Protection's (PA-DEP) Land Recycling and Environmental Remediation Standards Act (Act 2). Remedial investigations conducted around the landfill area indicate that the groundwater has been contaminated due to the past waste disposal practices. Concentrations of detected chemicals that exceeded the PADEP Act 2 statewide health standard (SHS) medium-specific concentrations (MSC) are antimony, arsenic, beryllium, cadmium, chromium, lead and nickel. NIOSH intended to intercept all of the disposal area runoff and identified seeps in order to direct them for treatment and discharge into Lick Run. This proposed discharge was included in the previous permit and identified as IMP 201. Collection and treatment of the runoff and seeps from the disposal area was not completed, and thus no discharges via IMP 201 occurred during the previous permit cycle. At this point in time, NIOSH is no longer proposing to cap the landfill and is planning to remediate the site instead. The current remediation plans involve the excavation of the landfill. The landfill will be excavated in three phases over a period of two years. Removal of the landfill waste through excavation and offsite disposal of contaminated material will allow NIOSH to restore the landfill site to its original natural contours and eliminate future exposure pathways. NIOSH is seeking liability relief under Act 2 for the Act 2 site through a Site Specific Standard by demonstrating through active remediation, engineering and institutional controls that the exposure pathways of known contaminants will be eliminated and the potential for adverse health effects is within acceptable potential risk benchmarks. The plan for capping the site, collecting and treating the seeps, and discharging via IMP 201 is no longer being proposed and is being replaced with the remediation project which includes the treatment of the collected seeps and contaminated stormwater and discharge via Outfall 009. Because IMP 201 is going to be replaced by Outfall 009, IMP 201 will be removed from the permit.

NIOSH has submitted a Water Quality Management (WQM) permit application for the construction and operation of a treatment plant to treat the collected industrial wastewater from seeps along the disposal area and stormwater that is exposed to the contaminated material.

#### **Public Participation**

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

| Discharge, Receiv            | ving Wate        | rs and Water Supply Info | rmation                      |                    |
|------------------------------|------------------|--------------------------|------------------------------|--------------------|
|                              |                  |                          |                              |                    |
| Outfall No. 001 (IMP 101)    |                  |                          | Design Flow (MGD)            | 0 (IMP 101: 0.036) |
| Latitude 40                  | 0° 18' 18.6'     | 1                        | Longitude                    | -79º 58' 30"       |
| Quad Name                    | Glassport        |                          | Quad Code                    | 1606               |
| Wastewater Des               | scription:       | IW Process Effluent with | out ELG, Stormwater          |                    |
|                              |                  |                          |                              |                    |
| Receiving Wate               | rs <u>Lick F</u> | Run (TSF)                | Stream Code                  | 39451              |
| NHD Com ID                   | 1348             | 39820                    | RMI                          | 2.4                |
| Drainage Area                | 6.55             |                          | Yield (cfs/mi <sup>2</sup> ) | 0.012              |
| Q <sub>7-10</sub> Flow (cfs) | 0.080            | )3                       | Q <sub>7-10</sub> Basis      | USGS Streamstats   |
| Elevation (ft)               | 904              |                          | Slope (ft/ft)                | 0.001              |
| Watershed No.                | 19-C             |                          | Chapter 93 Class.            | TSF                |
| Existing Use                 |                  |                          | Existing Use Qualifier       |                    |
| Exceptions to U              | se               |                          | Exceptions to Criteria       |                    |
| Assessment Sta               | itus             | Impaired                 |                              |                    |
| Cause(s) of Imp              | airment          | Cause Unknown, Metals    | , Pathogens                  |                    |
| Source(s) of Imp             | pairment         | Acid Mine Drainage, Sou  | Irce Unknown                 |                    |
| TMDL Status                  |                  | Final                    | Name Peters Cree             | k Watershed        |
|                              |                  |                          |                              |                    |
| Nearest Downst               | ream Publ        | ic Water Supply Intake   | PA American Water Co. Pittst | ourgh              |
| PWS Waters                   | Monong           | jahela River             | Flow at Intake (cfs)         | 1,060              |
| PWS RMI                      | 4.6              |                          | Distance from Outfall (mi)   | ~24                |
|                              |                  |                          |                              |                    |

| Discharge, Receiving Wate   | rs and Water Supply Information | on                     |              |
|-----------------------------|---------------------------------|------------------------|--------------|
|                             |                                 |                        | 0            |
| Outfall No. 002             |                                 | Design Flow (MGD)      | 0            |
| Latitude <u>40° 18' 01"</u> |                                 | Longitude              | -79º 58' 13" |
| Quad Name Glassport         |                                 | Quad Code              | 1606         |
| Wastewater Description:     | Stormwater                      |                        |              |
| Receiving Waters Lick F     | Run (TSF)                       | Stream Code            | 39451        |
| NHD Com ID 9940             |                                 | RMI                    | 2.0          |
| Watershed No. 19-C          |                                 | Chapter 93 Class.      | TSF          |
| Existing Use                |                                 | Existing Use Qualifier |              |
| Exceptions to Use           |                                 | Exceptions to Criteria |              |
| Assessment Status           | Impaired                        |                        |              |
| Cause(s) of Impairment      | Cause Unknown, Metals, Path     | ogens                  |              |
| Source(s) of Impairment     | Acid Mine Drainage, Source U    | Inknown                |              |
| TMDL Status                 | Final                           | Name Peters Cree       | k Watershed  |
|                             |                                 |                        |              |

| Discharge, Receiving Wate | rs and Water Supply Information | on                     |             |
|---------------------------|---------------------------------|------------------------|-------------|
|                           |                                 |                        |             |
| Outfall No. 003           |                                 | Design Flow (MGD)      | 0           |
| Latitude 40° 18' 29"      |                                 | Longitude              | 79° 58' 37" |
| Quad Name Glassport       |                                 | Quad Code              | 1606        |
| Wastewater Description:   | Groundwater / Spring Discharg   | e, Stormwater          |             |
|                           |                                 |                        |             |
| Receiving Waters Lick F   | Run (TSF)                       | Stream Code            | 39451       |
| NHD Com ID 1348           | 39819                           | RMI                    | 2.6         |
| Watershed No. 19-C        |                                 | Chapter 93 Class.      | TSF         |
| Existing Use              |                                 | Existing Use Qualifier |             |
| Exceptions to Use         |                                 | Exceptions to Criteria |             |
| Assessment Status         | Impaired                        |                        |             |
| Cause(s) of Impairment    | Cause Unknown, Metals, Path     | ogens                  |             |
| Source(s) of Impairment   | Acid Mine Drainage, Source U    | nknown                 |             |
| TMDL Status               | Final                           | Name Peters Creel      | k Watershed |
|                           |                                 |                        |             |

| Discharge, Receiving | Discharge, Receiving Waters and Water Supply Information |                          |                          |              |  |  |
|----------------------|----------------------------------------------------------|--------------------------|--------------------------|--------------|--|--|
|                      |                                                          |                          |                          |              |  |  |
| Outfall No. 004      |                                                          |                          | Design Flow (MGD)        | 0            |  |  |
| Latitude 40° 17'     | 52"                                                      |                          | Longitude                | -79º 58' 24" |  |  |
| Quad Name Glas       | sport                                                    |                          | Quad Code                | 1606         |  |  |
| Wastewater Descripti | ion:                                                     | Groundwater / Spring Dis | -<br>scharge, Stormwater |              |  |  |
|                      | -                                                        |                          | <b>X</b> :               |              |  |  |
| Receiving Waters     | Lick R                                                   | un (TSF)                 | Stream Code              | 39451        |  |  |
| NHD Com ID           | 99408                                                    | 460                      | RMI                      | 1.85         |  |  |
| Watershed No.        | 19-C                                                     |                          | Chapter 93 Class.        | TSF          |  |  |
| Existing Use         |                                                          |                          | Existing Use Qualifier   |              |  |  |
| Exceptions to Use    |                                                          |                          | Exceptions to Criteria   |              |  |  |
| Assessment Status    |                                                          | Impaired                 |                          |              |  |  |
| Cause(s) of Impairme | ent                                                      | Cause Unknown, Metals    | , Pathogens              |              |  |  |
| Source(s) of Impairm | -                                                        | Acid Mine Drainage, Sou  |                          |              |  |  |
| TMDL Status          | -                                                        | Final                    |                          | ek Watershed |  |  |
|                      | -                                                        |                          | · · · ·                  |              |  |  |

| Discharge, Receiving Water | Discharge, Receiving Waters and Water Supply Information |                        |              |  |  |
|----------------------------|----------------------------------------------------------|------------------------|--------------|--|--|
|                            |                                                          |                        |              |  |  |
| Outfall No. 005 (SW-2 ir   | n application)                                           | Design Flow (MGD)      | 0            |  |  |
| Latitude 40º 18' 37"       |                                                          | Longitude              | -79º 59' 07" |  |  |
| Quad Name Glassport        |                                                          | Quad Code              | 1606         |  |  |
| Wastewater Description:    | Stormwater                                               |                        |              |  |  |
|                            |                                                          |                        |              |  |  |
| Unna                       | med Tributary to Lick Run                                |                        |              |  |  |
| Receiving Waters (TSF)     |                                                          | Stream Code            | 39457        |  |  |
| NHD Com ID 99408           | 3378                                                     | RMI                    | 0.47         |  |  |
| Watershed No. <u>19-C</u>  |                                                          | Chapter 93 Class.      | TSF          |  |  |
| Existing Use               |                                                          | Existing Use Qualifier |              |  |  |
| Exceptions to Use          |                                                          | Exceptions to Criteria |              |  |  |
| Assessment Status          | Impaired                                                 |                        |              |  |  |
| Cause(s) of Impairment     | Cause Unknown, Metals, Patho                             | ogens                  |              |  |  |
| Source(s) of Impairment    | Acid Mine Drainage, Source Ur                            | nknown                 |              |  |  |
| TMDL Status                | Final                                                    | Name Peters Creel      | k Watershed  |  |  |
|                            |                                                          |                        |              |  |  |

| Discharge, Receiving Water | Discharge, Receiving Waters and Water Supply Information |                        |              |  |  |
|----------------------------|----------------------------------------------------------|------------------------|--------------|--|--|
|                            |                                                          |                        |              |  |  |
| Outfall No. 006 (SW-4 in   | application)                                             | Design Flow (MGD)      | 0            |  |  |
| Latitude _40° 18' 31"      |                                                          | Longitude              | -79º 58' 52" |  |  |
| Quad Name Glassport        |                                                          | Quad Code              | 1606         |  |  |
| Wastewater Description:    | Stormwater                                               |                        |              |  |  |
|                            |                                                          |                        |              |  |  |
|                            | med Tributary to Lick Run                                |                        |              |  |  |
| Receiving Waters (TSF)     | 1                                                        | Stream Code            | 39457        |  |  |
| NHD Com ID 9940            | 3378                                                     | RMI                    | 0.24         |  |  |
| Watershed No. <u>19-C</u>  |                                                          | Chapter 93 Class.      | TSF          |  |  |
| Existing Use               |                                                          | Existing Use Qualifier |              |  |  |
| Exceptions to Use          |                                                          | Exceptions to Criteria |              |  |  |
| Assessment Status          | Impaired                                                 |                        |              |  |  |
| Cause(s) of Impairment     | Cause Unknown, Metals, Path                              | nogens                 |              |  |  |
| Source(s) of Impairment    | Acid Mine Drainage, Source L                             | Inknown                |              |  |  |
| TMDL Status                | Final                                                    | Name Peters Creel      | k Watershed  |  |  |
|                            |                                                          |                        |              |  |  |

| Discharge, Receiving Water | Discharge, Receiving Waters and Water Supply Information |                        |              |  |  |
|----------------------------|----------------------------------------------------------|------------------------|--------------|--|--|
|                            |                                                          |                        |              |  |  |
| Outfall No. 007 (SW-5 ir   | application)                                             | Design Flow (MGD)      | 0            |  |  |
| Latitude 40º 18' 30"       |                                                          | Longitude              | -79º 58' 48" |  |  |
| Quad Name Glassport        |                                                          | Quad Code              | 1606         |  |  |
| Wastewater Description:    | Stormwater                                               |                        |              |  |  |
|                            |                                                          |                        |              |  |  |
| Unna                       | med Tributary to Lick Run                                |                        |              |  |  |
| Receiving Waters (TSF)     | -                                                        | Stream Code            | 39457        |  |  |
| NHD Com ID 99408           | 3378                                                     | RMI                    | 0.18         |  |  |
| Watershed No. 19-C         |                                                          | Chapter 93 Class.      | TSF          |  |  |
| Existing Use               |                                                          | Existing Use Qualifier |              |  |  |
| Exceptions to Use          |                                                          | Exceptions to Criteria |              |  |  |
| Assessment Status          | Impaired                                                 |                        |              |  |  |
| Cause(s) of Impairment     | Cause Unknown, Metals, Pathe                             | ogens                  |              |  |  |
| Source(s) of Impairment    | Acid Mine Drainage, Source U                             | nknown                 |              |  |  |
| TMDL Status                | Final                                                    | Name Peters Creel      | k Watershed  |  |  |
|                            |                                                          |                        |              |  |  |

| Discharge, Receiving Water | Discharge, Receiving Waters and Water Supply Information |                        |              |  |  |
|----------------------------|----------------------------------------------------------|------------------------|--------------|--|--|
|                            |                                                          |                        |              |  |  |
| Outfall No. 008 (SW-6 ir   | n application)                                           | Design Flow (MGD)      | 0            |  |  |
| Latitude 40º 18' 30"       |                                                          | Longitude              | -79º 58' 46" |  |  |
| Quad Name Glassport        |                                                          | Quad Code              | 1606         |  |  |
| Wastewater Description:    | Stormwater                                               |                        |              |  |  |
|                            |                                                          |                        |              |  |  |
| Unna                       | med Tributary to Lick Run                                |                        |              |  |  |
| Receiving Waters (TSF)     | -                                                        | Stream Code            | 39457        |  |  |
| NHD Com ID 99408           | 3378                                                     | RMI                    | 0.15         |  |  |
| Watershed No. 19-C         |                                                          | Chapter 93 Class.      | TSF          |  |  |
| Existing Use               |                                                          | Existing Use Qualifier |              |  |  |
| Exceptions to Use          |                                                          | Exceptions to Criteria |              |  |  |
| Assessment Status          | Impaired                                                 |                        |              |  |  |
| Cause(s) of Impairment     | Cause Unknown, Metals, Pathe                             | ogens                  |              |  |  |
| Source(s) of Impairment    | Acid Mine Drainage, Source U                             | nknown                 |              |  |  |
| TMDL Status                | Final                                                    | Name Peters Creel      | k Watershed  |  |  |
|                            |                                                          |                        |              |  |  |

| ischarge, Receiv  | ving Wate       | rs and Water Supply Infor | mation                       |                  |
|-------------------|-----------------|---------------------------|------------------------------|------------------|
|                   |                 |                           |                              |                  |
| Outfall No. 00    | 09 (DS-01       | in application)           | Design Flow (MGD)            | 0.05             |
| Latitude 40       | 0º 18' 29"      |                           | Longitude                    | -79º 58' 42"     |
| Quad Name         | Glassport       |                           | Quad Code                    | 1606             |
| Wastewater Des    | scription:      | IW Process Effluent witho | out ELG                      |                  |
|                   |                 |                           |                              |                  |
| <b>D</b> M( /     |                 | med Tributary to Lick Run |                              | 00457            |
| Receiving Wate    | rs <u>(</u> TSF | )                         | Stream Code                  | 39457            |
| NHD Com ID        | 9940            | 8378                      | RMI                          | 0.1              |
| Drainage Area     | 0.18            |                           | Yield (cfs/mi <sup>2</sup> ) | 0.005            |
| Q7-10 Flow (cfs)  | 0.000           | )9                        | Q7-10 Basis                  | USGS Streamstats |
| Elevation (ft)    | 940             |                           | Slope (ft/ft)                | 0.001            |
| Watershed No.     | rshed No. 19-C  |                           | Chapter 93 Class.            | TSF              |
| Existing Use      |                 |                           | Existing Use Qualifier       |                  |
| Exceptions to U   | se              |                           | Exceptions to Criteria       |                  |
| Assessment Sta    | itus            | Impaired                  |                              |                  |
| Cause(s) of Imp   | airment         | Cause Unknown, Metals,    | Pathogens                    |                  |
| Source(s) of Imp  | pairment        | Acid Mine Drainage, Sou   | rce Unknown                  |                  |
| TMDL Status Final |                 | Name Peters Cree          | k Watershed                  |                  |
|                   |                 |                           |                              |                  |
| Nearest Downst    | ream Publ       | ic Water Supply Intake    | PA American Water Co. Pittst | ourgh            |
| PWS Waters        | Monong          | gahela River              | Flow at Intake (cfs)         | 1,060            |
| PWS RMI           | 4.6             |                           | Distance from Outfall (mi)   | ~24              |
|                   | -               |                           |                              |                  |

#### **Development of Effluent Limitations**

| Outfall No.   | 001           |                                      | Design Flow (MGD) | 0               |
|---------------|---------------|--------------------------------------|-------------------|-----------------|
| Latitude      | 40º 18' 18.00 | 1                                    | Longitude         | -79º 58' 18.00" |
| Wastewater De | escription:   | IW Process Effluent without ELG, Sto | ormwater          |                 |

The discharge from Outfall 001 contains stormwater and treated acid mine drainage. The treated acid mine drainage will be monitored at IMP 101.

#### **Technology-Based Limitations**

The Bruceton Research Center is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

#### Stormwater Requirements:

The drainage area of Outfall 001 contains office and laboratory buildings where activities are conducted indoors, an outside cage storage area for compressed gases, and a 200-gallon diesel aboveground storage tank.

Outfall 001 will be subject to the monitoring requirements in Appendix J of the PAG-03 General Stormwater Permit as a minimum requirement because the outfall discharges stormwater associated with industrial activity. The reporting requirements are listed in Table 1 below. The Draft Permit will require a Corrective Action Plan when there are two consecutive exceedances of the benchmark values, listed in Part C of the permit. The benchmark values are displayed below in Table 1. These values are not effluent limitations, an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be developed and submitted to the Department to evaluate site stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's BMPs may not be sufficiently controlling pollutants in stormwater.

| Parameter                    | Max Daily<br>Concentration | Benchmark<br>Values (mg/L) | Measurement<br>Frequency | Sample<br>Type |
|------------------------------|----------------------------|----------------------------|--------------------------|----------------|
| Total Nitrogen               | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Phosphorus             | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Suspended Solids (TSS) | Report                     | 100.0                      | 1/6 Months               | Grab           |
| Oil and Grease               | Report                     | 30.0                       | 1/6 Months               | Grab           |
| pH (S.U.)                    | Report                     | 9.0                        | 1/6 Months               | Grab           |
| Chemical Oxygen Demand (COD) | Report                     | 120                        | 1/6 Months               | Grab           |

#### Table 1: PAG-03 Appendix J Monitoring Requirements

#### Water Quality-Based Limitations

Water Quality Based Limitations based on the Industrial wastewater discharges to Outfall 001 will be evaluated at the internal monitoring point due to the nature of the discharges to Outfall 001. Water quality analyses are typically performed under low-flow ( $Q_{7-10}$ ) conditions. Since the industrial wastewater discharges from Outfall 001 will be monitoring at internal monitoring points, a formal water quality analysis cannot be accurately conducted for the stormwater discharge to Outfall 001. Stormwater discharges occur at variable rates and frequencies but not however during  $Q_{7-10}$  conditions. Accordingly, water quality-based effluent limitations are not proposed at Outfall 001.

# Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 and are displayed below in Table 2. The previous permit required sampling at Outfall 001 only when IMP 101 was not discharging.

| Parameters             | Mass (Ib/day)      |                  |                     | Concentra          | Monitoring<br>Requirements |                     |           |                |
|------------------------|--------------------|------------------|---------------------|--------------------|----------------------------|---------------------|-----------|----------------|
| Parameters             | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly | Daily<br>Maximum           | Instant.<br>Maximum | Frequency | Sample<br>Type |
| Flow (MGD)             | Report             | Report           | XXX                 | XXX                | XXX                        | XXX                 | 1/Quarter | Measure        |
| pH (S.U.)              | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| BOD5                   | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| Total Suspended Solids | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| Oil and Grease         | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| Total Aluminum         | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| Total Iron             | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| Total Lead             | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| Total Manganese        | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |
| Total Mercury          | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/Quarter | Grab           |

Table 2: Current Effluent Limitation for Outfall 001

# Proposed Effluent Limitations for Outfall 001

The proposed effluent limitations and monitoring requirements for Outfall 001 are shown below in Table 3. The monitoring frequency at Outfall 001 has been changed from once per quarter to semi-annually. This gives the permittee more time to develop and implement a Corrective Action Plan if there are exceedances to the benchmark values. The Department evaluated the parameters that required monitoring in the previous permit and compared the data in the DMRs and permit application to EPA's multisector general permit benchmark values and determined that Outfall 001 has exceeded the benchmark values for Total Iron and Total Aluminum multiple time during the last permit cycle. Due to the multiple elevated discharge concentrations of Total Iron and Total Aluminum, these benchmark values from the MSGP will be included in the stormwater monitoring requirements section in Part C of the permit, requiring a Corrective Action Plan whenever there are two consecutive exceedances of the benchmark values. The benchmark values for Total Iron and Total Aluminum are 1.0 mg/L and 0.75 mg/L, respectively.

| Decomotors             | Mass (Ib/day)      |                  |                     | Concentra          | Monitoring<br>Requirements |                     |            |                |
|------------------------|--------------------|------------------|---------------------|--------------------|----------------------------|---------------------|------------|----------------|
| Parameters             | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly | Daily<br>Maximum           | Instant.<br>Maximum | Frequency  | Sample<br>Type |
| Flow (MGD)             | XXX                | Report           | XXX                 | XXX                | XXX                        | XXX                 | 1/6 Months | Measure        |
| Total Nitrogen*        | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Calculation    |
| Total Phosphorus       | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| pH (S.U.)              | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| BOD5                   | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| COD                    | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| Total Suspended Solids | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| Oil and Grease         | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| Total Aluminum         | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| Total Iron             | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| Total Lead             | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| Total Manganese        | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |
| Total Mercury          | XXX                | XXX              | XXX                 | XXX                | Report                     | XXX                 | 1/6 Months | Grab           |

#### Table 3: Proposed Effluent Limitation for Outfall 001

\*Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO<sub>2</sub>+NO<sub>3</sub>-N), where TKN and NO<sub>2</sub>+NO<sub>3</sub>-N are measured in the same sample.

#### **Development of Effluent Limitations**

| Outfall No. | 101           | Design Flow (MG                                            | <b>D)</b> 0.036 |
|-------------|---------------|------------------------------------------------------------|-----------------|
| Latitude    | 40º 18' 16.00 | Longitude                                                  | -79º 58' 38.00" |
| Wastewater  | Description:  | IW Process Effluent without ELG (treated abandoned mine di | scharge)        |

IMP 101 is the internal monitoring point for the treat acid mine drainage that discharge via Outfall 001.

### **Technology-Based Limitations**

The Bruceton Research Center is not subject to Federal Effluent Limitation Guidelines (ELGs) as its SIC code is not listed under 40 CFR parts 405 through 471.

#### Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) which is displayed in Table 4 below.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code §§ 95.2(1) which is displayed in Table 4 below.

#### **Table 4: Regulatory Effluent Standards**

| Parameter  | Monthly Avg                                         | Daily Max |  |  |  |  |
|------------|-----------------------------------------------------|-----------|--|--|--|--|
| Flow (MGD) | Monitor                                             | Monitor   |  |  |  |  |
| pH (S.U.)  | Not less than 6.0 nor greater than 9.0 at all times |           |  |  |  |  |

#### Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the

following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

USHHS, CDC, NIOSH Pittsburgh's application was submitted before the NPDES permit application forms were updated to require sampling for PFOA, PFOS, PFBS, and HFPO-DA. Also, according to EPA's guidance, USHHS, CDC, NIOSH Pittsburgh does not operate in one of the industries EPA expects to be a source for PFAS. Therefore, annual reporting of PFOA, PFOS, PFBS, and HFPO-DA will be required consistent with Section II.I.b of SOP BCW-PMT-032. Even though USHHS, CDC, NIOSH Pittsburgh did not report results for PFOA, PFOS, PFBS, and HFPO-DA on the permit application, as a facility operating in a suspected non-source industry, it is reasonable to conclude that if USHHS, CDC, NIOSH Pittsburgh did report results for PFOA, PFOS, PFBS, and HFPO-DA on the application, the results may have been non-detect values, which would subject USHHS, CDC, NIOSH Pittsburgh to the annual monitoring requirements described in Section II.I.b of the SOP.

As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods (i.e., four consecutive annual results in USHHS, CDC, NIOSH Pittsburgh's case), then the monitoring may be discontinued.

# Water Quality-Based Limitations

# **Toxics Management Spread Sheet**

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the former PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water guality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water guality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the site-specific conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

# Reasonable Potential Analysis and WQBEL Development for IMP 101

Discharges from IMP 101 are evaluated based on concentrations reported on the application and on DMRs; data from those sources are used in the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criterion are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet was run with the discharge and receiving stream characteristics shown in Table 5. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are run in the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spread sheet then compares the reported discharge concentrations with the calculated water quality-based effluent limitations to determine if there is a reasonable potential to exceed the WQBELs. Limitations are established in the draft permit where the maximum reported concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 10% - 50% of the WQBEL. The information described above including the maximum reported

discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment C of this Fact Sheet. The water quality-based limitations and monitoring requirements that are recommended by the Toxics Management Spread Sheet are displayed below in table 6.

# Table 5: TMS Inputs for IMP 101

| Parameter                             | Value  |
|---------------------------------------|--------|
| River Mile Index                      | 2.4    |
| Discharge Flow (MGD)                  | 0.036  |
| Basin/Stream Characterist             | ics    |
| Parameter                             | Value  |
| Area in Square Miles                  | 6.55   |
| Q <sub>7-10</sub> (cfs)               | 0.0803 |
| Low-flow yield (cfs/mi <sup>2</sup> ) | 0.012  |
| Elevation (ft)                        | 904    |
| Slope                                 | 0.019  |

#### Table 6: Water Quality Based Effluent Limitations at IMP 101

| Parameters             | Average Monthly | Daily Maximum |
|------------------------|-----------------|---------------|
| Chloride               | Report          | Report        |
| Sulfate                | Report          | Report        |
| Total Aluminum         | Report          | Report        |
| Total Cobalt (µg/L)    | 46.4            | 72.4          |
| Dissolved Iron         | Report          | Report        |
| Total Iron             | Report          | Report        |
| Total Manganese (mg/L) | 2.44            | 3.81          |
| Total Nickel           | Report          | Report        |
| Total Selenium         | Report          | Report        |
| Total Thallium (µg/L)  | 0.59            | 0.91          |

# Total Maximum Daily Load (TMDL) Considerations:

Wastewater discharges from the Bruceton Research Facility are located within the Peters Creek Watershed for which the Department has developed a TMDL. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criterion for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). The TMDL was developed for segments in the Peters Creek Watershed. These were done to address the impairments noted on the 1996 Pennsylvania Section 303(d) list of impaired waters, required under the Clean Water act, and covers one segment on that list and additional segments on later list/reports. Peters Creek was listed as impaired for metals. All impairments resulted from drainage from abandoned coalmines. The TMDL addresses the three-primary metal associated with abandoned mine drainage (iron, manganese, aluminum) and pH. Stream data is used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity).

