

Southeast Regional Office CLEAN WATER PROGRAM

Application Type

Facility Type

Major / Minor

Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

Application No. PA0026085

APS ID 957773

Authorization ID 1211198

	Applicant and Fa	cility Information	
Applicant Name	Upper Merion Sanitary And Stormwater Authority	Facility Name	U Merion-Matsunk STP
Applicant Address	175 W Valley Forge Road	Facility Address	600 Mccoys Lane
	King Of Prussia, PA 19406-1851		Swedeland, PA 19406
Applicant Contact	Anthony Hamaday	Facility Contact	Robert Mckernan
Applicant Phone		Facility Phone	(610) 275-0688
Client ID	72994	Site ID	449536
Ch 94 Load Status	Not Overloaded	Municipality	Upper Merion Township
Connection Status	No Limitations	County	Montgomery
Date Application Rece	ived December 20, 2017	EPA Waived?	No
Date Application Acce	pted May 8, 2018	If No, Reason	Major Sewage, Pretreatment
Purpose of Application	Permit Renewal.		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application for Matsunk WPCC (facility) from Upper Merion Municipal Utility Authority (new name is Upper Merion Sanitary and Stormwater Authority, UMSSA) on December 20, 2017. The permit was drafted on September 8, 2018 and redrafted on October 27, 2018 and January 8, 2021. The redraft on July 2021 was as a result of a revision of a governing SOP. The updated SOP was reviewed and necessary changes are made in the draft permit and fact sheet. The facility is a Major Facility with design flow of 5.5 MGD and HDC of 6.88 MGD. The treated effluent discharges through Outfall 002 into a culvert to Schuylkill River, WWF/MF at RMI 22.26. The existing permit expired on June 30, 2018. The terms and conditions were automatically extended since the renewal application was received at least 180 days prior to permit expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56.

Changes in the permit: TDS limit, total Copper limit with schedule, DO limit updated, TN monitoring, Dry and Wet weather PCB sampling, and E. Coli monitoring

Sludge use and disposal description and location(s): Sludge is handled through gravity thickener units prior to being dewatered by a rotary press that was installed in April 2014. The dewatered cake is stabilized with lime prior to being hauled to one of two Waste Management owned landfills. The landfills are Tullytown, PA Resource Recovery Facility and GROWS North landfill in Morrisville, PA.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
1		1	
V		Reza H. Chowdhury, E.I.T. / Project Manager	June 29, 2021
X		Pravin Patel	
^		Pravin C. Patel, P.E. / Environmental Engineer Manager	06/30/2021

Discharge, Receiving Water	rs and Water Supply Inform	mation	
Outfall No. 002		Design Flow (MGD)	5.5
Latitude 40° 5' 38"		Longitude	-75º 19' 42"
Quad Name Norristowr	1	Quad Code	1843
Wastewater Description:	Sewage Effluent		
Receiving Waters Schuy	ylkill River* (WWF, MF)	Stream Code	00833
NHD Com ID 13322	28925	RMI	22.26
Drainage Area 1770	mi ²	Yield (cfs/mi²)	0.153
Q ₇₋₁₀ Flow (cfs) <u>271</u>		Q ₇₋₁₀ Basis	Please see below
Elevation (ft) 42.85	5	Slope (ft/ft)	
Watershed No. 3-F		Chapter 93 Class.	WWF, MF
Existing Use	/MF	Existing Use Qualifier	
Exceptions to Use None		Exceptions to Criteria	N/A
Assessment Status	Impaired		
Cause(s) of Impairment	PCB		
Source(s) of Impairment			*
TMDL Status	Finalized on 04/07/2007	Name Schuylkill F	River PCB TMDL
Background/Ambient Data		Data Source	
pH (SU)	7.0	Default per 391-2000-013	
Temperature (°C)	_25	Default per 391-2000-013 for	WWF
Hardness (mg/L)	212.67	Application Data	
Other:			
Nearest Downstream Publi	c Water Supply Intake	City of Philadelphia Queen La	ane
PWS Waters Schuylk	ill River	Flow at Intake (cfs)	
PWS RMI 12.59		Distance from Outfall (mi)	≈ 9.67 miles

^{*} The facility discharges directly into Frog Run (Pa Stream Code 00942) at RMI 0.4 mi. However, since Frog Run is essentially a culvert between the point of discharge and the Schuylkill River, the point of first use has been determined to be the Schuylkill River.

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

Streamflow will be correlated with the USGS's web-based GIS application ($\frac{\text{https://streamstats.usgs.gov/ss/}}{\text{on October 22, 2020. Q}_{7-10}$ and Q $_{30-10}$ values at Outfall 002 were found to be 271 cfs and 326 cfs respectively. The drainage area at Outfall 002 was found to be 1770 mi² from StreamStats.

 $Q_{7\text{-}10} \text{ runoff rate} = 271 \text{ cfs/ } 1770 \text{ mi}^2 = 0.153 \text{ cfs/mi}^2 \\ Q_{30\text{-}10}/Q_{7\text{-}10} = 326 \text{ cfs/}271 \text{ cfs} = 1.2 \\ \text{Default } Q_{1\text{-}10}\text{: } Q_{7\text{-}10} \text{ of } 0.64 \text{ from } 391\text{-}2000\text{-}007 \text{ will be used in modeling, if needed.} \\$

DEP's SOP (BPMPSM-PMT-033, revised Oct 1, 2020) section II.B.4 states that where a facility is eligible for technology based limits of CBOD $_5$ exceeding 25 mg/l, application managers will evaluate a WQBEL for CBOD $_5$ as follows:

- a. Model the discharge using Toxics Management Spreadsheet (TMS)
- b. Multiply the acute partial mix factor by the Q₇₋₁₀ of the receiving waters

- c. Run the WQM 7.0 model using the adjusted Q₇₋₁₀ and apply the WQBEL in the permit, if less than the technology-based limits
- d. Establish the average monthly concentration limit for TSS at the same concentration as for CBOD₅ using BPJ, if the CBOD₅ limit is a WQBEL

The attached TMS model suggested a PMFa of 6.5%. A partial mixing factor, according to DEP's technical guidance (391-2000-011), is used to describe the factional portion of the stream that mixes with the discharge at the criteria compliance times. The partial mix factor is a value between 0 and 1; 1 presenting complete mixing and less than 1 represents there is incomplete mixing between the discharge and the stream. Therefore, the revised Q₇₋₁₀ will be **271** * **0.065** or **17.62** cfs.

PWS Intake:

The nearest downstream public water supply is City of Philadelphia at Queen Lane intake, on Schuylkill River at RMI 12.59. Its approximately 9.67 miles downstream of Outfall 002.

Wastewater Characteristics:

A median pH of 7.0 from daily DMR during dry months July through September for the year 2020 and a default temperature of 20°C (per 391-2000-013) will be used for modeling, if needed. The application data indicated an average Total Hardness of 210 mg/l out of 3 samples.

Background data:

There is currently no nearby StreamGage or WQN stations from Outfall 002. In absence of site-specific temperature data, a default temperature of 25°C and default pH of 7.0 (per 391-2000-013, WWF) will be used in modeling, if needed. The application data indicated stream hardness of 212.67 mg/l.

303d Listed Streams:

Schuylkill River is impaired for Fish Consumption and Aquatic Life due to PCB but supporting Potable Water Use. A TMDL has been finalized by EPA on 04/07/2007 for PCB.

Schuylkill River PCB TMDL:

During the previous permit cycle, the permittee collected one wet weather and one dry weather sample and analyzed for PCBs using Method 1668A. The results were: 10,673 pg/l (WW 04/08/2014); 1,404 pg/l (DW 05/2014)

The PCB results indicate that there are PCB concentrations that are above natural background and statewide surface water criteria levels. Based on the concentration of PCBs and volume of wastewater, this facility is considered a less significant source of PCBs.

The facility is required to develop and implement a PCB PMP (Pollution Minimization Plan). PCB sampling using Analytical Method 1668A is required to provide a baseline PCB level and to show progress towards achieving the instream PCB criteria of 64 pg/l. Guidelines developed by DRBC for the Delaware River TMDL recommends 1/year dry and wet weather sampling using method 1668A for POTWs influenced by wet weather. The facility is also required to submit annual PMP reports.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm Water Fishes (WWF) and Migratory Fishes (MF.) No High Quality stream or Exceptional Value water is impacted by this discharge, therefore, no Antidegradation Analysis is performed for the discharge.

Discharge, Red	ceiving Waters and Water Supply Information		
Outfall No.	003	Design Flow (MGD)	0
Latitude	40° 5' 41"	Longitude	-75° 19' 43"
Quad Name	Norristown	Quad Code	1843
Wastewater I	Description: Stormwater		

Changes Since Last Permit Issuance: None Other Comments:

Per Phase II stormwater regulations, major POTWs are required to have a permit for the discharge of stormwater. Therefore, stormwater monitoring requirements are included in Part A and Part C of the permit for this outfall.

	Tr	eatment Facility Summa	ry	
Treatment Facility Na	me: Matsunk STP			
WQM Permit No.	Issuance Date			
4620403	08/06/2020			
4620402	08/19/2020			
4619409	02/30/2020			
4609407 A-1	08/15/2013			
4612405	08/27/2012			
4609407	01/19/2010			
WQG02460821	11/10/2008			
	Degree of			Avg Annual
Waste Type	Treatment	Process Type	Disinfection	Flow (MGD)
		Trickling Filter With		,
Sewage	Secondary	Settling	Gas Chlorine	5.5
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
6.88	11400	Not Overloaded		

Changes Since Last Permit Issuance: None

Treatment Plant Description

Matsunk WPCC is a 5.5 MGD Major Sewer Facility (MASF2) located in Upper Merion Township, Montgomery County which discharges treated sewage through outfall 002 into a culvert to Schuylkill River in watershed 3-F. This is a trickling filter, alternative to secondary treatment facility and chlorine disinfection system. The treatment train consists of influent screening and grit removal, off-line flow equalization, primary clarifier, secondary biological treatment through oxidation towers and RBCs for advanced organic and ammonia treatment, secondary clarifier, and disinfection by sodium hypochlorite. The effluent is dechlorinated using sodium bisulfite.

The facility receives flows mostly from Upper Merion Township and small contributions from few other townships as listed in the next page.

Municipalities served	Flow contribution (%)	Type of Sewer System			
iviuriicipalities served	Flow Contribution (%)	Separate (%)	Combined (%)		
Upper Merion Township	±95	100	0		
Tredyffrin Township	4.0	100	0		
Radnor Township	<0.5	100	0		
West Conshohocken Township	<0.5	100	0		

Per the renewal application, there is no significant or categorical industrial facility that discharges into the collection system.

Per PADEP's most recent inspection on September 29, 2020, the treatment train consists of the following treatment units:

• Three primary clarifiers

- Four trickling filters
- Twenty Rotating Biological Contactors
- Four secondary clarifiers
- Two chlorine contact tanks
- One grit removal
- · One influent screen
- Two sludge thickeners

Sodium Hypochlorite is used at a maximum rate of 33.3 GPH and Sodium Bisulfite is used at maximum rate of 2.1 GPH.

Pre-treatment Program implementation:

Facilities greater than 5.0 MGD or less than 5.0 MGD with categorical and significant industrial users are required to develop or implement an EPA administered pre-treatment program. The facility is implementing an approved pretreatment program for which most recent local limits were approved by EPA in March 2017. The Part C of the permit will require continuation of the pre-treatment program implementation.

Biosolids Management:

Sludge is handled through gravity thickener units prior to being dewatered by a rotary press that was installed in April 2014. The dewatered cake is stabilized with lime prior to being hauled to one of two Waste Management owned landfills. The landfills are Tullytown, PA Resource Recovery Facility and GROWS North landfill in Morrisville, PA.

Summary of Inspections:

<u>09/29/2020</u>: RTPT conducted. No violation noted. Secondary clarifier #4 was repaired. Final effluent looked very good. No sign of matting or ponding on the trickling filters.

<u>04/20/2020:</u> RTPT conducted. No violation noted. The cause of overflow was due to residents flushing wipes. Final effluent looked great.

<u>12/19/2019:</u> CEI conducted. No violation identified. A new sludge press was installed. Overall, the treatment plant seemed to be operating well. Final effluent looked clear and receiving stream looked good as well.

05/14/2019: RTPT conducted. No violation identified.

<u>01/17/2019:</u> CEI conducted. No violation noted. Effluent looked clear and the receiving stream looked good as well. Overall, the treatment plant seemed operating well.

<u>08/01/2018</u>: CEI conducted. No violation noted. Effluent looked clear and the receiving stream looked good as well. Overall, the treatment plant seemed operating well.

<u>05/18/2017:</u> CEI conducted. No violation noted. Effluent looked clear and the receiving stream looked good as well. Overall, the treatment plant seemed operating well.

<u>09/29/2016:</u> CEI conducted. No violation noted. Effluent looked clear and the receiving stream looked good as well. Overall, the treatment plant seemed operating well.

Compliance History

DMR Data for Outfall 002 (from May 1, 2020 to April 30, 2021)

Parameter	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20
Flow (MGD)												
Average Monthly	3.234	3.97	3.395	3.132	3.535	2.805	2.678	2.748	3.408	3.023	2.969	3.125
Flow (MGD)												
Daily Maximum	3.993	6.416	6.296	4.296	6.385	5.904	4.547	3.102	7.68	3.403	4.074	3.909
pH (S.U.)												
Minimum	7.3	7.3	7.2	7.3	7.3	6.7	6.7	6.8	6.7	6.5	6.7	6.6
pH (S.U.)												
Maximum	8.1	7.7	7.6	7.7	7.6	7.9	7.4	8.0	7.3	7.1	7.2	7.7
DO (mg/L)												
Minimum	8.1	9.3	8.9	9.8	9.3	8.6	8.2	8.6	8.1	8.4	8.7	9.1
TRC (mg/L)												
Average Monthly	< 0.1	< 0.1	< 0.1	< 0.2	< 0.2	< 0.1	< 0.2	< 0.1	< 0.3	0.2	< 0.2	< 0.2
TRC (mg/L)												
Instantaneous												
Maximum	0.52	0.38	0.39	0.9	0.5	0.37	0.57	0.41	0.91	0.32	0.85	0.47
CBOD5 (lbs/day)												
Average Monthly	190	205	< 150	< 104	< 115	< 68	< 64	< 61	< 76	< 65	< 70	< 91
CBOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	4117	3955	3962	3236	3072	2786	3400	3358	3817	2850	3322	3863
CBOD5 (lbs/day)												
Weekly Average	199	285	185	114	159	75	91	< 70	< 104	< 90	< 77	< 124
CBOD5 (mg/L)	_	_					_	_	_	_	_	
Average Monthly	7	6	< 5	< 4	< 4	< 3	< 3	< 3	< 3	< 3	< 3	< 3
CBOD5 (mg/L)												
Raw Sewage Influent	45.4	404	4.40	407	400	400	454	450	405	445	404	4.40
Average Monthly	154	121	143	127	108	120	154	152	135	115	134	149
CBOD5 (mg/L)	7.9	7.6	6	4.2	4.8	3.4	3.7	< 3.1	< 3.3	< 4	< 2.9	< 4.4
Weekly Average BOD5 (lbs/day)	7.9	7.0	0	4.2	4.0	3.4	3.7	< 3.1	< 3.3	< 4	< 2.9	< 4.4
Raw Sewage Influent Average Monthly	4080	4239	4319	5174	3869	5204	4792	3898	5525	4431	3682	4145
BOD5 (mg/L)	4000	4233	4019	3174	3009	3204	4132	3030	3323	4401	3002	4140
Raw Sewage Influent												
Average Monthly	149	129	177	194	136	182	209	175	216	168	155	161
TSS (lbs/day)	175	125	177	137	100	102	203	175	210	100	100	101
Average Monthly	372	< 423	< 253	< 211	377	223	< 179	173	256	187	230	255

