

 Application Type
 Renewal

 Facility Type
 Municipal

 Major / Minor
 Major

NPDES PERMIT FACT SHEET INDIVIDUAL SEWAGE

 Application No.
 PA0026131

 APS ID
 957768

 Authorization ID
 1211192

	Applicant and Fa	cility Information	
Applicant Name	Upper Merion Sanitary and Stormwater Authority	Facility Name	Trout Run STP
Applicant Address	175 W Valley Forge Road	Facility Address	900 Mancill Mill Road
	King of Prussia, PA 19406-1851		King Of Prussia, PA 19406
Applicant Contact	Anthony Hamaday	Facility Contact	Richard Hoy
Applicant Phone		Facility Phone	(610) 783-0848
Client ID	72994	Site ID	457789
Ch 94 Load Status	Not Overloaded	Municipality	Upper Merion Township
Connection Status	No Limitations	County	Montgomery
Date Application Rece	eived December 20, 2017	EPA Waived?	No
Date Application Acce	opted May 8, 2018	If No, Reason	Major Facility, Pretreatment
Purpose of Application	n Permit Renewal.		

Summary of Review

The PA Department of Environmental Protection (PADEP/Department) received an NPDES permit renewal application for Trout Run WPCC (facility) from Upper Merion Municipal Utility Authority (new name is Upper Merion Sanitary and Stormwater Authority, UMSSA) on December 20, 2017. The permit was drafted on September 8, 2018 and redrafted on October 20, 2018 and January 9, 2021. The redraft on July 2021 was as a result of a revision of a governing SOP. The updated SOP was reviewed and necessary changes are made in the draft permit and fact sheet. This is a major facility with design flow of 6.0 MGD. The treated effluent discharges through Outfall 002 into Schuylkill River, WWF/MF, at RMI 27.7. The existing permit expired on June 30, 2018. The terms and conditions were automatically extended since the renewal application was received at least 180 days prior to permit expiration date. Renewal NPDES permit applications under Clean Water program are not covered by PADEP's PDG per 021-2100-001. This fact sheet is developed in accordance with 40 CFR §124.56

<u>Changes in the permit:</u> Limit for TDS; Total Copper limit with schedule; TN monitoring, Dry weather PCB sampling; and E. Coli monitoring.

Sludge use and disposal description and location(s): Sludge is handled through gravity thickener units prior to being dewatered by a rotary press. The dewatered cake is stabilized with lime prior to being hauled to one of two Waste Management owned landfills. The landfills are Fairless Landfill and GROWS North landfill in Morrisville, PA.

Public Participation

DEP will publish notice of the receipt of the NPDES permit application and a tentative decision to issue the individual NPDES permit in the *Pennsylvania Bulletin* in accordance with 25 Pa. Code § 92a.82. Upon publication in the *Pennsylvania Bulletin*, DEP will accept written comments from interested persons for a 30-day period (which may be extended for one additional 15-day period at DEP's discretion), which will be considered in making a final decision on the application. Any person may request or petition for a public hearing with respect to the application. A public hearing may be held if DEP determines that there is significant public interest in holding a hearing. If a hearing is held, notice of the hearing will be published in the *Pennsylvania Bulletin* at least 30 days prior to the hearing and in at least one newspaper of general circulation within the geographical area of the discharge.

Approve	Deny	Signatures	Date
\checkmark		Reza H. Chowdhury, E.I.T. / Project Manager	July 7, 2021
х		<i>Pravin Patel</i> Pravin C. Patel, P.E. / Environmental Engineer Manager	07/08/2021

Discharge, Receiving Waters and Water Supply I	nformation
Outfall No. 002	Design Flow (MGD) 6.0
Latitude 40° 6' 38"	Longitude75° 24' 30"
Quad Name Valley Forge	Quad Code 1842
Wastewater Description: Sewage Effluent	
Receiving Waters Schuylkill River (WWF, MF)	Stream Code00833
NHD Com ID 26003394	RMI27.7
Drainage Area 1720 mi ²	Yield (cfs/mi ²) 0.151
Q ₇₋₁₀ Flow (cfs)259	Q ₇₋₁₀ Basis Please see below
Elevation (ft) 58.04	Slope (ft/ft)
Watershed No. 3-F	Chapter 93 Class. WWF, MF
Existing Use WWF/MF	Existing Use Qualifier
Exceptions to Use <u>None</u>	Exceptions to Criteria
Assessment Status Impaired	
Cause(s) of Impairment POLYCHLORINATE	D BIPHENYLS (PCBS)
Source(s) of Impairment SOURCE UNKNOW	N
TMDL Status Final	Name Schuylkill River PCB TMDL
Background/Ambient Data	Data Source
pH (SU)	Default per 391-2000-013
Temperature (°C)25	Default per 391-2000-013 for WWF
Hardness (mg/L) 206	Application data
Other:	
Nearest Downstream Public Water Supply Intake	PA American Water Co Norristown Dist
PWS Waters Schuylkill River	Flow at Intake (cfs)
PWS RMI	Distance from Outfall (mi) 2.63

Changes Since Last Permit Issuance: None

Other Comments:

Streamflow:

Streamflow will be correlated with the USGS's web-based GIS application (<u>https://streamstats.usgs.gov/ss/</u>) accessed on October 28, 2020. Q₇₋₁₀ and Q₃₀₋₁₀ values at Outfall 002 were found to be 259 cfs and 311 cfs respectively. The drainage area at Outfall 002 was found to be 1720 mi² from StreamStats.

 $\begin{array}{l} Q_{7\text{-}10} \text{ runoff rate} = 259 \text{ cfs} / 1720 \text{ mi}^2 = 0.151 \text{ cfs/mi}^2 \\ Q_{30\text{-}10} / Q_{7\text{-}10} = 311 \text{ cfs} / 259 \text{ cfs} = 1.2 \\ \text{Default } Q_{1\text{-}10}\text{: } Q_{7\text{-}10} \text{ of } 0.64 \text{ from } 391\text{-}2000\text{-}007 \text{ will be used in modeling, if needed.} \end{array}$

PWS Intake:

The nearest downstream public water supply intake is PA American CO. Norristown Dist, on Schuylkill River at RMI 25.07. Its approximately 2.63 miles downstream of Outfall 002.

Wastewater Characteristics:

A median pH of 6.9 from daily DMR during dry months July through September for the year 2020 and a default temperature of 20°C (per 391-2000-013) will be used for modeling, if needed. The application data indicated an average Total Hardness of 191 mg/l out of 3 samples.

Background data:

There are currently no nearby WQN stations from Outfall 002. In absence of site-specific temperature data, a default temperature of 25°C and default pH of 7.0 (per 391-2000-013, WWF) will be used in modeling, if needed. The application data indicated stream hardness of 206 mg/l.

303d Listed Streams:

Schuylkill River is impaired for Fish Consumption and Aquatic Life due to PCB but supporting Potable Water Use. A TMDL has been finalized by EPA on 04/07/2007 for PCB.

Schuylkill River PCB TMDL:

During the previous permit cycle, the permittee collected one wet weather and one dry weather sample and analyzed for PCBs using Method 1668A. The results were: 4,145 pg/l (WW 04/08/2014); 3,560 pg/l (DW 05/2014)

The PCB results indicate that there are PCB concentrations that are above natural background and statewide surface water criteria levels. Based on the concentration of PCBs and volume of wastewater, this facility is considered a less significant source of PCBs. The influent to the STP consists primarily domestic raw sewage with no significant industrial users.

The facility is required to develop and implement a PCB PMP (Pollution Minimization Plan). PCB sampling using Analytical Method 1668A is required to provide a baseline PCB level and to show progress towards achieving the instream PCB criteria of 44 pg/l. Guidelines developed by DRBC for the Delaware River TMDL recommend once per year dry weather sampling using method 1668A for less significant point sources of PCBs. The facility is also required to submit annual PMP reports.

Antidegradation (93.4):

The effluent limits for this discharge have been developed to ensure that existing in-stream water uses and the level of water quality necessary to protect the existing uses are maintained and protected. The receiving streams are designated as Warm Water Fishes (WWF) and Migratory Fishes (MF.) No High Quality stream or Exceptional Value water is impacted by this discharge, therefore, no Antidegradation Analysis is performed for the discharge.

Discharge, Receiving Waters and Water Supply Information		
Outfall No. 003	Design Flow (MGD)	0
Latitude 40° 6' 35"	Longitude	-75º 24' 24"
Quad Name Valley Forge	Quad Code	1842
Wastewater Description: Stormwater		

Other Comments: Per Phase II stormwater regulations, major POTWs are required to have a permit for the discharge of stormwater. Therefore, stormwater monitoring requirements are included in Part A and Part C of the permit for this outfall.

Treatment Facility Summary								
reatment Facility Na	ame: Trout Run STP							
-								
WQM Permit No.	Issuance Date							
4612404	8/27/2012							
4611401	3/21/2011							

Waste Type	Degree of Treatment	Process Type	Disinfection	Avg Annual Flow (MGD)
		Trickling Filter With		
Sewage	Secondary	Settling	Gas Chlorine	6
Hydraulic Capacity	Organic Capacity			Biosolids
(MGD)	(lbs/day)	Load Status	Biosolids Treatment	Use/Disposal
6	12510	Not Overloaded	Gravity Thickening	Landfill

Changes Since Last Permit Issuance: None

Treatment Plant Description

Trout WPCC is a 6.0 MGD Major Sewer Facility (MASF2) located in Upper Merion Township, Montgomery County which discharges treated sewage through outfall 002 to Schuylkill River in watershed 3-F. This is a trickling filter, alternative to secondary treatment facility, and chlorine disinfection system. The treatment train consists of influent screening and grit removal, primary clarifier, secondary biological treatment through oxidation towers, reaeration, secondary clarifier, and disinfection by sodium hypochlorite. The effluent is dechlorinated using sodium bisulfite.

The facility receives flows mostly from Upper Merion Township and small contributions from few other townships as listed in the next page.

Municipalities served	Flow contribution (%)	Type of Sewer System				
	Flow contribution (78)	Separate (%)	Combined (%)			
Upper Merion Township	60.0	100	0			
Tredyffrin Township	39.8	100	0			
Eastown Township	0.2	100	0			

Per the renewal application, there is no significant or categorical industrial facility that discharges into the collection system.

Per PADEP's most recent inspection on September 3, 2020, the treatment train consists of the following treatment units:

- Four primary clarifiers
- Four trickling filters
- Four secondary clarifiers
- Two chlorine contact tanks
- Two grit removal

Sodium Hypochlorite is used at a maximum rate of 90 GPD and Sodium Bisulfite is used at maximum rate of 9.6 GPD.

Biosolids Management:

Sludge is handled through gravity thickener units prior to being dewatered by a rotary press. The dewatered cake is stabilized with lime prior to being hauled to one of two Waste Management owned landfills. The landfills are Fairless Landfill and GROWS North landfill in Morrisville, PA.

Pre-treatment Program implementation:

Facilities greater than 5.0 MGD or less than 5.0 MGD with categorical and significant industrial users are required to develop or implement an EPA administered pre-treatment program. The facility is implementing an approved pretreatment program for which most recent local limits were approved by EPA in March 2017. The Part C of the permit will require continuation of the pre-treatment program implementation.

Compliance History

DMR Data for Outfall 002 (from May 1, 2020 to April 30, 2021)

Parameter	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20
Flow (MGD)												
Average Monthly	3.068	3.447	2.931	3.039	3.133	2.611	2.517	2.469	3.067	2.829	2.525	2.698
Flow (MGD)												
Daily Maximum	3.7	4.836	4.856	3.825	5.495	4.664	3.894	2.761	6.842	5.487	3.208	3.302
pH (S.U.)												
Minimum	7.4	7.4	7.0	6.8	7.0	6.9	6.7	6.8	6.7	6.1	6.6	6.4
pH (S.U.)												
Maximum	7.9	7.7	7.7	7.5	7.5	7.7	7.3	7.6	7.0	7.0	6.9	7.0
DO (mg/L)												
Minimum	8.4	9.1	8.5	8.6	9.1	7.5	8.3	8.8	7.9	7.8	8.4	9.3
TRC (mg/L)												
Average Monthly	< 0.1	0.4	0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.1	< 0.1
TRC (mg/L)												
Instantaneous												
Maximum	0.7	0.68	0.93	0.45	0.36	0.63	0.6	0.4	1.0	0.4	0.32	0.1
CBOD5 (lbs/day)												
Average Monthly	175	155	138	113	131	< 89	< 77	< 84	< 110	< 87	< 74	< 76
CBOD5 (lbs/day)												
Raw Sewage Influent												
Average Monthly	5865	4127	4041	2532	2739	3200	3353	2954	3317	3097	3728	3423
CBOD5 (lbs/day)												
Weekly Average	211	190	164	127	167	94	90	90	132	102	103	89
CBOD5 (mg/L)	_	_			_		_	_			_	_
Average Monthly	7	5	6	4	5	< 4	< 4	< 4	< 4	< 4	< 3	< 3
CBOD5 (mg/L)												
Raw Sewage Influent			100	100	100				100	101	470	
Average Monthly	229	145	166	102	108	148	161	150	132	134	178	153
CBOD5 (mg/L)	7.0	0	6.0	4.0			. 4	-	-	. 4	1.0	4
Weekly Average	7.9	6	6.2	4.6	5.5	4.4	< 4	5	5	< 4	4.6	4
BOD5 (lbs/day)												
Raw Sewage Influent	7010	4450	6500	5700	6076	7400	6444	5074	FOOF	0017	5000	5100
Average Monthly BOD5 (mg/L)	7016	4450	6599	5733	6276	7198	6441	5071	5005	8017	5606	5138
Raw Sewage Influent												
Average Monthly	277	161	297	229	254	281	304	258	216	306	277	233
TSS (lbs/day)	211	101	297	229	204	201	304	200	210	300	211	200
Average Monthly	239	< 217	154	160	177	156	129	< 179	346	268	154	< 127
Average Monthly	239	< 217	134	100	177	100	129	< 119	340	200	104	< 121

NPDES Permit No. PA0026131

NPDES Permit Fact Sheet Upper Merion Municipal Authority Sewer System & STP Trout Run

TSS (lbs/day)												
Raw Sewage Influent												
Average Monthly	8798	5732	5825	5023	5124	6254	5525	4301	4194	5758	6072	4240
TSS (lbs/day)												
Weekly Average	262	359	228	191	219	195	225	< 242	496	351	203	177
TSS (mg/L)												
Average Monthly	9	< 7	6	6	7	7	6	< 9	13	11	7	< 6
TSS (mg/L)												
Raw Sewage Influent												
Average Monthly	345	202	241	206	207	290	262	210	159	248	290	189
TSS (mg/L)				_	-							
Weekly Average	10	12	9	7	8	9	10	< 11	16	15	9	8
Fecal Coliform										r		
(CFU/100 ml)	10	47	0	7	0			7	0	-		0
Geometric Mean	< 19	< 17	< 3	< 7	< 3	< 3	< 11	< 7	< 6	< 5	< 4	< 3
Fecal Coliform												
(CFU/100 ml)												
Instantaneous Maximum	230	72	13	38	40	92	152	82	91	155	220	33
Ammonia (lbs/day)	230	12	15	30	40	92	152	02	91	155	220	
Average Monthly	< 8	17	18	18	15	< 7	< 3	< 8	< 4	< 5	< 21	< 2
Ammonia (mg/L)	< 0	17	10	10	15		2.5	< 0	<u> </u>	< 5	< 21	< 2
Average Monthly	< 0.32	0.6	0.77	0.72	0.6	< 0.3	< 0.2	< 0.4	< 0.2	< 0.2	< 0.88	< 0.1
Total Phosphorus	< 0.0Z	0.0	0.11	0.12	0.0	< 0.0	< 0.L	< 0. 1	< 0.2	< 0.2	< 0.00	< 0.1
(lbs/day)												
Average Monthly	77	102	62	72	63	78	77	75	82	114	63	68
Total Phosphorus												
(mg/L)												
Average Monthly	2.89	2.52	2.99	2.41	2.59	3.3	3.96	3.86	3.89	3.82	3.23	2.91

DMR Data for Outfall 003 (from May 1, 2020 to April 30, 2021)

Parameter	APR-21	MAR-21	FEB-21	JAN-21	DEC-20	NOV-20	OCT-20	SEP-20	AUG-20	JUL-20	JUN-20	MAY-20
pH (S.U.) Annual Average					6.6							
CBOD5 (mg/L) Annual Average					19.6							
COD (mg/L) Annual Average					105							
TSS (mg/L) Annual Average					60							
Oil and Grease (mg/L) Annual Average					< 5							

NPDES Permit No. PA0026131

NPDES Permit Fact Sheet Upper Merion Municipal Authority Sewer System & STP Trout Run

Fecal Coliform (CFU/100 ml) Annual Average			> 200000				
TKN (mg/L) Annual Average			3.76				
Total Phosphorus (mg/L) Annual Average			0.48				
Dissolved Iron (mg/L) Annual Average			0.09				

Summary of Inspections:

09/03/2020: RTPT conducted. Inspector received a call that morning in regard to influent raw pump #3 taken out of service. Trickling filter #1 was in the midst of being repaired. Final effluent looked great

06/04/2020: RTPT conducted to see how the facility was operating during a loss of power due to a couple severe storms that passed through the area. An emergency generator was brought on site to pump sewage through the system. Several treatment units were inoperable due to loss of power. No problem with disinfection. There was a discharge of sewage outside the treatment plant. The Department was notified immediately. The final effluent leaving the facility looked overall great.