One of the major components of a TMDL is the establishment of an instream numeric endpoint, which is used to evaluate the attainment of applicable water quality. An instream numeric endpoint, therefore, represents the water quality goal that is to be achieved by implementing the load reduction specified in the TMDL. The endpoint allows for a comparison between observed instream conditions and conditions that are expected to restore designated uses. The endpoint is based on either narrative or numeric criteria available in water quality standards. Because the pollution sources in the watershed are non-point sources, the TMDLs' component makeup will be load allocations (LAs) with waste load allocations (WLAs) for permitted discharges. All allocations will be specified as long-term average daily concentrations. These long-term average concentrations are expected to meet water-quality criteria 99% of the time as required in PA Title 25 Chapter 96.3(c).

The TMDL for Peters Creek developed load allocations for four sampling sites on Peters Creek (PC5, PC4, PC3 and PC2) six sites on unnamed tributaries to Peters Creek (PCTR1-6), one site on Lewis Run (LW1), <u>one site on Lick Run (LR1)</u>, and one site on Piney Fork (PF1). Sample data sets were collected in 2007 and 2008. An allowable long-term average instream concentration was determined at each sample point for metals and acidity. The analysis is designed to produce an

average value that, when met, will be protective of the water-quality criterion for that parameter 99% of the time. An analysis was performed using Monte Carlo simulation to determine the necessary long-term average concentration needed to attain water-quality criteria 99% of the time. The simulation was run assuming the data set was log normally distributed. Using the mean and standard deviation of the data set, 5000 iterations of sampling were completed, and compared against the water-quality criterion for that parameter. For each sampling event a percent reduction was calculated, if necessary, to meet water-quality criteria. A second simulation that multiplied the percent reduction times the sampled value was run to ensure that criteria were met 99% of the time. The mean value from this data set represents the long-term average concentration that needs to be met to achieve water-quality standards.

AMD discharges from IMP 101 were in existence prior to the TMDL being finalized. The TMDL specifically references NPDES permit PA0205884 and its discharges. The TMDL did not provide a waste load allocation for discharges from IMP 101 or Outfall 001. Whenever the TMDL does not specifically provide an allocation for wastewater discharges, the Department may impose effluent limitations at criteria to ensure compliance with the TMDL. Applicable water quality criteria for the Peters Creek watershed are imposed as effluent limits and shown in Table 7.

Discharges to the Lick Run segment of the Peter's Creek watershed are only subject to the requirements associated with aluminum. The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum via IMP 101 may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 mg/L) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL. Accordingly, TMDL aluminum limits are proposed for IMP 101. The proposed aluminum limits are included in Table 7. TMDL effluent limitations for iron and manganese are not necessary in this segment of the watershed.

| Tabl | е7.   | TMDL | Limits | for | IMP | 101 |
|------|-------|------|--------|-----|-----|-----|
| IUNI | • • • |      | LIIIII |     |     |     |

|                 | TMDL               | . Limits         |       |
|-----------------|--------------------|------------------|-------|
| Parameter       | Average<br>Monthly | Maximum<br>Daily | Units |
| Aluminum, total | 0.75               | 0.75             | mg/L  |

#### Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 and are displayed below in Table 8.

#### Table 8: Existing Effluent Limitation for IMP 101

| Parameters             | Mass               | Mass (Ib/day)    |                     | Concentra          | Monitoring<br>Requirements |                     |           |                |
|------------------------|--------------------|------------------|---------------------|--------------------|----------------------------|---------------------|-----------|----------------|
| Parameters             | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly | Daily<br>Maximum           | Instant.<br>Maximum | Frequency | Sample<br>Type |
| Flow (MGD)             | Report             | Report           | XXX                 | XXX                | XXX                        | XXX                 | 1/week    | Measure        |
| pH (S.U.)              | XXX                | XXX              | 6.0                 | XXX                | XXX                        | 9.0                 | 1/week    | Grab           |
| Total Suspended Solids | XXX                | XXX              | XXX                 | 35                 | 70                         | XXX                 | 1/week    | Grab           |
| Total Iron             | XXX                | XXX              | XXX                 | 3.5                | 7.0                        | XXX                 | 1/week    | Grab           |
| Total Manganese        | XXX                | XXX              | XXX                 | 2.0                | 4.0                        | XXX                 | 1/week    | Grab           |
| Total Aluminum         | XXX                | XXX              | XXX                 | Report             | Report                     | XXX                 | 1/week    | Grab           |

# Proposed Effluent Limitations for IMP 101

The proposed effluent limitations and monitoring requirements for IMP 101 are shown below in Table 9 and Table 10. IMP 101 received new WQBELs for Manganese, Cobalt, and Thallium. The Department provided the permittee with a pre-draft survey, notifying the permittee of these new WQBELs. In the pre-draft survey, the permittee notified the Department that the pollutants were suspected to be in the discharge, however, the permittee is uncertain if they can achieve the limits upon permit issuance and are uncertain on how long it will take to achieve the limits. Because the permittee may not have the necessary controls in place to ensure compliance with the new WQBELs upon permit issuance, the permit will include a Schedule of Compliance, in accordance with 25 Pa. Code § 92a.51(a) of DEP's regulations, which grants the permittee three years to come into compliance with the WQBELs. Because the WQBELs will not be effective upon permit issuance. the permit will be tiered to have interim and final monitoring requirements and effluent limits. For the first three years, a reporting requirement will be imposed for Cobalt and Thallium, and the current limitations will be imposed as the interim limitations for Manganese. After three years, the final WQBELs will take effect. A Part C condition will be included in the Draft NPDES Permit outlining a Schedule of Compliance for these parameters. Please note that Total Thallium is subject to water guality-based effluent limits (WQBELs) that are necessary to comply with state water guality standards, but are less than the Department's target quantitation limits (QLs), as defined in 25 Pa. Code § 252.1, that are generally achievable by conventional analytical technology. The permittee shall analyze Total Thallium using methods that will achieve the Department Target QL (2.0 µg/L). For the purpose of compliance, a statistical value reported on the DMR that is less than the QL (i.e., "non-detect") will be considered to be in compliance.

| Deremetere             | Mass (Ib/day)      |                  |                     | Concentration (mg/L) |                  |                     |           | oring<br>ements |
|------------------------|--------------------|------------------|---------------------|----------------------|------------------|---------------------|-----------|-----------------|
| Parameters             | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly   | Daily<br>Maximum | Instant.<br>Maximum | Frequency | Sample<br>Type  |
| Flow (MGD)             | Report             | Report           | XXX                 | XXX                  | XXX              | XXX                 | 1/week    | Measure         |
| pH (S.U.)              | XXX                | XXX              | 6.0                 | XXX                  | XXX              | 9.0                 | 1/week    | Grab            |
| Total Suspended Solids | XXX                | XXX              | XXX                 | 35.0                 | 70.0             | XXX                 | 1/week    | Grab            |
| Total Iron             | XXX                | XXX              | XXX                 | 3.5                  | 7.0              | XXX                 | 1/week    | Grab            |
| Total Manganese        | XXX                | XXX              | XXX                 | 2.0                  | 4.0              | XXX                 | 1/week    | Grab            |
| Total Aluminum         | XXX                | XXX              | XXX                 | 0.75                 | 0.75             | XXX                 | 1/week    | Grab            |
| Chloride               | XXX                | XXX              | XXX                 | Report               | Report           | XXX                 | 1/week    | Grab            |
| Sulfate                | XXX                | XXX              | XXX                 | Report               | Report           | XXX                 | 1/week    | Grab            |
| Total Cobalt (µg/L)    | XXX                | XXX              | XXX                 | Report               | Report           | XXX                 | 1/week    | Grab            |
| Dissolved Iron         | XXX                | XXX              | XXX                 | Report               | Report           | XXX                 | 1/week    | Grab            |
| Total Nickel           | XXX                | XXX              | XXX                 | Report               | Report           | XXX                 | 1/week    | Grab            |
| Total Selenium         | XXX                | XXX              | XXX                 | Report               | Report           | XXX                 | 1/week    | Grab            |
| Total Thallium (µg/L)  | XXX                | XXX              | XXX                 | Report               | Report           | XXX                 | 1/week    | Grab            |
| PFOA (ng/L)            | XXX                | XXX              | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab            |
| PFOS (ng/L)            | XXX                | XXX              | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab            |
| PFBS (ng/L)            | XXX                | XXX              | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab            |
| HFPO-DA (ng/L)         | XXX                | XXX              | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab            |

#### Table 9: Proposed Interim Effluent Limitation for IMP 101

#### Table 10: Proposed Final Effluent Limitation for IMP 101

| Devemetere             | Mass (lb/day) Concentration (mg/L) |                  |                     |                    |                  | Mass (              | Mass (lb/day) Concentration (mg/L) |                | Mass (Ib/day) |  | Monito<br>Require |  |
|------------------------|------------------------------------|------------------|---------------------|--------------------|------------------|---------------------|------------------------------------|----------------|---------------|--|-------------------|--|
| Parameters             | Average<br>Monthly                 | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Maximum | Frequency                          | Sample<br>Type |               |  |                   |  |
| Flow (MGD)             | Report                             | Report           | XXX                 | XXX                | XXX              | XXX                 | 1/week                             | Measure        |               |  |                   |  |
| pH (S.U.)              | XXX                                | XXX              | 6.0                 | XXX                | XXX              | 9.0                 | 1/week                             | Grab           |               |  |                   |  |
| Total Suspended Solids | XXX                                | XXX              | XXX                 | 35.0               | 70.0             | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Total Iron             | XXX                                | XXX              | XXX                 | 3.5                | 7.0              | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Total Manganese        | XXX                                | XXX              | XXX                 | 2.0                | 3.8              | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Total Aluminum         | XXX                                | XXX              | XXX                 | 0.75               | 0.75             | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Chloride               | XXX                                | XXX              | XXX                 | Report             | Report           | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Sulfate                | XXX                                | XXX              | XXX                 | Report             | Report           | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Total Cobalt (µg/L)    | XXX                                | XXX              | XXX                 | 46.4               | 72.4             | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Dissolved Iron         | XXX                                | XXX              | XXX                 | Report             | Report           | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Total Nickel           | XXX                                | XXX              | XXX                 | Report             | Report           | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Total Selenium         | XXX                                | XXX              | XXX                 | Report             | Report           | XXX                 | 1/week                             | Grab           |               |  |                   |  |
| Total Thallium (µg/L)  | XXX                                | XXX              | XXX                 | 0.59               | 0.91             | XXX                 | 1/week                             | Grab           |               |  |                   |  |

# Table 10: Proposed Final Effluent Limitation for IMP 101

| Parameters     | Mass (             | Mass (Ib/day) Concentration (mg/L) Monitor<br>Requirem |                     | Concentration (mg/L) |                  |                     |           | •              |
|----------------|--------------------|--------------------------------------------------------|---------------------|----------------------|------------------|---------------------|-----------|----------------|
| Parameters     | Average<br>Monthly | Daily<br>Maximum                                       | Instant.<br>Minimum | Average<br>Monthly   | Daily<br>Maximum | Instant.<br>Maximum | Frequency | Sample<br>Type |
| PFOA (ng/L)    | XXX                | XXX                                                    | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab           |
| PFOS (ng/L)    | XXX                | XXX                                                    | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab           |
| PFBS (ng/L)    | XXX                | XXX                                                    | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab           |
| HFPO-DA (ng/L) | XXX                | XXX                                                    | XXX                 | XXX                  | Monitor          | XXX                 | 1/year    | Grab           |

#### **Development of Effluent Limitations**

| Outfall No.   | 002           |            | Design Flow (MGD) | 0               |
|---------------|---------------|------------|-------------------|-----------------|
| Latitude      | 40º 18' 01.00 | n          | Longitude         | -79º 58' 13.00" |
| Wastewater De | escription:   | Stormwater |                   |                 |

The discharge from Outfall 002 is only stormwater.

#### **Technology-Based Limitations**

The Bruceton Research Center is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

#### Stormwater Monitoring Requirements

The drainage area of Outfall 002 contains a road salt storage shed, three 1,000-gallon gasoline ASTs, two 1,000-gallon diesel ASTs, office buildings, and maintenance buildings.

Outfall 002 will be subject to the monitoring requirements in Appendix J of the PAG-03 General Stormwater Permit as a minimum requirement because the outfall discharges stormwater associated with industrial activity. The reporting requirements are listed in Table 10 below. The Draft Permit will require the development, submission and implementation of a Corrective Action Plan whenever there are two consecutive exceedances of the stormwater benchmark values at a given outfall. The benchmark values are displayed below in Table 11 and within Part C of the draft NPDES permit. These benchmark values are not effluent limitations and an exceedance of the benchmark value is not a violation. As described above, if there are two consecutive exceedances of the benchmark value, a Corrective Action Plan must be developed, submitted to the Department, and implemented to improve onsite stormwater controls and BMPs. Benchmark monitoring is a feedback tool, along with routine inspections and visual assessments, for assessing the effectiveness of stormwater controls and BMPs. An exceedance of the benchmark provides permittees with an indication that the facility's BMPs may not be sufficiently controlling pollutants in stormwater.

| Parameter                    | Max Daily<br>Concentration | Benchmark<br>Values (mg/L) | Measurement<br>Frequency | Sample<br>Type |
|------------------------------|----------------------------|----------------------------|--------------------------|----------------|
| Total Nitrogen               | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Phosphorus             | Report                     | XXX                        | 1/6 Months               | Grab           |
| Total Suspended Solids (TSS) | Report                     | 100                        | 1/6 Months               | Grab           |
| Oil and Grease               | Report                     | 30                         | 1/6 Months               | Grab           |
| pH (S.U.)                    | Report                     | 9.0                        | 1/6 Months               | Grab           |
| Chemical Oxygen Demand (COD) | Report                     | 120                        | 1/6 Months               | Grab           |

#### Table 11: PAG-03 Appendix J Monitoring Requirements

#### Water Quality-Based Limitations

#### Stormwater WQBELs

Water quality analyses are typically performed under low-flow (Q7-10) conditions. Stormwater discharges occur at variable rates and frequencies but not however during Q7-10 conditions. Since the discharges from Outfall 002 are composed entirely of stormwater, a formal water quality analysis cannot be accurately conducted. Accordingly, water quality-based effluent limitations based on water quality analyses are not proposed.

#### Anti-Backsliding

Previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 and are displayed below in Table 12.

#### Monitorina Mass (lb/day) Concentration (mg/L) Requirements **Parameters** Average Daily Instant. Daily Sample Average Instant. Frequency Monthly Maximum **Minimum** Monthly Maximum Maximum Type XXX Flow (MGD) Report Report XXX XXX XXX 1/Quarter Measure ХХХ 1/Quarter Grab pH (S.U.) XXX XXX XXX Report ХХХ BOD5 XXX Report 1/Quarter Grab XXX XXX XXX XXX **Total Suspended Solids** XXX Report 1/Quarter XXX XXX XXX ХХХ Grab Oil and Grease XXX Report 1/Quarter Grab ХХХ XXX XXX XXX **Total Aluminum** ХХХ XXX XXX XXX Report XXX 1/Quarter Grab Total Iron XXX Report 1/Quarter Grab XXX XXX XXX XXX Total Lead XXX XXX XXX XXX Report 1/Quarter Grab XXX XXX XXX XXX 1/Quarter **Total Manganese** XXX Report Grab XXX Total Mercury XXX XXX XXX XXX Report 1/Quarter Grab XXX

# Table 12: Current Effluent Limitation for Outfall 002

# Proposed Effluent Limitations for Outfall 002

The proposed effluent limitations and monitoring requirements for Outfall 002 are shown below in Table 13. The monitoring frequency at Outfall 002 has been changed from once per quarter to semi-annually. This gives the permittee more time to implement its Corrective Action Plan when there are exceedances of the benchmark values. The Department evaluated the parameters that required monitoring in the previous permit and compared the data in the DMRs and permit application to EPA's multi-sector general permit benchmark values and determined that Outfall 002 has exceeded the benchmark values for Total Iron and Total Aluminum multiple times during the last permit cycle. Due to the multiple elevated discharge concentrations of Total Iron and Total Aluminum, these benchmark values from the MSGP will be included in the stormwater monitoring requirements section in Part C of the permit, requiring a Corrective Action Plan when there are two consecutive exceedances of the benchmark values. The benchmark values for Total Iron and Total Aluminum are 1.0 mg/L and 0.75 mg/L, respectively.

| Table 13: Proposed Effluent Limitation for Outfal | 001 |
|---------------------------------------------------|-----|
|---------------------------------------------------|-----|

| Parameters Mass (Ib/day) |                    |                  | Concentration (mg/L) |                    |                  |                     | Monitoring<br>Requirements |                |
|--------------------------|--------------------|------------------|----------------------|--------------------|------------------|---------------------|----------------------------|----------------|
| Faidmeters               | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum  | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Maximum | Frequency                  | Sample<br>Type |
| Flow (MGD)               | XXX                | Report           | XXX                  | XXX                | XXX              | XXX                 | 1/6 Months                 | Measure        |
| Total Nitrogen*          | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Calculation    |
| Total Phosphorus         | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| pH (S.U.)                | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| BOD5                     | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| COD                      | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| Total Suspended Solids   | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| Oil and Grease           | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| Total Aluminum           | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| Total Iron               | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| Total Lead               | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| Total Manganese          | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |
| Total Mercury            | XXX                | XXX              | XXX                  | XXX                | Report           | XXX                 | 1/6 Months                 | Grab           |

\*Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO<sub>2</sub>+NO<sub>3</sub>-N), where TKN and NO<sub>2</sub>+NO<sub>3</sub>-N are measured in the same sample.

| Development of Effluent Limitations |             |            |                   |        |  |  |
|-------------------------------------|-------------|------------|-------------------|--------|--|--|
| Outfalls No.                        | 003 - 008   |            | Design Flow (MGD) | 0      |  |  |
| Latitude                            | Varies      |            | Longitude         | Varies |  |  |
| Wastewater D                        | escription: | Stormwater |                   |        |  |  |

These stormwater outfalls were identified in the previous permit and are authorized to discharge uncontaminated storm water runoff. There are no monitoring requirements proposed for these stormwater discharges. Although, no monitoring for these outfalls is required, the stormwater Part C condition regarding stormwater discharges still apply to these outfalls.

#### **Development of Effluent Limitations**

| Outfall No. | 009          |                                       | Design Flow (MGD)      | 0.05            |
|-------------|--------------|---------------------------------------|------------------------|-----------------|
| Latitude    | 40º 18' 29"  |                                       | Longitude              | -79º 58' 42"    |
| Wastewater  | Description: | Treated Waste Disposal Area Leachate, | Groundwater and Indust | rial Stormwater |

Outfall 009 will discharge treated disposal area groundwater seeps and contaminated stormwater associated with the remediation of the disposal area.

#### Technology-Based Limitations

The Bruceton Research Center is not subject to Federal Effluent Limitation Guidelines (ELGs) as the SIC code is not listed under 40 CFR parts 405 through 471.

#### Regulatory Effluent Standards and Monitoring Requirements

Flow monitoring is required pursuant to 25 Pa. Code § 92a.61(d)(1) which is displayed in Table 14 below.

Effluent standards for pH are also imposed on industrial wastes by 25 Pa. Code §§ 95.2(1) which is displayed in Table 14 below.

#### **Table 14: Regulatory Effluent Standards**

| Parameter  | Monthly Avg                                         | Daily Max |  |  |  |
|------------|-----------------------------------------------------|-----------|--|--|--|
| Flow (MGD) | Monitor                                             | Monitor   |  |  |  |
| pH (S.U.)  | Not less than 6.0 nor greater than 9.0 at all times |           |  |  |  |

### Per- and Polyfluoroalkyl Substances (PFAS)

In February 2024, DEP implemented a new monitoring initiative for PFAS consistent with an EPA memorandum that provides guidance to states for addressing PFAS discharges. PFAS are a family of thousands of synthetic organic chemicals that contain a chain of strong carbon-fluorine bonds. Many PFAS are highly stable, water- and oil-resistant, and exhibit other properties that make them useful in a variety of consumer products and industrial processes. PFAS are resistant to biodegradation, photooxidation, direct photolysis, and hydrolysis and do not readily degrade naturally; thus, many PFAS accumulate over time. According to the United States Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), the environmental persistence and mobility of some PFAS, combined with decades of widespread use, have resulted in their presence in surface water, groundwater, drinking water, rainwater, soil, sediment, ice caps, outdoor and indoor air, plants, animal tissue, and human blood serum across the globe. ATSDR also reported that exposure to certain PFAS can lead to adverse human health impacts Due to their durability, toxicity, persistence, and pervasiveness, PFAS have emerged as potentially significant pollutants of concern.

In accordance with Section II.I of DEP's "Standard Operating Procedure (SOP) for Clean Water Program – Establishing Effluent Limitations for Individual Industrial Permits" [SOP No. BCW-PMT-032] and under the authority of 25 Pa. Code § 92a.61(b), DEP has determined that monitoring for a subset of common/well-studied PFAS including Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS), Perfluorobutanesulfonic acid (PFBS), and Hexafluoropropylene oxide dimer acid (HFPO-DA) is necessary to help understand the extent of environmental contamination by PFAS in the Commonwealth and the extent to which point source dischargers are contributors. SOP BCW-PMT-032 directs permit writers to consider special monitoring requirements for PFOA, PFOS, PFBS, and HFPO-DA in the following instances:

- a. If sampling that is completed as part of the permit renewal application reveals a detection of PFOA, PFOS, HFPO-DA or PFBS (any of these compounds), the application manager will establish a quarterly monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds) in the permit.
- b. If sampling that is completed as part of the permit renewal application demonstrates non-detect values at or below the Target QLs for PFOA, PFOS, HFPO-DA and PFBS (all of these compounds in a minimum of 3 samples), the application manager will establish an annual monitoring requirement for PFOA, PFOS, HFPO-DA and PFBS in the permit.
- c. In all cases the application manager will include a condition in the permit that the permittee may cease monitoring for PFOA, PFOS, HFPO-DA and PFBS when the permittee reports non-detect values at or below

the Target QL for four consecutive monitoring periods for each PFAS parameter that is analyzed. Use the following language: The permittee may discontinue monitoring for PFOA, PFOS, HFPO-DA, and PFBS if the results in 4 consecutive monitoring periods indicate non-detects at or below Quantitation Limits of 4.0 ng/L for PFOA, 3.7 ng/L for PFOS, 3.5 ng/L for PFBS and 6.4 ng/L for HFPO-DA. When monitoring is discontinued, permittees should enter a No Discharge Indicator (NODI) Code of "GG" on DMRs.

USHHS, CDC, NIOSH Pittsburgh's application was submitted before the NPDES permit application forms were updated to require sampling for PFOA, PFOS, PFBS, and HFPO-DA. Also, according to EPA's guidance, USHHS, CDC, NIOSH Pittsburgh does not operate in one of the industries EPA expects to be a source for PFAS. Therefore, annual reporting of PFOA, PFOS, PFBS, and HFPO-DA will be required consistent with Section II.I.b of SOP BCW-PMT-032. Even though USHHS, CDC, NIOSH Pittsburgh did not report results for PFOA, PFOS, PFBS, and HFPO-DA on the permit application, as a facility operating in a suspected non-source industry, it is reasonable to conclude that if USHHS, CDC, NIOSH Pittsburgh did report results for PFOA, PFOS, PFBS, and HFPO-DA on the application, the results may have been non-detect values, which would subject USHHS, CDC, NIOSH Pittsburgh to the annual monitoring requirements described in Section II.I.b of the SOP.

As stated in Section II.I.c of the SOP, if non-detect values at or below DEP's Target QLs are reported for four consecutive monitoring periods (i.e., four consecutive annual results in USHHS, CDC, NIOSH Pittsburgh's case), then the monitoring may be discontinued.

# Water Quality-Based Limitations

NIOSH has identified 8 groundwater seeps along the toe edge of the waste disposal area. Each of these seeps have been sampled and analyzed in accordance with a PADEP NPDES Permit Application. The pollutant discharge concentrations collected from each seep were used in conjunction with the average discharge flow rates from each seep to calculate a flow weighted average for each pollutant. This data is included in Appendix E of this Fact Sheet. The flow weighted average pollutant concentration was used to develop NPDES permit effluent limitations. This method was selected since it represents the discharge concentrations expected following completion of the seep collection system. The Department evaluated the discharge for consideration of potential effluent limitations using the Department's Toxics Management Spreadsheet.

#### **Toxics Management Spread Sheet**

The Department of Environmental Protection (DEP) has developed the DEP Toxics Management Spreadsheet ("TMS") to facilitate calculations necessary for completing a reasonable potential (RP) analysis and determining water quality-based effluent limitations for discharges of toxic pollutants. The Toxics Management Spreadsheet is a macro-enabled Excel binary file that combines the functions of the PENTOXSD model and the Toxics Screening Analysis spreadsheet to evaluate the reasonable potential for discharges to cause excursions above water quality standards and to determine WQBELs. The Toxics Management Spread Sheet is a single discharge, mass-balance water quality calculation spread sheet that includes consideration for mixing, first-order decay and other factors to determine recommended WQBELs for toxic substances and several non-toxic substances. Required input data including stream code, river mile index, elevation, drainage area, discharge name, NPDES permit number, discharge flow rate and the discharge concentrations for parameters in the permit application or in DMRs, which are entered into the spread sheet to establish site-specific discharge conditions. Other data such as low flow yield, reach dimensions and partial mix factors may also be entered to further characterize the conditions of the discharge and receiving water. Discharge concentrations for the parameters are chosen to represent the "worst case" quality of the discharge (i.e., maximum reported discharge concentrations). The spread sheet then evaluates each parameter by computing a Waste Load Allocation for each applicable criterion, determining a recommended maximum WQBEL and comparing that recommended WQBEL with the input discharge concentration to determine which is more stringent. Based on this evaluation, the Toxics Management Spread sheet recommends average monthly and maximum daily WQBELs.