NPDES Permit No. PA0026085

	ı	1		T	T	Ι	Π		ı			
TSS (lbs/day)												
Raw Sewage Influent Average Monthly	3426	2990	3209	3316	3070	3575	3942	3786	4667	3760	3697	3994
,	3420	2990	3209	3310	3070	3373	3942	3700	4007	3760	3097	3994
TSS (lbs/day) Weekly Average	462	597	342	234	502	248	387	202	369	228	267	287
TSS (mg/L)	402	391	342	234	302	240	367	202	309	220	207	201
Average Monthly	14	< 13	< 9	< 8	12	10	< 8	8	9	8	9	10
TSS (mg/L)		10	7.0	_ ` ` `	12	10			ŭ		Ŭ	10
Raw Sewage Influent												
Average Monthly	128	91	113	129	108	155	177	165	159	149	149	155
TSS (mg/L)												
Weekly Average	16	18	11	8	16	11	16	9	10	9	11	11
Fecal Coliform												
(CFU/100 ml)												
Geometric Mean	< 7	< 10	< 7	< 9	< 17	< 19	< 13	< 10	< 9	< 6	< 5	< 6
Fecal Coliform												
(CFU/100 ml)				`								
Instantaneous	0.4	000	50	400	400	000	0.4	000	000	000	40	400
Maximum	31	290	52	133	100	239	94	82	290	320	40	192
Ammonia (lbs/day)		< 6	< 4	< 19	< 24	< 3	< 13	< 2	< 3	< 3	< 5	< 3
Average Monthly Ammonia (mg/L)	< 4	< 0	< 4	< 19	< 24	< 3	< 13	< 2	< 3	< 3	< 5	< 3
Average Monthly	< 0.14	< 0.17	< 0.16	< 0.72	< 0.78	< 0.14	< 0.59	< 0.1	< 0.11	< 0.11	< 0.19	< 0.11
Total Phosphorus	V 0.14	< 0.17	< 0.10	V 0.12	< 0.70	V 0.14	V 0.55	< 0.1	< 0.11	< 0.11	< 0.15	< 0.11
(lbs/day)												
Average Monthly	71	98	63	82	65	73	94	82	89	116	76	93
Total Phosphorus												
(mg/L)												
Average Monthly	2.5	1.83	2.96	2.49	2.41	3.2	4.44	3.98	3.61	3.9	3.3	3.29

DMR Data for Outfall 003 (from May 1, 2020 to April 30, 2021)

Parameter	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20
pH (S.U.) Annual Average					7.2							
CBOD5 (mg/L) Annual Average					16.7							
COD (mg/L) Annual Average					102							
TSS (mg/L) Annual Average					11							
Oil and Grease (mg/L) Annual Average					< 5							

Fecal Coliform (CFU/100 ml) Annual Average			11600				
TKN (mg/L) Annual Average			1.87				
Total Phosphorus (mg/L) Annual Average			0.24				
Dissolved Iron (mg/L) Annual Average			0.04				

Compliance History: No eDMR violation was noted in last 12 months.

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes effluent limitations and monitoring requirements specified in the existing final NPDES (amended) permit that was in effect between July 1, 2014 to June 30, 2018.

For Outfall 002:

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Unit	ts (lbs/day)		Concentrat	tions (mg/L)		Minimum	Required
Faranietei	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0	XXX	XXX	9.0	1/day	Grab
Dissolved Oxygen	XXX	XXX	4.0	XXX	XXX	XXX	1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.5	XXX	1.2	1/day	Grab
CBOD5 Influent	Report	XXX	XXX	Report	XXX	XXX	1/day	24-Hr Composite
CBOD5 May 1 - Oct 31	1,033	1,549	XXX	18	27	36	1/day	24-Hr Composite
CBOD5 Nov 1 - Apr 30	1,434	2,180	XXX	25	38	50	1/day	24-Hr Composite
BOD5 Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids Influent	Report	xxx	XXX	Report	XXX	XXX	1/day	24-Hr Composite
Total Suspended Solids	1,721	2,582	XXX	30	45	60	1/day	24-Hr Composite
Fecal Coliform (CFU/100 ml)	XXX	XXX	XXX	200 Geo Mean	XXX	1,000	1/day	Grab
Ammonia-Nitrogen May 1 - Oct 31	344	XXX	XXX	6.0	XXX	12.0	1/day	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	1,033	XXX	XXX	18.0	XXX	36.0	1/day	24-Hr Composite
Total Phosphorus	Report	xxx	XXX	Report	XXX	XXX	1/month	24-Hr Composite

For Outfall 003:

		Monitoring Requirements						
Parameter	Mass Unit	s (lbs/day)		Concentrat	Minimum	Required		
r al ameter	Average Monthly		Minimum	Annual Average		Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
CBOD5	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Chemical Oxygen Demand	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Suspended Solids	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (CFU/100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Dissolved Iron	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Development of Effluent Limitations									
Outfall No.	Outfall No. 002 Design Flow (MGD) 5.5								
Latitude	40° 5' 38"		Longitude	-75º 19' 42"					
Wastewater D	Description:	Sewage Effluent	·						

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBODs	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
pН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform				
(5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform				
(5/1 - 9/30)	1,000 / 100 ml	IMAX	-	92a.47(a)(4)
Fecal Coliform				
(10/1 - 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform				
(10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Fecal Coliform	200 / 100 ml	Geo Mean	DRBC	92a.47(a)(5)
Fecal Coliform	1,000 / 100 ml	IMAX	DRBC	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly		92a.48(b)(2)

Comments: These standards apply, subject to Water Quality Analysis and BPJ where applicable.

Water Quality-Based Limitations

Water Quality-Based Limitations

WQM 7.0:

 $\overline{\text{WQM 7.0}}$ version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. Since WQM 7.0 assumes immediate and complete mix between the discharge and stream flow, Q₇₋₁₀ was adjusted, as shown on page 3, to examine allowable wasteload allocations under appropriate mixing conditions. The model was utilized for this permit renewal by using adjusted Q₇₋₁₀ and historic background water quality levels of the river. In addition, due to proximity, several other upstream and downstream dischargers are included in the multiple discharge scenario. The following data were used in the attached computer model of the stream:

Discharge pH 7.0 (median Jul-Sep, 2020, DMR data) Discharge Temperature 20°C (Default per 391-2000-013) Discharge Hardness 210 ma/l (Application data) Stream pH (Default per 391-2000-013) 7.0 Stream Temperature 25°C (Default per 391-2000-013, WWF) Stream Hardness 212.67 mg/l (Application data)

The following nodes were considered in modeling:

Node 1: Norristown STP (PA0027421) Outfall 001 at Schuylkill River (00833)

Elevation: 49 ft (USGS National Map viewer, 11/13/2019)

NPDES Permit Fact Sheet U Merion-Matsunk STP

Drainage Area: 1766 mi² (StreamStat Version 3.0, 11/13/2019)

River Mile Index: 23.4 (PA DEP eMapPA)

Low Flow Yield: 0.125 cfs/mi² Discharge Flow: 9.75 MGD

Node 2: ENPWJSA STP (PA0026816) Outfall 001 at Schuylkill River (00833)

Elevation: 48 ft (USGS National Map viewer, 11/13/2019)
Drainage Area: 1766.1 mi² (StreamStat Version 3.0, 11/13/2019)

River Mile Index: 22.94 (PA DEP eMapPA)

Low Flow Yield: 0.125 cfs/mi² Discharge Flow: 8.1 MGD

Node 3: Bridgeport WWTP Outfall 001 at Schuylkill River (00833)

Elevation: 43.79 ft (USGS National Map viewer, 11/13/2019)
Drainage Area: 1769.9 mi² (StreamStat Version 3.0, 11/13/2019)

River Mile Index: 22.79 (PA DEP eMapPA)

Low Flow Yield: 0.125 cfs/mi² Discharge Flow: 0.9 MGD

Node 4: Matsunk STP Outfall 002 at Schuylkill River (00833)

Elevation: 42.85 ft (USGS National Map viewer, 06/25/2021)
Drainage Area: 1770.0 mi² (StreamStat Version 3.0, 06/25/2021)

River Mile Index: 22.26 (PA DEP eMapPA)

Low Flow Yield: 0.153 cfs/mi²
Discharge Flow: 5.5 MGD

Node 5: At the Plymouth Dam on Schuylkill River (00833)

Elevation: 39.59 ft (USGS National Map viewer, 11/13/2019)
Drainage Area: 1770.1 mi² (StreamStat Version 3.0, 11/13/2019)

River Mile Index: 21.22 (PA DEP eMapPA)

Low Flow Yield: 0.153 cfs/mi² Discharge Flow: 0.0 MGD

Node 6: At RMI 21.025

Elevation: 38.74 ft (USGS National Map viewer, 06/29/2021)
Drainage Area: 1780 mi² (StreamStat Version 3.0, 06/28/2021)

River Mile Index: 21.025 (PA DEP eMapPA)

Low Flow Yield: 0.15 cfs/mi² Discharge Flow: 0.0 MGD

Ammonia (NH₃-N), Carbonaceous Biochemical Oxygen Demand (CBOD5), & Dissolved Oxygen (DO):

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q₇₋₁₀ and current background water quality levels of the stream.

NH₃-N:

WQM 7.0 suggested NH₃-N limit of 6.0 mg/l as monthly average and 12.0 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. Recent DMR data show that the plant is meeting the permit limits. The average monthly mass loading is calculated to be 344 lbs./day. The existing winter season limits of 18.0 mg/l as average monthly and 36.0 mg/l as IMAX limit will be carried over in this renewal. Winter average monthly mass limit was calculated as 1033 lbs./day.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 18 mg/l. The average monthly and average weekly mass loadings were calculated as 1033 lbs/day and 1549 lbs/day respectively. The current permit has seasonal limit for CBOD₅ which will be carried over in this renewal. Seasonal limit for CBOD₅ is allowed in PADEP's guidance (391-2000-003). The mass limit for winter season is calculated to be 1434 lbs./day as monthly average and 2180 lbs./day as weekly average. Minimum monitoring frequency will remain the same as 1/day, 24-hr composite sampling.

Dissolved Oxygen (DO):

The existing permit has a minimum DO of 4.0 mg/l. Per Pa Code 25 Ch.93.7, a minimum DO of 5.0 is required for WWF. This is also supported by WQM 7.0 output.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

- 1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).
- 2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% 50% of the WQBEL.
- 3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% 50% of the WQBEL.
- **NOTE 4** If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.
- **NOTE 5** If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.
- 4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

NPDES Permit Fact Sheet U Merion-Matsunk STP

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits				
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Dissolved Solids (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Chloride (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Bromide	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Sulfate (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Total Copper	2.05	2.71	44.7	59.1	112	μg/L	44.7	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	451	AFC	Discharge Conc > 10% WQBEL (no RP)
1,4-Dioxane	Report	Report	Report	Report	Report	μg/L	N/A	N/A	Special Monitoring Applies
Benzo(a)Anthracene	0.014	0.022	0.3	0.47	0.76	μg/L	0.3	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(a)Pyrene	0.014	0.022	0.3	0.47	0.76	μg/L	0.3	CRL	Discharge Conc ≥ 50% WQBEL (RP)
3,4-Benzofluoranthene	0.014	0.022	0.3	0.47	0.76	μg/L	0.3	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(k)Fluoranthene	0.014	0.022	0.3	0.47	0.76	μg/L	0.3	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Chrysene	0.014	0.022	0.3	0.47	0.76	μg/L	0.3	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Dibenzo(a,h)Anthrancene	0.014	0.022	0.3	0.47	0.76	μg/L	0.3	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Indeno(1,2,3-cd)Pyrene	0.003	0.004	0.059	0.091	0.15	μg/L	0.059	THH	Discharge Conc ≥ 50% WQBEL (RP)
Phenanthrene	0.45	0.71	9.88	15.4	24.7	μg/L	9.88	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Each of the parameters are discussed below:

TDS and its constituents:

TMS suggests monitoring for TDS and its constituents if there is PWS concern. The nearest downstream PWS is approximately 10 miles for which this discharge apparently poses no threat. The facility has an approved DRBC docket (D-1987-013 CP-3) issued on September 13, 2018. The Docket requires TDS limit of 1,000 mg/l quarterly. Therefore, a TDS limit of 1,000 mg/l with quarterly monitoring will be placed in the permit.

Total Copper: The application provided three sample results for Total Copper. On PADEP's request, US EPA provided additional 28 sample results from pretreatment effluent data for the reporting period between 2013-2019. All data were plugged into PADEP's TOXCONC to determine AMEC and daily CoV values. TOXCONC calculated an AMEC of 52.0268 ug/l and CoV of 0.2714. These values were utilized in TMS. As shown in the below table, TMS suggests AML of 29.5 ug/l, MDL of 39.1 ug/l, IMAX of 73.8 ug/l, calculated mass AML of 1.69 lbs./day, and mass MDL of 2.24 lbs./day. Since this is a new parameter, PADEP provided the permittee with a Pre-Draft survey. The permittee returned the pre-draft survey which indicated that the permittee is not aware of the source of the pollutant, suspected the source to be from domestic plumbing systems, haven't conducted any studies regarding the control or treatment of the pollutant, doesn't believe it can achieve the proposed WQBEL now, indicated their plant do not treat the pollutant, and uncertain about the estimated date by which it can achieve the proposed WQBEL. Therefore, PADEP followed the instructions illustrated in the SOP titled "Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Discharges" (SOP No. BCW-PMT-037, revised May 20, 2021). Per the SOP, PADEP has made the following determination:

- 1. a compliance schedule will be placed in the permit with monitoring requirements for first three years of the permit term and proposed WQBELs for remaining two years, since the permittee indicated that they are uncertain when compliance could be achieved with final WQBEL.
- 2. Some of the values used in the TMS spreadsheet are default values in absence of site-specific data. Those values are identified in this fact sheet pages 2, 3, and 11. The permittee is required to conduct site specific data collection to refine the accuracy of the WQBEL for the default or model-driven input values. A special Part C condition will be added in the Part C of the draft permit.
- 3. Since the source of toxic pollutant is unknown or are suspected, the permittee will be required to conduct a Toxics Reduction Evaluation (TRE) to investigate and control the source(s) of the pollutant subject to final WQBEL. The permittee suspected the domestic plumbing system be the source of Copper. Therefore, the TRE study must include a Corrosion Control Feasibility Study.
- 1,4-Dioxane: TMS initially suggests monitoring for 1,4-Dioxane. No monitoring was suggested when the updated model was utilized.