04/16/2020: RTPT conducted. All units were operational. The one side of the chlorine contact tank was being cleaned out. No problem with getting the chemical for disinfection. No violation noted.

12/19/2019: CEI conducted. No violation noted. Final effluent looked good. Overall, the facility was operating well.

11/20/2019: RTPT conducted. No violation noted. The final effluent was clear. No operational changes were made since last inspection. The township has looked into installing an emergency generator by the headworks building.

8/13/2018: RTPT conducted in response to a rain that morning. No violation noted. The rain resulted in primary clarifier #2 overflow. All 4 influent pumps were running during the rain. The area around the primary clarifier #2 was limed. Operations were back to normal during the inspection.

1/30/2019: CEI conducted. No violation noted. Final effluent looked good. Overall, the facility was operating well.

8/13/2018: CEI conducted in response to excessive amount of rain. As a result of heavy rain, the primary clarifiers were overflowing. The inspector received call that morning regarding the overflow. The area where the clarifiers overflown was limed and all cleaned up. No violation noted.

05/25/2018: CEI conducted. No violation noted. Final effluent looked good. The facility was operating well.

05/11/2017: CEI conducted. No violation noted. Final effluent looked good. The facility was operating well.

03/29/2016: CEI conducted. No violation noted. Final effluent looked good. The facility was operating well.

Existing Effluent Limitations and Monitoring Requirements

The table below summarizes effluent limitations and monitoring requirements specified in the existing final NPDES (amended) permit that was in effect between July 1, 2014 to June 30, 2018.

For Outfall 002:

			Monitoring Re	quirements				
Deremeter	Mass Unit	s (lbs/day)		Concentrat	ions (mg/L)		Minimum	Required
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Weekly Average	Instant. Maximum	Measurement Frequency	Sample Type
Flow (MGD)	Report	Report Daily Max	XXX	ххх	xxx	xxx	Continuous	Recorded
pH (S.U.)	ххх	xxx	6.0	ххх	ххх	9.0	1/day	Grab
Dissolved Oxygen	ххх	ххх	5.0	xxx	ххх	XXX	1/day	Grab
Total Residual Chlorine	XXX	xxx	ххх	0.5	xxx	1.2	1/day	Grab
CBOD5	1,251	1,876	XXX	25	40	50	1/day	24-Hr Composite
CBOD5 Influent	Report	XXX	xxx	Report	xxx	XXX	1/day	24-Hr Composite
BOD5 Influent	Report	XXX	xxx	Report	XXX	XXX	1/week	24-Hr Composite
Total Suspended Solids	Report	xxx	xxx	Report	XXX	XXX	1/day	24-Hr Composite
Total Suspended Solids	1,501	2,252	xxx	30	45	60	1/day	24-Hr Composite
Fecal Coliform (CFU/100 ml)	XXX	xxx	XXX	200 Geo Mean	xxx	1,000 (*)	1/day	Grab
Ammonia-Nitrogen May 1 - Oct 31	751	xxx	xxx	15.0	XXX	30.0	1/day	24-Hr Composite
Ammonia-Nitrogen Nov 1 - Apr 30	1.000	xxx	XXX	20.0	XXX	40.0	1/day	24-Hr Composite
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	24-Hr Composite

For Outfall 003:

			Effluent L	imitations			Monitoring Red	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
	Average Monthly		Minimum	Annual Average		Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	XXX	XXX	xxx	Report	xxx	XXX	1/year	Grab
CBOD5	XXX	ххх	xxx	Report	XXX	xxx	1/year	Grab
Chemical Oxygen Demand	XXX	ххх	xxx	Report	XXX	xxx	1/year	Grab
Total Suspended Solids	XXX	ххх	xxx	Report	XXX	xxx	1/year	Grab
Oil and Grease	XXX	ххх	XXX	Report	xxx	XXX	1/year	Grab
Fecal Coliform (CFU/100 ml)	XXX	ххх	xxx	Report	XXX	XXX	1/year	Grab
Total Kjeldahl Nitrogen	XXX	XXX	xxx	Report	xxx	XXX	1/year	Grab
Total Phosphorus	xxx	ххх	xxx	Report	XXX	XXX	1/year	Grab
Dissolved Iron	XXX	XXX	xxx	Report	xxx	XXX	1/year	Grab

Development of Effluent Limitations

Outfall No.	002		Design Flow (MGD)	6
Latitude	40° 6' 38.00"		Longitude	-75º 24' 30.00"
Wastewater De	escription:	Sewage Effluent		

Technology-Based Limitations

The following technology-based limitations apply, subject to water quality analysis and BPJ where applicable:

Pollutant	Limit (mg/l)	SBC	Federal Regulation	State Regulation
CBOD₅	25	Average Monthly	133.102(a)(4)(i)	92a.47(a)(1)
CBOD5	40	Average Weekly	133.102(a)(4)(ii)	92a.47(a)(2)
Total Suspended	30	Average Monthly	133.102(b)(1)	92a.47(a)(1)
Solids	45	Average Weekly	133.102(b)(2)	92a.47(a)(2)
рН	6.0 – 9.0 S.U.	Min – Max	133.102(c)	95.2(1)
Fecal Coliform (5/1 – 9/30)	200 / 100 ml	Geo Mean	-	92a.47(a)(4)
Fecal Coliform (5/1 – 9/30)	1,000 / 100 ml	IMAX		92a.47(a)(4)
Fecal Coliform (10/1 – 4/30)	2,000 / 100 ml	Geo Mean	-	92a.47(a)(5)
Fecal Coliform (10/1 – 4/30)	10,000 / 100 ml	IMAX	-	92a.47(a)(5)
Fecal Coliform	200 / 100 ml	Geo Mean	DRBC	92a.47(a)(5)
Fecal Coliform	1,000 / 100 ml	IMAX	DRBC	92a.47(a)(5)
Total Residual Chlorine	0.5	Average Monthly	-	92a.48(b)(2)

Comments: These standards apply, subject to Water Quality Analysis and BPJ where applicable.

Water Quality-Based Limitations

WQM 7.0:

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. Since WQM 7.0 assumes immediate and complete mix between the discharge and stream flow, Q_{7-10} , to examine allowable wasteload allocations under appropriate mixing conditions. The model was utilized for this permit renewal by using current Q_{7-10} and historic background water quality levels of the river. The following data were used in the attached computer model of the stream:

Discharge pH	6.9	(median Jul-Sep, 2020, DMR data)
Discharge Temperature	20°C	(Default per 391-2000-013)
Discharge Hardness	191 mg/l	(Application data)
Stream pH	7.0	(Default per 391-2000-013)
Stream Temperature	25°C	(Default per 391-2000-013, WWF)
Stream Hardness	206 mg/l	(Application data)

The following nodes were considered in modeling:

Node 1:	Trout Run WPCC (PA	A0026131) Outfall 002 at Schuylkill River (00833)
	Elevation:	28.04 ft (USGS National Map viewer, 10/8/2020)
	Drainage Area:	1720 mi ² (StreamStat Version 3.0, 10/28/2020)
	River Mile Index:	27.7 (PA DEP eMapPA)
	Low Flow Yield:	0.151 cfs/mi ²
	Discharge Flow:	6.0 MGD

Node 2:

At confluence with Crow Creek (00973) with Schuylkill River (00833)Elevation:57.91 ft (USGS National Map viewer, 10/28/2020)Drainage Area:1740 mi² (StreamStat Version 3.0, 10/28/2020)River Mile Index:26.72 (PA DEP eMapPA)Low Flow Yield:0.151 cfs/mi²Discharge Flow:0.0 MGD

Ammonia (NH₃-N), Carbonaceous Biochemical Oxygen Demand (CBOD5), & Dissolved Oxygen (DO):

WQM 7.0 version 1.0b is a water quality model designed to assist DEP to determine appropriate effluent limits for CBOD₅, NH₃-N and DO. The model simulates two basic processes. In the NH₃-N module, the model simulates the mixing and degradation of NH₃-N in the stream and compares calculated instream NH₃-N concentrations to NH₃-N water quality criteria. In the D.O. module, the model simulates the mixing and consumption of D.O. in the stream due to the degradation of CBOD₅ and NH₃N and compares calculated instream D.O. concentrations to D.O. water quality criteria. The model was utilized for this permit renewal by using Q_{7-10} and current background water quality levels of the stream.

<u>NH3-N:</u>

WQM 7.0 suggested NH₃-N limit of 15.0 mg/l as monthly average and 30.0 mg/l as IMAX limit during summer to protect water quality standards. These values are the same as existing permitted limits. Recent DMR data show that the plant is meeting the permit limits. The average monthly mass loading is calculated to be 750.6 lbs./day. The existing winter season limits of 20.0 mg/l as average monthly and 40.0 mg/l as IMAX limit will be carried over in this renewal. Winter average monthly mass limit was calculated as 1000 lbs./day. Summer average monthly mass loading is rounded down to 750 lbs./day.

CBOD₅:

The WQM 7.0 model suggests a monthly average CBOD₅ limit of 25 mg/l. The average monthly and average weekly mass loadings were calculated as 1251 lbs/day and 2001.6 lbs/day respectively. These values are rounded down to 1250 lbs/day and 2000 lbs/day, respectively (362-0400-001). It should be noted that weekly average mass loading in existing permit is 1876 lbs./day, which may be due to a miscalculation of the mass loading. It is recommended that the mass loading is corrected and revised to 2000 lbs./day.

Dissolved Oxygen (DO):

The existing permit has a minimum DO of 5.0 mg/l. This limit, which is supported by Pa Code 25 Ch.93.7, will be carried over.

Toxics:

Based on the available data, PADEP utilizes Toxics Management Spreadsheet (TMS) to (1) evaluate reasonable potential for toxic pollutants to cause or contribute to an excursion above the water quality standards and (2) develop WQBELs for those such toxic pollutants (i.e., 40 CFR § 122.44(d)(1)(i)). It is noteworthy that some of these pollutants that may be reported as "non-detect", but still exceeded the criteria, were determined to be candidates for modeling because the method detection levels used to analyze those pollutants were higher than target QLs and/or the most stringent Chapter 93 criteria. The model then recommended the appropriate action for the Pollutants of Concerns based on the following logic:

1. In general, establish limits in the draft permit where the effluent concentration determined in B.1 or B.2 equals or exceeds 50% of the WQBEL (i.e., RP is demonstrated). Use the average monthly, maximum daily and instantaneous maximum (IMAX) limits for the permit as recommended by the TMS (or, if appropriate, use a multiplier of 2 times the average monthly limit for the maximum daily limit and 2.5 times the average monthly limit for IMAX).

2. For non-conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 25% - 50% of the WQBEL.

3. For conservative pollutants, in general, establish monitoring requirements where the effluent concentration determined in B.1 or B.2 is between 10% - 50% of the WQBEL.

NOTE 4 – If the effluent concentration determined in B.1 or B.2 is "non-detect" at or below the target quantitation limit (TQL) for the pollutant as specified in the TMS and permit application, the pollutant may be eliminated as a candidate for

NPDES Permit Fact Sheet Upper Merion Municipal Authority Sewer System & STP Trout Run

WQBELs or monitoring requirements unless 1) a more sensitive analytical method is available for the pollutant under 40 CFR Part 136 where the quantitation limit for the method is less than the applicable water quality criterion and 2) a detection at the more sensitive method may lead to a determination that an effluent limitation is necessary, considering available dilution at design conditions.

NOTE 5 – If the effluent concentration determined in B.1 or B.2 is a detection below the TQL but above or equal to the applicable water quality criterion, WQBELs or monitoring may be established for the pollutant.

4. Application managers may, on a site- and pollutant-specific basis, deviate from these guidelines where there is specific rationale that is documented in the fact sheet.

Recommended WQBELs & Monitoring Requirements

No. Samples/Month:	4
--------------------	---

	Mass	Limits		Concentra	tion Limits		T		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Dissolved Solids (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Chloride (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Bromide	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Sulfate (PWS)	Report	Report	Report	Report	Report	mg/L	N/A	N/A	Special Monitoring Applies
Total Copper	1.33	1.74	26.6	34.8	66.5	µg/L	26.6	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	246	AFC	Discharge Conc > 10% WQBEL (no RP)
1,4-Dioxane	Report	Report	Report	Report	Report	µg/L	N/A	N/A	Special Monitoring Applies
Benzo(a)Anthracene	0.006	0.009	0.12	0.19	0.3	µg/L	0.12	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(a)Pyrene	0.006	0.009	0.12	0.19	0.3	µg/L	0.12	CRL	Discharge Conc ≥ 50% WQBEL (RP)
3,4-Benzofluoranthene	0.006	0.009	0.12	0.19	0.3	µg/L	0.12	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Benzo(k)Fluoranthene	0.006	0.009	0.12	0.19	0.3	µg/L	0.12	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Chrysene	0.006	0.009	0.12	0.19	0.3	µg/L	0.12	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Dibenzo(a,h)Anthrancene	0.006	0.009	0.12	0.19	0.3	µg/L	0.12	CRL	Discharge Conc ≥ 50% WQBEL (RP)
Indeno(1,2,3-cd)Pyrene	0.001	0.002	0.025	0.039	0.062	µg/L	0.025	THH	Discharge Conc ≥ 50% WQBEL (RP)
Phenanthrene	0.29	0.45	5.77	9.0	14.4	µg/L	5.77	AFC	Discharge Conc ≥ 50% WQBEL (RP)

Each of the pollutants are discussed below:

TDS and its constituents:

TMS suggests monitoring for TDS and its constituents if there is PWS concern. The nearest downstream PWS is approximately 3 miles for which this discharge apparently poses no threat. The facility has an approved DRBC docket (D-1992-051 CP-3) issued on September 13, 2018. The Docket requires TDS limit of 1,000 mg/l quarterly. Therefore, a TDS limit of 1,000 mg/l with quarterly monitoring will be placed in the permit. The revised TMS model run resulted in no concern for TDS and its constituents.

<u>Total Copper:</u> The application provided three sample results for Total Copper. On PADEP's request, US EPA provided additional 28 sample results from pretreatment effluent data for the reporting period between 2013-2019. All data were plugged into PADEP's TOXCONC to determine AMEC and daily CoV values. TOXCONC calculated an AMEC of 54.843 ug/l and CoV of 0.2576. These values were utilized in TMS. As shown in below table, TMS suggests AML of 26.6 ug/l, MDL of 31.2 ug/l, IMAX of 31.2 ug/l, mass AML of 1.33 lbs./day, and mass MDL of 1.56 lbs./day. Since this is a new parameter, PADEP provided the permittee with a Pre-Draft survey. The permittee returned the pre-draft survey which indicated that the permittee is not aware of the source of the pollutant, suspected the source to be from domestic plumbing systems, haven't conducted any studies regarding the control or treatment of the pollutant, doesn't believe it can achieve the proposed WQBEL now, indicated their plant do not treat the pollutant, and uncertain about the estimated date by which it can achieve the proposed WQBEL. Therefore, PADEP followed the instructions illustrated in the SOP titled "Establishing Water Quality-Based Effluent Limitations (WQBELs) and Permit Conditions for Toxic Pollutants in NPDES Permits for Existing Discharges" (SOP No. BCW-PMT-037, revised May 20, 2021). Per the SOP, PADEP has made the following determination:

1. a compliance schedule will be placed in the permit with monitoring requirements for first three years of the permit term and proposed WQBELs for remaining two years, since the permittee indicated that they are uncertain when compliance could be achieved with final WQBEL.