#### Reasonable Potential Analysis and WQBEL Development for Outfall 009

The Discharges from Outfall 009 are evaluated based on concentrations reported on the application and using the abovementioned flow weighted calculation; data from those sources are entered into the Toxics Management Spread Sheet. The maximum reported value of the parameters from the application form or from previous DMRs is used as the input concentration in the Toxics Management Spread Sheet. All toxic pollutants whose maximum concentrations, as reported in the permit application or on DMRs, are greater than the most stringent applicable water quality criteria are considered to be pollutants of concern. [This includes pollutants reported as "Not Detectable" or as "<MDL" where the method detection limit for the analytical method used by the applicant is greater than the most stringent water quality criterion]. The Toxics Management Spread Sheet is run with the discharge and receiving stream characteristics shown in Table 15. For IW discharges, the design flow used in modeling is the average flow during production or operation taken from the permit application. Pollutants for which water quality standards have not been promulgated (e.g., TSS, oil and grease) are excluded from the analysis. All the parameters are evaluated using the model to determine the water quality-based effluent limits applicable to the discharge and the receiving stream. The spreadsheet then compares the reported discharge concentrations to the calculated water quality-based effluent limitations to determine if a reasonable potential exists to exceed the calculated WQBELs. Effluent limitations are established in the draft permit where a pollutant's maximum reported discharge concentration equals or exceeds 50% of the WQBEL. For non-conservative pollutants, monitoring requirements are established where the maximum reported concentration is between 25% - 50% of the WQBEL. For conservative pollutants, monitoring requirements are established where the maximum reported discharge concentrations, the most stringent water quality criteria, the pollutant-of-concern (reasonable potential) determinations, the calculated WQBELs, and the WQBEL/monitoring recommendations are displayed in the Toxics Management Spread Sheet in Attachment F of this Fact Sheet. The water quality-based effluent limitations and monitoring requirements that are recommended by the Toxics Management Spread Sheet are displayed below in Table 16.

| Parameter                             | Value  |  |  |  |  |
|---------------------------------------|--------|--|--|--|--|
| River Mile Index                      | 0.1    |  |  |  |  |
| Discharge Flow (MGD)                  | 0.05   |  |  |  |  |
| Basin/Stream Characteristics          |        |  |  |  |  |
| Parameter                             | Value  |  |  |  |  |
| Area in Square Miles                  | 0.18   |  |  |  |  |
| Q <sub>7-10</sub> (cfs)               | 0.0009 |  |  |  |  |
| Low-flow yield (cfs/mi <sup>2</sup> ) | 0.005  |  |  |  |  |
| Elevation (ft)                        | 940    |  |  |  |  |
| Slope                                 | 0.001  |  |  |  |  |

#### Table 16: Water Quality Based Effluent Limitations at Outfall 009

| Parameters                 | Average<br>Monthly<br>(µg/L) | Daily<br>Maximum<br>(µg/L) | Discharge<br>Concentration<br>(µg/L) | Department's<br>QL (µg/L) |
|----------------------------|------------------------------|----------------------------|--------------------------------------|---------------------------|
| Hexavalent Chromium        | 10.5                         | 16.4                       | 6.20                                 | 1.0                       |
| Total Copper               | Report                       | Report                     | 6.38                                 | 4.0                       |
| Total Iron                 | Report                       | Report                     | 547                                  | 20                        |
| Dissolved Iron             | Report                       | Report                     | 57.3                                 | 20                        |
| Total Manganese            | Report                       | Report                     | 271                                  | 2.0                       |
| Total Selenium             | 5.05                         | 7.87                       | 4.09                                 | 5.0                       |
| Total Thallium             | Report                       | Report                     | 0.04                                 | 2.0                       |
| Total Zinc                 | Report                       | Report                     | 32.4                                 | 5.0                       |
| Acrolein                   | 3.0                          | 3.03                       | 2.50                                 | 2.0                       |
| Acrylamide                 | 0.085                        | 0.13                       | 115                                  | XXX                       |
| Benzene                    | 0.7                          | 1.09                       | 1.50                                 | 0.5                       |
| 1,3-Dichloropropylene      | 0.33                         | 0.51                       | 0.52                                 | 0.5                       |
| Trichloroethylene          | Report                       | Report                     | 0.35                                 | 0.5                       |
| 4,6-Dinitro-o-Cresol       | 2.02                         | 3.16                       | 14.5                                 | 10                        |
| 2,4-Dinitrophenol          | 10.1                         | 15.8                       | 16.0                                 | 10                        |
| Benzidine                  | 0.0001                       | 0.0002                     | 89.1                                 | 50                        |
| Bis(2-Ethylhexyl)Phthalate | 0.39                         | 0.6                        | 65.5                                 | 5.0                       |

| Parameters             | Average<br>Monthly<br>(µg/L) | Daily<br>Maximum<br>(µg/L) | Discharge<br>Concentration<br>(µg/L) | Department's<br>QL (μg/L) |
|------------------------|------------------------------|----------------------------|--------------------------------------|---------------------------|
| 3,3-Dichlorobenzidine  | 0.06                         | 0.094                      | 6.14                                 | 5.0                       |
| Di-n-Butyl Phthalate   | Report                       | Report                     | 7.79                                 | 5.0                       |
| Hexachlorobutadiene    | 0.012                        | 0.019                      | 0.73                                 | 0.5                       |
| Nitrobenzene           | 10.1                         | 15.8                       | 5.25                                 | 5.0                       |
| 1,2,4-Trichlorobenzene | 0.071                        | 0.11                       | 0.55                                 | 0.5                       |

#### Table 16: Water Quality Based Effluent Limitations at Outfall 009

### Total Maximum Daily Load ("TMDL") Considerations - Peters Creek Watershed

Wastewater discharges from NIOSH are located within the Peters Creek watershed for which the Department has developed a TMDL. The TMDL was finalized on April 7, 2009 and establishes waste load allocations for the discharge of aluminum, iron and manganese within Lick Run. Section 303(d) of the Clean Water Act and the U.S. Environmental Protection Agency's Water Quality Planning and Management Regulations (codified at Title 40 of the Code of Federal Regulations Part 130) require states to develop a TMDL for impaired water bodies. A TMDL establishes the amount of a pollutant that a water body can assimilate without exceeding the water quality criteria for that pollutant. TMDLs provide the scientific basis for a state to establish water quality-based controls to reduce pollution from both point and non-point sources in order to restore and maintain the quality of the state's water resources (USEPA 1991a). Stream reaches within the Peters Creek watershed are included in the state's 2008 Section 303(d) list because of various impairments, including metals, pH and sediment. The TMDL includes consideration for each river and tributary within the target watershed and its impairment sources. Stream data is then used to calculate minimum pollutant reductions that are necessary to attain water quality criteria levels. Target concentrations published in the TMDL were based on established water quality criteria of 0.750 mg/L total recoverable aluminum, 1.5 mg/L total recoverable iron based on a 30-day average and 1.0 mg/L total recoverable manganese. The reduction needed to meet the minimum water quality standards is then divided between each known point and non-point pollutant source in the form of a watershed allocation. TMDLs prescribe allocations that minimally achieve water quality criteria (i.e., 100 percent use of a stream's assimilative capacity).

The TMDL for Peters Creek assigns load allocations to four sampling sites on Peters Creek (PC5, PC4, PC3 and PC2), six sites on unnamed tributaries to Peters Creek (PCTR1-6), one site on Lewis Run (LW1), one site on Lick Run (LR1), and one site on Piney Fork (PF1). An allowable long-term average in-stream concentration was determined at each sample point for metals and acidity. The analysis is designed to produce an average value that, when met, will be protective of the water-quality criterion for that parameter 99% of the time. An analysis was performed using Monte Carlo simulation to determine the necessary long-term average concentration needed to attain water-quality criteria 99% of the time. The simulation was run assuming the data set was log normally distributed. Using the mean and standard deviation of the data set, 5000 iterations of sampling were completed, and compared against the water-quality criterion for that parameter. For each sampling event a percent reduction was calculated, if necessary, to meet water-quality criteria. A second simulation that multiplied the percent reduction by the sampled value was run to ensure that water quality criteria were met 99% of the time. The mean value from this data set represents the long-term average concentration that needs to be met to achieve water-quality standards.

Discharges to the Lick Run segment of the Peter's Creek watershed are only subject to the requirements associated with aluminum. The TMDL did not provide a waste load allocation for discharges associated with the waste disposal area. Whenever the TMDL does not specifically provide an allocation for waste water discharges, the Department may impose effluent limitations at criteria to ensure compliance with the TMDL. Applicable water quality criteria for the Peters Creek watershed are imposed as effluent limits and shown in Table 16.

The specific water quality criterion for aluminum is expressed as an acute or maximum daily in 25 Pa. Code Chapter 93. Discharges of aluminum via Outfall 009 may only be authorized to the extent that they will not cause or contribute to any violation of the water quality standards. Therefore, the water quality criterion for aluminum (0.75 <sup>mg</sup>/<sub>L</sub>) is imposed as a maximum daily effluent limit (MDL). Whenever the most stringent criterion is selected for the MDL, the Department should also impose an average monthly limit (AML) and instantaneous maximum limit (IMAX) if applicable. The imposition of an AML that is more stringent than the MDL is typically not appropriate because the water quality concerns have already been fully addressed by setting the MDL equal to the most stringent applicable criterion. Therefore, where the MDL is set at the value of the most stringent applicable criterion, the AML should be set equal to the MDL. Accordingly, TMDL aluminum limits are proposed for Outfall 009. The proposed aluminum limits are included in Table 17. TMDL effluent limitations for iron and manganese are not necessary in this segment of the watershed.

|                 | TMDL               | . Limits         |       |  |  |  |
|-----------------|--------------------|------------------|-------|--|--|--|
| Parameter       | Average<br>Monthly | Maximum<br>Daily | Units |  |  |  |
| Aluminum, total | 0.75               | 0.75             | mg/L  |  |  |  |

# Table 17. TMDL Limits for Outfall 009

# Anti-Backsliding

The effluent limits for the discharge from the seep collection and treatment were imposed at IMP 201 in the previous permit. These previous limits can be used pursuant to EPA's anti-backsliding regulation 40 CFR 122.44 and are displayed below in Table 18.

# Table 18: Current Limitations Imposed at IMP 201

| Mass (Ib/day) Concentration (mg/L) |                    |                  |                     |                    | Monitoring Requirements |                     |           |                    |
|------------------------------------|--------------------|------------------|---------------------|--------------------|-------------------------|---------------------|-----------|--------------------|
| Parameters                         | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly | Daily<br>Maximum        | Instant.<br>Maximum | Frequency | Sample Type        |
| Flow (MGD)                         | Report             | Report           | XXX                 | XXX                | xxx                     | xxx                 | 1/week    | Measure            |
| pH (S.U.)                          | XXX                | xxx              | 6.0                 | xxx                | XXX                     | 9.0                 | 1/week    | Grab               |
| Total Suspended Solids             | XXX                | xxx              | XXX                 | 30.0               | 60.0                    | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Aluminum                     | xxx                | xxx              | xxx                 | 0.75               | 0.75                    | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Iron                         | XXX                | xxx              | xxx                 | 1.5                | 3.0                     | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Manganese                    | XXX                | xxx              | xxx                 | 2.0                | 4.0                     | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Cadmium                      | XXX                | xxx              | xxx                 | 0.0055             | 0.0085                  | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Mercury                      | XXX                | xxx              | xxx                 | Report             | Report                  | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Antimony                     | xxx                | xxx              | xxx                 | Report             | Report                  | XXX                 | 1/week    | 24-Hr<br>Composite |
| Total Arsenic                      | XXX                | xxx              | xxx                 | Report             | Report                  | xxx                 | 1/week    | 24-Hr<br>Composite |
| Hexavalent Chromium                | xxx                | xxx              | xxx                 | Report             | Report                  | XXX                 | 1/week    | 24-Hr<br>Composite |
| Total Cobalt                       | XXX                | XXX              | xxx                 | Report             | Report                  | XXX                 | 1/week    | 24-Hr<br>Composite |
| Total Copper                       | xxx                | xxx              | xxx                 | Report             | Report                  | XXX                 | 1/week    | 24-Hr<br>Composite |
| Total Lead                         | XXX                | XXX              | xxx                 | Report             | Report                  | XXX                 | 1/week    | 24-Hr<br>Composite |
| Total Nickel                       | XXX                | xxx              | xxx                 | Report             | Report                  | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Selenium                     | XXX                | xxx              | xxx                 | Report             | Report                  | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Silver                       | XXX                | xxx              | xxx                 | Report             | Report                  | xxx                 | 1/week    | 24-Hr<br>Composite |
| Total Thallium                     | xxx                | XXX              | xxx                 | Report             | Report                  | XXX                 | 1/week    | 24-Hr<br>Composite |
| Total Zinc                         | xxx                | xxx              | XXX                 | Report             | Report                  | XXX                 | 1/week    | 24-Hr<br>Composite |
| Total Dissolved Solids             | xxx                | xxx              | XXX                 | Report             | Report                  | xxx                 | 1/week    | 24-Hr<br>Composite |

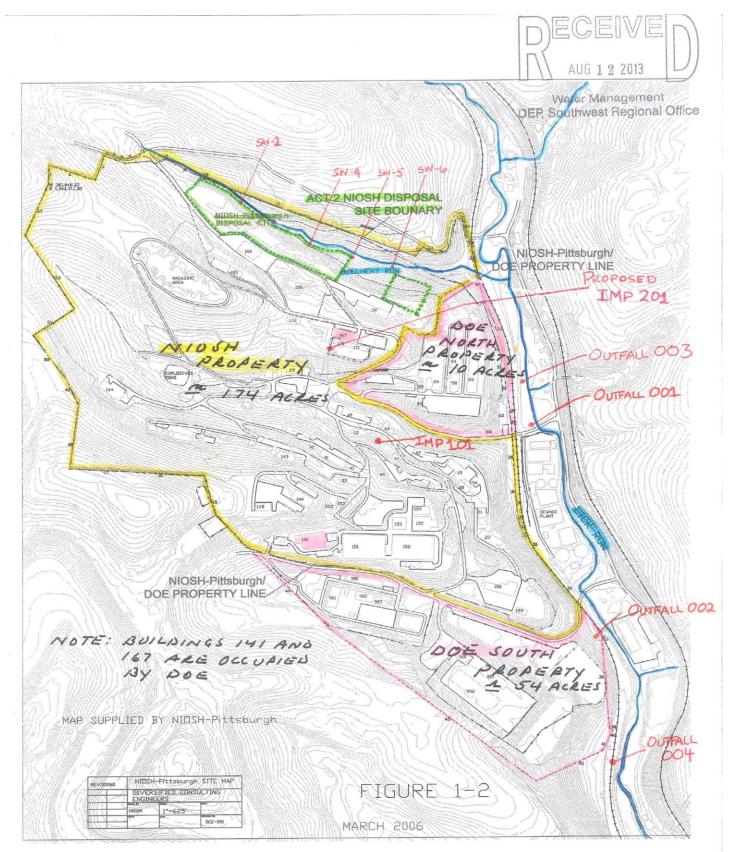
# Final Effluent Limitations for Outfall 009

The effluent limitations and monitoring frequencies for Outfall 009 are displayed below in Table 19. Please note that 1,3-Dichloropropylene, 4,6-Dinitro-o-Cresol, Benzidine, Bis(2-Ethylhexyl)Phthalate, 3,3-Dichlorobenzidine, Hexachlorobutadiene, and 1,2,4-Trichlorobenzene are subject to water quality-based effluent limits (WQBELs) that are necessary to comply with state water quality standards, but are less than the Department's target quantitation limits (QLs), as defined in 25 Pa. Code § 252.1, that are generally achievable by conventional analytical technology. The permittee shall analyze the parameter(s) using methods that will achieve the Department Target QL(s). For the purpose of compliance, a statistical value reported on the DMR that is less than the QL(s) (i.e., "non-detect") will be considered to be in compliance.

|                               | Mass               | lb/day)          |                     |                    |                  |                     |           | nitoring Requirements |  |
|-------------------------------|--------------------|------------------|---------------------|--------------------|------------------|---------------------|-----------|-----------------------|--|
| Parameters                    | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Maximum | Frequency | Sample Type           |  |
| Flow (MGD)                    | Report             | Report           | xxx                 | xxx                | xxx              | xxx                 | 1/week    | Measure               |  |
| pH (S.U.)                     | XXX                | xxx              | 6.0                 | ххх                | xxx              | 9.0                 | 1/week    | Grab                  |  |
| Total Suspended Solids        | xxx                | xxx              | xxx                 | 30.0               | 60.0             | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Aluminum                | xxx                | xxx              | xxx                 | 0.75               | 0.75             | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Iron                    | xxx                | xxx              | xxx                 | 1.5                | 3.0              | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Dissolved Iron                | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Manganese               | xxx                | xxx              | xxx                 | 2.0                | 4.0              | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Cadmium (µg/L)          | xxx                | xxx              | xxx                 | 5.5                | 8.5              | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Mercury                 | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Antimony                | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Arsenic                 | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Hexavalent Chromium<br>(µg/L) | xxx                | xxx              | xxx                 | 10.5               | 16.4             | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Cobalt                  | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Copper                  | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Lead                    | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Nickel                  | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Selenium (µg/L)         | xxx                | xxx              | xxx                 | 5.05               | 7.87             | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Silver                  | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Thallium                | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Zinc                    | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Total Dissolved Solids        | xxx                | xxx              | xxx                 | Report             | Report           | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Acrolein (µg/L)               | xxx                | xxx              | xxx                 | 3.0                | 3.03             | xxx                 | 1/week    | 24-Hr<br>Composite    |  |
| Acrylamide (µg/L)             | xxx                | xxx              | xxx                 | 0.085              | 0.13             | xxx                 | 1/week    | 24-Hr<br>Composite    |  |

#### Table 19: Proposed Limitations at Outfall 009

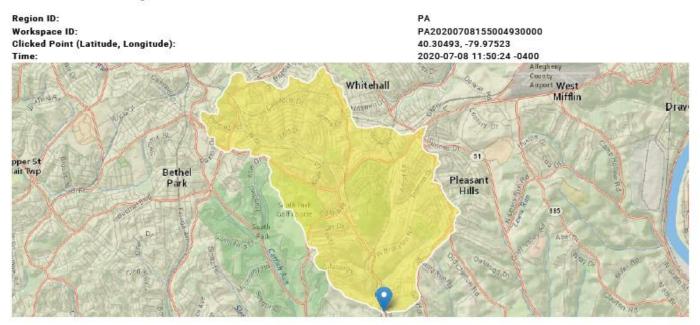
# Table 19: Proposed Limitations at Outfall 009


|                             | Mass (             | lb/day)          |                     | Concentra          | tion (mg/L)      |                     | Monitoring | Requirements |
|-----------------------------|--------------------|------------------|---------------------|--------------------|------------------|---------------------|------------|--------------|
| Parameters                  | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Minimum | Average<br>Monthly | Daily<br>Maximum | Instant.<br>Maximum | Frequency  | Sample Type  |
|                             |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| Benzene (µg/L)              | XXX                | XXX              | XXX                 | 0.7                | 1.09             | XXX                 | 1/week     | Composite    |
| 1,3-Dichloropropylene       |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| (µg/L)                      | XXX                | XXX              | XXX                 | 0.33               | 0.51             | XXX                 | 1/week     | Composite    |
|                             |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| Trichloroethylene (µg/L)    | XXX                | XXX              | XXX                 | Report             | Report           | XXX                 | 1/week     | Composite    |
|                             |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| 4,6-Dinitro-o-Cresol (µg/L) | XXX                | XXX              | XXX                 | 2.02               | 3.16             | XXX                 | 1/week     | Composite    |
|                             |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| 2,4-Dinitrophenol (µg/L)    | XXX                | XXX              | XXX                 | 10.1               | 15.8             | XXX                 | 1/week     | Composite    |
|                             |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| Benzidine (µg/L)            | XXX                | XXX              | XXX                 | 0.0001             | 0.0002           | XXX                 | 1/week     | Composite    |
| Bis(2-Ethylhexyl)Phthalate  |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| (µg/L)                      | XXX                | XXX              | XXX                 | 0.39               | 0.6              | XXX                 | 1/week     | Composite    |
| 3,3-Dichlorobenzidine       |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| (µg/L)                      | XXX                | XXX              | XXX                 | 0.06               | 0.094            | XXX                 | 1/week     | Composite    |
| Di-n-Butyl Phthalate        |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| (µg/L)                      | XXX                | XXX              | XXX                 | Report             | Report           | XXX                 | 1/week     | Composite    |
| Hexachlorobutadiene         |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| (µg/L)                      | XXX                | XXX              | XXX                 | 0.012              | 0.019            | XXX                 | 1/week     | Composite    |
|                             |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| Nitrobenzene (µg/L)         | XXX                | XXX              | XXX                 | 10.1               | 15.8             | XXX                 | 1/week     | Composite    |
| 1,2,4-Trichlorobenzene      |                    |                  |                     |                    |                  |                     |            | 24-Hr        |
| (µg/L)                      | XXX                | XXX              | XXX                 | 0.071              | 0.11             | XXX                 | 1/week     | Composite    |
| PFOA (ng/L)                 | XXX                | XXX              | XXX                 | XXX                | Monitor          | XXX                 | 1/year     | Grab         |
| PFOS (ng/L)                 | XXX                | XXX              | XXX                 | XXX                | Monitor          | XXX                 | 1/year     | Grab         |
| PFBS (ng/L)                 | XXX                | XXX              | XXX                 | XXX                | Monitor          | XXX                 | 1/year     | Grab         |
| HFPO-DA (ng/L)              | XXX                | XXX              | XXX                 | XXX                | Monitor          | XXX                 | 1/year     | Grab         |

|           | Tools and References Used to Develop Permit                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | WQM for Windows Model (see Attachment                                                                                                                                                                              |
|           | Toxics Management Spreadsheet (see Attachment <b>C and F</b> )                                                                                                                                                     |
|           | TRC Model Spreadsheet (see Attachment )                                                                                                                                                                            |
|           | Temperature Model Spreadsheet (see Attachment)                                                                                                                                                                     |
|           | Water Quality Toxics Management Strategy, 361-0100-003, 4/06.                                                                                                                                                      |
|           | Technical Guidance for the Development and Specification of Effluent Limitations, 386-0400-001, 10/97.                                                                                                             |
|           | Policy for Permitting Surface Water Diversions, 386-2000-019, 3/98.                                                                                                                                                |
| $\square$ | Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 386-2000-018, 11/96.                                                                                                                  |
| $\square$ | Technology-Based Control Requirements for Water Treatment Plant Wastes, 386-2183-001, 10/97.                                                                                                                       |
|           | Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 386-2183-002, 12/97.                                                                                                      |
|           | Pennsylvania CSO Policy, 386-2000-002, 9/08.                                                                                                                                                                       |
|           | Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.                                                                                                                                        |
|           | Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 386-2000-008, 4/97.                                                                                           |
|           | Determining Water Quality-Based Effluent Limits, 386-2000-004, 12/97.                                                                                                                                              |
|           | Implementation Guidance Design Conditions, 386-2000-007, 9/97.                                                                                                                                                     |
|           | Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 386-2000-016, 6/2004.                                                    |
|           | Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 386-2000-012, 10/1997.                                                                             |
|           | Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 386-2000-009, 3/99.                                                                   |
|           | Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 386-2000-015, 5/2004.                                                              |
|           | Implementation Guidance for Section 93.7 Ammonia Criteria, 386-2000-022, 11/97.                                                                                                                                    |
|           | Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 386-2000-013, 4/2008.                                             |
|           | Implementation Guidance Total Residual Chlorine (TRC) Regulation, 386-2000-011, 11/1994.                                                                                                                           |
|           | Implementation Guidance for Temperature Criteria, 386-2000-001, 4/09.                                                                                                                                              |
|           | Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 386-2000-021, 10/97.                                                                                                       |
|           | Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 386-2000-020, 10/97.       |
|           | Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 386-2000-005, 3/99.                                                                               |
|           | Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 386-2000-010, 3/1999. |
|           | Design Stream Flows, 386-2000-003, 9/98.                                                                                                                                                                           |
|           | Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 386-2000-006, 10/98.                                     |
|           | Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 386-3200-001, 6/97.                                                                                                                         |
|           | Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.                                                                                                                   |
|           | SOP:                                                                                                                                                                                                               |
|           | Other:                                                                                                                                                                                                             |

# Attachments:

Attachment A: Site Plan Attachment B: Stream Stats at Outfall 001 Attachment C: IMP 101 Toxics Management Spreadsheet Attachment D: Stream Stats at Outfall 009 Attachment E: Seep Analytical Results and Flow Weighted Average Attachment F: Outfall 009 Toxics Management Spreadsheet Attachment A:


Site Plan



Attachment B:

Stream Stats at Outfall 001

# StreamStats Report



#### **Basin Characteristics**

| Parameter Code | Parameter Description                   | Value  | Unit         |
|----------------|-----------------------------------------|--------|--------------|
| DRNAREA        | Area that drains to a point on a stream | 6.55   | square miles |
| ELEV           | Mean Basin Elevation                    | 1121.1 | feet         |

| Low-Flow Statistics Parameters(Low Flow Region 4) |                      |        |              |           |           |  |
|---------------------------------------------------|----------------------|--------|--------------|-----------|-----------|--|
| Parameter Code                                    | Parameter Name       | Value  | Units        | Min Limit | Max Limit |  |
| DRNAREA                                           | Drainage Area        | 6.55   | square miles | 2.26      | 1400      |  |
| ELEV                                              | Mean Basin Elevation | 1121.1 | feet         | 1050      | 2580      |  |

Low-Flow Statistics Flow Report(Low Flow Region 4)

| PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other – see report) | PII: Prediction Interval-Lower | , Plu: Prediction Interval-Upper, | SEp: Standard Error of Prediction | , SE: Standard Error (other see report) |
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------|-----------------------------------|-----------------------------------------|

| Statistic               | Value  | Unit   | SE | SEp |
|-------------------------|--------|--------|----|-----|
| 7 Day 2 Year Low Flow   | 0.226  | ft^3/s | 43 | 43  |
| 30 Day 2 Year Low Flow  | 0.397  | ft^3/s | 38 | 38  |
| 7 Day 10 Year Low Flow  | 0.0803 | ft^3/s | 66 | 66  |
| 30 Day 10 Year Low Flow | 0.148  | ft^3/s | 54 | 54  |
| 90 Day 10 Year Low Flow | 0.273  | ft^3/s | 41 | 41  |

Low-Flow Statistics Citations

Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

Attachment C:

IMP 101 Toxics Management Spreadsheet



# **Discharge Information**

| Instructions D                                                                                                | ischarge Stream                                                                                         |            |           |               |             |     |                         |    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|-----------|---------------|-------------|-----|-------------------------|----|--|--|--|--|--|
| Facility: Bru                                                                                                 | Bruceton Research Facility         NPDES Permit No.:         PA0025844         Outfall No.:         101 |            |           |               |             |     |                         |    |  |  |  |  |  |
| Evaluation Type: Major Sewage / Industrial Waste Wastewater Description: Treated Acid Mine Drainage Discharge |                                                                                                         |            |           |               |             |     |                         |    |  |  |  |  |  |
|                                                                                                               |                                                                                                         |            | Discharge | Characterist  | ics         |     |                         |    |  |  |  |  |  |
| Design Flow                                                                                                   | Handmann (mar/l)t                                                                                       | -11 (810)* | P         | artial Mix Fa | ctors (PMFs | 5)  | Complete Mix Times (min |    |  |  |  |  |  |
| (MGD)*                                                                                                        | Hardness (mg/l)*                                                                                        | pH (SU)*   | AFC       | CFC           | THH         | CRL | Q <sub>7-10</sub>       | Qh |  |  |  |  |  |
| 0.036                                                                                                         | 2040                                                                                                    | 7.43       |           |               |             |     |                         |    |  |  |  |  |  |

|       |                                 |       |    |                     | 0 If lef     | t blank        | 0.5 lf le   | eft blank    | 0             | lf left blani | k   | 1 If lef         | t blank        |
|-------|---------------------------------|-------|----|---------------------|--------------|----------------|-------------|--------------|---------------|---------------|-----|------------------|----------------|
|       | Discharge Pollutant             | Units | Ma | x Discharge<br>Conc | Trib<br>Conc | Stream<br>Conc | Daily<br>CV | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff | FOS | Criteri<br>a Mod | Chem<br>Transl |
|       | Total Dissolved Solids (PWS)    | mg/L  |    | 4930                |              |                |             |              |               |               |     |                  |                |
| 5     | Chloride (PWS)                  | mg/L  |    | 1340                |              |                |             |              |               |               |     |                  |                |
| 1 a   | Bromide                         | mg/L  |    | 0.09                |              |                |             |              |               |               |     |                  |                |
| Group | Sulfate (PWS)                   | mg/L  |    | 1060                |              |                |             |              |               |               |     |                  |                |
|       | Fluoride (PWS)                  | mg/L  |    | 0.77                |              |                |             |              |               |               |     |                  |                |
|       | Total Aluminum                  | µg/L  |    | 430                 |              |                |             |              |               |               |     |                  |                |
|       | Total Antimony                  | µg/L  |    | 0.175               |              |                |             |              |               |               |     |                  |                |
|       | Total Arsenic                   | µg/L  |    | 0.642               |              |                |             |              |               |               |     |                  |                |
|       | Total Barium                    | µg/L  |    | 47                  |              |                |             |              |               |               |     |                  |                |
|       | Total Beryllium                 | µg/L  |    | 0.079               |              |                |             |              |               |               |     |                  |                |
|       | Total Boron                     | µg/L  |    | 132                 |              |                |             |              |               |               |     |                  |                |
|       | Total Cadmium                   | µg/L  |    | 0.0002              |              |                |             |              |               |               |     |                  |                |
|       | Total Chromium (III)            | µg/L  | <  | 2.07                |              |                |             |              |               |               |     |                  |                |
|       | Hexavalent Chromium             | µg/L  | <  | 2                   |              |                |             |              |               |               |     |                  |                |
|       | Total Cobalt                    | µg/L  |    | 66.5                |              |                |             |              |               |               |     |                  |                |
|       | Total Copper                    | µg/L  |    | 2.18                |              |                |             |              |               |               |     |                  |                |
| 5     | Free Available Cyanide          | µg/L  |    |                     |              |                |             |              |               |               |     |                  |                |
| Group | Total Cyanide                   | µg/L  |    | 0.006               |              |                |             |              |               |               |     |                  |                |
| 5     | Dissolved Iron                  | µg/L  |    | 240                 |              |                |             |              |               |               |     |                  |                |
| -     | Total Iron                      | µg/L  |    | 1440                |              |                |             |              |               |               |     |                  |                |
|       | Total Lead                      | µg/L  |    | 0.087               |              |                |             |              |               |               |     |                  |                |
|       | Total Manganese                 | µg/L  |    | 1390                |              |                |             |              |               |               |     |                  |                |
|       | Total Mercury                   | µg/L  | <  | 0.2                 |              |                |             |              |               |               |     |                  |                |
|       | Total Nickel                    | µg/L  |    | 95.7                |              |                |             |              |               |               |     |                  |                |
|       | Total Phenols (Phenolics) (PWS) | µg/L  |    | 39                  |              |                |             |              |               |               |     |                  |                |
|       | Total Selenium                  | µg/L  |    | 1.3                 |              |                |             |              |               |               |     |                  |                |
|       | Total Silver                    | µg/L  | <  | 0.041               |              |                |             |              |               |               |     |                  |                |
|       | Total Thallium                  | µg/L  |    | 0.443               |              |                |             |              |               |               |     |                  |                |
|       | Total Zinc                      | µg/L  |    | 88                  |              |                |             |              |               |               |     |                  |                |
|       | Total Molybdenum                | µg/L  |    | 0.513               |              |                |             |              |               |               |     |                  |                |
|       | Acrolein                        | µg/L  | <  |                     |              |                |             |              |               |               |     |                  |                |
|       | Acrylamide                      | µg/L  | <  |                     |              |                |             |              |               |               |     |                  |                |
|       | Acrylonitrile                   | µg/L  | <  |                     |              |                |             |              |               |               |     |                  |                |
|       | Benzene                         | µg/L  | <  |                     |              |                |             |              |               |               |     |                  |                |
|       | Bromoform                       | µg/L  | <  |                     |              |                |             |              |               |               |     |                  |                |

Toxics Management Spreadsheet Version 1.0, July 2020



## Stream / Surface Water Information

Elevation

(ft)\*

904

895

RMI<sup>\*</sup>

2.4

2.2

DA (mi<sup>2</sup>)\*

6.55

6.6

Slope (ft/ft)

Bruceton Research Facility, NPDES Permit No. PA0025844, Outfall 101

| Instructions Discharge | Stream |  |
|------------------------|--------|--|
|------------------------|--------|--|

Receiving Surface Water Name: Lick Run

Stream Code\*

039451

039451

No. Reaches to Model: 1

Apply Fish

Criteria\*

Yes

Yes

PWS Withdrawal

(MGD)

- Statewide Criteria
- O Great Lakes Criteria
- ORSANCO Criteria

| Point of Discharge |
|--------------------|
| End of Reach 1     |
|                    |

Location

| Location           | Location RMI LFY |                         | Flow   | (cfs)     | W/D   | Width | Depth | Velocit | Time   | Tributa  | ary | Stream    | m   | Analys   | is |
|--------------------|------------------|-------------------------|--------|-----------|-------|-------|-------|---------|--------|----------|-----|-----------|-----|----------|----|
| Location           | TSIVI1           | (cfs/mi <sup>2</sup> )* | Stream | Tributary | Ratio | (ft)  | (ft)  | y (fps) | (days) | Hardness | pН  | Hardness* | pH* | Hardness | pН |
| Point of Discharge | 2.4              | 0.1                     | 0.0803 |           |       |       |       |         |        |          |     | 100       | 7   |          |    |
| End of Reach 1     | 2.2              | 0.1                     |        |           |       |       |       |         |        |          |     |           |     |          |    |

#### Qh

Q 7.10

| Location       |      | RMI  | LFY                    | Flow   | (cfs)     | W/D   | Width | Depth | Velocit | Time   | Tributa  | ary | Stream   | m  | Analys   | sis |
|----------------|------|------|------------------------|--------|-----------|-------|-------|-------|---------|--------|----------|-----|----------|----|----------|-----|
| Location       |      | NIMI | (cfs/mi <sup>2</sup> ) | Stream | Tributary | Ratio | (ft)  | (ft)  | y (fps) | (daws) | Hardness | pН  | Hardness | pН | Hardness | pН  |
| Point of Disch | arge | 2.4  |                        |        |           |       |       |       |         |        |          |     |          |    |          |     |
| End of Read    | n 1  | 2.2  |                        |        |           |       |       |       |         |        |          |     |          |    |          |     |



Toxics Management Spreadsheet Version 1.0, July 2020

## **Model Results**

#### Bruceton Research Facility, NPDES Permit No. PA0025844, Outfall 101

| 1 | Instructions | Results | RETURN TO INPUTS | SAVE AS PDF | PRINT | o Ali | O Inputs | O Results | Limits |  |
|---|--------------|---------|------------------|-------------|-------|-------|----------|-----------|--------|--|
|   |              |         |                  |             |       |       |          |           |        |  |

Hydrodynamics

#### Q 7-10

| RMI | Stream<br>Flow (cfs) | PWS Withdrawal<br>(cfs) | Net Stream<br>Flow (cfs) | Discharge Analysis<br>Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity<br>(fps) | Time<br>(days) | Complete Mix Time<br>(min) |
|-----|----------------------|-------------------------|--------------------------|----------------------------------|---------------|------------|------------|-----------|-------------------|----------------|----------------------------|
| 2.4 | 0.08                 |                         | 0.08                     | 0.056                            | 0.009         | 0.379      | 7.544      | 19.885    | 0.048             | 0.257          | 1.261                      |
| 2.2 | 0.09                 |                         | 0.085                    |                                  |               |            |            |           |                   |                |                            |

#### Qh

| RMI | Stream<br>Flow (cfs) | PWS Withdrawal<br>(cfs) | Net Stream<br>Flow (cfs) | Discharge Analysis<br>Flow (cfs) | Slope (ft/ft) | Depth (ft) | Width (ft) | W/D Ratio | Velocity<br>(fps) | Time<br>(days) | Complete Mix Time<br>(min) |
|-----|----------------------|-------------------------|--------------------------|----------------------------------|---------------|------------|------------|-----------|-------------------|----------------|----------------------------|
| 2.4 | 0.82                 |                         | 0.82                     | 0.056                            | 0.009         | 0.861      | 7.544      | 8.763     | 0.135             | 0.091          | 0.928                      |
| 2.2 | 0.864                |                         | 0.86                     |                                  |               |            |            |           |                   |                |                            |

#### Wasteload Allocations

| ☑ AFC CCT (min): 1.261 PMF: 1 | Analysis Hardness (mg/l): 894.48 Analysis pH: 7.13 |
|-------------------------------|----------------------------------------------------|
|-------------------------------|----------------------------------------------------|

| Pollutants                   | Conc | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments                         |
|------------------------------|------|--------------|---------------------|--------------|---------------|------------------|------------|----------------------------------|
| Total Dissolved Solids (PWS) | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Chloride (PWS)               | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Sulfate (PWS)                | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Fluoride (PWS)               | 0    | 0            |                     | 0            | N/A           | N/A              | N/A        |                                  |
| Total Aluminum               | 0    | 0            |                     | 0            | 750           | 750              | 1,831      |                                  |
| Total Antimony               | 0    | 0            |                     | 0            | 1,100         | 1,100            | 2,686      |                                  |
| Total Arsenic                | 0    | 0            |                     | 0            | 340           | 340              | 830        | Chem Translator of 1 applied     |
| Total Barium                 | 0    | 0            |                     | 0            | 21,000        | 21,000           | 51,279     |                                  |
| Total Boron                  | 0    | 0            |                     | 0            | 8,100         | 8,100            | 19,779     |                                  |
| Total Cadmium                | 0    | 0            |                     | 0            | 16.866        | 19.8             | 48.3       | Chem Translator of 0.852 applied |
| Total Chromium (III)         | 0    | 0            |                     | 0            | 3427.912      | 10,848           | 26,489     | Chem Translator of 0.316 applied |
| Hexavalent Chromium          | 0    | 0            |                     | 0            | 16            | 16.3             | 39.8       | Chem Translator of 0.982 applied |
| Total Cobalt                 | 0    | 0            |                     | 0            | 95            | 95.0             | 232        |                                  |
| Total Copper                 | 0    | 0            |                     | 0            | 105.910       | 110              | 269        | Chem Translator of 0.96 applied  |

| Dissolved Iron                  | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
|---------------------------------|----------------|--------|-----------|------|---------------|---------------|-------------|----------------------------------|
| Total Iron                      | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Lead                      | 0              | 0      |           | 0    | 626.581       | 1,328         | 3,243       | Chem Translator of 0.472 applied |
| Total Manganese                 | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Mercury                   | 0              | 0      |           | 0    | 1.400         | 1.65          | 4.02        | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0              | 0      |           | 0    | 2988.767      | 2,995         | 7,313       | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Selenium                  | 0              | 0      |           | 0    | N/A           | N/A           | N/A         | Chem Translator of 0.922 applied |
| Total Silver                    | 0              | 0      |           | 0    | 139.353       | 164           | 400         | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0              | 0      |           | 0    | 65            | 65.0          | 159         |                                  |
| Total Zinc                      | 0              | 0      |           | 0    | 750.101       | 767           | 1,873       | Chem Translator of 0.978 applied |
| CFC CCT                         | (min): 1.      | 261    | PMF:      | 1    | Ana           | lysis Hardne  | ess (mg/l): | 894.48 Analysis pH: 7.13         |
| Pollutants                      | Stream         | Stream | Trib Conc | Fate | WQC           | WQ Obj        | WLA (µg/L)  | Comments                         |
| Pollutants                      | Conc<br>(up/L) | CV     | (µg/L)    | Coef | (µg/L)        | (µg/L)        | WLA (µg/L)  | Comments                         |
| Total Dissolved Solids (PWS)    | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Chloride (PWS)                  | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Sulfate (PWS)                   | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Fluoride (PWS)                  | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Aluminum                  | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Antimony                  | 0              | 0      |           | 0    | 220           | 220           | 537         |                                  |
| Total Arsenic                   | 0              | 0      |           | 0    | 150           | 150           | 366         | Chem Translator of 1 applied     |
| Total Barium                    | 0              | ō      |           | 0    | 4.100         | 4,100         | 10.012      | onem Hansidor of Fappilea        |
| Total Boron                     | 0              | 0      |           | 0    | 1,600         | 1,600         | 3,907       |                                  |
| Total Cadmium                   | 0              | 0      |           | 0    | 1,000         | 1,000         | 3.35        | Chem Translator of 0.817 applied |
| Total Chromium (III)            | 0              | 0      |           | 0    | 445.901       | 518           | 1,266       | Chem Translator of 0.86 applied  |
| Hexavalent Chromium             | 0              | 0      |           | 0    | 10            | 10.4          | 25.4        |                                  |
|                                 | _              | -      |           |      | 10            |               |             | Chem Translator of 0.962 applied |
| Total Cobalt                    | 0              | 0      |           | 0    |               | 19.0          | 46.4        |                                  |
| Total Copper                    | 0              | 0      |           | 0    | 58.240        | 60.7          | 148         | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Iron                      | 0              | 0      |           | 0    | 1,500         | 1,500         | 3,663       | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0              | 0      |           | 0    | 24.417        | 51.8          | 126         | Chem Translator of 0.472 applied |
| Total Manganese                 | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Mercury                   | 0              | 0      |           | 0    | 0.770         | 0.91          | 2.21        | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0              | 0      |           | 0    | 331.960       | 333           | 813         | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0              | 0      |           | 0    | N/A           | N/A           | N/A         |                                  |
| Total Selenium                  | 0              | 0      |           | 0    | 4.600         | 4.99          | 12.2        | Chem Translator of 0.922 applied |
| Total Silver                    | 0              | 0      |           | 0    | N/A           | N/A           | N/A         | Chem Translator of 1 applied     |
| Total Thallium                  | 0              | 0      |           | 0    | 13            | 13.0          | 31.7        |                                  |
| Total Zinc                      | 0              | 0      |           | 0    | 756.237       | 767           | 1,873       | Chem Translator of 0.986 applied |
| <i>⊡ тнн</i> сст                |                | 261    | PMF:      | 1    | Ana           | ilysis Hardne | ess (mg/l): | N/A Analysis pH: N/A             |
| Pollutants                      | Conc           | Stream | Trib Conc | Fate | WQC<br>(µg/L) | WQ Obj        | WLA (µg/L)  | Comments                         |

| Total Dissolved Solids (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 500,000                                                                                                                                                                                                                                                                                                                                                                                          | 500,000                                                                                         | N/A                                                                                             |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------|
| Chloride (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 250,000                                                                                                                                                                                                                                                                                                                                                                                          | 250,000                                                                                         | N/A                                                                                             |                      |
| Sulfate (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 250,000                                                                                                                                                                                                                                                                                                                                                                                          | 250,000                                                                                         | N/A                                                                                             |                      |
| Fluoride (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 2,000                                                                                                                                                                                                                                                                                                                                                                                            | 2,000                                                                                           | N/A                                                                                             |                      |
| Total Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Total Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 5.6                                                                                                                                                                                                                                                                                                                                                                                              | 5.6                                                                                             | 13.7                                                                                            |                      |
| Total Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                            | 24.4                                                                                            |                      |
| Total Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 2,400                                                                                                                                                                                                                                                                                                                                                                                            | 2,400                                                                                           | 5,860                                                                                           |                      |
| Total Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 3,100                                                                                                                                                                                                                                                                                                                                                                                            | 3,100                                                                                           | 7,570                                                                                           |                      |
| Total Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Total Chromium (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Total Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Total Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Dissolved Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 300                                                                                                                                                                                                                                                                                                                                                                                              | 300                                                                                             | 733                                                                                             |                      |
| Total Iron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Total Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                         | o                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Total Manganese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                         | ō                                                                                         |           | 0                                                                                                                     | 1,000                                                                                                                                                                                                                                                                                                                                                                                            | 1,000                                                                                           | 2,442                                                                                           |                      |
| Total Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                         | o                                                                                         |           | 0                                                                                                                     | 0.050                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                            | 0.12                                                                                            |                      |
| Total Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                         | o                                                                                         |           | 0                                                                                                                     | 610                                                                                                                                                                                                                                                                                                                                                                                              | 610                                                                                             | 1,490                                                                                           |                      |
| Total Phenols (Phenolics) (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                | 5.0                                                                                             | N/A                                                                                             |                      |
| Total Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | 5.0<br>N/A                                                                                      | N/A<br>N/A                                                                                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                           |           |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                 |                      |
| Total Silver<br>Total Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                                                           |           |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                                                                 |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 0.24                                                                                                                                                                                                                                                                                                                                                                                             | 0.24                                                                                            | 0.59                                                                                            |                      |
| Total Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | 0.24<br>N/A                                                                                                                                                                                                                                                                                                                                                                                      | 0.24<br>N/A                                                                                     | 0.59<br>N/A                                                                                     |                      |
| Total Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                         | 0                                                                                         |           | 0                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                             | N/A                                                                                             |                      |
| Total Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                           | 0                                                                                         | PMF:      |                                                                                                                       | N/A                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                 | N/A                                                                                             | N/A Analysis pH: N/A |
| Total Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                         | 0<br>928                                                                                  |           | 0                                                                                                                     | N/A<br>Ana                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>Ilysis Hardne                                                                            | N/A                                                                                             | N/A Analysis pH: N/A |
| Total Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>T (min): 0.9                                                                                                                         | 0<br>928<br>Stream                                                                        | Trib Conc | 0<br>1<br>Fate                                                                                                        | N/A<br>Ana<br>WQC                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>Ilysis Hardne<br>WQ Obj                                                                  | N/A<br>ess (mg/l):                                                                              |                      |
| Total Zinc CRL CC Pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>T (min): 0.1<br>Sueam<br>Conc<br>(un/l )                                                                                             | 0<br>928<br>Stream<br>CV                                                                  |           | 0<br>1<br>Fate<br>Coef                                                                                                | N/A<br>Ana<br>WQC<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>Ilysis Hardne<br>WQ Obj<br>(µg/L)                                                        | N/A<br>ss (mg/l):<br>WLA (µg/L)                                                                 |                      |
| Total Zinc CC CC Pollutants Total Dissolved Solids (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>T (min): 0.1<br>Stream<br>Conc<br>(un/1)<br>0                                                                                        | 0<br>928<br>Stream<br>CV<br>0                                                             | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0                                                                                           | N/A<br>Ana<br>WQC<br>(µg/L)<br>N/A                                                                                                                                                                                                                                                                                                                                                               | N/A<br>Ilysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A                                                 | N/A<br>ss (mg/l):<br>WLA (µg/L)<br>N/A                                                          |                      |
| Total Zinc CCL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>T (min): 0.1<br>Sueam<br>Conc<br>(un(1)<br>0<br>0                                                                                    | 0<br>928<br>Stream<br>CV<br>0<br>0                                                        | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0                                                                                      | N/A<br>Ana<br>WQC<br>(µg/L)<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                        | N/A<br>Ilysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A                                          | N/A<br>ss (mg/l):<br>WLA (µg/L)<br>N/A<br>N/A                                                   |                      |
| Total Zinc CCL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>T (min): 0.1<br>Suream<br>Conc<br>(un/l)<br>0<br>0<br>0                                                                              | 0<br>928<br>Stream<br>CV<br>0<br>0<br>0                                                   | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0                                                                                 | N/A<br>Ana<br>WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                 | N/A<br>alysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A                                   | N/A<br>ess (mg/l):<br>WLA (µg/L)<br>N/A<br>N/A<br>N/A                                           |                      |
| Total Zinc CCL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>T (min): 0.1<br>Suream<br>Conc<br>(un/l)<br>0<br>0<br>0<br>0                                                                         | 0<br>928<br>Stream<br>CV<br>0<br>0<br>0<br>0                                              | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0                                                                            | N/A<br>Ana<br>WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                          | N/A<br>alysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                            | N/A<br>ess (mg/l):<br>WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                    |                      |
| Total Zinc CCL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>T (min): 0.1<br>Suream<br>Conc<br>(unl)<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                           | 0<br>928<br>Stream<br>CV<br>0<br>0<br>0<br>0<br>0                                         | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | N/A<br>Ana<br>WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                   | N/A<br>alysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A              | N/A<br>ess (mg/l):<br>WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             |                      |
| Total Zinc CRL CC Pollutants Total Dissolved Solids (PWS) Chloride (PWS) Sulfate (PWS) Fluoride (PWS) Total Aluminum Total Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>T (min): 0.1<br>Suream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                           | 0<br>928<br>Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | N/A           WQC           (µg/L)           N/A           N/A           N/A           N/A           N/A           N/A           N/A                                                                                                                                                                                                                                                             | N/A<br>alysis Hardne<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                 | N/A<br>ess (mg/l):<br>WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      |                      |
| Total Zinc         Image: CRL       CC         Pollutants       Chloride Solids (PWS)         Chloride (PWS)       Sulfate (PWS)         Fluoride (PWS)       Total Aluminum         Total Aluminum       Total Antimony         Total Arsenic       Total Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>T (min): 0.1<br>Surearm<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 0<br>928<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | N/A<br>Ana<br>WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                              | N/A<br>lysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Ν/Α<br>ess (mg/l):<br>WLA (μg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |                      |
| Total Zinc         Image: CRL       CC         Pollutants       Chloride Solids (PWS)         Chloride (PWS)       Sulfate (PWS)         Fluoride (PWS)       Total Aluminum         Total Aluminum       Total Antimony         Total Arsenic       Total Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>T (min): 0.1<br>Surearm<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>928<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | N/A           WQC           (µg/L)           N/A                                                                                                                                                                                                     | N/A<br>lysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Ν/Α<br>ess (mg/l):<br>WLA (μg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        |                      |
| Total Zinc         CRL       CC         Pollutants       Collutants         Total Dissolved Solids (PWS)       Chloride (PWS)         Chloride (PWS)       Sulfate (PWS)         Fluoride (PWS)       Total Aluminum         Total Antimony       Total Arsenic         Total Barium       Total Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>T (min): 0.1<br>Surearm<br>Conc<br>(un/l )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>928<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | N/A           WQC           (µg/L)           N/A                                                                       | N/A<br>lysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | N/A<br>ess (mg/l):<br>WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                      |
| Total Zinc         Image: CRL       CC         Pollutants       Chloride Solids (PWS)         Chloride (PWS)       Sulfate (PWS)         Fluoride (PWS)       Total Aluminum         Total Aluminum       Total Antimony         Total Arsenic       Total Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>T (min): 0.1<br>Surearm<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>328<br>Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | N/A           WQC           (µg/L)           N/A                                                                                                                                                                                                     | N/A<br>lysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Ν/Α<br>ess (mg/l):<br>WLA (μg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        |                      |
| Total Zinc         CRL       CC         Pollutants       Collutants         Total Dissolved Solids (PWS)       Chloride (PWS)         Chloride (PWS)       Sulfate (PWS)         Fluoride (PWS)       Total Aluminum         Total Antimony       Total Arsenic         Total Barium       Total Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>T (min): 0.1<br>Surearm<br>Conc<br>(un/l )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>328<br>Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | 0<br>1<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | N/A           WQC           (µg/L)           N/A                                                                       | N/A<br>lysis Hardne<br>WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                            |                      |
| Total Zinc         Image: CRL       CC         Pollutants       Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan=" | 0<br>T (min): 0.1<br>Sueam<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                            | 0<br>328<br>Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | 0<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | N/A           WQC           (µg/L)           N/A                                                                                                                                             | N/A<br>N/A<br>N/Q Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A         | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                            |                      |
| Total Zinc         Image: CRL       CC         Pollutants       CC         Otal Dissolved Solids (PWS)       Chloride (PWS)         Sulfate (PWS)       Total Aluminum         Total Arsenic       Total Barium         Total Boron       Total Cadmium         Total Chromium (III)       Total Chromium (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>T (min): 0.1<br>Sueam<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                            | 0<br>328<br>Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | 0<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | N/A           WQC           (µg/L)           N/A                                                         | N/A<br>N/A<br>N/Q Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A         | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                            |                      |
| Total Zinc         CRL       CC         Pollutants       Collutants         Total Dissolved Solids (PWS)       Chloride (PWS)         Chloride (PWS)       Sulfate (PWS)         Fluoride (PWS)       Total Aluminum         Total Aluminum       Total Ansenic         Total Arsenic       Total Barium         Total Boron       Total Cadmium         Total Chromium (III)       Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>T (min): 0.1<br>Sueam<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                            | 0<br>328<br>Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc | 0<br>Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | N/A           WQC           (µg/L)           N/A           N/A | N/A<br>N/A<br>N/Q Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A         | N/A<br>Horss (mg/l):<br>WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A      |                      |

| Total Iron                      | 0 | 0 | 0 | N/A | N/A | N/A |  |
|---------------------------------|---|---|---|-----|-----|-----|--|
| Total Lead                      | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Manganese                 | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Mercury                   | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Nickel                    | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Phenols (Phenolics) (PWS) | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Selenium                  | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Silver                    | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Thallium                  | 0 | 0 | 0 | N/A | N/A | N/A |  |
| Total Zinc                      | 0 | 0 | 0 | N/A | N/A | N/A |  |