Semi-volatiles:

TMS suggested monitoring for all eight semi-volatiles as listed above. However, the QL (5 ug/l) used by the lab is higher than PADEP's TQL (2.5 ug/l) and all three results for each semi-volatiles came as non-detect. Therefore, it is still unclear if they are actually a pollutant of concern or not. Per the response on pre-draft survey, the permittee agreed to provide four additional test results for each of the semi-volatiles using PADEP's TQL. The sampling will be 24-hr composite, 1 week apart. PADEP received retest results on January 4, 2021 and TMS was again utilized. TMS determined that no limits or monitoring is needed for any of the semi-volatiles.

The updated TMS output table is provided below:

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits		Concentra	tion Limits		1		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	1.35	1.79	29.5	39.1	73.8	μg/L	29.5	AFC	Discharge Conc ≥ 50% WQBEL (RP)
					_				

Whole Effluent Toxicity Testing (WETT):

The permittee provided four WETT sample results with the application dated March 2017, April 2016, May 2015, and October 2014. The tests in 2014, 2015, and 2016 were conducted by QC laboratories or Eurofins QC, Inc. The Department has determined that WET tests analyzed by QC Laboratories or Eurofins QC prior to February 2017 are unreliable and are considered invalid due to technical issues. As a result, the application didn't include four valid WET tests required to perform a reasonable potential analysis. However, the permittee provided annual WETT results for the year 2018 and 2019 that added to three valid tests. 2020 WET test results were received on January 4, 2021. PADEP utilized the WETT Analysis Spreadsheet to determine RP and update the dilution series. The updated TIWCc was calculated to be 6% to evaluate the test results for a stream flow of 271 cfs, discharge flow of 5.5 MGD, and PMFc of 0.453. The WET tests are discussed in detail on pages 15-16 of this report.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation.

E. Coli:

DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for all major sewage dischargers. This requirement will be applied from this permit term.

pH:

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water quality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 1376.1 lbs./day and 2064.15 lbs./day respectively, which are rounded down to 1375 lbs./day and 2060 lbs./day, respectively (362-0400-001).

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 002. The Instantaneous Maximum (IMAX) limit is 1.6 mg/l. The existing permit has AML limit of 0.5 mg/l and IMAX limit of 1.2 mg/l. The IMAX is a little more stringent and will be carried over due to anti-backsliding policy. DMR data from October 2019 to September 2020 indicates that the plant is discharging below the existing limits. The minimum monitoring frequency is 1/day.

Flow and Influent BOD5, CBOD5, and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94. To show compliance with percentage removal efficiency of CBOD₅, reporting for influent CBOD₅ will remain in the permit.

Best Professional Judgement (BPJ):

Total Phosphorus:

Existing monthly monitoring requirement will be carried over in this renewal.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Total Nitrogen:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria.

Mass-based limits calculation:

The mass-based limits for NH3-N, CBOD5, TSS, and Total Copper were calculated based on maximum monthly flow (hydraulic design flow) instead of average annual design flow. The reason behind this exception is that the permittee indicated a comprehensive discussion in November 2000 with PADEP which included permittee's proactive program of addressing I&I issues by expending the WWTF to process higher flows and agreements with other municipalities in light of hydraulic flow. PADEP conducted a document search in 2013 regarding this issue and confirmed that hydraulic design flow was agreed upon to use in mass calculation. In 2013, USEPA recommended to add the following footnote in the Part A of the permit "The effluent limits for Outfall 002 were determined using an annual average discharge rate of 5.5 million gallons per day and maximum monthly discharge rate of 6.88 million gallons per day."

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

Development of Effluent Limitations								
Outfall No. 003		Design Flow (MGD)	0					
Latitude 40° 5′ 39.00″	Ť	Longitude	-75° 19' 43.00"					
Wastewater Description: Storm	water							
for the discharge of stormwater. The permit for this outfall. The existing r								
	Whole Effluent	Toxicity (WET)						
For Outfall 002, 🗌 Acute 🗵 Chro	onic WET Testing was co	mpleted:						
For the permit renewal app	lication (4 tests).							
For the permit renewal app Quarterly throughout the permit renewal app	ermit term.							
Quarterly throughout the per	ermit term and a TIE/TRE	was conducted.						

Other:	

The dilution series used for the tests was: 100%, 60%, 30%, 2%, and 1%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 2%.

Summary of Four Most Recent Test Results

(NOTE - Enter results into one table, depending on which data analysis method was used).

TST Data Analysis

(NOTE - In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia F	Results (Pass/Fail)	Pimephales Results (Pass/Fail)		
Test Date	Survival	Reproduction	Survival	Growth	
4/4/2017	Pass	Pass	Pass	Pass	
11/6/2018	Pass	Pass	Pass	Pass	
11/5/2019	Pass	Pass	Pass	Pass	
12/08/2020	Pass	Pass	Pass	Pass	

^{*} A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE – In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

☐ YES ⊠ NO

Comments: None

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.065

Chronic Partial Mix Factor (PMFc): 0.453

Determine IWC – Acute (IWCa):

$$(Q_d \times 1.547) / ((Q_{7-10} \times PMFa) + (Q_d \times 1.547))$$

$$[(5.5 \text{ MGD x } 1.547) / ((271 \text{ cfs x } 0.065) + (5.5 \text{ MGD x } 1.547))] \times 100 = 32.57\%$$

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

2a. Determine Target IWCa (If Acute Tests Required)

2b. Determine Target IWCc (If Chronic Tests Required)

$$(Q_d \times 1.547) / (Q_{7-10} \times PMFc) + (Q_d \times 1.547)$$

 $[(5.5 \text{ MGD x } 1.547) / ((271 \text{ cfs x } 0.453) + (5.5 \text{ MGD x } 1.547))] \times 100 = 6.48\%$

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies). Dilution Series = 100%, 60%, 30%, 6%, and 3%.

WET Limits

Has reasonable potential been determined? $\hfill\square$ YES $\hfill \boxtimes$ NO

Will WET limits be established in the permit? ☐ YES ☒ NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

N/A

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations	Monitoring Requirements			
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	ions (mg/L)		Minimum (2)	Required
Farameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	XXX	xxx	XXX	Continuous	Recorded
pH (S.U.)	XXX	XXX	6.0 Inst Min	XXX	XXX	9.0	1/day	Grab
DO	XXX	XXX	5.0 Inst Min	XXX	xxx	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.2	1/day	Grab
CBOD5 Nov 1 - Apr 30	1434	2180	xxx	25.0	38.0 Wkly Avg	50	1/day	24-Hr Composite
CBOD5 May 1 - Oct 31	1033	1549	XXX	18.0	27.0 Wkly Avg	36	1/day	24-Hr Composite
BOD5 Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	24-Hr Composite
TSS	1721	2582	XXX	30.0	45.0 Wkly Avg	60	1/day	24-Hr Composite
TSS Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/day	24-Hr Composite
Total Copper (interim)	Report	Report Daily Max	XXX	Report	Report Daily Max	XXX	1/week	24-Hr Composite
Total Copper (final)	1.69	2.24 Daily Max	XXX	0.0295	0.0391 Daily Max	0.0738	1/week	24-Hr Composite
Total Dissolved Solids	Report Avg Qrtly	xxx	XXX	1000.0 Avg Qrtly	XXX	XXX	1/quarter	24-Hr Composite
Fecal Coliform (No./100 ml) Oct 1 - Apr 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/day	Grab
Fecal Coliform (No./100 ml) May 1 - Sep 30	XXX	XXX	XXX	200 Geo Mean	XXX	1000	1/day	Grab

Outfall 002, Continued (from Permit Effective Date through Permit Expiration Date)

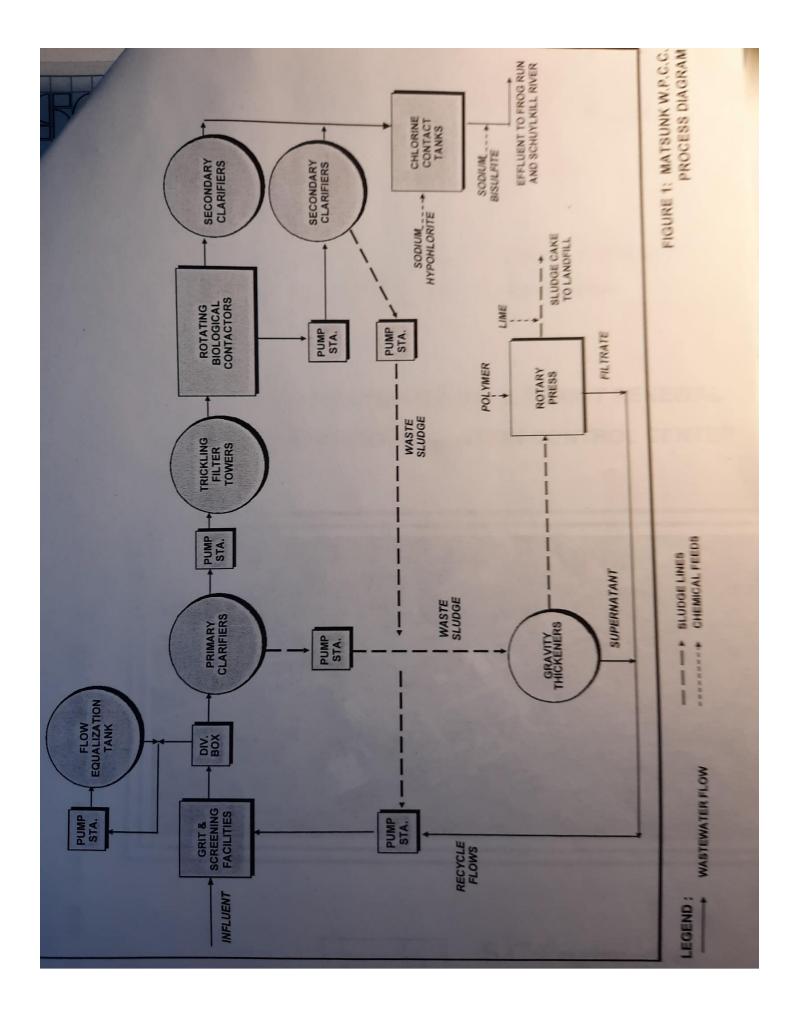
			Monitoring Re	quirements				
Parameter	Mass Units (lbs/day) (1)			Concentrat	Minimum ⁽²⁾	Required		
r ai ainetei	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
E. Coli (No./100 ml)	XXX	XXX	XXX	XXX	XXX	Report	1/month	Grab
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite
Ammonia Nov 1 - Apr 30	1033	XXX	XXX	18.0	XXX	36	1/day	24-Hr Composite
Ammonia May 1 - Oct 31	344	XXX	XXX	6.0	XXX	12	1/day	24-Hr Composite
								24-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite 24-Hr
PCBs (Dry Weather) (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Composite
PCBs (Wet Weather) (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	24-Hr Composite
Chronic WET - Ceriodaphnia Survival (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See permit	24-Hr Composite
Chronic WET - Ceriodaphnia Reproduction (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See permit	24-Hr Composite
Chronic WET - Pimephales					·			24-Hr
Survival (TUc) Chronic WET - Pimephales	XXX	XXX	XXX	XXX	Report	XXX	See permit	Composite 24-Hr
Growth (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See permit	Composite

Compliance Sampling Location: At Outfall 002

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.


Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.

			Monitoring Requirements					
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Farameter	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	XXX	Report	xxx	XXX	1/year	Grab
CBOD5	XXX	XXX	XXX	Report	xxx	XXX	1/year	Grab
COD	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
TSS	XXX	XXX	XXX	Report	xxx	XXX	1/year	Grab
Oil and Grease	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab
TKN	XXX	xxx	XXX	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	xxx	XXX	Report	XXX	XXX	1/year	Grab
Dissolved Iron	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 003

Other Comments: None

	Tools and References Used to Develop Permit
<u> </u>	
	WQM for Windows Model (see Attachment)
	Toxics Management Spreadsheet (see Attachment)
	TRC Model Spreadsheet (see Attachment)
	Temperature Model Spreadsheet (see Attachment)
	Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
	Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
	Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
	Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
	Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
	Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
	Pennsylvania CSO Policy, 385-2000-011, 9/08.
	Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
	Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
	Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
	Implementation Guidance Design Conditions, 391-2000-006, 9/97.
	Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
	Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
	Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
	Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
	Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
	Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
\boxtimes	Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
	Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
	Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
	Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
	Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
	Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
	Design Stream Flows, 391-2000-023, 9/98.
	Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
	Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
	Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
\boxtimes	SOP: BCW-PMT-037
	Other:

TRC_CALC

TRC EVALUA	ATION						
		A3:A9 and D3:D9					
	= Q stream (= CV Daily				
5.5	= Q discharg	e (MGD)	0.5	= CV Hourly			
30	= no. sample	8	1	= AFC_Partial N	lix Factor		
0.3	= Chlorine D	emand of Stream	1	= CFC Partial Mix Factor			
0	= Chlorine D	emand of Discharge	15	= AFC_Criteria Compliance Time (min)			
0.5	= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)		
0	= % Factor o	of Safety (FOS)		=Decay Coeffici	ient (K)		
Source	Reference	AFC Calculations		Reference	CFC Calculations		
TRC	1.3.2.iii	WLA afc =	10.179	1.3.2.iii	WLA cfc = 9.917		
PENTOXSD TRG	5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581		
PENTOXSD TRG	5.1b	LTA_afc=	3.793	5.1d	LTA_cfc = 5.765		
Source		Effluer	nt Limit Calcul	ations			
PENTOXSD TRG	5.1f		AML MULT =	1.231			
PENTOXSD TRG	5.1g	AVG MON	LIMIT (mg/l) =	0.500	BAT/BPJ		
		INST MAX	LIMIT (mg/l) =	1.635			
WLA afc		FC_tc)) + [(AFC_Yc*Qs*.019/ C Yc*Qs*Xs/Qd)]*(1-FOS/100		tc))			
LTAMULT afc		cvh^2+1))-2.326*LN(cvh^2+	•				
LTA_afc	wla_afc*LTA		.,,				
WLA_cfc		FC_tc) + [(CFC_Yc*Qs*.011/0 C_Yc*Qs*Xs/Qd)]*(1-FOS/100		tc))			
LTAMULT_cfc	EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_samples+1)^0.5)						
LTA_cfc	wla_cfc*LTA	MULT_cfc					
AML MULT AVG MON LIMIT							
INST MAX LIMIT	1.5*((av_mor	_limit/AML_MULT)/LTAMUL	T_afc)				

	SWP Basin			Stre	eam Name		RMI		ation ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	rawal	Apply FC
	03F	8	333 SCHU	YLKILL R	IVER		23.40	00	49.00	1766.00	0.00000		0.00	y
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p pH	Ter	<u>Strean</u> np	n pH	
Cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°0	()		
Q7-10 Q1-10 Q30-10	0.125	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000		0.0	0.00	0.00) 20	0.00 7.0	00	0.00	0.00	
					Di	ischarge l	Data						1	
			Name	Per	mit Numbe	Existing Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese		np	isc pH		
		Norris	stown STP	PAG	0027421	9.750	9.750	0 9.75	500 C	.000 2	0.00	7.00		
			F	aramete		С	sc 1	Conc	Stream Conc	Fate Coef				
	_		CBOD5				g/L) (n 20.00	2.00	(mg/L)	(1/days) 1.50		-		
			Dissolved	Oxygen			4.00	8.24	0.00	0.00				
			NH3-N				10.00	0.00	0.00	0.70				