2. Some of the values used in the TMS spreadsheet are default values in absence of site-specific data. Those values are identified in this fact sheet pages 2, 3, and 11. The permittee is required to conduct site specific data collection to refine

the accuracy of the WQBEL for the default or model-driven input values. A special Part C condition will be added in the Part C of the draft permit.

3. Since the source of toxic pollutant is unknown or are suspected, the permittee will be required to conduct a Toxics Reduction Evaluation (TRE) to investigate and control the source(s) of the pollutant subject to final WQBEL. The permittee suspected the domestic plumbing system be the source of Copper. Therefore, the TRE study must include a Corrosion Control Feasibility Study.

<u>1,4-Dioxane</u>: TMS suggests monitoring for 1,4-Dioxane. No monitoring was suggested when the updated model was utilized.

Semi-volatiles:

TMS suggested monitoring for all eight semi-volatiles as listed above. However, the QL (5 ug/l) used by the lab is higher than PADEP's TQL (2.5 ug/l) and all three results for each semi-volatiles came as non-detect. Therefore, it is still unclear if they are actually a pollutant of concern or not. Per the response on pre-draft survey, the permittee agreed to provide four additional test results for each of the semi-volatiles using PADEP's TQL. The sampling will be 24-hr composite, 1 week apart. PADEP received retest results on January 4, 2021 and TMS was again utilized. TMS determined that no limits or monitoring is needed for any of the semi-volatiles.

The update TMS output table is provided below:

☑ Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits						
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML	MDL	IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	1.33	1.56	26.6	31.2	31.2	µg/L	26.6	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	246	AFC	Discharge Conc > 10% WQBEL (no RP)

Whole Effluent Toxicity Testing (WETT):

The permittee provided four WETT sample results with the application dated March 2017, April 2016, May 2015, and October 2014. The tests in 2014, 2015, and 2016 were conducted by QC laboratories or Eurofins QC, Inc. The Department has determined that WET tests analyzed by QC Laboratories or Eurofins QC prior to February 2017 are unreliable and are considered invalid due to technical issues. As a result, the application didn't include four valid WET tests required to perform a reasonable potential analysis. However, the permittee provided annual WETT results for the year 2018 and 2019 that added to three valid tests. 2020 WET test is scheduled to be conducted on the week of November 30, 2020. 2020 WETT results were received on January 4, 2021. PADEP utilized the WETT Analysis Spreadsheet to determine RP and update the dilution series. The updated TIWCc was calculated to be 15% to evaluate the test results for a stream flow of 259 cfs, discharge flow of 6.0 MGD, and PMFc of 0.199. The WET tests are discussed in detail on pages 16-17 of this report.

Additional Considerations

Fecal Coliform:

The recent coliform guidance in 25 Pa. code § 92a.47.(a)(4) requires a summer technology limit of 200/100 ml as a geometric mean and an instantaneous maximum not greater than 1,000/100ml and § 92a.47.(a)(5) requires a winter limit of 2,000/100ml as a geometric mean and an instantaneous maximum not greater than 10,000/100ml. Delaware River Basin Commission's (DRBC's) Water Quality Regulations at Section 4.30.4.A requires that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. Therefore, the summer limit is governed by DEP's regulation while winter limit is governed by DRBC's regulation.

E. Coli:

DEP's SOP titled "Establishing Effluent Limitations for Individual Sewage Permits (BCW-PMT-033, revised March 24, 2021) recommends monthly E. Coli monitoring for all major sewage dischargers. This requirement will be applied from this permit term.

<u>pH:</u>

The TBEL for pH is above 6.0 and below 9.0 S.U. (40 CFR §133.102(c) and Pa Code 25 § 95.2(1)) which are existing limits and will be carried over.

Total Suspended Solids (TSS):

There is no water guality criterion for TSS. The existing limits of 30 mg/L average monthly, 45 mg/l average weekly, and 60 mg/L instantaneous maximum will remain in the permit based on the minimum level of effluent quality attainable by secondary treatment, 25 Pa. Code § 92a.47 and 40CFR 133.102(b). The mass based average monthly and weekly average limits are calculated to be 1501.2 lbs./day and 2251.8 lbs./day respectively, which are rounded down to 1500 lbs./day and 2250 lbs./day, respectively (362-0400-001).

Total Residual Chlorine (TRC):

The attached computer printout utilizes the equation and calculations as presented in the Department's 2003 Implementation Guidance for Total Residual Chlorine (TRC) (ID#391-2000-015) for developing chlorine limitations. The attached printout indicates that a water quality limit of 0.5 mg/l would be needed to prevent toxicity concerns at the discharge point for Outfall 002. The Instantaneous Maximum (IMAX) limit is 1.6 mg/l. The existing permit has AML limit of 0.5 mg/l and IMAX limit of 1.2 mg/l. The IMAX is a little more stringent and will be carried over due to anti-backsliding policy. DMR data from October 2019 to September 2020 indicates that the plant is discharging below the existing limits. The minimum monitoring frequency is 1/day.

Flow and Influent BOD₅, CBOD₅, and TSS Monitoring Requirement:

The requirement to monitor the volume of effluent will remain in the draft permit per 40 CFR § 122.44(i)(1)(ii). Influent BOD₅ and TSS monitoring requirements are established in the permit per the requirements set in Pa Code 25 Chapter 94. To show compliance with percentage removal efficiency of CBOD₅, reporting for influent CBOD₅ will remain in the permit.

Best Professional Judgement (BPJ):

Total Phosphorus:

Existing monthly monitoring requirement will be carried over in this renewal.

Monitoring Frequency and Sample Types:

Otherwise specified above, the monitoring frequency and sample type of compliance monitoring for existing parameters are recommended by DEP's SOP and Permit Writers Manual and/or on a case-by-case basis using best professional judgment (BPJ).

Total Nitrogen:

PADEP's SOP BCW-PMT-033 suggests monitoring requirement, at a minimum, for facilities with design flow greater than 2,000 GPD. This requirement is applied for all facilities meeting the flow criteria.

Anti-Backsliding

The proposed limits are at least as stringent as are in existing permit, unless otherwise stated; therefore, anti-backsliding is not applicable.

		Development of Effluent Limitations	
Outfall No.	003	Design Flow (MGD)	0
Latitude	40° 6' 35.00"	Longitude	-75º 24' 24.00"
Wastewater	Description: Stormwate		

Outfall 003 is a stormwater only outfall. Per Phase II stormwater regulations, major POTWs are required to have a permit for the discharge of stormwater. Therefore, stormwater monitoring requirements are included in Part A and Part C of the permit for this outfall. The existing monitoring requirements will be carried over in this renewal.

Whole Effluent Toxicity (WET)

For Outfall, **Acute Chronic** WET Testing was completed:

- For the permit renewal application (4 tests).
 - Quarterly throughout the permit term.
 - Quarterly throughout the permit term and a TIE/TRE was conducted.

Other:

The dilution series used for the tests was: 100%, 60%, 30%, 4%, and 2%. The Target Instream Waste Concentration (TIWC) to be used for analysis of the results is: 4%.

Summary of Four Most Recent Test Results

(NOTE – Enter results into one table, depending on which data analysis method was used).

TST Data Analysis

(NOTE – In lieu of recording information below, the application manager may attach the DEP WET Analysis Spreadsheet).

	Ceriodaphnia	Results (Pass/Fail)	Pimephales Results (Pass/Fail)		
Test Date	Survival	Reproduction	Survival	Growth	
4/4/2017	Pass	Pass	Pass	Pass	
11/6/2018	Pass	Pass	Pass	Pass	
11/5/2019	Pass	Pass	Pass	Pass	
12/08/2020	Pass	Pass	Pass	Pass	

* A "passing" result is that in which the replicate data for the TIWC is not statistically significant from the control condition. This is exhibited when the calculated t value ("T-Test Result") is greater than the critical t value. A "failing" result is exhibited when the calculated t value ("T-Test Result") is less than the critical t value.

Is there reasonable potential for an excursion above water quality standards based on the results of these tests? (*NOTE* – *In general, reasonable potential is determined anytime there is at least one test failure in the previous four tests*).

Comments: None

Evaluation of Test Type, IWC and Dilution Series for Renewed Permit

Acute Partial Mix Factor (PMFa): 0.029 Chronic Partial Mix Factor (PMFc): 0.199

1. Determine IWC – Acute (IWCa):

(Q_d x 1.547) / ((Q₇₋₁₀ x PMFa) + (Q_d x 1.547))

[(6.0 MGD x 1.547) / ((259 cfs x 0.029) + (6.0 MGD x 1.547))] x 100 = 55.27%

Is IWCa < 1%? YES X NO (YES - Acute Tests Required OR NO - Chronic Tests Required)

If the discharge is to the tidal portion of the Delaware River, indicate how the type of test was determined:

Type of Test for Permit Renewal: Chronic

2a. Determine Target IWCa (If Acute Tests Required)

TIWCa = IWCa / 0.3 = %

2b. Determine Target IWCc (If Chronic Tests Required)

(Q_d x 1.547) / (Q₇₋₁₀ x PMFc) + (Q_d x 1.547)

[(6.0 MGD x 1.547) / ((259 cfs x 0.199) + (6.0 MGD x 1.547))] x 100 = 15.26%

3. Determine Dilution Series

(NOTE – check Attachment C of WET SOP for dilution series based on TIWCa or TIWCc, whichever applies).

Dilution Series = 100%, 58%, 15%, 8%, and 4%.

WET Limits

Has reasonable potential been determined? YES
NO

Will WET limits be established in the permit? \Box YES \boxtimes NO

If WET limits will be established, identify the species and the limit values for the permit (TU).

N/A

If WET limits will not be established, but reasonable potential was determined, indicate the rationale for not establishing WET limits:

<mark>N/A</mark>

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 002, Effective Period: Permit Effective Date through Permit Expiration Date.

			Effluent L	imitations			Monitoring Re	quirements
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
Parameter	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
		Report						
Flow (MGD)	Report	Daily Max	XXX	XXX	XXX	XXX	Continuous	Recorded
			6.0					
pH (S.U.)	XXX	XXX	Inst Min	XXX	XXX	9.0	1/day	Grab
DO	xxx	xxx	5.0 Inst Min	xxx	xxx	XXX	1/day	Grab
TRC	XXX	XXX	XXX	0.5	XXX	1.2	1/day	Grab
					40.0		, i i i i i i i i i i i i i i i i i i i	24-Hr
CBOD5	1251	2000	XXX	25.0	Wkly Avg	50	1/day	Composite
BOD5					, ,			24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/week	Composite
TSS								24-Hr
Raw Sewage Influent	Report	XXX	XXX	Report	XXX	XXX	1/day	Composite
					45.0			24-Hr
TSS	1500	2250	XXX	30.0	Wkly Avg	60	1/day	Composite
		Report			Report			24-Hr
Total Copper (interim)	Report	Daily Max	XXX	Report	Daily Max	XXX	1/week	Composite
		1.56			0.0312			24-Hr
Total Copper (final)	1.33	Daily Max	XXX	0.0266	Daily Max	0.0312	1/week	Composite
	Report			1000.0				24-Hr
Total Dissolved Solids	Avg Qrtly	XXX	XXX	Avg Qrtly	XXX	XXX	1/quarter	Composite
Fecal Coliform (No./100 ml)				200				
Oct 1- Apr 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/day	Grab
Fecal Coliform (No./100 ml)				200				
May 1- Sep 30	XXX	XXX	XXX	Geo Mean	XXX	1000	1/day	Grab
E. Coli (No./100 ml)	xxx	XXX	XXX	XXX	XXX	Report	1/month	Grab

Outfall 002, Continued (from Permit Effective Date through Permit Expiration Date)

		Monitoring Requirements						
Parameter	Mass Units	(lbs/day) ⁽¹⁾		Concentrat	Minimum ⁽²⁾	Required		
- diamotor	Average Monthly	Weekly Average	Minimum	Average Monthly	Daily Maximum	Instant. Maximum	Measurement Frequency	Sample Type
								24-Hr
Total Nitrogen	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
Ammonia								24-Hr
Nov 1 - Apr 30	1000	XXX	XXX	20.0	XXX	40	1/day	Composite
Ammonia								24-Hr
May 1 - Oct 31	750	XXX	XXX	15.0	XXX	30	1/day	Composite
								24-Hr
Total Phosphorus	Report	XXX	XXX	Report	XXX	XXX	1/month	Composite
								24-Hr
PCBs (Dry Weather) (pg/L)	XXX	XXX	XXX	XXX	Report	XXX	1/year	Composite
Chronic WET - Ceriodaphnia								24-Hr
Survival (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite
Chronic WET - Ceriodaphnia								24-Hr
Reproduction (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite
Chronic WET - Pimephales								24-Hr
Survival (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite
Chronic WET - Pimephales								24-Hr
Growth (TUc)	XXX	XXX	XXX	XXX	Report	XXX	See Permit	Composite

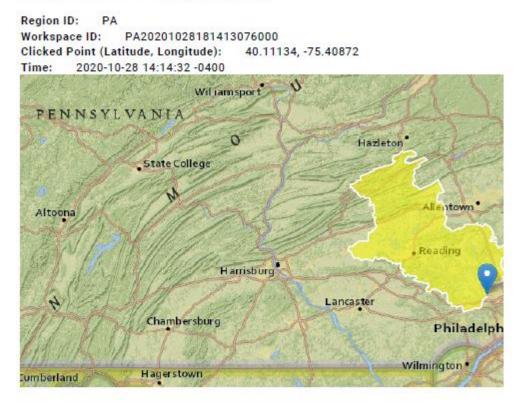
Compliance Sampling Location: At Outfall 002

Other Comments: None

Proposed Effluent Limitations and Monitoring Requirements

The limitations and monitoring requirements specified below are proposed for the draft permit, and reflect the most stringent limitations amongst technology, water quality and BPJ. Instantaneous Maximum (IMAX) limits are determined using multipliers of 2 (conventional pollutants) or 2.5 (toxic pollutants). Sample frequencies and types are derived from the "NPDES Permit Writer's Manual" (362-0400-001), SOPs and/or BPJ.

Outfall 003, Effective Period: Permit Effective Date through Permit Expiration Date.