#### Recommended WQBELs & Monitoring Requirements

#### No. Samples/Month: 4

|                 | Mass             | Limits           |        | Concentra | tion Limits |       | I                  |                |                                    |
|-----------------|------------------|------------------|--------|-----------|-------------|-------|--------------------|----------------|------------------------------------|
| Pollutants      | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML    | MDL IMAX  |             | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
| Chloride (PWS)  | Report           | Report           | Report | Report    | Report      | mg/L  | N/A                | N/A            | Discharge Conc > 10% WQBEL (no RP) |
| Sulfate (PWS)   | Report           | Report           | Report | Report    | Report      | mg/L  | N/A                | N/A            | Discharge Conc > 10% WQBEL (no RP) |
| Total Aluminum  | Report           | Report           | Report | Report    | Report      | µg/L  | 1,174              | AFC            | Discharge Conc > 10% WQBEL (no RP) |
| Total Cobalt    | 0.014            | 0.022            | 46.4   | 72.4      | 116         | µg/L  | 46.4               | CFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Dissolved Iron  | Report           | Report           | Report | Report    | Report      | µg/L  | 733                | THH            | Discharge Conc > 10% WQBEL (no RP) |
| Total Iron      | Report           | Report           | Report | Report    | Report      | µg/L  | 3,663              | CFC            | Discharge Conc > 10% WQBEL (no RP) |
| Total Manganese | 0.73             | 1.14             | 2,442  | 3,810     | 6,105       | µg/L  | 2,442              | THH            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Total Nickel    | Report           | Report           | Report | Report    | Report      | µg/L  | 813                | CFC            | Discharge Conc > 10% WQBEL (no RP) |
| Total Selenium  | Report           | Report           | Report | Report    | Report      | µg/L  | 12.2               | CFC            | Discharge Conc > 10% WQBEL (no RP) |
| Total Thallium  | 0.0002           | 0.0003           | 0.59   | 0.91      | 1.47        | µg/L  | 0.59               | THH            | Discharge Conc ≥ 50% WQBEL (RP)    |
|                 |                  |                  |        |           |             |       |                    |                |                                    |

#### Other Pollutants without Limits or Monitoring

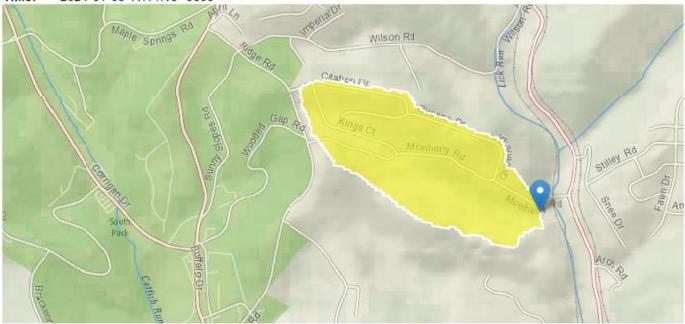
The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                   | Governing<br>WQBEL | Units | Comments                   |  |  |
|------------------------------|--------------------|-------|----------------------------|--|--|
| Total Dissolved Solids (PWS) | N/A                | N/A   | PWS Not Applicable         |  |  |
| Bromide                      | N/A                | N/A   | No WQS                     |  |  |
| Fluoride (PWS)               | N/A                | N/A   | PWS Not Applicable         |  |  |
| Total Antimony               | 13.7               | µg/L  | Discharge Conc ≤ 10% WQBEL |  |  |
| Total Arsenic                | 24.4               | µg/L  | Discharge Conc ≤ 10% WQBEL |  |  |
| Total Barium                 | 5,860              | µg/L  | Discharge Conc ≤ 10% WQBEL |  |  |
| Total Boron                  | 3,907              | µg/L  | Discharge Conc ≤ 10% WQBEL |  |  |
| Total Beryllium              | N/A                | N/A   | No WQS                     |  |  |
| Hexavalent Chromium          | 25.4               | µg/L  | Discharge Conc ≤ 10% WQBEL |  |  |

| Total Chromium (III)            | 1,266 | µg/L | Discharge Conc < TQL       |
|---------------------------------|-------|------|----------------------------|
| Total Copper                    | 148   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Lead                      | 126   | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Cyanide                   | N/A   | N/A  | No WQS                     |
| Total Phenols (Phenolics) (PWS) |       | µg/L | PWS Not Applicable         |
| Total Mercury                   | 0.12  | µg/L | Discharge Conc < TQL       |
| Total Zinc                      | 1,200 | µg/L | Discharge Conc ≤ 10% WQBEL |
| Total Silver                    | 257   | µg/L | Discharge Conc < TQL       |
| Total Molybdenum                | N/A   | N/A  | No WQS                     |

Attachment D:

Stream Stats at Outfall 009


# Oufall 009 StreamStats Report

 Region ID:
 PA

 Workspace ID:
 PA20240103161358651000

 Clicked Point (Latitude, Longitude):
 40.30825, -79.97794

 Time:
 2024-01-03
 11:14:18
 -0500



Collapse All

## > Basin Characteristics

| Parameter Code | Parameter Description                   | Value | Unit         |
|----------------|-----------------------------------------|-------|--------------|
| DRNAREA        | Area that drains to a point on a stream | 0.18  | square miles |
| ELEV           | Mean Basin Elevation                    | 1080  | feet         |

## > Low-Flow Statistics

Low-Flow Statistics Parameters [Low Flow Region 4]

| Parameter Code | Parameter Name       | Value | Units        | Min Limit | Max Limit |
|----------------|----------------------|-------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area        | 0,18  | square miles | 2.26      | 1400      |
| ELEV           | Mean Basin Elevation | 1080  | feet         | 1050      | 2580      |

Low-Flow Statistics Disclaimers [Low Flow Region 4]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

Low-Flow Statistics Flow Report [Low Flow Region 4]

| Statistic               | Value    | Unit   |
|-------------------------|----------|--------|
| 7 Day 2 Year Low Flow   | 0.00365  | ft^3/s |
| 30 Day 2 Year Low Flow  | 0.00757  | ft^3/s |
| 7 Day 10 Year Low Flow  | 0.000934 | ft^3/s |
| 30 Day 10 Year Low Flow | 0.00225  | ft^3/s |
| 90 Day 10 Year Low Flow | 0.00489  | ft^3/s |

Low-Flow Statistics Citations

#### Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS), Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty, Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4,19,2 StreamStats Services Version: 1,2,22 NSS Services Version: 2,3,2 Attachment E:

Seep Analytical Results and Flow Weighted Average

| Parameter (µg/L)              | S-1       | S-2      | S-3      | S-4      | S-5     | S-6      | S-7      | S-8      | Flow Weighted Average |
|-------------------------------|-----------|----------|----------|----------|---------|----------|----------|----------|-----------------------|
| Flow (MGD)                    | 0.0000203 | 0.000002 | 0.000098 | 0.000044 | 0.00097 | 0.000379 | 0.000612 | 0.000435 | 0.00256               |
| Total Dissolved Solids (mg/L) | 492       | 580      | 104      | 758      | 1100    | 598      | 108      | 468      | 632                   |
| Chloride (mg/L)               | 2.38      | 1.94     | 1.94     | 179      | 331     | 283      | 25.5     | 83.8     | 191                   |
| Bromide (mg/L)                | 0.04      | 0.04     | 0.04     | 0.04     | 0.04    | 0.04     | 0.04     | 0.04     | 0.04                  |
| Sulfate (mg/L)                | 154       | 130      | 18.2     | 125      | 150     | 18.5     | 3.45     | 36.4     | 70.7                  |
| Fluoride (mg/L)               | 0.96      | 0.88     | 0.21     | 0.33     | 0.88    | 0.15     | 0.1      | 0.17     | 0.43                  |
| Total Hardness (mg/L)         | 493       | 445      | 122      | 318      | 427     | 135      | 75.1     | 338      | 272                   |
| Total Aluminum                | 240       | 30       | 20       | 250      | 10      | 150      | 30       | 60       | 50.3                  |
| Total Antimony                | 2.71      | 0.417    | 0.152    | 0.224    | 1.5     | 0.125    | 0.125    | 0.125    | 0.67                  |
| Total Arsenic                 | 0.592     | 0.605    | 0.586    | 0.705    | 0.64    | 0.628    | 0.441    | 1.03     | 0.66                  |
| Total Barium                  | 25.3      | 23.2     | 13.1     | 29.3     | 29.5    | 20.1     | 17.6     | 90.1     | 34.9                  |
| Total Beryllium               | 0.039     | 0.039    | 0.039    | 0.039    | 0.039   | 0.039    | 0.039    | 0.039    | 0.04                  |
| Total Boron                   | 316       | 344      | 105      | 77.2     | 219     | 8.63     | 8.5      | 18.7     | 97.6                  |
| Total Cadmium                 | 0.0002    | 0.002    | 0.0002   | 0.0002   | 0.0004  | 0.0002   | 0.0002   | 0.0002   | 0.0003                |
| Total Chromium                | 2.07      | 2.07     | 2.07     | 2.07     | 2.07    | 2.07     | 2.07     | 2.07     | 2.07                  |
| Hexavalent Chromium           | 20        | 2        | 20       | 20       | 2       | 2        | 2        | 20       | 6.20                  |
| Total Cobalt                  | 0.185     | 0.172    | 0.057    | 0.302    | 0.172   | 0.109    | 0.044    | 1.28     | 0.32                  |
| Total Copper                  | 1.71      | 1.05     | 1.17     | 1.54     | 14.7    | 1        | 1.98     | 0.629    | 6.38                  |
| Total Cyanide                 | 4         | 4        | 3        | 4        | 4       | 4        | 4        | 4        | 3.96                  |
| Total Iron                    | 1180      | 40       | 40       | 390      | 20      | 0.15     | 30       | 3030     | 547                   |
| Dissolved Iron                | 30        | 20       | 30       | 110      | 20      | 40       | 20       | 210      | 57.3                  |
| Total Lead                    | 0.202     | 0.075    | 0.075    | 0.365    | 0.082   | 0.133    | 0.0225   | 0.12     | 0.09                  |
| Total Manganese               | 11.7      | 6.25     | 1.68     | 101      | 0.934   | 9.49     | 4.59     | 1570     | 271                   |
| Total Mercury                 | 0.2       | 0.2      | 0.2      | 0.2      | 0.2     | 0.2      | 0.2      | 0.2      | 0.20                  |
| Total Molybdenum              | 8.73      | 1.91     | 1.02     | 0.869    | 18.5    | 0.261    | 0.347    | 0.324    | 7.31                  |
| Total Nickel                  | 1.4       | 1.31     | 0.653    | 1.19     | 13.1    | 0.875    | 0.528    | 2.01     | 5.62                  |
| Total Phenols (Phenolics)     | 18        | 5        | 5.1      | 18       | 0.02    | 17       | 15       | 50       | 15.3                  |
| Total Selenium                | 14.3      | 10.1     | 1.45     | 1.8      | 9.32    | 0.631    | 0.631    | 0.631    | 4.09                  |
| Total Silver                  | 0.0005    | 0.0005   | 0.0005   | 0.0005   | 0.0005  | 0.0005   | 0.0005   | 0.00005  | 0.0004                |
| Total Thallium                | 0.038     | 0.038    | 0.038    | 0.038    | 0.038   | 0.038    | 0.038    | 0.045    | 0.04                  |
| Total Zinc                    | 10        | 5        | 5        | 9        | 77      | 5        | 5        | 5        | 32.4                  |
| Acrolein                      | 2.5       | 2.5      | 2.5      | 2.5      | 2.5     | 2.5      | 2.5      | 2.5      | 2.50                  |
| Acrylamide                    | 110       | 100      | 110      | 110      | 120     | 110      | 110      | 120      | 115                   |
| Acrylonitrile                 | 2.5       | 2.5      | 2.5      | 2.5      | 2.5     | 2.5      | 2.5      | 2.5      | 2.50                  |
| Benzene                       | 0.25      | 0.25     | 0.25     | 0.25     | 0.25    | 2.5      | 2.5      | 2.5      | 1.50                  |
| Bromoform                     | 0.5       | 0.5      | 0.5      | 0.5      | 0.5     | 0.5      | 0.5      | 0.5      | 0.50                  |
| Carbon Tetrachloride          | 0.25      | 0.25     | 0.25     | 0.25     | 0.25    | 0.25     | 0.25     | 0.25     | 0.25                  |
| Chlorobenzene                 | 0.25      | 0.25     | 0.25     | 0.25     | 0.25    | 0.25     | 0.25     | 0.25     | 0.25                  |
| Chlorodibromomethane          | 0.25      | 0.25     | 0.25     | 0.25     | 0.25    | 0.25     | 0.25     | 0.25     | 0.25                  |
| Chloroethane                  | 0.5       | 0.5      | 0.5      | 0.5      | 0.5     | 0.5      | 0.5      | 0.5      | 0.50                  |
| 2-Chloroethyl Vinyl Ether     | 2         | 2        | 2        | 2        | 2       | 2        | 2        | 2        | 2.00                  |
| Chloroform                    | 0.25      | 0.25     | 0.25     | 0.25     | 0.25    | 0.25     | 0.25     | 0.25     | 0.25                  |

| Parameter (µg/L)             | S-1  | S-2  | S-3  | S-4  | S-5   | S-6  | S-7  | S-8  | Flow Weighted Average |
|------------------------------|------|------|------|------|-------|------|------|------|-----------------------|
| Dichlorobromomethane         | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.02 | 0.21                  |
| 1,1-Dichloroethane           | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| 1,2-Dichloroethane           | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| 1,1-Dichloroethylene         | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.50                  |
| 1,2-Dichloropropane          | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| 1,3-Dichloropropylene        | 0.75 | 0.75 | 0.75 | 0.75 | 0.5   | 0.5  | 0.5  | 0.5  | 0.52                  |
| Ethylbenzene                 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| Methyl Bromide               | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.50                  |
| Methyl Chloride              | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.50                  |
| Methylene Chloride           | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| 1,1,2,2-Tetrachloroethane    | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| Tetrachloroethylene          | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| Toluene                      | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| 1,2-trans-Dichloroethylene   | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| 1,1,1-Trichloroethane        | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| 1,1,2-Trichloroethane        | 0.25 | 0.25 | 0.25 | 0.25 | 0.25  | 0.25 | 0.25 | 0.25 | 0.25                  |
| Trichloroethylene            | 0.25 | 0.25 | 0.25 | 0.25 | 0.515 | 0.25 | 0.25 | 0.25 | 0.35                  |
| Vinyl Chloride               | 0.5  | 0.5  | 0.5  | 0.5  | 0.5   | 0.5  | 0.5  | 0.5  | 0.50                  |
| 2-Chlorophenol               | 0.66 | 0.66 | 0.67 | 0.67 | 0.68  | 0.57 | 0.67 | 0.67 | 0.66                  |
| 2,4-Dichlorophenol           | 0.53 | 0.53 | 0.53 | 0.53 | 0.54  | 0.53 | 0.53 | 0.54 | 0.54                  |
| 2,4-Dimethylphenol           | 0.42 | 0.42 | 0.43 | 0.43 | 0.44  | 0.43 | 0.43 | 0.43 | 0.43                  |
| 4,6-Dinitro-o-Cresol         | 15   | 15   | 15   | 15   | 16    | 15   | 15   | 10   | 14.5                  |
| 2,4-Dinitrophenol            | 16   | 16   | 16   | 16   | 16    | 16   | 16   | 16   | 16.0                  |
| 2-Nitrophenol                | 0.63 | 0.63 | 0.64 | 0.64 | 0.65  | 0.64 | 0.64 | 0.64 | 0.64                  |
| 4-Nitrophenol                | 1.5  | 1.5  | 1.5  | 1.5  | 1.5   | 1.5  | 1.5  | 1.5  | 1.50                  |
| p-Chloro-m-Cresol            | 0.63 | 0.63 | 0.64 | 0.64 | 0.65  | 0.64 | 0.64 | 0.64 | 0.64                  |
| Pentachlorophenol            | 8.7  | 8.7  | 8.8  | 8.8  | 9     | 8.8  | 8.8  | 8.9  | 8.89                  |
| Phenol                       | 5    | 5    | 5.1  | 5.1  | 5.2   | 5.1  | 5.1  | 5.1  | 5.14                  |
| 2,4,6-Trichlorophenol        | 0.7  | 0.7  | 0.71 | 0.71 | 7.2   | 0.71 | 0.71 | 0.72 | 3.17                  |
| Acenaphthene                 | 0.67 | 0.67 | 0.68 | 0.68 | 0.69  | 0.68 | 0.68 | 0.68 | 0.68                  |
| Acenaphthylene               | 0.67 | 0.67 | 0.68 | 0.68 | 0.69  | 0.68 | 0.68 | 0.68 | 0.68                  |
| Anthracene                   | 0.51 | 0.51 | 0.51 | 0.51 | 0.52  | 0.51 | 0.51 | 0.52 | 0.52                  |
| Benzidine                    | 94   | 94   | 95   | 95   | 97    | 95   | 95   | 56   | 89.1                  |
| Benzo(a)Anthracene           | 0.77 | 0.77 | 0.78 | 0.78 | 0.8   | 0.78 | 0.78 | 0.79 | 0.79                  |
| Benzo(a)Pyrene               | 0.55 | 0.55 | 0.55 | 0.55 | 0.56  | 0.55 | 0.55 | 2    | 0.80                  |
| 3,4-Benzofluoranthene        | 1    | 1    | 1    | 1    | 1     | 1    | 1    | 1    | 1.00                  |
| Benzo(ghi)Perylene           | 0.71 | 0.71 | 0.72 | 0.72 | 0.73  | 0.72 | 0.72 | 0.73 | 0.73                  |
| Benzo(k)Fluoranthene         | 0.91 | 0.91 | 0.92 | 0.92 | 0.94  | 0.92 | 0.92 | 0.93 | 0.93                  |
| Bis (2-Chloroethoxy) Methane | 0.69 | 0.69 | 0.7  | 0.7  | 0.71  | 0.7  | 0.7  | 0.71 | 0.71                  |
| Bis(2-Chloroethyl)Ether      | 0.41 | 0.41 | 0.42 | 0.42 | 0.43  | 0.42 | 0.42 | 0.42 | 0.42                  |
| Bis(2-Chloroisopropyl)Ether  | 0.6  | 0.6  | 0.6  | 0.6  | 0.62  | 0.6  | 0.6  | 0.61 | 0.61                  |
| Bis(2-Ethylhexyl)Phthalate   | 64   | 64   | 65   | 65   | 66    | 65   | 65   | 66   | 65.5                  |

| Parameter (µg/L)            | S-1  | S-2  | S-3  | S-4  | S-5  | S-6  | S-7  | S-8  | Flow Weighted Average |
|-----------------------------|------|------|------|------|------|------|------|------|-----------------------|
| 4-Bromophenyl Phenyl Ether  | 0.65 | 0.65 | 0.66 | 0.66 | 0.67 | 0.66 | 0.66 | 0.66 | 0.66                  |
| Butyl Benzyl Phthalate      | 4.8  | 4.8  | 4.8  | 4.8  | 4.9  | 4.8  | 4.8  | 4.9  | 4.85                  |
| 2-Chloronaphthalene         | 0.61 | 0.61 | 0.61 | 0.61 | 0.63 | 0.61 | 0.61 | 0.62 | 0.62                  |
| 4-Chlorophenyl Phenyl Ether | 0.63 | 0.63 | 0.64 | 0.64 | 0.65 | 0.64 | 0.64 | 0.64 | 0.64                  |
| Chrysene                    | 0.84 | 0.84 | 0.84 | 0.84 | 0.86 | 0.84 | 0.84 | 0.85 | 0.85                  |
| Dibenzo(a,h)Anthrancene     | 0.74 | 0.74 | 0.75 | 0.75 | 0.77 | 0.75 | 0.75 | 0.76 | 0.76                  |
| 1,2-Dichlorobenzene         | 0.53 | 0.53 | 0.53 | 0.53 | 0.54 | 0.53 | 0.53 | 1    | 0.61                  |
| 1,3-Dichlorobenzene         | 0.51 | 0.51 | 0.51 | 0.51 | 0.52 | 0.51 | 0.51 | 0.5  | 0.51                  |
| 1,4-Dichlorobenzene         | 0.63 | 0.63 | 0.64 | 0.64 | 0.65 | 0.64 | 0.64 | 0.64 | 0.64                  |
| 3,3-Dichlorobenzidine       | 6    | 6    | 6.1  | 6.1  | 6.2  | 6.1  | 6.1  | 6.1  | 6.14                  |
| Diethyl Phthalate           | 5.8  | 5.8  | 5.9  | 5.9  | 6    | 5.9  | 5.9  | 6    | 5.95                  |
| Dimethyl Phthalate          | 0.58 | 0.58 | 0.58 | 0.58 | 0.6  | 0.58 | 0.58 | 0.59 | 0.59                  |
| Di-n-Butyl Phthalate        | 7.7  | 7.7  | 7.7  | 7.7  | 7.9  | 7.7  | 7.7  | 7.8  | 7.79                  |
| 2,4-Dinitrotoluene          | 0.53 | 0.53 | 0.53 | 0.53 | 0.54 | 0.53 | 0.53 | 0.54 | 0.54                  |
| 2,6-Dinitrotoluene          | 0.62 | 0.62 | 0.63 | 0.63 | 0.64 | 0.63 | 0.63 | 0.63 | 0.63                  |
| 1,4-Dioxane                 | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25.0                  |
| Di-n-Octyl Phthalate        | 7.1  | 7.1  | 7.1  | 7.1  | 7.9  | 7.1  | 7.1  | 7.2  | 7.42                  |
| 1,2-Diphenylhydrazine       | 0.51 | 0.51 | 0.51 | 0.51 | 0.54 | 0.51 | 0.51 | 0.52 | 0.52                  |
| Fluoranthene                | 0.62 | 0.62 | 0.63 | 0.63 | 0.64 | 0.63 | 0.63 | 0.63 | 0.63                  |
| Fluorene                    | 0.71 | 0.71 | 0.72 | 0.72 | 0.73 | 0.72 | 0.72 | 0.72 | 0.72                  |
| Hexachlorobenzene           | 0.58 | 0.58 | 0.58 | 0.58 | 0.6  | 0.58 | 0.58 | 0.59 | 0.59                  |
| Hexachlorobutadiene         | 0.71 | 0.71 | 0.72 | 0.72 | 0.73 | 0.72 | 0.72 | 0.73 | 0.73                  |
| Hexachlorocyclopentadiene   | 5.1  | 5.1  | 5.2  | 5.2  | 0.53 | 5.2  | 5.2  | 5.2  | 3.43                  |
| Hexachloroethane            | 0.64 | 0.64 | 0.65 | 0.65 | 0.66 | 0.65 | 0.65 | 0.65 | 0.65                  |
| Indeno(1,2,3-cd)Pyrene      | 0.88 | 0.88 | 0.89 | 0.89 | 0.9  | 0.89 | 0.89 | 0.89 | 0.89                  |
| Isophorone                  | 0.56 | 0.56 | 0.56 | 0.56 | 0.57 | 0.56 | 0.56 | 0.57 | 0.57                  |
| Naphthalene                 | 0.61 | 0.61 | 0.61 | 0.61 | 0.63 | 0.67 | 0.61 | 0.62 | 0.63                  |
| Nitrobenzene                | 5.2  | 5.2  | 5.2  | 5.2  | 5.3  | 5.2  | 5.2  | 5.3  | 5.25                  |
| n-Nitrosodimethylamine      | 0.69 | 0.69 | 0.7  | 0.7  | 0.71 | 0.7  | 0.7  | 0.71 | 0.71                  |
| n-Nitrosodi-n-Propylamine   | 0.73 | 0.73 | 0.74 | 0.74 | 0.76 | 0.74 | 0.74 | 0.75 | 0.75                  |
| n-Nitrosodiphenylamine      | 1.2  | 1.2  | 1.2  | 1.2  | 1.3  | 1.2  | 1.2  | 1.3  | 1.25                  |
| Phenanthrene                | 0.57 | 0.57 | 0.57 | 0.57 | 0.59 | 0.57 | 0.57 | 0.58 | 0.58                  |
| Pyrene                      | 0.56 | 0.56 | 0.56 | 0.56 | 0.57 | 0.56 | 0.56 | 0.57 | 0.57                  |
| 1,2,4-Trichlorobenzene      | 0.54 | 0.54 | 0.54 | 0.54 | 0.55 | 0.54 | 0.54 | 0.55 | 0.55                  |

Attachment F:

Outfall 009 Toxics Management Spreadsheet



**Toxics Management Spreadsheet** Version 1.4, May 2023

# **Discharge Information**

| Inst             | ructions D                    | ischarge Stream    |              |          |                   |          |              |                |             |              |               |                |          |                  |                           |             |
|------------------|-------------------------------|--------------------|--------------|----------|-------------------|----------|--------------|----------------|-------------|--------------|---------------|----------------|----------|------------------|---------------------------|-------------|
| Faci             | lity: Bru                     | ceton Research Cer | nter         |          |                   |          | NF           | DES Per        | mit No.:    | PA0025       | 5844          |                | Outfall  | No.: 009         |                           |             |
| Eval             | luation Type:                 | Major Sewage       | Industri     | ial Wa   | iste              |          | w            | astewater      | Descrip     | tion: Dis    | posal S       | ite Seep       | Discha   | rge              |                           |             |
|                  |                               |                    |              |          | Discha            | rae      | Ch           | aracteris      | tics        |              |               |                |          |                  |                           |             |
| Do               | sign Flow                     |                    |              |          |                   | _        |              | ial Mix F      |             | PMFc)        |               | Com            | nlete Mi | ix Times         | (mi                       | n)          |
|                  | (MGD)*                        | Hardness (mg/l)*   | pH (         | SU)*     | AFC               |          |              | CFC            | TH          |              | CRL           |                | 7-10     |                  | <u>,</u>                  |             |
|                  | 0.05                          | 272                |              | 7        | 7.1 5             | _        |              | 0.0            |             |              | 0112          | ~              | (-10     |                  | <n< td=""><td>_</td></n<> | _           |
|                  | 0.00                          | 212                |              |          |                   |          |              |                |             |              |               |                |          |                  |                           |             |
|                  |                               |                    |              |          |                   |          | 0.01         | eft blank      | 0.5 # #     | eft blank    |               | 0 if left blan | br.      | 1 If lef         | t hlar                    | nk          |
| ſ                |                               |                    |              |          |                   | $\vdash$ | 0.0.0        | or Marin       | 0.0118      | en undrik    | · · ·         | l ner blan     | <u> </u> | 111161           |                           | <u> </u>    |
|                  | Disch                         | arge Pollutant     | Units        |          | Discharge<br>Conc |          | Trib<br>Conc | Stream<br>Conc | Daily<br>CV | Hourly<br>CV | Strea<br>m CV | Fate<br>Coeff  | FOS      | Criteri<br>a Mod |                           | nem<br>ansl |
|                  | Total Dissolve                | d Solids (PWS)     | mg/L         |          | 632               |          | _            | _              |             |              |               |                |          |                  |                           |             |
| l <del>-</del> 1 | Chloride (PW                  | · · ·              | mg/L         |          | 191               | Ħ        |              | -              |             |              |               |                |          |                  |                           | -           |
| Group            | Bromide                       |                    | mg/L         | <        | 0.04              |          |              | _              |             |              |               |                |          |                  |                           |             |
| 5                | Sulfate (PWS                  | )                  | mg/L         |          | 70.7              |          |              | _              |             |              |               |                |          |                  |                           |             |
|                  | Fluoride (PW                  | S)                 | mg/L         |          | 0.43              |          |              |                |             |              |               |                |          |                  |                           |             |
|                  | Total Aluminu                 | m                  | µg/L         |          | 50.3              |          |              |                |             |              |               |                |          |                  |                           |             |
|                  | Total Antimon                 | у                  | µg/L         |          | 0.37              |          |              | _              |             |              |               |                |          |                  |                           |             |
|                  | Total Arsenic                 |                    | µg/L         |          | 0.66              |          |              | -              |             |              |               |                |          |                  |                           |             |
| I L              | Total Barium                  |                    | µg/L         |          | 34.9              | Π        |              |                |             |              |               |                |          |                  |                           |             |
| I F              | Total Berylliur               | n                  | µg/L         | <        | 0.036             | ╞╡       |              | _              |             |              |               |                |          | L                |                           |             |
| I F              | Total Boron                   |                    | µg/L         |          | 97.6              | H        |              |                |             |              |               |                |          | <u> </u>         |                           |             |
|                  | Total Cadmiu                  |                    | µg/L         |          | 0.0003            | Ŗ        |              | _              |             |              |               |                |          | <u> </u>         |                           |             |
| I F              | Total Chromiu                 | 1.1                | µg/L         | <        | 2.07              | ⊢        | ++           | -              |             |              |               |                |          |                  |                           |             |
|                  | Hexavalent Cl<br>Total Cobalt | nromium            | µg/L         | $\vdash$ | 6.2<br>0.32       |          |              |                |             |              |               |                |          |                  |                           |             |
| I F              |                               |                    | µg/L         |          | 6.38              | ╞╡       |              | -              | <u> </u>    |              | <u> </u>      | <u> </u>       |          |                  |                           |             |
| <b>N</b>         | Total Copper<br>Free Cyanide  |                    | μg/L<br>μg/L |          | 0.30              | ┢┼       | ++           | -              | <u> </u>    |              | <u> </u>      |                |          |                  |                           |             |
| <b>a</b>         | Total Cyanide                 |                    | μg/L<br>μg/L | <        | 3.96              | Ħ        |              |                |             |              |               |                |          |                  | Ħ                         |             |
| 2                | Dissolved Iror                |                    | µg/L         |          | 57.3              | Ħ        |              | -              |             |              |               |                |          |                  |                           |             |
|                  | Total Iron                    | -                  | µg/L         |          | 547               | H        |              |                |             |              |               |                |          |                  |                           |             |
|                  | Total Lead                    |                    | µg/L         |          | 0.09              | Ē        |              | _              |             |              |               |                |          |                  |                           |             |
|                  | Total Mangan                  | ese                | µg/L         |          | 271               | Ħ        |              | -              |             |              |               |                |          |                  |                           |             |
|                  | Total Mercury                 |                    | µg/L         | <        | 0.2               |          |              |                |             |              |               |                |          |                  |                           |             |
|                  | Total Nickel                  |                    | µg/L         |          | 5.62              |          |              |                |             |              |               |                |          |                  |                           |             |
|                  |                               | (Phenolics) (PWS)  | µg/L         |          | 15.3              |          |              |                |             |              |               |                |          |                  |                           |             |
|                  | Total Seleniur                | n                  | µg/L         |          | 4.09              | Ľ        |              |                |             |              |               |                |          |                  |                           |             |
| I F              | Total Silver                  |                    | µg/L         |          | 0.002             | H        |              | _              |             |              |               |                |          |                  |                           |             |
| I F              | Total Thallium                | 1                  | µg/L         |          | 0.04              | H        |              | _              |             |              |               |                |          |                  |                           |             |
|                  | Total Zinc                    |                    | µg/L         |          | 32.4              | Ę        |              |                |             |              |               |                |          |                  |                           |             |
| $\vdash$         | Total Molybde                 | num                | µg/L         |          | 5.62              | H        |              | _              |             |              |               |                |          |                  | _                         |             |
|                  | Acrolein                      |                    | µg/L         | <        | 2.5               | Ħ        |              | -              |             |              |               |                |          |                  |                           | +++         |
| I 1              | Acrylamide                    |                    | µg/L         | <        | 115               | Ē        |              | _              |             |              |               |                |          |                  |                           | #           |
|                  | Acrylonitrile                 |                    | µg/L         | <        | 2.5               | H        |              |                |             |              |               |                |          |                  |                           |             |
| I F              | Benzene                       |                    | µg/L         | <        | 1.5               | H        |              | -              |             |              |               |                |          |                  | ++                        | ++          |
|                  | Bromoform                     |                    | µg/L         | <        | 0.5               | É        |              |                |             |              |               |                |          |                  | i i                       |             |

|         | Code on Tata ablasida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                             |                | _ |   |          |  |          |  |         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|---|----------|--|----------|--|---------|
|         | Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | -              | 4 |   |          |  |          |  |         |
|         | Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/L                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                             | ⊢              |   |   |          |  |          |  |         |
|         | Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
|         | Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                              | T              |   |   |          |  |          |  |         |
|         | 2-Chloroethyl Vinyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                | ī.             |   |   |          |  |          |  |         |
|         | Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
|         | Dichlorobromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21                                                                                                                                                                                                             | H              |   |   |          |  |          |  |         |
|         | 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | Ħ              | 7 | = |          |  |          |  |         |
|         | 1.2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | Ħ              |   |   |          |  |          |  |         |
|         | 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                              | Ē              |   |   |          |  |          |  |         |
| Group   | 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             |                |   |   | -        |  |          |  |         |
| 5       | 1,3-Dichloropropylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23                                                                                                                                                                                                             | ╞╡             | = | + |          |  |          |  |         |
|         | 1 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  | $\vdash$       | 4 | _ |          |  |          |  |         |
|         | 1,4-Dioxane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | H              |   |   |          |  |          |  |         |
|         | Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                              | T              |   |   |          |  |          |  |         |
|         | Methyl Bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                              |                |   |   |          |  |          |  |         |
|         | Methyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | $ \rightarrow$ |   |   |          |  |          |  |         |
|         | Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | $\vdash$       |   |   |          |  |          |  | ╎╌╎╌╎╴╎ |
|         | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | F              |   |   |          |  |          |  |         |
|         | Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | Ħ              | 7 |   |          |  |          |  |         |
|         | Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
|         | 1,2-trans-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | Ħ              |   |   |          |  |          |  |         |
|         | 1.1.1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | H              | - | - |          |  |          |  |         |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  | H              | + | _ |          |  |          |  |         |
|         | 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.25                                                                                                                                                                                                             | Ħ              |   |   |          |  |          |  |         |
|         | Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35                                                                                                                                                                                                             | Ê              |   |   | I        |  |          |  |         |
|         | Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                              |                |   |   | <u> </u> |  |          |  |         |
|         | 2-Chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.66                                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
|         | 2,4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.54                                                                                                                                                                                                             | $ \rightarrow$ |   |   |          |  |          |  | + + + + |
|         | 2,4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.43                                                                                                                                                                                                             | H              |   |   |          |  |          |  |         |
|         | 4,6-Dinitro-o-Cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.5                                                                                                                                                                                                             | Ħ              | 7 |   |          |  |          |  |         |
| 4       | 2,4-Dinitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                               |                |   |   |          |  |          |  |         |
| l ≣     | 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.64                                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
| Group   | 4-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                              | Ħ              | = | - |          |  |          |  |         |
| 0       | p-Chloro-m-Cresol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.64                                                                                                                                                                                                             | H              |   |   |          |  |          |  |         |
|         | Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.89                                                                                                                                                                                                             | Ħ              | Ħ | = |          |  |          |  |         |
|         | rentachiorophenor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L                                                                                                                                                                                                                                                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.08                                                                                                                                                                                                             |                |   |   | 1        |  |          |  |         |
|         | Dhanal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.44                                                                                                                                                                                                             |                |   |   |          |  | <u> </u> |  |         |
|         | Phenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/L                                                                                                                                                                                                                                                                       | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.14                                                                                                                                                                                                             | H              |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L<br>μg/L                                                                                                                                                                                                                                                               | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.17                                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                       | <<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.17<br>0.68                                                                                                                                                                                                     |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L<br>μg/L                                                                                                                                                                                                                                                               | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.17<br>0.68<br>0.68                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                                       | <<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.17<br>0.68                                                                                                                                                                                                     |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                                               | <<br><<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17<br>0.68<br>0.68                                                                                                                                                                                             |                |   |   |          |  |          |  |         |
|         | 2,4,8-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                               | <<br><<br><<br><                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.17<br>0.68<br>0.68<br>0.52                                                                                                                                                                                     |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                       | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17<br>0.68<br>0.68<br>0.52<br>89.1<br>0.79                                                                                                                                                                     |                |   |   |          |  |          |  |         |
|         | 2,4,8-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                                                                                                                                                                                                       | <ul> <li></li> <li><td>3.17<br/>0.68<br/>0.68<br/>0.52<br/>89.1<br/>0.79<br/>0.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></li></ul> | 3.17<br>0.68<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8                                                                                                                                                              |                |   |   |          |  |          |  |         |
|         | 2,4,8-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L                                                                                                                                                                                                               | < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.17<br>0.68<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1                                                                                                                                                         |                |   |   |          |  |          |  |         |
|         | 2,4,8-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L                                                                                                                                                                                                               | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17<br>0.68<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73                                                                                                                                                 |                |   |   |          |  |          |  |         |
|         | 2,4,8-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L                                                                                                                                                                                                               | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93                                                                                                                                                 |                |   |   |          |  |          |  |         |
|         | 2,4,8-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L<br>μ9/L                                                                                                                                                                                                               | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71                                                                                                                                         |                |   |   |          |  |          |  |         |
|         | 2,4,8-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethyl)Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u>                                                                                                                                        | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42                                                                                                                                 |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Ether<br>Bis(2-Chloroisopropyl)Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u>                                                                                                                         | < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61                                                                                                                         |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethyl)Ether<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Ethylhexyl)Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                                                                                                         | < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5                                                                                                                 |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Ethylhexyl)Phthalate<br>4-Bromophenyl Phenyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u><br><u>µg/L</u>                                                                                                                         | < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66                                                                                                         |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethyl)Ether<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Ethylhexyl)Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                                                                                                         | < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5                                                                                                                 |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Ethylhexyl)Phthalate<br>4-Bromophenyl Phenyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66                                                                                                         |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Ethylhexyl)Phthalate<br>4-Bromophenyl Phenyl Ether<br>Butyl Benzyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85                                                                                                 |                |   |   |          |  |          |  |         |
|         | 2.4.6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3.4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>4-Bromophenyl Phenyl Ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62                                                                                         |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>4-Bromophenyl Phenyl Ether<br>Butyl Benzyl Phthalate<br>4-Chlorophenyl Phenyl Ether<br>Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64                                                                                 |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>2-Chloronaphthalene<br>4-Chlorophenyl Phenyl Ether<br>Chrysene<br>Dibenzo(a,h)Anthrancene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.76                                                                 |                |   |   |          |  |          |  |         |
|         | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethyl)Ether<br>Bis(2-Chloroethyl)Ether<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Chloroisopropyl)Ether<br>Bis(2-Ethylhexyl)Phthalate<br>4-Bromophenyl Phenyl Ether<br>Butyl Benzyl Phthalate<br>2-Chloronaphthalene<br>4-Chlorophenyl Phenyl Ether<br>Chrysene<br>Dibenzo(a,h)Anthrancene<br>1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.76<br>0.61                                                         |                |   |   |          |  |          |  |         |
|         | 2.4.6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3.4-Benzofluoranthene<br>Benzo(ghi)Perylene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>4-Bromophenyl Phenyl Ether<br>Butyl Benzyl Phthalate<br>2-Chloronaphthalene<br>4-Chlorophenyl Phenyl Ether<br>Chrysene<br>Dibenzo(a,h)Anthrancene<br>1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                                              | v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.76<br>0.61<br>0.51                                                 |                |   |   |          |  |          |  |         |
| 95      | 2.4.6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3.4-Benzofluoranthene<br>Benzo(a)Pyrene<br>Benzo(a)Pyrene<br>Benzo(a)Pyrene<br>Benzo(a)Pyrene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>4-Bromophenyl Phenyl Ether<br>Butyl Benzyl Phthalate<br>2-Chloronaphthalene<br>4-Chlorophenyl Phenyl Ether<br>Chrysene<br>Dibenzo(a,h)Anthrancene<br>1,2-Dichlorobenzene<br>1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                               | v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.76<br>0.61<br>0.51<br>0.64                                         |                |   |   |          |  |          |  |         |
| 5 up 5  | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(a)Pyrene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>2-Chloronaphthalene<br>4-Chlorophenyl Phenyl Ether<br>Chrysene<br>Dibenzo(a,h)Anthrancene<br>1,2-Dichlorobenzene<br>1,4-Dichlorobenzene<br>3,3-Dichlorobenzene | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                               | v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.76<br>0.61<br>0.51<br>0.64<br>6.14                                 |                |   |   |          |  |          |  |         |
| Group 5 | 2.4.6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3.4-Benzofluoranthene<br>Benzo(a)Pyrene<br>3.4-Benzofluoranthene<br>Benzo(a)Pyrene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>4-Bromophenyl Phenyl Ether<br>Butyl Benzyl Phthalate<br>2-Chloronaphthalene<br>4-Chlorophenyl Phenyl Ether<br>Chrysene<br>Dibenzo(a,h)Anthrancene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>3,3-Dichlorobenzene<br>Diethyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                | v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.62<br>0.64<br>0.85<br>0.76<br>0.61<br>0.51<br>0.64<br>6.14<br>5.95 |                |   |   |          |  |          |  |         |
| Group 5 | 2,4,6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(a)Pyrene<br>3,4-Benzofluoranthene<br>Benzo(a)Pyrene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>Dibenzo(a,h)Anthrancene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>3,3-Dichlorobenzene<br>Disthyl Phthalate<br>Dimethyl Phthalate                                                      | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u> | v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.76<br>0.61<br>0.51<br>0.64<br>6.14<br>5.95<br>0.59                 |                |   |   |          |  |          |  |         |
| Group 5 | 2.4.6-Trichlorophenol<br>Acenaphthene<br>Acenaphthylene<br>Anthracene<br>Benzidine<br>Benzo(a)Anthracene<br>Benzo(a)Pyrene<br>3.4-Benzofluoranthene<br>Benzo(a)Pyrene<br>3.4-Benzofluoranthene<br>Benzo(a)Pyrene<br>Benzo(k)Fluoranthene<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Methane<br>Bis(2-Chloroethoxy)Phthalate<br>4-Bromophenyl Phenyl Ether<br>Butyl Benzyl Phthalate<br>2-Chloronaphthalene<br>4-Chlorophenyl Phenyl Ether<br>Chrysene<br>Dibenzo(a,h)Anthrancene<br>1,2-Dichlorobenzene<br>1,3-Dichlorobenzene<br>3,3-Dichlorobenzene<br>Diethyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u><br><u>µ9/L</u>                | v v v v v v v v v v v v v v v v v v v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.17<br>0.68<br>0.52<br>89.1<br>0.79<br>0.8<br>1<br>0.73<br>0.93<br>0.71<br>0.42<br>0.61<br>65.5<br>0.66<br>4.85<br>0.62<br>0.64<br>0.85<br>0.62<br>0.64<br>0.85<br>0.76<br>0.61<br>0.51<br>0.64<br>6.14<br>5.95 |                |   |   |          |  |          |  |         |

|                                   |              |          |      | _  |   | _        | _ |      | <br> |  |  |          |  |
|-----------------------------------|--------------|----------|------|----|---|----------|---|------|------|--|--|----------|--|
| 2,6-Dinitrotoluene                | µg/L         | <        | 0.63 |    |   |          |   |      |      |  |  |          |  |
| Di-n-Octyl Phthalate              | µg/L         | <        | 7.42 |    |   |          |   |      |      |  |  |          |  |
| 1,2-Diphenylhydrazine             | µg/L         | <        | 0.52 |    | _ |          | _ |      |      |  |  | -        |  |
| Fluoranthene                      | µg/L         | <        | 0.63 | H  | _ |          | - |      |      |  |  |          |  |
| Fluorene                          | µg/L         | <        | 0.42 | T  |   |          |   |      |      |  |  | Î –      |  |
| Hexachlorobenzene                 | µg/L         | <        | 0.59 |    |   |          |   |      |      |  |  |          |  |
| Hexachlorobutadiene               | µg/L         | <        | 0.73 | H  | _ |          | - |      |      |  |  |          |  |
| Hexachlorocyclopentadiene         | µg/L         | <        | 3.43 | Ħ  | = | Ħ        | = |      |      |  |  | H        |  |
| Hexachloroethane                  | µg/L         | <        | 0.65 | H  |   | H        | 1 | <br> |      |  |  | t –      |  |
| Indeno(1,2,3-cd)Pyrene            | µg/L         | <        | 0.89 |    |   |          |   | <br> |      |  |  |          |  |
| Isophorone                        |              | <        | 0.57 | H  | _ | H        | - | <br> |      |  |  |          |  |
|                                   | µg/L         | <        | 0.63 | ╞╡ | _ | ╞╡       | + | <br> |      |  |  | ╞        |  |
| Naphthalene                       | µg/L         | <        | 5.25 | H  | _ | +        | + |      |      |  |  | ╟──      |  |
| Nitrobenzene                      | µg/L         | <u> </u> |      | Ħ  | = | Ħ        | - | <br> |      |  |  | H        |  |
| n-Nitrosodimethylamine            | µg/L         | <        | 0.71 |    |   |          |   |      |      |  |  |          |  |
| n-Nitrosodi-n-Propylamine         | µg/L         | <        | 0.75 |    |   |          |   |      |      |  |  |          |  |
| n-Nitrosodiphenylamine            | µg/L         | <        | 1.25 |    | _ |          | _ |      |      |  |  | -        |  |
| Phenanthrene                      | µg/L         | <        | 0.58 |    | _ |          | _ |      |      |  |  |          |  |
| Pyrene                            | µg/L         | <        | 0.57 |    | _ |          | _ |      |      |  |  | i–       |  |
| 1,2,4-Trichlorobenzene            | µg/L         | <        | 0.55 |    |   |          | 1 |      |      |  |  |          |  |
| Aldrin                            | µg/L         | <        |      | þ  | _ |          |   |      |      |  |  |          |  |
| alpha-BHC                         | µg/L         | <        |      | Ħ  | - |          |   |      |      |  |  |          |  |
| beta-BHC                          | µg/L         | <        |      | Ħ  | - | +        | - |      |      |  |  |          |  |
| gamma-BHC                         | µg/L         | <        |      | H  |   |          | - |      |      |  |  | i-       |  |
| delta BHC                         |              | <        |      | Ē  |   | Ħ        | - | <br> |      |  |  |          |  |
| Chlordane                         | μg/L<br>μg/L | <        |      | Ħ  |   |          | - |      |      |  |  |          |  |
|                                   |              | <u> </u> |      | H  | _ | -        | - |      |      |  |  | ╟──      |  |
| 4,4-DDT                           | µg/L         | <        |      | H  | _ | ╞╡       | = |      |      |  |  | ⊨        |  |
| 4,4-DDE                           | µg/L         | <        |      | H  | _ | H        | _ |      |      |  |  |          |  |
| 4,4-DDD                           | µg/L         | <        |      | TÎ |   |          |   |      |      |  |  | Î.       |  |
| Dieldrin                          | µg/L         | <        |      |    |   |          |   |      |      |  |  |          |  |
| alpha-Endosulfan                  | µg/L         | <        |      |    | _ |          | _ |      |      |  |  | <u> </u> |  |
| beta-Endosulfan                   | µg/L         | <        |      | H  | - | $\vdash$ | - |      |      |  |  |          |  |
| Endosulfan Sulfate                | µg/L         | <        |      | Fi | - | T        |   |      |      |  |  | i-       |  |
| Endrin<br>Endrin Aldehyde         | µg/L         | <        |      |    |   |          |   |      |      |  |  |          |  |
| Endrin Aldehyde                   | µg/L         | <        |      | Ħ  | _ |          |   |      |      |  |  |          |  |
| Heptachlor                        | µg/L         | <        |      | Ħ  | - |          | - |      |      |  |  |          |  |
| Heptachlor Epoxide                | µg/L         | <        |      | H  | _ | H        | + |      |      |  |  | t-       |  |
| PCB-1016                          | µg/L         | <        |      | Ħ  |   | Ħ        |   |      |      |  |  |          |  |
| PCB-1221                          | µg/L         | <        |      |    |   |          |   | <br> |      |  |  |          |  |
| PCB-1232                          |              | <        |      | H  | _ | ╞        | + | <br> |      |  |  | ╞        |  |
|                                   | µg/L         | <        |      | H  | _ | $\vdash$ | ┥ | <br> |      |  |  |          |  |
| PCB-1242                          | µg/L         | <u> </u> |      | Ħ  | = | Ħ        | - |      |      |  |  | H        |  |
| PCB-1248                          | µg/L         | <        |      | Ħ  | _ | Ħ        | _ |      |      |  |  | i –      |  |
| PCB-1254                          | µg/L         | <        |      | П  |   |          |   |      |      |  |  |          |  |
| PCB-1260                          | µg/L         | <        |      | Ц  |   |          |   |      |      |  |  |          |  |
| PCBs, Total                       | µg/L         | <        |      |    | _ |          | _ |      |      |  |  | -        |  |
| Toxaphene                         | µg/L         | <        |      | ΞÌ |   |          | _ |      |      |  |  | i-       |  |
| 2,3,7,8-TCDD                      | ng/L         | <        |      | Ī  |   |          |   |      |      |  |  |          |  |
| Gross Alpha                       | pCi/L        |          |      | Ц  |   |          | _ |      |      |  |  |          |  |
| Total Beta                        | pCi/L        | <        |      | H  | _ |          | - |      |      |  |  |          |  |
|                                   | pCi/L        | <        |      | Ħ  | = | Ħ        | = |      |      |  |  | H        |  |
| Total Strontium                   |              | <        |      | H  | - |          | 1 |      |      |  |  | ti-      |  |
|                                   | ua/L         |          |      |    |   |          | _ |      |      |  |  |          |  |
|                                   | µg/L         | <u> </u> |      | Ē  |   | Ħ        |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <        |      |    |   |          | _ |      |      |  |  |          |  |
| Total Uranium<br>Osmotic Pressure |              | <u> </u> |      |    |   |          | _ |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |
| rotal oranium                     | µg/L         | <u> </u> |      |    |   |          |   |      |      |  |  |          |  |

Toxics Management Spreadsheet Version 1.4, May 2023

# DEPARTMENT OF ENVIRONMENTAL

# Stream / Surface Water Information

Bruceton Research Center, NPDES Permit No. PA0025844, Outfall 009

Instructions Discharge Stream

Receiving Surface Water Name: Unnamed Tributary to Lick Run

No. Reaches to Model: 1

- Statewide Criteria
- Great Lakes Criteria
- ORSANCO Criteria

| Location           | Stream Code* | RMI* | Elevation<br>(ft)* | DA (mi <sup>2</sup> )* | Slope (ft/ft) | PWS Withdrawal<br>(MGD) | Apply Fish<br>Criteria* |
|--------------------|--------------|------|--------------------|------------------------|---------------|-------------------------|-------------------------|
| Point of Discharge | 039457       | 0.1  | 940                | 0.18                   |               |                         | Yes                     |
| End of Reach 1     | 039457       | 0.01 | 915                | 0.19                   |               |                         | Yes                     |

#### Q 7-10

| Location           | RMI    | LFY                     | Flow   | (cfs)     | W/D   | Width | Depth | Velocit | Time   | Tributa  | ary | Stream    | n   | Analys   | sis |
|--------------------|--------|-------------------------|--------|-----------|-------|-------|-------|---------|--------|----------|-----|-----------|-----|----------|-----|
| Location           | TSIVI1 | (cfs/mi <sup>2</sup> )* | Stream | Tributary | Ratio | (ft)  | (ft)  | y (fps) | (days) | Hardness | pН  | Hardness* | pH* | Hardness | pН  |
| Point of Discharge | 0.1    | 0.1                     | 0.0009 |           |       |       |       |         |        |          |     | 100       | 7   |          |     |
| End of Reach 1     | 0.01   | 0.1                     | 0.0009 |           |       |       |       |         |        |          |     |           |     |          |     |

#### Qh

| Location           | RMI   | LFY                    | Flow   | (cfs)     | W/D   | Width | Depth | Velocit | Time   | Tributa  | iry | Stream   | m  | Analys   | sis |
|--------------------|-------|------------------------|--------|-----------|-------|-------|-------|---------|--------|----------|-----|----------|----|----------|-----|
| Location           | TSIMI | (cfs/mi <sup>2</sup> ) | Stream | Tributary | Ratio | (ft)  | (ft)  | y (fps) | (days) | Hardness | pН  | Hardness | pН | Hardness | pН  |
| Point of Discharge | 0.1   |                        |        |           |       |       |       |         |        |          |     |          |    |          |     |
| End of Reach 1     | 0.01  |                        |        |           |       |       |       |         |        |          |     |          |    |          |     |