	SWP Basin			Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slo (ft/	Wit	WS hdrawal mgd)	Apply FC
	03F		833 SCHU	YLKILL R	IVER		22.94	10	48.00	1766.1	10 0.0	0000	0.00	v
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p	н	<u>Stre</u> Temp	am pH	
Conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.125	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 2	0.00	7.00	0.00	0.00	
					Di	scharge	Data						\neg	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc	Res w Fa	erve T ctor	Disc emp (°C)	Disc pH		
		ENP	WJSA	PAG	0026816	8.100	0 8.100	0 8.10	000	0.000	20.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib S Conc	Stream Conc	Fate Coef				
				and meter	· · · · · · · · · · · · · · · · · · ·	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				20.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				12.00	0.00	0.00	0.70				

	SWP Basin			Stre	eam Name		RMI	Elev:		Drainage Area (sq mi)	Slope (ft/ft)	PW: Withdr (mg	awal	Apply FC
	03F		833 SCHU	YLKILL R	IVER		22.79	90	43.79	1769.90	0.00000		0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	Ten	<u>Stream</u> np	рН	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°C	;)		
Q7-10 Q1-10 Q30-10	0.125	11.72 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	20).00 7.	50 2	0.00	0.00	
					Di	scharge	Data							
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Rese Fac		np p	isc bH		
		Bridg	eport STP	PAG	0020397	0.900	0.900	0.90	00 0	0.000 2	20.00	7.30		
					Pa	arameter	Data							
				oaramete	r Name	С	onc C	Conc	tream Conc	Fate Coef				
	_					(m	g/L) (n	ng/L) (mg/L)	(1/days)		.		
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				20.00	0.00	0.00	0.70				

	SWP Basin			Stre	eam Name		RMI		ration ft)	Drainage Area (sq mi)	Slope (ft/ft)	PW Withd (mg	irawal	Apply FC
	03F		833 SCHU	YLKILL R	IVER		22.26	0	42.85	1770.00	0.0000	D	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	<u>Tributary</u> p pH	l Te	<u>Strean</u> mp	n pH	
cona.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C))	(°	C)		
Q7-10 Q1-10 Q30-10	0.153	0.00 0.00 0.00	0.00	0.000 0.000 0.000		0.0	0.00	0.00) 20	0.00 7	.00	0.00	0.00	
					Di	scharge	Data]	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flow	Res	erve Te		Disc pH		
		Mats	unk STP	PAG	0026085	5.500	0 5.500	0 5.50	000 (0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Namo				Stream Conc	Fate Coef				
				aramete	rivame	(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				18.00	2.00	0.00	1.50				
			Dissolved	Oxygen			5.00	8.24	0.00	0.00				
			NH3-N				6.00	0.00	0.00	0.70				

	SWP Basir			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slop (ft/ft	Withd	irawal	Apply FC
	03F	8	33 SCHU	YLKILL R	IVER		21.22	20	39.59	1770.1	0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary IP pl	4	<u>Strean</u> Temp	n pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.125	0.00 0.00 0.00	0.00 0.00 0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.00	0 2	0.00 7	7.00	0.00	0.00	
					Di	scharge l	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disc Flor	c Res w Fa	erve Te ctor	oisc emp °C)	Disc pH		
						0.000	0.000	0.0	000	0.000	0.00	7.00		
					Pa	arameter l	Data							
				Parameter	r Namo			Trib Sonc	Stream Conc	Fate Coef				
				aramete	Ivalle	(m	g/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

	SWP Basin			Stre	eam Name		RMI		vation (ft)	Drainage Area (sq mi)	Slop (ft/ft	Withd	VS Irawal gd)	Apply FC
	03F		833 SCHU	YLKILL R	IVER		21.02	25	38.74	1780.0	0.00	000	0.00	~
					St	ream Dat	a							
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	Tem	Tributary p p		<u>Strear</u> Temp	n pH	
conu.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C)		
Q7-10 Q1-10 Q30-10	0.153	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000 0.000 0.000	0.0	0.00	0.0	0 2	0.00	7.00	0.00	0.00	
					Di	scharge	Data						1	
			Name	Per	mit Number	Disc	Permitte Disc Flow (mgd)	Disi Flo	c Res w Fa	erve T ctor	Disc emp (°C)	Disc pH		
						0.000	0.000	0.0	000	0.000	25.00	7.00		
					Pa	arameter	Data							
				Paramete	r Name			Trib Conc	Stream Conc	Fate Coef				
				urumete	reame	(m	ıg/L) (n	ng/L)	(mg/L)	(1/days)				
			CBOD5				25.00	2.00	0.00	1.50				
			Dissolved	Oxygen			3.00	8.24	0.00	0.00				
			NH3-N				25.00	0.00	0.00	0.70				

WQM 7.0 Hydrodynamic Outputs

	sw	P Basin	Strea	ım Code				Stream	Name			
		03F		833			SC	HUYLKII	LL RIVER			
RMI	Stream Flow (cfs)	PWS With (cfs)	Net Stream Flow (cfs)	Disc Analysis Flow (cfs)	Reach Slope (ft/ft)	Depth (ft)	Width (ft)	W/D Ratio	Velocity (fps)	Reach Trav Time (days)	Analysis Temp (°C)	Analysis pH
Q/-1	0 Flow											
23.400	220.75	0.00	220.75	15.0833	0.00041	1.177	275.77	234.21	0.73	0.039	20.00	7.00
22.940	220.76	0.00	220.76	27.614	0.00532	1.217	237.23	195	0.86	0.011	20.00	7.00
22.790	232.48	0.00	232.48	29.0063	0.00034	1.181	291.17	246.64	0.76	0.043	20.00	7.01
22.260	232.50	0.00	232.50	37.5148	0.00059	1.168	289.36	247.82	0.80	0.080	20.16	7.01
21.220	232.51	0.00	232.51	37.5148	0.00083	1.163	285.36	245.41	0.81	0.015	20.16	7.01
Q1-1	0 Flow											
23.400	141.28	0.00	141.28	15.0833	0.00041	NA	NA	NA	0.58	0.049	20.00	7.00
22.940	141.29	0.00	141.29	27.614	0.00532	NA	NA	NA	0.69	0.013	20.00	7.00
22.790	148.79	0.00	148.79	29.0063	0.00034	NA	NA	NA	0.61	0.053	20.00	7.01
22.260	148.80	0.00	148.80	37.5148	0.00059	NA	NA	NA	0.65	0.098	20.23	7.01
21.220	148.81	0.00	148.81	37.5148	0.00083	NA	NA	NA	0.66	0.018	20.23	7.01
Q30-	10 Flow	1										
23.400	264.90	0.00	264.90	15.0833	0.00041	NA	NA	NA	0.80	0.035	20.00	7.00
22.940	264.92	0.00	264.92	27.614	0.00532	NA	NA	NA	0.94	0.010	20.00	7.00
22.790	278.98	0.00	278.98	29.0063	0.00034	NA	NA	NA	0.83	0.039	20.00	7.01
22.260	279.00	0.00	279.00	37.5148	0.00059	NA	NA	NA	0.87	0.073	20.13	7.01
21,220	279.01	0.00	279.01	37.5148	0.00083	NA	NA	NA	0.89	0.013	20.13	7.01

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	~
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.2	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	~
D.O. Goal	5		

Tuesday, June 29, 2021 Version 1.0b Page 1 of 1

WQM 7.0 Wasteload Allocations

 SWP Basin
 Stream Code
 Stream Name

 03F
 833
 SCHUYLKILL RIVER

NH3-N Acute Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
23.400	Norristown STP	9.67	20	9.67	20	0	0
22.940	ENPWJSA	9.67	24	9.67	24	0	0
22.790	Bridgeport STP	9.56	40	9.58	40	0	0
22.260	Matsunk STP	9.39	12	9.42	12	0	0
21.220)	NA	NA	9.42	NA	NA	NA

NH3-N Chronic Allocations

RMI	Discharge Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
23.40	0 Norristown STP	1.92	10	1.92	10	0	0
22.94	0 ENPWJSA	1.92	12	1.92	12	0	0
22.79	0 Bridgeport STP	1.9	20	1.9	20	0	0
22.26	0 Matsunk STP	1.88	6	1.88	6	0	0
21.22	20	NA	NA	1.88	NA	NA	NA

Dissolved Oxygen Allocations

		CBO	DD5	NH	3-N	Dissolve	d Oxygen	Critical	Percent
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Reach	Reduction
23.40	Norristown STP	20	20	10	10	4	4	0	0
22.94	ENPWJSA	20	20	12	12	5	5	0	0
22.79	Bridgeport STP	25	25	20	20	5	5	0	0
22.26	Matsunk STP	18	18	6	6	5	5	0	0
21.22		NA	NA	NA	NA	NA	NA	NA	NA

Tuesday, June 29, 2021 Version 1.0b Page 1 of 1

WQM 7.0 D.O.Simulation

Stream Name

SCHUYLKILL RIVER

SWP Basin Stream Code

833

03F

USF	633		3(HUTERILL RIVER	
RMI	Total Discharge	Flow (mgd) Ana	lysis Temperature (°C)	Analysis pH
23.400	9.75	0		20.000	7.000
Reach Width (ft)	Reach De	pth (ft)		Reach WDRatio	Reach Velocity (fps)
275.771	1.17	7		234.215	0.726
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	<u>R</u>	each NH3-N (mg/L)	Reach Kn (1/days)
3.15	0.59			0.64	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.972	1.39	5		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
0.039	TravTime	CBOD5	NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.004	3.14	0.64	7.96	
	0.008	3.14	0.64	7.95	
	0.012	3.13	0.63	7.93	
	0.015	3.12	0.63	7.92	
	0.019	3.11	0.63	7.91	
	0.023	3.11	0.63	7.90	
	0.027	3.10	0.63	7.89	
	0.031		0.63	7.88	
	0.035		0.62	7.86	
	0.039		0.62	7.85	
RMI 22.940 Reach Width (ft)	Total Discharge 17.85 Reach De	50	<u>Ana</u>	lysis Temperature (°C) 20.000 Reach WDRatio	Analysis pH 7.000 Reach Velocity (fps)
237.227	1.21			195.004	0.861
Reach CBOD5 (mg/L)	Reach Kc	(1/days)	В	each NH3-N (mg/L)	Reach Kn (1/days)
3.93	0.81	9		1.20	0.700
Reach DO (mg/L)	Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)
7.709	21.34	10		Tsivoglou	5
Reach Travel Time (days) 0.011	TravTime (days)	Subreach CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.001	3.93	1.20	7.73	
	0.002	3.93	1.19	7.76	
	0.003	3.92	1.19	7.78	
	0.004	3.92	1.19	7.80	
	0.005	3.92	1.19	7.82	
	0.008	3.91	1.19	7.84	
	0.007	3.91	1.19	7.86	
	0.009	3.91	1.19	7.88	
	0.010	3.90	1.19	7.90	
	0.011	3.90	1.19	7.92	
Tuesday, June 29, 2021			Version 1.0	0b	Page 1 of

WQM 7.0 D.O.Simulation

Stream Name

SCHUYLKILL RIVER

SWP Basin Stream Code

833

03F

USF	633		3(HOTEKILL RIVER	
RMI	Total Discharge	Flow (mgd	i) Ana	lysis Temperature (°C)	Analysis pH
22.790	18.750			20.000	7.015
Reach Width (ft)	Reach Depth (ft)			Reach WDRatio	Reach Velocity (fps)
291.169	1.181			246.644	0.761
Reach CBOD5 (mg/L)	Reach Kc (1/days)		R	each NH3-N (mg/L)	Reach Kn (1/days)
3.93	0.809			1.23	0.700
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.920	1.19	2		Tsivoglou	5
Reach Travel Time (days)		Subreach			
0.043	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.004	3.91	1.23	7.89	
	0.009	3.90	1.23	7.86	
	0.013	3.89	1.22	7.83	
	0.017	3.87	1.22	7.80	
	0.021	3.86	1.22	7.77	
	0.026	3.85	1.21	7.74	
	0.030	3.83	1.21	7.71	
	0.034	3.82	1.21	7.68	
	0.038	3.81	1.20	7.65	
	0.043	3.79	1.20	7.63	
RMI	Total Discharge	Flow (mad	() Ana	lysis Temperature (°C)	Analysis pH
22.260	24.250		7 74.12	20.158	7.014
Reach Width (ft)	Reach Depth (ft)			Reach WDRatio	Reach Velocity (fps)
289.362	1.168			247.818	0.799
Reach CBOD5 (mg/L)	Reach Kc (1/days)		В	each NH3-N (mg/L)	Reach Kn (1/days)
4.24	0.869			1.35	0.709
Reach DO (mg/L)	Reach Kr (Kr Equation	Reach DO Goal (mg/L)
7.543	2.22	1		Tsivoglou	5
Reach Travel Time (days)		Subreach	Results		
0.080	TravTime		NH3-N	D.O.	
	(days)	(mg/L)	(mg/L)	(mg/L)	
	0.008	4.21	1.34	7.49	
	0.016	4.18	1.33	7.44	
	0.024	4.15	1.33	7.40	
	0.032	4.12	1.32	7.35	
	0.040	4.10	1.31	7.31	
	0.048	4.07	1.30	7.26	
	0.056	4.04	1.30	7.22	
	0.064	4.01	1.29	7.18	
	0.072	3.98	1.28	7.14	
	0.080	3.96	1.28	7.10	
Tuesday June 20, 2024			Page 2 of		
Tuesday, June 29, 2021			rage 2 of		

WQM 7.0 D.O.Simulation

SWP Basin 03F	Stream Code 833		SC	Stream Name CHUYLKILL RIVER				
<u>RMI</u>	Total Discharge	Total Discharge Flow (mgd)		lysis Temperature (°C) Analysis pH			
21.220	24.25	24.250		20.158	7.014			
Reach Width (ft)	Reach De	Reach Depth (ft)		Reach WDRatio	Reach Velocity (fps)			
285.356	1.16	1.163		245.408	0.814			
Reach CBOD5 (mg/L)	Reach Ko	Reach Kc (1/days)		each NH3-N (mg/L)	Reach Kn (1/days)			
3.96		0.843		1.28	0.709			
Reach DO (mg/L)		Reach Kr (1/days)		Kr Equation	Reach DO Goal (mg/L)			
7.099	3.14	3.146		Tsivoglou	5			
Reach Travel Time (days	Subreach Results							
0.015	TravTime	CBOD5	NH3-N	D.O.				
	(days)	(mg/L)	(mg/L)	(mg/L)				
	0.001	3.95	1.27	7.10				
	0.003	3.95	1.27	7.09				
	0.004	3.94	1.27	7.09				
	0.008	3.94	1.27	7.08				
	0.007	3.93	1.27	7.08				
	0.009	3.93	1.27	7.08				
	0.010	3.92	1.27	7.07				
	0.012	3.92	1.26	7.07				
	0.013	3.91	1.26	7.06				
	0.015	3.91	1.26	7.06				