		Effluent Limitations					Monitoring Requirements	
Parameter	Mass Units (Ibs/day) ⁽¹⁾			Concentrations (mg/L)			Minimum ⁽²⁾	Required
	Average Monthly	Average Weekly	Minimum	Annual Average	Maximum	Instant. Maximum	Measurement Frequency	Sample Type
pH (S.U.)	xxx	xxx	xxx	Report	xxx	XXX	1/year	Grab
CBOD5	xxx	xxx	xxx	Report	ххх	XXX	1/year	Grab
COD	xxx	xxx	ххх	Report	xxx	XXX	1/year	Grab
TSS	xxx	XXX	xxx	Report	ххх	XXX	1/year	Grab
Oil and Grease	xxx	xxx	xxx	Report	ххх	XXX	1/year	Grab
Fecal Coliform (No./100 ml)	XXX	xxx	ххх	Report	XXX	XXX	1/year	Grab
TKN	ххх	xxx	ххх	Report	XXX	XXX	1/year	Grab
Total Phosphorus	XXX	xxx	XXX	Report	ххх	XXX	1/year	Grab
Dissolved Iron	XXX	XXX	XXX	Report	XXX	XXX	1/year	Grab

Compliance Sampling Location: At Outfall 003

Other Comments: None

Tools and References Used to Develop Permit
WQM for Windows Model (see Attachment
Toxics Management Spreadsheet (see Attachment)
TRC Model Spreadsheet (see Attachment)
Temperature Model Spreadsheet (see Attachment)
Water Quality Toxics Management Strategy, 361-0100-003, 4/06.
Technical Guidance for the Development and Specification of Effluent Limitations, 362-0400-001, 10/97.
Policy for Permitting Surface Water Diversions, 362-2000-003, 3/98.
Policy for Conducting Technical Reviews of Minor NPDES Renewal Applications, 362-2000-008, 11/96.
Technology-Based Control Requirements for Water Treatment Plant Wastes, 362-2183-003, 10/97.
Technical Guidance for Development of NPDES Permit Requirements Steam Electric Industry, 362-2183-004, 12/97.
Pennsylvania CSO Policy, 385-2000-011, 9/08.
Water Quality Antidegradation Implementation Guidance, 391-0300-002, 11/03.
Implementation Guidance Evaluation & Process Thermal Discharge (316(a)) Federal Water Pollution Act, 391-2000-002, 4/97.
Determining Water Quality-Based Effluent Limits, 391-2000-003, 12/97.
Implementation Guidance Design Conditions, 391-2000-006, 9/97.
Technical Reference Guide (TRG) WQM 7.0 for Windows, Wasteload Allocation Program for Dissolved Oxygen and Ammonia Nitrogen, Version 1.0, 391-2000-007, 6/2004.
Interim Method for the Sampling and Analysis of Osmotic Pressure on Streams, Brines, and Industrial Discharges, 391-2000-008, 10/1997.
Implementation Guidance for Section 95.6 Management of Point Source Phosphorus Discharges to Lakes, Ponds, and Impoundments, 391-2000-010, 3/99.
Technical Reference Guide (TRG) PENTOXSD for Windows, PA Single Discharge Wasteload Allocation Program for Toxics, Version 2.0, 391-2000-011, 5/2004.
Implementation Guidance for Section 93.7 Ammonia Criteria, 391-2000-013, 11/97.
Policy and Procedure for Evaluating Wastewater Discharges to Intermittent and Ephemeral Streams, Drainage Channels and Swales, and Storm Sewers, 391-2000-014, 4/2008.
Implementation Guidance Total Residual Chlorine (TRC) Regulation, 391-2000-015, 11/1994.
Implementation Guidance for Temperature Criteria, 391-2000-017, 4/09.
Implementation Guidance for Section 95.9 Phosphorus Discharges to Free Flowing Streams, 391-2000-018, 10/97.
Implementation Guidance for Application of Section 93.5(e) for Potable Water Supply Protection Total Dissolved Solids, Nitrite-Nitrate, Non-Priority Pollutant Phenolics and Fluorides, 391-2000-019, 10/97.
Field Data Collection and Evaluation Protocol for Determining Stream and Point Source Discharge Design Hardness, 391-2000-021, 3/99.
Implementation Guidance for the Determination and Use of Background/Ambient Water Quality in the Determination of Wasteload Allocations and NPDES Effluent Limitations for Toxic Substances, 391-2000-022, 3/1999.
Design Stream Flows, 391-2000-023, 9/98.
Field Data Collection and Evaluation Protocol for Deriving Daily and Hourly Discharge Coefficients of Variation (CV) and Other Discharge Characteristics, 391-2000-024, 10/98.
Evaluations of Phosphorus Discharges to Lakes, Ponds and Impoundments, 391-3200-013, 6/97.
Pennsylvania's Chesapeake Bay Tributary Strategy Implementation Plan for NPDES Permitting, 4/07.
SOP: BCW-PMT-037
Other:

PA0026131 at Outfall 002

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1720	square miles
BSLOPD	Mean basin slope measured in degrees	5.5944	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	8.4809	percent
PRECIP	Mean Annual Precipitation	46	inches

https://streamstats.usgs.gov/ss/

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	1.51	miles per square mile
CARBON	Percentage of area of carbonate rock	13.75	percent

Low-Flow Statistics Parameters [47 Percent (816 square miles) Low Flow Region 1]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	1720	square miles	4.78	1150		
BSLOPD	Mean Basin Slope degrees	5.5944	degrees	1.7	6.4		
ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21		
URBAN	Percent Urban	8.4809	percent	0	89		

Low-Flow Statistics Parameters [53 Percent (905 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1720	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	46	inches	35	50.4
STRDEN	Stream Density	1.51	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	13.75	percent	0	99

Low-Flow Statistics Disclaimers[47 Percent (816 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

https://streamstats.usgs.gov/ss/

Low-Flow Statistics Flow Report[47 Percent (816 square miles) Low Flow Region 1]

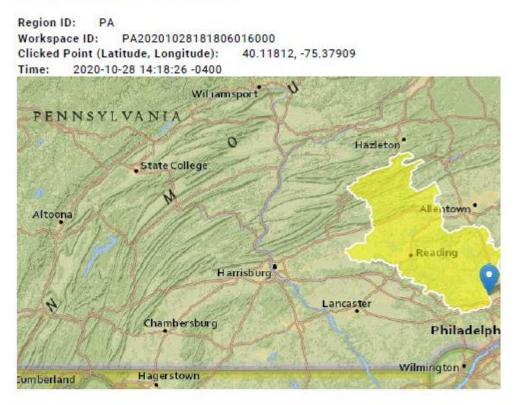
Statistic	Value	Unit
7 Day 2 Year Low Flow	417	ft^3/s
30 Day 2 Year Low Flow	514	ft^3/s
7 Day 10 Year Low Flow	259	ft^3/s
30 Day 10 Year Low Flow	311	ft^3/s
90 Day 10 Year Low Flow	415	ft^3/s

Low-Flow Statistics Disclaimers [53 Percent (905 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report(53 Percent (905 square miles) Low Flow Region 2)

Statistic	Value	Unit
7 Day 2 Year Low Flow	640	ft^3/s
30 Day 2 Year Low Flow	753	ft^3/s
7 Day 10 Year Low Flow	429	ft^3/s
30 Day 10 Year Low Flow	503	ft^3/s
90 Day 10 Year Low Flow	612	ft^3/s


Low-Flow Statistics Flow Report[Area-Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	534	ft^3/s
30 Day 2 Year Low Flow	640	ft^3/s
7 Day 10 Year Low Flow	348	ft^3/s
30 Day 10 Year Low Flow	412	ft^3/s
90 Day 10 Year Low Flow	519	ft^3/s

Low-Flow Statistics Citations

https://streamstats.usgs.gov/ss/

PA0026131 at Node 2

Parameter			
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	1740	square miles
BSLOPD	Mean basin slope measured in degrees	5.5735	degrees
ROCKDEP	Depth to rock	4.5	feet
URBAN	Percentage of basin with urban development	9.1568	percent
PRECIP	Mean Annual Precipitation	46	inches

https://streamstats.usgs.gov/ss/

Parameter Code	Parameter Description	Value	Unit
STRDEN	Stream Density total length of streams divided by drainage area	1.51	miles per square mile
CARBON	Percentage of area of carbonate rock	13.96	percent

Low-Flow Statistics Parameters [48 Percent (833 square miles) Low Flow Region 1]							
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit		
DRNAREA	Drainage Area	1740	square miles	4.78	1150		
BSLOPD	Mean Basin Slope degrees	5.5735	degrees	1.7	6.4		
ROCKDEP	Depth to Rock	4.5	feet	4.13	5.21		
URBAN	Percent Urban	9.1568	percent	0	89		

Low-Flow Statistics Parameters[52 Percent (905 square miles) Low Flow Region 2]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	1740	square miles	4.93	1280
PRECIP	Mean Annual Precipitation	46	inches	35	50.4
STRDEN	Stream Density	1.51	miles per square mile	0.51	3.1
ROCKDEP	Depth to Rock	4.5	feet	3.32	5.65
CARBON	Percent Carbonate	13.96	percent	0	99

Low-Flow Statistics Disclaimers[48 Percent (833 square miles) Low Flow Region 1]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

https://streamstats.usgs.gov/ss/

/

Low-Flow Statistics Flow Report[48 Percent (833 square miles) Low Flow Region 1]

Statistic	Value	Unit
7 Day 2 Year Low Flow	425	ft^3/s
30 Day 2 Year Low Flow	524	ft^3/s
7 Day 10 Year Low Flow	265	ft^3/s
30 Day 10 Year Low Flow	318	ft^3/s
90 Day 10 Year Low Flow	425	ft^3/s

Low-Flow Statistics Disclaimers[52 Percent (905 square miles) Low Flow Region 2]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[52 Percent (905 square miles) Low Flow Region 2]

Statistic	Value	Unit
7 Day 2 Year Low Flow	650	ft^3/s
30 Day 2 Year Low Flow	764	ft^3/s
7 Day 10 Year Low Flow	436	ft^3/s
30 Day 10 Year Low Flow	512	ft^3/s
90 Day 10 Year Low Flow	621	ft^3/s

Low-Flow Statistics Flow Report[Area-Averaged]

Statistic	Value	Unit
7 Day 2 Year Low Flow	542	ft^3/s
30 Day 2 Year Low Flow	649	ft^3/s
7 Day 10 Year Low Flow	354	ft^3/s
30 Day 10 Year Low Flow	419	ft^3/s
90 Day 10 Year Low Flow	527	ft^3/s

Low-Flow Statistics Citations

	SWP Basir			Stre	am Name		RMI	Elevat (ft)	Ar	ea	Slope (ft/ft)	PWS Withdrawai (mgd)	Apply FC
	03F	8	B33 SCHUY	YLKILL R	IVER		27.70	0 5	8.04 17	20.00 0	.00000	0.00	\checkmark
					Sti	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	<u>Tribu</u> Temp	<u>tary</u> рН	Temp	Stream pH	
cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ff)	(ft)	(°C)		(°C)		
Q7-10	0.150	0.00	0.00	0.000	0.000	0.0	0.00	0.00	25.00	7.00	20	.00 0.00)
Q1-10		0.00	0.00	0.000	0.000								
Q30-10		0.00	0.00	0.000	0.000								
					DI	scharge (Data						
			Name	Per	mit Number	Disc	Permitter Disc Flow (mgd)	d Design Disc Flow (mgd)	Reserve Factor	Disc Temp (°C)	Dis pH	-	
		Trout	Run WPC0	C PAG	026131	6.0000			0.000		00 (5.90	
					Pa	rameter I	Data						
									eam Fat onc Co				

25.00

5.00

15.00

(mg/L) (mg/L) (mg/L) (1/days)

0.00

0.00

0.00

1.50

0.00

0.70

2.00

8.24

0.00

Parameter Name

CBOD5

NH3-N

Dissolved Oxygen

Input Data WQM 7.0

Monday, November 16, 2020

Version 1.0b

Page 1 of 2

	SWP Basin			Str	eam Name		RMI	Eleva (f		Drainage Area (sq ml)	Slope (ft/ft)	PWS Withdrawal (mgd)	Apply FC
	03F	1	833 SCHU	YLKILL R	IVER		26.72	0	57.91	1740.00	0.00000	0.00	
					Sti	ream Dat	a						
Design Cond.	LFY	Trib Flow	Stream Flow	Rch Trav Time	Rch Velocity	WD Ratio	Rch Width	Rch Depth	1 Temp	<u>Fributary</u> pH	Ter	<u>Stream</u> np pH	
Cond.	(cfsm)	(cfs)	(cfs)	(days)	(fps)		(ft)	(ft)	(°C)		(°C	;)	
27-10 21-10 230-10	0.150	0.00 0.00 0.00	0.00	0.000 0.000 0.000	0.000	0.0	0.00	0.00	25	.00 7.0	00 2	0.00 0.0	D
					DI	scharge							
			Name	Per	rmit Number	Disc	Permitte Disc Flow (mgd)	Disc	Rese Fac		np p	lsc oH	
						0.000	0.000	0 0.00	00 0	.000	0.00	7.00	
					Pa	rameter	Data						
				Paramete	r Name				tream Conc	Fate Coef			
	-					(m	19/L) (m	ig/L) (mg/L)	(1/days)			
			CBOD5				25.00	2.00	0.00	1.50			

0.00

0.70

0.00

0.00

8.24

0.00

3.00

25.00

Input Data WQM 7.0

Monday, November 16, 2020

Dissolved Oxygen

NH3-N

Version 1.0b

Page 2 of 2

		<u>P Basin</u> 03F		im Code 833				<u>Stream</u> HUYLKII	<u>Name</u> .L RIVER	1		
RMI	Stream Flow	PWS With	Net Stream Flow	Disc Analysis Flow	Reach Slope	Depth	Width	W/D Ratio	Velocity	Reach Trav Time	Analysis Temp	Analysis pH
	(cfs)	(cfs)	(cfs)	(cfs)	(11/11)	(11)	(ft)		(fps)	(days)	(°C)	
Q7-10) Flow											
27.700	258.00	0.00	258.00	9.282	0.00003	1.258	316.75	251.74	0.67	0.089	20.00	7.00
Q1-10) Flow											
27.700	165.12	0.00	165.12	9.282	0.00003	NA	NA	NA	0.53	0.113	20.00	6.99
Q30-1	10 Flow											
27.700	309.60	0.00	309.60	9.282	0.00003	NA	NA	NA	0.74	0.081	20.00	7.00

WQM 7.0 Hydrodynamic Outputs

Monday, November 16, 2020

Version 1.0b

Page 1 of 1

WQM 7.0 Modeling Specifications

Parameters	Both	Use Inputted Q1-10 and Q30-10 Flows	×
WLA Method	EMPR	Use Inputted W/D Ratio	
Q1-10/Q7-10 Ratio	0.64	Use Inputted Reach Travel Times	
Q30-10/Q7-10 Ratio	1.2	Temperature Adjust Kr	~
D.O. Saturation	90.00%	Use Balanced Technology	\checkmark
D.O. Goal	5		

Monday, November 16, 2020

Version 1.0b

Page 1 of 1

	SWP Basin	Stre	am Code		st	ream Name		
	03F		833		SCHU	YLKILL RIVE	R	
IH3-N	Acute Allo	cation	15					
RMI	Discharge	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
27.7	00 Trout Run V	VPCC	9.71	30	9.71	30	0	0
H3-N	Chronic Al	locati	ons					
RMI	Discharge M	Name	Baseline Criterion (mg/L)	Baseline WLA (mg/L)	Multiple Criterion (mg/L)	Multiple WLA (mg/L)	Critical Reach	Percent Reduction
27.7	00 Trout Run V	VPCC	1.92	15	1.92	15	0	0

			005	ND	a-m	Dissolver	a Oxygen	Orthopt	Percent	
RMI	Discharge Name	Baseline (mg/L)	Multiple (mg/L)	Baseline (mg/L)	Multiple (mg/L)	Baseline	Multiple	Reach	Reduction	
27.70	Trout Run WPCC	25	25	15	15	5	5	0	0	

Monday, November 16, 2020

Version 1.0b

Page 1 of 1

SWP Basin	Stream Code			Stream Name	
03F	833		S	CHUYLKILL RIVER	R
RMI	Total Discharg	e Flow (mgd	<u>) Ana</u>	lysis Temperature	(°C) Analysis pH
27.700		00		20.000	6.996
Reach Width (ft)	Reach D	epth (ft)		Reach WDRatio	Reach Velocity (fps)
316.750	1.25	58		251.740	0.671
Reach CBOD5 (mg/L) Reach Ko	(1/days)	E	each NH3-N (mg/l	L) Reach Kn (1/days)
2.80	0.44			0.52	0.700
Reach DO (mg/L)	Reach Kr			Kr Equation	Reach DO Goal (mg/L
8.130	0.07	79		Tsivogiou	5
leach Travel Time (da) 0.089	<u>vs)</u> TravTime (days)	Subreact CBOD5 (mg/L)	NH3-N (mg/L)	D.O. (mg/L)	
	0.009	2.79	0.52	8.10	
	0.018	3 2.78	0.51	8.07	
	0.027	2.77	0.51	8.04	
	0.036	5 2.75	0.51	8.01	
	0.045	5 2.74	0.50	7.98	
	0.054	2.73	0.50	7.95	
	0.063	3 2.72	0.50	7.92	
	0.071	2.71	0.50	7.89	
	0.080	2.70	0.49	7.86	
	0.089	2.69	0.49	7.83	