Toxics Management Spreadsheet Version 1.4, May 2023

# Model Results Br

Bruceton Research Center, NPDES Permit No. PA0025844, Outfall 009

| Instructions Results            | RETURN      | TO INPU | TS (      | SAVE AS | PDF      | PRINT       | r ) () A   | II 🔿 Inputs 🔿 Results 🔿 Limits   |
|---------------------------------|-------------|---------|-----------|---------|----------|-------------|------------|----------------------------------|
| Hydrodynamics                   |             |         |           |         |          |             |            |                                  |
| Wasteload Allocations           |             |         |           |         |          |             |            |                                  |
| ✓ AFC cct                       | Г (min): 0. | 000     | PMF:      | 1       | Anal     | ysis Hardne | ss (mg/l): | 270.02 Analysis pH: 7.00         |
| Pollutants                      | Conc        | Stream  | Trib Conc | Fate    | WQC      | WQ Obj      | WLA (µg/L) | Comments                         |
| T + 1 D' + 1 0 1' + (D'MO)      | (ug(l))     | cv      | (µg/L)    | Coef    | (µg/L)   | (µg/L)      |            |                                  |
| Total Dissolved Solids (PWS)    | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Chloride (PWS)                  | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Sulfate (PWS)                   | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Fluoride (PWS)                  | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Total Aluminum                  | 0           | 0       |           | 0       | 750      | 750         | 759        |                                  |
| Total Antimony                  | 0           | 0       |           | 0       | 1,100    | 1,100       | 1,113      |                                  |
| Total Arsenic                   | 0           | 0       |           | 0       | 340      | 340         | 344        | Chem Translator of 1 applied     |
| Total Barium                    | 0           | 0       |           | 0       | 21,000   | 21,000      | 21,244     |                                  |
| Total Boron                     | 0           | 0       |           | 0       | 8,100    | 8,100       | 8,194      |                                  |
| Total Cadmium                   | 0           | 0       |           | 0       | 5.285    | 5.86        | 5.92       | Chem Translator of 0.902 applied |
| Total Chromium (III)            | 0           | 0       |           | 0       | 1285.317 | 4,067       | 4,115      | Chem Translator of 0.316 applied |
| Hexavalent Chromium             | 0           | 0       |           | 0       | 16       | 16.3        | 16.5       | Chem Translator of 0.982 applied |
| Total Cobalt                    | 0           | 0       |           | 0       | 95       | 95.0        | 96.1       |                                  |
| Total Copper                    | 0           | 0       |           | 0       | 34.264   | 35.7        | 36.1       | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Total Iron                      | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Total Lead                      | 0           | 0       |           | 0       | 186.857  | 289         | 292        | Chem Translator of 0.646 applied |
| Total Manganese                 | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Total Mercury                   | 0           | 0       |           | 0       | 1.400    | 1.65        | 1.67       | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0           | 0       |           | 0       | 1084.995 | 1,087       | 1,100      | Chem Translator of 0.998 applied |
| Total Phenols (Phenolics) (PWS) | 0           | 0       |           | 0       | N/A      | N/A         | N/A        |                                  |
| Total Selenium                  | 0           | 0       |           | 0       | N/A      | N/A         | N/A        | Chem Translator of 0.922 applied |
| Total Silver                    | 0           | 0       |           | 0       | 17.759   | 20.9        | 21.1       | Chem Translator of 0.85 applied  |
| Total Thallium                  | 0           | 0       |           | 0       | 65       | 65.0        | 65.8       |                                  |
| Total Zinc                      | 0           | 0       |           | 0       | 271.881  | 278         | 281        | Chem Translator of 0.978 applied |
| Acrolein                        | 0           | 0       |           | 0       | 3        | 3.0         | 3.03       |                                  |

| A 1 1                       |   |   |   | _ |        |        |        | 1 |
|-----------------------------|---|---|---|---|--------|--------|--------|---|
| Acrylamide                  | 0 | 0 | _ | 0 | N/A    | N/A    | N/A    |   |
| Acrylonitrile               | 0 | 0 |   | 0 | 650    | 650    | 658    |   |
| Benzene                     | 0 | 0 |   | 0 | 640    | 640    | 647    |   |
| Bromoform                   | 0 | 0 |   | 0 | 1,800  | 1,800  | 1,821  |   |
| Carbon Tetrachloride        | 0 | 0 |   | 0 | 2,800  | 2,800  | 2,833  |   |
| Chlorobenzene               | 0 | 0 |   | 0 | 1,200  | 1,200  | 1,214  |   |
| Chlorodibromomethane        | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| 2-Chloroethyl Vinyl Ether   | 0 | 0 |   | 0 | 18,000 | 18,000 | 18,209 |   |
| Chloroform                  | 0 | 0 |   | 0 | 1,900  | 1,900  | 1,922  |   |
| Dichlorobromomethane        | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| 1,2-Dichloroethane          | 0 | 0 |   | 0 | 15,000 | 15,000 | 15,175 |   |
| 1,1-Dichloroethylene        | 0 | 0 |   | 0 | 7,500  | 7,500  | 7,587  |   |
| 1,2-Dichloropropane         | 0 | 0 |   | 0 | 11.000 | 11,000 | 11,128 |   |
| 1.3-Dichloropropylene       | 0 | 0 |   | 0 | 310    | 310    | 314    |   |
| Ethylbenzene                | 0 | 0 |   | 0 | 2,900  | 2,900  | 2,934  |   |
| Methyl Bromide              | 0 | 0 |   | 0 | 550    | 550    | 556    |   |
| Methyl Chloride             | 0 | 0 |   | 0 | 28.000 | 28.000 | 28.326 |   |
| Methylene Chloride          | 0 | ō |   | 0 | 12.000 | 12,000 | 12,140 |   |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 |   | 0 | 1.000  | 1.000  | 1,012  |   |
| Tetrachloroethylene         | 0 | ō |   | 0 | 700    | 700    | 708    |   |
| Toluene                     | 0 | 0 |   | 0 | 1,700  | 1,700  | 1,720  |   |
| 1,2-trans-Dichloroethylene  | 0 | 0 |   | 0 | 6.800  | 6.800  | 6,879  |   |
| 1.1.1-Trichloroethane       | 0 | 0 |   | 0 | 3,000  | 3,000  | 3,035  |   |
| 1,1,2-Trichloroethane       | 0 | 0 |   | 0 | 3,000  | 3,000  | 3,035  |   |
|                             | _ | - |   | _ |        |        |        |   |
| Trichloroethylene           | 0 | 0 |   | 0 | 2,300  | 2,300  | 2,327  |   |
| Vinyl Chloride              | 0 | 0 | _ | 0 | N/A    | N/A    | N/A    |   |
| 2-Chlorophenol              | 0 | 0 |   | 0 | 560    | 560    | 567    |   |
| 2,4-Dichlorophenol          | 0 | 0 |   | 0 | 1,700  | 1,700  | 1,720  |   |
| 2,4-Dimethylphenol          | 0 | 0 |   | 0 | 660    | 660    | 668    |   |
| 4,6-Dinitro-o-Cresol        | 0 | 0 |   | 0 | 80     | 80.0   | 80.9   |   |
| 2,4-Dinitrophenol           | 0 | 0 |   | 0 | 660    | 660    | 668    |   |
| 2-Nitrophenol               | 0 | 0 |   | 0 | 8,000  | 8,000  | 8,093  |   |
| 4-Nitrophenol               | 0 | 0 |   | 0 | 2,300  | 2,300  | 2,327  |   |
| p-Chloro-m-Cresol           | 0 | 0 |   | 0 | 160    | 160    | 162    |   |
| Pentachlorophenol           | 0 | 0 |   | 0 | 8.723  | 8.72   | 8.82   |   |
| Phenol                      | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| 2,4,6-Trichlorophenol       | 0 | 0 |   | 0 | 460    | 460    | 465    |   |
| Acenaphthene                | 0 | 0 |   | 0 | 83     | 83.0   | 84.0   |   |
| Anthracene                  | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| Benzidine                   | 0 | 0 |   | 0 | 300    | 300    | 303    |   |
| Benzo(a)Anthracene          | 0 | 0 |   | 0 | 0.5    | 0.5    | 0.51   |   |
| Benzo(a)Pyrene              | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| 3,4-Benzofluoranthene       | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| Benzo(k)Fluoranthene        | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| Bis(2-Chloroethyl)Ether     | 0 | 0 |   | 0 | 30,000 | 30,000 | 30,349 |   |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 |   | 0 | N/A    | N/A    | N/A    |   |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 |   | 0 | 4.500  | 4.500  | 4,552  |   |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 |   | 0 | 270    | 270    | 273    |   |
| -Poromophenyi Phenyi Euler  | U | 0 |   | U | 270    | 270    | 210    | ļ |

| Butyl Benzyl Phthalate       | 0          | 0      |           | 0    | 140     | 140          | 142        |                                  |
|------------------------------|------------|--------|-----------|------|---------|--------------|------------|----------------------------------|
| 2-Chloronaphthalene          | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Chrysene                     | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Dibenzo(a,h)Anthrancene      | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| 1,2-Dichlorobenzene          | 0          | 0      |           | 0    | 820     | 820          | 830        |                                  |
| 1,3-Dichlorobenzene          | 0          | 0      |           | 0    | 350     | 350          | 354        |                                  |
| 1,4-Dichlorobenzene          | 0          | 0      |           | 0    | 730     | 730          | 738        |                                  |
| 3,3-Dichlorobenzidine        | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Diethyl Phthalate            | 0          | 0      |           | 0    | 4,000   | 4,000        | 4,047      |                                  |
| Dimethyl Phthalate           | 0          | 0      |           | 0    | 2,500   | 2,500        | 2,529      |                                  |
| Di-n-Butyl Phthalate         | 0          | 0      |           | 0    | 110     | 110          | 111        |                                  |
| 2,4-Dinitrotoluene           | 0          | 0      |           | 0    | 1,600   | 1,600        | 1,619      |                                  |
| 2,6-Dinitrotoluene           | 0          | 0      |           | 0    | 990     | 990          | 1,002      |                                  |
| 1,2-Diphenylhydrazine        | 0          | 0      |           | 0    | 15      | 15.0         | 15.2       |                                  |
| Fluoranthene                 | 0          | 0      |           | 0    | 200     | 200          | 202        |                                  |
| Fluorene                     | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Hexachlorobenzene            | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Hexachlorobutadiene          | 0          | 0      |           | 0    | 10      | 10.0         | 10.1       |                                  |
| Hexachlorocyclopentadiene    | 0          | 0      |           | 0    | 5       | 5.0          | 5.06       |                                  |
| Hexachloroethane             | 0          | 0      |           | 0    | 60      | 60.0         | 60.7       |                                  |
| Indeno(1,2,3-cd)Pyrene       | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Isophorone                   | 0          | ō      |           | 0    | 10.000  | 10,000       | 10,116     |                                  |
| Naphthalene                  | 0          | ō      |           | 0    | 140     | 140          | 142        |                                  |
| Nitrobenzene                 | 0          | ō      |           | 0    | 4,000   | 4.000        | 4.047      |                                  |
| n-Nitrosodimethylamine       | 0          | 0      |           | 0    | 17.000  | 17,000       | 17,198     |                                  |
| n-Nitrosodi-n-Propylamine    | 0          | ō      |           | 0    | N/A     | N/A          | N/A        |                                  |
| n-Nitrosodiphenylamine       | 0          | ō      |           | 0    | 300     | 300          | 303        |                                  |
| Phenanthrene                 | 0          | 0      |           | 0    | 5       | 5.0          | 5.06       |                                  |
| Pyrene                       | 0          | 0      |           | 0    | N/A     | 0.0<br>N/A   | N/A        |                                  |
| 1,2,4-Trichlorobenzene       | 0          | 0      |           | 0    | 130     | 130          | 132        |                                  |
| 1,2,4-meniorobenzene         |            | U      |           | U    | 150     | 130          | 192        |                                  |
| CFC CCT                      | (min): 0.0 | 000    | PMF:      | 1    | Ana     | lysis Hardne | ss (mg/l): | 270.02 Analysis pH: 7.00         |
|                              | Stream     | Stream | Trib Conc | Fate | WQC     | WQ Obj       |            | <b>A</b>                         |
| Pollutants                   | Conc       | CV     | (µg/L)    | Coef | (µg/L)  | (µg/L)       | WLA (µg/L) | Comments                         |
| Total Dissolved Solids (PWS) | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Chloride (PWS)               | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Sulfate (PWS)                | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Fluoride (PWS)               | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| · · · ·                      |            | -      |           |      |         |              |            |                                  |
| Total Aluminum               | 0          | 0      |           | 0    | N/A     | N/A          | N/A        |                                  |
| Total Antimony               | 0          | 0      |           | 0    | 220     | 220          | 223        |                                  |
| Total Arsenic                | 0          | 0      |           | 0    | 150     | 150          | 152        | Chem Translator of 1 applied     |
| Total Barium                 | 0          | 0      |           | 0    | 4,100   | 4,100        | 4,148      |                                  |
| Total Boron                  | 0          | 0      |           | 0    | 1,600   | 1,600        | 1,619      |                                  |
| Total Cadmium                | 0          | 0      |           | 0    | 0.490   | 0.56         | 0.57       | Chem Translator of 0.867 applied |
| Total Chromium (III)         | 0          | 0      |           | 0    | 167.193 | 194          | 197        | Chem Translator of 0.86 applied  |
| Hexavalent Chromium          | 0          | 0      |           | 0    | 10      | 10.4         | 10.5       | Chem Translator of 0.962 applied |
|                              |            |        |           |      |         |              |            |                                  |

| Total Cobalt                    | 0 | 0 |          | 0 | 19      | 19.0  | 19.2  |                                  |
|---------------------------------|---|---|----------|---|---------|-------|-------|----------------------------------|
| Total Copper                    | 0 | 0 |          | 0 | 20.928  | 21.8  | 22.1  | Chem Translator of 0.96 applied  |
| Dissolved Iron                  | 0 | 0 |          | 0 | N/A     | N/A   | N/A   | enem nanskar er eller applied    |
| Total Iron                      | 0 | 0 |          | 0 | 1.500   | 1.500 | 1.517 | WQC = 30 day average; PMF = 1    |
| Total Lead                      | 0 | 0 |          | 0 | 7.282   | 11.3  | 11.4  | Chem Translator of 0.646 applied |
| Total Manganese                 | 0 | 0 |          | 0 | N/A     | N/A   | N/A   |                                  |
| Total Mercury                   | 0 | 0 |          | 0 | 0.770   | 0.91  | 0.92  | Chem Translator of 0.85 applied  |
| Total Nickel                    | 0 | 0 |          | 0 | 120.509 | 121   | 122   | Chem Translator of 0.997 applied |
| Total Phenols (Phenolics) (PWS) | 0 | 0 |          | 0 | N/A     | N/A   | N/A   | onen mansator or otoor apprea    |
| Total Selenium                  | 0 | 0 |          | 0 | 4.600   | 4,99  | 5.05  | Chem Translator of 0.922 applied |
| Total Silver                    | 0 | 0 |          | 0 | N/A     | N/A   | N/A   | Chem Translator of 1 applied     |
| Total Thallium                  | 0 | 0 |          | 0 | 13      | 13.0  | 13.2  | onen manadar or rappied          |
| Total Zinc                      | 0 | 0 |          | 0 | 274.105 | 278   | 281   | Chem Translator of 0.986 applied |
| Acrolein                        | 0 | 0 |          | 0 | 3       | 3.0   | 3.03  |                                  |
| Acrylamide                      | 0 | 0 |          | 0 | N/A     | N/A   | N/A   |                                  |
| Acrylonitrile                   | 0 | 0 |          | 0 | 130     | 130   | 132   |                                  |
| Benzene                         | 0 | 0 |          | 0 | 130     | 130   | 132   |                                  |
| Bromoform                       | 0 | 0 |          | 0 | 370     | 370   | 374   |                                  |
| Carbon Tetrachloride            | 0 | 0 |          | 0 | 560     | 560   | 567   |                                  |
| Chlorobenzene                   | 0 | 0 |          | 0 | 240     | 240   | 243   |                                  |
| Chlorodibromomethane            | 0 | 0 |          | 0 | N/A     | N/A   | N/A   |                                  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 |          | 0 | 3,500   | 3,500 | 3.541 |                                  |
| Chloroform                      | 0 | 0 |          | 0 | 390     | 390   | 395   |                                  |
| Dichlorobromomethane            | 0 | 0 |          | 0 | N/A     | N/A   | N/A   |                                  |
| 1.2-Dichloroethane              | 0 | 0 | ┝┼╌┼╌┼╶╉ | 0 | 3,100   | 3,100 | 3,136 |                                  |
| 1,1-Dichloroethylene            | 0 | 0 |          | 0 | 1,500   | 1,500 | 1,517 |                                  |
| 1,2-Dichloropropane             | 0 | 0 |          | 0 | 2,200   | 2,200 | 2,226 |                                  |
| 1,3-Dichloropropylene           | 0 | 0 |          | 0 | 61      | 61.0  | 61.7  |                                  |
| Ethylbenzene                    | 0 | 0 |          | 0 | 580     | 580   | 587   |                                  |
| Methyl Bromide                  | 0 | 0 |          | 0 | 110     | 110   | 111   |                                  |
| Methyl Chloride                 | 0 | 0 |          | 0 | 5,500   | 5,500 | 5,564 |                                  |
| Methylene Chloride              | 0 | 0 |          | 0 | 2,400   | 2,400 | 2,428 |                                  |
| 1,1,2,2-Tetrachloroethane       | 0 | 0 |          | 0 | 210     | 210   | 212   |                                  |
| Tetrachloroethylene             | 0 | 0 |          | 0 | 140     | 140   | 142   |                                  |
| Toluene                         | 0 | 0 |          | 0 | 330     | 330   | 334   |                                  |
| 1,2-trans-Dichloroethylene      | 0 | 0 |          | 0 | 1,400   | 1,400 | 1,416 |                                  |
| 1,1,1-Trichloroethane           | 0 | 0 |          | 0 | 610     | 610   | 617   |                                  |
| 1,1,2-Trichloroethane           | 0 | 0 |          | 0 | 680     | 680   | 688   |                                  |
| Trichloroethylene               | 0 | 0 |          | 0 | 450     | 450   | 455   |                                  |
| Vinyl Chloride                  | 0 | 0 |          | 0 | N/A     | N/A   | N/A   |                                  |
| 2-Chlorophenol                  | 0 | 0 |          | 0 | 110     | 110   | 111   |                                  |
| 2,4-Dichlorophenol              | 0 | 0 |          | 0 | 340     | 340   | 344   |                                  |
| 2,4-Dimethylphenol              | 0 | 0 |          | 0 | 130     | 130   | 132   |                                  |
| 4,6-Dinitro-o-Cresol            | 0 | 0 |          | 0 | 16      | 16.0  | 16.2  |                                  |
| 2,4-Dinitrophenol               | 0 | 0 |          | 0 | 130     | 130   | 132   |                                  |

| 2-Nitrophenol               | 0 | 0 | 0 | 1,600 | 1,600 | 1,619 |  |
|-----------------------------|---|---|---|-------|-------|-------|--|
| 4-Nitrophenol               | 0 | 0 | 0 | 470   | 470   | 475   |  |
| p-Chloro-m-Cresol           | 0 | 0 | 0 | 500   | 500   | 506   |  |
| Pentachlorophenol           | 0 | 0 | 0 | 6.693 | 6.69  | 6.77  |  |
| Phenol                      | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| 2,4,6-Trichlorophenol       | 0 | 0 | 0 | 91    | 91.0  | 92.1  |  |
| Acenaphthene                | 0 | 0 | 0 | 17    | 17.0  | 17.2  |  |
| Anthracene                  | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Benzidine                   | 0 | 0 | 0 | 59    | 59.0  | 59.7  |  |
| Benzo(a)Anthracene          | 0 | 0 | 0 | 0.1   | 0.1   | 0.1   |  |
| Benzo(a)Pyrene              | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| 3.4-Benzofluoranthene       | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | 6.000 | 6.000 | 6,070 |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | 910   | 910   | 921   |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | 54    | 54.0  | 54.6  |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | 35    | 35.0  | 35.4  |  |
| 2-Chloronaphthalene         | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Chrysene                    | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Dibenzo(a,h)Anthrancene     | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| 1,2-Dichlorobenzene         | 0 | 0 | 0 | 160   | 160   | 162   |  |
| 1.3-Dichlorobenzene         | 0 | 0 | 0 | 69    | 69.0  | 69.8  |  |
| 1,4-Dichlorobenzene         | 0 | 0 | 0 | 150   | 150   | 152   |  |
| 3.3-Dichlorobenzidine       | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Diethyl Phthalate           | 0 | 0 | 0 | 800   | 800   | 809   |  |
| Dimethyl Phthalate          | 0 | 0 | 0 | 500   | 500   | 506   |  |
| Di-n-Butyl Phthalate        | 0 | 0 | 0 | 21    | 21.0  | 21.2  |  |
| 2.4-Dinitrotoluene          | 0 | 0 | 0 | 320   | 320   | 324   |  |
| 2.6-Dinitrotoluene          | 0 | 0 | 0 | 200   | 200   | 202   |  |
| 1,2-Diphenylhydrazine       | 0 | 0 | 0 | 3     | 3.0   | 3.03  |  |
| Fluoranthene                | 0 | 0 | 0 | 40    | 40.0  | 40.5  |  |
| Fluorene                    | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Hexachlorobenzene           | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Hexachlorobutadiene         | 0 | 0 | 0 | 2     | 2.0   | 2.02  |  |
| Hexachlorocyclopentadiene   | 0 | 0 | 0 | 1     | 1.0   | 1.01  |  |
| Hexachloroethane            | 0 | 0 | 0 | 12    | 12.0  | 12.1  |  |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| Isophorone                  | 0 | 0 | 0 | 2,100 | 2,100 | 2,124 |  |
| Naphthalene                 | 0 | 0 | 0 | 43    | 43.0  | 43.5  |  |
| Nitrobenzene                | 0 | 0 | 0 | 810   | 810   | 819   |  |
| n-Nitrosodimethylamine      | 0 | 0 | 0 | 3,400 | 3,400 | 3,440 |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 | 0 | N/A   | N/A   | N/A   |  |
| n-Nitrosodiphenylamine      | 0 | 0 | 0 | 59    | 59.0  | 59.7  |  |
| Phenanthrene                | 0 | 0 | 0 | 1     | 1.0   | 1.01  |  |

## NPDES Permit No. PA0025844

| Pyrene                          | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
|---------------------------------|----------------|--------------|---------------------|--------------|---------------|------------------|------------|----------------------|
| 1.2.4-Trichlorobenzene          | 0              | 0            |                     | 0            | 26            | 26.0             | 26.3       |                      |
| _                               |                | 000          | PMF:                | 1            |               | lysis Hardne     |            | N/A Analysis pH: N/A |
| Pollutants                      | Conc<br>(uo/L) | Stream<br>CV | Trib Conc<br>(µg/L) | Fate<br>Coef | WQC<br>(µg/L) | WQ Obj<br>(µg/L) | WLA (µg/L) | Comments             |
| Total Dissolved Solids (PWS)    | 0              | 0            |                     | 0            | 500,000       | 500,000          | N/A        |                      |
| Chloride (PWS)                  | 0              | 0            |                     | 0            | 250,000       | 250,000          | N/A        |                      |
| Sulfate (PWS)                   | 0              | 0            |                     | 0            | 250,000       | 250,000          | N/A        |                      |
| Fluoride (PWS)                  | 0              | 0            |                     | 0            | 2,000         | 2,000            | N/A        |                      |
| Total Aluminum                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Antimony                  | 0              | 0            |                     | 0            | 5.6           | 5.6              | 5.67       |                      |
| Total Arsenic                   | 0              | 0            |                     | 0            | 10            | 10.0             | 10.1       |                      |
| Total Barium                    | 0              | 0            |                     | 0            | 2,400         | 2,400            | 2,428      |                      |
| Total Boron                     | 0              | 0            |                     | 0            | 3,100         | 3,100            | 3,136      |                      |
| Total Cadmium                   | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Chromium (III)            | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Hexavalent Chromium             | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Cobalt                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Copper                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Dissolved Iron                  | 0              | 0            |                     | 0            | 300           | 300              | 303        |                      |
| Total Iron                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Lead                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Manganese                 | 0              | 0            |                     | 0            | 1,000         | 1,000            | 1,012      |                      |
| Total Mercury                   | 0              | 0            |                     | 0            | 0.050         | 0.05             | 0.051      |                      |
| Total Nickel                    | 0              | 0            |                     | 0            | 610           | 610              | 617        |                      |
| Total Phenols (Phenolics) (PWS) | 0              | 0            |                     | 0            | 5             | 5.0              | N/A        |                      |
| Total Selenium                  | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Silver                    | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Total Thallium                  | 0              | 0            |                     | 0            | 0.24          | 0.24             | 0.24       |                      |
| Total Zinc                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Acrolein                        | 0              | 0            |                     | 0            | 3             | 3.0              | 3.03       |                      |
| Acrylamide                      | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Acrylonitrile                   | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Benzene                         | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Bromoform                       | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Carbon Tetrachloride            | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Chlorobenzene                   | 0              | 0            |                     | 0            | 100           | 100.0            | 101        |                      |
| Chlorodibromomethane            | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| 2-Chloroethyl Vinyl Ether       | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| Chloroform                      | 0              | 0            |                     | 0            | 5.7           | 5.7              | 5.77       |                      |
| Dichlorobromomethane            | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| 1,2-Dichloroethane              | 0              | 0            |                     | 0            | N/A           | N/A              | N/A        |                      |
| 1,1-Dichloroethylene            | 0              | 0            |                     | 0            | 33            | 33.0             | 33.4       |                      |

| 1,2-Dichloropropane         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
|-----------------------------|---|---|---|--------|--------|--------|--|
| 1,3-Dichloropropylene       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Ethylbenzene                | 0 | 0 | 0 | 68     | 68.0   | 68.8   |  |
| Methyl Bromide              | 0 | 0 | 0 | 100    | 100.0  | 101    |  |
| Methyl Chloride             | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Methylene Chloride          | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,1,2,2-Tetrachloroethane   | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Tetrachloroethylene         | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Toluene                     | 0 | 0 | 0 | 57     | 57.0   | 57.7   |  |
| 1,2-trans-Dichloroethylene  | 0 | 0 | 0 | 100    | 100.0  | 101    |  |
| 1,1,1-Trichloroethane       | 0 | 0 | 0 | 10,000 | 10,000 | 10,116 |  |
| 1,1,2-Trichloroethane       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Trichloroethylene           | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Vinyl Chloride              | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 2-Chlorophenol              | 0 | 0 | 0 | 30     | 30.0   | 30.3   |  |
| 2,4-Dichlorophenol          | 0 | 0 | 0 | 10     | 10.0   | 10.1   |  |
| 2,4-Dimethylphenol          | 0 | 0 | 0 | 100    | 100.0  | 101    |  |
| 4.6-Dinitro-o-Cresol        | 0 | 0 | 0 | 2      | 2.0    | 2.02   |  |
| 2.4-Dinitrophenol           | 0 | 0 | 0 | 10     | 10.0   | 10.1   |  |
| 2-Nitrophenol               | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 4-Nitrophenol               | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| p-Chloro-m-Cresol           | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Pentachlorophenol           | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Phenol                      | 0 | 0 | 0 | 4.000  | 4.000  | 4.047  |  |
| 2,4,6-Trichlorophenol       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Acenaphthene                | 0 | 0 | 0 | 70     | 70.0   | 70.8   |  |
| Anthracene                  | 0 | 0 | 0 | 300    | 300    | 303    |  |
| Benzidine                   | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Benzo(a)Anthracene          | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Benzo(a)Pyrene              | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 3,4-Benzofluoranthene       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0 | 200    | 200    | 202    |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0 | 0.1    | 0.1    | 0.1    |  |
| 2-Chloronaphthalene         | 0 | 0 | 0 | 800    | 800    | 809    |  |
| Chrysene                    | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Dibenzo(a,h)Anthrancene     | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| 1,2-Dichlorobenzene         | 0 | 0 | 0 | 1,000  | 1,000  | 1,012  |  |
| 1,3-Dichlorobenzene         | 0 | 0 | 0 | 7      | 7.0    | 7.08   |  |
| 1,4-Dichlorobenzene         | 0 | 0 | 0 | 300    | 300    | 303    |  |
| 3,3-Dichlorobenzidine       | 0 | 0 | 0 | N/A    | N/A    | N/A    |  |
| Diethyl Phthalate           | 0 | 0 | 0 | 600    | 600    | 607    |  |

| Dimethyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 2,000                                                                               | 2,000                                                                                                                                                                                                                                                                                                                                                                                             | 2,023                                                                            |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------|
| Di-n-Butyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 20                                                                                  | 20.0                                                                                                                                                                                                                                                                                                                                                                                              | 20.2                                                                             |                               |
| 2,4-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| 2,6-Dinitrotoluene                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| 1,2-Diphenylhydrazine                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 20                                                                                  | 20.0                                                                                                                                                                                                                                                                                                                                                                                              | 20.2                                                                             |                               |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 50                                                                                  | 50.0                                                                                                                                                                                                                                                                                                                                                                                              | 50.6                                                                             |                               |
| Hexachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Hexachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 4                                                                                   | 4.0                                                                                                                                                                                                                                                                                                                                                                                               | 4.05                                                                             |                               |
| Hexachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Indeno(1,2,3-cd)Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Isophorone                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 34                                                                                  | 34.0                                                                                                                                                                                                                                                                                                                                                                                              | 34.4                                                                             |                               |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Nitrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 10                                                                                  | 10.0                                                                                                                                                                                                                                                                                                                                                                                              | 10.1                                                                             |                               |
| n-Nitrosodimethylamine                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| n-Nitrosodi-n-Propylamine                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| n-Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | N/A                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                              |                               |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 20                                                                                  | 20.0                                                                                                                                                                                                                                                                                                                                                                                              | 20.2                                                                             |                               |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                       | 0                                                                                                      |                             | 0                                                                                                           | 0.07                                                                                | 0.07                                                                                                                                                                                                                                                                                                                                                                                              | 0.071                                                                            |                               |
| CRL CCT (min): 0.004 PMF: 1 Analysis Hardness (mg/l): N/A Analysis pH: N/A                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                         |                                                                                                        |                             |                                                                                                             |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stream                                                                                                                  |                                                                                                        |                             |                                                                                                             | •                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  | N/A Analysis pH: N/A          |
| CRL CC Pollutants                                                                                                                                                                                                                                                                                                                                                                                                                             | Conc                                                                                                                    | Stream<br>CV                                                                                           | PMF:<br>Trib Conc<br>(µg/L) | 1<br>Fate<br>Coef                                                                                           | Ana<br>WQC<br>(µg/L)                                                                | WQ Obj<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                                  | ss (mg/l):<br>WLA (µg/L)                                                         | N/A Analysis pH: N/A Comments |
|                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stream                                                                                                                  | Stream                                                                                                 | Trib Conc                   | Fate                                                                                                        | WQC                                                                                 | WQ Obj                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                  |                               |
| Pollutants                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conc<br>(up/L)                                                                                                          | Stream<br>CV                                                                                           | Trib Conc                   | Fate<br>Coef                                                                                                | WQC<br>(µg/L)                                                                       | WQ Obj<br>(µg/L)                                                                                                                                                                                                                                                                                                                                                                                  | WLA (µg/L)                                                                       |                               |
| Pollutants<br>Total Dissolved Solids (PWS)                                                                                                                                                                                                                                                                                                                                                                                                    | Sueam<br>Conc<br>(un/L)<br>0                                                                                            | Stream<br>CV<br>0                                                                                      | Trib Conc                   | Fate<br>Coef<br>0                                                                                           | WQC<br>(µg/L)<br>N/A                                                                | WQ Obj<br>(µg/L)<br>N/A                                                                                                                                                                                                                                                                                                                                                                           | WLA (µg/L)<br>N/A                                                                |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)                                                                                                                                                                                                                                                                                                                                                                                  | Conc<br>(up/L)<br>0                                                                                                     | Stream<br>CV<br>0                                                                                      | Trib Conc                   | Fate<br>Coef<br>0                                                                                           | WQC<br>(µg/L)<br>N/A<br>N/A                                                         | WQ Obj<br>(µg/L)<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                    | WLA (µg/L)<br>N/A<br>N/A                                                         |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)                                                                                                                                                                                                                                                                                                                                                                 | Conc<br>(unll)<br>0<br>0                                                                                                | Stream<br>CV<br>0<br>0                                                                                 | Trib Conc                   | Fate<br>Coef<br>0<br>0                                                                                      | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A                                                  | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                             | WLA (µg/L)<br>N/A<br>N/A<br>N/A                                                  |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)                                                                                                                                                                                                                                                                                                                                               | Conc<br>(un/l )<br>0<br>0<br>0                                                                                          | Stream<br>CV<br>0<br>0<br>0                                                                            | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0                                                                                 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                           | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                      | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A                                           |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum                                                                                                                                                                                                                                                                                                                             | Conc<br>(unll)<br>0<br>0<br>0<br>0<br>0<br>0                                                                            | Stream<br>CV<br>0<br>0<br>0<br>0                                                                       | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0                                                                            | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                               | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                    |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony                                                                                                                                                                                                                                                                                                           | Stream<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0                                                                 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0                                                             | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0                                                                  | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                        | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                             |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Arsenic                                                                                                                                                                                                                                                                                          | Stream<br>Conc<br>(unfl )<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                  | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                 | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                      |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Arsenic<br>Total Barium                                                                                                                                                                                                                                                                          | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                 | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Antimony<br>Total Arsenic<br>Total Barium<br>Total Boron                                                                                                                                                                                                                                                           | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A        | WQ Obj<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                          | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A               |                               |
| Pollutants<br>Total Dissolved Solids (PWS)<br>Chloride (PWS)<br>Sulfate (PWS)<br>Fluoride (PWS)<br>Total Aluminum<br>Total Aluminum<br>Total Ansenic<br>Total Barium<br>Total Boron<br>Total Cadmium                                                                                                                                                                                                                                          | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj           N/A                                                                                      | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                               |
| Pollutants         Total Dissolved Solids (PWS)         Chloride (PWS)         Sulfate (PWS)         Fluoride (PWS)         Total Aluminum         Total Aluminum         Total Antimony         Total Barium         Total Barium         Total Cadmium         Total Chromium (III)         Hexavalent Chromium         Total Cobalt                                                                                                        | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj           N/A                                                                        | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                               |
| Pollutants         Total Dissolved Solids (PWS)         Chloride (PWS)         Sulfate (PWS)         Fluoride (PWS)         Total Aluminum         Total Aluminum         Total Antimony         Total Arsenic         Total Barium         Total Boron         Total Cadmium         Total Chromium (III)         Hexavalent Chromium         Total Cobalt         Total Copper                                                              | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj         (µg/L)           N/A         N/A           N/A         N/A | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                               |
| Pollutants         Total Dissolved Solids (PWS)         Chloride (PWS)         Sulfate (PWS)         Fluoride (PWS)         Total Aluminum         Total Aluminum         Total Antimony         Total Barium         Total Barium         Total Cadmium         Total Chromium (III)         Hexavalent Chromium         Total Cobalt                                                                                                        | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj           N/A                                                          | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                               |
| Pollutants         Total Dissolved Solids (PWS)         Chloride (PWS)         Sulfate (PWS)         Fluoride (PWS)         Total Aluminum         Total Aluminum         Total Antimony         Total Arsenic         Total Barium         Total Boron         Total Cadmium         Total Chromium (III)         Hexavalent Chromium         Total Cobalt         Total Copper                                                              | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj         (µg/L)           N/A         N/A           N/A         N/A | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                               |
| Pollutants         Total Dissolved Solids (PWS)         Chloride (PWS)         Sulfate (PWS)         Fluoride (PWS)         Total Aluminum         Total Aluminum         Total Antimony         Total Arsenic         Total Barium         Total Boron         Total Cadmium         Total Chromium (III)         Hexavalent Chromium         Total Cobalt         Total Copper         Dissolved Iron         Total Iron         Total Lead | Stream<br>Conc<br>(und)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj           (µg/L)           N/A                           | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                               |
| Pollutants         Total Dissolved Solids (PWS)         Chloride (PWS)         Sulfate (PWS)         Fluoride (PWS)         Total Aluminum         Total Aluminum         Total Antimony         Total Arsenic         Total Barium         Total Boron         Total Cadmium         Total Chromium (III)         Hexavalent Chromium         Total Cobalt         Total Copper         Dissolved Iron         Total Iron                    | Stream<br>Conc<br>(unit)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Stream<br>CV<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Trib Conc                   | Fate<br>Coef<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | WQC<br>(µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | WQ Obj           (µg/L)           N/A                                         | WLA (µg/L)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A |                               |

| Total Nickel                    | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
|---------------------------------|---|---|---|-------|------|-------|--|
| Total Phenols (Phenolics) (PWS) | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Total Selenium                  | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Total Silver                    | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Total Thallium                  | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Total Zinc                      | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Acrolein                        | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Acrylamide                      | 0 | 0 | 0 | 0.07  | 0.07 | 0.085 |  |
| Acrylonitrile                   | 0 | 0 | 0 | 0.06  | 0.06 | 0.073 |  |
| Benzene                         | 0 | 0 | 0 | 0.58  | 0.58 | 0.7   |  |
| Bromoform                       | 0 | 0 | 0 | 7     | 7.0  | 8.46  |  |
| Carbon Tetrachloride            | 0 | 0 | 0 | 0.4   | 0.4  | 0.48  |  |
| Chlorobenzene                   | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Chlorodibromomethane            | 0 | 0 | 0 | 0.8   | 0.8  | 0.97  |  |
| 2-Chloroethyl Vinyl Ether       | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Chloroform                      | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Dichlorobromomethane            | 0 | 0 | 0 | 0.95  | 0.95 | 1.15  |  |
| 1.2-Dichloroethane              | 0 | 0 | 0 | 9.9   | 9.9  | 12.0  |  |
| 1,1-Dichloroethylene            | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 1,2-Dichloropropane             | 0 | 0 | 0 | 0.9   | 0.9  | 1.09  |  |
| 1,3-Dichloropropylene           | 0 | 0 | 0 | 0.27  | 0.27 | 0.33  |  |
| Ethylbenzene                    | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Methyl Bromide                  | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Methyl Chloride                 | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Methylene Chloride              | 0 | 0 | 0 | 20    | 20.0 | 24.2  |  |
| 1.1.2.2-Tetrachloroethane       | 0 | 0 | 0 | 0.2   | 0.2  | 0.24  |  |
| Tetrachloroethylene             | 0 | 0 | 0 | 10    | 10.0 | 12.1  |  |
| Toluene                         | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 1,2-trans-Dichloroethylene      | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 1.1.1-Trichloroethane           | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 1,1,2-Trichloroethane           | 0 | 0 | 0 | 0.55  | 0.55 | 0.67  |  |
| Trichloroethylene               | 0 | 0 | 0 | 0.6   | 0.6  | 0.73  |  |
| Vinyl Chloride                  | 0 | 0 | 0 | 0.02  | 0.02 | 0.024 |  |
| 2-Chlorophenol                  | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 2,4-Dichlorophenol              | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 2,4-Dimethylphenol              | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 4,6-Dinitro-o-Cresol            | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 2,4-Dinitrophenol               | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 2-Nitrophenol                   | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 4-Nitrophenol                   | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| p-Chloro-m-Cresol               | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| Pentachlorophenol               | 0 | 0 | 0 | 0.030 | 0.03 | 0.036 |  |
| Phenol                          | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |
| 2,4,6-Trichlorophenol           | 0 | 0 | 0 | 1.5   | 1.5  | 1.81  |  |
| Acenaphthene                    | 0 | 0 | 0 | N/A   | N/A  | N/A   |  |

|                             | - |   | <br> |         |         |        |  |
|-----------------------------|---|---|------|---------|---------|--------|--|
| Anthracene                  | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Benzidine                   | 0 | 0 | 0    | 0.0001  | 0.0001  | 0.0001 |  |
| Benzo(a)Anthracene          | 0 | 0 | 0    | 0.001   | 0.001   | 0.001  |  |
| Benzo(a)Pyrene              | 0 | 0 | 0    | 0.0001  | 0.0001  | 0.0001 |  |
| 3,4-Benzofluoranthene       | 0 | 0 | 0    | 0.001   | 0.001   | 0.001  |  |
| Benzo(k)Fluoranthene        | 0 | 0 | 0    | 0.01    | 0.01    | 0.012  |  |
| Bis(2-Chloroethyl)Ether     | 0 | 0 | 0    | 0.03    | 0.03    | 0.036  |  |
| Bis(2-Chloroisopropyl)Ether | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Bis(2-Ethylhexyl)Phthalate  | 0 | 0 | 0    | 0.32    | 0.32    | 0.39   |  |
| 4-Bromophenyl Phenyl Ether  | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Butyl Benzyl Phthalate      | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| 2-Chloronaphthalene         | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Chrysene                    | 0 | 0 | 0    | 0.12    | 0.12    | 0.15   |  |
| Dibenzo(a,h)Anthrancene     | 0 | 0 | 0    | 0.0001  | 0.0001  | 0.0001 |  |
| 1,2-Dichlorobenzene         | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| 1,3-Dichlorobenzene         | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| 1,4-Dichlorobenzene         | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| 3,3-Dichlorobenzidine       | 0 | 0 | 0    | 0.05    | 0.05    | 0.06   |  |
| Diethyl Phthalate           | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Dimethyl Phthalate          | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Di-n-Butyl Phthalate        | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| 2,4-Dinitrotoluene          | 0 | 0 | 0    | 0.05    | 0.05    | 0.06   |  |
| 2,6-Dinitrotoluene          | 0 | 0 | 0    | 0.05    | 0.05    | 0.06   |  |
| 1,2-Diphenylhydrazine       | 0 | 0 | 0    | 0.03    | 0.03    | 0.036  |  |
| Fluoranthene                | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Fluorene                    | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Hexachlorobenzene           | 0 | 0 | 0    | 0.00008 | 0.00008 | 0.0001 |  |
| Hexachlorobutadiene         | 0 | 0 | 0    | 0.01    | 0.01    | 0.012  |  |
| Hexachlorocyclopentadiene   | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Hexachloroethane            | 0 | 0 | 0    | 0.1     | 0.1     | 0.12   |  |
| Indeno(1,2,3-cd)Pyrene      | 0 | 0 | 0    | 0.001   | 0.001   | 0.001  |  |
| Isophorone                  | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Naphthalene                 | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Nitrobenzene                | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| n-Nitrosodimethylamine      | 0 | 0 | 0    | 0.0007  | 0.0007  | 0.0008 |  |
| n-Nitrosodi-n-Propylamine   | 0 | 0 | 0    | 0.005   | 0.005   | 0.006  |  |
| n-Nitrosodiphenylamine      | 0 | 0 | 0    | 3.3     | 3.3     | 3.99   |  |
| Phenanthrene                | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| Pyrene                      | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
| 1,2,4-Trichlorobenzene      | 0 | 0 | 0    | N/A     | N/A     | N/A    |  |
|                             | 1 |   |      |         |         |        |  |

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

|                            | Mass             | Limits           |        | Concentra | tion Limits |       | T                  |                |                                    |
|----------------------------|------------------|------------------|--------|-----------|-------------|-------|--------------------|----------------|------------------------------------|
| Pollutants                 | AML<br>(lbs/day) | MDL<br>(lbs/day) | AML    | MDL       | IMAX        | Units | Governing<br>WQBEL | WQBEL<br>Basis | Comments                           |
| Hexavalent Chromium        | 0.004            | 0.007            | 10.5   | 16.4      | 26.3        | µg/L  | 10.5               | CFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Total Copper               | Report           | Report           | Report | Report    | Report      | µg/L  | 22.1               | CFC            | Discharge Conc > 10% WQBEL (no RP) |
| Dissolved Iron             | Report           | Report           | Report | Report    | Report      | µg/L  | 303                | THH            | Discharge Conc > 10% WQBEL (no RP) |
| Total Iron                 | Report           | Report           | Report | Report    | Report      | µg/L  | 1,517              | CFC            | Discharge Conc > 10% WQBEL (no RP) |
| Total Manganese            | Report           | Report           | Report | Report    | Report      | µg/L  | 1,012              | THH            | Discharge Conc > 10% WQBEL (no RP) |
| Total Selenium             | 0.002            | 0.003            | 5.05   | 7.87      | 12.6        | µg/L  | 5.05               | CFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Total Thallium             | Report           | Report           | Report | Report    | Report      | µg/L  | 0.24               | THH            | Discharge Conc > 10% WQBEL (no RP) |
| Total Zinc                 | Report           | Report           | Report | Report    | Report      | µg/L  | 278                | AFC            | Discharge Conc > 10% WQBEL (no RP) |
| Acrolein                   | 0.001            | 0.001            | 3.0    | 3.03      | 3.03        | µg/L  | 3.0                | AFC            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Acrylamide                 | 0.00004          | 0.00006          | 0.085  | 0.13      | 0.21        | µg/L  | 0.085              | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzene                    | 0.0003           | 0.0005           | 0.7    | 1.09      | 1.75        | µg/L  | 0.7                | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| 1,3-Dichloropropylene      | 0.0001           | 0.0002           | 0.33   | 0.51      | 0.82        | µg/L  | 0.33               | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Trichloroethylene          | Report           | Report           | Report | Report    | Report      | µg/L  | 0.73               | CRL            | Discharge Conc > 25% WQBEL (no RP) |
| 4,6-Dinitro-o-Cresol       | 0.0008           | 0.001            | 2.02   | 3.16      | 5.06        | µg/L  | 2.02               | THH            | Discharge Conc ≥ 50% WQBEL (RP)    |
| 2,4-Dinitrophenol          | 0.004            | 0.007            | 10.1   | 15.8      | 25.3        | µg/L  | 10.1               | THH            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Benzidine                  | 5.04E-08         | 7.87E-08         | 0.0001 | 0.0002    | 0.0003      | µg/L  | 0.0001             | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Bis(2-Ethylhexyl)Phthalate | 0.0002           | 0.0003           | 0.39   | 0.6       | 0.97        | µg/L  | 0.39               | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| 3,3-Dichlorobenzidine      | 0.00003          | 0.00004          | 0.06   | 0.094     | 0.15        | µg/L  | 0.06               | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Di-n-Butyl Phthalate       | Report           | Report           | Report | Report    | Report      | µg/L  | 20.2               | THH            | Discharge Conc > 25% WQBEL (no RP) |
| Hexachlorobutadiene        | 0.000005         | 0.000008         | 0.012  | 0.019     | 0.03        | µg/L  | 0.012              | CRL            | Discharge Conc ≥ 50% WQBEL (RP)    |
| Nitrobenzene               | 0.004            | 0.007            | 10.1   | 15.8      | 25.3        | µg/L  | 10.1               | THH            | Discharge Conc ≥ 50% WQBEL (RP)    |
| 1,2,4-Trichlorobenzene     | 0.00003          | 0.00005          | 0.071  | 0.11      | 0.18        | µg/L  | 0.071              | THH            | Discharge Conc ≥ 50% WQBEL (RP)    |

#### Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

| Pollutants                   | Governing<br>WQBEL | Units | Comments                   |
|------------------------------|--------------------|-------|----------------------------|
| Total Dissolved Solids (PWS) | N/A                | N/A   | PWS Not Applicable         |
| Chloride (PWS)               | N/A                | N/A   | PWS Not Applicable         |
| Bromide                      | N/A                | N/A   | No WQS                     |
| Sulfate (PWS)                | N/A                | N/A   | PWS Not Applicable         |
| Fluoride (PWS)               | N/A                | N/A   | PWS Not Applicable         |
| Total Aluminum               | 750                | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Antimony               | 5.67               | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Arsenic                | 10.1               | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Barium                 | 2,428              | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Beryllium              | N/A                | N/A   | No WQS                     |
| Total Boron                  | 1,619              | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Cadmium                | 0.57               | µg/L  | Discharge Conc ≤ 10% WQBEL |
| Total Chromium (III)         | 197                | µg/L  | Discharge Conc < TQL       |

| Total Cobalt                    | 19.2  | µg/L | Discharge Conc ≤ 10% WQBEL |
|---------------------------------|-------|------|----------------------------|
| Total Cyanide                   | N/A   | N/A  | No WQS                     |
| Total Lead                      | 11.4  | µg/L | Discharge Conc ≤ 10% WQBE  |
| Total Mercury                   | 0.051 | µg/L | Discharge Conc < TQL       |
| Total Nickel                    | 122   | µg/L | Discharge Conc ≤ 10% WQBE  |
| Total Phenols (Phenolics) (PWS) |       | µg/L | PWS Not Applicable         |
| Total Silver                    | 20.9  | µg/L | Discharge Conc ≤ 10% WQBE  |
| Total Molybdenum                | N/A   | N/A  | No WQS                     |
| Acrylonitrile                   | 0.073 | µg/L | Discharge Conc < TQL       |
| Bromoform                       | 8.46  | µg/L | Discharge Conc < TQL       |
| Carbon Tetrachloride            | 0.48  | µg/L | Discharge Conc < TQL       |
| Chlorobenzene                   | 101   | µg/L | Discharge Conc ≤ 25% WQBE  |
| Chlorodibromomethane            | 0.97  | µg/L | Discharge Conc < TQL       |
| Chloroethane                    | N/A   | N/A  | No WQS                     |
| 2-Chloroethyl Vinyl Ether       | 3,541 | µg/L | Discharge Conc < TQL       |
| Chloroform                      | 5.77  | µg/L | Discharge Conc < TQL       |
| Dichlorobromomethane            | 1.15  | µg/L | Discharge Conc < TQL       |
| 1,1-Dichloroethane              | N/A   | N/A  | No WQS                     |
| 1,2-Dichloroethane              | 12.0  | µg/L | Discharge Conc < TQL       |
| 1,1-Dichloroethylene            | 33.4  | µg/L | Discharge Conc < TQL       |
| 1,2-Dichloropropane             | 1.09  | µg/L | Discharge Conc < TQL       |
| 1.4-Dioxane                     | N/A   | N/A  | No WQS                     |
| Ethylbenzene                    | 68.8  | µg/L | Discharge Conc < TQL       |
| Methyl Bromide                  | 101   | µg/L | Discharge Conc < TQL       |
| Methyl Chloride                 | 5,564 | µg/L | Discharge Conc < TQL       |
| Methylene Chloride              | 24.2  | µg/L | Discharge Conc < TQL       |
| 1.1.2.2-Tetrachloroethane       | 0.24  | µg/L | Discharge Conc < TQL       |
| Tetrachloroethylene             | 12.1  | µg/L | Discharge Conc < TQL       |
| Toluene                         | 57.7  | µg/L | Discharge Conc < TQL       |
| 1,2-trans-Dichloroethylene      | 101   | µg/L | Discharge Conc < TQL       |
| 1.1.1-Trichloroethane           | 617   | µg/L | Discharge Conc < TQL       |
| 1.1.2-Trichloroethane           | 0.67  | µg/L | Discharge Conc < TQL       |
| Vinyl Chloride                  | 0.024 | µg/L | Discharge Conc < TQL       |
| 2-Chlorophenol                  | 30.3  | µg/L | Discharge Conc < TQL       |
| 2.4-Dichlorophenol              | 10.1  | µg/L | Discharge Conc < TQL       |
| 2,4-Dimethylphenol              | 101   | µg/L | Discharge Conc < TQL       |
| 2-Nitrophenol                   | 1.619 | µg/L | Discharge Conc < TQL       |
| 4-Nitrophenol                   | 475   | µg/L | Discharge Conc < TQL       |
| p-Chloro-m-Cresol               | 160   | µg/L | Discharge Conc < TQL       |
| Pentachlorophenol               | 0.036 | µg/L | Discharge Conc < TQL       |
| Phenol                          | 4.047 | µg/L | Discharge Conc < TQL       |
| 2,4,6-Trichlorophenol           | 1.81  | µg/L | Discharge Conc < TQL       |
| Acenaphthene                    | 17.2  | µg/L | Discharge Conc < TQL       |
| Acenaphthylene                  | N/A   | N/A  | No WQS                     |
| Anthracene                      | 303   | µg/L | Discharge Conc < TQL       |

| Benzo(a)Anthracene          | 0.001  | µg/L | Discharge Conc < TQL       |
|-----------------------------|--------|------|----------------------------|
| Benzo(a)Pyrene              | 0.0001 | µg/L | Discharge Conc < TQL       |
| 3,4-Benzofluoranthene       | 0.001  | µg/L | Discharge Conc < TQL       |
| Benzo(ghi)Perylene          | N/A    | N/A  | No WQS                     |
| Benzo(k)Fluoranthene        | 0.012  | µg/L | Discharge Conc < TQL       |
| Bis(2-Chloroethoxy)Methane  | N/A    | N/A  | No WQS                     |
| Bis(2-Chloroethyl)Ether     | 0.036  | µg/L | Discharge Conc < TQL       |
| Bis(2-Chloroisopropyl)Ether | 202    | µg/L | Discharge Conc < TQL       |
| 4-Bromophenyl Phenyl Ether  | 54.6   | µg/L | Discharge Conc < TQL       |
| Butyl Benzyl Phthalate      | 0.1    | µg/L | Discharge Conc < TQL       |
| 2-Chloronaphthalene         | 809    | µg/L | Discharge Conc < TQL       |
| 4-Chlorophenyl Phenyl Ether | N/A    | N/A  | No WQS                     |
| Chrysene                    | 0.15   | µg/L | Discharge Conc < TQL       |
| Dibenzo(a,h)Anthrancene     | 0.0001 | μg/L | Discharge Conc < TQL       |
| 1,2-Dichlorobenzene         | 162    | µg/L | Discharge Conc ≤ 25% WQBEL |
| 1,3-Dichlorobenzene         | 7.08   | µg/L | Discharge Conc ≤ 25% WQBEL |
| 1,4-Dichlorobenzene         | 152    | µg/L | Discharge Conc ≤ 25% WQBEL |
| Diethyl Phthalate           | 607    | µg/L | Discharge Conc ≤ 25% WQBEL |
| Dimethyl Phthalate          | 506    | µg/L | Discharge Conc < TQL       |
| 2,4-Dinitrotoluene          | 0.06   | µg/L | Discharge Conc < TQL       |
| 2,6-Dinitrotoluene          | 0.06   | µg/L | Discharge Conc < TQL       |
| Di-n-Octyl Phthalate        | N/A    | N/A  | No WQS                     |
| 1,2-Diphenylhydrazine       | 0.036  | µg/L | Discharge Conc < TQL       |
| Fluoranthene                | 20.2   | µg/L | Discharge Conc < TQL       |
| Fluorene                    | 50.6   | µg/L | Discharge Conc < TQL       |
| Hexachlorobenzene           | 0.0001 | µg/L | Discharge Conc < TQL       |
| Hexachlorocyclopentadiene   | 1.01   | µg/L | Discharge Conc < TQL       |
| Hexachloroethane            | 0.12   | µg/L | Discharge Conc < TQL       |
| Indeno(1,2,3-cd)Pyrene      | 0.001  | µg/L | Discharge Conc < TQL       |
| Isophorone                  | 34.4   | µg/L | Discharge Conc < TQL       |
| Naphthalene                 | 43.5   | µg/L | Discharge Conc ≤ 25% WQBEL |
| n-Nitrosodimethylamine      | 0.0008 | µg/L | Discharge Conc < TQL       |
| n-Nitrosodi-n-Propylamine   | 0.006  | µg/L | Discharge Conc < TQL       |
| n-Nitrosodiphenylamine      | 3.99   | µg/L | Discharge Conc < TQL       |
| Phenanthrene                | 1.01   | µg/L | Discharge Conc < TQL       |
| Pyrene                      | 20.2   | µg/L | Discharge Conc < TQL       |

## NPDES Permit No. PA0025844