Tuesday, June 29, 2021 Version 1.0b Page 3 of 3

WQM 7.0 Effluent Limits

Stream Code SWP Basin Stream Name 03F 833 SCHUYLKILL RIVER Disc Effl. Limit Effl. Limit Effl. Limit 30-day Ave. (mg/L) Maximum Minimum (mg/L) RMI Name Permit Flow Parameter (mgd) Number 23.400 Norristown STP PA0027421 9.750 CBOD5 20 NH3-N 10 20 Dissolved Oxygen 4 Effl. Limit Effl. Limit Disc Effl. Limit 30-day Ave. (mg/L) RMI Name Permit Flow Parameter Maximum Minimum Number (mgd) (mg/L) (mg/L) 22.940 **ENPWJSA** PA0026816 8.100 CBOD5 20 NH3-N 12 24 Dissolved Oxygen 5 Disc Effl. Limit Effl. Limit Effl. Limit RMI Name Permit Flow Parameter 30-day Ave. Maximum Minimum Number (mg/L) (mg/L) (mg/L) (mgd) 22.790 Bridgeport STP PA0020397 0.900 CBOD5 25 NH3-N 20 40 Dissolved Oxygen 5 Disc Effl. Limit Effl. Limit Effl. Limit 30-day Ave. (mg/L) RMI Permit Flow Maximum Minimum Name Parameter Number (mg/L) (mg/L) (mgd) 22.260 Matsunk STP PA0026085 5.500 CBOD5 18 NH3-N 12 Dissolved Oxygen 5

Discharge Information

			Discharge	Characterist	tics						
Design Flow	Hardness (mg/l)*	pH (SU)*	P	artial Mix Fa	actors (PMF	5)	Complete Mix	x Times (min)			
(MGD)*	Hardness (mg/l)*	рн (50)-	AFC CFC THH CRL Q ₇₋₁₀ Q _h								
5.5	217	7									

					0 If lef	t blank	0.5 If le	eft blank	0	if left blani	k	1 If left	t blank
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		609									
7	Chloride (PWS)	mg/L		200									
Group	Bromide	mg/L		0.22									
ق	Sulfate (PWS)	mg/L		5.6									
	Fluoride (PWS)	mg/L											
	Total Aluminum	μg/L		80									
	Total Antimony	μg/L		2									
	Total Arsenic	μg/L		1									
	Total Barium	μg/L		89									
	Total Beryllium	μg/L	<	1									
	Total Boron	μg/L		300									
	Total Cadmium	μg/L	<	0.1									
	Total Chromium (III)	μg/L		3.4									
	Hexavalent Chromium	μg/L	<	0.25									
	Total Cobalt	µg/L		0.6									
	Total Copper	μg/L		52.0268			0.2714						
2	Free Cyanide	µg/L		3									
l a	Total Cyanide	μg/L		3									
Group	Dissolved Iron	μg/L		180									
	Total Iron	μg/L		200									
	Total Lead	μg/L	<	1									
	Total Manganese	μg/L		31									
	Total Mercury	μg/L	<	0.2									
	Total Nickel	μg/L		5.2									
	Total Phenols (Phenolics) (PWS)	μg/L		38									
	Total Selenium	μg/L		2									
	Total Silver	μg/L	<	0.1									
	Total Thallium	μg/L	<	1									
	Total Zinc	μg/L		58									
	Total Molybdenum	μg/L		2									
	Acrolein	μg/L	<	2									
	Acrylamide	μg/L	٧										
	Acrylonitrile	μg/L	<	2									
	Benzene	μg/L	٧	0.5									
	Bromoform	μg/L	<	0.5									

ı	Carbon Tetrachloride	uall	<	0.5	Н			-					
		μg/L	`		Н	Н	-	-					++++
	Chlorobenzene	μg/L	_	0.5	Н	Н	4	-					
	Chlorodibromomethane	µg/L	<	0.5	H		-	_					
	Chloroethane	μg/L	<	0.5	П								
	2-Chloroethyl Vinyl Ether	μg/L		5									
	Chloroform	μg/L	<	2	Ц		Ц						
	Dichlorobromomethane	μg/L	<	0.5	Н	8	-	-					
	1,1-Dichloroethane	μg/L	<	0.5	Ħ	Ħ	Ħ						
60	1,2-Dichloroethane	μg/L	<	0.5	П	П	\neg						
	1,1-Dichloroethylene	μg/L	<	0.5									
Group	1,2-Dichloropropane	µg/L	<	0.5	Ħ		#						
ြုံ	1,3-Dichloropropylene		<	0.5	Н	Н	H	_					
	1,4-Dioxane	μg/L	<	100	Н	Н	-	_					
		μg/L	<		Ħ			_					
1	Ethylbenzene	μg/L		0.5			_						
1	Methyl Bromide	μg/L	<	0.5	Н		Н						++++
1	Methyl Chloride	μg/L	<	0.5	Н	Н	4						
1	Methylene Chloride	μg/L	<	0.5	Н								
	1,1,2,2-Tetrachloroethane	μg/L	<	0.5	П								
	Tetrachloroethylene	μg/L	<	0.5									
	Toluene	μg/L	<	0.5	H			-					
	1,2-trans-Dichloroethylene	μg/L	<	0.5	В								
	1,1,1-Trichloroethane	μg/L	<	0.5	F								
1	1,1,2-Trichloroethane	μg/L	<	0.5	П		\Box						
	Trichloroethylene	µg/L	<	0.5	F								
1	Vinyl Chloride	µg/L	<	0.5	Н	H	#	-					
\vdash	2-Chlorophenol		<	10	Н	Н	+	-					++++
1		μg/L	_	10	H	H	H	_					
1	2,4-Dichlorophenol	μg/L	<		H			_					
1	2,4-Dimethylphenol	μg/L	<	10									
l	4,6-Dinitro-o-Cresol	μg/L	<	10	Ц	Ц	щ						
4 d	2,4-Dinitrophenol	μg/L	<	10	Н	Н	4						
Group	2-Nitrophenol	μg/L	<	10	Н	Н							
ြုံ	4-Nitrophenol	μg/L	<	10	П								
	p-Chloro-m-Cresol	μg/L	<										
1	Pentachlorophenol	µg/L	<	10	Е		\Box						
1	Phenol	μg/L	<	10	Н	Η							
1	2,4,6-Trichlorophenol	μg/L	<	10	Н	Н	_						
	Acenaphthene	µg/L	<	5	Ħ								
1	Acenaphthylene	μg/L	<	5									
	Anthracene	µg/L	<	5	Н	H	H	-					
	Benzidine		<	50	Н	Н	+	_					+++
1		μg/L	_	2.5	H	Η	H	-					
1	Benzo(a)Anthracene	μg/L	<		Ð			_					
1	Benzo(a)Pyrene	μg/L	<	2.5	П		П						
1	3,4-Benzofluoranthene	μg/L	<	2.5	Н	Ц	4						
1	Benzo(ghi)Perylene	μg/L	<	5	Н								
1	Benzo(k)Fluoranthene	μg/L	<	2.5	П								
1	Bis(2-Chloroethoxy)Methane	μg/L	<	5									
1	Bis(2-Chloroethyl)Ether	μg/L	<	5	Ц		Щ						
1	Bis(2-Chloroisopropyl)Ether	μg/L	<		Н	Н							
1	Bis(2-Ethylhexyl)Phthalate	μg/L	<	5	Ħ	Ħ	Ħ						
1	4-Bromophenyl Phenyl Ether	μg/L	<	5	П	П	\neg						
1	Butyl Benzyl Phthalate	μg/L	<	5									
1	2-Chloronaphthalene	μg/L	<	5	Ħ		#						
1	4-Chlorophenyl Phenyl Ether	μg/L	<	5	Н								
			_		H								
1	Chrysene	μg/L	<	2.5	H								
	Dibenzo(a,h)Anthrancene	μg/L	<	2.5									
1	1,2-Dichlorobenzene	μg/L	<	0.5									
	1,3-Dichlorobenzene	μg/L	<	0.5	H								
10	1,4-Dichlorobenzene	μg/L	<	0.5	Н								
g g	3,3-Dichlorobenzidine	μg/L	<	5				1					
Group	Diethyl Phthalate	μg/L	<	5									
O	Dimethyl Phthalate	μg/L	<	5	H								
	Di-n-Butyl Phthalate	μg/L	<	5	В								
	2,4-Dinitrotoluene	μg/L	<	5	Ħ								
			_		_	_		-	-	-		 	

	2,6-Dinitrotoluene	μg/L	<	5	Н		F	Н					
	Di-n-Octyl Phthalate	µg/L	<	5	П			T					
	1,2-Diphenylhydrazine	µg/L	<	5									
	Fluoranthene	μg/L	<	5	Ħ		H	H					
	Fluorene	µg/L	<	5	Ħ		H	t					###
	Hexachlorobenzene	µg/L	<	5	Н		Н	۲					
	Hexachlorobutadiene	µg/L	· ·	0.5									
	Hexachlorocyclopentadiene	µg/L	· ·	5	H		H	H					
	Hexachloroethane		· ·	5	Н	_	H	H					+++
		µg/L	~	2.5	H		H	H					
	Indeno(1,2,3-cd)Pyrene	μg/L	_				Ε	Ε					
	Isophorone	μg/L	<	5			F	F					
	Naphthalene	µg/L	<	0.5	Н	Щ	Ļ	H					+
	Nitrobenzene	µg/L	<	5	Н		H	H					
	n-Nitrosodimethylamine	μg/L	<	5									
	n-Nitrosodi-n-Propylamine	μg/L	<	5				Γ					
	n-Nitrosodiphenylamine	μg/L	<	5	Н		Ļ	Ļ					
	Phenanthrene	μg/L	٧	2.5	Н	-	F	H					
	Pyrene	μg/L	<	5	H			F					
	1,2,4-Trichlorobenzene	μg/L	<	0.5				Ī					
\neg	Aldrin	µg/L	<										
	alpha-BHC	µg/L	٧										
	beta-BHC	µg/L	/ v		H		-	H					
	gamma-BHC		/ v		H	-		۲					
		µg/L			H		H	H					
	delta BHC	µg/L	٧.										
	Chlordane	μg/L	<		Р			Ļ					
	4,4-DDT	μg/L	<		Н		L	L					
	4,4-DDE	μg/L	<		Н		L	H					
	4,4-DDD	μg/L	<		Н	Н	Н	Н					
	Dieldrin	μg/L	٧				Т	Ī					
	alpha-Endosulfan	μg/L	٧					П					
	beta-Endosulfan	μg/L	<		Н		H	H					
•	Endosulfan Sulfate	μg/L	<		Ħ	=	H	H					
3	Endrin	μg/L	<		Н		Н	Н					
•	Endrin Aldehyde	µg/L	<		Ħ		Н	Ħ					
,			<				Е	Е	-				
	Heptachlor	µg/L			Н		H	H					-
	Heptachlor Epoxide	µg/L	<		Н		H	H					
	PCB-1016	μg/L	<		H		H	H					
	PCB-1221	μg/L	<										
	PCB-1232	µg/L	<										
	PCB-1242	μg/L	٧		Н		L	Ļ					+++
	PCB-1248	μg/L	٧		Н		H	H					\cdots
	PCB-1254	μg/L	٧		Н	Η	Н	П					
	PCB-1260	μg/L	<										
	PCBs, Total	µg/L	<										
	Toxaphene	μg/L	<		H			F					
	2,3,7,8-TCDD	ng/L	<		H		-	-					
	Gross Alpha	pCi/L						۲					
	Total Beta		_		H		H	Ħ					
		pCi/L	٧.										
-	Radium 226/228	pCi/L	٧.					H					
5	Total Strontium	µg/L	<		H		-	H					
	Total Uranium	µg/L	<										
	Osmotic Pressure	mOs/kg											
							F	F					
					H			F					
					F			f					
								f					
					H			H					
							-	-					
									1				
								Н					

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Matsunk WWTF, NPDES Permit No. PA0026085, Outfall 002

Instructions Disch	arge Str	eam														
Receiving Surface W	ater Name:	Schuylkill R	liver				No. Rea	iches to l	Model:	1		_	tewide Criteri at Lakes Crit			
Location	Stream Coo	de' RMI'	Elevat	DA /mi ²)* Slo	pe (ft/ft)		Withdraw MGD)	val Apply Crite			OR	SANCO Crite	ria		
Point of Discharge	000833	22.26	3 42.8	5 1770					Ye	5						
End of Reach 1	000833	21.02	5 38.7	4 1780					Ye	s						
Q ₇₋₁₀		157	-			I			maver		-					
Location	RMI	LFY (cfs/mi ²)*	Stream	(cfs) Tributary	W/D Ratio	Width (ft)	Depth (ft)	Velocit y (fps)	Time	Ham	Tributa dness	pH	Strear Hardness*	m pH*	Analys Hardness	pH
Point of Discharge	22.26	0.153	Oucum		11000	(11)	(11)) (ip5)	(days)			P	100	7	Haraness	p
End of Reach 1	21.025	0.153											100	-		
Qh																
Location	RMI	LFY	Flow	(cfs)	W/D	Width	Depth	Velocit	Time		Tributa	iry	Stream	m	Analys	is
Location	TAMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Haro	dness	pН	Hardness	pН	Hardness	pН
Point of Discharge	22.26															
End of Reach 1	21.025															

Acrolein

0

0

Model Results

Matsunk WWTF, NPDES Permit No. PA0026085, Outfall 002

Instructions Results	RETURN	TO INPU	тѕ)	SAVE AS	PDF	PRINT	• A	ll () Inputs	O Results) Limits
☐ Hydrodynamics ☑ Wasteload Allocations										
☑ AFC CC		15	PMF:	0.065	Ana	lysis Hardnes	ss (mg/l):	137.98	Analysis pH:	7.00
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)		Co	omments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A			
Chloride (PWS)	0	0		0	N/A	N/A	N/A			
Sulfate (PWS)	0	0		0	N/A	N/A	N/A			
Total Aluminum	0	0		0	750	750	2,312			
Total Antimony	0	0		0	1,100	1,100	3,391			
Total Arsenic	0	0		0	340	340	1,048		Chem Trans	slator of 1 applied
Total Barium	0	0		0	21,000	21,000	64,728			
Total Boron	0	0		0	8,100	8,100	24,966			
Total Cadmium	0	0		0	2.753	2.96	9.12		Chem Transla	tor of 0.931 applied
Total Chromium (III)	0	0		0	741.566	2,347	7,233		Chem Transla	tor of 0.316 applied
11 1 1 0 1 1	_			_	40	40.0	50.0		OL T 1	