WQM 7.0 D.O.Simulation

Monday, November 16, 2020

Version 1.0b

Page 1 of 1

	SWP Basin Stream	n Code		Stream Name	<u>9</u>		
	03F 8	33		SCHUYLKILL RI	VER		
RMI	Name	Permit Number	Disc Flow (mgd)	Parameter	Effl. Limit 30-day Ave. (mg/L)		Effl. Limit Minimum (mg/L)
27.700	Trout Run WPCC	PA0026131	6.000	CBOD5	25		
				NH3-N	15	30	
				Dissolved Oxygen			5

WQM 7.0 Effluent Limits

Monday, November 16, 2020

Version 1.0b

Page 1 of 1

Discharge Information

Instructions	Disch	arge	Stream						
Facility:	Trout R	tun WP	°CC		N	NPDES Permit No.:	PA0026131	Outfall No.:	002
Evaluation T	ype:	Major	Sewage / Inc	dustrial Waste	v	Wastewater Descrip	tion: Treated Wastew	vater	

	Discharge Characteristics														
Design Flow	Hardness (mg/l)*	pH (SU)*	Partial Mix Factors (PMFs) Complete Mix Times (min)												
(MGD)*	Hardness (ing/i)*	рн (30)-	AFC	CFC	THH	CRL	Q ₇₋₁₀	Qh							
6	191	6.9													

			0 if left blank 0.5 if left blank 0 if left blank					1 If lef	t blank				
	Discharge Pollutant	Units	Ma	x Discharge Conc	Trib Conc	Stream Conc	Daily CV	Hourly CV	Strea m CV	Fate Coeff	FOS	Criteri a Mod	Chem Transl
	Total Dissolved Solids (PWS)	mg/L		532									
5	Chloride (PWS)	mg/L		150									
Group	Bromide	mg/L	۸	0.2									
5	Sulfate (PWS)	mg/L		51									
	Fluoride (PWS)	mg/L											
	Total Aluminum	µg/L		50									
	Total Antimony	µg/L		1									
	Total Arsenic	µg/L	<	1									
	Total Barium	µg/L		38									
	Total Beryllium	µg/L	<	1									
	Total Boron	µg/L		200									
	Total Cadmium	µg/L	<	0.1									
	Total Chromium (III)	µg/L		1.6									
	Hexavalent Chromium	µg/L	<	0.25									
	Total Cobalt	µg/L		0.3									
	Total Copper	µg/L		54.843189			0.2577						
2	Free Cyanide	µg/L		3									
Group	Total Cyanide	µg/L		3									
5	Dissolved Iron	µg/L		90									
_	Total Iron	µg/L		200									
	Total Lead	µg/L	<	1									
	Total Manganese	µg/L		22									
	Total Mercury	µg/L	<	0.2									
	Total Nickel	µg/L		4.8									
	Total Phenols (Phenolics) (PWS)	µg/L		32									
	Total Selenium	µg/L		2									
	Total Silver	µg/L	<	0.1									
	Total Thallium	µg/L	<	1									
	Total Zinc	µg/L		51									
	Total Molybdenum	µg/L		10									
	Acrolein	µg/L	<	2									
	Acrylamide	µg/L	<	_									
	Acrylonitrile	µg/L	<	2									
	Benzene	µg/L	<	0.5									
	Bromoform	µg/L	<	0.5									

Discharge Information

1	Code of Total Marida		-	0.5									
	Carbon Tetrachloride	µg/L	<	0.5		Ц	_		 				
	Chlorobenzene	µg/L		0.5		H	+						
	Chlorodibromomethane	µg/L	<	0.5	H	H	\Rightarrow						
	Chloroethane	µg/L	<	0.5			Ì						
	2-Chloroethyl Vinyl Ether	µg/L	<	5									
	Chloroform	µg/L		1.3									
	Dichlorobromomethane	µg/L	<	0.5		H		-					
	1,1-Dichloroethane	µg/L	<	0.5	F	F	1						
	1,2-Dichloroethane	µg/L	<	0.5			Ť						
	1,1-Dichloroethylene	µg/L	<	0.5			-						
Group	1,2-Dichloropropane	µg/L	<	0.5	Ħ	H	+	-					
σ	1,3-Dichloropropylene	µg/L	<	0.5	Ħ	H	+	-					
	1.4-Dioxane	µg/L	<	100	H	H	÷	-					
	.1		<	0.5			÷	-	 				
	Ethylbenzene Mathed Baseride	µg/L	<u> </u>				_	-	 		<u> </u>		
	Methyl Bromide	µg/L	<	0.5	\square	\square	_		 				
	Methyl Chloride	µg/L	<	0.5	H	H	+						
	Methylene Chloride	µg/L	<	0.5		H	\Rightarrow						
	1,1,2,2-Tetrachloroethane	µg/L	<	0.5			Ì						
1	Tetrachloroethylene	µg/L	<	0.5									
1	Toluene	µg/L	<	0.5									
1	1,2-trans-Dichloroethylene	µg/L	<	0.5	H	H		-					
	1,1,1-Trichloroethane	µg/L	<	0.5	F								
	1,1,2-Trichloroethane	µg/L	<	0.5									
1	Trichloroethylene	µg/L	<	0.5			1	-					
	Vinyl Chloride	µg/L	<	0.5	Ħ	H	+	-					
	2-Chlorophenol	µg/L	<	10	H	H	+						
	2,4-Dichlorophenol		<	10	Ħ	Ħ	÷		 		<u> </u>	<u> </u>	
		µg/L	—				÷						
	2,4-Dimethylphenol	µg/L	<	10		Ц	+		 				
4	4,6-Dinitro-o-Cresol	µg/L	<	10	H	⊢	+	_	 				
4	2,4-Dinitrophenol	µg/L	<	10	H	H	+	-					
Group	2-Nitrophenol	µg/L	<	10			\Rightarrow						
ō	4-Nitrophenol	µg/L	<	10									
	p-Chloro-m-Cresol	µg/L	<										
	Pentachlorophenol	µg/L	<	10			_	-					
	Phenol	µg/L	<	10	Н	H							
	2,4,6-Trichlorophenol	µg/L	<	10									
	Acenaphthene	µg/L	<	5				_					
	Acenaphthylene	µg/L	<	5	Н			-					
	Anthracene	µg/L	<	5	Ħ	Ħ	+						
	Benzidine	µg/L	<	50									
	Benzo(a)Anthracene	µg/L	<	2.5			+						
	Benzo(a)Pyrene	µg/L	<	2.5	Ħ	H	+	-					
1	3.4-Benzofluoranthene	µg/L	<	2.5		H	-						
	Benzo(ghi)Perylene		<	5	H	H	+		 		<u> </u>	<u> </u>	
1		µg/L	—				1						
1	Benzo(k)Fluoranthene	µg/L	<	2.5		H	_	_					
1	Bis(2-Chloroethoxy)Methane	µg/L	<	5	H	4	-						
1	Bis(2-Chloroethyl)Ether	µg/L	<	5	H		-						
1	Bis(2-Chloroisopropyl)Ether	µg/L	<		E								
	Bis(2-Ethylhexyl)Phthalate	µg/L	<	5									
1	4-Bromophenyl Phenyl Ether	µg/L	<	5									
	Butyl Benzyl Phthalate	µg/L	<	5	Н								
1	2-Chloronaphthalene	µg/L	<	5	F								
	4-Chlorophenyl Phenyl Ether	µg/L	<	5									
1	Chrysene	µg/L	<	2.5									
1	Dibenzo(a,h)Anthrancene	µg/L	<	2.5	Ħ		+						
	1,2-Dichlorobenzene	µg/L	<	0.5	Ħ	H	+						
1	1,3-Dichlorobenzene	µg/L	<	0.5		H	-						
	1,4-Dichlorobenzene	µg/L	<	0.5	F	F	Ì						
0.5			<				-	-					
Inc	3,3-Dichlorobenzidine	µg/L	<u> </u>	5		H	_						
Group	Diethyl Phthalate	µg/L	<				-						
-	Dimethyl Phthalate	µg/L	<	5	F	Ħ	+						
1	Di-n-Butyl Phthalate	µg/L	<	5			1						
1	2,4-Dinitrotoluene	µg/L	<	5									

Discharge Information

Page 2

	2,6-Dinitrotoluene	µg/L	<	5				-				
	Di-n-Octyl Phthalate	µg/L	<	5	H	H	H	-				╟╌┼╌┼
	1,2-Diphenylhydrazine	µg/L	<	5	Ħ	H	H	-				
	Fluoranthene	µg/L	<	5	∃			_				
	Fluorene		<	5	H	-	╞╡	-				
		µg/L	~	5	H		H	-				
	Hexachlorobenzene	µg/L			Ħ	H	Ħ	-				
	Hexachlorobutadiene	µg/L	<	0.5				_				
	Hexachlorocyclopentadiene	µg/L	<	5	Ц	Ц	Ц	_	 	 		
	Hexachloroethane	µg/L	<	5	H		⊢	_		 		
	Indeno(1,2,3-cd)Pyrene	µg/L	<	2.5	Ħ			-				
	Isophorone	µg/L	<	5				_				
	Naphthalene	µg/L	<	0.5								
	Nitrobenzene	µg/L	<	5								
	n-Nitrosodimethylamine	µg/L	<	5	H	۲		-				
	n-Nitrosodi-n-Propylamine	µg/L	<	5	Fi	T		-				
	n-Nitrosodiphenylamine	µg/L	<	5								
	Phenanthrene	µg/L	<	2.5	Ħ			_				
	Pyrene	µg/L	<	5	Ħ	=	Ħ	-				
	1,2,4-Trichlorobenzene	µg/L	<	0.5	Ħ	Ħ	Ħ	-				
	Aldrin	µg/L	<	0.0	Ħ		Ħ					
	alpha-BHC		<		E							
	арпа-BHC beta-BHC	µg/L	<		H		4	-				
		µg/L			H			-				
	gamma-BHC	µg/L	<		Ħ			-				
	delta BHC	µg/L	<		Ħ			_				
	Chlordane	µg/L	<							 		
	4,4-DDT	µg/L	<									
	4,4-DDE	µg/L	۷									
	4,4-DDD	µg/L	<		H			-				
	Dieldrin	µg/L	<		Ħ			-				
	alpha-Endosulfan	µg/L	<									
	beta-Endosulfan	µg/L	<		Ħ			_				
9	Endosulfan Sulfate	µg/L	<		Ħ	=	Ħ	-				╞┊╧┊╡
₽	Endrin	µg/L	<		H	H	\vdash					
Group	Endrin Aldehyde	µg/L	<		Ē		Ħ	-				
0			<					_				
	Heptachlor	µg/L	<		H	4	-	-				
	Heptachlor Epoxide	µg/L			H		⊨	-				╞┼┼┼
	PCB-1016	µg/L	<		Ħ	=	Ħ	-				
	PCB-1221	µg/L	<					_				
	PCB-1232	µg/L	<		\square							
	PCB-1242	µg/L	<		H			_				
	PCB-1248	µg/L	<		H			-				
	PCB-1254	µg/L	<		TÌ			_				
	PCB-1260	µg/L	۷									
	PCBs, Total	µg/L	<		H			_				
	Toxaphene	µg/L	<		F			-				
	2,3,7,8-TCDD	ng/L	<		F			_				
	Gross Alpha	pCi/L										
~	Total Beta	pCi/L	<		Ħ			-				
	Radium 226/228	pCi/L	<		Ħ	=		-				
3	Total Strontium	µg/L	<		H	۲	H					
σ	Total Uranium	µg/L	<		Ē							
	Osmotic Pressure	mOs/kg						_				
_	Oshiouc Pressure	mosikg			H	Н	H	-				
					H			-				
					Ħ			-				
					П							
					Ы			_				
					F			-				
					þ							
					Ħ			-				

Page 3

Toxics Management Spreadsheet Version 1.3, March 2021

Stream / Surface Water Information

Trout Run WPCC, NPDES Permit No. PA0026131, Outfall 002

Instructions Discharge Stream

Receiving Surface Water Name: Schuylkill River

No. Reaches to Model: 1

۲	Statewide Criteria
0	Great Lakes Criteria

ORSANCO Criteria

Location	Stream Code*	RMI*	Elevation (ft)*	DA (mi ²)*	Slope (ft/ft)	PWS Withdrawal (MGD)	Apply Fish Criteria*
Point of Discharge	000833	27.7	58.04	1720			Yes
End of Reach 1	000833	26.72	57.91	1740			Yes

Q 7-10

Location	RMI	LFY	Flow			W/D Width Depth			Time	Tributa	ary	Stream	m	Analysis	
Eocation	TSWI1	(cfs/mi ²)*	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness*	pH*	Hardness	pН
Point of Discharge	27.7	0.15										206	7		
End of Reach 1	26.72	0.15										206	7		

Qh

Location	RMI	LFY	Flow	Flow (cfs)		W/D Width		Velocit	Time	Tributa	ary	Stream		Analysis	
Location	TSIMI	(cfs/mi ²)	Stream	Tributary	Ratio	(ft)	(ft)	y (fps)	(days)	Hardness	pН	Hardness	pН	Hardness	pН
Point of Discharge	27.7														
End of Reach 1	26.72														

Model Results Trout Run WPCC, NPDES Permit No. PA0026131, Outfall 002 Instructions Results RETURN TO INPUTS SAVE AS PDF PRINT Inputs Results Limits Hydrodynamics Image: Wasteload Allocations Image: Wasteload Allocations Image: Wasteload Allocations

AFC CC	T (min): 1	5	PMF:	0.029	Ana	lysis Hardne	ss (mg/l):	197.67 Analysis pH: 6.94
Pollutants	Conc	Stream CV	Trib Conc (µg/L)	Fate Coef	WQC (µg/L)	WQ Obj (µg/L)	WLA (µg/L)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	750	750	1,350	
Total Antimony	0	0		0	1,100	1,100	1,980	
Total Arsenic	0	0		0	340	340	612	Chem Translator of 1 applied
Total Barium	0	0		0	21,000	21,000	37,798	
Total Boron	0	0		0	8,100	8,100	14,579	
Total Cadmium	0	0		0	3.904	4.26	7.68	Chem Translator of 0.915 applied
Total Chromium (III)	0	0		0	995.550	3,150	5,671	Chem Translator of 0.316 applied
Hexavalent Chromium	0	0		0	16	16.3	29.3	Chem Translator of 0.982 applied
Total Cobalt	0	0		0	95	95.0	171	
Total Copper	0	0		0	25.539	26.6	47.9	Chem Translator of 0.96 applied
Free Cyanide	0	0		0	22	22.0	39.6	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	134.455	194	350	Chem Translator of 0.692 applied
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	1.400	1.65	2.96	Chem Translator of 0.85 applied
Total Nickel	0	0		0	833.342	835	1,503	Chem Translator of 0.998 applied
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	Chem Translator of 0.922 applied
Total Silver	0	0		0	10.385	12.2	22.0	Chem Translator of 0.85 applied
Total Thallium	0	0		0	65	65.0	117	
Total Zinc	0	0		0	208.737	213	384	Chem Translator of 0.978 applied
Acrolein	0	0		0	3	3.0	5.4	

Model Results

Acrylonitrile	0	0	0	650	650	1,170	
Benzene	0	0	0	640	640	1,170	
Bromoform	0	0	0	1.800	1,800	3,240	
Carbon Tetrachloride	0	0	0	2,800	2,800	3,240	
	0	0	0		1,200	2,160	
Chlorobenzene	-	0	-	1,200 N/A	1,200 N/A	2,160 N/A	
Chlorodibromomethane	0	-	0				
2-Chloroethyl Vinyl Ether	0	0	0	18,000	18,000	32,398	
Chloroform	0	0	0	1,900	1,900	3,420	
Dichlorobromomethane	0	0	0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0	0	15,000	15,000	26,999	
1,1-Dichloroethylene	0	0	0	7,500	7,500	13,499	
1,2-Dichloropropane	0	0	0	11,000	11,000	19,799	
1,3-Dichloropropylene	0	0	0	310	310	558	
Ethylbenzene	0	0	0	2,900	2,900	5,220	
Methyl Bromide	0	0	0	550	550	990	
Methyl Chloride	0	0	0	28,000	28,000	50,397	
Methylene Chloride	0	0	0	12,000	12,000	21,599	
1,1,2,2-Tetrachloroethane	0	0	0	1,000	1,000	1,800	
Tetrachloroethylene	0	0	0	700	700	1,260	
Toluene	0	0	0	1,700	1,700	3,060	
1,2-trans-Dichloroethylene	0	0	0	6,800	6,800	12,239	
1,1,1-Trichloroethane	0	0	0	3,000	3,000	5,400	
1,1,2-Trichloroethane	0	0	0	3,400	3,400	6,120	
Trichloroethylene	0	0	0	2,300	2,300	4,140	
Vinyl Chloride	0	0	0	N/A	N/A	N/A	
2-Chlorophenol	0	0	0	560	560	1,008	
2,4-Dichlorophenol	0	0	0	1,700	1,700	3,060	
2,4-Dimethylphenol	0	0	0	660	660	1,188	
4,6-Dinitro-o-Cresol	0	0	0	80	80.0	144	
2,4-Dinitrophenol	0	0	0	660	660	1,188	
2-Nitrophenol	0	0	0	8,000	8,000	14,399	
4-Nitrophenol	0	0	0	2,300	2,300	4,140	
Pentachlorophenol	0	0	0	8.226	8.23	14.8	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	460	460	828	
Acenaphthene	0	0	0	83	83.0	149	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	300	300	540	
Benzo(a)Anthracene	0	0	0	0.5	0.5	0.9	
Benzo(a)Pyrene	0	0	0	N/A	N/A	N/A	
3.4-Benzofluoranthene	0	0	0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0	0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	ō	0	30.000	30.000	53,997	
Bis(2-Ethylhexyl)Phthalate	0	ō	0	4,500	4,500	8,100	
4-Bromophenyl Phenyl Ether	0	ō	0	270	270	486	
Butyl Benzyl Phthalate	0	0	0	140	140	252	
2-Chloronaphthalene	0	ō	0	N/A	N/A	202 N/A	
Chrysene	0	0	0	N/A	N/A	N/A	
Onlysene		U	0	19/74	19/14	19//5	ļ

Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	820	820	1,476	
1,3-Dichlorobenzene	0	0		0	350	350	630	
1,4-Dichlorobenzene	0	0		0	730	730	1,314	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	4,000	4,000	7,200	
Dimethyl Phthalate	0	0		0	2,500	2,500	4,500	
Di-n-Butyl Phthalate	0	0		0	110	110	198	
2,4-Dinitrotoluene	0	0		0	1,600	1,600	2,880	
2,6-Dinitrotoluene	0	0		0	990	990	1,782	
1,2-Diphenylhydrazine	0	0		0	15	15.0	27.0	
Fluoranthene	0	0		0	200	200	360	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	10	10.0	18.0	
Hexachlorocyclopentadiene	0	0		0	5	5.0	9.0	
Hexachloroethane	0	0		0	60	60.0	108	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	10.000	10,000	17,999	
Naphthalene	0	0		0	140	140	252	
Nitrobenzene	0	0		0	4.000	4.000	7,200	
n-Nitrosodimethylamine	0	0		0	17.000	17,000	30,598	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	300	300	540	
Phenanthrene	0	0		0	5	5.0	9.0	
Pyrene	0	0		0	N/A	N/A	N/A	
1.2.4-Trichlorobenzene	0	0		0	130	130	234	
CFC CC	T (min): 7	20	PMF:	0.199	Ana	alysis Hardne	ess (mg/l):	203.71 Analysis pH: 6.98
	Stream							1
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
1 olidiants	(uall.)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	(pg/c)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	220	220	1,439	
Total Arsenic	0	0		0	150	150	981	Chem Translator of 1 applied
Total Barium	0	0		0	4,100	4,100	26.822	
Total Boron	0	0		0	1.600	1.600	10,467	
	0	0		-	0.403	0.46	3.0	Cham Translates of 0.970 applied
Total Cadmium	_			0				Chem Translator of 0.879 applied
Total Chromium (III)	0	0		0	132.733	154	1,010	Chem Translator of 0.86 applied
Hexavalent Chromium	0	0		0	10	10.4	68.0	Chem Translator of 0.962 applied
Total Cobalt	0	0		0	19	19.0	124	
Total Copper	0	0		0	16.449	17.1	112	Chem Translator of 0.96 applied
		_						
Free Cyanide	0	0		0	5.2	5.2	34.0	
Free Cyanide Dissolved Iron	0	0		0	5.2 N/A	5.2 N/A	34.0 N/A	

Total Iron	0	0			0	1,500	1,500	43,194	WQC = 30 day average; PMF = 1
Total Lead	0	0			0	5.410	7.87	51.5	Chem Translator of 0.687 applied
Total Manganese	0	0			0	N/A	N/A	N/A	
Total Mercury	0	0	Ħ	-	0	0.770	0.91	5.93	Chem Translator of 0.85 applied
Total Nickel	0	0			0	94.946	95.2	623	Chem Translator of 0.997 applied
Total Phenols (Phenolics) (PWS)	0	0			0	N/A	N/A	N/A	
Total Selenium	0	0	H	-	0	4.600	4.99	32.6	Chem Translator of 0.922 applied
Total Silver	0	0			0	N/A	N/A	N/A	Chem Translator of 1 applied
Total Thallium	0	0			0	13	13.0	85.0	
Total Zinc	0	0	iT		0	215.881	219	1,432	Chem Translator of 0.986 applied
Acrolein	0	0			0	3	3.0	19.6	
Acrylonitrile	0	0			0	130	130	850	
Benzene	0	0			0	130	130	850	
Bromoform	0	0			0	370	370	2,420	
Carbon Tetrachloride	0	0			0	560	560	3,663	
Chlorobenzene	0	0			0	240	240	1,570	
Chlorodibromomethane	0	0			0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0			0	3,500	3,500	22,897	
Chloroform	0	0			0	390	390	2,551	
Dichlorobromomethane	0	0			0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0			0	3,100	3,100	20,280	
1,1-Dichloroethylene	0	0			0	1,500	1,500	9,813	
1,2-Dichloropropane	0	0			0	2,200	2,200	14,392	
1,3-Dichloropropylene	0	0			0	61	61.0	399	
Ethylbenzene	0	0			0	580	580	3,794	
Methyl Bromide	0	0			0	110	110	720	
Methyl Chloride	0	0			0	5,500	5,500	35,980	
Methylene Chloride	0	0			0	2,400	2,400	15,701	
1,1,2,2-Tetrachloroethane	0	0			0	210	210	1,374	
Tetrachloroethylene	0	0			0	140	140	916	
Toluene	0	0			0	330	330	2,159	
1,2-trans-Dichloroethylene	0	0			0	1,400	1,400	9,159	
1,1,1-Trichloroethane	0	0	i		0	610	610	3,991	
1,1,2-Trichloroethane	0	0			0	680	680	4,448	
Trichloroethylene	0	0			0	450	450	2,944	
Vinyl Chloride	0	0	ij		0	N/A	N/A	N/A	
2-Chlorophenol	0	0			0	110	110	720	
2,4-Dichlorophenol	0	0			0	340	340	2,224	
2,4-Dimethylphenol	0	0			0	130	130	850	
4,6-Dinitro-o-Cresol	0	0			0	16	16.0	105	
2,4-Dinitrophenol	0	0			0	130	130	850	
2-Nitrophenol	0	0			0	1,600	1,600	10,467	
4-Nitrophenol	0	0			0	470	470	3,075	
Pentachlorophenol	0	0			0	6.311	6.31	41.3	
Phenol	0	0			0	N/A	N/A	N/A	

Model Results

2,4,6-Trichlorophenol	0	0		0	91	91.0	595	
Acenaphthene	0	0		0	17	17.0	111	
Anthracene	0	0		0	N/A	N/A	N/A	
Benzidine	0	0		0	59	59.0	386	
Benzo(a)Anthracene	0	0		0	0.1	0.1	0.65	
Benzo(a)Pyrene	0	0		0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0		0	6,000	6,000	39,251	
Bis(2-Ethylhexyl)Phthalate	0	0		0	910	910	5,953	
4-Bromophenyl Phenyl Ether	0	0		0	54	54.0	353	
Butyl Benzyl Phthalate	0	0		0	35	35.0	229	
2-Chloronaphthalene	0	0		0	N/A	N/A	N/A	
Chrysene	0	0		0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0		0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		0	160	160	1,047	
1,3-Dichlorobenzene	0	0		0	69	69.0	451	
1,4-Dichlorobenzene	0	0		0	150	150	981	
3,3-Dichlorobenzidine	0	0		0	N/A	N/A	N/A	
Diethyl Phthalate	0	0		0	800	800	5,234	
Dimethyl Phthalate	0	0		0	500	500	3,271	
Di-n-Butyl Phthalate	0	0		0	21	21.0	137	
2,4-Dinitrotoluene	0	0		0	320	320	2,093	
2,6-Dinitrotoluene	0	0		0	200	200	1,308	
1,2-Diphenylhydrazine	0	0		0	3	3.0	19.6	
Fluoranthene	0	0		0	40	40.0	262	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0		0	2	2.0	13.1	
Hexachlorocyclopentadiene	0	0		0	1	1.0	6.54	
Hexachloroethane	0	0		0	12	12.0	78.5	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
Isophorone	0	0		0	2,100	2,100	13,738	
Naphthalene	0	0		0	43	43.0	281	
Nitrobenzene	0	0		0	810	810	5,299	
n-Nitrosodimethylamine	0	0		0	3,400	3,400	22,242	
n-Nitrosodi-n-Propylamine	0	0		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	59	59.0	386	
Phenanthrene	0	0		0	1	1.0	6.54	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	26	26.0	170	
_	T (min): 7.	20 Stream	PMF:	0.199 Fate	Ana	alysis Hardne		N/A Analysis pH: N/A
Pollutante	Conc	Sueam	The Cone	rate	mage -	1000	MLA (up/L)	Comments

i oliutarits	(ug/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEN (Pare)	Comments
Total Dissolved Solids (PWS)	0	0		0	500,000	500,000	N/A	
Chloride (PWS)	0	0		0	250,000	250,000	N/A	
Sulfate (PWS)	0	0		0	250,000	250,000	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	5.6	5.6	36.6	
Total Arsenic	0	0		0	10	10.0	65.4	
Total Barium	0	0		0	2,400	2,400	15,701	
Total Boron	0	0		0	3,100	3,100	20,280	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	4	4.0	26.2	
Dissolved Iron	0	0		0	300	300	1,963	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	1,000	1,000	6,542	
Total Mercury	0	0		0	0.050	0.05	0.33	
Total Nickel	0	0		0	610	610	3,991	
Total Phenols (Phenolics) (PWS)	0	0		0	5	5.0	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	0.24	0.24	1.57	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	3	3.0	19.6	
Acrylonitrile	0	0		0	N/A	N/A	N/A	
Benzene	0	0		0	N/A	N/A	N/A	
Bromoform	0	0		0	N/A	N/A	N/A	
Carbon Tetrachloride	0	0		0	N/A	N/A	N/A	
Chlorobenzene	0	0		0	100	100.0	654	
Chlorodibromomethane	0	0		0	N/A	N/A	N/A	
2-Chloroethyl Vinyl Ether	0	0		0	N/A	N/A	N/A	
Chloroform	0	0		0	N/A	N/A	N/A	
Dichlorobromomethane	0	0		0	N/A	N/A	N/A	
1,2-Dichloroethane	0	0		0	N/A	N/A	N/A	
1,1-Dichloroethylene	0	0		0	33	33.0	216	
1,2-Dichloropropane	0	0		0	N/A	N/A	N/A	
1,3-Dichloropropylene	0	0		0	N/A	N/A	N/A	
Ethylbenzene	0	0		0	68	68.0	445	
Methyl Bromide	0	0		0	100	100.0	654	
Methyl Chloride	0	0		0	N/A	N/A	N/A	
Methylene Chloride	0	0		0	N/A	N/A	N/A	
1,1,2,2-Tetrachloroethane	0	0		0	N/A	N/A	N/A	

Tetrachloroethylene	0	0		_		0	N/A	N/A	N/A	
Toluene	0	0		+		0	57	57.0	373	
1,2-trans-Dichloroethylene	0	0				0	100	100.0	654	
1,1,1-Trichloroethane	0	0	╞┼╤┼	+	++-	0	10.000	10.000	65,419	
1,1,2-Trichloroethane	0	0		+		0	N/A	N/A	N/A	
Trichloroethylene	0	0				0	N/A	N/A	N/A	
Vinyl Chloride	0	0		+	++-	0	N/A	N/A	N/A	
2-Chlorophenol	0	0		Ť		0	30	30.0	196	
2,4-Dichlorophenol	0	0		+		0	10	10.0	65.4	
2,4-Dimethylphenol	0	0	H	+		0	100	100.0	654	
4,6-Dinitro-o-Cresol	0	0				0	2	2.0	13.1	
2,4-Dinitrophenol	0	0		+		0	10	10.0	65.4	
2-Nitrophenol	0	0	H	+	++-	0	N/A	N/A	N/A	
4-Nitrophenol	0	0				0	N/A	N/A	N/A	
Pentachlorophenol	0	0		+		0	N/A	N/A	N/A	
Phenol	0	0	t t			0	4,000	4,000	26,168	
2,4,6-Trichlorophenol	0	0				0	N/A	N/A	N/A	
Acenaphthene	0	0		+		0	70	70.0	458	
Anthracene	0	0		1		0	300	300	1,963	
Benzidine	0	0				0	N/A	N/A	N/A	
Benzo(a)Anthracene	0	0		+		0	N/A	N/A	N/A	
Benzo(a)Pyrene	0	0				0	N/A	N/A	N/A	
3,4-Benzofluoranthene	0	0		-		0	N/A	N/A	N/A	
Benzo(k)Fluoranthene	0	0		-		0	N/A	N/A	N/A	
Bis(2-Chloroethyl)Ether	0	0				0	N/A	N/A	N/A	
Bis(2-Ethylhexyl)Phthalate	0	0		_		0	N/A	N/A	N/A	
4-Bromophenyl Phenyl Ether	0	0				0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0				0	0.1	0.1	0.65	
2-Chloronaphthalene	0	0				0	800	800	5,234	
Chrysene	0	0				0	N/A	N/A	N/A	
Dibenzo(a,h)Anthrancene	0	0				0	N/A	N/A	N/A	
1,2-Dichlorobenzene	0	0		_		0	1,000	1,000	6,542	
1,3-Dichlorobenzene	0	0	ii	-i-		0	7	7.0	45.8	
1,4-Dichlorobenzene	0	0				0	300	300	1,963	
3,3-Dichlorobenzidine	0	0				0	N/A	N/A	N/A	
Diethyl Phthalate	0	0				0	600	600	3,925	
Dimethyl Phthalate	0	0				0	2,000	2,000	13,084	
Di-n-Butyl Phthalate	0	0				0	20	20.0	131	
2,4-Dinitrotoluene	0	0				0	N/A	N/A	N/A	
2,6-Dinitrotoluene	0	0				0	N/A	N/A	N/A	
1,2-Diphenylhydrazine	0	0				0	N/A	N/A	N/A	
Fluoranthene	0	0				0	20	20.0	131	
Fluorene	0	0				0	50	50.0	327	
Hexachlorobenzene	0	0				0	N/A	N/A	N/A	
Hexachlorobutadiene	0	0				0	N/A	N/A	N/A	