3

0

9.25

Acrylonitrile	0	0	0	650	650	2,003	
Benzene	0	0	0	640	640	1,973	
Bromoform	0	0	0	1,800	1,800	5,548	
Carbon Tetrachloride	0	0	0	2,800	2,800	8,630	
Chlorobenzene	0	0	0	1,200	1,200	3,699	
Chlorodibromomethane	0	0	0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	55,481	
Chloroform	0	0	0	1,900	1,900	5,856	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	46,234	
1,1-Dichloroethylene	0	0	0	7,500	7,500	23,117	
1,2-Dichloropropane	0	0	0	11,000	11,000	33,905	
1,3-Dichloropropylene	0	0	0	310	310	956	
Ethylbenzene	0	0	0	2,900	2,900	8,939	
Methyl Bromide	0	0	0	550	550	1,695	
Methyl Chloride	0	0	0	28,000	28,000	86,304	
Methylene Chloride	0	0	0	12,000	12,000	36,987	
1.1.2.2-Tetrachloroethane	0	0	0	1.000	1.000	3,082	
Tetrachloroethylene	0	0	0	700	700	2,158	
Toluene	0	0	0	1.700	1.700	5.240	
1,2-trans-Dichloroethylene	0	0	0	6.800	6.800	20.959	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	9,247	
1.1.2-Trichloroethane	0	0	0	3,400	3,400	10,480	
Trichloroethylene	0	0	0	2,300	2.300	7,089	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	1,726	
2,4-Dichlorophenol	0	0	0	1.700	1.700	5,240	
2,4-Dimethylphenol	0	0	0	660	660	2,034	
4.6-Dinitro-o-Cresol	0	0	0	80	80.0	247	
2.4-Dinitrophenol	0	0	0	660	660	2,034	
2-Nitrophenol	0	0	0	8.000	8.000	24.658	
4-Nitrophenol	0	0	0	2.300	2.300	7.089	
Pentachlorophenol	0	0	0	8.723	8.72	26.9	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	1,418	
Acenaphthene	0	0	0	83	83.0	1,418 256	
Acenaphthene	0	0	0	N/A	83.0 N/A	250 N/A	
Anthracene Benzidine	0	0	0	N/A 300	300	925	
	0	0	0	0.5	0.5	1.54	
Benzo(a)Anthracene							
Benzo(a)Pyrene	0	0	0	N/A N/A	N/A N/A	N/A N/A	
3,4-Benzofluoranthene	0	0	0				
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0	0	30,000	30,000	92,468	
Bis(2-Ethylhexyl)Phthalate	0	0	0	4,500	4,500	13,870	
4-Bromophenyl Phenyl Ether	0	0	0	270	270	832	
Butyl Benzyl Phthalate	0	0	0	140	140	432	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
Chrysene	0	0	0	N/A	N/A	N/A	

Dibenzo(a,h)Anthrancene	0	0	0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	0	820	820	2,527	
1,3-Dichlorobenzene	0	0	0	350	350	1,079	
1,4-Dichlorobenzene	0	0	0	730	730	2,250	
3,3-Dichlorobenzidine	0	0	0	N/A	N/A	N/A	
Diethyl Phthalate	0	0	0	4,000	4,000	12,329	
Dimethyl Phthalate	0	0	0	2,500	2,500	7,706	
Di-n-Butyl Phthalate	0	0	0	110	110	339	
2,4-Dinitrotoluene	0	0	0	1,600	1,600	4,932	
2,6-Dinitrotoluene	0	0	0	990	990	3,051	
1,2-Diphenylhydrazine	0	0	0	15	15.0	46.2	
Fluoranthene	0	0	0	200	200	616	
Fluorene	0	0	0	N/A	N/A	N/A	
Hexachlorobenzene	0	0	- 0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0	0	10	10.0	30.8	
Hexachlorocyclopentadiene	0	0	0	5	5.0	15.4	
Hexachloroethane	0	0	0	60	60.0	185	
Indeno(1,2,3-cd)Pyrene	0	0	0	N/A	N/A	N/A	
Isophorone	0	0	0	10,000	10,000	30,823	
Naphthalene	0	0	0	140	140	432	
Nitrobenzene	0	0	0	4,000	4,000	12,329	
n-Nitrosodimethylamine	0	0	0	17,000	17,000	52,399	
n-Nitrosodi-n-Propylamine	0	0	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0	0	300	300	925	
Phenanthrene	0	0	0	5	5.0	15.4	
Pyrene	0	0	0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0	0	130	130	401	

☑ CFC CCT (m.)	n): 720	PMF:	0.453	Analysis Hardness (mg/l):	107.58	Analysis pH:	7.00	1

Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (μg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	3,394	
Total Arsenic	0	0		0	150	150	2,314	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	63,248	
Total Boron	0	0		0	1,600	1,600	24,682	
Total Cadmium	0	0		0	0.259	0.29	4.41	Chem Translator of 0.908 applied
Total Chromium (III)	0	0		0	78.688	91.5	1,411	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	160	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	293	
Total Copper	0	0		0	9.533	9.93	153	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	5.2	5.2	80.2	
Dissolved Iron	0	0		0	N/A	N/A	N/A	

Total Iron	0	0				0	1,500	1,500	49,242	WQC = 30 day average; PMF = 1
Total Lead	0	0				0	2.725	3.49	53.9	Chem Translator of 0.78 applied
Total Manganese	0	0		7		0	N/A	N/A	N/A	
Total Mercury	0	0	Ħ	7		0	0.770	0.91	14.0	Chem Translator of 0.85 applied
Total Nickel	0	0	Ш	#		0	55.325	55.5	856	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0		7		0	N/A	N/A	N/A	
Total Selenium	0	0	Ħ	7		0	4.600	4.99	77.0	Chem Translator of 0.922 applied
Total Silver	0	0				0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0	H	7		0	13	13.0	201	
Total Zinc	0	0	Ħ	\top		0	125.688	127	1,966	Chem Translator of 0.986 applied
Acrolein	0	0	П	7		0	3	3.0	46.3	
Acrylonitrile	0	0	H	7		0	130	130	2,005	
Benzene	0	0		T		0	130	130	2,005	
Bromoform	0	0	П	7	\Box	0	370	370	5,708	
Carbon Tetrachloride	0	0	H			0	560	560	8,639	
Chlorobenzene	0	0				0	240	240	3,702	
Chlorodibromomethane	0	0	\square	7		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0	\square			0	3,500	3,500	53,993	
Chloroform	0	0				0	390	390	6,016	
Dichlorobromomethane	0	0	\square	7		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	Н	\top		0	3,100	3,100	47,822	
1,1-Dichloroethylene	0	0				0	1,500	1,500	23,140	
1,2-Dichloropropane	0	0	\mathbb{H}	7		0	2,200	2,200	33,938	
1,3-Dichloropropylene	0	0	Н			0	61	61.0	941	
Ethylbenzene	0	0		#	\Box	0	580	580	8,947	
Methyl Bromide	0	0	\mathbb{H}	+		0	110	110	1,697	
Methyl Chloride	0	0				0	5,500	5,500	84,845	
Methylene Chloride	0	0	\square	Į	\Box	0	2,400	2,400	37,023	
1,1,2,2-Tetrachloroethane	0	0	$\forall \exists$	\mp		0	210	210	3,240	
Tetrachloroethylene	0	0				0	140	140	2,160	
Toluene	0	0	\square	4		0	330	330	5,091	
1,2-trans-Dichloroethylene	0	0				0	1,400	1,400	21,597	
1,1,1-Trichloroethane	0	0				0	610	610	9,410	
1,1,2-Trichloroethane	0	0	\square	\Box		0	680	680	10,490	
Trichloroethylene	0	0		Ŧ		0	450	450	6,942	
Vinyl Chloride	0	0				0	N/A	N/A	N/A	
2-Chlorophenol	0	0	\square	\perp		0	110	110	1,697	
2,4-Dichlorophenol	0	0		\pm		0	340	340	5,245	
2,4-Dimethylphenol	0	0				0	130	130	2,005	
4,6-Dinitro-o-Cresol	0	0				. 0	16	16.0	247	
2,4-Dinitrophenol	0	0		T		0	130	130	2,005	
2-Nitrophenol	0	0				0	1,600	1,600	24,682	
4-Nitrophenol	0	0				0	470	470	7,250	
Pentachlorophenol	0	0		T		0	6.693	6.69	103	
Phenol	0	0				0	N/A	N/A	N/A	

Acenaphthene	2,4,6-Trichlorophenol	0	0		0	91	91.0	1,404	
Anthracene	_			 				-	
Benzo(a)Anthracene			_						
Benzo(a)Anthracene			0		0	59			
Bertzo(a)Pyrene				 					
3.4-Benzofluoranthene									
Bertzo(k)Fluoranthene									
Bis(2-Chioroethyl)Ether			_	 					
Bis(2-Ethythexyl)Phthalate									
### ### ##############################				+++++		_			
Butyl Benzyl Phthalate		_	_	 					
2-Chloronaphthalene									
Chrysene				+++++					
Dibenzo(a,h)Anthrancene			_	 					
1,2-Dichlorobenzene			_						
1,3-Dichlorobenzene				 					
1,4-Dichlorobenzene 0 0 150 150 2,314 3,3-Dichlorobenzidine 0 0 N/A N/A N/A Diethyl Phthalate 0 0 800 800 12,341 Dimethyl Phthalate 0 0 500 500 7,713 Di-n-Butyl Phthalate 0 0 21 21.0 324 2,4-Dinitrotoluene 0 0 200 320 320 4,936 1,2-Diphenylhydrazine 0 0 200 200 3,085 1,2-Diphenylhydrazine 0 0 3 3.0 48.3 Fluoranthene 0 0 0 40 40.0 617 Fluorene 0 0 0 N/A N/A N/A Hexachlorobutzdiene 0 0 0 1 1,0 15.4 Hexachlorobutadiene 0 0 0 1 1,0 15.4 Hexachlorobutadiene 0								_	
3,3-Diohlorobenzidine 0 0 N/A N/A N/A Diethyl Phthalate 0 0 800 800 12,341 Dimethyl Phthalate 0 0 500 500 7,713 Di-n-Butyl Phthalate 0 0 21 21.0 324 2,4-Dinitrotoluene 0 0 320 320 4,938 2,6-Dinitrotoluene 0 0 200 30,865 1,2-Diphenylhydrazine 0 0 3 3.0 46.3 Fluoranthene 0 0 40 40.0 617 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 1 1.0 15.4 Hexachloroethane 0 0 1 1.0 15.4 Hexachloroethane 0 0 1.2 12.0 185 Indeno(1,2.3-od)Pyren								-	
Diethyl Phthalate									
Dimethyl Phthalate									
Di-n-Butyl Phthalate 0 0 21 21.0 324 2,4-Dinitrotoluene 0 0 320 320 4,936 2,6-Dinitrotoluene 0 0 0 200 3085 1,2-Diphenylhydrazine 0 0 40 40.0 617 Fluoranthene 0 0 40 40.0 617 Fluorene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 N/A N/A N/A Hexachlorocyclopentadiene 0 0 1 10 15.4 Hexachlorotethane 0 0 12 12.0 185 Indeno(1,2,3-od)Pyrene 0 0 N/A N/A N/A Naphthalene 0 0 0 1 10 15.4 Nitrobenzene 0 0 0 3,400 3,400 52,450 n-Nitrosodimethylamine 0 0 0 0 0									
2,4-Dinitrotoluene 0 0 320 320 4,936 2,6-Dinitrotoluene 0 0 200 200 3,085 1,2-Diphenylhydrazine 0 0 3 3.0 46.3 Fluoranthene 0 0 40 40.0 617 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 15.4 Hexachlorocyclopentadiene 0 0 0 1 1.0 15.4 Hexachlorocyclopentadiene 0 0 0 1 1.0 15.4 Hexachlorocyclopentadiene 0 0 1 1.0 15.4 Hexachlorocyclopentadiene 0 0 1 1.0 15.4 Hexachlorocyclopentadiene 0 0 1 1.0 15.4 Indenot1,2,3-edlyyrene 0 0 <				 				_	
2,6-Dinitrotoluene 0 0 200 200 3,085 1,2-Diphenylhydrazine 0 0 0 3 3,0 48,3 Fluoranthene 0 0 40 40,0 617 Fluorene 0 0 N/A N/A N/A Hexachlorobenzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 1 1,0 15,4 Hexachlorocyclopentadiene 0 0 1 1,0 15,4 Hexachlorocythane 0 0 12 12,0 185 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 1,00 2,100 32,396 Naphthalene 0 0 0 43 43.0 663 Nitrobenzene 0 0 0 3,400 3,400 52,450 n-Nitrosodinethylamine 0 0			_						
1,2-Diphenylhydrazine 0 0 3 3.0 48.3 Fluoranthene 0 0 40 40.0 617 Fluorene 0 0 0 N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 1 1.0 15.4 Hexachloroethane 0 0 1 1.0 15.4 Hexachloroethane 0 0 12 12.0 185 Indeno(1,2,3-cd)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 1 1.0 32,396 Naphthalene 0 0 43 43.0 663 Nitrobenzene 0 0 3,400 34.0 52,450 n-Nitrosodinethylamine 0 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 0 59 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Fluoranthene			_						
Fluorene 0 0 N/A N/A N/A N/A Hexachlorobenzene 0 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 0 2 2.0 30.9 Hexachlorocyclopentadiene 0 0 1 1.0 15.4 Hexachlorocethane 0 0 0 12 12.0 185 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 32,396 Naphthalene 0 0 43 43.0 663 Nitrobenzene 0 0 0 810 810 12,495 n-Nitrosodimethylamine 0 0 3,400 3,400 52,450 n-Nitrosodiphenylamine 0 0 0 N/A N/A N/A Phenanthrene 0 0 0 N/A N/A N/A Pyren			_						
Hexachloroberzene 0 0 N/A N/A N/A Hexachlorobutadiene 0 0 2 2.0 30.9 Hexachlorocyclopentadiene 0 0 1 1.0 15.4 Hexachlorocythane 0 0 0 12 12.0 185 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 2,100 32,396 Naphthalene 0 0 0 43 43.0 663 Nitrobenzene 0 0 0 810 810 12,495 n-Nitrosodimethylamine 0 0 3,400 3,400 52,450 n-Nitrosodiphenylamine 0 0 N/A N/A N/A Phenanthrene 0 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A N/A			_						
Hexachlorobutadiene 0 0 2 2.0 30.9 Hexachlorocyclopentadiene 0 0 1 1.0 15.4 Hexachloroethane 0 0 12 12.0 185 Indeno(1,2,3-cd)Pyrene 0 0 N/A N/A N/A Isophorone 0 0 2,100 2,100 32,396 Naphthalene 0 0 43 43.0 663 Nitrobenzene 0 0 810 810 12,495 n-Nitrosodimethylamine 0 0 3,400 3,400 52,450 n-Nitrosodiphenylamine 0 0 N/A N/A N/A Phenanthrene 0 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A N/A				 					
Hexachlorocyclopentadiene 0 0 1 1.0 15.4 Hexachloroethane 0 0 12 12.0 185 Indeno(1,2,3-cd)Pyrene 0 0 0 N/A N/A N/A Isophorone 0 0 0 2,100 2,100 32,396 Naphthalene 0 0 43 43.0 663 Nitrobenzene 0 0 810 810 12,495 n-Nitrosodimethylamine 0 0 3,400 3,400 52,450 n-Nitrosodiphenylamine 0 0 N/A N/A N/A Phenanthrene 0 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A N/A			_						
Hexachloroethane									
Indeno(1,2,3-cd)Pyrene									
Isophorone	Indeno(1,2,3-cd)Pyrene		0		0	N/A	N/A	N/A	
Naphthalene 0 0 43 43.0 663 Nitrobenzene 0 0 810 810 12,495 n-Nitrosodimethylamine 0 0 3,400 3,400 52,450 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 910 Phenanthrene 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A					0				
Nitrobenzene 0 0 810 810 12,495 n-Nitrosodimethylamine 0 0 3,400 3,400 52,450 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 910 Phenanthrene 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A		0	0		0		_	-	
n-Nitrosodimethylamine 0 0 3,400 3,400 52,450 n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 910 Phenanthrene 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A	-		0		0	810		12,495	
n-Nitrosodi-n-Propylamine 0 0 N/A N/A N/A n-Nitrosodiphenylamine 0 0 59 59.0 910 Phenanthrene 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A	n-Nitrosodimethylamine		0		0	3,400	3,400	-	
n-Nitrosodiphenylamine 0 0 59 59.0 910 Phenanthrene 0 0 1 1.0 15.4 Pyrene 0 0 N/A N/A N/A	-		0		0	-	-	_	
Phenanthrene 0 0 1 1.0 15.4 Pyrene 0 0 I/A N/A N/A			0		0	59	59.0		
Pyrene 0 0 N/A N/A N/A		0	0		0	1	1.0	15.4	
	Pyrene	0	0		0	N/A	N/A	N/A	
	_		0		0				

☑ THH	CCT (min): 720	PMF: 0.453	Analysis H	ardness (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc Stream	Trib Conc Fate	wac wa	Obj WLA (ug/L)	Comments

1 Ollutarits	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	wer (pgre)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	86.4	
Total Arsenic	0	0		0	10	10.0	154	
Total Barium	0	0		0	2,400	2,400	37,023	
Total Boron	0	0		0	3,100	3,100	47,822	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	61.7	
Dissolved Iron	0	0		0	300	300	4,628	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	15,426	
Total Mercury	0	0		0	0.050	0.05	0.77	
Total Nickel	0	0		0	610	610	9,410	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	3.7	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	46.3	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	1,543	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	509	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	1,049	
Methyl Bromide	0	0		0	100	100.0	1,543	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	

Tetrachloroethylene	0	0	\vdash	0	N/A	N/A	N/A	
Toluene	0	0		0	57	57.0	879	
1,2-trans-Dichloroethylene	0	0		0	100	100.0	1.543	
1,1,1-Trichloroethane	0	0	\vdash	0	10,000	10,000	154,264	
1,1,2-Trichloroethane	0	0		0	N/A	N/A	N/A	
Trichloroethylene	0	0		0	N/A	N/A	N/A	
Vinyl Chloride	0	0	Ħ	0	N/A	N/A	N/A	
2-Chlorophenol	0	0		0	30	30.0	463	
2,4-Dichlorophenol	0	0		0	10	10.0	154	
2,4-Dimethylphenol	0	0	Ħ	0	100	100.0	1,543	
4,6-Dinitro-o-Cresol	0	0		0	2	2.0	30.9	
2,4-Dinitrophenol	0	0	$\exists \exists$	0	10	10.0	154	
2-Nitrophenol	0	0	Ħ	0	N/A	N/A	N/A	
4-Nitrophenol	0	0		0	N/A	N/A	N/A	
Pentachlorophenol	0	0		0	N/A	N/A	N/A	
Phenol	0	0		0	4,000	4,000	61,706	
2,4,6-Trichlorophenol	0	0		0	N/A	N/A	N/A	
Acenaphthene	0	0	\vdash	0	70	70.0	1,080	
Anthracene	0	0		0	300	300	4,628	
Benzidine	0	0		0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0	H	0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0	\Box	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0	\vdash	0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0		0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0		0	0.1	0.1	1.54	
2-Chloronaphthalene	0	0	\vdash	0	800	800	12,341	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0	\vdash	0	1,000	1,000	15,426	
1,3-Dichlorobenzene	0	0		0	7	7.0	108	
1,4-Dichlorobenzene	0	0		0	300	300	4,628	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	600	600	9,256	
Dimethyl Phthalate	0	0		0	2,000	2,000	30,853	
Di-n-Butyl Phthalate	0	0		0	20	20.0	309	
2,4-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0		0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0		0	N/A	N/A	N/A	
Fluoranthene	0	0		0	20	20.0	309	
Fluorene	0	0		0	50	50.0	771	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	N/A	N/A	N/A	

Hexachlorocyclopentadiene	0	0		0	4	4.0	61.7	
Hexachloroethane	0	0		0	N/A	N/A	N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0	77	0	34	34.0	524	
Naphthalene	0	0	\Box	0	N/A	N/A	N/A	
Nitrobenzene	0	0	\dashv	0	10	10.0	154	
n-Nitrosodimethylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodi-n-Propylamine	0	0	\Box	0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		. 0	20	20.0	309	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	1.08	

	CCT (min):	720	PMF:	0.676	Analysis Hardness (mg/l):	N/A	Analysis pH:	N/A	Ī
--	------------	-----	------	-------	---------------------------	-----	--------------	-----	---

	- Stream							
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
T Glidanis	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	TEX (pg/c)	Connectic
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	4.79	
Benzene	0	0		0	0.58	0.58	46.3	

D	_	_	0	7	7.0	550	
Bromoform	0	0	0	7	7.0	559	
Carbon Tetrachloride	0	0	0	0.4	0.4	32.0	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	63.9	
2-Chloroethyl Vinyl Ether	0	0	0	N/A	N/A	N/A	
Chloroform	0	0	0	5.7	5.7	455	
Dichlorobromomethane	0	0	0	0.95	0.95	75.9	
1,2-Dichloroethane	0	0	0	9.9	9.9	791	
1,1-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	71.9	
1,3-Dichloropropylene	0	0	0	0.27	0.27	21.6	
Ethylbenzene	0	0	0	N/A	N/A	N/A	
Methyl Bromide	0	0	0	N/A	N/A	N/A	
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	1,598	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	16.0	
Tetrachloroethylene	0	0	0	10	10.0	799	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	43.9	
Trichloroethylene	0	0	0	0.6	0.6	47.9	
Vinyl Chloride	0	0	0	0.02	0.02	1.6	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	2.4	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	120	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.008	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.08	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.008	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.08	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.8	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	2.4	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	25.6	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	

0	0		0	0.12	0.12	9.59	
0	0		0	0.0001	0.0001	0.008	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	0.05	0.05	3.99	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	0.05	0.05	3.99	
0	0		0	0.05	0.05	3.99	
0	0		0	0.03	0.03	2.4	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	0.00008	0.00008	0.006	
0	0		0	0.01	0.01	0.8	
0	0		0	N/A	N/A	N/A	
0	0		0	0.1	0.1	7.99	
0	0		0	0.001	0.001	0.08	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	0.0007	0.0007	0.056	
0	0		0	0.005	0.005	0.4	
0	0		0	3.3	3.3	264	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
0	0		0	N/A	N/A	N/A	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0.0001 0.0001 0 0 0 N/A N/A 0 0 0 N/A N/A 0 0 0 0 N/A N/A 0 0 0 0 N/A N/A 0 0 0 N/A N/A N/A 0 0 0 N/A N/A N/A 0	0 0 0 0.0001 0.0001 0.008 0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 N/A N/A N/A N/A 0 0 0 0 0.05 0.05 3.99 0 0 0 0.05 0.05 3.99 0 0 0.05 0.05 3.99 0 0 0.03 0.03 2.4 0 0 0.03 0.03 2.4 0 0 0.03 0.03 0.03 0.03 0 0 0

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month:

	Mass	Limits		Concentra	tion Limits		Ī		
Pollutants	AML	MDL	AML	MDL	IMAX	Units	Governing	WQBEL	Comments
	(lbs/day)	(lbs/day)					WQBEL	Basis	
Total Copper	1.35	1.79	29.5	39.1	73.8	μg/L	29.5	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	μg/L	311	AFC	Discharge Conc > 10% WQBEL (no RP)

☑ Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

	Commission		
	Governing		
Pollutante	_	Inite	Commente

Model Results 6/28/2021 Page 14

i Ullutarità	WQBEL	Office	Comments
Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	1,482	μg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	86.4	μg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	154	μg/L	Discharge Conc ≤ 10% WQBEL
Total Barium	37,023	μg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	16,002	μg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	4.41	μg/L	Discharge Conc < TQL
Total Chromium (III)	1,411	μg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	32.2	μg/L	Discharge Conc < TQL
Total Cobalt	188	μg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	43.5	μg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	4,628	μg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	49,242	μg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	53.9	μg/L	Discharge Conc < TQL
Total Manganese	15,426	μg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.77	μg/L	Discharge Conc < TQL
Total Nickel	856	μg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		μg/L	PWS Not Applicable
Total Selenium	77.0	μg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	13.0	μg/L	Discharge Conc < TQL
Total Thallium	3.7	μg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	5.93	μg/L	Discharge Conc < TQL
Acrylonitrile	4.79	μg/L	Discharge Conc < TQL
Benzene	46.3	μg/L	Discharge Conc < TQL
Bromoform	559	μg/L	Discharge Conc < TQL
Carbon Tetrachloride	32.0	μg/L	Discharge Conc < TQL
Chlorobenzene	1,543	μg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	63.9	μg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	35,561	μg/L	Discharge Conc ≤ 25% WQBEL
Chloroform	455	μg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	75.9	μg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	791	μg/L	Discharge Conc < TQL
1,1-Dichloroethylene	509	μg/L	Discharge Conc < TQL
1,2-Dichloropropane	71.9	μg/L	Discharge Conc < TQL
1,3-Dichloropropylene	21.6	μg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS

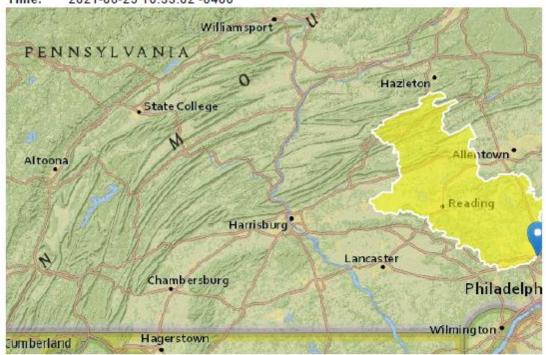
Model Results 6/28/2021 Page 15

Ethylbenzene	1,049	μg/L	Discharge Conc < TQL
Methyl Bromide	1,087	μg/L	Discharge Conc < TQL
Methyl Chloride	55,317	μg/L	Discharge Conc < TQL
Methylene Chloride	1,598	μg/L	Discharge Conc < TQL
1,1,2,2-Tetrachloroethane	16.0	μg/L	Discharge Conc < TQL
Tetrachloroethylene	799	μg/L	Discharge Conc < TQL
Toluene	879	μg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	1,543	μg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	5,927	μg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	43.9	μg/L	Discharge Conc < TQL
Trichloroethylene	47.9	μg/L	Discharge Conc < TQL
Vinyl Chloride	1.6	μg/L	Discharge Conc < TQL
2-Chlorophenol	463	μg/L	Discharge Conc < TQL
2,4-Dichlorophenol	154	μg/L	Discharge Conc < TQL
2,4-Dimethylphenol	1,304	μg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	30.9	μg/L	Discharge Conc < TQL
2,4-Dinitrophenol	154	μg/L	Discharge Conc < TQL
2-Nitrophenol	15,805	μg/L	Discharge Conc < TQL
4-Nitrophenol	4,544	μg/L	Discharge Conc < TQL
Pentachlorophenol	2.4	μg/L	Discharge Conc < TQL
Phenol	61,706	μg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	120	μg/L	Discharge Conc < TQL
Acenaphthene	164	μg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	4,628	μg/L	Discharge Conc ≤ 25% WQBEL
Benzidine	0.008	μg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.08	μg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.008	μg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.08	μg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.8	μg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	2.4	μg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	25.6	μg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	533	μg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	1.54	μg/L	Discharge Conc < TQL
2-Chloronaphthalene	12,341	μg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	9.59	μg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.008	μg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	1,620	μg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	108	μg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	1,442	μg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	3.99	μg/L	Discharge Conc < TQL
Diethyl Phthalate	7,902	μg/L	Discharge Conc < TQL
	•	•	•

Model Results 6/28/2021 Page 16

L			
Dimethyl Phthalate	4,939	μg/L	Discharge Conc < TQL
Di-n-Butyl Phthalate	217	μg/L	Discharge Conc < TQL
2,4-Dinitrotoluene	3.99	μg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	3.99	μg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	2.4	μg/L	Discharge Conc < TQL
Fluoranthene	309	μg/L	Discharge Conc ≤ 25% WQBEL
Fluorene	771	μg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorobenzene	0.006	μg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.8	μg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	9.88	μg/L	Discharge Conc < TQL
Hexachloroethane	7.99	μg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.08	μg/L	Discharge Conc < TQL
Isophorone	524	μg/L	Discharge Conc < TQL
Naphthalene	277	μg/L	Discharge Conc < TQL
Nitrobenzene	154	μg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.056	μg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.4	μg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	264	μg/L	Discharge Conc < TQL
Phenanthrene	9.88	μg/L	Discharge Conc < TQL
Pyrene	309	μg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	1.08	μg/L	Discharge Conc < TQL

StreamStats Page 2 of 5


PA0026085 at 002

Region ID: PA

Workspace ID: PA20210625143240665000

Clicked Point (Latitude, Longitude): 40.09143, -75.32145

Time: 2021-06-25 10:33:02 -0400

Basin Characte			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1770	square miles
BSLOPD	Mean basin slope measured in degrees	5.5196	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	10.0528	percent
PRECIP	Mean Annual Precipitation	46	inches

StreamStats Page 3 of 5

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	1.5	miles per square mile
CARBON	Percentage of area of carbonate rock	13.84	percent

Low-Flow Statistics Parameters [4	48.9 Percent (866	square miles) Low Flow Regio	n 11
-----------------------------------	-------------------	--------------	------------------	------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1770	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.5196	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21
URBAN	Percent Urban	10.0528	percent	0	89

Low-Flow Statistics Parameters [51.1 Percent (905 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1770	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	46	inches	35	50.4
STRDEN	Stream Density	1.5	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	13.84	percent	0	99

Low-Flow Statistics Disclaimers [48.9 Percent (866 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

StreamStats Page 4 of 5

Low-Flow Statistics Flow Report [48.9 Percent (866 square	are miles) Low Flow R	
Statistic	Value	Unit
7 Day 2 Year Low Flow	434	ft^3/s
30 Day 2 Year Low Flow	536	ft^3/s
7 Day 10 Year Low Flow	271	ft^3/s
30 Day 10 Year Low Flow	326	ft^3/s
90 Day 10 Year Low Flow	436	ft^3/s
Low-Flow Statistics Disclaimers [51.1 Percent (905 squa	are miles) Low Flow R	egion 2]
One or more of the parameters is outside the sugges	ted range. Estimates	were extrapolated
with unknown errors		
	are miles) Low Flow R	legion 2]
with unknown errors	are miles) Low Flow R Value	egion 2] Unit
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square)	•	
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square) Statistic	Value	Unit
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square square) Statistic 7 Day 2 Year Low Flow	Value 666	Unit ft^3/s
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square	Value 666 782	Unit ft^3/s ft^3/s
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square	Value 666 782 447	Unit ft*3/s ft*3/s ft*3/s
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow 7 Day 10 Year Low Flow 30 Day 10 Year Low Flow	Value 666 782 447 524	Unit ft*3/s ft*3/s ft*3/s ft*3/s
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow 7 Day 10 Year Low Flow 30 Day 10 Year Low Flow 90 Day 10 Year Low Flow	Value 666 782 447 524	Unit ft*3/s ft*3/s ft*3/s ft*3/s
with unknown errors Low-Flow Statistics Flow Report [51.1 Percent (905 square Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow 7 Day 10 Year Low Flow 30 Day 10 Year Low Flow 90 Day 10 Year Low Flow Low-Flow Statistics Flow Report [Area-Averaged]	Value 666 782 447 524 637	Unit ft*3/s ft*3/s ft*3/s ft*3/s ft*3/s