Hexachlorocyclopentadiene	0	0		0	4	4.0	26.2	
Hexachloroethane	0	0		0	N/A	N/A	20.2 N/A	
Indeno(1,2,3-cd)Pyrene	0	0		0	N/A	N/A	N/A	
	0	0		0	34	34.0	222	
Isophorone	0	0		0	N/A	34.0 N/A	222 N/A	
Naphthalene Nitrobenzene	0	0		0	10	10.0	65.4	
	0	0		0	N/A	10.0 N/A	00.4 N/A	
n-Nitrosodimethylamine	-	0		-				
n-Nitrosodi-n-Propylamine	0	-		0	N/A	N/A	N/A	
n-Nitrosodiphenylamine	0	0		0	N/A	N/A	N/A	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	20	20.0	131	
1,2,4-Trichlorobenzene	0	0		0	0.07	0.07	0.46	
CRL CC	T (min): 7	20	PMF:	0.296	Ana	lysis Hardne	ss (mg/l):	N/A Analysis pH: N/A
Pollutants	Conc	Stream	Trib Conc	Fate	WQC	WQ Obj	WLA (µg/L)	Comments
Politiants	(up/L)	CV	(µg/L)	Coef	(µg/L)	(µg/L)	WEX (pg/E)	Comments
Total Dissolved Solids (PWS)	0	0		0	N/A	N/A	N/A	
Chloride (PWS)	0	0		0	N/A	N/A	N/A	
Sulfate (PWS)	0	0		0	N/A	N/A	N/A	
Total Aluminum	0	0		0	N/A	N/A	N/A	
Total Antimony	0	0		0	N/A	N/A	N/A	
Total Arsenic	0	0		0	N/A	N/A	N/A	
Total Barium	0	0		0	N/A	N/A	N/A	
Total Boron	0	0		0	N/A	N/A	N/A	
Total Cadmium	0	0		0	N/A	N/A	N/A	
Total Chromium (III)	0	0		0	N/A	N/A	N/A	
Hexavalent Chromium	0	0		0	N/A	N/A	N/A	
Total Cobalt	0	0		0	N/A	N/A	N/A	
Total Copper	0	0		0	N/A	N/A	N/A	
Free Cyanide	0	0		0	N/A	N/A	N/A	
Dissolved Iron	0	0		0	N/A	N/A	N/A	
Total Iron	0	0		0	N/A	N/A	N/A	
Total Lead	0	0		0	N/A	N/A	N/A	
Total Manganese	0	0		0	N/A	N/A	N/A	
Total Mercury	0	0		0	N/A	N/A	N/A	
Total Nickel	0	0		0	N/A	N/A	N/A	
Total Phenols (Phenolics) (PWS)	0	0		0	N/A	N/A	N/A	
Total Selenium	0	0		0	N/A	N/A	N/A	
Total Silver	0	0		0	N/A	N/A	N/A	
Total Thallium	0	0		0	N/A	N/A	N/A	
Total Zinc	0	0		0	N/A	N/A	N/A	
Acrolein	0	0		0	N/A	N/A	N/A	
Acrylonitrile	0	0		0	0.06	0.06	1.89	
	-	-						

Model Results

Bromoform	0	0	0	7	7.0	220	
Carbon Tetrachloride	0	0	0	0.4	0.4	12.6	
Chlorobenzene	0	0	0	N/A	N/A	N/A	
Chlorodibromomethane	0	0	0	0.8	0.8	25.1	
2-Chloroethyl Vinyl Ether	0	0	0	0.6 N/A	N/A	20.1 N/A	
Chloroform	0	0	0	5.7	5.7	179	
Dichlorobromomethane	0	0	0	0.95	0.95	29.8	
1.2-Dichloroethane	0	0	0	9,9	9,9	28.0	
1,1-Dichloroethylene	0	0	0	9.9 N/A	9.9 N/A	N/A	
1,2-Dichloropropane	0	0	0	0.9	0.9	28.3	
1,2-Dichloropropylene	0	0	0	0.9	0.9	8.48	
1.114	0	0	0	0.27 N/A	0.27 N/A	8.48 N/A	
Ethylbenzene	0	0	0	N/A N/A	N/A N/A	N/A N/A	
Methyl Bromide			-				
Methyl Chloride	0	0	0	N/A	N/A	N/A	
Methylene Chloride	0	0	0	20	20.0	628	
1,1,2,2-Tetrachloroethane	0	0	0	0.2	0.2	6.28	
Tetrachloroethylene	0	0	0	10	10.0	314	
Toluene	0	0	0	N/A	N/A	N/A	
1,2-trans-Dichloroethylene	0	0	0	N/A	N/A	N/A	
1,1,1-Trichloroethane	0	0	0	N/A	N/A	N/A	
1,1,2-Trichloroethane	0	0	0	0.55	0.55	17.3	
Trichloroethylene	0	0	0	0.6	0.6	18.9	
Vinyl Chloride	0	0	0	0.02	0.02	0.63	
2-Chlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dichlorophenol	0	0	0	N/A	N/A	N/A	
2,4-Dimethylphenol	0	0	0	N/A	N/A	N/A	
4,6-Dinitro-o-Cresol	0	0	0	N/A	N/A	N/A	
2,4-Dinitrophenol	0	0	0	N/A	N/A	N/A	
2-Nitrophenol	0	0	0	N/A	N/A	N/A	
4-Nitrophenol	0	0	0	N/A	N/A	N/A	
Pentachlorophenol	0	0	0	0.030	0.03	0.94	
Phenol	0	0	0	N/A	N/A	N/A	
2,4,6-Trichlorophenol	0	0	0	1.5	1.5	47.1	
Acenaphthene	0	0	0	N/A	N/A	N/A	
Anthracene	0	0	0	N/A	N/A	N/A	
Benzidine	0	0	0	0.0001	0.0001	0.003	
Benzo(a)Anthracene	0	0	0	0.001	0.001	0.031	
Benzo(a)Pyrene	0	0	0	0.0001	0.0001	0.003	
3,4-Benzofluoranthene	0	0	0	0.001	0.001	0.031	
Benzo(k)Fluoranthene	0	0	0	0.01	0.01	0.31	
Bis(2-Chloroethyl)Ether	0	0	0	0.03	0.03	0.94	
Bis(2-Ethylhexyl)Phthalate	0	0	0	0.32	0.32	10.1	
4-Bromophenyl Phenyl Ether	0	0	0	N/A	N/A	N/A	
Butyl Benzyl Phthalate	0	0	0	N/A	N/A	N/A	
2-Chloronaphthalene	0	0	0	N/A	N/A	N/A	

Chrysene	0	0		0	0.12	0.12	3.77	
Dibenzo(a,h)Anthrancene	0	0		0	0.0001	0.0001	0.003	
1,2-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,3-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
1,4-Dichlorobenzene	0	0		0	N/A	N/A	N/A	
3,3-Dichlorobenzidine	0	0		0	0.05	0.05	1.57	
Diethyl Phthalate	0	0		0	N/A	N/A	N/A	
Dimethyl Phthalate	0	0		0	N/A	N/A	N/A	
Di-n-Butyl Phthalate	0	0		0	N/A	N/A	N/A	
2,4-Dinitrotoluene	0	0		0	0.05	0.05	1.57	
2,6-Dinitrotoluene	0	0		0	0.05	0.05	1.57	
1,2-Diphenylhydrazine	0	0		0	0.03	0.03	0.94	
Fluoranthene	0	0		0	N/A	N/A	N/A	
Fluorene	0	0		0	N/A	N/A	N/A	
Hexachlorobenzene	0	0		0	0.00008	0.00008	0.003	
Hexachlorobutadiene	0	0		0	0.01	0.01	0.31	
Hexachlorocyclopentadiene	0	0		0	N/A	N/A	N/A	
Hexachloroethane	0	0	_	0	0.1	0.1	3.14	
Indeno(1,2,3-cd)Pyrene	0	0		0	0.001	0.001	0.031	
Isophorone	0	0		0	N/A	N/A	N/A	
Naphthalene	0	0	_	0	N/A	N/A	N/A	
Nitrobenzene	0	0		0	N/A	N/A	N/A	
n-Nitrosodimethylamine	0	0		0	0.0007	0.0007	0.022	
n-Nitrosodi-n-Propylamine	0	0		0	0.005	0.005	0.16	
n-Nitrosodiphenylamine	0	0		0	3.3	3.3	104	
Phenanthrene	0	0		0	N/A	N/A	N/A	
Pyrene	0	0		0	N/A	N/A	N/A	
1,2,4-Trichlorobenzene	0	0		0	N/A	N/A	N/A	

Recommended WQBELs & Monitoring Requirements

No. Samples/Month: 4

	Mass	Limits	Concentration Limits				I		
Pollutants	AML (lbs/day)	MDL (lbs/day)	AML MDL IMAX		IMAX	Units	Governing WQBEL	WQBEL Basis	Comments
Total Copper	1.33	1.56	26.6	31.2	31.2	µg/L	26.6	AFC	Discharge Conc ≥ 50% WQBEL (RP)
Total Zinc	Report	Report	Report	Report	Report	µg/L	246	AFC	Discharge Conc > 10% WQBEL (no RP)

Other Pollutants without Limits or Monitoring

The following pollutants do not require effluent limits or monitoring based on water quality because reasonable potential to exceed water quality criteria was not determined and the discharge concentration was less than thresholds for monitoring, or the pollutant was not detected and a sufficiently sensitive analytical method was used (e.g., <= Target QL).

Pollutants Governir WQBEI	Units	Comments
------------------------------	-------	----------

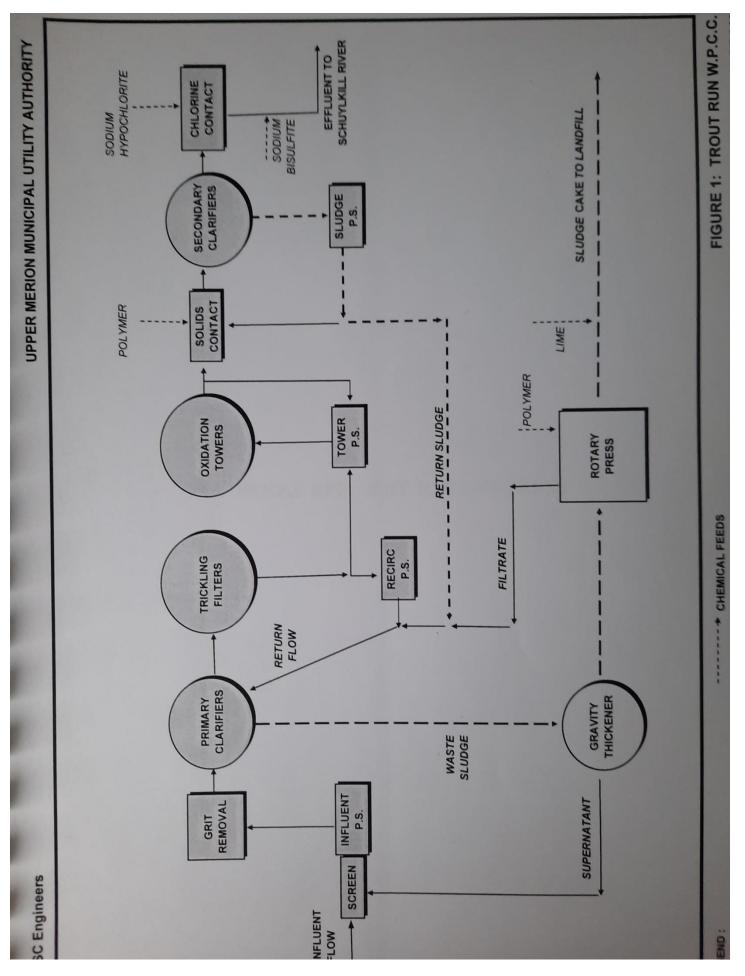
Model Results

Total Dissolved Solids (PWS)	N/A	N/A	PWS Not Applicable
Chloride (PWS)	N/A	N/A	PWS Not Applicable
Bromide	N/A	N/A	No WQS
Sulfate (PWS)	N/A	N/A	PWS Not Applicable
Total Aluminum	865	µg/L	Discharge Conc ≤ 10% WQBEL
Total Antimony	36.6	µg/L	Discharge Conc ≤ 10% WQBEL
Total Arsenic	N/A	N/A	Discharge Conc < TQL
Total Barium	15,701	µg/L	Discharge Conc ≤ 10% WQBEL
Total Beryllium	N/A	N/A	No WQS
Total Boron	9,345	µg/L	Discharge Conc ≤ 10% WQBEL
Total Cadmium	3.0	µg/L	Discharge Conc < TQL
Total Chromium (III)	1,010	µg/L	Discharge Conc ≤ 10% WQBEL
Hexavalent Chromium	18.8	µg/L	Discharge Conc < TQL
Total Cobalt	110	µg/L	Discharge Conc ≤ 10% WQBEL
Free Cyanide	25.4	µg/L	Discharge Conc ≤ 25% WQBEL
Total Cyanide	N/A	N/A	No WQS
Dissolved Iron	1,963	µg/L	Discharge Conc ≤ 10% WQBEL
Total Iron	43,194	µg/L	Discharge Conc ≤ 10% WQBEL
Total Lead	51.5	µg/L	Discharge Conc < TQL
Total Manganese	6,542	µg/L	Discharge Conc ≤ 10% WQBEL
Total Mercury	0.33	µg/L	Discharge Conc < TQL
Total Nickel	623	µg/L	Discharge Conc ≤ 10% WQBEL
Total Phenols (Phenolics) (PWS)		µg/L	PWS Not Applicable
Total Selenium	32.6	µg/L	Discharge Conc ≤ 10% WQBEL
Total Silver	14.1	µg/L	Discharge Conc < TQL
Total Thallium	1.57	µg/L	Discharge Conc < TQL
Total Molybdenum	N/A	N/A	No WQS
Acrolein	3.46	μg/L	Discharge Conc < TQL
Acrylonitrile	1.89	μg/L	Discharge Conc < TQL
Benzene	18.2	μg/L	Discharge Conc < TQL
Bromoform	220	µg/L	Discharge Conc < TQL
Carbon Tetrachloride	12.6	µg/L	Discharge Conc < TQL
Chlorobenzene	654	µg/L	Discharge Conc ≤ 25% WQBEL
Chlorodibromomethane	25.1	µg/L	Discharge Conc < TQL
Chloroethane	N/A	N/A	No WQS
2-Chloroethyl Vinyl Ether	20,766	µg/L	Discharge Conc < TQL
Chloroform	179	µg/L	Discharge Conc ≤ 25% WQBEL
Dichlorobromomethane	29.8	µg/L	Discharge Conc < TQL
1,1-Dichloroethane	N/A	N/A	No WQS
1,2-Dichloroethane	311	µg/L	Discharge Conc < TQL
1,1-Dichloroethylene	216	µg/L	Discharge Conc < TQL
1,2-Dichloropropane	28.3	µg/L	Discharge Conc < TQL
1,3-Dichloropropylene	8.48	µg/L	Discharge Conc < TQL
1,4-Dioxane	N/A	N/A	No WQS
Ethylbenzene	445	µg/L	Discharge Conc < TQL