Low-Flow Statistics Citations

7 Day 10 Year Low Flow

30 Day 10 Year Low Flow

90 Day 10 Year Low Flow

361

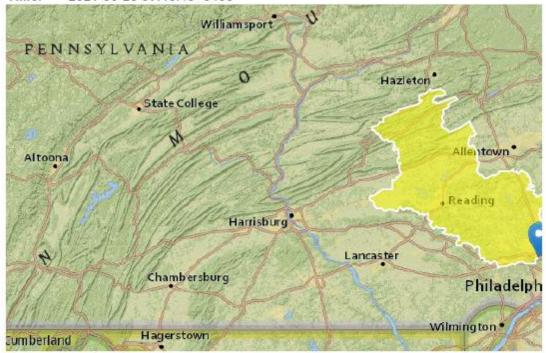
427

539

ft^3/s

ft^3/s

ft^3/s


PA0026085 at node 2

Region ID: PA

Workspace ID: PA20210628134523958000

Clicked Point (Latitude, Longitude): 40.07400, -75.31471

Time: 2021-06-28 09:45:43 -0400

Basin Characte	isics		
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1780	square miles
BSLOPD	Mean basin slope measured in degrees	5.5181	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	10.3511	percent
PRECIP	Mean Annual Precipitation	46	inches

https://streamstats.usgs.gov/ss/

6/28/2021

StreamStats Page 3 of 5

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	1.5	miles per square mile
CARBON	Percentage of area of carbonate rock	13.93	percent

Low-Flow Statistics Parameters	[49.1 Percent (874 Square miles) Low Flow Region 1]

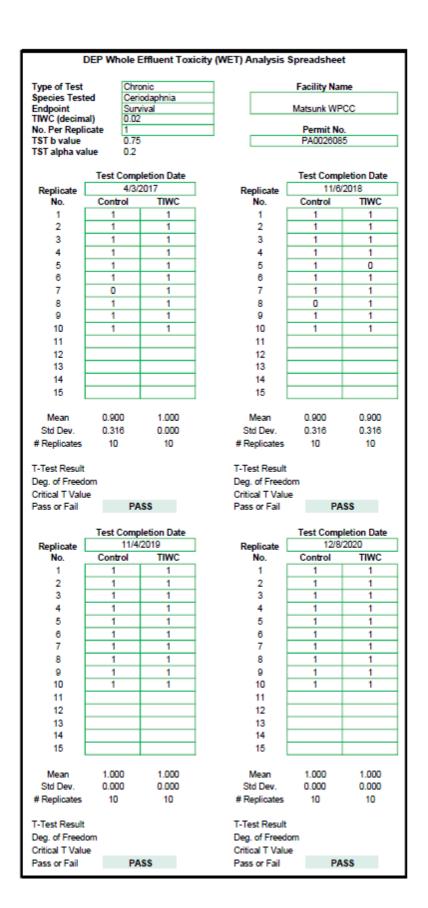
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1780	square miles	4.78	1150
BSLOPD	Mean Basin Slope degrees	5.5181	degrees	1.7	6.4
ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21
URBAN	Percent Urban	10.3511	percent	0	89

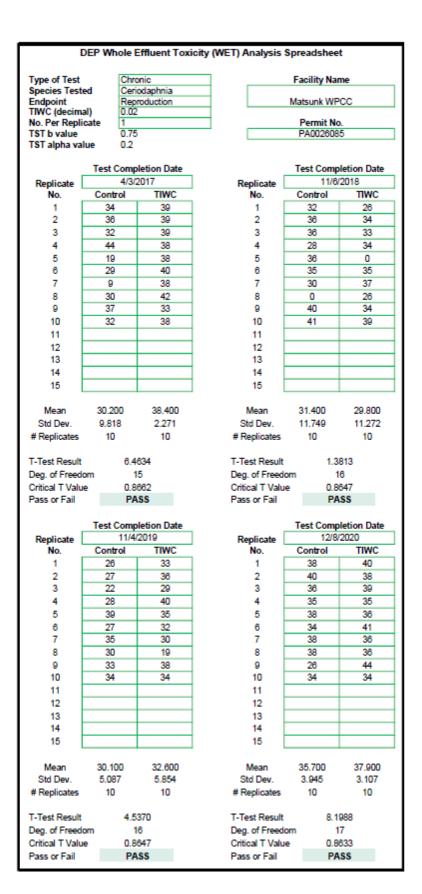
Low-Flow Statistics Parameters [50.9 Percent (905 square miles) Low Flow Region 2]

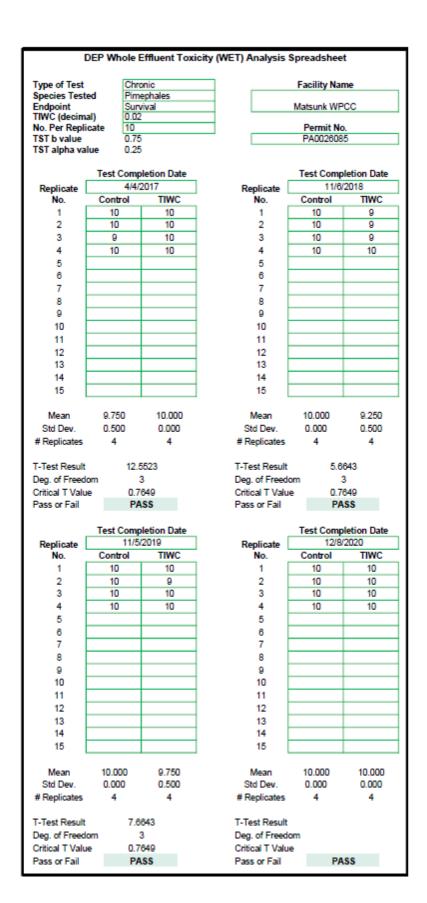
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1780	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	46	inches	35	50.4
STRDEN	Stream Density	1.5	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	13.93	percent	0	99

Low-Flow Statistics Disclaimers [49.1 Percent (874 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors


StreamStats Page 4 of 5


Low-Flow Statistics Flow Report [49.1 Percent (074 Square Times) Low Flow F	
Statistic	Value	Unit
7 Day 2 Year Low Flow	439	ft*3/s
30 Day 2 Year Low Flow	542	ft^3/s
7 Day 10 Year Low Flow	274	ft^3/s
30 Day 10 Year Low Flow	330	ft^3/s
90 Day 10 Year Low Flow	442	ft^3/s
Low-Flow Statistics Disclaimers [50.9 Percent (905 square miles) Low Flow F	Region 2]
One or more of the parameters is outside the with unknown errors	e suggested range. Estimates	s were extrapolated
One or more of the parameters is outside the with unknown errors Low-Flow Statistics Flow Report [50.9 Percent (e suggested range. Estimates	s were extrapolated
One or more of the parameters is outside the with unknown errors Low-Flow Statistics Flow Report [50.9 Percent (e suggested range. Estimates	s were extrapolated
One or more of the parameters is outside the with unknown errors Low-Flow Statistics Flow Report [50.9 Percent (Statistic 7 Day 2 Year Low Flow	e suggested range. Estimates 905 square miles) Low Flow F Value	s were extrapolated Region 2] Unit
One or more of the parameters is outside the	e suggested range. Estimates 905 square miles) Low Flow F Value 671	Region 2] Unit ft^3/s
One or more of the parameters is outside the with unknown errors Low-Flow Statistics Flow Report [50.9 Percent (Statistic 7 Day 2 Year Low Flow 30 Day 2 Year Low Flow	e suggested range. Estimates 905 square miles) Low Flow F Value 671 787	Region 2] Unit ft^3/s ft^3/s


Low-Flow Statistics Flow Report [Area-Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	557	ft^3/s
30 Day 2 Year Low Flow	667	ft^3/s
7 Day 10 Year Low Flow	364	ft^3/s
30 Day 10 Year Low Flow	431	ft^3/s
90 Day 10 Year Low Flow	543	ft^3/s

Low-Flow Statistics Citations

	DEP Whole	Effluent Toxici	ty (WET) Analysis	Spreadshee	t			
Type of Test		onic	7	Facility Nar				
Species Test		ephales		I domey Hai	iie			
Endpoint		wth		Matsunk WP	CC			
TIWC (decim		2		D				
No. Per Repli TST b value	10 0.75	5		Permit No. PA0026085				
TST alpha va			FA0020085					
	Test Completion Date			Test Completion				
Replicate	4/4/	2017	Replicate	11/6	2018			
No.	Control	TIWC	No.	Control	TIWC			
1	0.376	0.412	1	0.531	0.444			
2	0.361	0.474	2	0.503	0.447			
3	0.379	0.452	3	0.53	0.497			
4	0.366	0.374	4	0.472	0.524			
5			5					
6			6					
7			7					
8			8					
9			9					
10			10					
11 12			11 12					
12 13		_	12 13		\vdash			
14			14					
15			15					
15			10					
Mean	0.371	0.428	Mean	0.509	0.478			
Std Dev.	0.008	0.044	Std Dev.	0.028	0.039			
# Replicates	4	4	# Replicates	4	4			
	•							
T-Test Result	6.7	7229	T-Test Result	4.3	391			
T-Test Result Deg. of Freed		7229 3	T-Test Result Deg. of Freedo		391 5			
	iom			om .				
Deg. of Freed	lom ue 0.7	3	Deg. of Freedo	om ! e 0.7	5			
Deg. of Freed Critical T Valu	lom ue 0.7	3 7649	Deg. of Freedo Critical T Valu	om ! e 0.7	5 267			
Deg. of Freed Critical T Valu	lom ue 0.7 P/	3 7649 ASS pletion Date	Deg. of Freedo Critical T Valu	om 97.7 PA	5 267 ISS eletion Date			
Deg. of Freed Critical T Valu Pass or Fail Replicate	lom ue 0.7 P/ Test Comp	3 7649 ASS pletion Date V2019	Deg. of Freedo Critical T Valu Pass or Fail Replicate	om 6 e 0.7 PA Test Comp	5 267 ISS eletion Date (2020			
Deg. of Freed Critical T Valu Pass or Fail Replicate No.	Test Comp	3 7649 ASS pletion Date V2019 TIWC	Deg. of Freedo Critical T Valu Pass or Fail Replicate [No.	e 0.7. PA Test Comp 12/8 Control	5 267 ISS eletion Date 12020 TIWC			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test Comp 11/5 Control	3 7649 ASS pletion Date 72019 TIWC 0.437	Deg. of Freedo Critical T Valu Pass or Fail Replicate [No. 1	e 0.7. PA Test Comp 12/8 Control 0.411	5 267 SS eletion Date 2020 TIWC 0.463			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1	Test Comp 11/5 Control 0.36 0.356	3 7649 ASS pletion Date 72019 TIWC 0.437 0.398	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1	Test Comp 12/8 Control 0.411 0.466	5 267 SS Seletion Date 2020 TIWC 0.463 0.354			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 11/5 Control 0.36 0.356	3 7649 ASS pletion Date 72019 TIWC 0.437 0.398	Deg. of Freedo Critical T Valu Pass or Fail Replicate No. 1 2 3 4	Test Comp 12/8 Control 0.411 0.466	5 267 SS Seletion Date 2020 TIWC 0.463 0.354			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Test Com 11/5 Control 0.36 0.356 0.464	3 7649 ASS pletion Date //2019 TIWC 0.437 0.398 0.407	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 12/8 Control 0.411 0.466 0.489	5 267 3SS Seletion Date 2020 TIWC 0.463 0.354 0.428			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	Test Comp 11/5 Control 0.36 0.366 0.464 0.401	3 7649 ASS pletion Date 92019 TIWC 0.437 0.398 0.407 0.382	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 12/8 Control 0.411 0.486 0.489 0.388	5 267			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Test Comp 11/5 Control 0.36 0.356 0.464 0.401	3 7649 ASS pletion Date 72019 TIWC 0.437 0.398 0.407 0.382	Deg. of Freedi Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean	Test Comp 12/8 Control 0.411 0.486 0.489 0.388	5 267 .SS			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	Test Comp 11/5 Control 0.36 0.356 0.464 0.401	3 7649 ASS pletion Date 72019 TIWC 0.437 0.398 0.407 0.382	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev.	De 0.7 PA Test Comp 12/8 Control 0.411 0.486 0.489 0.388 0.439 0.047	5 267 .SS			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/5 Control 0.36 0.356 0.464 0.401	3 7649 ASS pletion Date 72019 TIWC 0.437 0.398 0.407 0.382	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	De 0.7 PA Test Comp 12/8 Control 0.411 0.466 0.489 0.388 0.439 0.047 4 3.0	5 267 ISS Idetion Date 2020 TIWC 0.463 0.354 0.428 0.429 0.4429 0.046 4			
Deg. of Freed Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freed	Test Comp 11/5 Control 0.36 0.356 0.464 0.401	3 7649 ASS Deletion Date 72019 TIWC 0.437 0.398 0.407 0.382	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result Deg. of Freedo	De 0.7 PA Test Comp 12/8 Control 0.411 0.466 0.489 0.388 0.439 0.047 4 3.0	5 267 .sss			
Deg. of Freed Critical T Valu Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	Test Comp 11/5 Control 0.36 0.356 0.464 0.401	3 7649 ASS Deletion Date 72019 TIWC 0.437 0.398 0.407 0.382	Deg. of Freedo Critical T Value Pass or Fail Replicate No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean Std Dev. # Replicates T-Test Result	De 0.7 PA Test Comp 12/8 Control 0.411 0.486 0.489 0.388 0.439 0.047 4 3.0 om 6 e 0.7	5 267 ISS Idetion Date 2020 TIWC 0.463 0.354 0.428 0.429 0.4429 0.046 4			

WET Summary and Evaluation

 Facility Name
 Matsunk WPCC

 Permit No.
 PA0026085

 Design Flow (MGD)
 5.5

 Q₇₋₁₀ Flow (cfs)
 271

 PMFa
 0.065

 PMFc
 0.453

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			
Species	Endpoint	4/3/17	11/6/18	11/4/19	12/8/20
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			Test Date
Species	Endpoint	4/3/17	11/6/18	11/4/19	12/8/20
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date			
Species	Endpoint	4/4/17	11/6/18	11/5/19	12/8/20
Pimephales	Survival	PASS	PASS	PASS	PASS

		Test Results (Pass/Fail)			
		Test Date Test Date Test Date Test Date			
Species	Endpoint	4/4/17	11/6/18	11/5/19	12/8/20
Pimephales	Growth	PASS	PASS	PASS	PASS

Reasonable Potential? NO

Permit Recommendations

Test Type Chronic

TIWC 6 % Effluent

Dilution Series 3, 6, 30, 60, 100 % Effluent

Permit Limit None

Permit Limit Species