Model Results

			-
1,1,2,2-Tetrachloroethane	6.28	µg/L	Discharge Conc < TQL
Tetrachloroethylene	314	µg/L	Discharge Conc < TQL
Toluene	373	µg/L	Discharge Conc < TQL
1,2-trans-Dichloroethylene	654	µg/L	Discharge Conc < TQL
1,1,1-Trichloroethane	3,461	µg/L	Discharge Conc < TQL
1,1,2-Trichloroethane	17.3	µg/L	Discharge Conc < TQL
Trichloroethylene	18.9	µg/L	Discharge Conc < TQL
Vinyl Chloride	0.63	µg/L	Discharge Conc < TQL
2-Chlorophenol	196	µg/L	Discharge Conc < TQL
2,4-Dichlorophenol	65.4	µg/L	Discharge Conc < TQL
2,4-Dimethylphenol	654	µg/L	Discharge Conc < TQL
4,6-Dinitro-o-Cresol	13.1	µg/L	Discharge Conc < TQL
2,4-Dinitrophenol	65.4	µg/L	Discharge Conc < TQL
2-Nitrophenol	9,229	µg/L	Discharge Conc < TQL
4-Nitrophenol	2,653	µg/L	Discharge Conc < TQL
Pentachlorophenol	0.94	µg/L	Discharge Conc < TQL
Phenol	26,168	µg/L	Discharge Conc < TQL
2,4,6-Trichlorophenol	47.1	µg/L	Discharge Conc < TQL
Acenaphthene	95.8	µg/L	Discharge Conc ≤ 25% WQBEL
Acenaphthylene	N/A	N/A	No WQS
Anthracene	1,963	µg/L	Discharge Conc ≤ 25% WQBEL
Benzidine	0.003	µg/L	Discharge Conc < TQL
Benzo(a)Anthracene	0.031	µg/L	Discharge Conc < TQL
Benzo(a)Pyrene	0.003	µg/L	Discharge Conc < TQL
3,4-Benzofluoranthene	0.031	µg/L	Discharge Conc < TQL
Benzo(ghi)Perylene	N/A	N/A	No WQS
Benzo(k)Fluoranthene	0.31	µg/L	Discharge Conc < TQL
Bis(2-Chloroethoxy)Methane	N/A	N/A	No WQS
Bis(2-Chloroethyl)Ether	0.94	µg/L	Discharge Conc < TQL
Bis(2-Ethylhexyl)Phthalate	10.1	µg/L	Discharge Conc < TQL
4-Bromophenyl Phenyl Ether	311	µg/L	Discharge Conc < TQL
Butyl Benzyl Phthalate	0.65	µg/L	Discharge Conc < TQL
2-Chloronaphthalene	5,234	µg/L	Discharge Conc < TQL
4-Chlorophenyl Phenyl Ether	N/A	N/A	No WQS
Chrysene	3.77	µg/L	Discharge Conc < TQL
Dibenzo(a,h)Anthrancene	0.003	µg/L	Discharge Conc < TQL
1,2-Dichlorobenzene	946	µg/L	Discharge Conc < TQL
1,3-Dichlorobenzene	45.8	µg/L	Discharge Conc < TQL
1,4-Dichlorobenzene	842	µg/L	Discharge Conc < TQL
3,3-Dichlorobenzidine	1.57	µg/L	Discharge Conc < TQL
Distant Distants	0.005		Discharge Conc < TQL
Diethyl Phthalate	3,925	µg/L	Discharge Conc < TQL

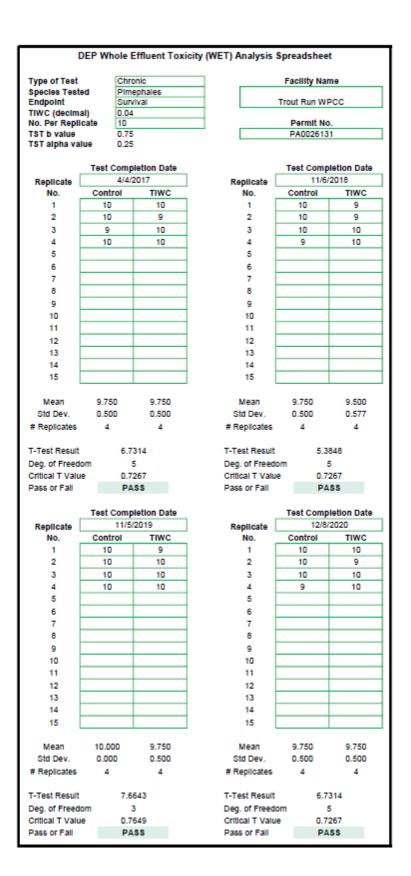
Model Results

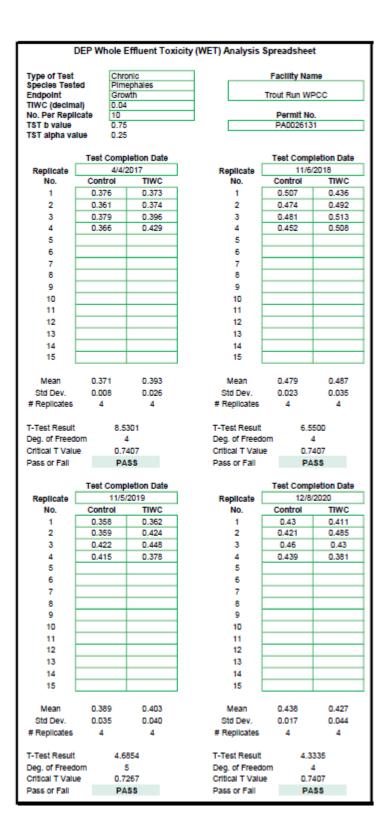

7/7/2021

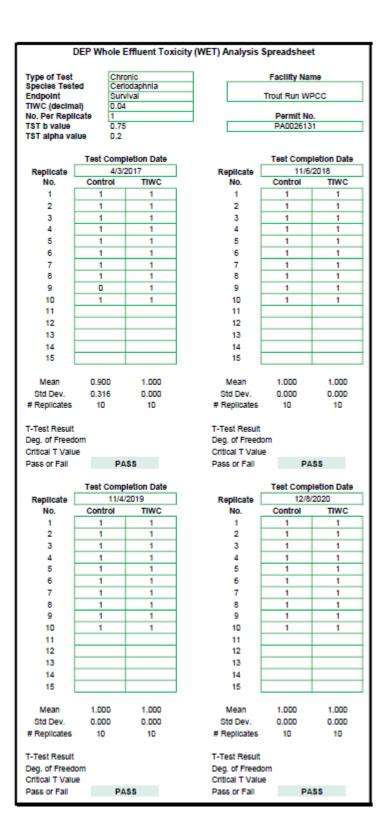
Page 16

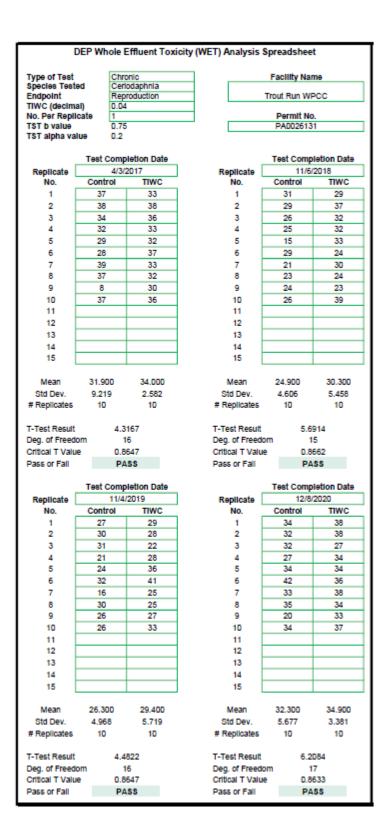
Di-n-Butyl Phthalate	127	µg/L	Discharge Conc < TQL
			-
2,4-Dinitrotoluene	1.57	µg/L	Discharge Conc < TQL
2,6-Dinitrotoluene	1.57	µg/L	Discharge Conc < TQL
Di-n-Octyl Phthalate	N/A	N/A	No WQS
1,2-Diphenylhydrazine	0.94	µg/L	Discharge Conc < TQL
Fluoranthene	131	µg/L	Discharge Conc ≤ 25% WQBEL
Fluorene	327	µg/L	Discharge Conc ≤ 25% WQBEL
Hexachlorobenzene	0.003	µg/L	Discharge Conc < TQL
Hexachlorobutadiene	0.31	µg/L	Discharge Conc < TQL
Hexachlorocyclopentadiene	5.77	µg/L	Discharge Conc < TQL
Hexachloroethane	3.14	µg/L	Discharge Conc < TQL
Indeno(1,2,3-cd)Pyrene	0.031	µg/L	Discharge Conc < TQL
Isophorone	222	µg/L	Discharge Conc < TQL
Naphthalene	162	µg/L	Discharge Conc < TQL
Nitrobenzene	65.4	µg/L	Discharge Conc < TQL
n-Nitrosodimethylamine	0.022	µg/L	Discharge Conc < TQL
n-Nitrosodi-n-Propylamine	0.16	µg/L	Discharge Conc < TQL
n-Nitrosodiphenylamine	104	µg/L	Discharge Conc < TQL
Phenanthrene	5.77	µg/L	Discharge Conc < TQL
Pyrene	131	µg/L	Discharge Conc ≤ 25% WQBEL
1,2,4-Trichlorobenzene	0.46	µg/L	Discharge Conc < TQL

	Facility: NPDES #: Outfall No: n (Samples/Mon Reviewer/Permi	ith): t Englneer:	Trout Run STP PA0026131 002 4 R. Chowdhury				-		-	
Parameter Name Units	Total Copper						 		 	
Detection Limit	µg/L 10									
Dettered and										
Sample Date	When entering v	alues below the	detection limit, er	ner "ND" or use t	he < notation (eq	. <0.02)				
2/5/2013										
5/8/2013	51									
8/7/2013	42									
11/5/2013	44									
2/5/2014	48									
5/6/2014	38									
8/5/2014	34									
11/4/2014										
2/2/2015	56									
5/5/2015										
8/4/2015	32									
11/3/2015										
2/4/2016										
5/6/2016										
8/5/2016	25									
11/8/2016										
2/7/2017										
5/2/2017										
8/9/2017										
11/7/2017	38									
2/2/2018										
5/3/2018										
8/3/2018										
11/6/2018										
2/5/2019										
5/7/2019										
8/6/2019										
11/5/2019	31									
	-						 	 		-
L							 	 	 	L
L							 	 	 	
L							 	 	 	L
L							 	 	 	L


		Reviewer/Permit Engineer:	R. Chowdhury
Facility:	Trout Run STP		
NPDES #:	PA0026131		
Outfall No:	002		
n (Samples/Month):	4		
Parameter	Distribution Applied	Coefficient of Variation (daily)	Avg. Monthly
Total Copper (µg/L)	Lognormal	0.2576586	54.8431891
L			




TRC_CALC


e values in A							
	A3:A9 and D3:D9						
= Q stream (o	:fs)	0.5	= CV Daily				
= Q discharg	e (MGD)	0.5	= CV Hourly				
		1	= AFC_Partial M	ix Factor			
= Chlorine De	emand of Stream						
= Chlorine De	emand of Discharge	15	= AFC_Criteria (Compliance Time (min)			
= BAT/BPJ V	alue	720	= CFC_Criteria	Compliance Time (min)			
= % Factor o	f Safety (FOS)		=Decay Coeffici	ent (K)			
	AFC Calculations		Reference	CFC Calculations			
1.3.2.iii	WLA afc =	8.920	1.3.2.iii	WLA cfc = 8.689			
5.1a	LTAMULT afc =	0.373	5.1c	LTAMULT cfc = 0.581			
5.1b	LTA_afc=	3.324	5.1d	LTA_cfc = 5.051			
	Effluer	nt Limit Calcul	lations				
5.1f		AML MULT =	1.231				
5.1g	AVG MON I	LIMIT (mg/l) =	0.500	BAT/BPJ			
		(
(.019/e(-k*AF	C_tc)) + [(AFC_Yc*Qs*.019/	Qd*e(-k*AFC_	_tc))				
+ Xd + (AFC	_Yc*Qs*Xs/Qd)]*(1-FOS/100))					
		1)^0.5)					
wla_afc*LTAI	MULT_afc						
	- / -		tc))				
EXP((0.5*LN(cvd^2/no_samples+1))-2.326	S*LN(cvd^2/n	o_samples+1)^0.	5)			
wla_cfc*LTAI	MULT_cfc						
EXP(2.326*L)	N((cvd^2/no_samples+1)^0.5	5)-0.5*LN(cvd	^2/no_samples+1))			
MIN(BAT_BP	J,MIN(LTA_afc,LTA_cfc)*AM	L_MULT)					
1.5*((av_mon	_limit/AML_MULT)/LTAMUL	T_afc)					
	= Q discharg = no. sample: = Chlorine De = Chlorine De = BAT/BPJ V: = % Factor o Reference 1.3.2.iii 5.1a 5.1b 5.1f 5.1g (.019/e(-k*AF EXP((0.5*LN(wla_afc*LTA) (.011/e(-k*CF + Xd + (CFC EXP((0.5*LN(wla_cfc*LTA) (.011/e(-k*CF + Xd + (CFC) EXP((0.5*LN(wla_cfc*LTA) MIN(BAT_BP)	= Q discharge (MGD) = no. samples = Chlorine Demand of Stream = Chlorine Demand of Discharge = BAT/BPJ Value = % Factor of Safety (FOS) Reference AFC Calculations 1.3.2.iii WLA afc = 5.1a LTAMULT afc = 5.1b LTA_afc= Effluer 5.1f 5.1g AVG MON I INST MAX I (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/runc+xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+ (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/cunc+xd + (CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+ wla_cfc*LTAMULT_afc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvd^2/no_samples+1))-2.326 KIN(cvd^2/no_samples+1))-2.326 MIN(BAT_BPJ,MIN(LTA_afc,LTA_cfc)*AM	= Q discharge (MGD) 0.5 = no. samples 1 = Chlorine Demand of Stream 1 = Chlorine Demand of Discharge 15 = BAT/BPJ Value 720 = % Factor of Safety (FOS) 720 Reference AFC Calculations 1.3.2.iii WLA afc = 8.920 5.1a LTAMULT afc = 0.373 5.1b LTA_afc= 3.324 Effluent Limit Calcu 5.1f AML MULT = 5.1g AVG MON LIMIT (mg/l) = INST MAX LIMIT (mg/l) = (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC+Xd + (AFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) wia_afc*LTAMULT_afc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC+Xd + (CFC_tc) + [(CFC_Yc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvd^2/no_samples+1))-2.326*LN(cvd^2/no_wia_cfc*LTAMULT_cfc	= Q discharge (MGD) 0.5 = CV Hourly = no. samples 1 = AFC_Partial M = Chlorine Demand of Stream 1 = CFC_Partial M = Chlorine Demand of Discharge 15 = AFC_Criteria (D = BAT/BPJ Value 720 = CFC_Criteria (D = W Factor of Safety (FOS) = Decay Coefficin Reference AFC Calculations Reference 1.3.2.iii WLA afc = 8.920 1.3.2.iii 5.1a LTAMULT afc = 0.373 5.1c 5.1b LTA_afc= 3.324 5.1d Effluent Limit Calculations 5.1f AVG MON LIMIT (mg/l) = 0.500 INST MAX LIMIT (mg/l) = 0.500 INST MAX LIMIT (mg/l) = 1.635 (.019/e(-k*AFC_tc)) + [(AFC_Yc*Qs*.019/Qd*e(-k*AFC_tc)) + Xd + (AFC_Tc*Qs*Xs/Qd)]*(1-FOS/100) EXP((0.5*LN(cvh^2+1))-2.326*LN(cvh^2+1)^0.5) wila_afc*LTAMULT_afc (.011/e(-k*CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) + Xd + (CFC_tc) + [(CFC_Yc*Qs*.011/Qd*e(-k*CFC_tc)) </td			

Page 1

WET Summary and Evaluation										
Facility Name	Trout Run WPCC									
Permit No.	PA0026131									
Design Flow (MGD)	6									
Q ₇₋₁₀ Flow (cfs)	259									
PMFa	0.029									
PMF _o	0.199									
				s (Pass/Fail)						
		Test Date		Test Date	Test Date					
Species	Endpoint	4/4/17	11/6/18	11/5/19	12/8/20					
Pimephales	Survival	PASS	PASS	PASS	PASS					
	Test Results (Pass/Fail)									
		Test Date		Test Date	Test Date					
Species	Endpoint	4/4/17	11/6/18	11/5/19	12/8/20					
Pimephales	Growth	PASS	PASS	PASS	PASS					
Timopharoo	Cionai	17.00	17.00	17100	17100					
			Test Result	s (Pass/Fail)						
		Test Date	e Test Date	Test Date	Test Date					
Species	Endpoint	4/3/17	11/6/18	11/4/19	12/8/20					
Ceriodaphnia	Survival	PASS	PASS	PASS	PASS					
				s (Pass/Fail)						
		Test Date		Test Date	Test Date					
Species	Endpoint	4/3/17	11/6/18	11/4/19	12/8/20					
Ceriodaphnia	Reproduction	PASS	PASS	PASS	PASS					
Deservable Determin	10 NO									
Reasonable Potentia	I? NO									
Permit Recommenda	tions									
Test Type	Chronic									
TIWC	15	% Effluent								
Dilution Series			00 % Effluent							
Permit Limit	None	,,	e re Emeril							
Permit Limit Species										